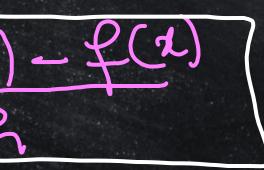
Definition Relation with l'yer bi simits tasan ek ri point pel define Continous func. Hai It fthy func with Sharp DERVATVES bend q tuln boint go or curp can be continous for a real valued func. & of but can't be single valiable has desirative differentiable! f'Unhose value at x is Sos every Diffogentiable $f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h \to 0}$ J func. Jis also

Kam Ki Bata

It tells us

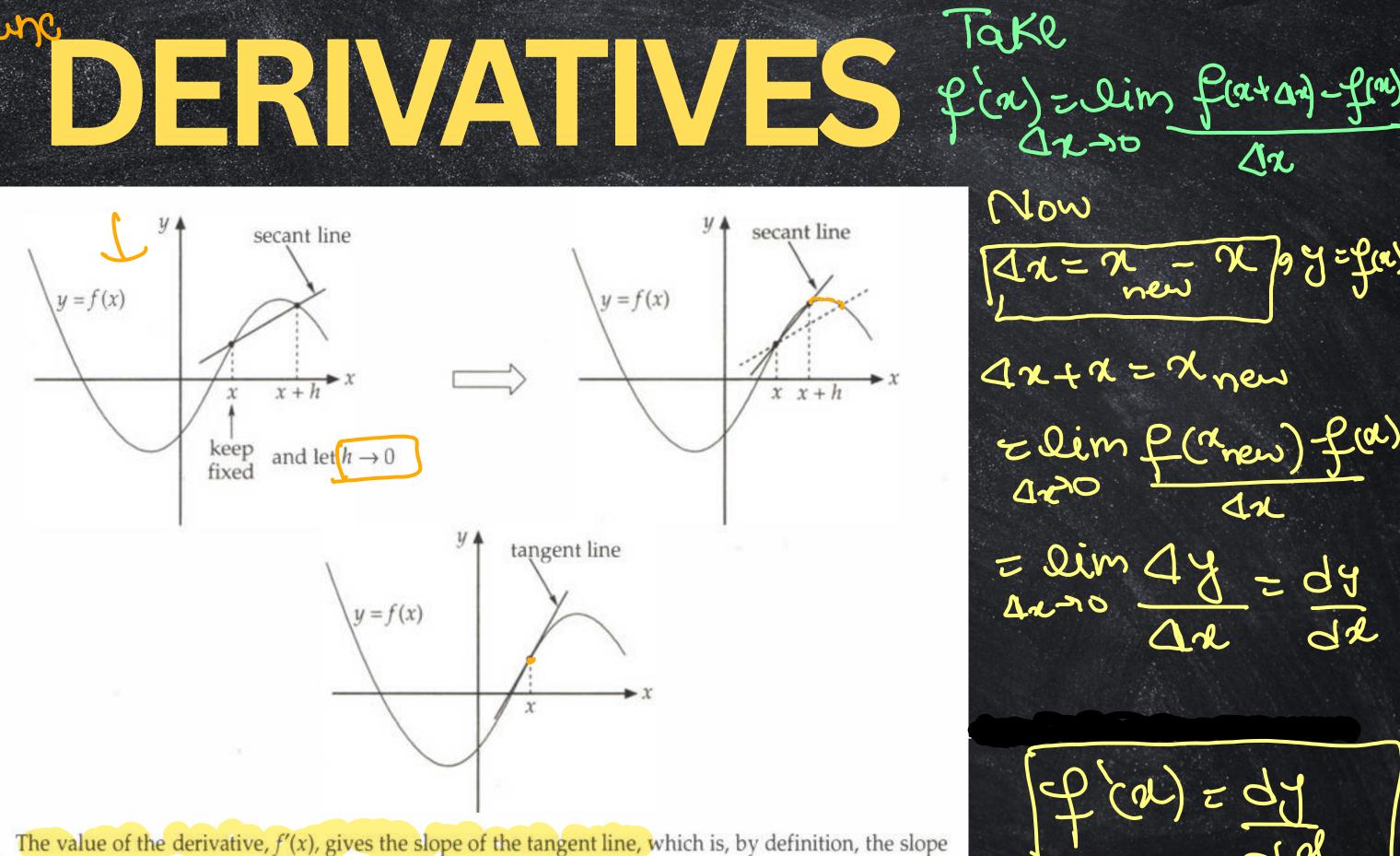
Chow fast a func. changing at specifie



IG a doai vatue exists then Called. diffoggeteb/ MforMathodology

Continuos punc But convere is not

fre



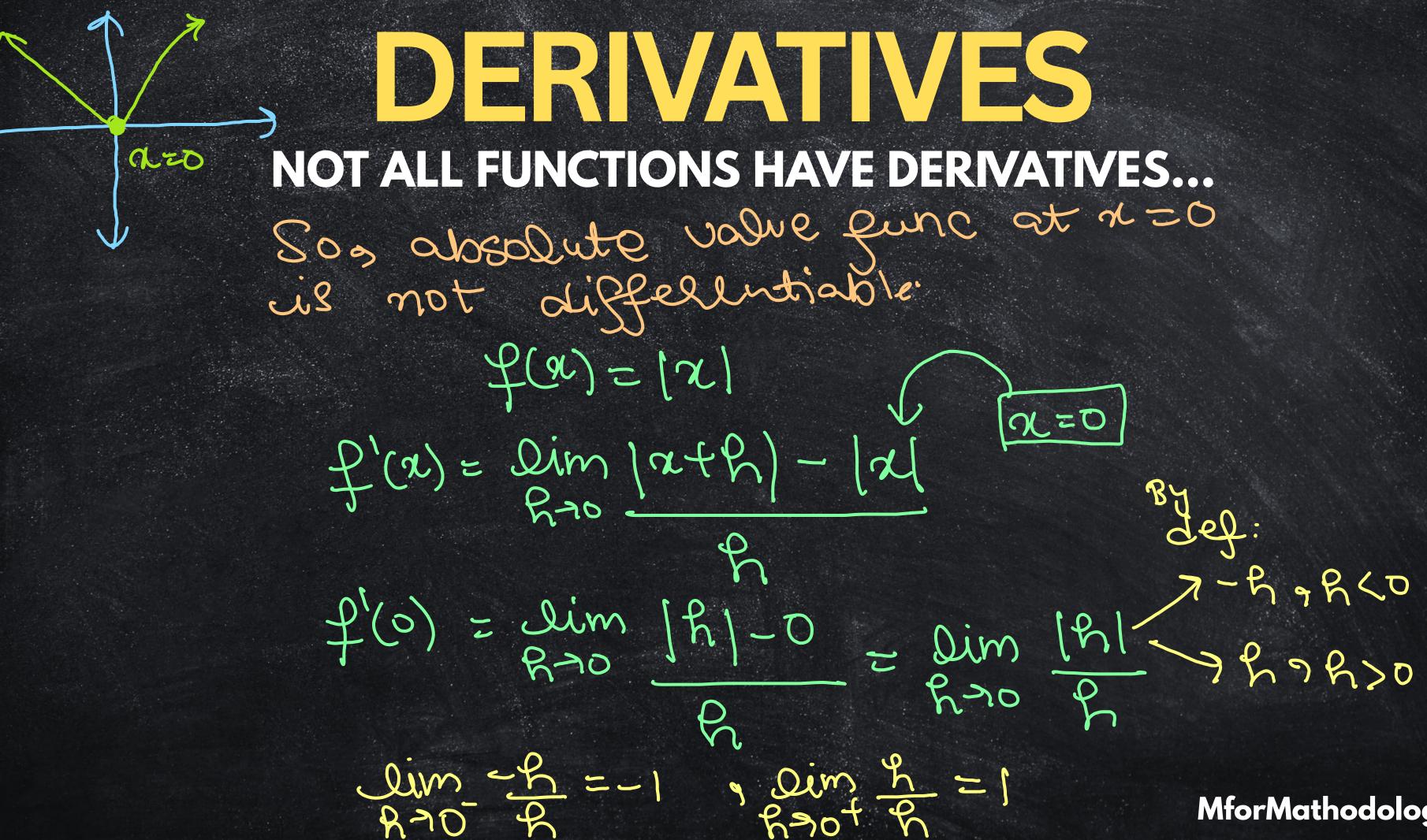
of the curve at *x*.

This is taken from BOOK Cracking the GRE Subject Mathematics

Geometrically:

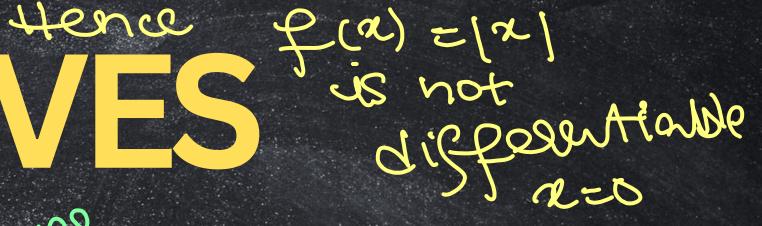
physically: DERMATINES f(n) represent position at a of (x) - > velocity Chow fast position f(x+h) - f(x) $f'(x) = \lim_{x \to 0} f'(x)$ • f (x)-raccelædta Chow fast velocity zth change) J-(26)

> This formula gived the slope of tangent line at (202(2) Finstantaireous Rate of change of time 2



d(k) = 0 $d(u^k) = ku^{k-1}du$ $d(e^u) = e^u du$ $d(a^u) = (\log a)a^u du$ $d(\log u) = \frac{1}{u} du$ $d(\log_a u) = \frac{1}{(u\log a)} du \ (a \neq 1)$ $d(\sin u) = \cos u \, du$ $d(\cos u) = -\sin u \, du$ $d(\tan u) = \sec^2 u \, du$ $d(\cot u) = -\csc^2 u \, du$ $d(\sec u) = \sec u \tan u \, du \checkmark$ $d(\csc u) = -\csc u \cot u \, du$ $d(\arcsin u) = \frac{du}{\sqrt{1 - u^2}}$ $d(\arctan u) = \frac{du}{1+u^2} \frac{dv}{dv}$

DNE Dint SOn $d \pi^2 = 2\pi = 2\pi (power)$ Sa $\frac{2\alpha}{d\theta} = \frac{2\alpha}{d\theta}, \frac{d}{d\theta} = \frac{2\alpha}{d\theta} = \frac{2\alpha}{d\theta} = \frac{2\alpha}{d\theta} = \frac{2\alpha}{d\theta}$ d Dogn z 1 dn da da a da $\frac{d}{dx^2} = (\log 2) \cdot 2^{-2} \cdot dx$ gr sin r d tank z



 $f(x) = x^2 + x^2$ $f'(x) = 2x + x^2$ $3x^2$ $f(x) = 3x^2$ $f(x) = 3x^2$ $f(x) = 3x^2$ $3x^2$ $= 6x^2$

- DERIVATIVES
- 1. Derivative of a sum
 - The derivative of a sum is the sum of the derivatives: (f+g)'(x) = f'(x) + g'(x)
- 2. Derivative of a constant times a function (kf)'(x) = kf'(x)
- 5. Derivative of a product

The **product rule** says that: (fg)'(x) = f(x)g'(x) + f'(x)g(x)

 $\frac{f}{\sigma}$

(x) =

4. Derivative of a quotient

The quotient rule says that:

5. Derivative of a composite function

The chain rule says that: $(f \circ u)'(x) = f'(u(x)) \cdot u'(x)$

6. Derivative of an inverse function

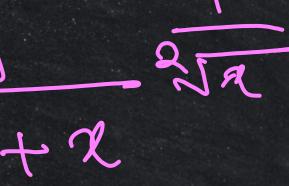
The **inverse-function rule** says that if f^{-1} is the inverse of f, and f has a nonzero derivative at x_0 , then f^{-1} has a derivative at $y_0 = f(x_0)$, and $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$.

Q`(a` f(x)g'(x)er (2x

Find the derivative of each of the following:

(a) $f(x) = x^3 e^{-x^3}$	$x^3 - x - 3$	(b) $g(x) = \frac{\log x}{\log x}$	$\frac{\log(\sin^2 x)}{\cos x}$	(c) $h(x) = \operatorname{arc}$	$\tan \sqrt{x}$
- (n) = (x° E ^r	l'(-312)	-+ e-x	(3x ²) –	
$\frac{\dot{f}(x)}{\dot{f}(x)} = 0$	CoSN	$\left(\frac{1}{\sin^2n}\right)$	28inaco	59N) - S	209(81
					ļ.
h(a) =		r (Jn)	- da	えこ	<u>ر</u> ا ب

sina)(-Sina)



Derivatives in Real Life

 In Economics: f'(x) can represent marginal cost or marginal revenue. In Physics: describes velocity, acceleration, force relationships. In Biology: growth rate of population models.