SPSC TEST FOR SS (BPS-17) Male / Female in School Educations and Literacy Department

1. $A=\{a, b, c\}$ and $B=\{x, y, z\}$, then f defined as $f(a)=y, f(c)=x$ is:
A. One-to-One function
B. Onto function
C. One-One and Onto function
D. Not a function
2. Any polynomial $p(x)$ of degree $n \geq 1$ may be expressed as:
A. $p(x)=(x-r) q(x)+k$
B. $p(x)=(x+r) q(x)+k$
C. $p(x)=(x-r) q(x)-k$
D. $p(x)=(x-r) q(x) k$
3. For two vectors \vec{a} and \vec{b} which of the following is true?
A. $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
B. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
C. $|\vec{a}-\vec{b}|=|\vec{b}-\vec{a}|$
D. All of these
4. Commutative group is called:
A. Abelian group
B. Monoid
C. Semi group
D. All of these
5. A group (S, \circ) is a \ldots if $\forall a, b \in S, a \circ b=b \circ a$.
A. Commutative group
B. Monoid
C. Semi group
D. None of these

6 . Let R be an integral domain. Which of the following statement is not true about R ?
A. R is a commutative group
B. R has no zero divisor
C. If R is finite, then it is a field
D. R is a division ring
7. If $\int_{C} x^{n} d x=0$ then C is equal to:
A. Simple curve
B. Smooth curve
C. Closed curve
D. Analytic curve
8. If the correlation coefficient is 0 , then two regression lines are:
A. Parallel
B. Perpendicular
C. Coincident
D. None of these
9. Four persons are chosen at random from a group containing 3 men, 2 women, 4 children, the chance that exactly two of them will be children is:
A. $\left({ }^{4} C_{2} \times{ }^{3} C_{2}\right) /{ }^{9} C_{2}$
B. $\left({ }^{4} C_{2} \times{ }^{5} C_{2}\right) /{ }^{9} C_{2}$
C. $\left({ }^{4} C_{2} \times{ }^{2} C_{2}\right) /{ }^{9} C_{2}$
D. None of these
10. $y=\sqrt{x-1}$ is:
A. Implicit function
B. Even function
C. Explicit function
D. Odd function
11. If $R=\{(1,1),(3,1),(2,3),(4,2)\}$, then which of the following represents R^{2}, where R^{2} is R composite R ?
A. $\{(1,1),(3,1),(2,3),(4,2)\}$
B. $\{(1,1),(9,1),(4,9),(16,4)\}$
C. $\{(1,1),(2,1),(4,3),(3,1)\}$
D. $\{(1,3),(3,3),(3,4),(3,2)\}$
12. If a function has a differential coefficient that vanishes for all values of x in the interval $a \leq x \leq b$, the function is:
A. A constant
B. A continuous function
C. A discontinuous function
D. None of these
13. Which one is always correct?
A. $H . M<G . M<A . M$
B. $A . M<G . M<H . M$
C. $H . M>G . M>A . M$
D. None of these
14. If Hessian matric H is zero at any point, then the point is called:
A. Hyperbolic
B. Elliptic
C. Parabolic
D. Both A and B
15. The total of the ages of Karim, Rahim and, Akbar is 80 years. What was the total of their ages three year ago?
A. 72 years
B. 71 years
C. 70 years
D. 69 years
16. The sum of $4^{\text {th }}$ multiple of 3 and $6^{\text {th }}$ multiple of 2 is:
A. $6^{\text {th }}$ multiple of 4
B. $3^{\text {rd }}$ multiple of 8
C. $2^{\text {nd }}$ multiple of 12
D. All of these
17. Does the parabola $y=2 x^{2}-13 x+5$ have a tangent whose slope is -1 . If so, then it will be:
A. $y=x^{2}-1$
B. $y=2 x+2$
C. $y=\frac{1}{x+1}$
D. None of these
18. The integral $\int \sqrt{2 x+1} d x$ will be:
A. $\frac{1}{3}(2 x+1)^{\frac{3}{2}}+C$
B. $3(2 x+1)^{\frac{3}{2}}+C$
C. $(2 x+1)^{\frac{2}{3}}+C$
D. $\frac{1}{3}(2 x+1)^{\frac{2}{3}}+C$
19. Average rate of change of function $f(x)=x^{3}+1$ over the interval [2,3] will be:
A. 18
B. 19
C. 20
D. 21
20. If $y=5 x$ and $\frac{d x}{d t}=2$, then $\frac{d y}{d t}$ will be:
A. 9
B. 10
C. 11
D. 12
21. Solution of the separable differential equation $(1+x) d y-y d x=0$ is:
A. $y=c(1+x)$
B. $y=c+(1+x)$
C. $y=c^{2}+(1+x)$
D. $y=c(1-x)$
22. Area of an equilateral triangle as function of triangle's side length x will be:
A. $\frac{1}{4} x$
B. $\frac{1}{4} x^{3}$
C. $\frac{\sqrt{3}}{4} x$
D. $\frac{\sqrt{3}}{4} x^{2}$
23. $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+100}-10}{x^{2}}$ will be:
A. ∞
B. 1
C. $\frac{1}{20}$
D. does not exist
24. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x^{2}$. Then $f^{-1}(-9)=$ will be:
A. 3
B. -3
C. $\{-3,3\}$
D. \emptyset
25. An experiment consists of throwing a die and the drawing a letter at random from the English alphabet. Then total number of points in sample space will be:
A. 60
B. 156
C. 144
D. 18
26. Which of these sets is an ideal in the ring of integers?
A. The odd numbers
B. The negative numbers
C. The positive numbers
D. The even numbers
27. Under Galois theory, the roots of a polynomial is solvable by radicals if and only if the polynomial's Galois group is:
A. Abelian
B. Prime
C. Cyclic
D. Solvable
28. In the group $G=\{2,4,6\}$ under multiplication modulo 10 , the identity element is:
A. 6
B. 8
C. 4
D. 2
29. If every element of a group G is its own inverse then G is called:
A. Abelian
B. Finite
C. Infinite
D. Cyclic
30. A tensor is a:
A. Multilinear function
B. Linear function
C. Composite function
D. None of these
31. Synonym of Acrimonious is:
A. Bitter
B. Cheap
C. Expensive
D. Momentary
32. Antonym of Abridge is:
A. Extend
B. Easy
C. Shorten
D. Street
33. One that lives on another:
A. Independent
B. Eligible
C. Parasite
D. Mercenary
34. My friend will accede ... my wishes in this matter.
A. For
B. With
C. Of
D. To
35. My bike which ... was brought back only when a 20 -pound-reward
A. was stolen/was offered
B. has been stolen/has been offered
C. stole/offered
D. was stolen/has offered
36. Choose the correct spelling:
A. Invairunment
B. Environment
C. Inwironment
D. Environmen
37. Choose the correct spelling:
A. Eliminate
B. Elinenate
C. Elmenate
D. Elemenaite
38. "Castles in the air" means:
A. Romantic designs
B. Ideal projects
C. Visionary projects
D. Fanciful schemes
39. Synonym of Succinct is:
A. Tranquil
B. Ratify
C. Concise
D. Slowly
40. Antonym of Pernicious is:
A. Parochial
B. Permanent
C. Beneficial
D. Dangerous
41. A compound proposition that is always true, no matter what the truth values of the propositions that occur in it, is called:
A. Equivalence
B. Tautology
C. Contradiction
D. Contingency
42. Let S be a set. An order on S is a relation denoted by:
A. \equiv
B. \approx
C. \cong
D. \leq
43. If $u=(2,-2,3)$ and $v=(1,-3,4)$, then $\|-2 u+2 v\|$ is:
A. $\sqrt{2}$
B. $\sqrt{3}$
C. $2 \sqrt{3}$
D. 1
44. A consistent system of linear equation has
A. No solution
B. At least one solution
C. Minimum two solutions
D. Maximum two solutions
45. From the data $3.4,2.5,4.8,2.9,3.6,2.8,3.3,5.6,3.7,2.8,4.4,4.0,5.2,3.0,4.8$, the sample median will be:
A. 3.7
B. 3.6
C. 5.2
D. 2.9
46. The probability of getting a total of 7 or 11 when a pair of the dice are tossed will be:
A. $\frac{1}{9}$
B. $\frac{2}{9}$
C. $\frac{4}{9}$
D. $\frac{8}{9}$
47. If $z_{1}=3-4 i$ and $z_{2}=-4+3 i$, then the acute angle between the vectors will be:
A. $15^{\circ} 16^{\prime}$
B. $16^{\circ} 16^{\prime}$
C. $17^{\circ} 16^{\prime}$
D. $18^{\circ} 16^{\prime}$
48. By using finite approximation to estimate the area under the graph of the function using a lower sum with two rectangles of equal width of the function $f(x)=x^{2}$ in the in interval $[0,1]$ will be:
A. 0.125
B. 0.2187
C. 0.625
D. 0.4687
49. If f is continuous at every point in $[a, b]$ and F is any antiderivative of f on $[a, b]$, them
A. $f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
B. $\int_{a}^{b} f(x) d x=F(b)-F(a)$
C. $F(b)-F(a)=\int_{a}^{b} F^{\prime}(x) d x$
D. $A=\int_{a}^{b} f(x) d x$
50. Integral $\int\left(x^{3}+x\right)^{5}\left(3 x^{2}+1\right) d x$ will be:
A. $\frac{\left(x^{3}+x\right)^{6}}{6}+C$
B. $\frac{\left(x^{3}+x\right)^{6}+x}{6}+C$
C. $\frac{\left(x^{3}+x\right)^{6}+x^{2}}{6}+C$
D. $\frac{\left(x^{3}+x\right)^{6}+x^{3}}{6}+C$

Ayesha Mureed

Student of BS Mathematics
University of Jhang
Akhtar Abbas
Lecturer in Mathematics
University of Jhang
0332-6297570

