

(B.A/B.Sc. Part-I)

Mathematics B-Course (Paper-II)

Roll No: _ A . S

Jime Allowed: 3 hrs Max. Marks: 50 Pass Marks: 33%

5

5

5

5

5

5

.5

Attempt FIVE Questions in all. Select TWO Questions from Section-A and THREE from Section-B.

Section-A

1. a) Show that if \vec{a} , \vec{b} , \vec{c} are three vectors, then $(\vec{a} + \vec{b}) \cdot [(\vec{b} + \vec{c}) \times (\vec{c} + \vec{a})] = 2[\vec{a} \cdot (\vec{b} \times \vec{c})]$.

b) Prove that $(\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{b} \times \overrightarrow{c}) \times (\overrightarrow{c} \times \overrightarrow{a}) = (\overrightarrow{a} \cdot \overrightarrow{b} \times \overrightarrow{c})^2$

2. a) If \vec{f} (t) is a vector function of t and \vec{a} is a constant vector, Differentiate $\frac{\vec{a} \times \vec{f}}{|\vec{f}|} + \frac{\vec{f}}{|\vec{a}|}$ w.r.to 't'. 5

b) Solve $\overrightarrow{a} \times \frac{d^2 \overrightarrow{v}}{dt^2} = \overrightarrow{b}$; \overrightarrow{a} , \overrightarrow{b} are constant vectors and \overrightarrow{v} is a vector function of t.

If $\phi = r^2 e^{-r}$, where r is the magnitude of position vector of any point (x, y, z).

Show that $\nabla \phi = (2 - r) e^{-r} \overrightarrow{r}$.

Find the value of m, so that the vector $(m \times y - z^3) \underline{i} + (m-2) \times^2 \underline{j} + (1-m) \times z^2 \underline{k}$ has its curl equal to zero. 5

Section-B

- 4- a) Two forces P and Q have a resultant R and the resolved part of R in the direction of P is of magnitude Q show that the angle between the forces is $2 \sin^{-1} \left(\frac{P}{2Q} \right)^{1/2} = \cos^{-1} \left(\frac{Q P}{Q} \right)$
 - b) If the forces ℓ \overrightarrow{AB} , m \overrightarrow{BC} , ℓ \overrightarrow{CD} and m \overrightarrow{DA} acting along the sides of a quadrilateral are equivalent to a couple, show that either $\ell = m$ or ABCD is a parallelogram.
- 5- a) The smallest force which can support a body of weight W on a smooth inclined plane, is of magnitude P. Show that the horizontal force necessary to support the same body on the same plane is of magnitude $\frac{PW}{\sqrt{W^2 P^2}}$
 - b) A circular disc of weight W and radius 'a' is suspended horizontally by two vertical strings each of length ℓ attached to the ends of a diameter. A horizontal couple applied to the disc turns it through the angle θ . Find the moment of the couple.
- 6- b) A thin uniform rod passes over one peg and under another, the co-efficient of friction between each peg and the rod being μ . The distance between the pegs is α , and the straight line joining them makes an angle β with the horizontal. Show that equilibrium is not possible unless the length of the rod is greater than $\frac{\alpha}{\mu}$ (μ + tan β).
 - b) A hemispherical shell rest on a rough inclined plane whose angle of friction is λ . Show that inclination of the plane base to the horizontal cannot be greater than $\sin^{-1}(2 \sin \lambda)$.
 - 7- a) Find the C.G of the region bounded by the cardioide $r = a(1 + \cos \theta)$.
 - b) Find the C.G of a semi-circular lamina of radius r when its density varies as the cube of the distance from the centre.
- 8-b) Three equal rods each of weight W, are freely jointed together at one extremity of each to form a tripod, and rest with their other extremities on a smooth horizontal plane, each rod inclined at an angle of θ to the vertical, equilibrium being maintained by three light strings each joining two of these extremities. Prove that the tension in each string is $\frac{W \tan \theta}{2\sqrt{3}}$.
 - b) A regular octahedron of 12 equal rods each of weight w, freely jointed together, is suspended from one corner. Show that the thrust in each horizontal rod is $\frac{3\sqrt{2}}{2}$ W.