Mock Test-2
 For Lecturer (Mathematics)

1. If $x^{y}=e^{x-y}$, then $\frac{d y}{d x}$ equals:
A. $\frac{\ln x}{1+\ln x}$
B. $\frac{\ln x}{(1+\ln x)^{2}}$
C. $\frac{1+\ln x}{\ln x}$
D. $\frac{(1+\ln x)^{2}}{\ln x}$
2. $\lim _{x \rightarrow 0}(\cot x)^{\sin x}$ equals:
A. 0
B. -1
C. 1
D. e
3. If a function f satisfies all axioms of Mean Value Theorem on $[a, b]$ and $\left|f^{\prime}(x)\right| \leq M$ for all $x \in[a, b]$, then:
A. $|f(b)-f(a)| \leq M(a-b)$
B. $|f(b)-f(a)| \geq M(a-b)$
C. $|f(b)-f(a)| \leq M(b-a)$
D. $|f(a)-f(b)| \geq M(b-a)$
4. $\int \frac{d x}{x \sqrt{a^{2}+x^{2}}}$ equals:
A. $\frac{1}{a} \sinh ^{-1}(x)$
B. $\frac{1}{a} \sinh ^{-1}\left(\frac{-a}{x}\right)$
C. $-\frac{1}{a} \sinh ^{-1}(x)$
D. $-\frac{1}{a} \sinh ^{-1}\left(\frac{a}{x}\right)$
5. The maximum error formula in Simpson's rule is Error $\leq \frac{M(b-a)^{5}}{180 n^{4}}$, where M equals:
A. $\left|f^{\prime}(x)\right|$
B. $\left|f^{\prime \prime}(x)\right|$
C. $\left|f^{\prime \prime \prime}(x)\right|$
D. $\left|f^{(4)}(x)\right|$
6. For $a>0, r=a \sin \theta$ represents a circle of radius:
A. $\frac{a}{2}$
B. a
C. $2 a$
D. a^{2}
7. Distance of the point $(3,-1,2)$ from the plane $2 x+y-z=0$ is:
A. $\frac{3}{2}$
B. $\frac{4}{\sqrt{6}}$
C. $\frac{6}{2}$
D. $\frac{\sqrt{6}}{4}$
8. The acute angle between the planes $2 x+y-z=5$ and $x-y-2 z=-5$ is:
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$
9. The function $f(x, y, z)=\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{x+y}$ is homogeneous of degree:
A. $\frac{1}{2}$
B. 2
C. $-\frac{1}{2}$
D. none of these
10. If D is the region in the first quadrant between the circles $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=b^{2}$, $(0<a<b)$, then $\iint_{D} \frac{d x d y}{x^{2}+y^{2}}$ equals:
A. $\frac{\pi}{\ln b}$
B. $\frac{\pi}{2} \ln (b)$
C. $\frac{\pi}{2} \ln (a)$
D. $\frac{\pi}{2} \ln \left(\frac{b}{a}\right)$
11. The order of the differential equation $\frac{d^{2} y}{d x^{2}}+5 x\left(\frac{d y}{d x}\right)^{3}-4 y+e^{x}=0$ is:
A. 0
B. 1
C. 2
D. 3
12. Which of the following is a non-linear differential equation?
A. $(1-x) y^{\prime}+2 y=e^{x}$
B. $y^{\prime \prime}+\sin y=0$
C. $y^{\prime \prime \prime}+y=0$
D. $y^{\prime \prime}+(\sin x) y=5$
13. The differential equation $N(x, y) d x+M(x, y) d y=0$ is exact if:
A. $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial y}$
B. $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
C. Both (A) and (B)
D. None of these
14. The Wronskian $W\left(e^{3 x}, e^{-3 x}\right)$ equals:
A. 0
B. 6
C. -6
D. $1 / 6$
15. If L^{-1} is the inverse Laplace transform, then $L^{-1}\left(\frac{t}{t^{2}+k^{2}}\right)$ equals:
A. sinks
B. cosks
C. e^{s}
D. $\log (s)$
16. For a scalar point function $\psi, \nabla \times(\nabla \psi)$ equals:
A. 0
B. ψ
C. ψ^{2}
D. $\psi / 2$
17. For a vector point function $A, \nabla(\nabla \cdot A)-\nabla^{2} A$ equals:
A. $\nabla(\nabla \cdot A)$
B. $\nabla \times(\nabla \times A)$
C. $\nabla(A \cdot \nabla)$
D. $\nabla \cdot(\nabla \times A)$
18. The volume of a tetrahedron with sides $\vec{a}, \vec{b}, \vec{c}$ is:
A. $\frac{1}{2}|\vec{a} \times \vec{b} \cdot \vec{c}|$
B. $\frac{1}{6}|\vec{a} \times \vec{b} \cdot \vec{c}|$
C. $\frac{1}{2}|\vec{a} \times \vec{c} \cdot \vec{b}|$
D. $\frac{1}{2}|\vec{c} \times \vec{b} \cdot \vec{a}|$
19. For vectors \vec{a}, \vec{b} and \vec{c}, which of the following is true?
A. $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$
B. $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ implies $\vec{b}=\vec{c}$
C. $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$ implies $\vec{b}=\vec{c}$
D. None of these
20. If $\frac{d \vec{r}(t)}{d t}=0$ on an interval $[a, b]$, then $\vec{r}(t)$ is \ldots on $[a, b]$.
A. constant
B. zero
C. 1
D. smooth
21. If \vec{t}, \vec{n} and \vec{b} are tangent, normal and bi-normal vectors respectively, then for what value of X, $\left[\begin{array}{c}\vec{t} \\ \overrightarrow{n^{\prime}} \\ \vec{b}^{\prime}\end{array}\right]=X\left[\begin{array}{c}\vec{t} \\ \vec{n} \\ \vec{b}\end{array}\right]$?
A. $X=\left[\begin{array}{ccc}0 & \kappa & 0 \\ \kappa & 0 & -\tau \\ 0 & \tau & 0\end{array}\right]$
B. $X=\left[\begin{array}{ccc}0 & -\kappa & 0 \\ -\kappa & 0 & -\tau \\ 0 & \tau & 0\end{array}\right]$
C. $X=\left[\begin{array}{ccc}0 & \kappa & 0 \\ -\kappa & 0 & -\tau \\ 0 & -\tau & 0\end{array}\right]$
D. $X=$ $\left[\begin{array}{ccc}0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0\end{array}\right]$
22. The osculating plane to a curve is parallel to:
A. \vec{t} and \vec{n}
B. \vec{n} and \vec{b}
C. \vec{b} only
D. \vec{n} only
23. If for a curve, $\frac{\kappa}{\tau}$ is a constant, then curve is a:
A. plane curve
B. space curve
C. helix
D. straight line
24. The rotation index of a simple closed curve is:
A. 0
B. 1
C. -1
D. ± 1
25. For any two sets A and $B, n(A-B)$ equals:
A. $n(A)-n(A \cap B)$
B. $n(A)-n(A \cup B)$
C. $n(B)-n(A \cap B)$
D. $n(B)-n(A \cup B)$
26. Let R be a relation on a set A with n elements, then $R^{1} \cup R^{2} \cup \ldots \cup R^{N}$ is \ldots closure of R.
A. reflexive
B. symmetric
C. transitive
D. skew-symmetric
27. A proper subset of a countable set is:
A. finite
B. co-finite
C. infinite
D. countable
28. If for any two functions f and $g, g \circ f$ is onto, then:
A. g is one-one
B. g is onto
C. f is one-one
D. f in onto
29. The set $\left\{x \in \mathbb{Q}: x>0\right.$ and $\left.2<x^{2}<3\right\}$ has:
A. no supremum
B. no infimum
C. Both A and B
D. None of these
30. The smallest positive divisor $d>1$ of an integer n is:
A. prime
B. composite
C. coprime
D. even
31. When 5^{48} is divided by 12 , the remainder is:
A. 0
B. 1
C. 5
D. 10
32. When $1!+2!+3!+\ldots+899$! is divided by 3 , then the remainder is:
A. 0
B. 1
C. 2
D. None of these
33. If for any integers a, b, c, m and $k>1, a^{k} \equiv b^{k}(\bmod m)$, then which of the following is not true in general?
A. $a^{k}+c \equiv b^{k}+c(\bmod m)$
B. $a^{k} c \equiv b^{k} c(\bmod m)$
C. $a \equiv b(\bmod m)$
D. $b^{k} \equiv a^{k}(\bmod m)$
34. Any two Sylow p-subgroups of a group G are:
A. commutative
B. finite
C. conjugate
D. normal
35. For $n \geq 3, A_{n}$ is generated by:
A. 2-cycles
B. 3-cycles
C. 4-cycles
D. None of these
36. The order of an element $\frac{p}{q}+\mathbb{Z}$ in the group $\frac{\mathbb{Q}}{\mathbb{Z}}$ is:
A. p
B. q
C. infinite
D. 1
37. How many subgroups does the group $\mathbb{Z}_{3}+\mathbb{Z}_{16}$ have?
A. 6
B. 10
C. 12
D. 24
38. The rank of an $m \times n$ matrix is:
A. m
B. n
C. $\min (m, n)$
D. $\leq \min (m, n)$
39. Suppose the system $A X=0$ has 20 unknowns and its solution space is spanned by 6 linearly independent vectors, then which of following can't be the order of A ?
A. 15×20
B. 6×20
C. 14×20
D. 16×20
40. Suppose that a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ has kernel spanned by one nonzero vector. Then what is the dimension of range of T ?
A. 0
B. 1
C. 2
D. 3
41. The linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T(x, y)=(x-y, x+2 y)$ is:
A. one-one
B. onto
C. bijective
D. None of these
42. For what value of k, the roots of the equation $x^{3}-6 x^{2}+k x+64=0$ are in geometric progression?
A. -10
B. -18
C. -24
D. 12
43. If $f(1)=2$ and $f(n-1)=f(n)-\frac{1}{2}$ for all integers $n>1$, then $f(101)$ equals:
A. 49
B. 50
C. 51
D. 52
44. If $|S|=n$, then the number of one-one functions from S onto S is:
A. n !
B. n^{2}
C. n^{n}
D. 2^{n}
45. If V_{1} and V_{2} are 6 dimensional subspaces of a 10 vector space V, what is the smallest possible dimension that $V_{1} \cap V_{2}$ can have?
A. 1
B. 2
C. 3
D. 4
46. A fair coin is tossed 8 times. What is the probability that more of the tosses will results in heads than will results in tails?
A. $\frac{93}{256}$
B. $\frac{23}{64}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$
47. For every set S and every metric d on S, which of the following is a metric on S ?
A. $4+d$
B. $e^{d}-1$
C. $d-\sqrt{d}$
D. \sqrt{d}
48. If $f(z)$ is an analytic function that maps the entire plane into the real axis, then the imaginary axis must be mapped onto:
A. the entire real axis
B. a point
C. a ray
D. the empty set
49. Let $I \neq A \neq-I$, where I is the identity matrix. If $A=A^{-1}$, then the trace of A is:
A. -1
B. 0
C. 1
D. 2
50. For a positive integer $m, \Gamma(m+1)$ equals:
A. $m+1$
B. m
C. $(m+1)$!
D. m !
