University of Sargodha

M.A/M.Sc Part-1 / Composite, 1st-A/2014

Mathematics: III Complex Analysis & Differential Geometry

Maximum Marks: 100 Time Allowed: 3 Hours

	Objective Part Compulsory		
Q. 1	Give short answers.	20	
(i)	Define analytic function.		
(ii)	Differentiate between meromorphic function and integral function.	ļ	٠
(iii)	Differentiate between essential sigularity and pole.		
1	Define Jardon curve.		
(iv)	State Green's theorem.	1	
(v)	Define simply and multiply connected domains.		
(vi)	Define helix and write the necessary condition for a curve to be	1	
(vii)	. 1	Į	
. ,	helix.		
(viii)	Define tangent plane to a surface. Evaluat $(\vec{a} \times \vec{b}) (\vec{c} \times \vec{d})$.	ļ	
(ix)			
(x)	Prove the sufficient condition for curves to be orthogonal		
	(Subjective Part)		
	Note: Attempt any four questions.		
Q. 2	(a) Find the locus of z where $z = at + \frac{b}{t}$, where t is a real parameter	10	
	and a and b are complex constants.		
1	(b) Find the analytic function of which the real part is	10	١.
II			
1	$e^{-x}[(x^2-y^2)\cos y + 2xy\sin y].$		
Q.3.	(a) State and prove Cauchy integral formula.	10	
	(b) Find the Laurents expansion of	10	
11	$f(z) = \frac{1}{z^2 - z - 2}$		
	$f(z) = \frac{1}{z^2 - z - 2}$		١
	in the domain $1 < z < 2$.		
Q.4	(a) Find the residue at $z = 0$ for the function $\frac{\cot z}{z^4}$.	10	
Q.4	(b) Prove taht an analytic function with constant modulus is con-	10	
1	stant.		
0.5		10	ļ
Q. 5	(a) Prove that		
	$\cot z = \frac{1}{2} + 2z \sum_{n=1}^{\infty} \frac{1}{z^2 - n^2 \pi^2}.$		
	(b) Find the curvature and torsion of locus of centre of curvature	10.	
	if the curve has a constant curvature.		
Q. 6	(a) Under the transformation $(W+1)^2Z=4$, prove that if W	10	
1	describes a unit circle then Z describes a parabola.		١
	(b) Show that for any curve	10	
	$[\overrightarrow{r}', \overrightarrow{r}'', \overrightarrow{r}'''] = \kappa^5 \frac{d}{ds} (\frac{\tau}{\kappa}).$		
Į.	$[\tau, \tau, \tau] = \kappa \frac{1}{ds} (\kappa)$		
Q. 7	(a) Prove that the sum of squares of intercepts made by tangent	10	
	plane to the surface		
1	$x^{\frac{2}{3}} + y^{\frac{2}{3}} + z^{\frac{2}{3}} = a^{\frac{2}{3}}$		
1			
	is constant.	1	
	(b) For the surface of revolution	10	
	$x = u \cos \phi$, $y = u \sin \phi$, $z = f(u)$,		
\	Find first order and second order magnitudes.		_
·			_