University of Sargodha

M.A/M.Sc Part-I, 1st Annual Exam 2008

Mathematics- I

Maximum Marks: 40

Real Analysis

Fictitious #:

Time Allowed: 45 Min.			Signature of CSO:		
		New Pattern	Objective Part		
Note:		overwriting and use orrect option in the fo	of Lead Pencil are not allowed	d.	(5)
i.	The sequence $\left\{ tar \right\}$	$\left(\frac{n\pi}{2}\right)$ is:			
ii.	a. Bounded If f is continuous of	b. Unbounded on $[a, b]$ and $f \in R(\alpha)$	c. Convergent on [a, b] then	d. D	ivergent
iii.	a. α is monotonical c. α is continuous In a field F if $0 < x$	on [a, b]		α is monotonically decreasing α is discontinuous on $[a, b]$	
	$a. \ 0 > \frac{1}{y} > \frac{1}{x}$	b. $0 < \frac{1}{x} < \frac{1}{y}$	c. $0 > \frac{1}{x} > \frac{1}{y}$	d. 0	$<\frac{1}{y}<\frac{1}{x}$
iv.		at $0 \le a < \varepsilon$ for every ε			
v.	a. a = 1 If f is real valued for		c. $a > 1$ b) then $f \in R(\alpha)$ on $[a, b]$ if α		$=\varepsilon$
	a. continuous on [a c. Monotonically d	, b]	b. Monotonically increasing on [a, b] d. Unbounded		
B:	Mark True or Fal		a. Onooundou		(10)
i.	$\sum \frac{1}{n}$ is a convergen	t series.		Т	F
ii. iii.		rmly continuous on $]0$, ber x and every integer	1]. $n > 0$ there is only one and	T	F
	one y such that y^n	= x		T	F
iv.	$f(x) = \begin{cases} x \sin \frac{1}{x} & , \\ 0 & , \end{cases}$	$x \neq 0$ $x = 0$ is differential	ble at $x = 0$.	Т	F
٧.	A function of bound	ded variation is not exp	pressible as a sum of two		
vi.	monotonically increasing function. If f and α are continuous on $[a, b]$, then $f \in R(\alpha)$ on $[a, b]$			T T	F F
vii.	$\int_{1}^{\infty} x^{p} dx \text{converges}$	if <i>p</i> < 1.		Т	F
/iii.	The infinite series	$\sum_{k=0}^{\infty} \sin 2\pi k$ and the integral	gral $\int_{0}^{\infty} \sin 2\pi x. dx$ behave alike.	T	F
x.	$\int_{a}^{b} \frac{dx}{(x-a)^{n}} $ converge	s if and only if, $n \ge 1$.		T	F
					PTO

	a+	where $I(x) = \int_{x} f dx$, if $x \in]a,b]$. T			
C:	Fill in the blanks.	(5)			
i. ii.	If $\{S_n\}$ converges to s then all ohits	converges to s everywhere.			
11.	Every polynomial is				
iii.	If $\int f d\alpha$ and $\int f d\alpha$ both converges for som	e value of a then $\int_a^{\infty} fd\alpha$ is			
iv.	The extended real numbers system doesn't f	orm a			
v.	A point of continuity of a function $f(x)$ is also a point of continuity of $V(x)$ and				
Q.2.	Write the short answers to the following:	(20)			
i.	Let $p \in R$, $p \ge -1$ and $p \ne 0$, then for $n \ge 2$				
ii.	Prove that a function f defined as $f(x) =$	$\begin{cases} x \cos x & , & x \neq 0 \\ 0 & , & x = 0 \end{cases}$ is continuous at $x = 0$.			
iii.	Consider $f: R^2 \to R$ given by $f(x) = \begin{cases} \frac{x^2 y^2}{x^4 + y^4}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$ Show that	t $\lim_{(x,y)\to(0,0)} f(x,y)$ doesn't exist.			
iv.	Let f be a real valued function defined on	[a, b] and α be a monotonically increasing			
	function on [a, b]. Show that $\int_{-a}^{a} fd\alpha \le \int_{a}^{a} fd\alpha$	*			
v.	Show that the improper integral $\int_{a}^{b} \frac{dx}{(x-a)^{n}} c$	onverges if and only if, $n < 1$.			

P.T.O

vi.

If $x \in R$, $y \in R$ and x > 0 then there exists a positive integer n such that nx > y. Prove

- vii. Test the convergence of $\sum \frac{1}{n} \sin^2 \frac{x}{n}$.
- viii. Show that the function f defined by $f(x) = \begin{cases} x \cos x & x \neq 0 \\ 0 & x = 0 \end{cases}$ is continuous at x = 0.
- ix. Prove that if f is continuous on [a, b] and α is monotonically increasing on [a, b], then $f \in R(\alpha)$ on [a, b].
- x. Prove that for every real p, the integral $\int_{-\infty}^{\infty} e^{-x} x^{p} dx$ converges.

ដង់ជង់ជង់ជង់ជង់ជង់ជង់ជ Notes, e-books and papers for MSc Mathematics

http://www.MathCity.org/MSc

University of Sargodha

M.A/M.Sc Part-I, 1st Annual Exam 2008

Mathematics- I

Real Analysis

Maximum Marks: 60

Time Allowed: 2:15 Hours

New Pattern

Subjective Part

Note: Attempt any four questions.

- Q.3. (a) If n is a positive integer which is not a perfect square, then prove that \sqrt{n} is an irrational number.
 - (b) The field axioms imply the following (7)

i. $0 \cdot x = 0$,

ii. If $x \neq 0$, $y \neq 0$ then $xy \neq 0$

iii. (-x)y = -(xy) = x(-y) iv. (-x)(-y) = xy. Prove.

Q.4. (a) For each irrational number x, there exists a sequence $\{r_n\}$ of distinct rational numbers such that $\lim r_n = x$ prove.

(b) Let
$$a_n > 0, b_n > 0$$
 and $\lim_{x \to \infty} \frac{a_n}{b_n} = \lambda \neq 0$ (7)

Then prove that series $\sum a_n$ and $\sum b_n$ behave alike.

- Q.5. (a) Suppose f is continuous on [a, b] Prove that if f(a) < 0 and f(b) > 0 then (8) there exists a point c, a < c < b such that f(c) = 0
 - (b) Given the transformation $x = u^2 v^2$, y = 2uv evaluate $\left(\frac{\partial u}{\partial x}\right)_y$ and $\left(\frac{\partial v}{\partial x}\right)_y$ (7)
- Q.6. (a) Let z = f(x, y), $x = u^2 v^2$, y = 2uv show that (8) $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \frac{1}{4(u^2 + v^2)} \left\{ \left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2 \right\}$
 - (b) Assume that f is continuous on [a, b] and α is monotonically increasing on (7) [a, b]. Prove that $f \in R(\alpha)$ on [a, b].
- Q.7. (a) Prove that if f is continuous on [a, b] and if α is continuous and (8) monotonically increasing on [a, b] then $f \in R(\alpha)$ on [a, b]
 - (b) Prove that if $f \in R(\alpha)$ on [a, b] then $f^2 \in R(\alpha)$ on [a, b]. (7)
- Q.8. (a) Prove that a function of bounded variation on [a, b] is expressible as a sum (8) of two monotonically increasing functions.

(b) Show that $\int_{0}^{\infty} \sin x^{2} dx$ is convergent. (7)

Notes, e-books and papers for MSc Mathematics

http://www.MathCity.org/MSc