ce ne always calculate. Dimit at a point 99

ce Something which you can? approach but can't achieve

LIMITS

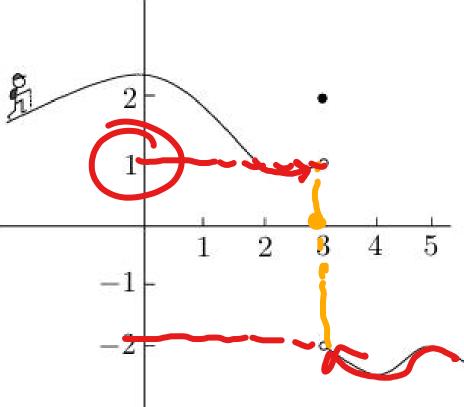
"A limit $\lim_{x\to a} f(x)$ captures how f(x) behaves as x gets arbitrarily close to a. Whether f(a) itself is undefined (a hole or vertical asymptote) or defined but possibly discontinuous, the limit lets us 'zoom in' and see if there's a single value L that f(x) approaches. Formally, for every $\varepsilon>0$ there's a $\delta>0$ so that whenever $0<|x-a|<\delta$, we have $|f(x)-L|<\varepsilon$."

$$\alpha \rightarrow 1\alpha - \alpha < 8$$

Hugh
$$|\varphi(x) - L| < \epsilon$$

LIMITS

We've seen that limits describe the behavior of a function tear a certain point. Think about how you would describe the behavior of h(x) near x = 3:



$$y = h(x)$$

Simit of RM
= DNE

We can summarize our findings from above by writing

$$\lim_{x \to 3^-} h(x) = 1$$

and

$$\lim_{x \to 3^+} h(x) = -2.$$

Now, limits don't always exist, as we'll see in the next section. But here's something important: the regular two-sided limit at x = a exists **exactly** when both left-hand and right-hand limits at x = a exist and are equal to each other! In that case, all three limits—two-sided, left-hand, and righthand—are the same. In math-speak, I'm saying that

$$\lim_{x \to a^{-}} f(x) = L \qquad \text{and} \qquad \lim_{x \to a^{+}} f(x) = L$$

$$\lim_{x \to a^+} f(x) = L$$

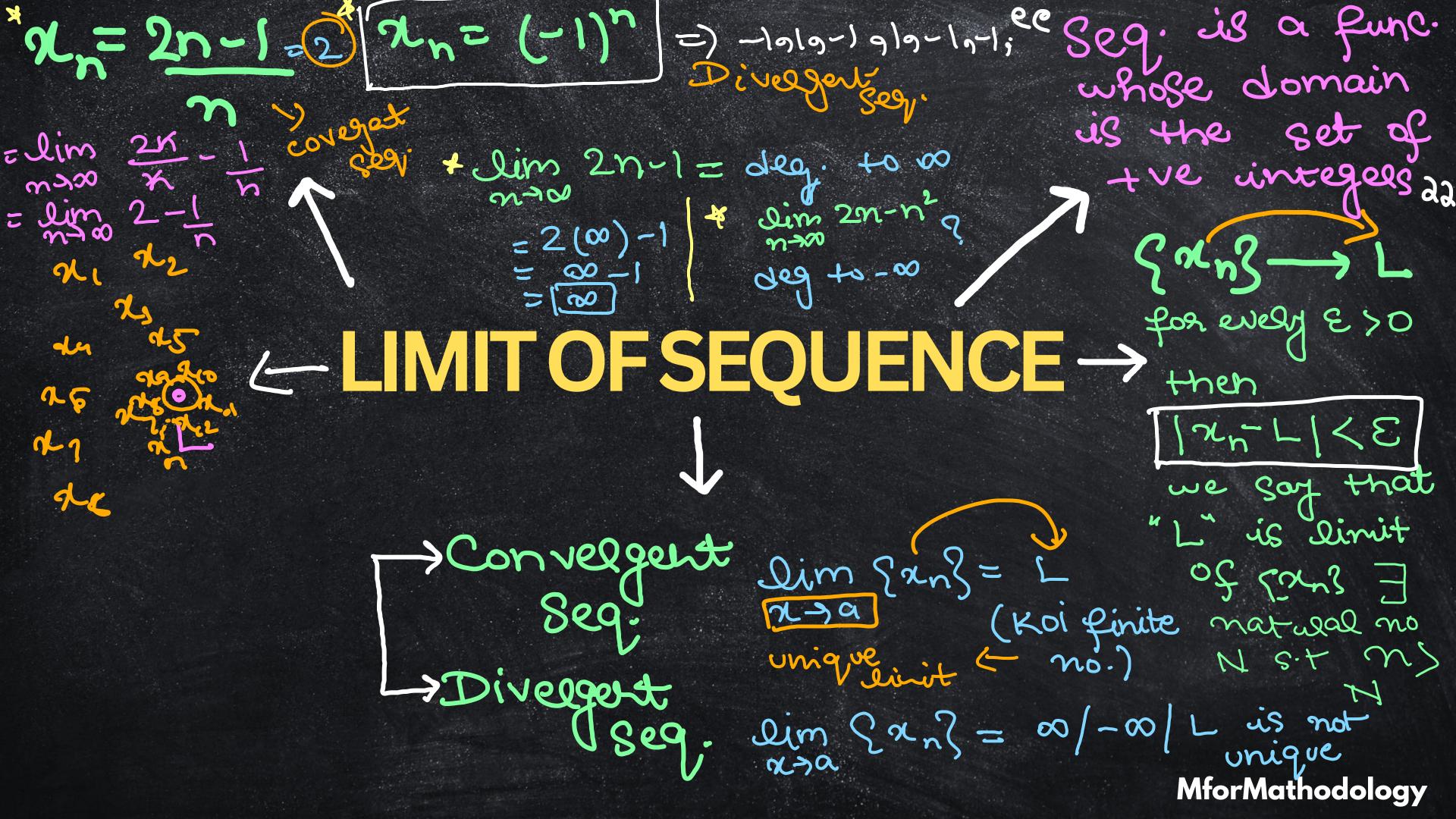
is the same thing as

$$\lim_{x \to a} f(x) = L.$$

If the left-hand and right-hand limits are not equal, as in the case of our function h from above, then the two-sided limit does not exist. We'd just write

$$\lim_{x\to 3} h(x)$$
 does not exist

or you could even write "DNE" instead of "does not exist."



LIMIT OF SEQUENCE

Some of the most useful rules about convergent sequences are summarized below:

- 1. Every convergent sequence is **bounded**; that is, there exists a positive number, M, such that the absolute value of every term of the sequence is no greater than M. [The converse of this statement is not true; for example, the sequence (x_n) with $x_n = (-1)^n$ is bounded, but not convergent.]
- 2. If a sequence is monotonic and bounded, then it's convergent.
- 3. If k is a constant, and (a_n) converges to A, then $(ka_n) \rightarrow kA$.
- 4. If (a_n) converges to A and (b_n) converges to B, then

$$(a_n + b_n) \to A + B,$$

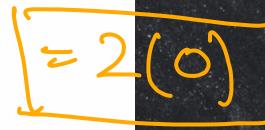
$$(a_n - b_n) \to A - B,$$

$$(a_n b_n) \to AB, \text{ and}$$

$$\left(\frac{a_n}{b_n}\right) \to \frac{A}{B}$$
 (assuming that $B \neq 0$).

5. (a) If k is a positive constant, then

(b) If
$$|k| > 1$$
, then $\left(\frac{1}{k^n}\right) \to 0$.



This is taken from BOOK Cracking the GRE Subject Mathematics

Find the value of each of these limits (if they exist):

(a)
$$\lim_{x \to \infty} \frac{2x^2 - x + 1}{x^2 + 4}$$
 (b) $\lim_{x \to \infty} \frac{2x^2 - x + 1}{x^3 + 4}$ (c) $\lim_{x \to -\infty} (\arctan x)$

(b)
$$\lim_{x \to \infty} \frac{2x^2 - x + 1}{x^3 + 4}$$

(c)
$$\lim_{x\to-\infty} (\arctan x)$$

(d)
$$\lim_{x\to 0} \frac{1}{x}$$

$$\lim_{x \to \infty} \frac{2x^2 - x + 1}{x^2} = 2 - \lim_{x \to \infty} \frac{2x^2 - x + 1}{x^2} = 2 = 2$$

$$\lim_{x \to \infty} \frac{2x^2 - x + 1}{x^2} = 2 - 2$$

$$\lim_{x \to \infty} \frac{2x^2 - x + 1}{x^2} = 2 - 2$$

MforMathodology

and falt then it is feft thand Limit

When

2-LIMITOF FUNCTION

LHL = RHL

then Qimit

Exists1

4(x)->Las x->a whitten as

a geom above and far)—) L
then
"Right Hand
Dimit

LIMITOFFUNCTION

スッテモ、このでか

When working with limits of functions, the following rules are often used:

- $\lim x = a$, $\lim k = k$ (for any constant k), and $\lim_{x \to a} x^n = a^n$.
- If $\lim_{x\to a} f(x) = L_1$ and $\lim_{x\to a} g(x) = L_2$, then

$$\lim_{x \to a} [f(x) + g(x)] = L_1 + L_2$$

$$\lim_{x \to a} [f(x) - g(x)] = L_1 - L_2$$

$$\lim_{x \to a} [f(x)g(x)] = L_1 L_2$$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{L_1}{L_2} \text{ (assuming that } L_2 \neq 0).$$

- 3. To say that $\lim_{x \to a} f(x) = L$ means that for every sequence (x_n) converging to a, the sequence $(f(x_{\cdot}))$ converges to L.
- 4. Assume that $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} h(x) = L$. If there is a positive number δ such that $f(x) \le g(x) \le h(x)$ for all x satisfying $0 < |x - a| < \delta$, then $\lim_{x \to a} g(x) = L$. This, again, is the Sandwich (or Squeeze) theorem.

LIMIS

(a)
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x+1}}$$

(b)
$$\lim_{x \to 1} \frac{x - 1}{\sqrt{x - 1}}$$

(c)
$$\lim_{x \to 1^{-}} \frac{x-1}{|x-1|}$$

(d)
$$\lim_{x\to 1^-} [x-1]$$

Evaluate each of the following limits:

(a)
$$\lim_{x\to 1} \frac{x-1}{\sqrt{x+1}}$$
 (b) $\lim_{x\to 1} \frac{x-1}{\sqrt{x-1}}$ (c) $\lim_{x\to 1^-} \frac{x-1}{|x-1|}$ (d) $\lim_{x\to 1^-} [x-1]$ (2) $\lim_{x\to 1^-} [x-1]$ (2) $\lim_{x\to 1^-} [x-1]$ (2) $\lim_{x\to 1^-} [x-1]$ (3) $\lim_{x\to 1^-} [x-1]$ (4) $\lim_{x\to 1^-} [x-1]$ (5) $\lim_{x\to 1^-} [x-1]$ (6) $\lim_{x\to 1^-} [x-1]$

$$\frac{\sin x-1}{5x-1}(\sqrt{x+1}) = \frac{\cot (\sqrt{x+1})}{2x-1}$$