University of Sargodha

IB．A／B．Se 1^{5} Annual Examination 2007 Applied Mathematics
paper－A
Time Allowed： 3 Hours
Q．1．（a）Solve the differential equation n．

（b）Solve the differential equation m．
$x p^{2}+\left(y-1-x^{2}\right) p-x(y-1)=00 \cdot 7 \quad 9 \cdot 8 \quad \mathrm{~m}$（8）展轻
Q．2．（a）Solve the initial value problem．$\left(x^{2}+1\right) \frac{d y}{d x}+4 x y=x, y(2)=1$ Q 16 Ex：9．6（9）me thad
（b）A newly built fish farm s stocked with 400 fish at time $1=0$（month）， $10^{(8)} Q \in$ thereafter the population in leases at the rate of \sqrt{p} per month，when these are $100 /$ medea p fish in the farm，what is 10 fish population at time＇ 1 ＇？
Q．3．（a）Solve the differential equal on．

$$
\begin{array}{r}
\left(3 y+4 x y^{2}\right) d x+\left(2 x+3 x^{2} y\right) d y=0 \\
y^{\prime \prime}-3 y^{\prime}+2 y=2 x^{2}+2 x e^{x} \quad \text { ex } 6 \quad-x!(0 \cdot 3
\end{array}
$$

（b）Solve by method of II．C．

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=\frac{e^{2 x}}{1+x} \tag{9}
\end{equation*}
$$

Q．4．（a）Find a particular solution if following．
Q：5 Ex：10
（b）Apply the Power series Method to solve the di fl $10: 9$（ $0:$

Section－ 11

Q．5．（a）Compute the inverse Lathe Transformation of the following．$\frac{s^{3}+3 s^{2}-s-3}{\left(s^{2}+2 s+5\right)^{2}} 013$（8）Ex
（b）Find a positive root of a non linear equation，using Bisection Method．（8） $f(x)=x^{3}-x^{2}-2 x+1$.
（Numeral Any．

$$
2 x+10+1
$$

－
ration Hollowing initial value
Q．6．（a）Use the Laplace Transtimation Method to solve the following 0． 9 Ex． $1 / 3$ Problem．

$$
\frac{a^{2} y}{d t^{2}}-2 \frac{d y}{d t}=20 e^{-t} \cot t, y(0)=0=y^{\prime}(0)
$$

$$
x^{3}+x^{2}-x-3=0
$$

Using（8）
（b）Find the positive root of the equation．Numen ${ }^{\prime}$（l Any ： the Regula－Falsi Method
Q．7．（a）Find the positive root；he equation．$e^{x}=2 x+21$ by using Newton＇s Kaphson Method with $八_{1}=3$

$$
\begin{aligned}
& \text { Sect. } 00-1-1,2
\end{aligned}
$$

(b)

Prove that

$$
\Delta\left(\frac{f_{n}}{g_{n}}\right)=\frac{g_{n} \Delta f_{n}-f_{n} \Delta g_{n}}{g_{n} g_{n+1}}
$$

(8)
Q.8. (a) Find the first three derivations of $f(x)$ from the following table at $x=19$ fyn
(b) Use the Simpson's Rule to approximate the given integral.

Section-111

Q.9. (a) Find the maximum value of $\quad z=9 x_{1}+x_{2} \quad$ subject to the Constraints.

$$
\begin{aligned}
& 2 x_{1}+x_{2} \leq 8 \\
& 4 x_{1}+3 x_{2} \leq 14 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(8)
(b) Minimize

$$
z=x_{2}-x_{1}
$$

$$
-x_{1}+2 x_{2} \leq 2
$$

$$
x_{1}+x_{2} \leq 4
$$

$$
x_{1}, x_{2} \geq 3
$$

$x_{1}, x_{2} \geq 0$: Using simplex method.
Q.10. (a) If A and B are any two events defined in a sample space S, then
(b) An integer is chosen at random from the first 200 positive integers. What is the
probability that the integer chosen is divisible by 6 or by 8 ?
(a) If A and B are two independent events in a sample space S, then show that
(9)
i. A and \bar{B} are indef pendent.
ii. \vec{A} and \vec{B} are independent.
(b) An event has the probe titty $p=3 / 8$. Find the complete Binomial Distribution for $n=5$ trials.
Q.12. (a) A man draw two balls from a bag containing 3 white and 5 black baths. If he receives Rs .70 for every white bathe draws and Rs. 7 for every black ball, find his expectation.

Available at www.mathcity.org

Note: Attempt any two questions from each section.

Section- I

Q.1. a.

Solve the following different: al equation:
$\frac{d y}{d x}=\frac{y-x+1}{y-x+5}$
CHf品 (8)
(8)

Solve the following different al equation. $d x \quad y-x+5$
b. Find the general solution of the following non-homogeneous differential (9) equation: $\quad\left(D^{3}+D^{2}-4 ;-4\right) y=e^{2 x} \cos 3 x$
Q.2. a.

Solve the differential equation $1: \quad(x-1)^{3} \frac{d y}{d x}+4(x-1)^{2} y=x+1$
b. Solve the differential equalim:

$$
\begin{equation*}
4 x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+3 y=\sin (\ln (-x)) \tag{9}
\end{equation*}
$$ CAt 710 / melt where $x<0$.

Q.3. a.

Solve the differential equation:

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+y=\csc x \quad C l \neq 10 \tag{8}
\end{equation*}
$$

b.

Solve
Q.4. a. Find an equation of orthogonal trajectory of the curve of the family $x y=c$.
b. Find the series solution of t_{1}; differential equation $y^{\prime \prime}-x^{2} y=0$ around (9) the point $x=0$.

Section- II

b. Compute the positive root, correct to four places of decimal, of the equation $x^{2} \pm 4 \sin x=0 \quad$ using Newton-Raphson method.
Q.8. a. Use method of False position to find the root of the equation (8) $x^{3}-4 x^{2}+x-10=0$ accurate to three places of decimal within $[4,5]$.
b. Find the $2^{\text {nd }}$ degree Lagrange interpolation polynomial for $f(x)=\frac{1}{x}$, choosing the points $\quad x_{0}=2, x_{1}=2.5, x_{2}=4$. Also approximate $f(3)=\frac{1}{3}$

Section.- 1

Q.9. a. Find the maximal value of the object fiction $z=x+3 y$; subject to the
constraints. $\quad y \leq x+1, x+y \geq 2,2 y \geq x-1, x \geq 0, y \geq 0$
b. Use the simplex method to find the maximum value of the object function
$c=4 x$ where x, y and z are ron-negative variables satisfying the constraints $x+y+z \leq 4,3 x+y+2 z \leq 7$ and $x+2 y+4 z \leq 9$ twice as likely to win as C. What is the probability that A or B wins.
i. all white or ii. Two white and two black. A ball is drawn at random and is found to be white. What is the probability that all balls are white?
Find the value of K, so that the function $f(x)$ defined as follows may be a density function

$$
f(x)=\left\{\begin{array}{lll}
k x, & 0 \leq x \leq 2 \\
0, & \text { elsewhere }
\end{array}\right.
$$

b. If $f(x)=\frac{6-|7-x|}{36}$ of the random variable X.
Q.12. a. For the binomial distribution the probability density is given by (9) $f(x)=\binom{n}{x} p^{x} q^{n-x}, \quad x=0,1,2, \ldots \ldots \ldots . .$, where the random variable X, 0 assumes a value x. Prove the relation $\mu_{r+1}=p q\left(n r \mu_{r-1}+\frac{d \mu_{r}}{d p}\right)$.
b. Show that the mean of negative binomial distribution is less than its variance.
B.A/B. Sc $1^{\text {st }}$ Annual Examination 2012.
b. Solve the equation. $\quad\left(D^{2}+6 D+9\right) y=0 \quad y(0)=2 \quad y^{\prime}(0)=-3$
Q.2. a. Solve differential equation. $\quad \frac{d y}{d x}=\frac{x+3 y-5}{x-y-1}$
b. Solve by the method of U.C $\quad y^{\prime \prime}-4 y^{\prime}+4 y=e^{2 x}$

Time Allowed: 3 Hours
Q.3. a. Solve

$$
\begin{equation*}
\left(1+x^{2}\right) \frac{d y}{d x}+4 x y=\frac{1}{\left(1+x^{2}\right)^{2}} \tag{9}
\end{equation*}
$$

b. Solve $\quad: \quad x^{2} \frac{d_{2} y}{d x^{2}}+7 x \frac{d y}{d x}+5 y=x^{5}$

$$
\begin{equation*}
x^{2} \frac{d_{2} y}{d x^{2}}+7 x \frac{d y}{d x}+5 y=x^{5} \tag{8}
\end{equation*}
$$

Q.4. a. Find orthogonal trajectories of family of cardiods. $r=a(1+\cos \theta)$

$$
\begin{equation*}
y^{\prime \prime}-x^{2} y=0 \quad \text { around } \quad x=0 \tag{8}
\end{equation*}
$$

Section-II
Compute the Laplace transformation of $\cos ^{2} a t$
Q.6. a. Using Newton Raphson method find a root of $f(x)=x^{3}-2 x-5=0$
b. Solve the transcendental equation $\quad f(x)=e^{-x}-\sin \left(\frac{\pi x}{2}\right)=0$ to a positive real root by Bisection method.
Q.7. a. Use the trapezoidal rule with $n=4$ to approximate. $\quad I=\int_{0}^{4} \sqrt{x^{2}+1} d x$
b. Use Simpson's rule to approximate the \ln tegral $\quad \int_{1}^{2} \ln x d x$ with $\quad n=4$.
Q.8. a. Find the first and second order derivatives of the function from the following data at $x=2$.

x	1	2	3	4	5
$f(x)$	3	10	29	66	127

b. Find a bound on the error in approximating the given integral using:
i. Trapezoidal rule
ii. Simpson's rule.
$\int_{-1}^{2} x^{5} d x \quad$ with $\quad n=10$

Section- III

Q.9. a. Minimize $z=2 x_{1}+x_{2}$ subject to the conditions

$$
\begin{gather*}
x_{1}+x_{2} \geq 1 \tag{9}\\
x_{1}-x_{2} \geq-1 \\
x_{1}+2 x_{2} \geq 4 \\
x_{1}, x_{2} \geq 0 \tag{8}
\end{gather*}
$$ $z=10 x_{1}+11 x_{2}$ with the condition

$$
\begin{gather*}
3 x_{1}+4 x_{2} \leq 9 \\
5 x_{1}+2 x_{2} \leq 8 \\
x_{1}+2 x_{2} \leq 1 \\
x_{1} \geq 0 \text { and } x_{2} \geq 0 \tag{8}
\end{gather*}
$$

Q.10. a. A set of eight cards contains one joker. A and B are two players and A choose 5 cards at random, B taking the remaining 3 cards. What is the probability that A has the joker?
b. A pair of fair dice is thrown. If the two numbers appearing are different, find the probability that sum is (i) 6 (ii) sum is 4 or less.
Q.11. a. If $f(x)=\frac{1}{n}(x=1,2,3$
$n)$ then find $E(x)$ and $\operatorname{Var}(x)$
b. Suppose that the life length (in hours) of a certain radio tube is continuous random variable
x with probability density function $\quad f(x)=\frac{100}{x^{2}} \quad x>100$
And zero elsewhere. What is the probability that a tube will last less than 200 hours, if it is known that tube is still functioning after 150 hours of service?
Q.12. a. An event has the probability $P=3 / 8$, Find the complete Binomial distribution for $n=5$ trials?
b. Let X be random variable having a binomial distribution with parameters $n=25$ and $P=0.2$

$$
\text { evaluate } \quad P[x<\mu-2 \sigma]
$$

Note: Attempt any two questions from each section.

Section- I
Q.1. a. Solve the initial value problem $\quad \frac{d y}{d x}=\frac{2 x}{y+x^{2} y}, \quad y(0)=-2$
b. Solve $\quad(x-y) d x+(x+y) d y=0$
Q.2. a. Solve the differential equation $\quad\left(3 x^{2} y+2\right) d x+\left(x^{3}+y\right) d y=0$
b. Solve the equation $\quad \frac{d y}{d x}+\frac{x y}{1-x^{2}}=x y^{\frac{1}{2}}$
Q.3. a. Find the orthogonal trajectories of the family of cardiods

$$
\begin{equation*}
r=a(1+\cos \theta) \tag{9}
\end{equation*}
$$

$$
\begin{align*}
& \left(D^{2}-5 D+6\right) Y=\sin 3 x \tag{8}\\
& y^{\prime \prime}-3 y^{\prime}+2 y=x^{2} e^{x} \tag{9}
\end{align*}
$$

b. Solve $\quad\left(D^{2}-5 D+6\right) Y=\sin 3 x$

Section- II

Q. 5 a. Compute the Laplace transformation of $e^{a t}$ where a is a constant and $s \neq a$.
b. Find the inverse Laplace transformation of $\quad \frac{3 S+17}{s^{2}+8 S+25}$
Q.6. a. Solve the equation $f(x)=e^{x}-3 x=0 \quad$ by bisection method.
b. Using Newton Raphson method, evaluate to two decimal places the root of the equation which lies between 0 and 1 , the function is $\quad f(x)=e^{x}-3 x=0$
Q.7. a. Evaluate $\quad \int_{1}^{3} \frac{1}{x^{2}} d x \quad$ by using trapezoidal rule for five points.
b. Apply 5 points Simpson's rule to evaluate $\quad \int_{0}^{1} \frac{1}{1+x^{2}} d x$
Q.8. a. Find first and second derivatives of the function from the following data at $x=2$.

x	1	2	3	4	5
$\mathrm{f}(\mathrm{x})$	3	10	29	66	127

Section- III

Q.9. a. Maximize $z=10 x_{1}+11 x_{2}$ subject to the conditions
$3 x_{1}+4 x_{2} \leq 9, \quad 5 x_{1}+2 x_{2} \leq 8 \quad, \quad x_{1}-2 x_{2} \leq 1 \quad$ where $x_{1}, x_{2} \geq 0$
b. Use Simplex method to find the maximum value of object function $z=3 x_{1}+2 x_{2}$ with the condition
$x_{1}+2 x_{2} \leq 6,2 x_{1}+x_{2} \leq 8,-x_{1}+x_{2} \leq 1, x_{2} \leq 2$ where $x_{1}, x_{2} \geq 0$
Q.10. a. An integer is chosen at random from the first 200 positive integers. What is the probability that the integer chosen is divisible by 6 or by 8 ?
b. A card is drawn at random from a deck of ordinary playing cards. What is the probability that it is a diamond, a face card or a king.
Q.11. a. A man tosses two fair dice. What is the conditional probability that the sum of the two dice will be 7, given that:
i. the sum is odd
ii. the sum is greater than 6
iii. the two dice had same outcome.
b. A pair of fair dice is thrown twice. What is the probability of getting totals of 5 and 11 ?
Q.12. a. A certain event is believed to follow the binomial distribution. In 1024 samples of 5 , the result
was observed once 405 times and twice 270 times. Find p and q.
b. An event has the probability $P=\frac{3}{8}$. Find the complete binomial distribution for $n=5$ trials.

