	<u>SectionA</u>	
1- a) b)	Suppose that a group G has only one element a of order 2. Show that, $f \partial G B = xa$. Let G be a group and a, ∂G . Show that the orders of ab and ba are equal.	5 5
2-a)	Prove that every subgroup of pacific group is cyclic.	5
D)	Let H and K be two finite subgroups (of a group G) whose orders are relatively prime Prove that Hê Le}<	5
	1 2 2 4 5 6 1 2 2 4 5 6	
3- a)	For permutations. $5 \ 3 \ 2 \ 6 \ 4 \ 1^{and} \ge 3 \ 4 \ 1 \ 2 \ 6 \ 5 \ 6 \ KRZ \ W \ KMD \ W$. 5
b)	Prove that every cyclic permutation can be expressed as a product of transposition	5
	SectionB	
4- a)	Let V be a vector space over a field Then, if $av = 0$ then either $a = 0$ or $v = 0$.	5
b)	For what value of k will the vector (1£, k) in R ³ be a linear combination of the vectors (3,£),	
	and (2, ±, ±)?	5
5- a)	Find a basis and dimension of the subspace ₩ opRwned by1, 4, ±, 3), (2, 1, 3, ±) and	
b)	(0, 2, 1, 5). Defined inearly Dependent Vectors a vector space over a field. Show that the vectors (1) and	5
D)	(2, -1 + i) in C ² are linearly dependent.	5
6- a)	If A is a matrix over R and $A_{A}^{T} = 0$, show that A = 0.	5
	2 1 ±1	
b)	Find the Inverse of the Matrix $A = 0 2 1$	5
	5 2 B	
7- a)	Solve the following system of equations	5
	$5x_1 + 5x_2 \pm x_3 = 0$	
	$10x_1 + 5x_2 + 2x_3 = 0$ $5x_1 + 15x_2 + 9x_2 = 0$	
b)	Show that the ransformation T : $\mathbf{R} \setminus \mathbf{R}^2$ defined by T($\mathbf{x}, \mathbf{x}_2, \mathbf{x}_3$) = ($ \mathbf{x}_1 , 0$) is not linear.	5
,		
	$\frac{a+b}{c}$ c c	
	\mathbf{L}^2 \mathbf{L}^2	
8- a)	Prove that a $\frac{b+c}{a}$ a = 4abc	5
	$c^{2} + a^{2}$	
	b b \overline{b}	
b)	Let A and B be distinct xn matrices with real enters. If $AB^2 = BA^2$ and $A^2 = B^2$, show that $A^2 + B^2$ is	;
	not invertible.	5
	B.A/B.Sc- I (14/A) vi	