(B.A/B.Sc. Part-II)

Roll No: Mathematics B-Course (Paper-IV)

Time Allowed : 3 hrs Max. Marks 50 33% Pass Marks

Attempt FIVE Questions in all, selecting THREE questions form Section-A, and TWO from Section-B. UNIVERSITY

UNIVERSITY OF GUJRAT

Section – A

1.	 a) Find the tangent and normal components of velocity and acceleration. b) Find the radial and transverse components of acceleration of a particle moving along the circle x² + y² = a² with constant angular velocity c. 	5 5
2.	 a) A particle moves in a straight line with an acceleration KV³ if its initial velocity is u, find the velocity and the time spent when the particle has travelled a distance x. b) A particle describes S.H.M in such a way that its velocity and acceleration at point 'p' are 'u' and 'f', respectively and the corresponding quantities at another point Q are 'v' and 'g' Find the distance PQ. 	5 5
3.	 a) A shell bursts on contact with the ground and pieces from it fly in all directions with all speed up to 80 feet per second. Prove that a man 100 feet away is in danger for ⁵/_{√2} seconds. b) The range of a rifle bullet is 1200 yards when α is the elevation of projection, show that if the rifle is fired with the same elevation from a car travelling at 10 miles per hour toward the target, the range will be increased by 220 √Tan α feet. 	5
4.	 a) Show that the law of force towards the pole of a particle describing the curve rⁿ = aⁿCos n θ is given by f = (n+1) h² a²ⁿ/r²ⁿ⁺³ b) A particle describes the curve rⁿ Cos n θ = aⁿ under force F to the pole, show that the force is as stated F α r²ⁿ⁻³. 	5 5
5.	a) Show that $\overrightarrow{F} = -kr^3 \overrightarrow{r}$ is conservative. Find the Potential Energy of a particle in the field of this force. b) Show that when a particle moves under a central force the areal velocity is constant.	5 5

<u>Section – B</u>

- a) Determine the positive real root of $4 \text{Sin } x = e^{x}$ up to four decimal places by using Newton Raphson 6. Method in the interval (0, 0.5).
 - b) Solve the equation $f(x) = 2e^{-x} Sin x$ Using Bisection Method.
- 7. a) Solve by Gauss-Seidal Iteration:

b) Find by simple iteration to five decimal places the root near 0.5 of the equation $\sin x = 5x - 2$. 5

 $\int_{0} \frac{dx}{2+x^2}$ by Simpson's Rule with seven points and compare your result with exact value. a) Evaluate 8. 5

b) Evaluate the integral $\int_{1} \frac{dx}{1+x^4}$ using Trapezoidal Rule for n = 6.

5

5

5

5

***B.A/B.Sc-II (14/A) - xxii ***