Mock Test-1 For Lecturer (Mathematics)

Name	An effort by: Akhtar Abbas
 Uniform continuity implies A. discontinuity B. continuity C. piecewise continuity 	D. differentiability
2. If A and B are disjoint subsets of a metric space, then: A. $d(A,B) < 0$ B. $d(A,B) = 0$ C. $d(A,B) > 0$ D. no	one of these
 3. [-1,1] is a neighborhood of A. 2 B. 3 C. 0 D. 1 	
 4. The set {1/2, 1/3, 1/4,} is an open cover of A. −3 B. −2 C. 0 D. 2 	
5. The diameter $\delta(A)$ of a nonempty A in a metric space (X, d) A. B. C. D.) is defined by $\delta(A) = \dots$
 6. Which of the following is not a separable metric space? A. ℝ B. C C. l^p D. l[∞] 	
7. For any subsets A and B of a metric space $(X, d), \overline{A} \cap \overline{B} \dots$ A. \subseteq B. = C. \supseteq D. \neq	$\overline{A\cap B}.$
8. The image of an open set under continuous mappping A. must be open B. must be closed C. need not be oper	n D. need not be closed
9. In a metric space, every Cauchy sequence is:A. bounded B. unbounded C. convergent D. diverge	nt Jhang
10. Let X be an n dimensional vector space, then any proper su A. less than n B. equal n C. greater than n D. 0	b space of X has dimension:
11. For any subspace Y of a vector space X, the codimension of A. $dim(Y)$ B. $dim(X - Y)$ C. $dim(Y - \{0\})$ D. non	Y is defined by: e of these
12. A subspace Y of a Banach space is complete if and only if YA. compact B. closed C. open D. closed and open	is:
13. Let T be a linear operator, then $dimD(T) dimR(T)$. A ₁ = B ₁ < C ₁ > D ₂ \neq	

14. Let T be a bounded linear operator, then the null space N(T) is: A. bounded B. closed C. open D. compact

- 15. Let A = (0,1], then exterior of A is:
 A. (0,1) B. (-∞,0) ∪ (1,∞) C. (-∞,0] ∪ (1,∞) D. (-∞,0) ∪ [1,∞)
 16. The domain of arctanx is:
 A. [0,π] B. [-1,1] C. ℝ D. none of these
 17. A projectile makes an angle of 30° with horizontal axis moving with velocity 30m/s. Then its
- 17. A projectile makes an angle of 30° with horizontal axis moving with velocity 30m/s. Then its time of flight is:

A. 15sec B. 20sec C. 30sec D. 60sec

- 18. The least upper bound of the set $\{\frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N}\}$ is: A. 0 B. 1 C. -1 D. 2
- 19. If $z_1 = -2 + 2i$ and $z_2 = 3i$, then $Arg(\frac{z_1}{z_2})$ equals: A. $-\frac{3\pi}{4}$ B. $\frac{3\pi}{4}$ C. $\frac{\pi}{4}$ D. $-\frac{\pi}{4}$
- 20. A finite set in a metric space is:

A. closed B. bounded C. open D. open and closed

21. If f(z) is analytic and |f(z)| = k = constant in a domain D, then f(z) is constant, is a statement of:

A. Lioville's Theorem B. Morera's Theorem C. Cauchy's Theorem D. none of these

- 22. Which of the following are Cauchy Riemann equations: A. $u_r = \frac{1}{r}v_{\theta}, v_r = -ru_{\theta}$ B. $u_r = \frac{1}{r}v_{\theta}, v_r = \frac{1}{r}u_{\theta}$ C. $u_r = rv_{\theta}, v_r = -\frac{1}{r}u_{\theta}$ D. $u_r = \frac{1}{r}v_{\theta}, v_r = -\frac{1}{r}u_{\theta}$
- 23. The periodicity of e^z is: **khtar Abbas**A. πi B. π C. 2πi^C D. 2π
 24. ∮(z z₀)⁻²dz = ..., where C is the unit circle centered at z₀.
 - A. 0 B. π C. $2\pi i$ D. none of these
- 25. $\oint \bar{z}dz = \dots$, where C is the unit circle centered at origin.

A. 0 B. π C. $2\pi i$ D. none of these

26. If f(z) is continuous in a simply connected domain D and if $\oint f(z)dz = 0$ for every closed path in D, then f(z) is:

A. constant B. differentiable C. analytic D. integrable

27. The radius of convergence of the series $\sum \frac{(2n)!}{(n!)^2} (z-3i)^n$ is:

- A. 3 B. 0 C. $\frac{1}{4}$ D. $\frac{1}{3}$
- 28. $z \frac{z^2}{2} + \frac{z^3}{3} + \dots$ is a series representation of: A. Ln(1+z) B. Ln(1-z) C. Ln(z) D. Ln(z+i)

- 29. The function $f(z) = \frac{1}{z(z-5)^2} + \frac{3}{(z+2)^5}$ has a simple pole at: A. 0 B. 2 C. -2 D. 5
- 30. Residue of the function $f(z) = \frac{9z+i}{z^3+z}$ at pole z = i is: A. 0 B. 5*i* C. -5i D. none of these
- 31. The area of the cardioid $r = a(1 + \cos\theta)$ is: A. $8\pi i$ B. $2\pi a^2$ C. $4\pi a^2$ D. $\frac{3\pi a^2}{2}$
- 32. In 5 dimensional vector space V, any set of cardinality more than 5 is:A. linearly independent B. linearly dependent C. basis D. none of these
- 33. The set $A = \{(1, 2, 3), (3, 1, 2), (0, 0, 0)\}$ is: A. linearly independent B. linearly dependent C. basis D. none of these
- 34. Number of non-isomorphic groups of order 8 is:A. 2 B. 3 C. 4 D. 5
- 35. Let $G = \langle a : a^{23} = e \rangle$, then order of a^{10} equals: A. 2 B. 10 C. 12 D. 23
- 36. For a scalar point function $\phi(x, y, z)$, $div(grad\phi)$ is: A. scalar point function B. gauge function C. vector point function D. none of these
- 37. Let G be a group and $H, K \leq G$, then HK: A. need not to be a subgroup B. is a subgroup C. is a normal subgroup of G D. is commutative
- 38. The center of the quaternion group Q₈ is:
 A. {1,-1} B. {1,-1, i,-i} C. {1,-1, j,-j} D. {1,-1, k,-k}
- 39. Let G be a group, then $\bigcap C(a)$, where $a \in G$ and C(a) centralizer of a, is: A. N(G) B. N(a) C. Z(G) D. G
- 41. The group Z₄₀₀₀ has ... elements of order 8.
 A. 4 B. 8 C. 16 D. 32
- 42. Which one of the following is maximal ideal of Z? A. < 2 > B. < 4 > C. < 8 > D. < 16 >
- 43. A ring that is cyclic under addition is always:A. commutative B. non commutative C. finite D. infinite

- 44. \mathbb{Z}_6 is a subring of:
 - A. \mathbb{Z} B. \mathbb{R} C. \mathbb{Z}_{12} D. none of these
- 45. If S is a pane in Euclidean 3-space containing (0, 0, 1), (2, 0, 0) and (0, 0, 0), then S is:
 - A. xy-plane B. yz-plane C. xz-plane D. plane y = z
- 46. If $\sin^{-1}x = \frac{\pi}{6}$, then the acute angle value of $\cos^{-1}x$ is: A. $\frac{5\pi}{6}$ B. $\frac{\pi}{3}$ C. $1 - \frac{\pi}{6}$ D. 0
- 47. If c > 0 and $f(x) = e^x cx$ for all real numbers x, then the minimum value of f is: A. f(c) B. $f(e^c)$ C. $f(\frac{1}{c})$ D. f(logc)
- 48. Suppose that f(1+x) = f(x) for all real x. If f is a polynomial and f(5) = 11, then $f(\frac{15}{2})$ is: A. -11 B. 0 C. 11 D. $\frac{33}{2}$
- 49. $\lim_{x \to \pi} \frac{e^{-\pi} e^{-x}}{\sin x} \text{ equals:}$ A. $-\infty$ B. $-e^{-\pi}$ C. 0 D. 1 50. If $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$, then A^{99} equals: A. $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ B. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ C. $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ D. none of these Best of

Best of Luck.

```
Akhtar Abbas
Lecturer
Government Ghazall College, Jhang
```