Binary operation:

A binary operation on a non-empty set A is just a function $*: A \times A \rightarrow A$. Which is denoted by *.

Group:

A non-empty set G is said to be group if it said to be following properties,

- 1) Closure law holds in G.
- 2) Associative law holds in G such that a*(b*c) = (a*b)*c forall $a,b,c \in G$
- 3) Identity holds in G, a * e = e * a = a forall $a \in G$
- 4) Inverse exist in G.

 $a * a^{-1} = a^{-1} * a = e$ for all $a \in G$

Note: If commutative law holds in G. Then G is said to be abelion group.

Examples 1:

- 1) Z the set of integers is group under addition.
- 2) R the set of real numbers is also group under addition.
- 3) Q the set of rational numbers is group under addition.
- 4) $G = \{1, -1, i, -i\}$ is group under multiplication or (*G*,.).
- 5) $G = \{\pm 1, \pm i, \pm j, \pm k\}$ is also group under $C_4 = \{1, -1, i, -i\}$ multiplication or (G,.).

Idempotent:

The elment $x \in G$ is said to be idempotent if, $x^2 = x$ for all $x \in G$

Theorem 1:

The only idempotent element in a group G is the identity element.

Proof:

Let $x \in G$ be an idempotent element, then by the definition.

 $x^2 = x$ $x^{-1}.x^2 = x^{-1}.x$ $(x^{-1}.x).x = e$ e.x = ex = eHence proved.

Example 2:

 $G = \{1, -1\}$

Solution: To show that G is group we have following properties,

(i). G is closed under multiplication.

(ii). G have many real numbers between -1 and 1 so the associative law holds.

(iii). Identity element also exist.

(iv). Inverse exist.

So, G is group under multiplication or $(G_{,.})$.

Example 3:

Let, $G = \{1, \omega, \omega^2\}$ is complex cube root of unity. **Solution:** To show that G is group we have,

•	1	ω	ω^2
1	1	ω	ω^2
ω	ω	ω^2	1
ω^2	ω^2	1	ω

i). G is closed under multiplication.

ii). $1, \omega, \omega^2 \in G$.

 $1.(\omega.\omega^2) = (1.\omega).\omega^2 = 1$

associative law holds.

iii). Identity holds.

iv). Inverse exist,

inverse of 1 is 1.

inverse of ω is ω^2 .

inverse of ω^2 is ω .

So, all the properties satisfied, Hence, G is group under multiplication or (G,.).

Example 4:

Applied Mathematica,
$$(i)^{-1} = -i \& (-i)^{-1} = i$$
.

Solution:

 C_4 is fourth root of unity to prove group we have,

	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

i). C_4 is closed under multiplication.

ii). Associative law holds.

iii). Identity of every element exist.

iv). Inverse exist,

Inverse of 1 is 1.

Inverse of -1 is -1.

Inverse of i is -i.

Inverse of -i is i.

So, C_4 is group under multiplication.

Example 5:

 $Q - \{0\}$ =Set of all non-zero rational numbers.

 $R - \{0\}$ =Set of all non-zero real numbers.

 $C - \{0\}$ =Set of all non-zero complex numbers. are group under multiplication.

Example 6:

 $G = \{\pm \bar{1}, \pm i, \pm j, \pm k\}$ where i.j = k; j.k = i; k.i = jj.i = -k; k.j = -i; i.k = -j $i^2 = j^2 = k^2 = -1$

Solution:

All the properties of the group is satisfied, So, G is the group under multiplication. But not abelion group because,

 $j.i = -k \neq i.j$ $k.j = -i \neq j.k$ $i.k = -j \neq k.i$

Example 7:

 $A_{2\times 2} = \{$ Set of all 2×2 non - singular real matrices $\}$ under the usual multiplication is a group. e.g.,

$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \& B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

are group under multiplication because A & B have their inverses(Non-singular).

But not abelion because,

 $AB \neq BA$

Example 8:

Show that $G = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ is agroup of non-zero residue class of modulo 5.

Solution:

•	1	$\overline{2}$	3	4
$\overline{1}$	$\overline{1}$	$\overline{2}$	3	$\overline{4}$
$\overline{2}$	$\overline{2}$	$\overline{4}$	$\overline{1}$	3
3	3	$\overline{1}$	$\overline{4}$	$\overline{2}$
4	$\overline{4}$	3	$\overline{2}$	$\overline{1}$

i). G is closed under multiplication.

ii). Associative law holds, for all $\overline{2}, \overline{3}, \overline{4} \in G$

 $\overline{2}.(\overline{3}.\overline{4}) = \overline{2}.\overline{2} = \overline{4}$

 $(\overline{2}.\overline{3}).\overline{4} = \overline{1}.\overline{4} = \overline{4}$

iii). Identity of every element of G is exist.

iv). Inverse of every element of G exist.

Inverse of $\overline{1}$ is $\overline{1}$

Inverse of $\overline{2}$ is $\overline{3}$.

Inverse of $\overline{3}$ is $\overline{2}$.

Inverse of $\overline{4}$ is $\overline{4}$.

Hence all the properties of group satisfied. So, G is group under multiplication or (G,.).

Example 9:

Show that $G = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ is agroup of non-zero residue class of modulo 5.

Solution:

•	$\overline{0}$	1	$\overline{2}$	3	4
$\overline{0}$	$\overline{0}$	1	$\overline{2}$	3	4
1	1	$\overline{2}$	3	$\overline{4}$	$\overline{0}$
$\overline{2}$	$\overline{2}$	3	$\overline{4}$	$\overline{0}$	1
3	3	4	$\overline{0}$	$\overline{1}$	$\overline{2}$
4	4	$\overline{0}$	1	$\overline{2}$	3

i). G is closed under addition.

ii). Associative law holds, for all $\overline{2}, \overline{3}, \overline{4} \in G$

 $\overline{2} + (\overline{3} + \overline{4}) = \overline{2} + \overline{2} = \overline{4}$

 $(\overline{2}+\overline{3})+\overline{4}=\overline{0}+\overline{4}=\overline{4}$

iii). Identity of every element of G is exist.

iv). Inverse of every element of G exist.

Inverse of $\overline{0}$ is $\overline{0}$

Inverse of $\overline{1}$ is $\overline{4}$

Inverse of $\overline{2}$ is $\overline{3}$.

- Inverse of $\overline{3}$ is $\overline{2}$.
- Inverse of $\overline{4}$ is $\overline{1}$.

Hence all the properties of group satisfied. So, G is group under addition or (G,+).

Properties of group: Theorem 2: (Cancellation laws)

For any element a,b,c in a group G. i): $ab = ac \Rightarrow b = c$ (Left cancellation law) ii): $ba = ca \implies b = c$ (Right cancellation law) **Proof:** For all $a, b, c \in G$ i): ab = acmultiplying both sides by a^{-1} . $a^{-1}.(a.b) = a^{-1}.(a.c)$ $(a^{-1}.a).b = (a^{-1}.a).c$ (By associative law) e.b = e.cb = cHence proved. ii): ba = camultiplying both sides by a^{-1} on right side \cdot $(b.a).a^{-1} = (c.a).a^{-1}$ $b.(a.a^{-1}) = c.(a.a^{-1})$ (By associative law) b.e = c.eb = cHence proved.

Proof: Theorem 3: (Solution of linear equation) $a, b \in G$, the equations For any two elements (i). $a \in G$, $a^0 = e = 1$ ax = b & xa = b.**Proof:** $a^1 = a^0.a$ For any two elements $a, b \in G$, $a^2 = a.a$ ax = b $a^3 = a.a.a$ Multiplying both sides by a^{-1} on left side \cdot $a^{-1}.(a.x) = a^{-1}.b$ $a^m = a.a.a...a(m \text{ factors})$ $(a^{-1}.a).x = a^{-1}.b$ (By associative law) Hence, proved. $e.x = a^{-1}.b$ ii). $(a^{-1})^m = a^{-1} \cdot a^{-1} \cdot a^{-1} \cdot a^{-1} (m \text{ factors }))$ $x = a^{-1}.b$ By (i), Hence, $x = a^{-1}b$ is the solution for ax = b. $(a^{-1})^m = a^{-m}$ Now, to check the unique solution we have, Hence, proved. $x_1, x_2 \in G$ iii). $a^{m}.a^{n} = a^{m+n}$ $ax_1 = b \Longrightarrow x_1 = a^{-1}.b$ Case I. We have proved by induction method, $ax_2 = b \Longrightarrow x_2 = a^{-1}b$ for n = 1. $a^m \cdot a^1 = a^{m+1} \forall m \in Z^+$ From above relation, true for n = 1. $x_1 = x_2$ Hence, the solution of ax = b is unique. Similarly now, for n = k, xa = b also unique solution. $a^m a^k = a^{m+k}$ Theorem 4: also true for n = k, For any $a, b \in G$ M. Phill Applied Math. now for n = k + 1, $(ab)^{-1} = b^{-1}a^{-1}$ $a^{m} a^{k+1} = a^{m+k+1}$ **Proof:** $6639466a^{m}.a^{k+1} = a^{(m+k)}.a^{1}$ Given that, $a^{m} a^{k+1} = a^{m+(k+1)}$ $(ab)^{-1} = b^{-1}a^{-1}$ Also true for n = k + 1, Hence true for all values of Consider, $(ab).(b^{-1}.a^{-1}) = (ab).b^{-1}a^{-1}$ $n \in Z^+$. So, $a^m . a^n = a^{m+n}$. $(ab).(b^{-1}.a^{-1}) = a(b.b^{-1})a^{-1}$ Case II. $(ab).(b^{-1}.a^{-1}) = a(e)a^{-1}$ When m < 0 & n < 0, $(ab).(b^{-1}.a^{-1}) = a.a^{-1}$ Let m = -p & n = -q, $(ab).(b^{-1}.a^{-1}) = e(i)$ $a^m . a^n = a^{-p} a^{-q}$ Now, $a^m \cdot a^n = a^{-p - q}$ $(ab).(ab)^{-1} = e(ii)$ $a^m \cdot a^n = a^{-(p+q)}$ From (i) & (ii) by (ii), $(ab)^{-1} = b^{-1}a^{-1}$ $a^{m}.a^{n} = (a^{-1})^{p+q}$ Hence, proved. Again, $a^{-p}a^{-q} = a^m \cdot a^n$ **Theorem 5:** Hence, true. For any element a of a group G, the following Case III. exponential rule holds, if $m = 0 \& n \neq 0$, i). $a^m = a.a.a...a(m \text{ factors})$ or n=0 & $m \neq 0$. ii). $(a^{-1})^m = a^{-m}$ $a^m.a^n = a^0.a^n = a^n$ similarly, iii). $a^{m}.a^{n} = a^{m+n}$

 $a^{m}.a^{n} = a^{m}.a^{0} = a^{m}$

iv). $(a^m)^n = a^{mn}$

Group theory Applied & Analytic Mathematics Research Center

So, true. Case IV. for m < 0 & $n > 0 \Longrightarrow m + n < 0$, and -m-n > 0, $a^{-m-n} \cdot a^m = a^{-m-n+m} = a^{-n}$ (1) $a^{m+n} = a^{m+n}.e$ $a^{m+n} = a^{m+n} . (a^{-n} . a^{n})$ $a^{m+n} = a^{m+n} . (a^{-m-n} . a^m) . a^n$ by (1), $a^{m+n} = (a^{m+n}.a^{-m-n}).a^{m}.a^{n}$ $a^{m+n} = e.a^m.a^n$ $a^{m+n} = a^m . a^n$ So. true. Case V. for m > 0 & $n < 0 \Longrightarrow m + n?0$, $a^{m}.a^{-n} = a^{m}.a^{-1}.a^{-1}.a^{-1}..a^{-1}$ (*n* factor) by (i), $a^{m+n} = a^{m+n}.e$ $a^{m+n} = a^{m+n} . (a^{-n} . a^{n})$ $a^{m+n} = a^{m+n} . (a^{-m-n} . a^m) . a^n$ by (1), $a^{m+n} = (a^{m+n}.a^{-m-n}).a^{m}.a^{n}$ $a^{m+n} = e.a^m.a^n$ $a^{m+n} = a^m . a^n$ So, true. Hence proved for all values of $m, n \in \mathbb{Z},$ SO, $a^{m+n} = a^m \cdot a^n$ iv). $(a^m)^n = a^{mn}$ Case I. we have to prove by induction method, for n = 1, $(a^m)^1 = a^m \forall m \in Z^+$ true for n = 1. now, for n = k, $(a^m)^k = a^{mk}$ also true for n = k, now for n = k + 1, $(a^m)^{k+1} = a^{mk+m}$ $(a^m)^{k+1} = a^{(m+k)} a^1$ $(a^m)^{k+1} = a^{m(k+1)}$ Also true for n = k + 1, Hence true for all values of $n \in Z^+$. So, $(a^m)^n = a^{mn}$. Case II. for n < 0,

let, n = -p, $(a^{m})^{-p} = ((a^{m})^{-1})^{p}$ $(a^{m})^{-p} = (a^{-m})^{p}$ by (i) So, true. Case III. for n = 0, $(a^{m})^{0} = e = a^{0} = a^{m(0)}$ Hence, $(a^{m})^{n} = a^{mn} \forall m, n \in \mathbb{Z}$.

Order of a group:

The number of element in a group G is called order of G. Which is denoted by |G|.

Note:

(i). A Group G is said to be finite if G is consist of finite number of elements.

(ii). A Group G is said to be infinite if G is consist of infinite number of elements.

Order of elements of group:

Let (G,*) be a group and $a \in G$ if there exist smallest positive integer n such that, $a^n = e$. Then n is called order of element n in G.

Theorem 6:

Let G be a group. Let $a \in G$ have order *n* then for any integer k, $a^k = e$ iff k = qn, where *k* is any integer.

Proof:

 \sum

Suppose that $a \in G$ and order of a is n then,

 $a^n = e$ Now, by division algorithm,

 $k = qn + r; \ 0 \le r < n \ (1)$

Where r and q are any integers,

as given,

 $a^k = e; k \in \mathbb{Z}$

From (1),

 $a^{k} = a^{qn+r}$ $a^{k} = (a^{n})^{q} . a^{r}$

since order of a is n, so,

$$e = (e)^q . a^r$$

Hence,

 $a^r = e$

Proved.

Conversely, suppose that k = qn then we have to prove that order of a is k,

k = qn $a^{k} = a^{qn} = (a^{n})^{q}$ since order of *a* is *n*, so, $a^{k} = e^{q} = e$

Group theory

Applied & Analytic Mathematics Research Center

 $a^k = e$ for $k \in \mathbb{Z}$

Hence, proved.

Example 10:

 $G = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ Show that is group under multiplication of modulo 8. Find the order of each element of G.

Solution:

	ī	3	5	7
ī	ī	3	5	7
3	3	ī	7	5
5	5	7	ī	3
7	7	5	3	ī

From teh Caley's table.

The order of $\overline{1}$ is 1.

The order of $\overline{3}$ is $2 \implies \overline{3}^2 = \overline{1}$

The order of $\overline{5}$ is $2 \implies \overline{5}^2 = \overline{1}$

The order of $\overline{7}$ is $2 \implies \overline{7}^2 = \overline{1}$

Let G be group and $a, b \in G$, then show that, $a \in G$. i). The order of a and a^{-1} are equal. ii). The order of *ba* and *ab* are equal. iii). The order of a and $b^{-1}ab$ are equal. **Proof:** (i). Let $a \in G$, and order of a is n then, $a^n = e$, (1) Where *n* is the smallest positive integer. Because G is the group so inverse of every element exist, Let $a^{-1} \in G$, and order of a^{-1} is *m*, then, $(a^{-1})^m = e$ $a^{-m} = e$ mulpying boths ides by a^m $a^m . a^{-m} = a^m . e$ $e = a^{m}(2)$ where m is smallest positive integer, from (1) and (2), $a^n = a^m \Longrightarrow m = n$ Hence proved. ii). Let $a, b \in G$ the order of ab is m such that,

 $(ab)^{m} = e(3)$

As we know that,

 $(ab)^m = ab.ab.ab...ab(m \text{ factor})$ by (3)

ab.ab.ab...ab(m factors) = emultiplying left sides by a^{-1} and right side by a, $a^{-1}.ab.ab.ab...ab.a(m \text{ factors }) = a^{-1}.e.a$ $ba.ba.ba...ba(m \text{ factors }) = e.a^{-1}.a$ ba.ba.ba...ba(m factors) = e.eba.ba.ba...ba(m factors) = eAlso we can write by using the theorem, $(ba)^{m} = e(3)$ from (3) and (4), $(ab)^m = (ba)^m$ which shows that order of *ab* and *ba* are same. iii). Let $a \in G$ and order of a is m. $a^{m} = e(5)$

multiplying left sides by b^{-m} and right side by b^{m} ,

$$b^{-m}a^{m}b^{m} = b^{-m}eb^{m}$$
$$(b^{-1}ab)^{m} = b^{-m}b^{m}$$

$$(b^{-1}ab)^m = e(6)$$

from (5) and (6),

 $a^{m} = (b^{-1}ab)^{m}$

Which shows that order of a and $b^{-1}ab$ are equal.

Example 12:

M. Ph In a group of even order, prove that there is at least one element of order 2.

Proof:

66394

 \sim

Let G be a group of even order then there is a nonidentity element in G are the odd in number.

Because G is group then the inverse of every element exist.

Suppose,

 $e \in G \implies e^{-1} = e(1)$

Let $a \in G$ be the fnon- identity elemnet, then by (1), $a^{-1} = a$

multiplying both sides by a,

 $a.a^{-1} = a.a \Longrightarrow e = a^2$ Which shows that order of a is 2. Hence, proved.

Example 13:

Let G be a group and a be an element of odd number in G. Then, there exist an element b in G such that, $b^2 = a$.

Proof:

Let $a \in G$, and n be the positive integer, given that order of *a* is odd number, then,

$$a^{2n+1} = e$$
 (1)
 $a^{2n}.a^n = e$
 $a.a^2.a^3...a^n, a^{m+1}..a^{2m} \in G$

 $b = a^{m+1} \implies b^2 = a^{2m+2}$ $b^2 = a^{2m+1} \cdot a^1$ by (1), $b^2 = e \cdot a$ $b^2 = a$ Hence, proved.

Subgroup:

Let (G,*) be a group and H be a non-empty subset of G. Then H is said to be subgroup of G. If itself a group under the same binary operation * with the following axioms of group.

Examples 14-16:

(Z,+) set of all integers is subgroup of (Q,+).

(Q,+) set of rational is subgroup of (R,+).

The set of cube root of unity is subgroup of complex numbers without zero. e.g. $C - \{0\}$.

Trivial and non-trivial subgroups:

Every group G has at least two subgroups namely, G itself and $\{e\}$. These subgroups are called trivial subgroups.

Any other subgroups of G are called non-trivial subgroups.

Theorem 7:

Let (G,*) be a group. Then a non-empty subset H

of G is subgroup of G iff $\forall a, b \in H \Rightarrow ab^{-1} \in H$. 0333- $xv^{-1} = ah(a^{-1}a)h^{-1}a^{-1}$

Proof:

Suppose that H is the subgroup of G. Then we have

to prove that $\forall a, b \in G \implies ab^{-1} \in H$.

Let, $a \in H$ and $b \in H$.

Since H is the subgroup of G then by the definition H itself a group so the every element of H has inverse. Hence,

 $b \in H \implies b^{-1} \in H$,

S0,

 $\forall a,b \in H \implies ab^{-1} \in H.$

Conversely suppose that,

 $\forall a,b \in H \implies ab^{-1} \in H.$

then we have to prove that G is group.

To prove G is group we satisfy the following axioms (properties).

1). Since $\forall a, b \in H \implies ab^{-1} \in H$ so G is closed.

2).
$$a,b,c \in H \implies a.(bc)^{-1} \in H$$

 $a.c^{-1}b^{-1} \in H$ (Since *H* is subgroup so every element have inverse)

Associative law holds.

3).
$$a \in H \implies a \cdot a^{-1} \in H$$

 $e \in H$

identity exist.

4). $e, a \in H \implies e.a^{-1} \in H$ $a^{-1} \in H$ Inverse exist.

Hence, all the properties of group satisfied so, (G,*)

is group.

Theorem 8:

The intersection of any collection of subgroups of a group G is subgroup of G.

Proof:

Let, $H = \bigcap \{H_i; i \in I\}$

where $\{H_i; i \in I\}$ is the family of subgroups of group G.

Let, $i \in I, a, b \in H_i \implies ab^{-1} \in H_i$ (By previuos theorem)

so, $ab^{-1} \in \bigcap \{H_i; i \in I\} = H$

Hence, H is subgroup of G.

Theorem 9:

Let G be a group H be the subgroup of G. Then the area $aHa^{-1} = \{aha^{-1}; h \in H\}$ is a subgroup of G.

Proof:

Suppose that, $x \in aHa^{-1}$ and $y \in aHa^{-1}$ then, $xy^{-1} = (ah_1a^{-1}).(ah_2a^{-1})^{-1}$

$$xy^{-1} = ah_1(e)h_2^{-1}a^{-1}$$
$$xy^{-1} = ah_1h_2^{-1}a^{-1}$$

$$xy^{-1} = (ah_1).(a.h_2)^{-1}$$

here $h_1, h_2 \in H \implies h_1 h_2^{-1} \in H$.

 $xy^{-1} = (ah_1).(a.h_2)^{-1} \in aHa^{-1}.$

Hence, aHa^{-1} is a subgroup of G.

Theorem 10:

The union $H \cup K$ of two subgroups H and K of a group G is the subgroup of G if and only if $H \subset K$ or $K \subset H$.

Proof:

Let H and K are two subgroups of group G. Then we have to prove that $H \cup K$ is subgroup of G.

Then,

 $H \cup K = H$ or $H \cup K = K$

Hence, H and K aare subgroups of G. So, $H \cup K$ also subgroup of G.

Conversely suppose that $H \cup K$ is subgroup of G then we have to show that $H \subset K$ or $K \subset H$.

Contrary, suppose that $H \not\subseteq K$ or $K \not\subseteq H$.

Let $a \in H / K$ or $b \in K / H$

Applied & Analytic Mathematics Research Center

but there, $a, b \in H$ or $a, b \in K$, then, $a, ab \in H \implies a^{-1}.(ab) \in H \implies b \in H$ $b, ab \in K \implies (ab).b^{-1} \in K \implies a \in K$ which is contradiction, because, $H/K = \Phi$ and $K/H = \Phi$ Hence, $H \subset K$ or $K \subset H$.

Note:

Let H and K be the two subgroups of group G. Then there is not need to be subgroup of G. e.g.

 $G = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\} \mod 8.$ $H = \{\overline{1}, \overline{3}\}; K = \{\overline{1}, \overline{5}\}$ $H \cup K = \{\bar{1}, \bar{3}, \bar{5}\}$ $\overline{3}.\overline{5} = \overline{7}$ or $\overline{5}.\overline{3} = \overline{7} \notin H \cup K$

So, $H \cup K$ is not closed. Hence, $H \cup K$ is not subgroup of G.

Example 18:

Find the subgroups of group $G = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$ with the following table.

+	ō	ī	$\overline{2}$	3	Far
ō	Ō	Ī	2	3.00	
ī	Ī	$\overline{2}$	3	ō	AT 151.2
2	2	3	Ō		vI. Pfil ed Matho
3	3	ō	ī	Ī	0333-
Solution	•				563946

Solution:

Given table shows that operation is addition with modulo 4. In which, subgroups are,

 $H_1 = \{\overline{0}\}, H_2 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\} = G$ $H_3 = \{\overline{0}, \overline{2}\}$

where, H_1 and H_2 are trivial subgroups and H_3 non-trivial subgroup of G.

Example 18:

Find the subgroups of group $G = \{e, a, b, c\}$ with the following table.

	е	а	b	с
е	е	а	b	С
a	а	е	с	b
b	b	С	е	а
с	С	b	а	е

Solution:

The given table show Klein's four group,

$$a^2 = b^2 = c^2 = e$$

$$ab = c; ac = b$$

The subgroups are,

 $\{e,a\},\{e,b\},\{e,c\}$ are non-trivial subgroups. **Example 20:** Let $C - \{0\}$ be the group of all non-zero complex numbers under multiplication, prove that

$H = \{a + ib \in C - \{0\}; a^2 + b^2 = 1\}$ is subgroup.

Proof:

Suppose that, $a_1 + ib_1, a_2 + ib_2 \in H$ $\Rightarrow (a_1 + ib_1)(a_2 + ib_2)^{-1} = \frac{a_1 + ib_1}{a_2 + ib_2} \times \frac{a_2 - ib_2}{a_2 - ib_2}$ (By theorem) $(a_1 + ib_1)(a_2 + ib_2)^{-1} = \frac{(a_1a_2 + b_1b_2) + i(a_2b_1 - a_1b_2)}{a_1^2 + b_2^2}$ $(a_1+ib_1)(a_2+ib_2)^{-1} = (a_1a_2+b_1b_2)+i(a_2b_1-a_1b_2) \in H$ where, $a_2^2 + b_2^2 = 1$ Now, $(a_1a_2 + b_1b_2)^2 + (a_2b_1 - a_1b_2)^2 = a_1^2a_2^2 + b_1^2b_2^2$ $+2a_1a_2b_1b_2+a_2^2b_1^2+a_1^2b_2^2-2a_1a_2b_1b_2$ $(a_1a_2 + b_1b_2)^2 + (a_2b_1 - a_1b_2)^2 = a_1^2a_2^2 + b_1^2b_2^2$ $v + a_2^2 b_1^2 + a_1^2 b_2^2$ $(a_1a_2 + b_1b_2)^2 + (a_2b_1 - a_1b_2)^2 = a_1^2(a_2^2 + b_2^2)$ $+b_1^2(b_2^2+a_2^2)$ $(a_1a_2 + b_1b_2)^2 + (a_2b_1 - a_1b_2)^2$ $=(a_1^2+b_1^2).(a_2^2+b_2^2)$ $(a_1a_2 + b_1b_2)^2 + (a_2b_1 - a_1b_2)^2 = 1.1$ $(a_1a_2 + b_1b_2)^2 + (a_2b_1 - a_1b_2)^2 = 1$ Hence, H is subgroup.

Cyclic group:

ZÞ

A group G is said to be cyclic if every element of G is power of one, and same element say $a \in G$. These elements are called generator of G.

If there at least positive integer n such that $a^n = e$ then G is said to be finite cyclic group and written as,

$$G = \langle a; a^n = e \rangle$$

(Read as G is cyclic of order n).

Theorem 11:

Every subgroup of cyclic group is cyclic.

Proof:

Suppose that G be a cyclic group and generated by *a*. Let H be the subgroup of G. Suppose that $k \in G$ such that, $a^k = e \in H$. We have to show that every element of H is power of k.

For these let $a^m \in H$. By division algorithm, $m = qk + r; \ 0 \le r < k$ $a^m = a^{qk+r}$

Group theory Applied & Analytic Mathematics Research Center

 $a^m = (a^k)^q . a^r$ $(a^{k})^{-q}.a^{m} = .a^{r} \in H; r > k$ Which is contradiction because r = 0. Then. m = qk $a^m = (a^k)^q$ Hence, H is cyclic.

Theorem 12:

Let G be a cyclic group of order n generated by a. Then for each positive divisor d of n, there is unique subgroup (of G) of order d.

Proof:

Let, $G = \langle a; a^n = e \rangle$

Let d is the positive divisor of n then there is integer q such that,

$$n = dq$$

consider,

 $b = a^q$ $b^d = a^{dq}$ $b^d = a^n$ $b^d = e$ So. $H = \langle b; b^d = e \rangle$

is required subgroup.

To show that H is unique suppose that K is another 0.3subgroup of G of order then \overline{K} is generated by single 63946

element $c = a^k$. Where k is least positive integer.

$$c = a^{k}$$

$$c^{d} = a^{dq}$$

$$c^{d} = a^{n}$$

$$a^{d} = a$$

```
c^a = e
where, dk = n \implies k = \frac{n}{d} = q,
```

Hence,

 $b = a^q = a^k = c$ b = c

So, H is unique.

Theorem 13:

Every cyclic group is abelion.

Proof:

Let G be a cyclic group generated by a single element а.

Let, $x, y \in G$, then there is positive integers m and k such that,

mannad $x = a^k$; $y = a^m$ $xy = a^k a^m$ $xy = a^{k+m} = a^{m+k}$ $xy = a^m . a^m$

Hence, G is abelion cyclic group.

Example 21:

If G is cyclic group of even order then prove that there is only one subgroup of order 2 in G.

Proof:

Let, G be a cyclic group of even order such that,

 $G = \langle a; a^{2n} = e \rangle$

2n show that the order of G is even.

(By using the theorem "If a positive integer d divides the order of G(|G|) then G has exactly one subgroup of order d.")

Now,

|G| = 2n

where 2 divides 2n. So, G has only one subgroup of order 2.

Example 22:

Find all subgroups of a cyclic subgroup of order 12. **Proof:**

The divisor of 12 are,

1,2,3,4,6,12.

subgroup of order $1 = \{e\}$

subgroup of order 12 = G itself.

subgroup of order $2 = (a^6)^2 = \{a^6, a^{12} = e\}$

subgroup of order $3 = (a^4)^3 = \{a^4, a^8, a^{12} = e\}$

subgroup of order $4 = (a^3)^4 = \{a^3, a^6, a^9, a^{12} = e\}$

order

$$6 = (a^2)^6 = \{a^2, a^4, a^6, a^8, a^{10}, a^{12} = e\}$$

Cosets:

 \searrow

subgroup

Let H be the subgroup of G and $a \in G$. Then the set, $aH = \{ah; h \in H\}$ Left coset

of

 $Ha = \{ha; h \in H\}$ Right coset

is said to coset of H in G.

Note: The left or right cosets of H in G with identity element is H itself.

$$eH = \{eh; h \in H\} = H$$

 $He = \{he; h \in H\} = H$

If the binary operation is "+" then the coset can be written as,

$$a + H = \{a + h; h \in H\}$$

Example 23:

 $G = \{0, 1, 2, 3, 4, \overline{5}\}$ be the group of residue classes modolu 6. Then, $H = \{\overline{0}, \overline{2}, \overline{4}\}$ is subgroup G. There are only two left cosets of H in Gand these are $\overline{0} + H = H$ and $\overline{1} + H = \{\overline{1}, \overline{3}, \overline{5}\}.$

Fayya M. Phill **Applied Mathematic** 0333-6639466

Example 24:

 $G = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ be the group of residue classes modulo 8. Find the cosets.

Solution:

•	ī	3	5	7
ī	ī	3	5	$\overline{7}$
3	3	ī	7	5
5	5	7	ī	3
7	7	5	3	Ī

Here proper subgroups are,

$$H_1 = \{\overline{1}, \overline{3}\}, \ H_2 = \{\overline{1}, \overline{5}\}, \ H_3 = \{\overline{1}, \overline{7}\}$$

The cosets are,

 $\overline{1}.H_1 = \{\overline{1},\overline{3}\} = H_1$

$$\overline{5}$$
. $H_1 = \{\overline{5}, \overline{7}\}$

 $\overline{7}.H_1 = \{\overline{7}, \overline{5}\}$

Partition:

The collection of subsets is known as the partition of sets.

The partition of set A is,

of the set $A = \bigcup \{A_i; i \in I\}$ $\{A_i; i \in I\}$ and $A_i \cap A_i = \Phi \ \forall i, j \in I \text{ and } i \neq j.$

Theorem 14:

Let H be the subgroup of group G. Then the set of all 0333left or right cosets of H in G define the partition of G.63946(H = m and |G| = n

Proof:

Suppose, $\Omega = \{ah; a \in G; h \in H\}$ be the collection of all the left cosets of H in G.

Now, $a \in G \Rightarrow ae \in H$ (Because H is subgroup of G so identity exist.)

So,

 $G \subset \cup \Omega$

is the collection of the subsets where $\cup \Omega$ contained in G.

Hence, $G = \bigcup \Omega$.

consider aH and bH are the cosets of H in G, then,

 $x \in aH \cap bH \implies x = ah_1 = bh_2$ for some $h, h_{2} \in H$

$$\Rightarrow a = bh_2h_1^{-1} = bh_3 (1)$$
where $h h^{-1} = h \in H$

where, $h_2 h_1^{-1} = h_3 \in H$ Since H si subgroup thus $a \in bH$

From (1).

 $ah = bh_3h$ also an element of bH.

Hence, $aH \subset bH$ or $bH \subset aH$ which she

aH = bH

contradiction because we have

$$aH \cap bH = \Phi$$

therefore Ω shows the partition of G.

Index H in G: [G:H]

The number of distinct left or right cosets of subgroup H in G is called the index H in G and denoted by, [G:H].

Example 25:

Find the distnict right (left) cosets of $E = \{0, \pm 2, \pm 4, \dots\} = \{2n; n \in Z\}$ in a group (Z, +).

Solution:

There are two right cosets of E in Z.

Which are 0 and 1,

 $0 + E = \{0 + 2n; n \in Z\} = E$

 $1 + E = \{2n + 1; n \in Z\} = O$ (odd numbers)

Now.

$$(0+E) \cup (1+E) = E \cup O = Z$$
 (set of integers)

 $(0+E) \cap (1+E) = \Phi$

Therefore index of E in Z is 2.

Theorem 15: (Lagrange's theorem)

The order of a subgroup of a finite group divides the order of group.

Proof:

M. PhiLet G be the group and H be the subgroup of G. Applied MatheSuppose that the order of G is n and the order of H is m. Then by the definition,

Since, the order of G is finite, So, the set of all distnict left cosets of H in G are also finite.

(By the previous theorem, "Let H be the subgroup of G then the all left (right) cosets of H in G define the partition in G.")

law)

So,
$$G = \bigcup_{i=1}^{k} a_i H$$
 (1)

where, $a_i H \cap a_i H = \Phi$ for $i \neq j$.

let we define a mapping,

$$\begin{split} \Psi &: H \to a_i H \\ \Psi(h) &= a_i h; \ h \in H \\ \Psi & \text{ is onto, also,} \\ \Psi(h_1) &= \Psi(h_2); \ h_1, h_2 \in H \\ a_i h_1 &= a_i h_2 \\ h_1 &= h_2 \quad \text{(By left cancellation law)} \\ \text{Hence, } \Psi & \text{ is one-to-one. So, the numbers of H and} \end{split}$$

 $a_i H$ are the same.

From (1),

$$G = \bigcup_{i=1}^{k} a_i H$$

$$n = m + m + m + \dots + m \quad (k \text{ times})$$

Applied & Analytic Mathematics Research Center

n = km|G| = k |H| $|H| \setminus |G|$

 $|H| \setminus |G|$

Hence, proved.

Corollary:

The index of an element of finite group divides the order of group.

Proof:

By the Lagrange's theorem,

 $|G| = k |H| \quad (1)$

k being the numbers of the distnict left(right) cosets of H in G,

From (1) k divodes the ordder of G. But k = [G : H],

 $k \backslash |G| \! \Rightarrow \! [G:H] \backslash |G|$

Hence, proved.

Corollary:

A group G whose order is prime number is necessarily cyclic.

Proof:

Let G be a group of prime order p.

$$|G| = p$$

Let $a \in G$ be the non-identity element of G. Let H be the cyclic gro\up of order k.

|H/=k

By the Lagrange's theorem

 $k \setminus p$ (Order of H divides the order of G)

since p is prime number and the divisor of p is 1 and p itself. But we choose already H is non-identity element so,

k = p

Hence, order of H and G are same.

By this equality, H is cyclic so G also cyclic.

Permutation:

Let X be a non-empty set. A bijective mapping $f: X \to X$ is called permutation on X. The set of all permutation on X is denoted by S_x .

Theorem 16:

The set S_n of all permutation on a set X with nelements is a group under operation of composition of permutation.

Proof:

to show group we have following axioms,

i). Let f and g be two mappings on X,

 $f : X \to X$ and $g : X \to X$

 $fog(x) = f(g(x)); x \in X$

Since the composition of bijective mapping also bijective mapping. So, the fog also the permutation

on X. Hence, S_n is closed under composition. ii). Let f, g and h be the mappings on X, then, $((fog)oh)(x) = fog(h(x)); x \in X$ $((fog)oh)(x) = f(g(h(x))); x \in X$ $((fog)oh)(x) = f(goh(x)); x \in X$ $((fog)oh)(x) = fo(goh)(x); x \in X$ (fog)oh) = fo(goh)Associative law holds. iii). Let *I* be the identity on X, $I : X \to X$ $I(x) = x; x \in X$ So, $foI(x) = f(I(x)); x \in X$ $foI(x) = f(x); x \in X$ foI = fSo, identity exist. iv): Let f^{-1} : $X \to X$ $f(x) = y \implies f^{-1}(y) = x$ $(f^{-1}of)(x) = f^{-1}(f(x)); x \in X$ $(f^{-1}of)(x) = f^{-1}(f(x)); x \in X$ ar $(f^{-1}of)(x) = f^{-1}(y); x \in X$ $(f^{-1}of)(x) = x; x \in X$ M. PhiNow, Applied Mather(fof $^{-1}$)(y) = $f(f^{-1}(y)); x \in X$ 0333- $(fof^{-1})(y) = f(x); x \in X$ $(f^{-1}of)(y) = y; x \in X$

Inverse exist.

Hence, all the properties of group satisfied. So, S_n is group under composition.

Note:

i). The group S_n is called the symmetric group of degree n.

ii). Every element of S_n is permutation of n objects takes n-time. There are n! permutations. Hence the order of S_n is n!.

Example 26:

Find the permutations, if, $X = \{1, 2, 3\}$

Solution:

n = 3 so the order of S_3 is 3! = 6. (means 6 permutations)

$$I = (1 2 3); f_1 = (2 3 1); f_2 = (3 1 2)$$

 $f_3 = (132); f_4 = (321); f_5 = (213)$

$$S_3 = \{I, f_1, f_2, f_3, f_4, f_5\}$$

To calculate the permutations we have,

$$I = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}; f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}; f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}; f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}; f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

To find the composition, $f_5 o f_1$.

$$(f_5 o f_1)(1) = f_5(f_1(1)) = f_5(2) = 1$$

$$(f_5 o f_1)(2) = f_5(f_1(2)) = f_5(3) = 3$$

$$(f_5 o f_1)(3) = f_5(f_1(3)) = f_5(1) = 2$$

So, $f_5 o f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = f_3$

Similarly,

$$f_1 o f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = f_4$$

Hence, $f_5 o f_1 \neq f_1 o f_5$

So, S_3 is non-abelion. Consider, $f_1 = a$; $f_5 = b$ then, $f_2 = a^2$, $f_4 = ab$ $a^3 = b^2 = (ab)^2 = I$ $ba = f_3 = a^2b$

using this relation we construct the Caley's table,

0	Ι	а	a^2	b	ab	a^2b
Ι	Ι	а	a^2	b	ab	a^2b
а	а	a^2	Ι	ab	a^2b	b
a^2	a^2	Ι	а	a^2b	b	ab
b	b	a^2b	ab	Ι	a^2	а
ab	ab	b	a^2b	a	Ι	a^2
a^2b	a^2b	ab	b	a^2	а	Ι

Example 27:

Find fog and gof, if,

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}; g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$fog = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$

$$fog = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$

$$gof = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

$$gof = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

$$gof = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$

Which show that, $fog \neq gof$

Example 28:

Find the composition of the permutation,

$\alpha = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$	2 3 3 2	5 4 2 6	+ 5 5 4	5 E	$\left(\begin{array}{c} \delta \\ 0 \end{array} \right); \beta =$	$\begin{pmatrix} 1 \\ 3 \end{pmatrix}$	2 4	3 1	4 2	5 6	6 5
$\alpha\beta = \begin{pmatrix} 1\\ 5 \end{pmatrix}$	2 3	3 2	4 6	5 4	$6 \\ 1 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	2 4	3 1	4 2	5 6	6 5	
$\alpha\beta = \begin{pmatrix} 1\\ \theta \end{pmatrix}$	1 2 5 1	3 4	4 5	5 2	$\begin{pmatrix} 6\\ 3 \end{pmatrix}$						
Similarly	у,										
$\beta \alpha = \left(\int_{-\infty}^{\infty} \right)^{1/2}$	1 2 3 4	3 1	4 2	5 6	$\binom{6}{5}\binom{1}{5}$	2 3	3 2	4 6	5 4	$\begin{pmatrix} 6 \\ 1 \end{pmatrix}$	
$\beta \alpha = \left(\int_{-\infty}^{\infty} dx \right)$	1 2 2 6	3 5	4 3	5 1	$\begin{pmatrix} 6\\ 4 \end{pmatrix}$						
Hence, $\alpha\beta = \beta\alpha$.											
Cycles:											
Let a_1 ,	a_2, a_3	, ,	a_k	wh	here a_k	k ∈	{1,	2,3	,,	$k\}.$	
		_	. ~	C							

A permutation $\sigma \in S_n$ is called a cycle of length k **M. Phill** and $\sigma(x) = x, \forall x = \{1, 2, 3, ..., k\}$. We can write a **0333** cycle as $\{a_1, a_2, a_3, ..., a_k\}$ and say that σ acts on $\{a_1, a_2, a_3, ..., a_k\}$ e.g.

we can write these cycles as,

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$$

one cycle of length 6. so,

$$\alpha = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 & 5 & 6 \end{array}\right)$$

Note:

α

Nad Fa

The composition of two cyclic permutations need not be cyclic permutaions.

e.g.

$$\begin{pmatrix} 1 & 2 & 5 \end{pmatrix} \begin{pmatrix} 2 & 1 & 4 & 5 & 6 \end{pmatrix}$$

$$\alpha = \begin{pmatrix} 1 & 2 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 3 & 4 & 1 & 6 \end{pmatrix}$$
Let,

$$\beta = \begin{pmatrix} 2 & 1 & 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 3 & 5 & 6 & 2 \end{pmatrix}$$

Hence, $(1 \ 2 \ 5)(2 \ 1 \ 4 \ 5 \ 6)$ $= \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \\ 2 \ 5 \ 3 \ 4 \ 1 \ 6 \end{pmatrix} \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \\ 4 \ 1 \ 3 \ 5 \ 6 \ 2 \end{pmatrix}$ $(1 \ 2 \ 5)(2 \ 1 \ 4 \ 5 \ 6)$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 2 & 5 & 4 & 2 \end{pmatrix}$$

Disjoint cycles:

Two or more than two cycles which have no common elements are called mutually disjoint cycles. e.g.

 $(2 \ 6)$ and $(4 \ 5)$ are disjoint cycles.

 $\begin{pmatrix} 1 & 5 & 2 \end{pmatrix}$ and $\begin{pmatrix} 5 & 2 \end{pmatrix}$ are not disjoint cycles.

Example 29:

$$\alpha = (1 \ 2 \ 3); \ \beta = (4 \ 5 \ 6)$$

$$\alpha\beta = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \\ 2 \ 3 \ 1 \ 4 \ 5 \ 6 \end{pmatrix} \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \\ 1 \ 2 \ 3 \ 5 \ 6 \ 4 \end{pmatrix}$$

$$\alpha\beta = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \\ 2 \ 3 \ 1 \ 5 \ 6 \ 4 \end{pmatrix} (1)$$

$$\beta\alpha = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \\ 1 \ 2 \ 3 \ 5 \ 6 \ 4 \end{pmatrix} (1)$$

$$\beta\alpha = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \\ 1 \ 2 \ 3 \ 5 \ 6 \ 4 \end{pmatrix} (1)$$

$$\beta\alpha = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \\ 1 \ 2 \ 3 \ 5 \ 6 \ 4 \end{pmatrix} (2)$$

From (1) and (2),

 $\beta \alpha = \alpha \beta$

So, α and β are mutually disjoint cycles.

Theorem 17:

Every permutation of degree n can be written as a product of cycles acting on mutually disjoint cycles. **Proof:**

Let S^n be the set of all cycles of *n*-elements, and α be the permutation of *n*-degree. Let α has only one element in which α acts. Suppose,

 $a_1 \xrightarrow{\alpha} a_2, a_2 \xrightarrow{\alpha} a_3 \xrightarrow{\alpha} \dots a_{k-1} \xrightarrow{\alpha} a_k, a_k \xrightarrow{\alpha} a_1$

since k is the finite then there is a number *n* such that, α

 $a_n \rightarrow a_1$

 α is the cyclic permutation so, the α is the part of cyclic permutation.

$$\alpha_1 = (a_1, a_2, ..., a_n)$$

Now put n=k then $\alpha = \alpha_1$ is the required cyclic decomposition of α as cyclic permutation.

Now, if n < k then b, is different from $(a_1, a_2, ..., a_n)$.

 $b_1 \xrightarrow{\alpha} b_2, b_2 \xrightarrow{\alpha} b_3 \xrightarrow{\alpha} \dots b_{p-1} \xrightarrow{\alpha} b_p, b_p \xrightarrow{\alpha} b_1; 1 \le i \le p$

Hence, the given permutation is injective mappings. So, effect of part α on cyclic permutation is,

$$\alpha_2 = (b_1, b_2, ..., b_p)$$

So, we have two α cyclic permutations, if n+p=k, then α is the composition of two cycles α_1 and α_2 . If n+p < k then the process repeated again.

Every time process extracting the cycles. After the finite number of each because k is finite. Thus there is a natural number q, such that,

$$\alpha_q = (c_1, c_2, ..., c_q) (1)$$

Where, c_i 's occurs between a_i 's and b_i 's.

Where each α acts as mutually disjoint subset of X and are uniquely determined. Since, any two permutations acting on mutually disjoint sets commute. So, the part from the order in which α_i 's are taken. The expression (1) for α is unique.

Transposition:

A cycled of length 2 is called a transposition e.g.

$$\tau = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$$

M. Ph a and b are interchanging in this permutation and plied Math other element remain fixed is a transposition.

0333-Theorem 18:

663946Every cyclic permutation can be expression as a product of transposition.

Proof:

Suppose, $\alpha_1 = (a_1, a_2, ..., a_n)$ be the cyclic permutation. Consider.

$$\alpha' = \begin{pmatrix} a_1 & a_2 \end{pmatrix} \begin{pmatrix} a_1 & a_3 \end{pmatrix} \dots \begin{pmatrix} a_1 & a_k \end{pmatrix} (1)$$

which shows that,

$$a_1 \xrightarrow{\alpha} a_2, a_2 \xrightarrow{\alpha} a_3 \xrightarrow{\alpha} \dots a_{k-1} \xrightarrow{\alpha} a_k, a_k \xrightarrow{\alpha} a_1$$

Hence, the effect of α and α' are same. So, $\alpha = \alpha'$ is the product of transposition.

Now, $(a \ b)(b \ a) = I$ be the number such pair of transposition can be inserted between the pairs $(a_1 \ a_i), (a_i \ a_{i+1})$ involved in α . Hence, α be the expressed as the product of transpositions. Possibly in infinitely many ways.

Theorem 19:

Every permutation of degree n can be expressed as a product of transposition.

Proof:

As we know that the every permutation can be as a product of dis joint cycles. Conversely, every cycle can be expressed as a product of transposition in infinitely many ways. (By the above theorem). So, any element of S_n can be expressed as a product of transposition in infinitely many ways.

Theorem 20:

Let a permutation α in S_n be written as a product of *m* transpositions and as a product of *p* transpositions. Then *m*-*p* is a multiple of 2. This implies that both m and p are even or both of them are odd.

OR

Let α be the permutation as a product of transposition, $\Rightarrow m \equiv p \pmod{2}$.

Proof:

Suppose the product of transpositions,

$$p = \prod_{i < j}^{n} (x_i - x_j)$$

$$p = (x_1 - x_2)(x_1 - x_3)...(x_1 - x_n)$$

$$(x_2 - x_3)(x_2 - x_4)...(x_2 - x_n)$$

$$....(x_{n-1} - x_n)$$

$$p\alpha = \prod_{i< j}^{n} (x_{(i)a} - x_{(j)q})$$

Now for any transpositions,

$$\tau = (k,l)$$
 in S_n . Where $k \neq l$.

 $(p)t = \prod_{i < j} (x_{(i)t} - x_{(j)t})$ every factors of p that contains neither x_k nor x_l remain unchanged in $\tau(p)$. The factor $(x_k - x_l)$ of p becomes $-(x_l - x_k)$ in $\tau(p)$ those factors of p which contain either x_k of x_l But not both x_k and

 x_l .

 $\pm (x_m - x_k) (x_m - x_l)$ where $m \neq k, l$.

Such the product remain unchanged in $\tau(p)$. Thus it follows that, $\tau(p) = -p$,

By successive applications of transpositions in α , in both cases,

$$(p)\alpha = (p)\lambda_1\lambda_2...\lambda_m = (-1)^m p \quad (1)$$

$$(p)\alpha = (p)\mu_1\mu_2..\mu_m = (-1)^p p \quad (2)$$

From (1) and (2),

$$(-1)^m p = (-1)^p p$$

 $(-1)^{m} p = (-1)^{p} p$ $p = (-1)^{p-m} p$ p - m is multiple of 2. $\Rightarrow 2 \setminus p - m \Rightarrow m \equiv p \pmod{2}.$

Even and odd permutation:

A permutation α is called even if it can be expressed as a product of even number of transpositions. A permutation α is called odd if it can be expressed as a product of odd number of transpositions. e.g.

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$
$$\alpha = \begin{pmatrix} 1 & 2 \end{pmatrix} (3 & 4)$$

 α Shows that even permutations. Similarly,

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$$

 $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$

 β shows odd permutation.

Theorem 21:

i). The product of even or odd permutations is an even permutations.

ii). The product of an even permutation and odd permutation is an odd permutation.

Proof:

Let α_1 and α_2 be the permutations of *n* degree. Let α_1 and α_2 can be expressed as a product of m_1 and m_2 transposition respectively.

So, the product of $\alpha_1 \alpha_2$ contained $m_1 + m_2 + 2k$ where k is 0 or $k \in N$ transpositions, possible if 2kis cancelled of simplify.

i). if α_1 and α_2 are the even permutations in which case both m1 and m2 are even, or both α_1 and α_2 are the odd permutations in which case both m_1 and m_2 are odd, hence, $m_1 + m_2 + 2k$ is also an even integer. So, $\alpha_1 \alpha_2$ are even permutations.

ii). Consider one of the permutation α_1 is even and other α_2 is odd then $m_1 + m_2 + 2k$ is also an odd integer. So, $\alpha_1 \alpha_2$ are odd permutations.

Corollary:

Let α be any permutation of degree n and τ a transposition then $\tau \alpha$ or $\alpha \tau$ is an even or odd according as α is even or odd.

Proof:

If α is an even permutation then $\alpha \tau$ or $\tau \alpha$ is an odd permutation.

Theorem 22:

Let $n \ge 2$, the number of even permutation in S_n is equal to the number of odd permutation is S_n .

Proof:

Let,

 $\alpha_1, \alpha_2, ..., \alpha_k$ (1) be all even permutations and

Group theory

Applied & Analytic Mathematics Research Center

 $\beta_1, \beta_2, ..., \beta_m \quad (2)$ are odd permutations in S_n , So, k + m = n!. Let τ be the transposition. then, $\alpha_1 \tau, \alpha_2 \tau, ..., \alpha_k \tau \quad (3)$ are all odd. (By corollary) $\beta_1 \tau, \beta_2 \tau, ..., \beta_k \tau \quad (4)$ are all even. From (1) and (4), $m \le k$ From (2) and (3), $k \le m$ So, $m = k = \frac{n!}{2}$ is required proof.

Note:

All even permutation in S_n are denoted by A_n . From the above theorem the number of element in A_n are $\frac{n!}{2}$.

Theorem 23:

The set A_n of all even permutation in S_n forms a subgroup of S_n .

Proof:

Suppose, $\alpha_1, \alpha_2 \in A_n$ then we have to prove that,

M. Ph

 $\alpha_1 \alpha_2^{-1} \in A_n (1)$

By the theorem (if $\alpha_1 \alpha_2$ is in even permutations) Since, the inverse of transposition also transposition. (394) Then the inverse of even transposition is even transposition. So, (1) satisfied and A_n is subgroup in

S_n .

Example 30:

Find all the subgroups of S_3 .

Solution:

As we know that,

 $S_3 = \{I, a, a^2, b, ab, a^2b\}$

where,

$$I = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}; a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}; a^2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
$$b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}; ab = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}; a^2b = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

Here, $a^3 = b^2 = (ab)^2 = I$

So, the subgroups of S_3 are,

$$\{I\}, \{I, a, a^2\}, \{I, b\}, \{I, ab\}, \{I, a^2b\}$$
 and S_3 .

Order of permutation:

Let α be the permutation in S_n then the order of α is at least positive integer n such that,

Hence, order of α is 20.

¹ M.sc, M.Phil. in Applied & Analytic Mathematics Comsats Institute of Information Technology Islamabad.