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Binary operation:

A binary operation on a non-empty set A is just a

function *: A X A - A. Which is denoted by =.

Group:

A non-empty set G is said to be group if it said to be

following properties,

1) Closure law holds in G.

2) Associative law holds in G such that
a*(b*xc)=(axb)*c foralla,b,ceG

3) Identity holds in G,
axe=ex*xa =aforallaecG

4) Inverse exist in G,

axa'=a'*a=e forallacG

Note: If commutative law holds in G. Then G is said

to be abelion group.

Examples 1:

1) Zthe set of integers is group under addition.

2) R the set of real numbers is also group under
addition.

3) Q the set of rational numbers is group under
addition.

4) G={,-Li,—i} isgroup under multiplication or
G,).

5 G={#1 +i, +j, £k} is also group under
multiplication or (G,.).

Idempotent:
The elment xeG is said to be idempotent if,

x?=xforall xeG

Theorem 1:

The only idempotent element in a group G is the
identity element.

Proof:

Let xeG be an idempotent element, then by the
definition,

X* =X

Xtx?=x"1x

(x'X).x=e

ex=e

X=e

Hence proved. B
Example 2:

G={-1

Solution: To show that G is group we have
following properties,

(i). G is closed under multiplication.

(i1). G have many real numbers between -1 and 1 so
the associative law holds.

(iii). Identity element also exist.

(iv). Inverse exist.
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So, G is group under multiplication or (G,.).
Example 3:

Let, G={lL,w,®*} is complex cube root of unity.
Solution: To show that G is group we have,

. 1 o w?
1 1 o w?
o o ? 1
? ? 1 o
i). G is closed under multiplication.
ii). 1w oG,

1L(w0®)=(lo)o’ =1

associative law holds.

iii). Identity holds.

Iv). Inverse exist,

inverse of 1is 1.

inverse of wis .

inverse of @’is @.

So, all the properties satisfied, Hence, G is group
under multiplication or (G,.).

Example 4:
C,={L-1i-i}
where, () *=—i & (-)*'=i.
Solution:
C, is fourth root of unity to prove group we have,
. 1 -1 i —i
1 1 -1 i -
-1 -1 1 —i i
[ i —i -1 1
—i —i [ 1 -1

1). C, isclosed under multiplication.
ii). Associative law holds.
iii). Identity of every element exist.
iv). Inverse exist,
Inverse of 1 is 1.
Inverse of -1 is -1.
Inverse of iis —i .
Inverse of —i is i .
So, C, is group under multiplication.
Example 5:
Q —{0} =Set of all non-zero rational numbers.
R —{0} =Set of all non-zero real numbers.
C —{0} =Set of all non-zero complex numbers.
are group under multiplication.



Group theory
Applied & Analytic Mathematics Research Center

Example 6:
G={tL +i, + ], +k}
where i.j=k; jk=i; ki=]

ji=—k; k.j=—i; ik=—]
i2=j’=k?=-1
Solution:

All the properties of the group is satisfied, So, G is
the group under multiplication. But not abelion group
because,

ji=—K#i.j
K.j=—i#jk
ik=—j=ki
Example 7:

A, , ={Set of all 2x 2 non -singular real matrices}
under the usual multiplication is a group. e.g.,

"L 1 *o s o

are group under multiplication because A & B have
their inverses(Non-singular).

But not abelion because,

AB = BA

Example 8:

Show that G ={1,2,3,4} is agroup of non-zero
residue class of modulo 5.

Solution:
) 1|23 |4
1|12 |3 |4
2|24 |13
313|142
4|14 |3 |21

i). G is closed under multiplication.

ii). Associative law holds, forall 2,3,4eG
2.(3.4)=22=4

(2.3).4=1.4=4

iii). Identity of every element of G is exist.
iv). Inverse of every element of G exist.
Inverse of 1is 1

Inverse of 2 is 3.

Inverse of 3 is 2.

Inverse of 4 is 4.

Hence all the properties of group satisfied. So, G is
group under multiplication or (G,.) .
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Example 9:

residue class of modulo 5.
Solution:

MWl NIl OI]"
Bl Wl NI IOl Ol
Rl Ol Bl Wl NI NI

NI Rl Ol | I Wl |wl
W NIl Ol]| &l &I

Ol Bl Wl NI ]

1). G is closed under addition.

ii). Associative law holds, for all 2,3,4 G
2+(3+4)=2+2=4

(2+3)+4=0+4=4

iii). Identity of every element of G is exist.
Iv). Inverse of every element of G exist.
Inverse of 0 is 0

Inverse of 1 is 4

Inverse of 2 is 3.

Inverse of 3 is 2.

Inverse of 4 is 1.

Hence all the properties of group satisfied. So, G is
group under addition or (G,+) .
Properties of group:

Theorem 2: (Cancellation laws)
For any element a,b,c inagroup G.

i): ab=ac= b=c (Leftcancellation law)

i) ba=ca= b=c (Rightcancellation law)

Proof:

Forall a,b,ceG

i) ab=ac

multiplying both sides by a™.
a*t.(ab)=a™.(ac)

(ata)b= (ata)c (By associative law)
eb=ec

b=c
Hence proved.
ii): ba=ca

multiplying both sides by a™ on right side -
(ba)a'=(ca)a™

b.(aat)=c.(aa™) (By associative law)

be=ce

b=c
Hence proved. ]
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Theorem 3: (Solution of linear equation)
For any two elements a,beG, the equations
ax=b & xa=h.
Proof:
For any two elements a,beG,

ax=b

Multiplying both sides by a™ on left side -
at.(ax)=a'b
(ata).x=a"'b (By associative law)
ex=ab
x=a'b
Hence, x=a'b is the solution for ax=bh.
Now, to check the unigue solution we have,
X, X, €G
ax, =b=x,=a"b
ax,=b=x,=a'b
From above relation,
X =X,
Hence, the solution of ax=b is unique. Similarly
xa =Db also unique solution. .
Theorem 4:
Forany a,beG
(ab)*=b'at
Proof:
Given that,
(ab)*=b'at
Consider,
(ab).(bt.at)=(ab)b'a™
(ab).(bra ) =a(bb™)a™
(ab).(btat) =a(e)a™
(ab).(bt.a?t) =a.a?
(ab).(bt.a™) = e (i)
Now,
(ab).(ab) ™ =e (ii)
From (i) & (ii)
(ab)*=b"'a*
Hence, proved. B

Theorem 5:
For any element a of a group G, the following
exponential rule holds,

i). a" =aaa...a(mfactors )
i), @H)"=a™"
iii). a™.a"=a™"
iv). @m)"=a™
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Proof:

(). aeG,
a’=e=1
a'=a’a
a’=aa
a’=aaa

a" =aa.a....a(mfactors )
Hence, proved.

i). @H)"=atata’.a’(mfactors)
By (i),
(a—l)m — a—m
Hence, proved.
iii). a™.a"=a""
Case I. We have proved by induction method,
for n=1,
a"a'=a"vmez®
true for n=1,
now, for n=Kk,
am.ak A a‘m+k
also true for n=k,

nowfor N =k+1,

am_ak+1 L am+k+1

am, ak+1 A a(m+k)_ al

am_ak+1 y_ am+(k+1)

Also true for n=k+1, Hence true for all values of
neZ".

So, a".a"=a™".

Case Il.

When m<0 & n<0,

Let m=—p & n=-q,
a"a"=a"’a™
a"a"=a""™"
am.a" = g~ P+

by (ii),
am.an — (afl)erq

Again, aPa™*=a".a"

Hence, true.

Case 111.

if m=0 & n=0,

or n=0 & m=0,
a"a"=a’a"=a"

similarly,
ama"=ama’=a"
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So, true.
Case IV.
for m<0 & n>0=m+n<0,

and —m-n>0,
a—m—n .am — a—m—n+m — a—n (1)

a"" =a""e

a™=a"".(a".a")

a™=a""(a"".a").a"
by (1),

am+n — (am+n .a—m—n).am .an
a™ =ea™a"
am+n — amlan
So, true.
Case V.
for m>0 & n<0=m+n?0,

a"a"=a"a'a'a™.a(nfactor )

by (i),
am+n — am+n e
am+n — am+n (a—n an)
am+n — am+n.(a—m—n .am).an
by (1),
am+n — (am+n .a—m—n).am.an
am+n — e.am.an
am+n — am.an
So, true.

Hence proved for all values of m,neZ, so,
a™=a"a".
iv). @™)"=a™
Case I. we have to prove by induction method,
for n=1,
@) =a"vmez*
true for n=1,
now, for n=Kk,
(am)k — amk
also true for n=Kk,
now for n=k +1,
(am)k+l — amk+m
(am)k+l — a(m+k) 'al
(am)k+l — am(k+l)
Also true for n=k +1, Hence true for all values of
neZ".
So, (@™)"=a™.
Case Il.
for n<0,
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let, n=—p,
CHREI(CHNE
@") " =(@™)" by

So, true.
Case Ill.
for n=0,
(am)O —e= aO — am(O)
Hence, (a™)"=a™V m,neZ. .

Order of a group:
The number of element in a group G is called order
of G. Which is denoted by |G |.

Note:

(i). A Group G is said to be finite if G is consist of
finite number of elements.

(if). A Group G is said to be infinite if G is consist of
infinite number of elements.

Order of elements of group:

Let (G,*) be agroup and aeG if there exist
smallest positive integer n such that, a" =e. Then n
is called order of element n in G.

Theorem 6:
Let G beagroup. Let aeG have order n then for
any integer k , a*=e iff k=qgn , where k is
any integer.
Proof:
Suppose that aeG and order of a is n then,
a'=e
Now, by division algorithm,
K=gn+r;, 0<r<n(
Where r and g are any integers,
as given,
a“=e kez
From (1),
ak — aqn+r
a“=(a")%.a"
since order of a is n, so,
e=(e)’.a"
Hence,
a'=e
Proved.
Conversely, suppose that k =qn then we have to
prove that order of a is k,
k=gn
a“=a"=(a")*
since order of a is n, so,
a“=e%=¢e
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ak=e for kez

Hence, proved. B
Example 10:
Show that G={1,3,5,7} is group under

multiplication of modulo 8. Find the order of each
element of G.

Solution:
: 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

From teh Caley's table.

The orderof 1 is 1.

The orderof 3 is 2.= 3°=1

The orderof 5 is 2.= 5°=1

Theorderof 7 is 2.=> 7°=1

Example 11:

Let G be group and a,beG, then show that,
i). The order of a and a™ are equal.
ii). The order of ba and ab are equal.
iii). The order of a and b™'ab are equal.
Proof:
(i). Let aeG, andorderof a is n then,
a"=e, (1
Where n is the smallest positive integer.
Because G is the group so inverse of every element
exist, Let a™ G,
and order of a™ is m, then,
@h)" =e
a"=e
mulpying boths ides by a"
a"a"=a"e
e=a" (2)
where m is smallest positive integer,
from (1) and (2),
a"=a"= m=n
Hence proved.
ii). Let a,beG the order of ab is m such that,
(ab)" =e (3)
As we know that,
(ab)™ = ab.ab.ab...ab(m factor)

by (3)
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ab.ab.ab...ab(m factors) =e
multiplying left sides by a™ and right side by a,
at.ab.ab.ab..ab.a(m factors )=a*ea

bababa...ba(m factors )=ea™.a
bababa...ba(m factors )=ee
bababa...ba(m factors )=e
Also we can write by using the theorem,
(ba)" =e (3)
from (3) and (4),
(ab)™ = (ba)"
which shows that order of ab and ba are same.
iii). Let aeG andorderof a is m.
a" =e(5)
multiplying left sides by b™ and right side by b™,
b™a"b™ =b™"eb™
(b'ab)™ =b™"b"
(bab)™ =e (6)
from (5) and (6),
a™ =(bab)"
Which shows that order of a and b™ab are equal.
Example 12:
In a group of even order, prove that there is at least
one element of order 2.
Proof:
Let G be a group of even order then there is a non-
identity element in G are the odd in number.
Because G is group then the inverse of every element
exist.
Suppose,
eeG=e'=e()
Let ae G be the fnon- identity elemnet, then by (1),
a'l=a
multiplying both sides by a,
aa'=aa=e=a’
Which shows that order of a is 2.
Hence, proved.
Example 13:
Let G be a group and a be an element of odd
number in G. Then, there exist an element b in G
such that, b*=a.
Proof:
Let a€G, and n be the positive integer, given that
order of a is odd number, then,
a?™ —e (1)
a"a"=e
aa’a’.a",.a".a"eG



Group theory
Applied & Analytic Mathematics Research Center

b — am+1 - b2 — a2m+2
b2 — a2m+l.al
by (1),
b*> =ea
b’ =a
Hence, proved.
Subgroup:
Let (G,*) beagroup and H be a non-empty subset
of G. Then H is said to be subgroup of G. If itself a
group under the same binary operation * with the
following axioms of group.
Examples 14-16:
(Z,+) setof all integers is subgroup of (Q,+).
(Q,+) setof rational is subgroup of (R,+).
The set of cube root of unity is subgroup of complex
numbers without zero. e.g. C —{0}.

Trivial and non-trivial subgroups:
Every group G has at least two subgroups namely, G
itself and {e} . These subgroups are called trivial

subgroups.
Any other subgroups of G are called non-trivial
subgroups.

Theorem 7:

Let (G,+*) be agroup. Then a non-empty subset H
of G is subgroup of Giff Va,beH = ab™ e H.
Proof:

Suppose that H is the subgroup of G. Then we have
to prove that Va,beG = ab™ e H.

Let, acH and beH.

Since H is the subgroup of G then by the definition
H itself a group so the every element of H has
inverse. Hence,

beH = bteH,
SO,
VabeH = ab™*eH.
Conversely suppose that,
VabeH = ab™*eH.
then we have to prove that G is group.
To prove G is group we satisfy the following axioms
(properties).
1).Since Va,beH = ab'eH s0Gis closed.
2). a,b,ceH = a(bc)*eH

ac '™ eH (SinceH is subgroup so every element
have inverse)
Associative law holds.

3. aacH= aa'eH
eeH
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identity exist.
4). e acH=ea'ecH
a'teH
Inverse exist.
Hence, all the properties of group satisfied so, (G,*)
is group. B
Theorem 8:
The intersection of any collection of subgroups of a
group G is subgroup of G.
Proof:
Let, H={H,;iel}
where {H,;;iel} is the family of subgroups of

group G.

Let, iel,abeH, = ab*eH, (By previuos
theorem)

so, ab™ e{H;;iel}=H

Hence, H is subgroup of G. .
Theorem 9:

Let G be a group H be the subgroup of G. Then the
set aHa ' ={aha™;h e H} is asubgroup of G.
Proof:

Suppose that, xcaHa™ and yeaHa™ then,

xy ' =(aha”).(ah,a™)"

xy ' =ah (at.a)h,'a™

Xy_l =ah, (e)hz_la_l

xy=ahh,"a”

Xy_l = (ahl)-(a-hz)_l
here h,h,eH = hh,' eH.
So,

xy ' =(ah).(ah,)" eaHa™.
Hence, aHa™ is a subgroup of G. B
Theorem 10:
The union H UK of two subgroups H and K of a
group G is the subgroup of G ifand only if H =K
or KcH.
Proof:
Let H and K are two subgroups of group G. Then we
have to prove that H UK is subgroup of G.
Then,

HuUK=H or HUK=K
Hence, H and K aare subgroups of G. So, HuUK
also subgroup of G.
Conversely suppose that H UK is subgroup of G
then we have to show that H <K or K c H.
Contrary, suppose that H z K or K ¢ H.
Let acH/K or beK/H
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butt there, a,beH or a,beK, then,
aabeH =a'(ab)eH = beH

babe K = (ab)bleK = aeK

which is contradiction, because,
H/K=® and K/ H=®
Hence, HcK or KcH. .

Note:
Let H and K be the two subgroups of group G. Then
there is not need to be subgroup of G. e.g.

G ={1,3,5,7} modulo 8.
H={1,3}; K={1,5}
HUK = {1,3,5}
35=7 or 53=7¢HuUK
So, HUK is not closed. Hence, H UK is not
subgroup of G-
Example 18:
Find the subgroups of group G ={0,1,2,3} with
the following table.

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2
Solution:

Given table shows that operation is addition with
modulo 4. In which, subgroups are,

Hl :{6}’ Hz :{6,1,§,§}ZG
H, ={0,2}

where, H, and H, are trivial subgroups and Hs
non-trivial subgroup of G.

Example 18:

Find the subgroups of group G ={e,a,b,c} with the
following table.

e a b c

e e a b c

a a e C b

b b c e a

C c b a e
Solution:

The given table show Klein's four group,
a’=b’=c’=e
ab=c; ac=b

The subgroups are,
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Example 20:
Let C—{0} be the group of all non-zero complex
numbers under  multiplication, prove that
H ={a+ib eC—{0};a® +b* =1} is subgroup.
Proof:
Suppose that,
a, +ib,,a, +ib, e H
= (a, +ib,)(a, +ib,) ™" = :;:El x%
(By theorem)
(a1 + ibl)(az + ibz)—l — (a1az+b1b:);ié§zbralbz)

(a, +ib,)(a, +ib,) " =(a,a, +bb,) +i(a,b, —ab,) e H
where, a’+b; =1
Now,

(aya, + b1b2)2 +(a;h, - a1b2)2 = alzaz2 + blzbéz

+2a,a,bb, +a’b? +a’b; —2a,a,bb,
(2, + blbz)2 +(a,b, — a1bz)2 = afazz + b12b22
+a’b? +a’b;
(alaz + blbz)z + (azbl - albz)2 = a12 (ag + bzz)
+b; (b; +a;z)
(aa, +b,b,)? +(a,b, —a,b,)?
= (a +by).(a; +b3)
(aa, + blbz)z +(ab, — aibz)z =11
(aa, + b1b2)2 +(ab, - aibz)z =1
Hence, H is subgroup.
Cyclic group:
A group G is said to be cyclic if every element of G

is power of one, and same element say a e G.
These elements are called generator of G.

If there at least positive integer n such that a" =e
then G is said to be finite cyclic group and written as,
G=<aa"=e>

(Read as G is cyclic of order n).

Theorem 11:

Every subgroup of cyclic group is cyclic.

Proof:

Suppose that G be a cyclic group and generated by
a. Let H be the subgroup of G. Suppose that k e G
such that, a*=ee H. We have to show that every
element of H is power of k.

For these let a™ e H.

By division algorithm,

m=qgk+r; 0<r<k

a_m — aqk+r
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a" =(a")".a"

(@)“"a™"=.a"eH; r>k

Which is contradiction because r =0.

Then,

m =gk

a™ =(a")?

Hence, H is cyclic. B
Theorem 12:

Let G be a cyclic group of order n generated by a.
Then for each positive divisor d of n, there is unique
subgroup (of G) of order d.

Proof:

Let, G=<a;a"=e>

Let d is the positive divisor of n then there is integer
g such that,

n=dq

consider,

b=a“

b? =a%

b? =a"

b =e

So,
H=<b;b!=e>

IS required subgroup.

To show that H is unique suppose that K is another
subgroup of G of order then K is generated by single
element c=a*. Where K is least positive integer.
c=a"

¢’ =a™

¢’ =a"

¢’ =e

where, dk=n = k==%=q,

Hence,

b=a%=a"“=c

b=c

So, H is unique. B
Theorem 13:

Every cyclic group is abelion.

Proof:

Let G be a cyclic group generated by a single element
a.
Let, x,yeG, then there is positive integers m and

k such that,
x=a“ y=a"
xy =a“a"
k+m m-+k
Xy=a = =a Applied Mathematics
xy =a".a" 0333-

6639466

(o]
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Xy =YX

Hence, G is abelion cyclic group. .
Example 21:

If G is cyclic group of even order then prove that
there is only one subgroup of order 2 in G.

Proof:

Let, G be a cyclic group of even order such that,
G=<aa™=e>

2n show that the order of G is even.

(By using the theorem "If a positive integer d divides
the order of G (|G|) then G has exactly one subgroup
of order d.")

Now,

|G |=2n

where 2 divides 2n. So, G has only one subgroup of
order 2.

Example 22:

Find all subgroups of a cyclic subgroup of order 12.
Proof:

The divisor of 12 are,

1,2,3,4,6,12.

subgroup of order 1={e}

subgroup of order 12=G itself.

subgroup of order 2=(a®)* ={a’® a'* =€}
subgroup of order 3=(a*)* ={a*,a® a'* =€}
subgroup of order 4=(a*)* ={a°,a%a’,a'* =€}

subgroup of order
6 — (a2)6 :{aZ,a4,a6'a8’a10,a12 — e}
Cosets:

Let H be the subgroup of Gand a G . Then the set,
aH ={ah;h e H} Left coset

Ha={ha;h € H} Right coset
is said to coset of H in G.
Note: The left or right cosets of H in G with identity
element is H itself.

eH = {eh;h e H = H

He = {he;h e H} = H
If the binary operation is “+” then the coset can be

written as,

a+H={a+hheH}

Example 23:

G ={0,1,2,3,4,5} be the group of residue classes
modolu 6. Then, H ={0,2,4} is subgroup G. There
are only two left cosets of H in Gand these are

0+H=H and 1+H={1,3,5}.
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Example 24:
G ={1,3,5,7} be the group of residue classes
modulo 8. Find the cosets.

Solution:
. 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

Here proper subgroups are,
H, ={1,3}, H, ={1,5}, H, ={1,7}
The cosets are,
1.H, ={1,3}=H,
5.H, ={5,7}
7.H, ={7,5}
Partition:
The collection of subsets is known as the partition of

sets.
The partition of set A is,

{A;iel} of the set A=U{A;iel} and
AmAj=CDVi,jel and i#j.
Theorem 14:

Let H be the subgroup of group G. Then the set of all
left or right cosets of H in G define the partition of G.
Proof:
Suppose, Q={ah;aeG;heH} be the collection of
all the left cosets of H in G.
Now, acG = aeeH (Because H is subgroup of
G so identity exist.)
So,

GcuQ
wherer UQ is the collection of the subsets
contained in G.

Hence, G =uwQ.

consider aH and bH are the cosets of H in G, then,
XxeaH nbH = x=ah, =bh, for  some
h,h, e H.

= a=bh,h* =bh, (1)
where, h,h* =h, eH
Since H si subgroup thus a € bH
From (1).

ah=bh,h also an element of bH.

Hence, aH <cbH or bH < aH
which shows,

aH = bH
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contradiction because we have
aH NnbH =@
therefore Q@ shows the partition of G. B
Index Hin G: [G:H]
The number of distinct left or right cosets of
subgroup H in G is called the index H in G and
denoted by, [G:H].
Example 25:
Find the distnict right (left) cosets of
E={0,+2,#4,...}={2n;neZ} inagroup (Z,+).
Solution:
There are two right cosets of E in Z .
Which are 0 and 1,
0+E={0+2n;neZ}=E
1+E={2n+LneZ}=0 (odd numbers)
Now,
O+E)uU(@+E)=EuUO=2Z (setof integers)
O+E)n@+E)=d
Therefore index of E in Z is2.
Theorem 15: (Lagrange's theorem)
The order of a subgroup of a finite group divides the
order of group.
Proof:
Let G be the group and H be the subgroup of G.
Suppose that the order of G is n and the order of H is
m. Then by the definition,
|[H]=m and |G|=n
Since, the order of G is finite, So, the set of all distnict
left cosets of H in G are also finite.
(By the previous theorem, "Let H be the subgroup of
G then the all left (right) cosets of H in G define the
partition in G.")

So, GzLiJaiH Q)

where, a;H na;H = for i=j.
let we define a mapping,

Y :H->aH

Y(h)=ah; heH

Y is onto, also,

¥(h)="Y(h,); h,h,eH

q hl =3a; hz

h, =h, (By left cancellation law)

Hence, ¥ is one-to-one. So, the numbers of H and
a;H are the same.

From (1),
k
G=UaH
i=1

n=m+m+m+..+m ( k times)
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n=km

|Gl=kIH]

[H\G]

Hence, proved. B
Corollary:

The index of an element of finite group divides the
order of group.

Proof:
By the Lagrange's theorem,
|Gl=kIH]| (1)

k being the numbers of the distnict left(right) cosets
of Hin G,

From (1) k divodes the ordder of G. But
k=[G : H],

K\|G|=[G : H\|G|

Hence, proved.

Corollary:
A group G whose order is prime number is
necessarily cyclic.

Proof:

Let G be a group of prime order p.

|Gl=p

Let aeG be the non-identity element of G. Let H
be the cyclic gro\up of order k.

IH|=k

By the Lagrange's theorem

k\ p (Order of H divides the order of G)

since p is prime number and the divisor of pis 1 and
p itself. But we choose already H is non-identity
element so,

k=p

Hence, order of H and G are same.

By this equality, H is cyclic so G also cyclic.
Permutation:

Let X be a non-empty set. A bijective mapping
f : X — X s called permutation on X. The set of

all permutation on X is denoted by S, .

Theorem 16:
The set S, of all permutation on a set X with n-
elements is a group under operation of composition
of permutation.

Proof:
to show group we have following axioms,
i). Let f and g be two mappings on X,
f: X—>X and g: X—>X
fog(x) = f(g(x)); xe X
Since the composition of bijective mapping also
bijective mapping. So, the fog also the permutation
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on X. Hence, S, isclosed under composition.
ii). Let f, g and h be the mappings on X, then,
((fog)oh)(x) = fog(h(x)); x € X
((fog)oh)(x) = f(g(h(x))); xe X
((fog)oh)(x) = f(goh(x)); x e X
((fog)oh)(x) = fo(goh)(x); xe X
(fog)oh) = fo(goh)
Associative law holds.

iii). Let | be the identity on X,
I : X—>X

I(X)=x; xe X
So, fol (x)=f(I(x)); xe X
fol (x) = f(x); xe X

fol = f
So, identity exist.
iv):Let f': XX
f)=y = f(y)=x

(f tof)(x) = f (f(X); xe X
(f tof)(x) = f (f(X); xe X
(ftof)(x) = f'(y); xe X
(f of )(x) = x; xe X
Now,

(fof *)(y)= F(f(y)); xe X
(fof M)(y) = f(X); xe X
(fof)(y)=y; xe X
Inverse exist.

Hence, all the properties of group satisfied.

So, S, isgroup under composition. .
Note:

i). The groupS, is called the symmetric group of
degree n.

ii). Every element of Sn s permutation of n objects

takes n-time. There are n! permutations.
Hence the order of S, is nl.

Example 26:
Find the permutations, if, X ={1,2,3}

Solution:

n=3so the order ofS, is 3=6.
permutations)

|=(123); f,=(231); f,=(312)
f,=0132); f,=(321); f,=(213)
S, ={I,f,f, f,,f,, f.}
To calculate the permutations we have,

(means 6
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1 2 3 1 2 3 1 2 3 Which show that,
':(1 2 3} fl:(z 3 1} fz:(s 1 2} fog # gof
(1 2 3) [1 2 3} (1 2 3} Example 28: .
f, = ; f, = i Find the composition of the permutation,
13 2 3 21 2 1 3
To find the composition, f.of,. 1 2 3 4 5 6) 1 2 3 45 6
(fs0f)D) = fs(1,(1)) = f5(2) =1 :(5 326 41) :[3 412 6 5}
(fs0f)(2) = f5(f,(2) = £;(3) =3 123 456)1 234586
(fs0f,)(3) = f5(f,(3) = fs (1) =2 “ﬂ{s 326 4 1)(3 412 6 5]
12 3 1 2 3 456
>0 f50f1:£1 3 Z]Zfs aﬂ:(es 14523
Similarly, Similarly,
flofsz(l 2 3):f4 ﬂa{l 2 345612345 6}
321 34126 5\53 26 41
Hence, f.of, = f,of; (1 2 3456
So, 3 is non-abelion. P2 6531 4
Consider, f,=a; f, =b Hence, of = fa.
then, f, =a% f, =ab Cycles:
a®=b?=(ab)’* =1 Let @1,82,83,..,8 where 2 € 11,2,3,..,k}.
ba=f,=a’b A permutation @ € Sn s called a cycle of length k

using this relation we construct the Caley's table, and 000 =%, ¥x ={1,2,3,...K} We can write a

o | alazl b | a|a2p cycle as { @1,82,8s,..8k } and say that © actson {
I I a | a2 | b | ab |a%b a1,82,83,.- 8 }eg.
a a | a? I ab | a?b | b 123456
a2 | a2 I a |atb| b | ab a<234561>
b | b |a*hjab | I |a® | a Wwe can write these cycles as,
ab [ ab | b |a?b| a I | a2 1525354555
a’b(a?b| ab | b | a2 | a I

one cycle of length 6.

Example 27: S0,
Find fog and gof , if, (1:(1 2345 6)
1 2 3 4 1 2 3 4
fz( J;g:[ j Note:
2 3 41 2143 The composition of two cyclic permutations need not
1 2 3 41 2 3 4 be cyclic permutaions.
fog =
2 3 4 1)2 1 4 3 €.g.
12 3 4 (125)(21456)
fog =
1432 123456
of_12341234 a(125)< >
=2 14 3)2 341 Let, 253416
1 2 3 4 1 23 456
gof = =2 1 4 5 6)=
321 4 4 1 356 2

11
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Hence,

@ 25)(2 145 6
123456123458
:(253416)[41356ZJ
@ 25145 6
123456
:(163542J

M 252145 6)%(2 6)4 5)

Disjoint cycles:
Two or more than two cycles which have no common
elements are called mutually disjoint cycles. e.g.

(2 6) and (4 5) aredisjoint cycles.

(L 5 2) and (5 2) arenot disjoint cycles.

Example 29:
a=@1 2 3 =4 5 6)
1 23 456Y1L23 4586
af =
(231456123564)
5 123456(1)
op =
2 3156 4
12345 6Y1 23456
Pa =
1 2 356 4\2 31456
. 123456(2)
o =
2 3156 4
From (1) and (2),
Pa =af

So,a and g are mutually disjoint cycles.

Theorem 17:
Every permutation of degree n can be written as a
product of cycles acting on mutually disjoint cycles.

Proof:

Let Sn be the set of all cycles of n-elements, and «
be the permutation of n-degree. Let « has only one
element in which « acts. Suppose,

a a a a a

a,—a,,a,>a;—>...a,, 4,3, >
since k is the finite then there is a number n such that,
a,>a,

a is the cyclic permutation so, the x is the part of
cyclic permutation.

o, =(a,,8,,...2,)

Now put n=k thena=¢,is the required cyclic
decomposition of « as cyclic permutation.

Now, if n <Kk then b, is different from (a,,a,,...,a,).

12
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b,—b,.b, b, >...b, ;b b, b 1<i<p
Hence, the given permutation is injective mappings.
So, effect of part « on cyclic permutation is,

a, =(b,b,,...b,)

So, we have two « cyclic permutations, if n+p=Kk,
then « is the composition of two cycles ¢, ande,.

If n+ p <k then the process repeated again.

Every time process extracting the cycles. After the
finite number of each because k is finite. Thus there

Is a natural number g, such that,

a, =(C,,C,,.Cy) (D)

Where, c,'s occurs between a,'s andb;'s.

Where each o acts as mutually disjoint subset of X
and are uniquely determined. Since, any two
permutations acting on mutually disjoint sets
commute. So, the part from the order in which¢;'s

are taken. The expression (1) for « is unique. .

Transposition:
A cycled of length 2 is called a transposition e.g.

oo

T =

b a

a and b are interchanging in this permutation and
other element remain fixed is a transposition.
Theorem 18:

Every cyclic permutation can be expression as a
product of transposition.

Proof:

Suppose, o, = (a,,a,,..,a,)be the cyclic permutation.
Consider,

a,:(al aZ)(a’l a3)-"(a1 ak)(l)

which shows that,

o (04 o o (04

a, —a,,a, >a8; —>...8,, >4, >q
Hence, the effect of & and o' are same. So, o =a'
is the product of transposition.

Now, (a b)b a)=1 be the number such pair of
transposition can be inserted between the pairs

(a, a)(a a,,) involvedin a .Hence, a be
the expressed as the product of transpositions.
Possibly in infinitely many ways. .
Theorem 19:

Every permutation of degree n can be expressed as a
product of transposition.

Proof:

As we know that the every permutation can be as a
product of dis joint cycles. Conversely, every cycle
can be expressed as a product of transposition in
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infinitely many ways. (By the above theorem). So,
any element of S, can be expressed as a product of

transposition in infinitely many ways. .
Theorem 20:
Let a permutation « in S, be written as a product

of m transpositions and as a product of p
transpositions. Then m-p is a multiple of 2. This
implies that both m and p are even or both of them
are odd.

OR

Leta be the permutation as a product of
transposition, = m= p (mod 2).

Proof:
Suppose the product of transpositions,
p= iljj(xi —X;)

p:(xl_XZ)(Xl_X3)"'(X1_Xn)
(Xz _X3)(X2 _X4)---(X2 _Xn)
....................... (X1 —X,)

n
pa= E(X(i)a — X(j)a)

Now for any transpositions,
r=(k,1I) inS,. Where k=I.

(p)r = ilf[j(x(i)t - X(j)t)
every factors of p that contains neither X, nor x,
remain unchanged in z(p) . The factor (x, —X,) of
p becomes —(x, —x,) in z(p).those factors of p
which contain either x, ofx, But not both x, and
X; -

* (X, —%) (X,—%) where m=Kk,l.
Such the product remain unchanged in z(p). Thus
it follows that, z(p) =-p,

By successive applications of transpositions in «,
in both cases,

(Pa=(P)A4ty Ay =(-D"p ()

(P)a =(P)tutty-t1n =(=1)°p (2)

From (1) and (2),

D"p=(-D°p

p=CD""p
p—m is multiple of 2.
= 2\p-m= m=p (mod2). B

Even and odd permutation:
A permutation « is called even if it can be expressed
as a product of even number of transpositions.

13

By: Muhammad Fiaz Hussain
fiaz.hussain24@yahoo.com

A permutation ¢ is called odd if it can be expressed
as a product of odd number of transpositions.

e.g.
(1 2 3 4}
o=
2 1 4 3
a=@0 2)3 4)

o Shows that even permutations.
Similarly,

= 1 2 3 4
2 341
B=0 2 3 4)
S shows odd permutation.
Theorem 21:
i). The product of even or odd permutations is an
even permutations.

ii). The product of an even permutation and odd
permutation is an odd permutation.

Proof:

Let o, anda, be the permutations of n degree. Let
o, and «, can be expressed as a product of m, and
m, transposition respectively.

So, the product ofa,«a,containedm, +m, + 2k
where k'is 0 or k € N transpositions, possible if 2k
is cancelled of simplify.

i).if o, and «, arethe even permutations in which
case both m1 and m2 are even, or both ¢, and «, are
the odd permutations in which case both m; and m»
are odd, hence, m, +m, + 2k is also an even integer.
So, a,a, are even permutations.

if). Consider one of the permutation ¢, is even and
other «, is odd then m, +m, +2k is also an odd
integer. So, a,«, are odd permutations. .

Corollary:

Leta be any permutation of degree n andra
transposition thenzae or «aris an even or odd
according as «a iseven or odd.

Proof:

If o isaneven permutationthen a7 or ra isan
odd permutation.

Theorem 22:
Let n> 2, the number of even permutation in S, is

equal to the number of odd permutation is S, .

Proof:
Let,
a0y, 0, (1)
be all even permutations and
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P B B (2)
are odd permutationsin S, , So, k+m=n!.
Let 7 be the transposition. then,

T, a,T,..,a, T (3)
are all odd. (By corollary)

Pt ot BT (4)

are all even.
From (1) and (4),
m<Kk
From (2) and (3),
k<m
So, m=k =12 isrequired proof. B
Note:

All even permutation in S, are denoted by A, . From
the above theorem the number of element in A, are

n!

o
Theorem 23:
The set A, of all even permutation inS, forms a

subgroup of S, .

Proof:
Suppose, «,,a, € A, then we have to prove that,

aa;' €A Q)
By the theorem (if a,«, isineven permutations)

Since, the inverse of transposition also transposition.
Then the inverse of even transposition is even
transposition. So, (1) satisfied and A, is subgroup in

S, . .
Example 30:
Find all the subgroups of S..
Solution:
As we know that,
S, ={l,a,a*b,ab,a’b}

where,

1 2 3 1 2 3 , (1 2 3
| = ra= at =

1 2 3 2 31 31 2

1 2 3 1 2 3 1 2 3
b= ; ab= ;ah=

1 3 2 321 2 1 3

Here, a®=b*=(ab)*=1
So, the subgroups of S, are,
{1}.{1,a,a°}{1,b},{1,ab},{l,a’b} and S,.

Order of permutation:
Let « be the permutation in S, then the order of o

is at least positive integer n such that,
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a" =1.

e.g.

S, ={l,a,a*,b,ab,a’b}
where,

1 2 3 123y , (1 2 3
| = ra= at =
1 2 3 2 31 31 2
1 2 3
a’= =
1 2 3

Hence, order of S; is 3.

b2

Let, 7=

b a

r2=(a bJ=I
a b

So, the order of transposition 7 is 2.

Theorem 24:
The order of cyclic permutation of length m is m.

Proof:

Suppose,

a=(a,a,,.a,)

be a cyclic permutation of length m. Then under the
action,

a’ i a, —a,,a, >a,,.,a, >a,
a® i a,—>a,a, >a,,.,a, —>a,
a™ :a —>a,a —>a,,..,a, >a
So, that,

a™ =1

also for no-smaller power of k of «,

ak =1

Hence, order of & is m. B
Note:

1). To find the order of permutation, convert ¢ into
cyclic permutation, «,,a,,..«, of length
m,,m,,..,m, respectively. Ignore the cycle of length
1

ii). The order of o can be find by taking least
common multiple (L.C.M) of lengths of cycle.

Example 31:
Find the order of

1 23 456 789 10 11 12
:(234179658121110]
a=@1 2 3 4[5 7 6 9 8)10 12)
Cycles o, , @, and «, have length 4,5 and 2.

L.C.M=20
So, a® =1

m
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Hence, order of « is 20.
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