SECTION ±A

1-	a) Show that $\pm b a^n \pm b^n$ for all n (•0) $\pm Z$.	5	
	b) Provethat if n is any odd integer then $ \mathfrak{H}^2 \pm 1$.	5	
2-	a) Find the G.C.D. of the pair (243, 129) and express it as a linear combination of 243 and 129 b) Show that (ma, mb) = n_{a} , b) where m is a positive integer.). 5 5	
3-	a) Show that if (c, b) = 1, then (ac, b) = (a, b) b) Find DOO_WKH0.SULPHV_"	5 5	
<u>SECTION ±B</u>			
4-	a) Define Interior of a set and prove that for any type bets A and B of $X(, \tilde{I})$ (A U B) ^o DA ^o U B ^o b) Prove that a subset A of (\tilde{XI}) has empty frontier if and only if A is both open and closed.	5 5	
5-	a) Let A be a subset $q(K, f)$, then prove that $A^2 = A \cup A$.	5	
	b) Let (X, \tilde{I}) be a topological space. A collection $B = \{B,, D\}$ A b f sets in \tilde{I} is a base for \tilde{I} if and only if, for any open set U and any point x in U, there is a DB such that x DB CU.	5	
	b		
6-	a) Prove that $(f, g) = \frac{q}{a} (x) \pm g(x) dx$ defines a metric on B [a, b], a set of real valued Bounded		
	functions. b) The diameter of a closed ball D U LQ D PHWULF VSDFH ; G LV $_1$	5 "5	U
7-	a) 3 U R Y H W K D W (G, g) G HOPE x Q ± g (&) Ex \is @ metrix on X which is a set of integral		
	 functions on [0, 1.] b) Let (X, d) be a metric space d x be a limit point of a subset A but not in TAben everyopen ball B (x; r) contains an infinite number of points of A. 	5 5	
8-	a) Let u, v ∂R^2 , u = (x ₁ , x ₂), v = (y ₁ , y ₂) then prove that u, v> = x ₁ y ₁ - x ₁ y ₂ ±x ₂ y ₁ + 3x ₂ y ₂ is an inner product on \hat{R} .	5	
	b) Find the norm of $v = (3, 4) \oplus \mathbb{R}^2$ w.r.t. the Euclidean Inner Product and the Inner Product define part (a).	ed 5	
	*** B.A/B.Sc·II (14/A) ±vii ***		