Mock Test-1
 For Lecturer (Mathematics)

1. Uniform continuity implies...
A. discontinuity
B. continuity
C. piecewise continuity
D. differentiability
2. If A and B are disjoint subsets of a metric space, then:
A. $d(A, B)<0$
B. $d(A, B)=0$
C. $d(A, B)>0$
D. none of these
3. $[-1,1]$ is a neighborhood of...
A. 2
B. 3
C. 0
D. 1
4. The set $\{1 / 2,1 / 3,1 / 4, \ldots\}$ is an open cover of \ldots
A. -3
B. -2
C. 0
D. 2
5. The diameter $\delta(A)$ of a nonempty A in a metric space (X, d) is defined by $\delta(A)=\ldots$
A.
B.
C. D.
6. Which of the following is not a separable metric space?
A. \mathbb{R}
B. \mathbb{C}
C. l^{p}
D. l^{∞}
7. For any subsets A and B of a metric space $(X, d), \bar{A} \cap \bar{B} \ldots \overline{A \cap B}$.
A. \subseteq
B. $=$
C. \supseteq
D. \neq
8. The image of an open set under continuous mappping ...
A. must be open
B. must be closed
C. need not be open
D. need not be closed
9. In a metric space, every Cauchy sequence is:
A. bounded
B. unbounded
C. convergent
D. divergent
10. Let X be an n dimensional vector space, then any proper subspace of X has dimension:
A. less than n
B. equal n
C. greater than n
D. 0
11. For any subspace Y of a vector space X, the codimension of Y is defined by:
A. $\operatorname{dim}(Y)$
B. $\operatorname{dim}(X-Y)$
C. $\operatorname{dim}(Y-\{0\})$
D. none of these
12. A subspace Y of a Banach space is complete if and only if Y is:
A. compact
B. closed
C. open
D. closed and open
13. Let T be a linear operator, then $\operatorname{dim} D(T) \ldots \operatorname{dim} R(T)$.
A. $=$
B. \leq
C. \geq
D. \neq
14. Let T be a bounded linear operator, then the null space $N(T)$ is:
A. bounded
B. closed
C. open
D. compact
15. Let $A=(0,1]$, then exterior of A is:
A. $(0,1)$
B. $(-\infty, 0) \cup(1, \infty)$
C. $(-\infty, 0] \cup(1, \infty)$
D. $(-\infty, 0) \cup[1, \infty)$
16. The domain of arctanx is:
A. $[0, \pi]$
B. $[-1,1]$
C. \mathbb{R}
D. none of these
17. A projectile makes an angle of 30 with horizontal axis moving with velocity $30 \mathrm{~m} / \mathrm{s}$. Then its time of flight is:
A. 15 sec
B. 20 sec
C. 30 sec
D. 60 sec
18. The least upper bound of the set $\left\{\frac{1}{m}+\frac{1}{n}: m, n \in \mathbb{N}\right\}$ is:
A. 0
B. 1
C. -1
D. 2
19. If $z_{1}=-2+2 i$ and $z_{2}=3 i$, then $\operatorname{Arg}\left(\frac{z_{1}}{z_{2}}\right)$ equals:
A. $-\frac{3 \pi}{4}$
B. $\frac{3 \pi}{4}$
C. $\frac{\pi}{4}$
D. $-\frac{\pi}{4}$
20. A finite set in a metric space is:
A. closed
B. bounded
C. open
D. open and closed
21. If $f(z)$ is analytic and $|f(z)|=k=$ constant in a domain D, then $f(z)$ is constant, is a statement of:
A. Lioville's Theorem
B. Morera's Theorem
C. Cauchy's Theorem
D. none of these
22. Which of the following are Cauchy - Riemann equations:
A. $u_{r}=\frac{1}{r} v_{\theta}, v_{r}=-r u_{\theta}$
B. $u_{r}=\frac{1}{r} v_{\theta}, v_{r}=\frac{1}{r} u_{\theta}$
C. $u_{r}=r v_{\theta}, v_{r}=-\frac{1}{r} u_{\theta}$
D. $u_{r}=$ $\frac{1}{r} v_{\theta}, v_{r}=-\frac{1}{r} u_{\theta}$
23. The periodicity of e^{z} is:
A. πi
B. π
C. $2 \pi i$
D. 2π
24. $\oint\left(z-z_{\circ}\right)^{-2} d z=\ldots$, where C is the unit circle centered at z_{0}.
A. 0
B. π
C. $2 \pi i$
D. none of these
25. $\oint \bar{z} d z=\ldots$, where C is the unit circle centered at origin.
A. 0
B. π
C. $2 \pi i$
D. none of these
26. If $f(z)$ is continuous in a simply connected domain D and if $\oint f(z) d z=0$ for every closed path in D, then $f(z)$ is:
A. constant
B. differentiable
C. analytic
D. integrable
27. The radius of convergence of the series $\sum \frac{(2 n)!}{(n!)^{2}}(z-3 i)^{n}$ is:
A. 3
B. 0
C. $\frac{1}{4}$
D. $\frac{1}{3}$
28. $z-\frac{z^{2}}{2}+\frac{z^{3}}{3}+\ldots$ is a series representation of:
A. $\operatorname{Ln}(1+z)$
B. $\operatorname{Ln}(1-z)$
C. $\operatorname{Ln}(z)$
D. $\operatorname{Ln}(z+i)$
29. The function $f(z)=\frac{1}{z(z-5)^{2}}+\frac{3}{(z+2)^{5}}$ has a simple pole at:
A. 0
B. 2
C. -2
D. 5
30. Residue of the function $f(z)=\frac{9 z+i}{z^{3}+z}$ at pole $z=i$ is:
A. 0
B. $5 i$
C. $-5 i$
D. none of these
31. The area of the cardioid $r=a(1+\cos \theta)$ is:
A. $8 \pi i$
B. $2 \pi a^{2}$
C. $4 \pi a^{2}$
D. $\frac{3 \pi a^{2}}{2}$
32. In 5 dimensional vector space V, any set of cardinality more than 5 is:
A. linearly independent
B. linearly dependent
C. basis
D. none of these
33. The set $A=\{(1,2,3),(3,1,2),(0,0,0)\}$ is:
A. linearly independent
B. linearly dependent
C. basis
D. none of these
34. Number of non-isomorphic groups of order 8 is:
A. 2
B. 3
C. 4
D. 5
35. Let $G=<a: a^{23}=e>$, then order of a^{10} equals:
A. 2
B. 10
C. 12
D. 23
36. For a scalar point function $\phi(x, y, z), \operatorname{div}(\operatorname{grad} \phi)$ is:
A. scalar point function
B. gauge function
C. vector point function
D. none of these
37. Let G be a group and $H, K \leq G$, then $H K$:
A. need not to be a subgroup
B. is a subgroup
C. is a normal subgroup of G
D. is commutative
38. The center of the quaternion group Q_{8} is:
A. $\{1,-1\}$
B. $\{1,-1, i,-i\}$
C. $\{1,-1, j,-j\}$
D. $\{1,-1, k,-k\}$
39. Let G be a group, then $\bigcap C(a)$, where $a \in G$ and $C(a)$ centralizer of a, is:
A. $N(G)$
B. $N(a)$
C. $Z(G)$
D. G
40. $Z\left(<a, b: a^{7}=b^{2}=(a b)^{2}=e>\right)$ equals:
A. $\left\{e, a, a^{2}, a^{3}, a^{4}, a^{5}, a^{6}\right\}$
B. $\left\{e, a^{2}\right\}$
C. $\{e, b\}$
D. $\{e\}$
41. The group \mathbb{Z}_{4000} has ... elements of order 8.
A. 4
B. 8
C. 16
D. 32
42. Which one of the following is maximal ideal of Z ?
A. $\langle 2>$
B. $<4>$
C. $\langle 8\rangle$
D. $\langle 16\rangle$
43. A ring that is cyclic under addition is always:
A. commutative
B. non-commutative
C. finite
D. infinite
44. \mathbb{Z}_{6} is a subring of:
A. \mathbb{Z}
B. \mathbb{R}
C. \mathbb{Z}_{12}
D. none of these
45. If S is a pane in Euclidean 3 -space containing $(0,0,1),(2,0,0)$ and $(0,0,0)$, then S is:
A. xy-plane
B. yz-plane
C. xz-plane
D. plane $y=z$
46. If $\sin ^{-1} x=\frac{\pi}{6}$, then the acute angle value of $\cos ^{-1} x$ is:
A. $\frac{5 \pi}{6}$
B. $\frac{\pi}{3}$
C. $1-\frac{\pi}{6}$
D. 0
47. If $c>0$ and $f(x)=e^{x}-c x$ for all real numbers x, then the minimum value of f is:
A. $f(c)$
B. $f\left(e^{c}\right)$
C. $f\left(\frac{1}{c}\right)$
D. $f(\log c)$
48. Suppose that $f(1+x)=f(x)$ for all real x. If f is a polynomial and $f(5)=11$, then $f\left(\frac{15}{2}\right)$ is:
A. -11
B. 0
C. 11
D. $\frac{33}{2}$
49. $\lim _{x \rightarrow \pi} \frac{e^{-\pi}-e^{-x}}{\sin x}$ equals:
A. $-\infty$
B. $-e^{-\pi}$
C. 0
D. 1
50. If $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$, then A^{99} equals:
A. $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$
B. $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
C. $A=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
D. none of these

Best of Luck.

Akhtar Abbas Government Ghazall College, Jhang

