RING THEORY ON ONE PAGE

Ring Theory

1. Construction of New Rings

- Direct Sum: $R \oplus S = \{(r,s) \mid r \in R, s \in S\}.$
 - \circ Example: $\mathbb{Z} \oplus \mathbb{Z}$: pairs of integers with component-wise addition/multiplication
- Polynomial Ring: R[x], polynomials with coefficients in R.
 - Example: $\mathbb{Z}[x]$: polynomials like $2x^3 x + 5$.
- Matrix Ring: $M_n(R)$, n imes n matrices over R.
 - \circ Example: $M_2(\mathbb{R})$: 2×2 real matrices.

2. Divisors, Units, and Associates

- Unit: Element with a multiplicative inverse.
 - Example: In \mathbb{Z} , units are ± 1 . In $\mathbb{Z}[i]$ (Gaussian integers), units are $\pm 1, \pm i$.
- Associates: Elements differing by a unit multiplier.
 - Example: In \mathbb{Z} , 2 and -2 are associates.

3. Special Domains

- Unique Factorization Domain (UFD):
 - Every non-unit factors uniquely into irreducibles.
 - \circ Example: $\mathbb{Z}[x]$ (polynomials with integer coefficients).
 - Non-example: $\mathbb{Z}[\sqrt{-5}]$: $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$.

Principal Ideal Domain (PID):

- Every ideal is principal (generated by one element).
- Example: ℤ.
- o Non-example: $\mathbb{Z}[x]$ (ideal (2,x) is not principal).
- Euclidean Domain:
 - · Has a division algorithm.
 - Example: \mathbb{Z} , F[x] (polynomials over a field F).

Hierarchy:

Euclidean Domain \subsetneq PID \subsetneq UFD

3. Algebraic Extensions

- Definition: Every element is algebraic.
- Example: $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} .

4. Polynomials

- Reducible: Factors into lower-degree polynomials.
 - Example: $x^2 4 = (x-2)(x+2)$ over \mathbb{Q} .
- Irreducible: Cannot be factored further.
 - \circ Example: x^2+1 over $\mathbb R$.
- Minimal Polynomial: Smallest monic irreducible polynomial with root α .
 - \circ Example: Minimal polynomial of $\sqrt[3]{2}$ over $\mathbb Q$ is x^3-2 .

Field Extensions

1. Algebraic vs. Transcendental Elements

- Algebraic: Satisfies a polynomial equation over the base field.
 - Example: $\sqrt{2}$ over $\mathbb Q$ (root of x^2-2).
- · Transcendental: No such polynomial exists.
 - \circ Example: π over \mathbb{Q} .

2. Degree of Extension

- Notation: $[L:K] = \dim_K L$.
 - Example: $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$.
- $\bullet \ \ \mathsf{TowerLaw} \colon [L:K] = [L:F][F:K].$
 - \circ Example: $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]=4$.