•	1 . 1 (65)	26
	University of Sargodha MathCivy	Drg maths
	B.A/B.Sc 1 ^s Annual Examination 2007 Applied Mathematics Paper- A Time Allowed: 3 I	tours
	Maximum Marks: 100	· · ·
	Note: Attempt six questions in all, selecting two questions from each section.	•
	Section-1 (9:	3)
	Q.1. (a) Solve the differential equation. (b) Solve the differential equation. (c) $(2x + y + 1)dx + (4x + 2y - 1)dy = 0$ (2x + y + 1)dx + (4x + 2y - 1)dy = 0 (2x + y + 1)dy = 0 (2x + y + 1)dy = 0 (2x + y + 1)dy = 0 (2x	(1) (9) (1) = 7 93 Method MEthod Ac(9) - 0 - 0
CH+9	Q.2. (a) Solve the initial value problem. $(x^2 + 1)\frac{dy}{dx} + 4xy = x$, $y(2) = 1$ (2) If $z = 1$	96 mil mar
CH:10 1 7.16010	(b) A newly built fish farm is stocked with 400 fish at time $t = 0$ (month), thereafter the population increases at the rate of \sqrt{p} per month, when these are	(8) & 6 10 ° 11 metho
20 Allemp	<i>p</i> fish in the farm, what is the fish population at time $T T$ Q.3. (a) Solve the differential equation. (b) Solve by method of U.C $y'' - 3y' + 2y = 2x^2 + 2xe^x$ C C C C C C C C C C	9 Aleter 3 (8) Method 3:5 EX: 10
	Q.4. (a) Find a particular solution of following. (b) Apply the Power Series Method to solve the differentian $x(1-x)y' = y$ $(x) = 9$ $(x) = 1 + x$.1 (8)
	Section- 11	
	Q.5. (a) Compute the inverse Lat free Transformation of the following: $\frac{s^3 + 3s^2 - s - s}{(s^2 + 2s + 5)^2}$	3 013 EX 11.2
	(b) Find a positive root of a non linear equation, using Bisection Method $f(x) = x^3 - x^2 - 2x + 1.$	(a. (8) reachel Any.
	Q.6. (a) Use the Laplace Transformation Method to solve the following miniar value Q , Q ,	1 Ex. 11.3
	Problem. $\frac{d^2 y}{dt^2} - 2\frac{dy}{dt} = 20e^{-t}\cot t, y(0) = 0 = y'(0)$	
	(b) Find the positive root of the equation. $x^3 + x^2 - x - 3 = 0$ Us the Regula-Falsi Method	ng (8) Anya:
	Q.7. (a) Find the positive root of the equation. $e^x = 2x + 21$ by using Newto Raphson Method with $x_1 = 3$	iad Anyl
	41. J. D. 1-1, = 2 - 8 : 2	P.T.O
	s. ct. 11 6 . 9 . 11 6	

University of Sargodha

B.A / B.S : 1st Annual Exam 2010 Applied Math Paper-A

Maximum Marks: 100

P.T.O

Time Allowed: 3 Hours

Note:

Attempt any two questions from each section.

Section-I

		- 4			
Q.1.	a.	Solve the following different al equation: $\frac{dy}{dx}$	$=\frac{y-x+1}{y-x+5}$	CH+P9	(8) (me lt-c ⁹
	Ъ.	Find the general solution of the following non-homequation: $(D^3+D^2-4, 2-4)y = e^{2x}\cos 3x$	mogeneous	differential CH+10M	(9) 16
Q.2.	a.	Solve the differential equation: $(x-1)^3 \frac{dy}{dx} + 4(x-1)^3 \frac{dy}{dx}$	$(-1)^2 y = x + $	1 Cttpo	(8) Me ¹ U
	b.	Solve the differential equation: $4x^2 \frac{d^2y}{dx^2} - 4$	$4x\frac{dy}{dx} + 3y =$	sin(ln(-x)) CH Fl	(9) Netr
		where $x < 0$.			
Q.3.	a.	Solve the differential equation: $\frac{d^2 y}{dx^2} + y = \csc x$	C	H++10 melt	(8)
	b.	Solve $2y \frac{d^2 y}{dx^2} - \left(\frac{dy}{dx}\right)^2 = 1$	C	CH\$10 K	(9) elba
0.4.	a.	Find an equation of orthogonal trajectory of the curve of	f the family	xy = c.	(8) CH FG MO 45
~ •••	h.	Find the series solution of the differential equation	$y'' - x^2 y = 0$	around	(9)
	0.	the point $x = 0$		Ċŀ	40'
		Section- II			
		Section- M	211	+1V(1	velto
		$e^{-t}\sin \theta$	21 (1)	Auc	(8)
Q.5.	a.	Compute the Laplace transion in or e shi	1	CULLING MG	N.S.
	b.	Compute the inverse Laplace transform of $(s-1)$	$\frac{1}{1)(s^2+4)}$	Ut Pril.	(0)
Q.6.	a.	Use Simpson's rule, with $n = 8$, to approximate the value	ue of \int_{0}^{1}	$\frac{dx}{1+x^2}$ Ct	(8) 75 (a)
	Ե.	Find the area under the semi-vircle $y = \sqrt{4 - x^2}$ and	d above the	x-axis using	(8) ++5(and

trapezoidal rule, for n = 8.

Q.7. a. Use the bisection method to find the positive root, correct to three places of (8). decimal, of the equation $x - e^{\frac{1}{4}} = 0$ within [1,2].

- Compute the positive root, correct to four places of decimal, of the equation (8) Numented An b. using Newton-Raphson method. $x^2 \pm 4\sin x = 0$
- Q.8.

a.

Use method of False position to find the root of the equation NUMERical the $x^{3} - 4x^{2} + x - 10 = 0$ accurate to three places of decimal within [4,5]. (8) Nirman 4 Any $f(x)=\frac{1}{x},$ Find the 2nd degree Lagrange interpolation polynomial for b.

choosing the points $x_0 = 2$, $x_1 = 2.5$, $x_2 = 4$. Also approximate $f(3) = \frac{1}{3}$

Section- 11

Find the maximal value of the object function z = x + 3y; subject to the (9) $y \le x+1$, $x+y \ge 2$, $2y \ge x-1$, $x \ge 0$, $y \ge 0$ constraints. Use the simplex method to find the maximum value of the object function (8) $c = 4x \pm \frac{y}{y} + \frac{y}{3z}$, where x, y and z are non-negative variables satisfying the $x + y + z \le 4$, $3x + y + 2z \le 7$ and $x + 2y + 4z \le 9$ constraints Three horses A, B and C are in a race; A is twice as likely to win as B and B is (9) Q.10. twice as likely to win as C. What is the probability that A or B wins. (8) An urn contains four balls which are known to be either; i. all white or ii. Two white and two black. A ball is drawn at random and is found to be white. What is the probability that all balls are white? Find the value of K, so that the function f(x) defined as follows may be a (8) Q.11. density function (R.W $f(x) = \begin{cases} kx & , & 0 \le x \le 2\\ 0 & , & elsewhere \end{cases}$ (9) If $f(x) = \frac{6 - |7 - x|}{26}$ for $x = 2, 3, \dots, 12$, then find mean and variance of the random variable X. For the binomial distribution the probability density is given by (9) Bini **Q.12**. a. $f(x) = \binom{n}{x} p^{x} q^{n-x}, \quad x = 0, 1, 2, \dots, n \text{ where the random variable } X$ assumes a value x. Prove the relation $\mu_{r+1} = pq \left(nr \mu_{r-1} + \frac{d\mu_{r}}{dp} \right).$ Show that the mean of negative binomial distribution is less than its variance. (8)Available at www.mathcity.org

LK-9-110 -

	and The Search of The Search of Annotation and an The Search of Search of Annotation and Annotation and Annotation and Annotation and Annotation and Annotation The Search of Annotation and Annotation and Annotation and Annotation and Annotation and Annotation and Annotation	University	of Sargodha	Available	at
		B.A/B. Sc 1 st Annu	al Examination 2012.	www.mathci	ar heara
-		Applied Math	Paper: A	www.w.maurci	ty.org
Maxi	mum Marks: 1	100		Time Allowed:	B Hours
Note:	Atte	mpt any two questions from each	section.		
Q.1.	a. Solvo	the initial dy	Section-I $x(x^2+1)$ -1		(8)
	b a t	the initial value problem $\frac{dx}{dx}$	$=\frac{1}{4y^3}$ $y(0) = \frac{1}{\sqrt{2}}$		(8)
01	^{U.} Solve	the equation. $(D^2 + 6D + 9)$	y = 0 $y(0) = 2$	y'(0) = -3	(9)
Q.2.	a. Solve	differential equation.	$\frac{dy}{dx} = \frac{x+3y-5}{x-y-1}$		(8)
0.3	b. Solve	by the method of U.C y	$y'' - 4y' + 4y = e^{2x}$:	(9)
Z ,	L Solve	$(1+x^2)\frac{dy}{dx}+4xy$	$=\frac{1}{(1+x^2)^2}$		(8)
	D. Solve	$x^2 \frac{a_2 y}{dx^2} + 7x \frac{dy}{dx} + 5$	$y = x^5$		(9)
Q.4.	a. Find o b Find a	rthogonal trajectories of family of o	cardiods. $r = a(1 + a)$	cosθ)	(8)
•	o. raua	$v'' - x^2 v = 0$) around indicated point) around $r = 0$	ı .	(9)
	•		Section-II		
Q.5.	a. Compu	ute the Laplace transformation of	$\cos^2 a t$		(8)
0.6	U. Compi	ute the inverse Laplace transformation	on of $\frac{53-87}{S^2-16S+49}$		(8)
Q.0.	a. Using b. Salara	Newton Raphson method find a roc	ot of $f(x) = x^3 - 2$	x-5=0	(8)
•	Bicacti	the transcendental equation $f(x)$	$e^{-x} - \sin\left(\frac{\pi}{2}\right) = 0$ t	o a positive real root by	(8)
Q.7.	a. Use the	e tranezoidal rule with n = 1 to annu	$rovimoto = I - \Gamma^4 \cdot \sqrt{2}$	1	(8)
_	b. The Si	mpson's rule to concerning to the $I_{\rm m}$	$\int_0^2 \sqrt{x^2 + \frac{x^2}{2}}$		(0)
O.8 .	a. Find th	the first and second order derivatives	legral $\int_1 \ln x dx$	with $n=4$,	(0)
			3 4 5	$\int \frac{\partial u}{\partial x} dx = 2.$	(8)
		f(x) = 3	0 29 66 127		
	U. FINGA	bound on the error in approximatin	g the given integral using: $\int_{-\infty}^{2} \sqrt{5} dt$		(8)
	1. 11ap	Sectorial Turce II. Simpson's ru	ction-III	with $n = 10$	
Q.9.	a. Minimi	ize $z = 2x_1 + x_2$ subject to the c	conditions		(9)
		x ₁	$+x_2 \ge 1$		
	•	x ₁ -	$-x_2 \ge -1$ $+2r_2 \ge 4$		
		x1 x	$x_1, x_2 \geq 0$		
	b. Use the $\pi = 10r$	e simplex method to find the maxim	um value of object function	n	(8)
	2 - 101	$3x_1$	$+4x_2 \leq 9$		
	•	5 <i>x</i> ₁	$+2x_2 \leq 8$		
		x_1	$+2x_2 \leq 1$		
Q.10.	a. A set o	of eight cards contains one joker. A	and B are two players as	nd A choose 5 cards at	(8)
	random	, B taking the remaining 3 cards. W	hat is the probability that	A has the joker?	\- /
	U. A pair of that sur	or raise of the two numbers of the two numbers $(i) \in (ii)$ sum is 4 or less	noers appearing are differe	ent, find the probability	(9)
Q.11.	a. If $f(x)$	$x = \frac{1}{2}(x = 1.2,3n)$ ther	find $E(x)$ and $Var(x)$		(8)
	b. Suppos	e that the life length (in hours) of a	certain radio tube is conti	nuous random variable	(9)
	x with p	probability density function $f($	$f(x) = \frac{100}{x^2}$ $x > 100$		
	And ze	ro elsewhere. What is the probabili	ty that a tube will last less	than 200 hours, if it is	
0.12	known	that tube is still functioning after 15 nt has the probability $D = 2/0$	0 hours of service?		
Q.14.	a. An eve	In has the probability $r = 3/8$, Fin	u ule complete Binomial	distribution for $n = 5$	(୨)
	b. Let X b	e random variable having a binomia	al distribution with parame	ters $n = 25$ and $P = 0.2$	(8)

University of Sargodha

B.A/B. Sc 1st Annual Exam 2013.

Subject: Applied Math Paper: A

Maximum Marks: 100

Time Allowed: 3 Hours

Note:

Attempt any two questions from each section.

Section-I

Q.1.	a.	Solve the initial value problem $\frac{dy}{dx} = \frac{2x}{x + x^2 x}$, $y(0) = -2$	(8)
	b.	Solve $(x-y)dx + (x+y)dy = 0$	(9)
Q.2.	a. b.	Solve the differential equation Solve the equation $\frac{dy}{dy} + \frac{xy}{dy} = xy^{\frac{1}{2}}$ $(3x^{2}y + 2)dx + (x^{3} + y)dy = 0$	(8) (9)
Q.3.	a. b.	Find the orthogonal trajectories of the family of cardiods $r = a(1 + \cos\theta)$ Solve $(D^2 - 5D + 6)Y = \sin 3x$	(8) (9)
Q.4.	a. b.	Find the general solution of Solve by the method of U.C $y'' - 3y' + 2y = x^2 e^x$ $(D^2 + 3D - 4)Y = 15e^x$	(8) (9)
		<u>Section- II</u>	
Q.5	a.	Compute the Laplace transformation of e^{at} where a is a constant and $s \neq a$.	(8)
	b.	Find the inverse Laplace transformation of $\frac{3S+17}{S^2+8S+25}$	(8)
Q.6.	a. b.	Solve the equation $f(x) = e^x - 3x = 0$ by bisection method. Using Newton Raphson method, evaluate to two decimal places the root of the equation which lies between 0 and 1, the function is $f(x) = e^x - 3x = 0$	(8) (8)

lies between 0 and 1, the function is $f(x) = e^x - 3x = 0$ Evaluate $\int_1^3 \frac{1}{x^2} dx$ by using trapezoidal rule for five points. Apply 5 points Simpson's rule to evaluate $\int_0^1 \frac{1}{1+x^2} dx$ Q.7. a. (8) b. (8) Find first and second derivatives of the fu Q.8.

a.	Find first and second de	rivatives	s of the 1	unction	from the	e followi	ing data a	t $x=2$.	(8)
		х	1	2	3	4	5		
		f(x)	3	10	29	66	127		

 $\int_0^1 \frac{1}{1+x^2} dx \qquad \text{by using rectangular rule for} \quad n=4.$ b. Evaluate the integral (8)

Section-III

Q.9.	а.	Maximize $z = 10x_1 + 11x_2$ subject to the conditions	(8)
		$3x_1 + 4x_2 \le 9$, $5x_1 + 2x_2 \le 8$, $x_1 - 2x_2 \le 1$ where $x_1, x_2 \ge 0$	
	b.	Use Simplex method to find the maximum value of object function $z = 3x_1 + 2x_2$ with the condition	(9)
		$x_1 + 2x_2 \le 6$, $2x_1 + x_2 \le 8$, $-x_1 + x_2 \le 1$, $x_2 \le 2$ where $x_1, x_2 \ge 0$	
Q.10.	a.	An integer is chosen at random from the first 200 positive integers. What is the probability that the integer chosen is divisible by 6 or by 8?	(8)
	b.	A card is drawn at random from a deck of ordinary playing cards. What is the probability that it is a diamond, a face card or a king.	(9)
Q.11.	a.	A man tosses two fair dice. What is the conditional probability that the sum of the two dice will be 7, given that:	(8)
		i. the sum is odd ii. the sum is greater than 6 iii. the two dice had same outcome.	
	b.	A pair of fair dice is thrown twice. What is the probability of getting totals of 5 and 11?	(9)
Q.12.	a.	A certain event is believed to follow the binomial distribution. In 1024 samples of 5, the result was observed once 405 times and twice 270 times. Find p and q .	(8)
	L	3	(0)

b. An event has the probability $P = \frac{3}{8}$. Find the complete binomial distribution for n = 5 trials. (9)

Available at www.mathcity.org