University of Sargodha

M.A/M.Sc Part-1 / Composite, 2nd-A/2013

Mathematics: III

Complex Analysis

Maximum Marks: 100

Time Allowed: 3 Hours

Note:

Objective part is compulsory. Attempt any four questions from subjective part.

Objective Part

Q.No.1. Write short answer of the following each in 2-3 lines only on your answer book.

Prove that $|Z_1 + Z_2| = |Z_1| + |Z_2|$.

Define orthogonal systems.

11. Write power series of e^{Z} . Ш.

State Cauchy's fundamental Theorem. IV.

Define locus of point.

Find the singularities of $f(z) = \frac{z^2}{Z(Z^2+1)(Z^2+4)}$. VI.

Find the period of e^{Z} . VII.

Define Rectifying Plane. VIII.

Write down Serret-Fernet formulae. IX.

Define Helix. Χ.

Subjective Part

	f(z) = f(z) + f(z)	10
Q. No. 2	a. Prove the necessary condition for a function $f(z) = U(x,y) +$	40
1	iV(x,y) to be analytic function.	10
	b. Derive Cauchy Riemann equations in polar form From Cartesian form.	
Q .No. 3	a. Prove that $U(r,\theta)=r^3\cos 3\theta$ is harmonic. Obtain its corresponding	10
	conjugate and the original function $f(z) = U(r, \theta) + iV(r, \theta)$.	
	b. State and prove Taylors Theorem.	10
Q.Np. 4	a. State and prove Cauchy's integral formula.	10
	b. Find the residue of $f(z) = \tanh z$.	10
Q .No. 5	a. State and prove the argument Principle theorem.	10
	b. Let $f(z)$ be analytic on and within the boundary of region C of a	10
	simply connected region D and let α be any point within	
į.	l	
	C then $f'(a) = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-a)^2} dz$.	<u> </u>
Q .No. 6	a. Find k and $ au$ if	10
	$X = a(u - \sin(u)) , Y = a(1 - \cos(u)) , z = bu$	1
	b. Prove that the necessary and sufficient condition for a curve to be	!
	Helix is that the ratio of its curvature and torsion is constant i.e. $\frac{k}{r} = \frac{k}{r}$!
	τ	<u> </u>
	contant.	10
Q .No. 7	a. Prove that $b'' = \tau(kt - \tau b) - \tau n$ $n'' = \tau b - (k^2 + \tau^2)n - k't$.	10
	b. For a curve $x = 4a \cos^3 u$, $y = 4a \sin^3 u$, $z = 3c \cos(2u)$	1.0
	Prove that	10
	$n = (\sin(u), \cos(u), 0)$, $k = \frac{a}{6(a^2 + c^2)\sin 2u}$	1
	$6(a^2+c^2)sin2u$	
L	<u> </u>	