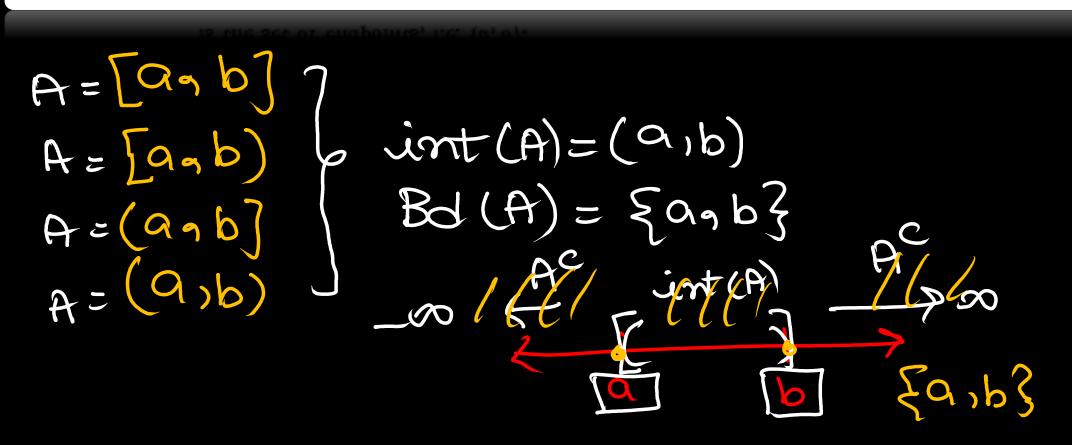


Example 5.1: Consider the four intervals [a, b], (a, b), (a, b] and [a, b) whose endpoints are a and b. The interior of each is the open interval (a, b) and the boundary of each is the set of endpoints, i.e. $\{a, b\}$.



CHAPTER FIVE

L CA

Example 5.2: Consider the topology

 $\mathcal{T} = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$

on $X = \{a, b, c, d, e\}$ and the subset $A = \{b, c, d\}$ of X. The points c and d are each interior points of A since $c,d \in \{c,d\} \subset A$

where $\{c, d\}$ is an open set. The point $b \not \in A$ is not an interior point of A; so int $(A) = \{c/d\}$. Only the point $a \in X$ is exterior to A, i.e. interior to the complement $A' = \{a, e\}$ of A, hence int $(A^c) = \{a\}$ Accordingly the boundary of A consists of the points b and e, i.e. $b(A) = \{b, e\}$.

A = (9, c) X= Sa, b) c, d, el A= {b, c, dl $b \in \{b, c, d\} \in \{b, c, d\}$ bEX £ (b)cis b is not interiolA Cescul Espicid Cis int (A) CE {a,c,d} E {b,c,d} CES bicidiel Speidlex E[bicid]

int (A) -> XEA ext (A) + Bd(A) -> XEX

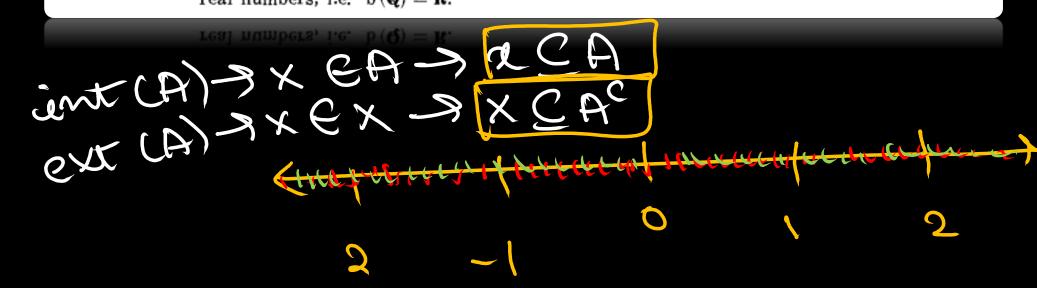
 $\alpha e[9]$

SAC

Example 5.3: Consider the set \mathbf{Q} of rational numbers. Since every open subset of \mathbf{R} contains both rational and irrational points, there are no interior or exterior points of \mathbf{Q} : so int $(\mathbf{Q}) = \emptyset$ and int $(\mathbf{Q}^c) = \emptyset$. Hence the boundary of \mathbf{Q} is the entire set of real numbers, i.e. $\mathbf{b}(\mathbf{Q}) = \mathbf{R}$.

Peomblem ginighed.

Solved



 $sint(a) = sintagext(a) = ext(a^c) = 0$ Bd(Q) = Bd(Q) =

32. Let A be a non-empty proper subset of an indiscrete space X. Find the interior, exterior and boundary of A.

$$(X \circ T) = T = \{ \varphi \circ X \}$$

$$A \neq X$$

$$Peopee subset of A = \varphi$$

$$int(P) = \varphi$$

$$ext(A) = \varphi$$

$$bd(A) = X$$

both
open
open

semember that

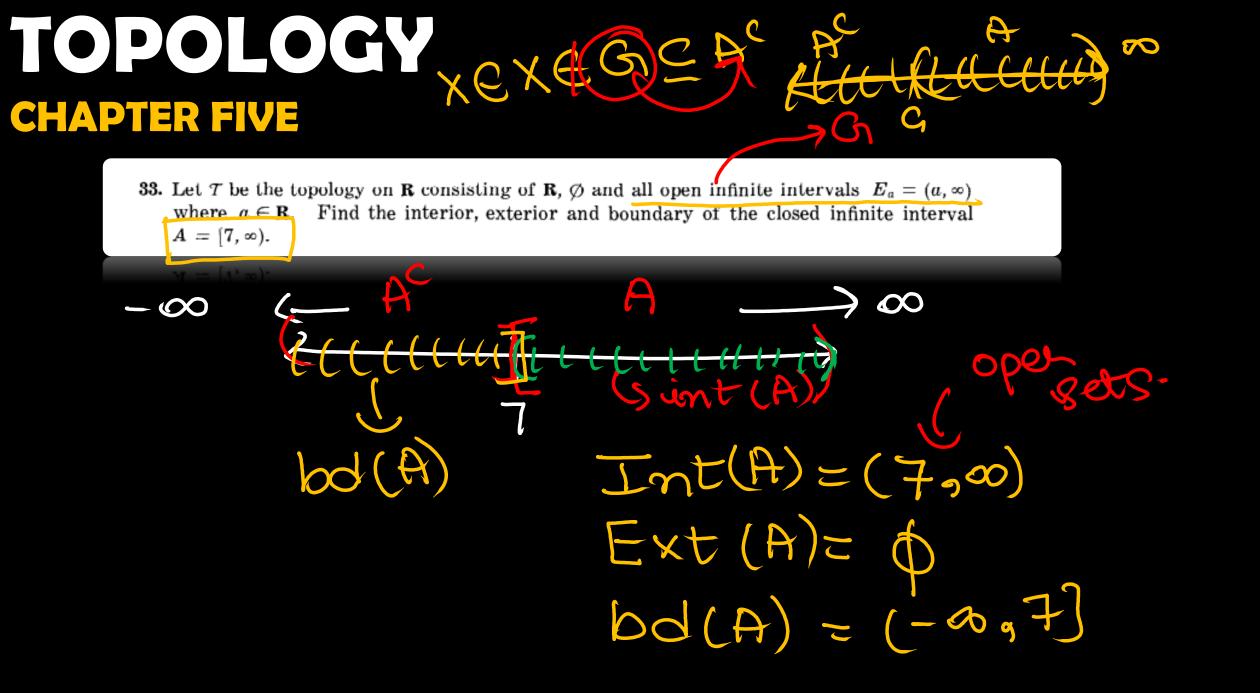
 \bigcirc

L) whole

32. Let A be a non-empty proper subset of an indiscrete space X. Find the interior, exterior and boundary of A.

Solution:

X and \emptyset are the only open subsets of X. Since $X \neq A$, \emptyset is the only open subset of A; hence int $(A) = \emptyset$. Similarly, int $(A^c) = \emptyset$, i.e. the exterior of A is empty. Thus b(A) = X.



33. Let \mathcal{T} be the topology on **R** consisting of **R**, \emptyset and all open infinite intervals $E_a = (a, \infty)$ where $a \in \mathbf{R}$. Find the interior, exterior and boundary of the closed infinite interval $A = [7, \infty)$.

Solution:

Since the interior of A is the largest open subset of A, $int(A) = (7, \infty)$. Note that $A^c = (-\infty, 7)$ contains no open set except \emptyset ; so $int(A^c) = ext(A) = \emptyset$. The boundary consists of those points which do not belong to int(A) or ext(A); hence $b(A) = (-\infty, 7]$.

Supplementary

Problems

Finisped

which do not belong to int (A) or ext (A); hence $D(A) = (-\infty, i)$

INTERIOR, EXTERIOR, BOUNDARY

75. Let X be a discrete space and let $A \subset X$. Find (i) int(A), (ii) ext(A), and (ii) b(A).

X = P(X)ACX unt (A) = A ext(A) = Abd(A) = 0

