University of Sargodha

M.A/M.Sc Part-1 / Composite, 2nd-A/2013

Mathematics: II

Algebra

Maximum Marks: 100

Time Allowed: 3 Hours

Note:	Objective part is compulsory. Attempt any four questions from subjective part.

1.0101		
	(Objective Part)	4
Q. 1	Answer the following Short Questions.	20
(i)	Define locally infinite group.	ļ
(ii)	Show that the normalizer of any subset in a group is subgroup of	!
(/	that group.	.
(iii)	Show that the number of elements in a conjugacy class of any	
	element divides the order of that group.	}
(iv)	Prove that a finite group G has a unique sylow p-subgroup H if	Ì
(,	and one if H is normal in G .	İ
(₹)	Prove that Boolean's ring must be commutative.	1
(vi)	Define zero homomorphisim	1
(vii)	If the vectors u, v, w are linearly independent, then show that	
1	u+v, u-v, u-2v+w are also linearly independent.	
(viii)	Prove that a linear mapping T is singular if and only if $-T$ is	
[(****)	singular.	ķ
(ix)	Using usual inner product on \Re^3 find the angle between vectors	ļ
	u = (2, 3, 5) and $v = (1, -4, 3)$	
(x)	Find the minimal polynomial $m(t)$ of the matrix A	Ì
	$\left(\begin{array}{ccc} 4 & -2 & 2 \\ 6 & -3 & 4 \\ 3 & -2 & 3 \end{array}\right).$	i
ì	(3 -2 3)	į
1	(Subjective Part)]
100	(a) Show that any two cyclic groups of same order are isomorphic.	10 j
Q. 2	(b) Show that any two sylow p-subgroup of a group are conjugate.	10
Q.3	(a) Let G be a group of finite order n then show that its subgroup	10
. Q.J	H is isomorphic to its conjugate K .	
1	(b) State and prove third isomorphic theorem.	10
04	(a) Show that the characteristic of an integral domain is either	JO.
Q.4	zero or a prime.	
1	(b) If R is a ring in which $a^2 = a \ \forall a \in R$. Then show that R is a	1.0
İ	commutative Ring.	
Q. 5	1 1	10
	of degree ≤ 1 and ϕ_1, ϕ_2 be the dual basis defined by $\phi_1(f(t))$	
	$\int_0^1 f(t)dt$ and $\phi_2(f(t)) = \int_0^2 f(t)dt$, then find the corresponding	
	simple basis v_1 and v_2 .	Ì
	(b) If V is finite dimensional vector space over a field F , then	10
į	show that $V \cong V^*$.	
Q. 6	(a) State and prove Cauchy Schwarz inequality	30
**6* **	(b) If U and W are subspaces of a vector space V , then prove that	10
	$(U+W)^*-U^*\cap W^*.$	ļ.
Q. 7	(a) Show that the characteristic polynomial $\triangle(t)$ and the minimal	10
30,	polynomial $m(t)$ of square matrix A have the same irreducible	
	factors.	
,		