Section - A

1. a) Find the tangential and normal components of the acceleration of a point describing the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with uniform speed ' v ' when the particle is at (o, b)
b) The position of a particle moving long an ellipse is given by $\vec{r}=a \operatorname{Cos} t \hat{\Lambda}+b \operatorname{Sin} t \hat{j} \quad$ if $a>b$ Find the position of the particle where its velocity has a maximum or minimum magnitude.
2. a) A planet moves in an elliptic orbit with centre of attraction. The sun in one focus. If the greatest and least velocities of the planet are v_{1} and v_{2} find the eccentricity of the ellipse.
b) Prove that the field of force \vec{F} determined by $\vec{F}=\left(y^{2}-2 x y z^{3}\right) \hat{\wedge}+\left(3+2 x y-x^{2} z^{3}\right) \hat{j}+\left(6 z^{3}-3 x^{2} y z^{2}\right) \hat{k}$ is conservative and find its potential.
3. a) Prove that the least velocity with which a particle must be projected so that it passes through the points ' P ' and ' Q ' at the heights hP and hQ respectively from the ground is given by $\sqrt{\mathrm{g}(\mathrm{hP}+\mathrm{hQ}+\overline{\mathrm{P}} \theta)}$
b) A ball is dropped from the top of a tower of height h at the same moment another ball is thrown from a point of the ground at a distance ' k ' from the foot of tower so as to strike the first ball at a depth ' d ' show that the initial speed and the direction of projection of the second ball are respectively

$$
\sqrt{\frac{\mathrm{g}\left(\mathrm{~h}^{2}+\mathrm{k}^{2}\right)}{2 \mathrm{~d}}} \text { and } \tan ^{-1}\left(\frac{\mathrm{~h}}{\mathrm{k}}\right)
$$

4. a) A particle describing simple harmonic motion has velocities $5 \mathrm{ft} / \mathrm{sec}$ and $4 \mathrm{ft} / \mathrm{sec}$ when its distances from the centre are 12 ft and 13 ft respectively. Find the time period of motion.
b) Discuss the motion of a particle moving in a straight line if it start from rest at a distance 'a' from a point ' o ' and moves with an acceleration equal to μ times its distance from ' o '
5. a) A particle of mass m is moving under the action of the forces $F_{1}=-m w^{2} x, F_{2}=m F_{0} t, F_{3}=-2 m \mu x$ assuming that damping is small, set up and solve the equation of motion.
b) The radial and transverse components of velocity of a moving particle are $\lambda \mathrm{r}$ and $\mu \theta$ respectively. Find the radial and transverse components of its acceleration.

Section - B

6. a) Use the Secont Method to find correct to 4 decimal places the root of the equation

$$
\mathrm{e}^{\mathrm{x}}-3 \mathrm{x}=0 \text { starting values are } \mathrm{x}_{0}=0.4 \text { and } \mathrm{x}_{1}=0.9
$$

b) Use the Newton Raphson method find to 4 decimal places the root near 0.5 of the equation $e^{-x}-\operatorname{Sin} x=0$
7. a) Solve the following equations by Jacobi's method upto 4 iteration

$$
\begin{array}{r}
10 x+y-3 z=8 \\
x+9 y-4 z=6 \\
x+y+5 z=7
\end{array}
$$

b) Find to 4 decimal places the root near 3 of the equation
$e^{x}-\log e^{x}=20$ using simple iteration.
8. Evaluate the integral $\int_{0}^{2} \frac{1}{\sqrt{1+\mathrm{x}^{2}}} \mathrm{dx}$
a) By Trapezium ' 5 ' point Rule
b) By Simpson's '5' point Rule

