A WORLD CLASS UNIVERSITY		
<u>Section-A</u>		
1 . a)	Show that $z = a + ib$ is	
	i) real if and only if $z = \overline{z}$	
	ii) pure imaginary if and only if $z = -\overline{z}$	5
b)	State and prove (Demoivre's Theorem).	5
2 . a)	Prove that $\cos\frac{\pi}{7} - \cos\frac{2\pi}{7} + \cos\frac{3\pi}{7} = \frac{1}{2}$	5
b)	If $\tan(\theta + \varphi i) = \tan \alpha + i \operatorname{Sec} \alpha$, Prove that $e^{2\varphi} = \pm \operatorname{Cot} \frac{\alpha}{2}$ and $2\theta = n\pi + \frac{\pi}{2} + \alpha$	5
3 . a)	Separate into real and imaginary parts $\tan^{-1}(x + iy)$.	5
b)	Evaluate the sum of the infinite series $\cos\theta - \frac{1}{2}\cos2\theta + \frac{1}{3}\cos3\theta - \frac{1}{4}\cos4\theta + \cdots$	5
Section-B		
4 . a)	Find the Pedal Equation of the Parabola $y^2 = 4a (x + a)$	5
b)	Show that, the tangents at the end of a focal chord of a parabola intersect at right	-
	angle on the directrix.	5
5 . a)	Show that, In any conic semi-latus rectum is the harmonic mean between the segments of focal chord.	5
b)	Find an equation (in rectangular coordinates) of the tangent line to $r = (1 + \cos\theta) \operatorname{at}(1, \frac{\pi}{2})$	5
6 . a)	Find the distance of the given point P from the given line L. $T = 1 + 2$	
	P (0, -2, 1) L: $\frac{x-1}{4} = \frac{y+3}{-2} = \frac{z+1}{5}$	5
b)	Derive the equation of the plane $\ell x + my + nz = \beta$.	5
7 . a)	Find an equation of the plane containing the line $x = 2t$, $y = 3t$ and $z = 4t$,	
7. a)	Also intersection of the planes $x + y + z = 0$ and $2y - z = 0$.	5
b)	Show that, the shortest distance between the lines $x + a = 2y = -12z$ and	
	x = y + 2a = 6(z - a) is 2a.	5
8 . a)	Find the centre and radius of the sphere $x^2 + y^2 + z^2 - 4x + 2y - 6z - 11 = 0$	5
b)	Find an equation of the torus obtained by revolving about y-axis and the circle in xy-plane with	
	centre at $(a, 0, 0)$ and radius b, where $0 < b < a$.	5

(B.A/B.Sc. Part-I)

Mathematics A-Course (Paper-II)

Attempt FIVE Questions in all. Select TWO Questions from Section-A and THREE from Section-B.

Roll No:

Time Allowed : 3 hrsMax. Marks : 50Pass Marks : 33%

UNIVERSITY OF GUJRAT

*** B.A/B.Sc-I (13/A) xxi ***