University of Sargodha

M.A/M.Sc Part-1 / Composite, 1st-A/2014

Mathematics: I

Write short answers of the following.

Real Analysis

Maximum Marks: 100

Prove that:

Time Allowed: 3 Hours

(2*10)

Note:

Q.1.

Objective part is compulsory. Attempt any four questions from subjective part.

Objective Part

γ .		i. B , b are the bounds of a set S and B_1 , b_1 are bounds of a subset S_1 of S ; show that $b \le b_1 \le B_1 \le B$. ii. Show that a polynomial is continuous for every value of x . iii. Find $\lim_{x\to 0^+} \frac{ x }{x}$ and $\lim_{x\to 0^-} \frac{ x }{x}$. Illustrate graphically. iv. Give the definition of a Cauchy sequence. v. Discuss the behavior of the series $\sum a_n$ where $a_n = (-1)^n$. vi. Give the geometrical interpretation of the partial derivatives $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ when $Z = f(x,y)$. vii. Prove that a necessary condition for $f(x,y)$ to have a relative extremum (Maximum or Minimum) at (x_0, y_0) is that $f_X(x_0, y_0) = 0$, $f_Y(x_0, y_0) = 0$. viii. Define the Riemann-Stieltjes integral and show that Riemann integral is a special case of the Riemann-Stieltjes integral. ix. Define the total variation of a function $f(x)$ over $[a, b]$. x. What is meant by the Limit of a convergent sequence of functions.	(2*10) (C
		Subjective Part	
Q.2.	a.	If x and y are real numbers with $x < y$, then prove that there exists an irrational number z such that $x < z < y$.	(10)
0.4		Prove that any convergent sequence is bounded.	(10)
Q.3.		Define the Signum function and prove that $\lim_{x\to 0} Sgn x$ does not exist.	(10)
		Prove that the function $f(x,y) = x^2 - 2xy + y^2 + x^3 - y^3 + x^5$ has neither a maximum nor a minimum at the origin.	(10)
Q.4.	a.	If f is continuous on $[a, b]$, then prove that $f \in R(\alpha)$ on $[a, b]$ where α is monotonically increasing on $[a, b]$.	(10)
	b.	Prove that $\int_{1}^{\infty} \frac{\cos x}{x^2} dx$ converges.	(10)
Q.5.	a.	Show that a function of bounded variation is expressible as the difference of two monotonically increasing functions.	(10)
	b.	Show that the two series $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$ and $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2n}$ are uniformly convergent in every interval $[a, b]$.	(10)
Q.6.	a.	Prove that $f \in R(\alpha)$ on $[a, b]$ if and only if for every $\epsilon > 0$ there exists a partition P such that $u(P, f, \alpha) - L(P, f, \alpha) < \epsilon$.	(10)
	ъ.	Suppose that the functions $w = f(x, y), z = g(x, y)$ are implicitly defined by $2x^2 + y^2 + z^2 - zw = 0$ $x^2 + y^2 + 2z^2 + zw = 8$ Find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial w}{\partial x} \text{ and } \frac{\partial w}{\partial y}$	(10)
Q.7.	a.	Show that $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ exist if and only if, m, n are both positive.	(10)
	b.	Suppose a and c are real numbers, $c > 0$ and f is defined on [-1, 1] by $f(x) = \begin{bmatrix} x^a \sin(x^{-c}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{bmatrix}$	(10)

(i) f is continuous if and only if a > 0 (ii) f(0) exists if and only if a > 1.