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Binary operation: 
A binary operation on a non-empty set A is just a 

function ∗: 𝐴 × 𝐴 → 𝐴. Which is denoted by ∗. 

Group: 
A non-empty set G is said to be group if it said to be 

following properties, 

1) Closure law holds in G. 

2) Associative law holds in G such that 

Gcbacbacba  ,, forall)()(  

3) Identity holds in G, 

Gaaaeea   forall  

4) Inverse exist in G, 

Gaeaaaa    forall11  

Note: If commutative law holds in G. Then G is said 

to be abelion group. 

Examples 1: 
1) Z the set of integers is group under addition. 

2) R the set of real numbers is also group under 

addition. 

3) Q the set of rational numbers is group under 

addition. 

4)  },,1,1{ iiG    is group under multiplication or  

,.).(G   

5)  },,,1{ kjiG    is also group under 

multiplication or  ,.).(G   

Idempotent: 
The elment  Gx   is said to be idempotent if, 

Gxxx   allfor 2  

Theorem 1:  

The only idempotent element in a group G is the 

identity element. 

Proof: 
Let  Gx   be an idempotent element, then by the 

definition, 

xx 2  

xxxx .. 121    

exxx  )..( 1  

exe .  

ex   

Hence proved.       

Example 2: 
}1,1{ G  

Solution: To show that G is group we have 

following properties, 

(i). G is closed under multiplication. 

(ii). G have many real numbers between -1 and 1 so 

the associative law holds. 

(iii). Identity element also exist. 

(iv). Inverse exist. 

So, G is group under multiplication or  ,.).(G   

Example 3: 

Let,  },,1{ 2G   is complex cube root of unity. 

Solution: To show that G is group we have, 

 

.  1    2  

1  1    2  

    2  1  

2  2  1    

i). G is closed under multiplication. 

ii).  ,,,1 2 G   

1)..1()..(1 22    

associative law holds. 

iii). Identity holds. 

iv). Inverse exist, 

inverse of 1 is 1. 

inverse of  is 2 . 

inverse of 2 is  . 

So, all the properties satisfied, Hence, G is group 

under multiplication or  ,.).(G   

Example 4: 
},,1,1{4 iiC   

where,  ii 1)(   &  .)( 1 ii     

Solution: 
 4C  is fourth root of unity to prove group we have, 

.  1  1  i  i  

1  1  1  i  i  

1  1  1  i  i  

i  i  i  1  1  

i i  i  1  1  

i).  4C   is closed under multiplication. 

ii). Associative law holds. 

iii). Identity of every element exist. 

iv). Inverse exist, 

Inverse of 1 is 1. 

Inverse of -1 is -1. 

Inverse of i is i  . 

Inverse of i  is i  . 

So, 4C is group under multiplication. 

Example 5: 
 }0{Q  =Set of all non-zero rational numbers. 

 }0{R  =Set of all non-zero real numbers. 

 }0{C  =Set of all non-zero complex numbers. 

are group under multiplication. 
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Example 6: 
},,,1{ kjiG   

where  jikikjkji  .;.;.  

jkiijkkij  .;.;.  

1222  kji  

Solution: 
All the properties of the group is satisfied, So, G is 

the group under multiplication. But not abelion group 

because, 

jikij ..   

kjijk ..   

ikjki ..   

Example 7: 
}matrices realsingular -non 22 all ofSet {22 A  

under the usual multiplication is a group. e.g., 

 




















10

21
 &  

12

01
BA  

are group under multiplication because A  & B   have 

their inverses(Non-singular). 

But not abelion because, 

BAAB   

Example 8: 

Show that  }4,3,2,1{G    is agroup of non-zero 

residue class of modulo 5. 

Solution: 

 

12344

24133

31422

43211

4321.

  

i). G is closed under multiplication. 

ii). Associative law holds, for all  G4,3,2   

42.2)4.3.(2   

44.14).3.2(   

iii). Identity of every element of G is exist. 

iv). Inverse of every element of G exist. 

Inverse of 1̅ is 1̅ 

Inverse of 2̅ is 3̅. 

Inverse of 3̅ is 2̅. 

Inverse of 4̅ is 4̅. 

Hence all the properties of group satisfied. So, G is 

group under multiplication or  ,.)(G  . 

 

 

 

Example 9: 

Show that  }4,3,2,1,0{G    is agroup of non-zero 

residue class of modulo 5. 

Solution: 

 

321044

210433

104322

043211

432100

43210.

  

i). G is closed under addition. 

ii). Associative law holds, for all  G4,3,2   

422)43(2   

4404)32(   

iii). Identity of every element of G is exist. 

iv). Inverse of every element of G exist. 

Inverse of 0̅ is 0̅ 

Inverse of 1̅ is 4̅ 

Inverse of 2̅ is 3̅. 

Inverse of 3̅ is 2̅. 

Inverse of  4̅ is 1̅. 

Hence all the properties of group satisfied. So, G is 

group under addition or  ),( G  . 

Properties of group: 

Theorem 2: (Cancellation laws) 
For any element  cba ,,   in a group G. 

i):  cbacab   (Left cancellation law) 

ii):  cbcaba   (Right cancellation law) 

Proof: 
For all  Gcba ,,   

i):  acab    

multiplying both sides by  .1a   

 )..()..( 11 caabaa     

 baa )..( 1  ( caa )..1  (By associative law) 

 cebe ..    

 cb    

Hence proved. 

ii):  caba    

multiplying both sides by 1a  on right side .   

 11 )..()..(   aacaab   

 )..()..( 11   aacaab  (By associative law) 

 eceb ..    

 cb    

Hence proved.  
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Theorem 3: (Solution of linear equation) 
For any two elements  ,, Gba    the equations  

bax    &  .bxa    

Proof: 
For any two elements  ,, Gba    

 bax    

Multiplying both sides by  1a   on left side .   

 baxaa .)..( 11     

 baxaa .)..( 11    (By associative law) 

 baxe .. 1   

 bax .1   

Hence,  bax .1   is the solution for  .bax    

Now, to check the unique solution we have, 

 Gxx 21,   

 baxbax .1

11

   

 baxbax .1

22

   

From above relation, 

 21 xx    

Hence, the solution of  bax    is unique. Similarly  

bxa    also unique solution.     

Theorem 4: 
For any  Gba ,   

 111)(   abab   

Proof: 
Given that, 

 111)(   abab   

Consider, 

 1111 ).().).((   abababab   

 1111 ).().).((   abbaabab   

 111 )().).((   aeaabab   

 ab.b1 .a1  a.a1
  

 ab.b1 .a1  e i  
Now, 

 )()).(( 1 iieabab    

From (i) & (ii) 

 111)(   abab   

Hence, proved.  

Theorem 5: 
For any element a of a group G, the following 

exponential rule holds, 

i).   maaaaam (...... factors    

ii).  mm aa  )( 1   

iii).  nmnm aaa .   

iv).  mnnm aa )(   

Proof:  

(i).  ,Ga   

 10  ea   

 aaa .01    

 aaa .2    

 aaaa ..3    

................ 

 maaaaam (...... factors    

Hence, proved. 

ii).  maaaaa m (.....)( 11111   factors    

By (i), 

 mm aa  )( 1   

Hence, proved. 

iii).  nmnm aaa .   

Case I. We have proved by induction method, 

for  ,1n   

   Zmaaa mm 11.   

true for  ,1n   

now, for  ,kn    

 kmkm aaa .   

also true for  ,kn    

now for  n  k  1,   

 a
m .ak1  amk1

  

 a
m .ak1  amk.a1

  

 a
m .ak1  amk1

  
Also true for  ,1 kn   Hence true for all values of  

.Zn   

So,  .. nmnm aaa    

Case II. 

When  0m   &  ,0n   

Let  pm    &  ,qn    

 qpnm aaaa .   

 qpnm aaa .   

 a
m .an  ap q

  
by (ii), 

 qpnm aaa  )(. 1   

Again,  nmqp aaaa .   

Hence, true. 

Case III. 

if  0m   &  ,0n   

or  0n   &  ,0m   

 nnnm aaaaa  .. 0   

similarly, 

 mmnm aaaaa  0..   
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So, true. 

Case IV. 

for  0m   &  ,00  nmn   

and  ,0 nm   

 )1(. nmnmmnm aaaa     

 eaa nmnm .    

 )..( nnnmnm aaaa     

 nmnmnmnm aaaaa )...(     

by (1), 

 nmnmnmnm aaaaa .)..(     

 nmnm aaea ..   

 nmnm aaa .   

So, true. 

Case V. 

for  0m   &  ,0?0 nmn    

 naaaaaaa mnm (....... 1111   factor    

by (i), 

 eaa nmnm .    

 )..( nnnmnm aaaa     

 nmnmnmnm aaaaa )...(     

by (1), 

 nmnmnmnm aaaaa .)..(     

 nmnm aaea ..   

 nmnm aaa .   

So, true. 

Hence proved for all values of  ,, Znm    so,  

.. nmnm aaa    

iv).  mnnm aa )(   

Case I. we have to prove by induction method, 

for  ,1n   

  Zmaa mm 1)(   

true for  ,1n   

now, for  ,kn    

 mkkm aa )(   

also true for  ,kn    

now for  ,1 kn   

 mmkkm aa  1)(   

 1)(1 .)( aaa kmkm     

 )1(1)(   kmkm aa   

Also true for ,1 kn  Hence true for all values of  

.Zn   

So,  .)( mnnm aa    

Case II. 

for  ,0n   

let,  ,pn    

 pmpm aa ))(()( 1    

 pmpm aa )()(     by (i) 

So, true. 

Case III. 

for  ,0n   

 )0(00)( mm aaea    

Hence,   mnnm aa )(    ., Znm    

Order of a group: 
The number of element in a group G is called order 

of G. Which is denoted by  .|| G   

Note: 
(i). A Group G is said to be finite if G is consist of 

finite number of elements. 

(ii). A Group G is said to be infinite if G is consist of 

infinite number of elements. 

Order of elements of group: 
Let  ),( G   be a group and  Ga   if there exist 

smallest positive integer n such that, ean  . Then n  

is called order of element n  in G. 

Theorem 6: 
Let G be a group. Let  Ga   have order  n   then for 

any integer  k  ,  eak    iff  qnk   , where  k   is 

any integer. 

Proof: 
Suppose that  Ga   and order of  a   is  n   then, 

 ean    

Now, by division algorithm, 

 )1(0; nrrqnk    

Where  r   and  q   are any integers, 

as given, 

 Zkeak  ;   

From (1), 

 rqnk aa    

 rqnk aaa .)(   

since order of  a   is  ,n   so, 

 rq aee .)(   

Hence, 

 ea r    

Proved. 

Conversely, suppose that  qnk    then we have to 

prove that order of  a   is  ,k   

 qnk    

 qnqnk aaa )(   

since order of  a   is  ,n   so, 

 eea qk    
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 ea k   for  Zk    

Hence, proved.  

Example 10: 

Show that  }7,5,3,1{G   is group under 

multiplication of modulo 8. Find the order of each 

element of G. 

Solution: 

. 1  3  5  7  

1  1  3  5  7  

3  3  1  7  5  

5  5  7  1  3  

7  7  5  3  1  
 

From teh Caley's table. 

The order of  1   is  .1   

The order of  3   is  13.2 2    

The order of  5   is  15.2 2    

The order of  7   is  17.2 2    

Example 11: 
Let G be group and  ,, Gba    then show that, 

i). The order of  a   and  1a   are equal. 

ii). The order of  ba   and  ab   are equal. 

iii). The order of  a   and  abb 1   are equal. 

Proof:  

(i). Let  ,Ga   and order of  a   is  n   then, 

 )1(,ean    

Where n  is the smallest positive integer. 

Because G is the group so inverse of every element 

exist, Let  ,1 Ga    

and order of  1a   is  ,m   then, 

 ea m  )( 1   

 ea m    

mulpying boths ides by  ma   

 eaaa mmm ..    

 )2(mae    

where  m   is smallest positive integer, 

from (1) and (2), 

 nmaa mn    

Hence proved. 

ii). Let  Gba ,   the order of  ab   is m   such that, 

 )3()( eab m    

As we know that, 

 mababababab m (.....)(   factor) 

by (3) 

 mabababab (.....  factors e)   

multiplying left sides by  1a   and right side by  ,a   

 maababababa (.......1   factors aea ..) 1   

 mbabababa (......   factors aae ..) 1   

 mbabababa (......   factors ee.)    

 mbabababa (......   factors e)   

Also we can write by using the theorem, 

 )3()( eba m    

from (3) and (4), 

 mm baab )()(    

which shows that order of  ab   and  ba   are same. 

iii). Let  Ga   and order of  a   is  .m   

 )5(eam    

multiplying left sides by  mb   and right side by  ,mb   

 mmmmm ebbbab     

 mmm bbabb  )( 1   

 )6()( 1 eabb m    

from (5) and (6), 

 mm abba )( 1   

Which shows that order of a   and  abb 1   are equal. 

Example 12: 
In a group of even order, prove that there is at least 

one element of order 2. 

Proof: 

Let G be a group of even order then there is a non-

identity element in G are the odd in number. 

Because G is group then the inverse of every element 

exist. 

Suppose, 

 )1(1 eeGe     

Let Ga  be the fnon- identity elemnet, then by (1), 

 aa 1   

multiplying both sides by  ,a   

 21 .. aeaaaa    

Which shows that order of  a   is 2. 

Hence, proved. 

Example 13: 
Let G be a group and  a   be an element of odd 

number in G. Then, there exist an element  b   in G 

such that,  .2 ab    

Proof: 
Let  ,Ga   and  n   be the positive integer, given that 

order of  a   is odd number, then, 

 )1(12 ea n    

 eaa nn .2   

 Gaaaaaa mmn  2132 ..,.....   
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 2221   mm abab   

 1122 .aab m   

by (1), 

 aeb .2    

 ab 2   

Hence, proved. 

Subgroup: 
Let  ),( G   be a group and H be a non-empty subset 

of G. Then H is said to be subgroup of G. If itself a 

group under the same binary operation     with the 

following axioms of group. 

Examples 14-16: 
 ),( Z   set of all integers is subgroup of  ).,( Q   

 ),( Q   set of rational is subgroup of  ).,( R   

The set of cube root of unity is subgroup of complex 

numbers without zero. e.g.  }.0{C   

Trivial and non-trivial subgroups: 
Every group G has at least two subgroups namely, G 

itself and  }{e  . These subgroups are called trivial 

subgroups. 

Any other subgroups of G are called non-trivial 

subgroups. 

Theorem 7: 
Let  ),( G   be a group. Then a non-empty subset H 

of G is subgroup of G iff  ., 1 HabHba     

Proof: 
Suppose that H is the subgroup of G. Then we have 

to prove that  ., 1 HabGba     

Let,  Ha   and  .Hb   

Since H is the subgroup of G then by the definition 

H itself a group so the every element of H has 

inverse. Hence, 

 HbHb  1  , 

S0, 

 ., 1 HabHba     

Conversely suppose that, 

 ., 1 HabHba     

then we have to prove that G is group. 

To prove G is group we satisfy the following axioms 

(properties). 

1). Since  HabHba  1,   so G is closed. 

2).  HbcaHcba  1).(,,   

 Hbca  11.   (Since H is subgroup so every element 

have inverse) 

Associative law holds. 

3).  HaaHa  1.,   

 He   

identity exist. 

4). HaeHae  1.,   

 Ha 1   

Inverse exist. 

Hence, all the properties of group satisfied so,  ),( G   

is group.  

Theorem 8: 
The intersection of any collection of subgroups of a 

group G is subgroup of G. 

Proof: 
Let,  };{ IiHH i    

where  };{ IiH i    is the family of subgroups of 

group G. 

Let,  ii HabHbaIi  1,,  (By previuos 

theorem) 

so,  HIiHab i  };{1   

Hence, H is subgroup of  G.  

Theorem 9: 
Let G be a group H be the subgroup of G. Then the 

set  };{ 11 HhahaaHa     is a subgroup of G. 

Proof: 

Suppose that,  1aHax   and  1aHay   then, 

 11

2

1

1

1 )).((   aahaahxy   

 11

2

1

1

1 ).(   ahaaahxy   

 11

21

1 )(   aheahxy   

 11

21

1   ahahxy   

 1

21

1 ).).((   haahxy   

here  ., 1

2121 HhhHhh     

So, 

 .).).(( 11

21

1   aHahaahxy   

Hence,  1aHa   is a subgroup of G.  

Theorem 10: 
The union  KH    of two subgroups  H  and K  of a 

group G is the subgroup of G if and only if  KH    

or  .HK    

Proof: 
Let H and K are two subgroups of group G. Then we 

have to prove that  KH    is subgroup of G. 

Then, 

 HKH    or  KKH    

Hence, H and K aare subgroups of G. So,  KH    

also subgroup of G. 

Conversely suppose that  KH    is subgroup of G 

then we have to show that  KH    or  .HK    

Contrary, suppose that  KH    or  .HK    

Let  KHa /   or  HKb /    
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butt there,  Hba ,   or  ,, Kba    then, 

 HbHabaHaba   ).(, 1   

 KaKbabKabb  1).(,   

which is contradiction, because, 

 KH /   and  HK /   

Hence,  KH    or  .HK    

Note: 
Let H and K be the two subgroups of group G. Then 

there is not need to be subgroup of G. e.g. 

 }7,5,3,1{G   modulo 8. 

 }5,1{;}3,1{  KH   

 H K  1, 3,5  
 75.3    or  KH  73.5   

So,  KH    is not closed. Hence,  KH    is not 

subgroup of  G.   

Example 18:  

Find the subgroups of group  }3,2,1,0{G   with 

the following table. 

+ 0  1  2  3  

0  0  1  2  3  

1  1  2  3  0  

2  2  3  0  1  

3  3  0  1  2  
Solution: 
Given table shows that operation is addition with 

modulo 4. In which, subgroups are, 

 GHH  }3,2,1,0{},0{ 21   

 }2,0{3 H   

where,  1H   and  2H   are trivial subgroups and  H3   

non-trivial subgroup of G. 

Example 18:  

Find the subgroups of group  },,,{ cbaeG    with the 

following table. 

.  e  a  b  c  

e  e  a  b  c  

a  a  e  c  b  

b  b  c  e  a  

c  c  b  a  e  
Solution: 
The given table show Klein's four group, 

 ecba  222   

 baccab  ;   

The subgroups are, 

 },{},,{},,{ cebeae   are non-trivial subgroups. 

Example 20: 
Let  }0{C   be the group of all non-zero complex 

numbers under multiplication, prove that  

}1};0{{ 22  baCibaH   is subgroup. 

Proof: 
Suppose that, 

 

22

22

22

111

2211

2211

))((

,

iba

iba

iba

iba
ibaiba

Hibaiba







 


  

(By theorem) 

 2
2

2
2

21122121 )()(1

2211 ))((
ba

babaibbaa
ibaiba



     

Hbabaibbaaibaiba   )()())(( 21122121

1

2211   

where,  12

2

2

2 ba   

Now, 

 

2121

2

2

2

1

2

1

2

22121

2

2

2

1

2

2

2

1

2

2112

2

2121

22

)()(

bbaabababbaa

bbaabababbaa




  

 
2

2

2

1

2

1

2

2

2

2

2

1

2

2

2

1

2

2112

2

2121 )()(

baba

bbaabababbaa




  

)(

)()()(

2

2

2

2

2

1

2

2

2

2

2

1

2

2112

2

2121

abb

baabababbaa




  

)).((

)()(

2

2

2

2

2

1

2

1

2

2112

2

2121

baba

bababbaa




  

 1.1)()( 2

2112

2

2121  bababbaa   

 1)()( 2

2112

2

2121  bababbaa   

Hence, H is subgroup. 

Cyclic group: 
A group G is said to be cyclic if every element of G 

is power of one, and same element say  .Ga   

These elements are called generator of G. 

If there at least positive integer n such that  ean    

then G is said to be finite cyclic group and written as, 

 eaaG n;  

(Read as G is cyclic of order n). 

Theorem 11: 
Every subgroup of cyclic group is cyclic. 

Proof: 
Suppose that G be a cyclic group and generated by  

a . Let H be the subgroup of G. Suppose that  Gk   

such that,  .Heak   We have to show that every 

element of H is power of k. 

For these let  .Ham    

By division algorithm, 

krrqkm  0;  
rqkm aa   
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rqkm aaa .)(  

krHaaa rmqk  ;..)(  

Which is contradiction because  .0r   

Then, 

qkm   
qkm aa )(  

Hence, H is cyclic.  

Theorem 12: 
Let G be a cyclic group of order n generated by a. 

Then for each positive divisor d of n, there is unique 

subgroup (of G) of order d. 

Proof: 

Let,   eaaG n;   

Let d is the positive divisor of n then there is integer 

q such that, 

dqn   

consider, 
qab   

dqd ab   
nd ab   

ebd   

So,  

 ebbH d;  

is required subgroup. 

To show that H is unique suppose that K is another 

subgroup of G of order then K is generated by single 

element  .kac    Where k is least positive integer. 
kac   

dqd ac   
nd ac   

ecd   

where, ,qkndk
d
n    

Hence, 

caab kq   

cb   

So, H is unique.  

Theorem 13: 
Every cyclic group is abelion. 

Proof: 
Let G be a cyclic group generated by a single element  

.a   

Let,  ,, Gyx    then there is positive integers m and 

k such that, 
mk ayax  ;  

mk aaxy .  
kmmk aaxy    

km aaxy .  

yxxy   

Hence, G is abelion cyclic group.  

Example 21: 
If G is cyclic group of even order then prove that 

there is only one subgroup of order 2 in G. 

Proof: 
Let, G be a cyclic group of even order such that, 

 eaaG n2;  

2n show that the order of G is even. 

(By using the theorem "If a positive integer d divides 

the order of G (|G|) then G has exactly one subgroup 

of order d.") 

Now, 

nG 2||   

where 2 divides 2n. So, G has only one subgroup of 

order 2. 

Example 22: 
Find all subgroups of a cyclic subgroup of order 12. 

Proof: 
The divisor of 12 are, 

1,2,3,4,6,12. 

subgroup of order }{1 e   

subgroup of order G12  itself. 

subgroup of order },{)(2 12626 eaaa    

subgroup of order },,{)(3 128434 eaaaa    

subgroup of order },,,{)(4 1296343 eaaaaa    

subgroup of order

},,,,,{)(6 1210864262 eaaaaaaa    

Cosets: 
Let H be the subgroup of G and  Ga  . Then the set, 

 };{ HhahaH    Left coset 

 };{ HhhaHa    Right coset 

is said to coset of H in G. 

Note: The left or right cosets of H in G with identity 

element is H itself. 

 eH  eh;h  H  H  

 He  he;h  H  H  
If the binary operation is “+” then the coset can be 

written as, 

 };{ HhhaHa    

Example 23: 

 }5,4,3,2,1,0{G   be the group of residue classes 

modolu 6. Then,  }4,2,0{H   is subgroup G. There 

are only two left cosets of H in Gand these are 

 HH 0   and  }.5,3,1{1  H   
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Example 24: 

 }7,5,3,1{G   be the group of residue classes 

modulo 8. Find the cosets. 

Solution: 

. 1  3  5  7  

1  1  3  5  7  

3  3  1  7  5  

5  5  7  1  3  

7  7  5  3  1  
Here proper subgroups are, 

 }7,1{},5,1{},3,1{ 321  HHH   

The cosets are, 

 11 }3,1{.1 HH    

 5 . }7,5{1 H   

 }5,7{.7 1 H   

Partition: 
The collection of subsets is known as the partition of 

sets. 

The partition of set A is, 

 };{ IiAi    of the set  };{ IiAA i    and  

IjiAA ji  ,   and  .ji    

Theorem 14: 
Let H be the subgroup of group G. Then the set of all 

left or right cosets of H in G define the partition of G. 

Proof: 
Suppose,  };;{ HhGaah    be the collection of 

all the left cosets of H in G. 

Now,  HaeGa    (Because H is subgroup of 

G so identity exist.) 

So, 

 G   

wherer     is the collection of the subsets 

contained in G. 

Hence,  .G   

consider aH and bH are the cosets of H in G, then, 

 21 bhahxbHaHx    for some  

., 21 Hhh    

 )1(3

1

12 bhhbha     

where,  Hhhh 

3

1

12   

Since H si subgroup thus  bHa   

From (1). 

 hbhah 3   also an element of  .bH   

Hence,  bHaH    or  aHbH    

which shows, 

 aH  bH  

contradiction because we have 

 bHaH   

therefore     shows the partition of G.  

Index H in G: [G:H] 
The number of distinct left or right cosets of 

subgroup H in G is called the index H in G and 

denoted by, [G:H]. 

Example 25: 
Find the distnict right (left) cosets of  

};2{,.....}4,2,0{ ZnnE    in a group  ).,( Z   

Solution: 
There are two right cosets of  E   in  Z  . 

Which are 0 and 1, 

 EZnnE  };20{0   

 OZnnE  };12{1   (odd numbers) 

Now, 

 ZOEEE  )1()0(   (set of integers) 

  )1()0( EE   

Therefore index of  E   in  Z   is 2. 

Theorem 15: (Lagrange's theorem) 
The order of a subgroup of a finite group divides the 

order of group. 

Proof: 
Let G be the group and H be the subgroup of G. 

Suppose that the order of G is n and the order of H is 

m. Then by the definition, 

 mH ||   and  nG ||   

Since, the order of G is finite, So, the set of all distnict 

left cosets of H in G are also finite. 

(By the previous theorem, "Let H be the subgroup of 

G then the all left (right) cosets of H in G define the 

partition in G.") 

So,  HaG i

k

i 1

    (1) 

where,   HaHa ji   for  .ji    

let we define a mapping, 

 HaH i :   

 Hhhah i  ;)(   

    is onto, also, 

 Hhhhh  2121 ,);()(   

 21 haha ii    

 21 hh    (By left cancellation law) 

Hence,     is one-to-one. So, the numbers of H and  

Hai   are the same. 

From (1), 

 HaG i

k

i 1

    

 mmmmn  ...   ( k   times) 
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 kmn    

 |||| HkG    

 ||\|| GH   

Hence, proved.  

Corollary: 
The index of an element of finite group divides the 

order of group. 

Proof: 
By the Lagrange's theorem, 

 |||| HkG    (1) 

k being the numbers of the distnict left(right) cosets 

of H in G, 

From (1) k divodes the ordder of G. But  

],:[ HGk    

 ||]\:[||\ GHGGk    

Hence, proved. 

Corollary: 
A group G whose order is prime number is 

necessarily cyclic. 

Proof: 
Let G be a group of prime order p. 

 pG ||   

Let  Ga   be the non-identity element of G. Let H 

be the cyclic gro\up of order k. 

|H|=k 

By the Lagrange's theorem 

 pk \   (Order of H divides the order of G) 

 since p is prime number and the divisor of p is 1 and 

p itself. But we choose already H is non-identity 

element so, 

 pk    

Hence, order of H and G are same. 

By this equality, H is cyclic so G also cyclic. 

Permutation: 
Let X be a non-empty set. A bijective mapping  

XXf :   is called permutation on X. The set of 

all permutation on X is denoted by  xS  . 

Theorem 16: 
The set  nS   of all permutation on a set X with n-

elements is a group under operation of composition 

of permutation. 

Proof: 
to show group we have following axioms, 

i). Let f and g be two mappings on X, 

XXf :   and  XXg :   

 Xxxgfxfog  ));(()(   

Since the composition of bijective mapping also 

bijective mapping. So, the  fog   also the permutation 

on X. Hence,  nS   is closed under composition. 

ii). Let f, g and h be the mappings on X, then, 
 Xxxhfogxohfog  ));(())()((   

 Xxxhgfxohfog  )));((())()((   

 Xxxgohfxohfog  ));(())()((   

 Xxxgohfoxohfog  );)(())()((   

 )())( gohfoohfog    

Associative law holds. 

iii). Let I be the identity on X, 

 XXI :   

 XxxxI  ;)(   

So,  XxxIfxfoI  ));(()(   

 XxxfxfoI  );()(   

 ffoI    

So, identity exist. 

iv): Let  XXf  :1   

 xyfyxf   )()( 1   

 Xxxffxoff   ));(())(( 11   

 Xxxffxoff   ));(())(( 11   

 Xxyfxoff   );())(( 11   

 Xxxxoff  ;))(( 1   

Now, 

 Xxyffyfof   ));(())(( 11   

 Xxxfyfof  );())(( 1   

 Xxyyoff  ;))(( 1   

Inverse exist. 

Hence, all the properties of group satisfied. 

So,  nS   is group under composition.  

Note: 
i). The group nS is called the symmetric group of 

degree n. 

ii). Every element of  Sn   is permutation of n objects 

takes n-time. There are  !n   permutations. 

Hence the order of  nS   is  !n  . 

Example 26: 
Find the permutations, if, }3,2,1{X  

Solution: 
 3n so the order of 3S  is .6!3    (means 6 

permutations) 

)321(I ; )132(1 f ; )213(2 f  

)231(3 f ; )123(4 f ; )312(5 f  

},,,,,{ 543213 fffffIS   

To calculate the permutations we have, 
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 



























213

321
;

132

321
;

321

321
21 ffI   

 



























312

321
;

123

321
;

231

321
543 fff   

To find the composition,  .15off   

 1)2())1(()1)(( 51515  fffoff   

 3)3())2(()2)(( 51515  fffoff   

 2)1())3(()3)(( 51515  fffoff   

So,  315
231

321
foff 








   

Similarly, 

 451
123

321
foff 








   

Hence,   5115 offoff    

So,  S3   is non-abelion. 

Consider,  bfaf  51 ;   

then,  abfaf  4

2

2 ,   

 Iabba  223 )(   

 bafba 2

3    

using this relation we construct the Caley's table, 

 

o  I  a  a2
 b  ab  a2b  

I  I  a  a2
 b  ab  a2b  

a  a  a2
 I  ab  a2b  b  

a2
 a2

 I  a  a2b  b  ab  

b  b  a2b  ab  I  a2
 a  

ab  ab  b  a2b  a  I  a2
 

a2b  a2b  ab  b  a2
 a  I  

 

Example 27: 
Find fog and gof , if, 

 


















3412

4321
;

1432

4321
gf   

 

















3412

4321

1432

4321
fog   

 









2341

4321
fog   

 

















1432

4321

3412

4321
gof   

 









4123

4321
gof   

Which show that, 
 goffog    

Example 28: 
Find the composition of the permutation, 

 




















562143

654321
;

146235

654321
   



















562143

654321

146235

654321
   

 









325416

654321
   

Similarly,  

 

















146235

654321

562143

654321
   

 









413562

654321
   

Hence,  .    

Cycles: 

Let  a1 ,a2 ,a3 , . . ,ak   where  ak  1,2,3, . . ,k.   

A permutation    Sn   is called a cycle of length k 

and  x  x,  x  1,2,3, . . ,k.   We can write a 

cycle as { a1 ,a2 ,a3 , . .ak  } and say that     acts on { 

a1 ,a2 ,a3 , . .ak  } e.g. 

 

 
1 2 3 4 5 6

2 3 4 5 6 1
  

we can write these cycles as, 

 1  2  3  4  5  6   
 

one cycle of length 6. 

so, 

 
  1 2 3 4 5 6

  
Note: 
The composition of two cyclic permutations need not 

be cyclic permutaions. 

e.g. 

 
1 2 5 2 1 4 5 6

  

Let,  

  1 2 5 
1 2 3 4 5 6

2 5 3 4 1 6
  

   









265314

654321
65412   



Group theory            By: Muhammad Fiaz Hussain      

Applied & Analytic Mathematics Research Center             fiaz.hussain24@yahoo.com 

12 
 

Hence, 

 

  



















265314

654321

614352

654321

65412521

  

 

  











245361

654321

65412521

  

      546265412521    

Disjoint cycles: 
Two or more than two cycles which have no common 

elements are called mutually disjoint cycles. e.g. 

  62   and   54   are disjoint cycles. 

  251   and   25   are not disjoint cycles. 

Example 29: 
    654;321     

 

















465321

654321

654132

654321
   

 )1(
465132

654321








   

 

















654132

654321

465321

654321
   

 )2(
465132

654321








   

From (1) and (2), 

     

So,  and   are mutually disjoint cycles. 

Theorem 17: 
Every permutation of degree n can be written as a 

product of cycles acting on mutually disjoint cycles. 

Proof: 

Let S n   be the set of all cycles of n-elements, and   

be the permutation of n-degree. Let  has only one 

element in which acts. Suppose, 

 113221 ,...., aaaaaaaa kkk



    

since k is the finite then there is a number n such that, 

 1aan



   

  is the cyclic permutation so, the is the part of 

cyclic permutation. 

 ),...,,( 211 naaa   

Now put n=k then 1  is the required cyclic 

decomposition of   as cyclic permutation. 

Now, if kn   then b, is different from  ).,...,,( 21 naaa   

 pibbbbbbbb ppp   1;,...., 113221



  

Hence, the given permutation is injective mappings. 

So, effect of part   on cyclic permutation is, 

 ),...,,( 212 pbbb   

So, we have two   cyclic permutations, if n+p=k, 

then  is the composition of two cycles 1  and .2   

If kpn   then the process repeated again. 

Every time process extracting the cycles. After the 

finite number of each because k is finite. Thus there 

is a natural number q, such that, 

 )1(),...,,( 21 qq ccc   

Where, ic 's occurs between ia 's and ib 's. 

Where each   acts as mutually disjoint subset of X 

and are uniquely determined. Since, any two 

permutations acting on mutually disjoint sets 

commute. So, the part from the order in which i 's 

are taken. The expression (1) for is unique.  

Transposition: 
A cycled of length 2 is called a transposition e.g. 











ab

ba
  

a and b are interchanging in this permutation and 

other element remain fixed is a transposition. 

Theorem 18: 
Every cyclic permutation can be expression as a 

product of transposition. 

Proof: 
Suppose, ),...,,( 211 naaa be the cyclic permutation. 

Consider, 

      )1(... 13121 kaaaaaa   

which shows that, 

 113221 ,...., aaaaaaaa kkk



    

Hence, the effect of   and    are same. So,      

is the product of transposition. 

Now,     Iabba    be the number such pair of 

transposition can be inserted between the pairs  

   11 , iii aaaa   involved in    . Hence,     be 

the expressed as the product of transpositions. 

Possibly in infinitely many ways.  

Theorem 19: 
Every permutation of degree n can be expressed as a 

product of transposition. 

Proof: 
As we know that the every permutation can be as a 

product of dis joint cycles. Conversely, every cycle 

can be expressed as a product of transposition in 
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infinitely many ways. (By the above theorem). So, 

any element of nS  can be expressed as a product of 

transposition in infinitely many ways.  

Theorem 20: 
Let a permutation   in nS   be written as a product 

of m transpositions and as a product of p 

transpositions. Then m-p is a multiple of 2. This 

implies that both m and p are even or both of them 

are odd. 

OR 

Let be the permutation as a product of 

transposition, (pm  mod 2 ).   

Proof: 
Suppose the product of transpositions, 

 )( ji

n

ji

xxp 


  

 ))...()(( 13121 nxxxxxxp    

 ))...()(( 24232 nxxxxxx    

 )...(.................... 1 nn xx    

 )( )()( qjai

n

ji

xxp 


   

Now for any transpositions, 

 ),( lk   in nS . Where  .lk    

 )()( )()( tjti

n

ji

xxp 


   

every factors of p that contains neither kx  nor lx   

remain unchanged in )( p  . The factor )( lk xx   of 

p becomes )( kl xx   in ).( p those factors of p 

which contain either kx  of lx   But not both kx   and 

lx . 

       )( km xx     )( lm xx    where  .,lkm     

Such the product remain unchanged in  ).( p   Thus 

it follows that,  ,)( pp    

By successive applications of transpositions in  ,   

in both cases, 

 )1()1(...)()( 21 ppp m

m     

 )2()1(..)()( 21 ppp p

m     

From (1) and (2), 

 pp pm )1()1(    

 pp mp )1(   

 mp    is multiple of 2. 

 pmmp  \2  (mod 2).  

Even and odd permutation: 
A permutation   is called even if it can be expressed 

as a product of even number of transpositions. 

A permutation is called odd if it can be expressed 

as a product of odd number of transpositions. 

e.g. 

 









3412

4321
   

   4321   

   Shows that even permutations. 

Similarly, 

 









1432

4321
   

 4321   

   shows odd permutation. 

Theorem 21: 
i). The product of even or odd permutations is an 

even permutations. 

ii). The product of an even permutation and odd 

permutation is an odd permutation. 

Proof:  
Let 1  and 2  be the permutations of n degree. Let  

1  and 2  can be expressed as a product of  1m   and  

2m   transposition respectively. 

So, the product of 21 contained kmm 221    

where k is 0 or Nk    transpositions, possible if 2k 

is cancelled of simplify. 

i). if   1   and  2   are the even permutations in which 

case both m1 and m2 are even, or both 1  and 2  are 

the odd permutations in which case both m1 and m2 

are odd, hence, kmm 221   is also an even integer. 

So, 21  are even permutations. 

ii). Consider one of the permutation 1 is even and 

other 2  is odd then  kmm 221    is also an odd 

integer. So, 21  are odd permutations.  

Corollary: 
Let be any permutation of degree n and a 

transposition then  or  is an even or odd 

according as     is even or odd. 

Proof: 
If     is an even permutation then     or     is an 

odd permutation. 

Theorem 22: 
Let ,2n  the number of even permutation in nS  is 

equal to the number of odd permutation is nS . 

Proof: 
Let,  

 k ,...,, 21   (1) 

be all even permutations and  
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 m ,..,, 21   (2) 

are odd permutations in nS  , So,  !nmk   . 

Let   be the transposition. then, 

 )3(,..,, 21  k   

are all odd. (By corollary) 

 )4(,..,, 21  k   

are all even. 

From (1) and (4), 

 km    

From (2) and (3), 

 mk    

So,  
2
!nkm    is required proof.  

Note: 
All even permutation in nS  are denoted by nA  . From 

the above theorem the number of element in nA  are  

.
2
!n   

Theorem 23: 
The set nA  of all even permutation in nS forms a 

subgroup of nS . 

Proof: 
Suppose,  nA21,   then we have to prove that, 

 )1(1

21 nA   

By the theorem (if  21   is in even permutations) 

Since, the inverse of transposition also transposition. 

Then the inverse of even transposition is even 

transposition. So, (1) satisfied and nA  is subgroup in 

nS . 

Example 30: 
Find all the subgroups of  .3S   

Solution: 
As we know that, 

 },,,,,{ 22

3 baabbaaIS    

where, 

 



























213

321
;

132

321
;

321

321
2aaI   

 



























312

321
;

123

321
;

231

321
2baabb   

Here,  Iabba  223 )(   

So, the subgroups of  3S   are, 

 },{},,{},,{},,,{},{ 22 baIabIbIaaII  and .3S   

Order of permutation: 
Let   be the permutation in nS  then the order of   

is at least positive integer n such that, 

 .In    

e.g. 

 },,,,,{ 22

3 baabbaaIS    

where,  





























213

321
;

132

321
;

321

321
2aaI   

 Ia 









321

321
3   

Hence, order of 3S  is 3. 

Let,  









ab

ba
   

 I
ba

ba









2   

So, the order of transposition   is 2. 

Theorem 24: 
The order of cyclic permutation of length m is m. 

Proof: 
Suppose, 

 ),..,,( 21 maaa   

be a cyclic permutation of length m. Then under the 

action, 

 24221

2 ,..,,: aaaaaa m    

 35231

3 ,..,,: aaaaaa m    

....................................................... 

 mm

m aaaaaa  ,..,,: 2211   

So, that, 

 Im    

also for no-smaller power of k of   , 

 Ik    

Hence, order of   is .m   

Note: 
i). To find the order of permutation, convert   into 

cyclic permutation, k ,...,, 21  of length  

kmmm ,..,, 21  respectively. Ignore the cycle of length 

1. 

ii). The order of   can be find by taking least 

common multiple (L.C.M) of lengths of cycle. 

Example 31: 
Find the order of  

 









101112856971432

121110987654321
   

    1210896754321   

Cycles  1  , 2   and  3   have length 4,5 and 2. 

L.C.M=20 

So,  I20   
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Hence, order of   is 20. 
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