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Chapter 01 

Real Number System 

You don't have to be a mathematician to have a feel for numbers. John 

Forbes Nash, Jr. 

Historical Note: Numbers are like blood cells in the body of mathematics. Just as the understanding 

of anatomy and physiology of an organic system depends much on the knowledge of blood cells, so 

does the understanding of mathematics depend on the knowledge of numbers. In fact, a major part of 

mathematics bases its development on numbers and their multifarious properties. 

It is very difficult, if not impossible, to spell 

out as to when did the concept of numbers 

came to human civilization. History, 

however, reveals that a formal study of 

numbers started almost five thousand years 

ago and that too by the Hindus who studied 

numbers purely as abstract symbols and were 

very proficient not only in discovering very 

large and very small numbers but also in 

using them effectively. Evidence are there that the Greek studied numbers purely on geometric 

conceptualization as they were very proficient in geometry and as a result had a relatively retarded 

progress. The greatest contribution of the Hindus is the discovery of zero, negative numbers and the 

decimal scale of representing numbers. In fact, they showed commendable mastery over rational 

numbers as early as the 5th century after Christ. The formal rigorous study of numbers, however, began 

even much later when mathematics faced several foundational crises. All these started in the 17th century 

but reached a climax after George Cantor (1845-1925) in 18th and 19th century. The contribution of 20th 

century in this regard is, on the one hand, stunning remarkable but on the other hand, devastating from 

the foundation point of view. The work and criticism by Russell (1872-1970), Lowenheim (1887-1940), 

Skolem (1887-1963) and Church (1903-1995) have been instrumental in bringing about a drastic change 

in our attitude and approach towards mathematics in general. In our modern approach, we start directly 

from real numbers defined axiomatically and then pass on to the related concept. (for more details see 

[4]). Many authors have different approach to define set of real numbers. Here we use the idea of Rudin 

introduced in [1]. 
 

❖ Preliminaries 

In this section, we give some basic definitions and facts. These will help to learn and understand our 

main topic. 

Definition: The set  1,2,3,... , which is usually denoted by  is called set of natural numbers. 

Definition: The set  ..., 2, 1,0,1,2,...− − , which is usually denoted by  is called set of integers. 
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❖ Remarks: 

a. A set  ..., 2, 1,0,1,2,...= − −  can also be written as  0, 1, 2, 3,...=    . 

b. A set of positive integers is denoted by  1,2,3,...+ =  and set of negative integers is denoted 

by  1, 2, 3,...− = − − −  

c.  0− +=   , that is, a number 0 is neither positive nor negative. 

Definition: Given two integers ,a b , 0a  , we say a  divides b  if there exists some integer q  

such that b a q=  . 

Notation: If a  divides b , then we write a b  and if a  doesn’t divides b , then we write a b . 

Examples: (i) 2 divides 6, i.e. 2 6  because if 2a = and 6b = , then 3q = . 

(ii) -2 divides 6, i.e. 2 6−  because if 2a = − and 6b = , then 3q = − . 

(iii) -1, 1, -a and a divide every integer a. 

(iv) Every non-zero integer divides 0. 

Definition: An integer is called even if it is divisible by 2, otherwise it is called odd. 

Note: A set  : 0, 2, 4,E =    represents set of all even integers and a set of odd integers is 

represented as  : 1, 3, 5,O =    . 

Definition: A positive integer p is called prime if it has exactly four divisors (or two positive divisors). 

Examples: 2, 3, 11, 29 are prime numbers. 

Definition: A set  | , 0
p

q
p q q    is called set of rational numbers and it is usually denoted by 

.  

❖ Remarks: 

a. All the integers are rational number but there are numbers which are rational but not integer. 

b. One rational number can be written as infinitely many ways e.g. 
1

3
 can be written as 0.333  

or 
2

6
 or 

4

12

−

−
.  

c. Between any two rational numbers there exist a rational number, that is, there are infinity many 

rational between any two rational numbers. 

d. There are operations of addition (+) and multiplication (  ) on ,  and , which has nice 

properties.  

e. The set of integers is exclusively the point of interest in Number Theory. 

❖ Preparation to Define Set of Real Numbers 

It is not easy to define set of real numbers as we define ,  or . The real number system can be 

described as a “complete ordered field”. Therefore, let’s discusses and understand these notions first. 
 

❖ Order or Ordered Set 

Definition: Let S be a non-empty set. An order on a set S is a relation denoted by “” with the 

following two properties 

(i) If  ,x y S , then one and only one of the statements   

x y  , x y= ,  y x  is true. 
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(ii) If , ,x y z S  and if  x y ,  y z  then  x z . 

Examples: Consider the following sets: 

o  1,2,3,...,50A =   

o  , , , ,B a e i o u=   

o  2: 19C x x x=      

There is an order on A and C but there is no order on B (we can define order on B). 

Definition: A non-empty set S is said to be ordered set if an order is defined on S. 

Examples: (i) The set  2,4,6,7,8,9 ,  and  are examples of ordered set with standard 

order relation. 

(ii) The set  , , ,a b c d  and , , ,     are examples of set with no order. 

 

❖ Bounded & Unbounded Set 

Definition: Let S be an ordered set and E S . If there exists a S   such that x   for all 

x E , then we say that E is bounded above. The number   is known as upper bound of E. 

Definition: Let S be an ordered set and E S . If there exists a S   such that x   for all 

x E , then we say that E is bounded below. The number   is known as lower bound of E. 

Definition: Let S be an ordered set and E S . A set E is said to be bounded if it has both upper and 

lower bounds. Otherwise it is said to be an unbounded. 

Examples: (i) Consider  1,2,3,...,50S =  and  5,10,15,20E = . 

Set of all lower bounds of  1,2,3,4,5E = . 

 Set of all upper bounds of  20,21,22,...,50E = . 

(ii) Consider S = , {1,2,3,...,100}E =  and {10,20,30,...}F = . 

Set of lower bounds of E = {1} . 

Set of lower bounds of F  = {1,2,3,...,10}. 

Set of upper bounds of E  = {100,101,102,...}. 

Set of upper bounds of F  =  . 

 ❖ Least Upper Bound (Supremum) and Greatest Lower Bound (Infimum) 

Definition: Suppose S is an ordered set, E S  and E is bounded above. Suppose there exists an 

S  such that 

(i)   is an upper bound of E. 

(ii) If    for S  , then   is not an upper bound of E. 

Then   is called least upper bound of E or supremum of E and written as sup E = . 

Example: Consider  1,2,3,...,50S =  and  5,10,15,20E = . 

(i) It is clear that 20 is upper bound of E . 

(ii)  For S   if 20  then clearly   is not an upper bound of E . Hence sup 20E = . 

Definition: Suppose S is an ordered set, E S  and E is bounded below. Suppose there exists a 

S   such that 

(i)   is a lower bound of E. 
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(ii) If    for S  ,  then   is not a lower bound of E. 

Then   is called greatest lower bound or infimum of E and written as inf E = . 

Example: Consider  1,2,3,...,50S =  and  5,10,15,20E = . 

(i) It is clear that 5 is lower bound of E . 

(ii)  For S   if 5  , then clearly   is not lower bound of E . Hence inf 5E = . 
 

❖ Remarks 

▪ A set is unbounded if either its set of upper bounds or set of lower bounds is empty. 

▪ Supremum is the least member of the set of upper bound of the given set. 

▪ Infimum is the greatest member of the set of lower bound of the given set. 

▪ If   is supremum or infimum of E, then   may or may not belong to E. 

o Let  1 : 0E r r r=     and  2 : 0E r r r=    . Then 

1 2sup inf 0E E= =   but 10 E  and 20 E . 

o Let E  be the set of all numbers of the form  1
n

, where n is the natural numbers, 

that is, 

1 1 1
1, , ,

2 3 4
,E

 
=  
 

. 

Then sup 1E =  which is in E, but inf 0E =  which is not in E. 

❖ Least Upper Bound Property and Greatest Lower Bound Property 

Definition: A set S is said to have the least upper bound property if the followings is true 

(i)  S is non-empty and ordered. 

(ii) If E S  and E is non-empty and bounded above then supE exists in S. 

Definition: A set S is said to have the greatest lower bound property if the followings is true 

(i)  S is non-empty and ordered. 

(ii) If E S  and E is non-empty and bounded below then infE exists in S. 

Examples: (i) The sets  and  satisfies least upper bound property. 

(ii) The set of rational numbers  doesn’t satisfy completeness axiom. Consider a set 

 2: 2E x x x=    . One can prove that supremum of E  doesn’t exist in  even E is a 

bounded set. 

If U and L denotes the set of upper and lower bounds of E respectively, then 

 2: 2 ^ 0U x x x x=      and  2: 2 ^ 0L x x x x=     . 

    If r  is the supremum of E , then clearly 
2 2r = .  

Here, we prove there is no rational  p such that 
2 2p = . 

Let us suppose that there exists a rational p such that 
2 2p = . 

This implies we can write  

m
p

n
=   where ,m n , 0n   & m, n have no common factor. 

Then 
2 2p =     

2

2
2

m

n
 =     

2 22m n =    
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2m  is even m  is even  

m  is divisible by 2 and so 
2m  is divisible by 4. 

22n  is divisible by 4 and so 
2n  is divisible by 2. 

2 22m n= . 

i.e. 
2n  is even n  is an even 

   m and n both have common factor 2.  

which is contradiction because m and n have no common factor. 

Hence 
2 2p =  is impossible for rational p. 

Finally, we conclude that the set E, which is bounded in  doesn’t have supremun and 

infimum in , hence set of rational  doesn’t satisfy the least upper bound property. 

❖ Remark 

   The above property is known as completeness axiom or LUB axiom or continuity axiom or order 

completeness axiom. 

 

❖ Theorem 

Suppose S is an ordered set with least upper bound property, B S , B is non-empty and is 

bounded below. Let L be set of all lower bound of B. Then  

: sup L =  

exists in S and inf B = . 

Proof 

   Since B is bounded below therefore L is non-empty. 

   Since L consists of exactly those y S  which satisfy the inequality. 

 y x      x B  . 

   We see that every x B  is an upper bound of L. 

    This implies L is bounded above. 

  Since S is ordered and non-empty with least upper bound property therefore L has a supremum in S, 

that is, : sup L =  exists in S.  

  If    ,  then (by definition of supremum)   is not upper bound of L. 

B  . 

   It follows that  x x B    . 

   Thus   is lower bound of B . 

   Now if   , then L   because sup L = , that is,   is not lower bound of B . 

   this means (by definition of infumum) inf B = . 

❖ Remark 

   Above theorem can be stated as follows: 

An ordered set which has the least upper bound property has also the greatest lower bound 

property. 

❖ Field  

A set F with two operations called addition and multiplication satisfying the following axioms 

is known to be field. 

Axioms for Addition: 

(i)   If ,x y F   then  x y F+  . Closure Law 
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(ii)  , ,x y y x x y F+ = +   . Commutative Law 

(iii) ( ) ( ) , ,x y z x y z x y z F+ + = + +   .  Associative Law 

(iv)  For any x F , 0 F   such that 0 0x x x+ = + =   Additive Identity 

(v)   For any x F , x F −   such that ( ) ( ) 0x x x x+ − = − + =       +tive Inverse 

Axioms for Multiplication: 

     (i)  If ,x y F   then  x y F .  Closure Law 

     (ii)  , ,x y y x x y F=      Commutative Law 

     (iii)  ( ) ( ) , ,x y z x y z x y z F=    

     (iv)  For any x F , 1 F   such that 1 1x x x =  =   Multiplicative Identity 

     (v)  For any x F , 0x  ,  
1

F
x

  ,  such that 
1 1

1x x
x x

   
= =   

   
  tive Inverse. 

Distributive Law 

For any , ,x y z F ,  (i)  ( )x y z xy xz+ = +  

(ii)  ( )x y z xz yz+ = +  

❖ Existence of Real Field 

  It is worth mentioning that  and  are completely order sets but not a field. 

While  is ordered field but not satisfy completeness axiom. What about a set which satisfy all three 

properties, that is, i. ordered ii. field and iii. satisfy completeness axiom. Amazingly,  (set of real 

numbers) is the only set which satisfy all these properties. 

❖ Theorem:  

   There exists an ordered field  which has the least-upper-bound property. Moreover  contains  

(set of rational numbers) as a subfield. 

Proof 

   The proof of the theorem is rather long and a bit tedious. So, we are skipping the proof, one can see 

it at [1, Page 17].              
 

Definition: The members of  are called real numbers.  

Definition: Real numbers which are not rational are called irrational numbers.  
 

❖ Explanation about  

   The real numbers include all the rational numbers, such as the integer −5 and the fraction 4/3, and all 

the irrational numbers such as 2  (1.41421356…, the square root of two, an irrational algebraic 

number) and π (3.14159265…, a transcendental number). Real numbers can be thought of as points on 

an infinitely long line called the number line or real line, where the points corresponding to integers are 

equally spaced. Any real number can be determined by a possibly infinite decimal representation such 

as that of 8.632, where each 

consecutive digit is 

measured in units one tenth 

the size of the previous one. 

Or a real number is a value 

that represents any quantity 

along a number line. Because 
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they lie on a number line, their size can be compared. You can say one is greater or less than another 

and do arithmetic with them.  

By using the fact that , the set of real numbers, is a completely order field, one can prove the following 

theorem.  

❖ Theorem 

Let , ,x y z . Then axioms for addition imply the following.  

(a)  If x y x z+ = +  then y z=  

(b)  If x y x+ =  then 0y =  

(c)  If 0x y+ =  then y x= − . 

(d)  ( )x x− − =  

Proof 

(Note: We have given the proofs here just to show that the things which looks simple must 

have valid analytical proofs under some consistence theory of mathematics) 

(a) Suppose  x y x z+ = + . 

Since   0y y= +  

     ( )x x y= − + +    since 0x x− + = . 

     ( )x x y= − + +    by associative law. 

     ( )x x z= − + +    by supposition. 

     ( )x x z= − + +    by associative law. 

     0 z= +     since 0x x− + = . 

     z=  

(b) Take 0z =  in (a) 

0x y x+ = +  0y =  

(c) Take z x= −  in (a) 

( )x y x x+ = + −  y x =−  

(d) Since ( ) 0x x− + = , 

then (c) gives ( )x x= − − .       

We are skipping the proofs of following three theorems as these may be the part of the mathematics of 

FSc. 
 

❖ Theorem 

Let , ,x y z . Then axioms of multiplication imply the following. 

(a)  If 0x   and x y x z=   then  y z= . 

(b)  If 0x   and x y x=  then  1y = . 

(c)  If 0x   and 1x y =   then  
1

y
x

= . 

(d)  If 0x  , then 
1

1
x

x

= . 

❖ Theorem 
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Let , ,x y z . Then field axioms imply the following. 

(i)  0 0 =x .    (ii)  if 0x   and 0y  , then 0xy  . 

(iii) ( ) ( ) ( )x y xy x y− = − = − . (iv) ( )( )x y xy− − = . 

❖ Theorem 

Let , ,x y z . Then the following statements are true: 

i) If 0x   then 0x−   and vice versa. 

ii) If 0x   and y z  then  xy xz . 

iii) If 0x   and y z  then  xy xz . 

iv) If 0x   then 
2 0x   in particular  1 0 . 

v) If 0 x y   then 
1 1

0
y x

  . 

❖ Theorem (Archimedean Property) 

If ,x y  and 0x    then there exists a positive integer n such that nx y .  

Proof 

   Let  : 0,A nx n x x+=      

Suppose the given statement is false i.e.  nx y . 

This implies y is an upper bound of A, that is, A is bounded above. 

Since we are dealing with a set of real and it satisfies the least upper bound property, 

Therefore supremum of A exists in .  

Assume that sup A = . 

As 0x  so we have  − x . 

This gives x −  is not an upper bound of A. 

Hence x mx −  ,  where mx A  for some positive integer m. 

So, we have ( 1)m x  + ,  where  m + 1 is integer.  

This implies ( 1)m x A+  . 

This is impossible because   is least upper bound of A  i.e. sup A = . 

Hence, we conclude that our supposition is wrong and the given statement is true.  

❖ Theorem 

   The set  of natural numbers is not bounded above. 

Proof. 

By Archimedean property in real number, for each positive real numbers x , there exist n  such 

that 1n x  , that is, n x . 

This implies, there is no positive real number x  such that n x  for all n . 

This implies no real number is an upper bound of . 

Hence  is not bounded above.                 

❖ The Density Theorem 

If ,x y  and x y  then there exists p  such that  x p y   . 

i.e., between any two real numbers there is a rational number or  is dense in . 

Proof 
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Let us assume that ,x y  with x y .  Then 0y x−  . 

By Archimedean property, for ,1− y x ,  0y x−  , there exists positive integer n such that  

( ) 1n y x−  , 

        1 + nx ny . …………… (i) 

 Again, we use Archimedean property, for 1, nx  and 1,− nx , 1 0 , to obtain two positive 

integers 
1m  and 2m  such that   

1 1m nx    and  2 1m nx  − , 

that is, 

1nx m   and  2− m nx , 

  2 1m nx m −   . 

   Then there is an integer  2 1(with )−  m m m m  such that  

1m nx m−   , 

   nx m     and   1m nx + , 

   1nx m nx   + . 

   Using (i) in the above inequality, we get   

     nx m ny   

   Since 0n  , it follows that     

          
m

x y
n

   

  x p y   ,    where   
m

p
n

=   is a rational.     

   This completes the proof.         

❖ Relatively Prime 

Definition: For ,a b , the numbers a  and b  are said to be relatively prime or co-prime if a  and 

b  don’t have common factor other than 1. If a  and b  are relatively prime, then we write ( , ) 1a b = .  

❖ Theorem 

(i) If r is rational and x is irrational, then r x+  is irrational. 

(ii) If r is non-zero rational and x is irrational, then r x  is irrational. 

Proof 

   (i) Suppose the contrary that r x+  is rational. Then 

       + =
a

r x
b

,   where ,a b  , 0b   such that ( ), 1=a b , 

a
x r

b
 = − .   ……. (1) 

   Since r is rational, there exists , c d , 0d   and ( ), 1=c d  such that 

=
c

r
d

. 

   Using it in (1) to get 
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= −
a c

x
b d

    
−

 =
ad bc

x
bd

, where 0bd  . 

  As ,− ad bc bd , we get x is rational.  

  This cannot happen because x is given to be irrational, hence we conclude that r x+  is irrational. 

                    

   (ii) Let us suppose the contrary that r x  is rational. Then  

       =
a

r x
b

        for some ,a b , 0b   such that ( ), 1a b = . 

1
 = 

a
x

b r
 ……. (2) 

   Since r is non-zero rational, there exists , c d , , 0c d   and ( ), 1=c d  such that 

=
c

r
d

. 

   Using it in (2) to get 

1
=  =  =

a a d ad
x

cb b c bc
d

, where 0bc  . 

   This shows that x is rational, which is again contradiction; hence we conclude that r x  is irrational. 

                  
 

❖ Theorem 

   Given two real numbers x and y, x y  there is an irrational number u such that 

   x u y  . 

Proof 

   We have given x y , therefore 
2 2


x y
. 

   By density theorem, for real numbers 
2

x
 and 

2

y
, we can obtain a rational number 0r   such 

that      

2 2

x y
r     

                2  x r y  

      x u y   , 

   where 2u r=  is an irrational as product of non-zero rational and irrational is irrational.  

                  
 

❖ Theorem 

   For every real number x there is a set E of rational number such that supx E= . 

Proof 

   Take { : }E q q x=   , where x is a real. 
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   Then E is bounded above. Since E  therefore supremum of E exists in . 

   Suppose sup E = . 

   It is clear that  x  . 

   If x =  then there is nothing to prove. 

   If x   then   q  such that  q x   , 

   which cannot happen as   is the upper bound of E. 

   Hence, we conclude that real x is supE.           
 

❖ Question  

   Let E be a non-empty subset of an ordered set, suppose   is a lower bound of E and   is an upper 

bound then prove that   . 

Proof 

   Since E is a subset of an ordered set S i.e. E S . 

   Also   is a lower bound of E therefore by definition of lower bound  

x    x E   …………… (i) 

   Since   is an upper bound of E therefore by the definition of upper bound 

x    x E   …………… (ii) 

   Combining (i) and (ii) 

x         as required.          

❖ Question 

Show that for any two real numbers a  and b . 

(i) 
1

max{ , } ( | |)
2

a b a b a b= + + −   (ii) 
1

min{ , } ( | |)
2

a b a b a b= + − − . 

Note: Above question is proposed to know the difference between supremum & maximum. 
 

 

 

❖ The Extended Real Numbers 

Definition: The extended real number system consists of real field  and two symbols +  and − . 

We preserve the original order in  and define 

x x− +      . 

❖ Remarks 

   It is clear that +  is an upper bound of every subset of the extended real number system, and that 

every nonempty subset has a least upper bound. If, for example, E is a nonempty set of real numbers 

which is not bounded above in , then supE = +  in the extended real number system. 

  The same observations apply to lower bounds. 
 

❖ Extension of Operation in Extended Real Numbers 

   The extended real number system does not form a field. But it is customary to make the following 

conventions: 

a) If x is real, then  



 

13 

Available at MathCity.org 

+=+x ,  −− = x ,  0
−

= =
+ 

x x
. 

b) If 0x   then ( ) , ( )− − + = +   = x x . 

c) If 0x   then ( ) , ( )− − + + =    = x x . 

Note: (i) Mostly we write + =  .  

(ii) The above operations hold in extended real number system not in .  
 

❖ Euclidean Space 

Definitions: For each positive integer k, let 
k
 be the set of all ordered k-tuples  

1 2( , ,..., )kx x x x=  

   where 1 2, ,..., kx x x  are real numbers, called the coordinates of x .  

   The elements of 
k

 are called points or vectors, especially when 1k  . 

   If 1 2( , ,..., )ny y y y=  and   is a real number, we define 

1 1 2 2( , ,..., )k kx y x y x y x y+ = + + +  

    and  1 2( , ,..., )kx x x x   = . 

Observation: It is clear that 
kx y+    and  

kx  . This defines addition of vectors, as 

well as multiplication of a vector by a real number (a scalar). These two operations satisfy the 

commutative, associative, and distributive laws and make 
k
 into a vector space over the real 

field. The zero element of 
k
(sometimes called the origin or the null vector) is the point 0  (or 

we simply write 0), all of whose coordinates are 0. These operations make 
k

 into a vector 

space over the real field. 

Definitions: The inner product or scalar product of x  and y  from 
k

 is defined as  

1 1 2 2

1

. ...
k

i i k k

i

x y x y x y x y x y
=

= = + + +  

and the norm of x  is defined by 

1
2

1
2 2

1

( )
k

ix x x x
 

=  =  
 
 . 

Definition: The vector space 
k
 with the above inner product and norm is called  

Euclidean k-space or Euclidean space. 
 

❖ Theorem 

   Let ,  kx y  then 

i) 
2

x x x=  , 

ii) x y x y  .  (Cauchy-Schwarz’s inequality) 

Proof 

i)  Since 

1

2( )x x x=    therefore 
2

x x x=   
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ii)  If 0x =  or 0y = , then Cauchy-Schwarz’s inequality holds with equality. 

If 0x   and 0y  , then for  , we have 

2

0 x y −   ( ) ( )x y x y = −  −  

    ( ) ( ) ( )x x y y x y  =  − + −  −  

    ( ) ( ) ( ) ( )x x x y y x y y   =  +  − + −  + −  −  

    
22 22 ( )x x y y = −  +  

   Now put 
2

x y

y



=   (certain real number) 

 
( )( ) ( )

2

22

2 4
0 2

x y x y x y
x y

y y

  
  − +     

( )
2

2

2
0

x y
x

y


  −      

2 22
0 x y x y  −    

2 2| |a a a=   , 

( )( )0 x y x y x y x y  +  −  . 

This holds if and only if  

      0 x y x y −        i.e., x y x y  .        

❖ Question  

   Suppose , ,  kx y z , then prove that 

a) x y x y+  + . 

b) x z x y y z−  − + − . 

Solution 

 a)  Consider      ( ) ( )
2

x y x y x y+ = +  +  

x x x y y x y y=  +  +  +   ( )
22

2x x y y= +  +  

22
2x x y y +  +     | |a a a   . 

   
22

2x x y y + +   x y x y   

   ( )
2

x y= +  

    x y x y +  +   …………. (i) 

b) We have           x z x y y z− = − + −  

x y y z − + −   from (i)           
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Chapter 02 

Sequences 

A sequence is a story told by numbers, each taking its turn in a pre-

determined order. --- Prof. Anya Sharma, Analyst 

 
Sequences form an important component of Mathematical Analysis and arise in many situations. The 

first rigorous treatment of sequences was made by A. Cauchy (1789-1857) and George Cantor (1845-

1918). A sequence (of real numbers, of sets, of functions, of anything) is simply a list. There is a first 

element in the list, a second element, a third element, and so on continuing in an order forever. In 

mathematics a finite list is not called a sequence (some authors considered it finite sequence); a sequence 

must continue without interruption. Formally it is defined as follows: 
 

Sequence  

A function whose domain is the set of natural numbers and range is a subset of real numbers is 

called real sequence.  
 

 

Since in this chapter, we shall be concerned with real sequences only, we shall refer to them as just 

sequences. 

Notation:  

  A sequence is usually denoted as  

 
1

{ }n
n

s


=

 or   :ns n  or   1 2 3, , ,...s s s  or simply as  ns  or by ( )ns . 

  But it is not limited to above notations only. 

  The values ns  are called the terms or the elements of the sequence  ns . 

  e.g.        i)     1,2,3,n = . 

    ii) 
1 1 1

1, , ,
2 3n

   
=   

   
. 

   iii)    1( 1) 1, 1,1, 1,n+− = − − . 

   iv)  2,3,5,7,11,... , a sequence of positive prime numbers.  

    v)   ns  such that 1 1s = , 2 1s =  and 2 1n n ns s s+ += + .   

 

Range of a sequence  

The set of all distinct terms of a sequence is called its range. 
 

 

Remark: 

In a sequence  ns , since n  and  is an infinite set, the number of the terms of a 

sequence is always infinite. However, the range of the sequence may be finite.  
 

Subsequence 

It is a sequence whose terms are contained in given sequence. 
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A subsequence of { }ns  is usually written as { }
kns . 

 

Examples: 

1.  2,4,6,...  is subsequence of  1,2,3,...  

2. 
1

2n

 
 
 

 and 
1

1n

 
 

+ 
 is subsequence of 

1

n

 
 
 

. 

 

Increasing sequence  

A sequence  ns  is said to be an increasing sequence if 
1 1n ns s n+    . 

 

Decreasing sequence 

A sequence  ns  is said to be a decreasing sequence if 
1 1n ns s n+    . 

 

Monotonic sequence 

A sequence  ns  is said to be monotonic sequence if it is either increasing or decreasing. 

 

 
Remarks: 

▪ A sequence  ns  is monotonically increasing if 
1 0.n ns s+ −   

▪ A positive term sequence  ns  is monotonically increasing if 1 1n

n

s

s

+  ,  1.n   

▪ A sequence  ns  is monotonically decreasing if 
1 0.n ns s +−   

▪ A positive term sequence  ns  is monotonically decreasing if 

1

1n

n

s

s +

 ,  1.n    

 

 

Strictly Increasing or Decreasing 

A sequence  ns  is called strictly increasing or decreasing according as  

    
1n ns s+    or  

1n ns s+      1n  . 
 

 

Examples: 

➢   {1,2,3,...}n = is an increasing sequence (also it is strictly increasing). 

➢ 
1

n

 
 
 

 is a decreasing sequence. (also it is strictly decreasing). 

➢ {1,1,2,2,3,3,...} is increasing sequence but it is not strictly increasing. 

➢  cos { 1,1, 1,1,...}n = − −  is neither increasing nor decreasing. 

Questions:  
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1) Prove that 
1

1
n

 
+ 

 
 is a decreasing sequence. 

2) Is 
1

2

n

n

+ 
 

+ 
 is increasing or decreasing sequence? 

 

Bounded Sequence 

A sequence  ns  is said to be bounded if there is a positive number   such that   

ns n   . 
 

For such a sequence, every term belongs to the interval [ , ]. −  Also inequality in the above 

definition can be replaced with strict inequality. Alternatively, a sequence is bounded if its range is a 

bounded set. 

It can be noted that if the sequence is bounded then its supremum and infimum exist. If S and s are the 

supremum and infimum of the bounded sequence   ,ns  then we write  sup nS s=    and   inf ns s= . 

Remarks:  

It is easy to conclude that if  ns  is bounded sequence and 
0

n  is positive integer then there exists 

0   such that 

n
s   whenever 

0
n n . 

 

Examples: 

 (i)  
( 1)n

nu
n

 −
=  
 

 is a bounded sequence  

(ii)      sinnv n=  is also bounded sequence. Its supremum is 1 and infimum is 1− . 

(iii)  The geometric sequence  1nar −
, 1r   is an unbounded above sequence. It is bounded below 

by a. 

(iv)  exp( )n  is an unbounded sequence.   
 

Convergence of the sequence 

   The sequence 

1 1 1 1 1
1, , , , , ,...

2 3 4 5 6
 

is getting closer and closer to the number 0. We say that this sequence converges to 0 or that the limit 

of the sequence is the number 0. How should this idea be properly defined? 

The study of convergent sequences was undertaken and developed in the eighteenth century without 

any precise definition. The closest one might find to a definition in the early literature would have 

been something like 

A sequence  ns  converges to a number L if the terms of the sequence 

get closer and closer to L. 

However, this is too vague and too weak to serve as definition but a rough guide for the intuition, this 

is misleading in other respects. What about the sequence 

0.1, 0.01, 0.02, 0.001, 0.002, 0.0001, 0.0002, 0.00001, 0.00002, ...? 

Surely this should converge to 0 but the terms do not get steadily “closer and closer” but back off a bit 

at each second step. 
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The definition that captured the idea in the best way was given by Augustin Cauchy in the 1820s. He 

found a formulation that expressed the idea of “arbitrarily close” using inequalities. 
 

Definition 

A sequence  ns  of real numbers is said to convergent to limit  ‘s’  as n → , if for every 

real number 0  , there exists a positive integer 
0n , depending on  , so that 

ns s −     whenever 
0n n . 

 

A sequence that converges is said to be convergent. A sequence that fails to converge is said to 

divergent (it will be discussed later). 

We will try to understand it by graph of some sequence. Graphs of any four sequences is drawn in the 

picture below. 

 

 
 

Examples 

  a) Prove that 
1

lim 0
n n→

=  (or 
1

n

 
 
 

 converges to 0 ). 

  Solution: Let 0   be given. By the Archimedean Property, there is a positive integer  
0 0( )n n =  

such that 
0 1n   , that is,  

0

1

n
 . Then, if 

0n n , we have  

0

1 1

n n
  . 

Thus we proved that for all 0  , there exists 
0n , depending upon  , such that 

1 1
0

n n
− =    whenever  

0n n . 

Hence 
1

n

 
 
 

 converges to point ‘0’. 

  b) Prove that 
2

1
lim 0

1n n→
=

+
 (by definition). 
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  Solution: Let 0   be given. Now consider 

2 2 2

1 1 1 1
0

1 1n n n n
− =  

+ +
.     (Since 

2 21 0n n+   )  

   Now if we choose 
0n  such that 

0

1

n
  (or 

0

1
n


 ), then the above expression gives us 

2

0

1 1 1
0

1n n n
−   

+
  whenever  

0

1
n n


  . 

   Hence, we conclude that, 
2

1
lim 0

1n n→
=

+
. 

   c) Prove that 
3 2

lim 3
1n

n

n→

+
=

+
 (by definition). 

   Solution: Let 0   be given. Now consider 

 
3 2 3 2 3 3

3
1 1

n n n

n n

+ + − −
− =

+ +
      

    
1 1 1

1 1n n n

−
= = 

+ +
    ( 1 0n n+   ) 

   Now if we take 
0n  such that 

0

1

n
  (or 

0

1
n


 ), then the above expression gives us 

3 2
3

1

n

n


+
− 

+
  whenever  

0n n . 

   Hence, we conclude that  
3 2

lim 3
1n

n

n→

+
=

+
. 

Questions: 

Use definition of the limits to prove the followings: 

    a)    
2

lim 2
1n

n

n→
=

+
.    b) 

2

2

1 1
lim

2 3 2n

n

n→

−
=

+
    c) 

1
lim 0

3nn→
=  

Definitions 

i. A bounded sequence which does not converge is said to oscillate finitely. 

ii. A sequence  ns  is said to be divergent to  , if to each given positive number  , there 

correspond an integer m  such that  

ns     for all n m . 

iii. A sequence  ns  is said to be divergent to −, if to each given positive number  , there 

correspond an integer m  such that  

ns  −   for all n m . 

iv. A sequence  ns  is said to oscillate infinitely, if it is unbounded and is divergent neither to   

nor to −.  
 

Examples 

a.  1 ( 1)n+ −  oscillates finitely. 

b.  ( 1)n n−  oscillates infinitely. 
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c.  2n
 diverges to  . 

d.  2n−  diverges to −. 

Question 

Prove that { }ne−  diverges to − (by definition) 

Solution. 

Suppose 0   be given and 
n

ns e= −  . 

Take 
ns  − ,  i.e. 

ne−  −    
ne     logn   . 

Now if m  is positive integer such that logm   , then 

 
ns  −  for all n m . 

This implies { }ne−  is diverges to −. 

Question 

Prove that {5 }n
 diverges to   (by definition). 

Prove that 
2{ }n  diverges to   (by definition). 

Review 

   ▪ Triangular inequality: If ,a b , then | | | | | | | |a b a b a b−    + . 

   ▪ If 0 a    for all 0  , then 0a = . 
 

 

Theorem 

A convergent sequence of real number has one and only one limit (i.e. limit of the sequence is 

unique.) 

Proof: 

   Suppose  ns  converges to two limits  s  and  t, where s t . 

   Then for all 0  , there exists two positive integers 
1n  and 

2n  such that 

2
ns s


−     

1n n    ……………….  (1) 

and     
2

ns t


−     
2n n  .  ……………….  (2) 

   As (1) and (2) hold simultaneously for all
1 2max{ , }n n n . 

   Thus, for all  
1 2max{ , }n n n  we have 

0 n ns t s s s t − = − + −  

      n ns s s t − + −  

      
2 2

 
 + = . 

   As   is arbitrary, we get 0s t− = , this gives s t= , that is, the limit of the sequence is unique. 

            ❑ 

 

Theorem 

If the sequence  ns  converges to s, where 0s  , then there exists a positive integer 
1n  such 

that  
1

2
ns s  for all 

1n n . 

   Proof: 
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  Since  ns  converges to s, therefore for all real 0  , there exists positive integer 
1n  such that   

ns s −   for 
1n n . 

  We fix  
1

0
2

s =   to get     

1

2
ns s s−      for 

1n n ,      

   that is, 

1

2
ns s s−  − −     for 

1n n .   ………… (1) 

Now    

1 1

2 2
s s s= −  

        ns s s − −    for 
1n n       (by using (1)) 

        ( )ns s s + −    for 
1n n   

This ultimately gives us     

1

2
ns s  for all 

1n n .         ❑ 

 

Theorem 

Let a and b be fixed real numbers if  ns  and  nt  converge to s and t respectively, then 

(i)    n nas bt+  converges to as + bt. 

(ii)   n ns t  converges to st. 

(iii) n

n

s

t

 
 
 

 converges to 
s

t
, provided 0nt  for all n  and 0t  . 

Proof: 

Since  ns  and  nt  converge to s and t respectively, therefore 

      ns s −   1n n    

     nt t −   2n n    

  Also 0   such that  ns     1n     (  ns  is bounded ) 

(i) We have  

( ) ( ) ( ) ( )n n n nas bt as bt a s s b t t+ − + = − + −  

       ( ) ( )n na s s b t t − + −  

       a b  +    1 2max{ , }n n n   

       1= ,     

where 1 a b  = +  a certain number. 

This implies  n nas bt+  converges to as + bt. 

(ii)  n n n n n ns t s t s t s t s t s t− = − + −  

       ( ) ( )n n ns t t t s s= − + −     
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       ( ) ( )n n ns t t t s s  − +  −  

       t  +   1 2max{ , }n n n   

       2= ,   where 2 t  = +  a certain number. 

This implies  n ns t  converges to st. 

(iii) 
1 1 n

n n

t t

t t t t

−
− =  

  
1
2

n

n

t t

t t t t

−
=    1 2max{ , }n n n   

 
1

2
nt t  

  321
2

t


= = ,    where 3 21

2
t


 =   a certain number. 

             This implies  
1

nt

 
 
 

  converges to  
1

t
. 

   Hence 
1n

n
n n

s
s

t t

   
=    

   
 converges to  

1 s
s

t t
 = .   ( )from (ii)   ❑ 

 

 

Question 

   Prove that if lim n
n

s t
→

= , then lim n
n

s t
→

=  but converse is not true in general. 

Question 

   Prove that every convergent sequence is bounded. 

Solution: 

   Consider a sequence  ns  converges to limit l , that is, for all 0  , there exists positive integer 

0n  such that 

ns l −    for all 0n n . 

For 1 = , we have 

1ns l−    for all 0n n  …….. (i) 

 

Now     n ns s l l − +  | |ns l l − +   

Using (i), in above expression, we get 

1ns l +   for all 0n n . 

Now take  
01 2max | |,| |,...,| |,1 | |ns s s l = + , then we have 

ns    for all n . 

This implies  ns  is bounded.          ❑ 

Review: 

▪ For all , ,a b c , a b c−     b c a b c−   +  or a c b a c−   + .     
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Theorem (Sandwich Theorem or Squeeze Theorem) 

 Suppose that  ns  and  nt  be two convergent sequences such that lim limn n
n n

s t s
→ →

= = .  If 

n n ns u t   for all 0n n , then the sequence  nu  also converges to s. 

Proof: 
Since the sequence  ns  and  nt  converge to the same limit s (say), therefore for given 

0    there exists two positive integers 1n  and 2n  such that 

ns s −     1n n  , 

nt s −     
2n n  . 

   i.e.   
ns s s −   +  

1n n  , 

ns t s −   +  
2n n  . 

 Also, we have given 

n n ns u t    
0n n  . 

 Consider 
3 0 1 2max{ , , }n n n n= , then we have 

  
n n ns s u t s −     +   

3n n   

             
ns u s  −   +  

3n n   

          i.e.  nu s −       
3n n   

   i.e.   lim n
n

u s
→

= .          ❑ 

 

Example 

Show that   
2 2 2

1 1 1
lim ... 0

( 1) ( 2) (2 )n n n n→

 
+ + + = 

+ + 
. 

Solution. 

 Consider  

2 2 2

1 1 1

( 1) ( 2) (2 )
ns

n n n
= + + +

+ +
 

  As    
2 2 2 2 2 2

1 1 1 1 1 1

(2 ) (2 ) (2 )
n

n timesn times

s
n n n n n n

+ + +   + + +  , 

  that is, 

2 2

1 1

(2 )
nn s n

n n
      

1 1

4
ns

n n
    

   
1 1

lim lim lim
4

n
n n n

s
n n→ → →

    0 lim 0n
n

s
→

    

   lim 0n
n

s
→

 = .          ❑ 

 

Theorem 

For each irrational number x, there exists a sequence  nr  of distinct rational numbers such 

that  lim n
n

r x
→

= . 

Proof: 
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   Since x and x + 1 are two different real numbers, so there exist a rational number 
1r  such that 

1 1x r x  +  

 Similarly there exists a rational number 
2 1r r  such that  

2 1

1
min , 1

2
x r r x x

 
  +  + 

 
 

Continuing in this manner we have  

3 2

1
min , 1

3
x r r x x

 
  +  + 

 
 

4 3

1
min , 1

4
x r r x x

 
  +  + 

 
 

…………………………….......... 

…………………………….......... 

…………………………….......... 

1

1
min , 1n nx r r x x

n
−

 
  +  + 

 
 

   This implies that there is a sequence  nr  of the distinct rational number such that 

      
1

nx r x
n

  + . 

   Since      ( )
1

lim lim
n n

x x x
n→ →

 
= + = 

 
. 

   Therefore      

lim n
n

r x
→

= .          ❑ 

 

Theorem 

Let a sequence  ns  be a bounded sequence. 

  (i)  If  ns  is monotonically increasing then it converges to its supremum. 

  (ii)  If  ns  is monotonically decreasing then it converges to its infimum. 

Proof 

(i)    Let sup nS s=   and take 0  . 

Since there exists 
0ns  such that 

0nS s−   

Since  ns  is monotonically increasing, 

therefore  

    
0n nS s s S S −     +    for 

0n n  

        
nS s S  −   +              for 

0n n  

        ns S  −        for 
0n n  

        lim n
n

s S
→

 =  

(ii) Let inf ns s=  and take 0  .  

Since there exists 
1ns  such that 

1ns s  +  

Since  ns  is monotonically decreasing, 
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therefore  

   
1n ns s s s s −     +   for 

1n n  

       
ns s s  −   +   for 

1n n  

       ns s  −    for 
1n n  

   Thus  lim n
n

s s
→

=            ❑ 

 

Questions: 

1. Let  ns  be a sequence and lim n
n

s s
→

= . Then prove that 
1lim n

n
s s+

→
= .   

2. Prove that a bounded increasing sequence converges to its supremum. 

3. Prove that a bounded decreasing sequence converges to its infimum. 

4. Prove that if a sequence { }ns  converges to l , then every subsequence of  { }ns  

converges to l . 

5. If the subsequence  2ns  and   2 1ns −  of sequence { }ns  converges to the same limit l  

then { }ns  converges to l . 
 

Recurrence Relation 

A sequence is said to be defined recursively or by recurrence relation if the general term is 

given as a relation of its preceding and succeeding terms in the sequence together with some initial 

condition. 
 

Example: 

Let 
1 1t   and let  nt  be defined by   

1

1
2n

n

t
t

+ = −  for 1n  .  

    (i) Show that  nt  is decreasing sequence. 

   (ii) It is bounded below. 

  (iii) Find the limit of the sequence. 

Since 
1 1t   and  nt  is defined by   

1

1
2n

n

t
t

+ = −  ;  1n   

  0nt     1n   

Also   
1

1
2n n n

n

t t t
t

+− = − +  

   

2 2 1n n

n

t t

t

− +
=  

( )
2

1
0n

n

t

t

−
=  . 

            
1n nt t +      1n  . 

This implies that 
nt  is monotonically decreasing. 

   Since  1nt   1n  , 

  
nt  is bounded below. 

Since 
nt  is decreasing and bounded below therefore 

nt  is convergent. 

Let us suppose  lim n
n

t t
→

= . 

     Then     
1lim limn n

n n
t t+

→ →
=  

1
lim 2 lim n
n n

n

t
t→ →

 
 − = 
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1

2 t
t

 − =       
2 1t

t
t

−
 =      

22 1t t − =    
2 2 1 0t t − + =  

             ( )
2

1 0t − =     1t = .        ❑ 
 

Question:  

▪ Let { }nt  be a positive term sequence. Find the limit of the sequence if  
1

2
4 3

5
n nt t+ = −   for all 

1.n   

▪ Let  nu  be a sequence of positive numbers. Then find the limit of the sequence if  

1 1

1 1

4
n n

n

u u
u

+ −= +   for  1n  .  

▪ The Fibonacci numbers are: 
1 2 1F F= =  , and for every 3n  , 

nF  is defined by the 

recurrence relation 
1 2n n nF F F− −= + . Find the 

1

lim n

n
n

F

F→
−

 (this limit is known as golden 

number)  

 

Cauchy Sequence 

A sequence  ns  of real number is said to be a Cauchy sequence if for given number 0  , 

there exists a positive integer 
0 ( )n   such that  

     n ms s −    
0,m n n   

 

Example 

   The sequence 
1

n

 
 
 

  is a Cauchy sequence. 

   Suppose 
1

ns
n

=  and 0   be given. We choose a positive integer 
0 0( )n n =  such that 

0

2
n


 .  

   Then if 
0,m n n , we have 

0

1 1

2n n


   and similarly 

0

1 1

2m n


  . Therefore, it follows that if 

0,m n n , then 

1 1 1 1

2 2
n ms s

n m n m

 
− = −  +  + = . 

   Since 0   is arbitrary, we conclude that 
1

n

 
 
 

 is Cauchy sequence. 

 

 

Theorem 

A Cauchy sequence of real numbers is bounded. 

Proof: 

   Let  ns be a Cauchy sequence. Then for given number 0  , there exists a positive integer 
0n  

such that  

     n ms s − 
  0,m n n 

. 

Take 1 = , then we have 
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 1n ms s−    
0,m n n  . 

Fix 
0 1m n= +  then 

0 01 1n n n ns s s s+ += − +  

       
0 01 1n n ns s s+ + − +  

       
0 11 ns + +   

0n n  . 

   Now take  
0 01 2 1max | |,| |,...,| |,1n ns s s s += + , then we have 

ns    for all n . 

   Hence we conclude that  ns is a Cauchy sequence, which is bounded one.   ❑ 

Remarks:  

   The converse of the above theorem does not hold, that is, every bounded sequence is not Cauchy. 

   Consider the sequence  ns , where ( 1)n

ns = − ,  1n  . It is bounded sequence because  

( 1) 1 2n− =    1n  . 

   But it is not a Cauchy sequence if it is then for 1 =  we should be able to find a positive integer 
0n  

such that 1n ms s−   for all 
0,m n n . 

   But with 2 1m k= + , 2 2n k= +  when 
02 1k n+  , we arrive at  

2 2 2 1( 1) ( 1)n k

n ms s + +− = − − −  

   1 1 2 1= + =    is absurd. 

    Hence  ns  is not a Cauchy sequence. Also this sequence is not a convergent sequence. 

Questions:   

a. Prove that every Cauchy sequence of real number is bounded but converse is not true. 

b. Prove that every convergent sequence is bounded but converse is not true. 
 

Theorem 

Every Cauchy sequence of real numbers has a convergent subsequence. 

Proof: 

Suppose  ns  is a Cauchy sequence, therefore it is bounded. 

 First, we assume that   :ns n  has maximum value, then set 

 
1

max : 1n ns s n=   

 
2 1max := n ns s n n  

 
3 2max := n ns s n n  and so on 

 Then clearly  
kns  is subsequence of  ns  and it is decreasing and bounded. 

 Hence it is convergent. 

 On the other hand, if  :ns n  has no maximum value, then there exist some positive integer N  

such that  :ns n N  has no maximum value. 

 Now for m N , we can find some 
ms  such that 

m Ns s , otherwise one of the 
1 2, ,...,N N ms s s+ +

 

will be the maximum value of  . :ns n N . 

So assume 
1 1n Ns s += . 
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Now  
2ns  can be the first term after 

1ns  such that 
2 1n ns s . 

Then 
3ns  can be the first term after 

2ns  such that 
3 2n ns s . 

Continuing in this way, we get  
kns  be a subsequence of  ns  such that it is increasing and 

bounded. Thus it is convergent.     ❑ 

Question: 

Prove that every bounded sequence has convergent subsequence. 

 

Theorem (Cauchy’s General Principle for Convergence) 

A sequence of real number is convergent if and only if it is a Cauchy sequence. 

Proof: 

 Let  ns  be a convergent sequence, which converges to s . 

  Then for given 0    a positive integer 
0n , such that 

 
2ns s


−     
0n n   

  Now for 
0n m n   

 n m n ms s s s s s− = − + −   

      n ms s s s − + −  n ms s s s= − + −   

      
2 2

 
 +  = . 

This shows that  ns  is a Cauchy sequence. 

   Conversely, suppose that  ns  is a Cauchy sequence then for 0  , there exists a positive integer 

1m  such that  

2
n ms s


−   

1,n m m   ……….. (i) 

   Since  ns  is a Cauchy sequence,  

   therefore it has a subsequence  
kns  converging to s (say). 

   This implies there exists a positive integer 
2m  such that  

2kns s


−    
2 kn m  ……….. (ii) 

   Now  

k kn n n ns s s s s s− = − + −  

  
k kn n ns s s s − + −  

  
2 2

 
 + =    1 2max ,n m m  , 

   this shows that  ns  is a convergent sequence.      ❑ 
 

 

Example 

Prove that 
1 1 1

1
2 3 n

 
+ + + + 

 
 is divergent sequence. 
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Let  nt  be defined by 

1 1 1
1

2 3
nt

n
= + + + + . 

For  ,m n , n m  we have 

1 1 1

1 2
n mt t

m m n
− = + + +

+ +
 

  
1 1 1

n n n
 + + +     ( n m−   times) 

  
1

( )n m
n

= −   =  1
m

n
− . 

In particular if 2n m=  then  

1

2
n mt t−  . 

This implies that  nt  is not a Cauchy sequence therefore it is divergent.   ❑ 

 

Theorem (Nested intervals) 

Suppose that   nI  is a sequence of the closed interval such that  ,n n nI a b=  , 
1n nI I+   

1n  , and ( ) 0n nb a− →  as n →  then 
nI  contains one and only one point. 

Proof: 

   Since 
1n nI I+  , therefore 

1 2 3 1 1 3 2 1n n n na a a a a b b b b b− −           . 

Note that  na  is increasing sequence, bounded above by 
1b  and bounded below by 

1a . Also note that 

 nb  is decreasing sequence bounded below by 
1a  and bounded above by 

1b . 

This implies both  na  and  nb  are monotone and bounded sequences and hence  convergent. 

Suppose  na  converges to a  and  nb  converges to  b. 

  But   n n n na b a a a b b b− = − + − + −  

n n n na a a b b b − + − + −  0→    as   n → . 

  a b=  

and      
n na a b     1n  .  

This given  nI a= , that is, 
nI  contains only one point.   ❑ 

 

 

Limit inferior of the sequence 

Suppose  ns  is bounded below then we define limit inferior of  ns  as follow 

    liminf limn n
nn

s u
→→

= ,   where    inf :n ku s k n=  . 

   If 
ns  is not bounded below then we define 

    liminf n
n

s
→

=− . 

 

 

Limit superior of the sequence 

Suppose  ns  is bounded above then we define limit superior of  ns  as follow 
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   limsup limn n
nn

s v
→→

= ,  where   sup :n kv s k n=   

   If 
ns  is not bounded above then we define  

    limsup n
n

s
→

=+ . 

 

Remarks:  

i. Limit inferior is also known as lower limit and limit superior is also known sas upper limit of 

the sequence in the literature with the notations lim  and lim  respectively. 

ii. A bounded sequence has unique limit inferior and superior. 

iii. It is easy to prove that limit inferior is less than or equal to limit superior. 
 

Examples 

(i) Let ( 1)n

ns = − , then limit superior of  ns  is 1 and limit inferior of  ns  is 1− .  

(ii) Let 
1

( 1) 1n

ns
n

 
= − + 

 
 

then limit superior of  ns  is 1 and limit inferior of  ns  is 1− . 

(iii)  Let 
1

1 cosns n
n


 

= + 
 

.  

     Then  inf :n ku s k n=   

                  
1 1 1

1 cos , 1 cos( 1) , 1 cos( 2) ,
1 2

inf n n n
n n n

  + + + + +
+ +

      
=       

      
 

                 

1
1 cos

1
1 cos( 1)

1

n if n is odd
n

n if nis even
n





  
+   = 

  + + 
+ 

 

liminf lim 1
→→

 = =−n n n
nn

s s u . 

Also     sup :n kv s k n=   

                

1
1 cos( 1)

1

1
1 cos

n if n is odd
n

n if nis even
n





 
+ +  + = 

  + 
 

 

limsup lim 1
→→

 = =n n
nn

s v .         ❑ 

Theorem 

  If  ns  is a convergent sequence, then  

    lim liminf limsupn n n
n n n

s s s
→ → →

= =  

Proof: 

    Let lim n
n

s s
→

=  then for a real number 0  , there exists a positive integer 
0n  such that 

ns s −   whenever 
0n n .  
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           i.e.      
ns s s −   +   whenever 

0n n .  …………… (i) 

   If we take  inf :n ku s k n=   and  sup :n kv s k n=  , then (i) gives us 

n ns u v s −    +   whenever 
0n n . 

   This gives  lim n
n

u s
→

=  and lim n
n

v s
→

=  

    that is, liminf limsupn n
n n

s s s
→ →

= = .        ❑ 
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Chapter 03 

Series 

It's the ultimate outcome when a pattern of numbers keeps adding itself, 

revealing a hidden sum. --- Dr. Elias Vance, Applied Mathematician 

 

 
I'm standing 5 m from a wall. I 

jump half the distance (2.5 m) 

towards the wall. I halve the 

distance again (1.25 m) and 

continue getting closer to the wall 

by stepping half the remaining 

distance each time. Do I ever reach 

the wall? Zeno, the 5th century 

BCE Greek philosopher, proposed 

a similar question in his famous 

Paradoxes (search for Zeno’s 

paradox). 

The first known example of an 

infinite sum was when Greek 

mathematician Archimedes showed in the 3rd century BCE that the area of a segment of a parabola is 

4/3 the area of a triangle with the same base. The notation he used was different, of course, and some of 

the approach was more geometric than algebraic, but his approach of summing infinitely small quantities 

was quite remarkable for the time.  

Mathematicians Madhava from Kerala, India studied infinite series around 1350 CE. Among his many 

contributions, he discovered the infinite series for the trigonometric functions of sine, cosine, tangent 

and arctangent, and many methods for calculating the circumference of a circle 

In the 17th century, James Gregory (1638-1675) worked in the new decimal system on infinite series 

and published several Maclaurin series. In 1715, a general method for constructing the Taylor series for 

all functions for which they exist was provided by Brook Taylor (1685-1731). Leonhard Euler (1707-

1783) derived series for sine, cosine, exp, log, etc., and he also discovered relationships between them. 

He also introduced sigma notation (Σ) for sums of series. 

 
 
 

Infinite Series 

   Let  na  be a given sequence. Then a sum of the form 

1 2 3a a a+ + +  

is called an infinite series.  

Another way of writing this infinite series is  
1

n

n

a


=

  or 
1 nn
a



=  or simply na . 

   
 

Convergence and divergence of the series 



 

33 

Available at MathCity.org 

  A series 
1

n

n

a


=

  is said to be convergent if the sequence  n
s , where 

1

n

n k

k

s a
=

= , is convergent. 

   If the sequence  ns  diverges then the series is said to be diverge. 

 

 

Remarks: 

 For a series 
1

n

n

a


=

 , the sequence  n
s ,  where 

1

n

n k

k

s a
=

= , is called the sequence of partial sum of 

the series. The numbers 
n

a  are called terms and 
n

s  are called partial sums. One can note that 

1 1
s a=   

2 1 2
s a a= +  

3 1 2 3
s a a a= + +  and 

1 2
...

n n
s a a a= + + +   or 

1n n n
s s a

−
= + . 

   If the sequence  ns converges to s, we say that the series converges and write 
1

n

n

a s


=

= , the 

number s is called the sum or value of the series but it should be clearly understood that the ‘s’ is the 

limit of the sequence of sums and is not obtained simply by addition. 

   Also note that the behaviors of the series remain unchanged by addition or deletion of the first finite 

terms. Just as a sequence may be indexed such that its first element is not 
n

a  , but is 
0

a  , or 
5

a  or  

99
a , we will denote the series having these numbers as their first element by the symbols 

0

n

n

a


=

   or  
5

n

n

a


=

  or  
99

n

n

a


=

 . 

Review: 

▪ Let  n
a  be a convergent sequence, then 

1
lim lim

n n
n n

a a
−

→ →
= . 

 

Theorem 

If  
1

n

n

a


=

  converges then  lim 0n
n

a
→

= . 

Proof 

   Assume that  1 2 3n ns a a a a= + + + + .  

   As 
1

n

n

a


=

  is convergent, therefore  n
s  is convergent. 

   Suppose          lim n
n

s s
→

= , then we have 
1lim n

n
s s−

→
= . 

   Now we have  1n n ns s a−= +   for 1n  , 

     or  1n n na s s −= −   for 1n  . 

   Therefore    ( )1lim limn n n
n n

a s s −
→ →

= −  

            
1lim limn n

n n
s s −

→ →
= −  

            0s s= − = .        ❑ 
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Remark:  

 (i) The converse of the above theorem is false. For example, consider the series 
1

1

n n



=

 . We know that 

the sequence  ns , where 1 1 1
2 3

1 ...n n
s = + + + + , is divergent therefore  

1

1

n n



=

   is divergent series, 

although   lim 0n
n

a
→

= . 

(ii) The above theorem shows that if lim 0n
n

a
→

 , then  
na  is divergent (This is called basic 

divergent test). 
 

Examples: 

(i) Is the series 
1

1
1

n n



=

 
+ 

 
  is convergent or divergent? 

Solution. 

Assume 
1

1na
n

= + .  

Now we have  
1

lim lim 1 1 0n
n n

a
n→ →

 
= + =  

 
. 

Hence 
1

1
1

n n



=

 
+ 

 
  is divergent (by basic divergent test) 

(ii) Show that the series 
1 2 3

...
4 6 8
+ + +  is divergent. 

Solution. 

 The above series can be written as 

1 2( 1)n

n

n



= +
 .  

 Then take 

2( 1)
n

n
a

n
=

+
,  

  As we have 
1

lim lim 0
2( 1) 2

n
n n

n
a

n→ →
= = 

+
. 

  Hence the given series is divergent by basic comparison test. 

(iii)  Is the series 

1 !

n

n

n

n



=

  is convergent or divergent? 

Solution. 

Assume that  
!

n

n

n
a

n
= . 

As       
( 1) ( 2) ... 3 2 1

n

n

n
a

n n n
=

 −  −    
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... 1
1 2 2 1

n n n n n

n n n
=      

− −
 for all 1n  .  

  We conclude lim n
n

a
→

 cannot be zero.  

   Hence 

1 !

n

n

n

n



=

  is divergent (by basic divergent test).  

Questions: 

(i) Prove that if  
1 nn
a



=  is convergent then  lim 0n
n

a
→

=  but converse is not true. 

(ii) Prove that if  lim 0n
n

a
→

 , then 
na  is divergent. 

 

Review: 

▪ A series 
na  is convergent if and only if it sequence of partial sum

 1
:

=
=

n

n kk
s a  is convergent. 

▪ A sequence in  is convergent iff it is Cauchy sequence. 

▪ A sequence { }
n

s  is Cauchy sequence if and only if for all 0   there exists 

positive integer 
0

n  such  n m
s s −   for all 

0
,n m n  (or 

0
n m n  ).  

 

 Theorem (General Principle of Convergence or Cauchy Criterion for Series) 

   A series 
na  is convergent if and only if for any real number 0  , there exists a positive integer 

0n  such that  

     
1

n

i

i m

a 
= +

      0n m n    

Proof 

   Assume that 1 2 3n ns a a a a= + + + + . 

   Then 
na  is convergent if and only if  ns  is convergent. 

   Now  ns  is convergent if and only  ns  is Cauchy sequence, 

   that is, for all real number 0  , there exists a positive integer 0n  such that  

n ms s −        0n m n    ……… (i) 

   As n m , therefore 

1 2

1 2

...

... .

+ +

+ +

= + + + +

 − = + + +

n m m m n

n m m m n

s s a a a

s s a a a
 

   So by using (i), we have 

    1 2 ... + +− = + + + n m m m ns s a a a     0n m n   . 

   This gives 

               
1


= +


n

i

i m

a    0n m n   .    ❑ 

 

 

Review: 

▪ A bounded and monotone sequence, then it is convergent. 
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▪ An unbounded sequence is divergent. 
 
 

Theorem 

   Let  
na  be an infinite series of non-negative terms and let  ns  be a sequence of its partial 

sums. Then 
na  is convergent if  ns  is bounded and it diverges if  ns  is unbounded. 

Proof 

   We have 1 2 3 ...n ns a a a a= + + + + , this give  1 1n n ns s a+ += + . 

As we have given 0na   for all 1n   and 
1 1n n n ns s a s+ += +    for all 1n  . 

Therefore, the sequence  ns  is monotonic increasing. 

 Now if  ns  is bounded then we concluded that  ns  is convergent. 

 Now if  ns  is unbounded, then it is divergent. 

   Hence we conclude that 
na  is convergent if  ns  is bounded and it divergent if  ns  is 

unbounded.          ❑ 
 

Review: 

▪ A series 
na  is divergent if and only if there exists real number 0  , such that for all 

positive integer 
0

n , 

1

n

i

i m

a 
= +

      whenever 0n m n   

 

Theorem (Comparison Test) 

   Suppose 
na  and 

nb  are infinite series such that  0na  , 0nb   for all n . Also suppose that 

for a fixed positive number   and positive integer k ,  

                                        n na b   n k  . 

   (i)  If 
nb  is convergent, then  

na  is convergent. 

   (ii) If 
na  is divergent, then  

nb  is divergent. 

Proof 

  (i)  Suppose nb  is convergent and  

          n na b     n k  , 0  ,  …………. (i) 

   By Cauchy criterion; for any positive number 0   there exists 0n  such that 

      
1

n

i

i m

b


= +

   0n m n   

   from (i)  

1 1

n n

i i

i m i m

a b 
= + = +

    ,     0n m n       na   is convergent. 

   (ii)  Now suppose na  is divergent then there exists a real number 0  , such that  

     
1

n

i

i m

a 
= +

  ,     n m . 

   From (i) 
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1 1

1n n

i i

i m i m

b a 
= + = +

   ,     n m  

   
nb   is divergent.         ❑ 

 
Example 

   Prove that  
1

n
  is divergent. 

Since  0n n   1n  . 

      
1 1

n n
   

      
1

n
   is divergent as  

1

n
   is divergent.      ❑ 

 

Example 

    The series 
1

n  is convergent if 1   and diverges if 1  . 

    Let    
1 1 1

1 ...
2 3

ns
n  

= + + + + . 

    If  1    then 

     2n ns s     and    
1 1

( 1)n n 


−
. 

Now   
2

1 1 1 1
1 ...

2 3 4 (2 )
ns

n   

 
= + + + + + 
 

  

                
1 1 1 1 1 1 1

1
3 5 (2 1) 2 4 6 (2 )n n      

   
= + + + + + + + + +   

−   
 

                
1 1 1 1 1 1 1

1 1
3 5 (2 1) 2 2 3 ( )n n      

   
= + + + + + + + + +   

−   
 

               
1 1 1 1

1
2 4 (2 2) 2

ns
n   

 
 + + + + + 

− 
     (replacing 3 by 2, 5 by 4 and so on.) 

      
1 1 1 1

1 1
2 2 ( 1) 2

ns
n   

 
= + + + + + 

− 
 

      1

1 1
1

2 2
n ns s

 −= + +    2 2

1 1
1

2 2
n ns s

 
 + +   1 2n n ns s s−    

       2

2
1

2
ns


= +  

    2 21

1
1

2
n ns s

−
  + . 
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21

1
1 1

2
ns

−

 
 −  

 
 

1

21

2 1
1

2
ns





−

−

 −
  

 
    

1

2 1

2

2 1
ns





−

−
 

−
, 

   i.e.  

1

2 1

2

2 1
n ns s





−

−
 

−
 

    ns  is bounded and also monotonic. Hence, we conclude that 
1

n  is convergent when 

1  . 

   If 1   then 

n n     1n   

   
1 1

n n
     1n   

   Since 
1

n
   is divergent therefore 

1

n  is divergent when 1  .        ❑ 

 

Theorem (Limit Comparison Test) 

   Let 0na  , 0nb   and lim n

n
n

a

b


→
= , where 0  . 

(i) If 0  , then the series 
na  and 

nb  behave alike. 

(ii) If 0 = and if 
nb is convergent, then 

na is convergent. If 
na  is divergent then 

nb  is 

divergent. 

Proof 

   Since  lim n

n
n

a

b


→
= , therefore for 0  , there exists positive integer 0n  such that  

  n

n

a

b
 −      0n n  . ………….. (* ) 

(i) If 0  , then take 
2


 =  (as   will be positive) 

2

n

n

a

b


 −      0n n  .  

2 2

n

n

a

b

 
 −  −   0n n  . 

2 2

n

n

a

b

 
  −   +  0n n  . 

3

2 2

n

n

a

b

 
      0n n  . 

   Then we got    

3

2
n na b


    and    

2
n nb a


  for 0n n .  

   Hence by comparison test we conclude that  na  and  nb  converge or diverge together.  
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(ii) If  0 = , then (*) implies   n na b  

   Hence by comparison test we conclude that  
na  is convergent if  

nb  converges. Also 
nb  

is divergent if 
na diverges.    ❑ 

 

Example 

   Is the series 
21

sin
x

n n
  is convergent or divergent for real x ? 

    Consider  
21

sinn

x
a

n n
=     and take    

3

1
nb

n
= . 

   Then     
2 2sinn

n

a x
n

b n
=   

2

2

sin

1

x

n

n

=     

                     

2

2

sin
x

nx
x

n

 
 

=  
 
 

 

   Applying limit as n →  
2 2

2 2 2 2

sin sin

lim lim lim (1)n

n n n
n

x x
a n nx x x x

x xb

n n

→ → →

   
   

= = = =   
   
   

. 

   
na   and 

nb  have the similar behavior for all finite values of  x except x = 0. 

   Since 
3

1

n
  is convergent series therefore the given series is also convergent for finite values of x 

except x = 0. 

   If 0x = , then the given series is also convergent because it is just zero. ❑ 

 

 

 

Theorem (Cauchy Condensation Test) 

    Let  0na  , 1n na a +  for all 1n   (i.e. { }
n

a  is positive term decreasing sequence). Then the 

series  na  and   1

1

2
2 n

n a −

−  converges or diverges together. 

Proof 

The condensation test follows from noting that if we collect the terms of the series into groups 

of lengths 2n
, each of these groups will be less than 

2
2 n

n a  by monotonicity. Observe, 

1

2 2 4 4 4 4
2 2 2

1 2 3 4 5 6 7 2 2 1 2 1
1

1 2 4 2 2
0

2 4 2 2 .

n n n

n n n

n n

n

n
a a a a a a a a a

n n

n

a a a a a a a a a a a

a a a a a

+



+ −
=

 +  + + +  + + +



=

= + + + + + + + + + + + +

 + + + + + =
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We have use the fact that 
na  is decreasing sequence. The convergence of the original series now 

follows from direct comparison to this "condensed" series. To see that convergence of the original 

series implies the convergence of this last series, we similarly put, 

1 1

1 1 2 2 3 3 12 2 ( 2 1) ( 2 1) ( 2 1)

1 2 2 4 4 42 2 2 2
0

1 1 2 2 3 3

1

2

2 .

n n n n

n n n n n

n

n
a a a a a a a a a a a

n n n

n

a a a a a a a a a a

a a a a a a a a a

+ +

++ + −



=
 +  + + +  + + + + +



=

= + + + + + + + + + + +

 + + + + + + + + + =





  

And we have convergence, again by direct comparison. And we are done. Note that we have obtained 

the estimate 

2
1 0 1

2 2 .n

n

n n

n n n

a a a
  

= = =

           ❑ 

 

Example 

   Find value of p for which 
1

pn
  is convergent or divergent.  

   If 0p   then  
1

lim 0
pn n→
 , therefore the series diverges when 0p  . 

   If 0p   then the condensation test is applicable, and we are lead to the series  

0 0

1 1
2

(2 ) 2

k

k p kp k
k k

 

−
= =

=   

                             
( 1) ( 1)

0 0

1 1

2 2

k

p k p
k k

 

− −
= =

 
= =  

 
    

           
(1 )

0

2 p k

k


−

=

=  . 

   Now 
12 1p−    iff  1 0p−    i.e. when  1p  . 

   And the result follows by comparing this series with the geometric series having common ratio less 

than one. 

   The series diverges when 
12 1p− =   ( i.e. when 1p = ). 

   The series is also divergent if 0 1.p        ❑ 
 

Example 

Prove that if  1p  , 

2

1

(ln ) p
n n n



=

  converges and if  1p   the series is divergent. 

Since  ln n  is increasing, therefore 
1

lnn n

 
 
 

 decreases 

   and we can use the condensation test to the above series. 

   We have  

( )

1

ln
n p

a
n n

=  
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( )
2

1

2 ln 2
n p

n n
a =   

( )2

1
2

ln 2
n

n

p
a

n
 =  

   Now   

( )2

1 1 1
2

( ln 2) ln 2
n

n

pp p
a

n n
= =   . 

   This converges when 1p    and diverges when 1p  .    ❑ 
 

Example 

Prove that 
1

ln n
  is divergent. 

   Since  ln n  is increasing there 
1

ln n

 
 
 

 decreases. 

   We can apply the condensation test to check the behavior of the series.  

    Take 
1

ln
na

n
= , then   

2

1

ln 2
n n

a = . 

   So    
2

2
2

ln2
n

n
n

n
a =      

2

2
2

ln 2
n

n
n a

n
 = . 

   Since  
2 1n

n n
  1n   

   and  
1

n
   is diverges therefore the given series is also diverges.   ❑ 

 

 

 

 

 

 
 

 

 

Alternating Series 

   A series in which successive terms have opposite signs is called an alternating series. 
 

Example: 
1( 1) 1 1 1

1
2 3 4

n

n

+−
= − + − +  is an alternating series. 

Review: 

▪ If { }ns  is convergent to s , then every subsequence of { }ns  converges to s . 

▪ If na  is convergent, then lim 0n
n

a
→

= . 

▪ If a sequence is decreasing and bounded below then it is convergent. 
 

Theorem (Alternating Series Test or Leibniz Test) 

   Let  na  be a decreasing sequence of positive numbers such that lim 0n
n

a
→

=  then the alternating 

series 
1

1 2 3 4

1

( 1)n

n

n

a a a a a


+

=

− = − + − +   converges. 

Proof 
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    Looking at the odd numbered partial sums of this series we find that 

2 1 1 2 3 4 5 6 2 1 2 2 1( ) ( ) ( ) ( )n n n ns a a a a a a a a a+ − += − + − + − + + − + . 

   Since  na  is decreasing therefore all the terms in the parenthesis are non-negative 

      
2 1 0ns +     n . 

   Moreover 

       2 3 2 1 2 2 2 3n n n ns s a a+ + + += − +  

               ( )2 1 2 2 2 3n n ns a a+ + += − −  

   Since   2 2 2 3 0n na a+ +−     therefore  
2 3 2 1n ns s+ + . 

   Hence the sequence of odd numbered partial sum is decreasing and is bounded below by zero.  (as it 

has +ive terms) 
   It is therefore convergent. 

   Thus 2 1ns +  converges to some limit l  (say). 

  Now consider the even numbered partial sum. We find that 

   2 2 2 1 2 2n n ns s a+ + += −  

   and   

  ( )2 2 2 1 2 2lim limn n n
n n

s s a+ + +
→ →

= −  

      
2 1 2 2lim limn n

n n
s a+ +

→ →
= −   0l= − l=      lim 0n

n
a

→
= . 

   so that the even partial sum is also convergent to l . 

      both sequences of odd and even partial sums converge to the same limit. 

   Hence, we conclude that the corresponding series is convergent.   ❑ 
 

Absolute Convergence 

A series 
na  is said to converge absolutely if 

na  converges. 

 

Review: 

▪ A series 
na is convergent if and only if for any real number 0  , there exists a positive 

integer 0n  such that  
1

n

i

i m

a 
= +

  for all 0n m n  . 

▪ For all ia  , 1,2,...,i n= ;  
1 1

n n

i i

i i

a a
= =

  .  

 

Theorem 

An absolutely convergent series is convergent. 

Proof: 

   If na  is convergent then by Cauchy criterion for convergence; for a real number 0  , there 

exists a positive integer 0n  such that 

1 1

n n

i i

i m i m

a a 
= + = +

=        0,n m n  .  ………….. (i) 

   Also, we have 

1 1

n n

i i

i m i m

a a
= + = +

    ……………….. (ii) 

   By using (i) and (ii), one has 
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1

n

i

i m

a 
= +

      0,n m n  .   

   This implies the series 
na  is convergent. 

 
 

Note: 

   The converse of the above theorem does not hold. 

e.g.     

1( 1)n

n

+−
  is convergent but 

1

n
  is divergent.    ❑ 

Question: 

▪ Prove that every absolute convergent series is convergent, but convers is not true in general. 
 

Review 

▪ Let ,x y  and x y . Then there exist number r  such that x r y  .  

▪ If lim n
n

a
→

 exists and lim n
n

a l
→

 , 0l  , then there exist positive integer 
0n  such that na l   

for 0n n . 
 

Theorem (The Root Test) 

Let    
1

lim n
n

n
a p

→
= . 

   Then 
na  converges absolutely if 1p   and it diverges if 1p  . 

Proof 

   Let 1p   then there exist real number r  such that 1p r  .  

   As we have 
1

lim n
n

n
a p

→
= , there is some 0n  so that 

1
n

na r  0n n   

     1n

na r    0n n  . 

   Since 
nr  is convergent because it is a geometric series with 1r  , therefore 

na  is 

convergent. 

      
na   converges absolutely. 

   Now let 1p  . Also we have 
1

lim n
n

n
a p

→
= , there is some 0n  so that 

1

1n
na   for 0n n .  

1na    for 0n n . 

lim 0n
n

a
→

     lim 0n
n

a
→

  . 

na   is divergent.         ❑ 
 

Note: 

The above test gives no information when 1p = . 

   e.g.   Consider the series  
1

n
   and  

2

1

n
 . 
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  For each of these series; 1p = , but  
1

n
   is divergent and  

2

1

n
   is convergent. 

 

Theorem (Ratio Test) 

The series 
na  

  (i)    Converges if 1lim 1n

n
n

a

a

+

→
 .  (ii)   Diverges if 1lim 1n

n
n

a

a

+

→
 . 

 

Proof 
If (i) holds we can find 1   and integer N such that  

1n

n

a

a
+   for n N  

   In particular  

1N

N

a

a
+   

    1N Na a+   

    
2

2 1N N Na a a + +    

    
3

3N Na a+   

……………………. 

……………………. 

……………………. 

   
p

N p Na a+   

   
n N

n Na a −    we put N p n+ = . 

 i.e.   
N n

n Na a  −   for n N . 

   Sine 
n  is convergent because it is geometric series with common ratio less than 1, therefore 

na  is convergent (by comparison test). 

   If (ii) holds, then we can find integer 0n  such that  

1 1n

n

a

a

+   for 0n n . 

   This gives 

1n na a+       for 0n n , 

   that is, the terms are getting larger and guaranteed to not be negative, therefore 

   lim 0n
n

a
→

 . This provide us lim 0n
n

a
→

 . 

     na   is divergent.        ❑ 
 

Note: 

   The knowledge 1lim 1n

n
n

a

a

+

→
=  implies nothing about the convergent or divergent of series. 
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Example 

   Prove that series  
na  with   

1

1 1

n
n

n

n n
a

n n

−
+  

= −  
+ +   

 is divergent. 

   Since  1
1

n

n


+
, therefore 0na   n . 

     Also   ( )

1
11

1 1

n

n
n

n n
a

n n

−
+  

= −  
+ +   

 

    

1

1
1

1

n
n n

n n

−

 +   
= −    

+     

  

1

1 1
1

n
n n

n n

−
− + +   

= −    
     

 

    

1

1 1
1 1 1

n

n n

−
−    

= + − +    
     

 

  

1

1 1
lim lim 1 1 1

n

n
n n

a
n n

−
−

→ →

    
= + − +    

     

1

1 1
lim 1 lim 1 1

n

n nn n

−
−

→ →

    
= + − +    

     

 

   
1

11 1 e
−

− =  −   

1
1

1
e

−

 
= − 

 
 

1
1e

e

−
− 

=  
 

 
1

e

e
=

−
   1 . 

      This implies the given series is divergent.           ❑ 
 

Dirichlet’s Theorem 

   Suppose that  

(i)  ns , 1 2 3n ns a a a a= + + + +   is bounded and  

(ii)  nb  be positive term decreasing sequence such that  lim 0n
n

b
→

= . 

   Then 
n na b  is convergent. 

Proof 

   Since  ns  is bounded, therefore, there exists a positive number   such that  

ns   1n  . 

   Then  ( )1i i i i ia b s s b−= −   for 2i   

       1i i i is b s b−= −  

       1 1 1i i i i i i i is b s b s b s b− + += − + −  

       ( )1 1 1i i i i i i is b b s b s b+ − += − − +  

         ( ) ( )1 1 1

1 1

n n

i i i i i m m n n

i m i m

a b s b b s b s b+ + +

= + = +

 = − − −   

   Since  nb  is positive term decreasing,  

   therefore ( )1 1 1

1 1

n n

i i i i i m m n n

i m i m

a b s b b s b s b+ + +

= + = +

= − − +   
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   ( ) 1 1 1

1

n

i i i m m n n

i m

s b b s b s b+ + +

= +

 − + +  

   ( ) 1 1 1

1

n

i i m n

i m

b b b b  + + +

= +

 − + +   is   

   ( )1 1 1

1

n

i i m n

i m

b b b b + + +

= +

 
= − + + 

 
  

   ( )( )1 1 1 1m n m nb b b b + + + += − + + 12 mb +=   
12 1mb + + .  

   
1

n

i i

i m

a b 
= +

  , where 
12 1mb  += +  a certain number 

      The 
n na b  is convergent.  (We have use Cauchy criterion here.)  ❑ 

 

 

 
 

Theorem 

   Suppose that  

(i) 
na  is convergent and  

(ii)  nb  is monotonic convergent sequence, 

   then 
n na b  is also convergent. 

Proof 

  Suppose  nb  is decreasing and it converges to b . 

  Put n nc b b= −  for all n .   

     0nc    and lim 0n
n

c
→

= . 

  Since 
na  is convergent,  

  therefore  ns ,  1 2n ns a a a= + + +  is convergent, that is,  ns  is bounded. 

   By Dirichlet’s theorem, we have 
n na c  is convergent. 

   Since n n n n na b a c a b= +  and n na c  and na b  are convergent, 

   therefore  n na b  is convergent. 

   Now if  nb  is increasing and converges to b then we shall put n nc b b= − .        ❑ 
 

Example 

A series 
1

( ln )n n   is convergent if 1   and divergent  if 1  . 

   To see this we proceed as follows 

1

( ln )
na

n n 
=  

   Take  

( )
2

2
2

2 ln 2
n

n
n

n
n n

b a


= =   

( )
2

2 ln 2

n

n n


=  
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( )

2

2 ln 2

n

n n
 

=   

( )

1

2 ln 2n n n
 −

=  

            
( )

( 1)
1

1 2

ln 2

n

n



 

−

 
 
 =   

Since 
1

n  is convergent when 1   and 

( 1)
1

2

n−
 
 
 

 is decreasing for 1   and it converges to 0. 

Therefore 
nb  is convergent  

   
na   is also convergent. 

   Now 
nb  is divergent for 1   therefore 

na  diverges for 1  .  ❑ 

 
 

Example 

To check 
1

lnn n  is convergent or divergent. 

   We have 
1

ln
na

n n
=  

   Take        
2

2
2

(2 ) (ln 2 )
n

n
n

n n n
b a


= =    

2

2 ( ln 2)

n

n n
=  

         

(1 )1 2

ln 2

n

n

−

=    

( 1)
1

21

ln2

n

n

−
 
 
 =   

    
1

n
   is divergent although  

( 1)
1

2

n −   
  
   

 is decreasing, tending to zero for 1   therefore 

nb  is divergent. 

   
na   is divergent. 

      The series also divergent if  1  . 

      i.e. it is always divergent.        ❑ 
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Chapter 04 

Limit & Continuity 

Limits define where we're headed, and continuity ensures the journey 

there is smooth --- Dr. Ben Carter, Data Scientist 

In this chapter we will introduce the important notion of the limit of a function. The intuitive idea of the 

function f having a limit L at the point a is that the values f(x) are close to L when x is close to (but 

different from) a. But it is necessary to have a technical way of working with the idea of "close to" and 

this is accomplished in the  −  definition given below.  

In order for the idea of the limit of a function f at a point a to be meaningful, it is necessary that f be 

defined at points near a. It need not be defined at the point a, but it should be defined at enough points 

close to a to make the study interesting. This is the reason for the following definition. 
 

❖ LIMIT OF THE FUNCTION 

Definition: Suppose E   and :f E →   be a function. A number L  is called the limit of f  

when x  approaches to a if for all 0  , there exists 0   (depending upon  ) such that 

( )f x L −   whenever 0 x a  −  . 

Notation: It is written as lim ( )
x a

f x L
→

= . 

 

Note:   i) It is to be noted that a  but that a need not a point of E  in the above definition (a is a 

limit point of E  which may or may not belong to E .) 

   ii) Even if a E , we may have ( ) lim ( )
x a

f a f x
→

 .  

Example: 

In the following diagram we have illustrated lim ( )
x a

f x L
→

= .  

 
What the definition is telling us is that for any number 0   that we pick we can go to our graph and 

sketch two horizontal lines at L +  and L −    as shown on the graph above.  Then somewhere out 

there in the world is another number 0  , which we will need to determine, that will allow us to add 

in two vertical lines to our graph at a +   and a − . 
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❖ Example 

(i) Consider the function 

2 1
( )

1

x
f x

x

−
=

−
, 1x  . 

It is to be noted that f  is not defined at 1x =  but if 1x   and is very close to 1, then ( )f x  is close 

to 2.  

To check limit of ( ) 2f x →  as 1x → , let’s start off by letting 0    be any number then we need 

to find a number  0   so that the following will be true.      

  
2 1

2
1

x

x


−
− 

−
 whenever 0 1x  −  . 

We’ll start by simplifying the left inequality in an attempt to get a guess for  .  Doing this gives, 
2 1

2 1 2 1
1

x
x x

x


−
− = + − = − 

−
  implies 0 | 1|x   −  = .         ❑ 

(ii)   Lets see by definition: ( )
2

lim 5 4 6
x

x
→

− = . 

  Let’s start off by letting 0    be any number then we need to find a number  0   so that the 

following will be true.        

(5 4) 6x − −   whenever 0 2x  −  . 

   We’ll start by simplifying the left inequality in an attempt to get a guess for  .  Doing this gives, 

  (5 4) 6 5 4 6 5 10 5 2x x x x − − = − − = − = −    implies 0 | 2 |
5

x


 −  = .         ❑ 

Note: Today, we have developed lot of tools to find the limit of functions without using the definition 

(even without knowing the limit). Here our aim is to understand the limit by definition. 

   If the definition of limit is violated or leads to something absurd even by choosing one value of  , 

then we say limit doesn’t exist. 
  

❖ Example 

   
0

1
lim sin
x x→

   does not exist. 

   Suppose that  
0

1
lim sin
x x→

  exists and take it to be  l, then there exist a positive real number   such 

that  

1
sin 1l

x
−      when   0 0x  −     (we take here 1 0 =  ) 

   We can find a positive integer n  such that  

             
2

n



    then    

2

(4 1)n





+
   and   

2

(4 3)n





+
. 

   It thus follows 

(4 1)
sin 1

2

n
l

+
−    1 1l −   

    and  
(4 3)

sin 1
2

n
l

+
−    1 1l − −      or    1 1l+  . 

   So that  
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2 1 1 1 1 1 1l l l l= + + −  + + −  +       

              2 2  . 

   This is impossible; hence limit of the function does not exist.        ❑ 
 

❖ Example 

   Consider the function  :[0,1]f →   defined as 

    
0

( )
1

if x is rational
f x

if x is irratioanl


= 


 

   Show that  lim ( )
x p

f x
→

, where  [0,1]p   does not exist. 

Solution 

   On the contrary, suppose that lim ( ) .
x p

f x q
→

=   

Then for given 0   we can find 0   such that 

( )f x q −    whenever  0 x p  −  . 

   Consider two points r  and s   from interval ( ), [0,1]p p − +   such that r  is rational and s  

is irrational. 

   Then  ( ) 0f r =   &  ( ) 1f s = . 

   Now 

        1 ( ) ( )f s f s q q= = − +  

( ( ) 0f s q q= − + −  

( ) ( )f s q q f r= − + −       (since 0 ( )f r= ). 

( ) ( )f s q f r q   − + −  + . 

                     i.e.   1 2  

   In particular, if we take 
1

4
 = , then  

1
1

2
 . 

   This is absurd. 

   Hence the limit of the function does not exist.          ❑ 
 

❖ Theorem 

   If lim ( )
x c

f x
→

 exists, then it is unique. 

Proof 

   Suppose lim ( )
x c

f x
→

 is not unique. 

   Take  
1lim ( )

x c
f x l

→
=    and   

2lim ( )
x c

f x l
→

= ,    where   1 2l l . 

   So for 0  , there exists real numbers  1  and  2  such that  

1( )
2

f x l


−      whenever    1x c −   

  &     2( )
2

f x l


−      whenever    2x c −  . 

    Now     ( ) ( )1 2 1 2( ) ( )l l f x l f x l− = − − −  

       1 2( ) ( )f x l f x l − + −  
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2 2

 
 + ,    whenever    1 2min( , )x c  −  . 

   That is,  1 20 l l  −   for all 0  . 

      1 2 0l l − =  or   1 2l l=  .              ❑ 
 

❖ RIGHT HAND LIMIT OF THE FUNCTION 

Definition: Suppose E   and :f E →   be a function. If for all 0  , there exists 0   

(depending upon  ) such that 

( )f x L −   whenever a x a   + , 

Then L is called right hand limit of function f at a. 

Notation: It is written as lim ( )
x a

f x L
→ +

= . 

 

❖ LEFT HAND LIMIT OF THE FUNCTION 

Definition: Suppose E   and :f E →   be a function. If for all 0  , there exists 0   

(depending upon  ) such that 

( )f x L −   whenever a x a−   , 

Then L is called left hand limit of function f at a. 

Notation: It is written as lim ( )
x a

f x L
→ −

= . 

 

Remark: One can easily prove that if the right hand limit or left hand limit of the function exists then 

it is unique. 

 

Examples: 

(i) Consider a function 
sin

( )
sin

x
f x

x
=  for x . 

It is easy to see that 
0

| sin |
lim 1,

sinx

x

x→ +
=  but 

0

| sin |
lim 1.

sinx

x

x→ −
= −  

 

(ii) Suppose  

2

2 1, 1;

5 1;

7

( )

4 1

 

.

x x

xf

x x

x

+ 


=

− 

=




 

To compute 
1

lim ( )
x

f x
→ +

, we use the part of the definition for f which applies to 1x  , so  

1 1
lim ( ) lim(2 1) 3.
x x

f x x
→ + → +

= + =  

To compute 
1

lim ( )
x

f x
→ −

, we use the part of the definition for f which applies to 1x  , so  

2

1 1
lim ( ) lim(7 4) 3.
x x

f x x
→ − → −

= − =  

Note that 
1 1

lim ( ) lim ( ) 3,
x x

f x f x
→ + → −

= =  but (1) 5f = .     ❑ 

The proof of the following theorem can be seen in FSc or BSc mathematics book. 
 

❖ Theorem 
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  Suppose f  is a function define on E may not containing point a. Then 

lim ( ) lim ( ) lim ( )
x a x a x a

f x f x f x
→ + → − →

= = . 

 
 

❖ LIMIT AS A INFINITY 

Definition: Let ( )f x  be a function defined on an interval that contains x a= , except possibly at 

x a= .  Then we say that 

lim ( )
x a

f x
→

=  

if for every number 0M  , there is some number  0   such that  

( )f x M  whenever 0 | |x a  −  . 

  

 

Above definitions is telling us that 

no matter how large we choose M to 

be we can always find an interval 

around x a= , given by 

0 | |x a  −    for some number 

0  , so that as long as we stay 

within that interval the graph of the 

function will be above the line 

y M=   as shown in the graph.  

Similarly, one can define limit as 

negative infinity. 

 

❖ LIMIT AS NEGATIVE 

INFINITY:   

 Definition: Let ( )f x  be a function defined on an interval that contains x a= , except possibly at 

x a= . Then we say that 

lim ( )
x a

f x
→

=− 

if for every number 0N  , there is some number  0   such that  

( )f x N  whenever 0 | |x a  −  . 

 

 

 

❖ Example 

Use the definition of the limit to prove the following limit. 

20

1
lim
x x→

= . 

Solution: 

Let 0M   be any number and we’ll need to choose a   so that, 

2

1
M

x
    whenever   0 | 0| | |x x  − =  . 

We take 
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2

1
M

x
      

2 1
x

M
        

       
1

| |x
M

  = .                ❑ 

 

Exercise: Given the following graph of function f :  

 

 
 

(a)  ( 4)f −    (b) ( )
4

lim
x

f x
→− −

   (c) ( )
4

lim
x

f x
→− +

   (d)  ( )
4

lim
x

f x
→−

  

(e)  (1)f    (f) ( )
1

lim
x

f x
→ −

   (g) ( )
1

lim
x

f x
→ +

   (h)  ( )
1

lim
x

f x
→

  

(i)  (6)f    (j) ( )
6

lim
x

f x
→ −

   (k) ( )
6

lim
x

f x
→ +

   (l)  ( )
6

lim
x

f x
→

  

 

❖ LIMIT AT INFINITY  

Definition: Let X  and Y  be subsets of . A function :f X Y→  is said to tend to limit L  as 

x → , if for a real number 0   however small, there exists a positive number M  which depends 

upon   such that distance 

( )f x L −    when x M . 

Notation: This is written as lim ( )
x

f x L
→

= . 

 

Above definition tells us that no matter how close to L we want to get, mathematically this is given by 

( )f x L −   for any chosen 0   , we can find another number M such that provided we take 

any x bigger than M, then the graph of the function for that x will be closer to L than L −   and 

L + .   
 

 



 

54 

Available at MathCity.org 

 
 

Similarly, one can define limit at negative infinity. 
 

❖ LIMIT AT NEGATIVE INFINITY 

 Definition: Let X  and Y  be subsets of . A function :f X Y→  is said to tend to limit L  as 

x→− , if for a real number 0   however small, there exists a positive number N  which 

depends upon   such that distance 

( )f x L −    when x N . 

Notation: This is written as  lim ( )
x

f x L
→

= .  

 

❖ Example 

  By definition, prove that 
2

lim 2
1x

x

x→
=

+
. 

 

   We have    
2 2 2 2

2
1 1

x x x

x x

− −
− =

+ +
 

2 2

1 x x

−
= 

+
. 

   Now if  0   is given we can find  
2

M


=  so that  

2
2

1

x

x
− 

+
    whenever   

2
x M


 = .           ❑ 

 

 

The following theorem is very useful to find the limit of different function. Here we are not giving the 

proof as one can found it in the mathematics book of FSc. 

 

❖ Theorem 

   Let :f E →  and :g E →  be real valued functions. If lim ( )
x p

f x A
→

=   and   lim ( )
x p

g x B
→

=   

then 

    i-   ( )lim ( ) ( )
x p

f x g x A B
→

 =  , 

    ii-   lim( )( )
x p

fg x AB
→

= , 
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   iii-  
( )

lim
( )x p

f x A

g x B→

 
= 

 
,  provided 0B  . 

 

❖ CONTINUITY 

Definition: Suppose E   and :f E →   be a function.  Then f  is said to be continuous at p  

if for every 0   there exists a 0   such that 

( ) ( )f x f p −   for all points x E  for which 0 x p  −  . 

Definition: If f  is continuous at every point of E , then f  is said to be continuous on E . 
 

Note: Comparing the definition of continuity with the definition of the limit, It is to be noted that f  

has to be continuous at p  iff  lim ( ) ( )
x p

f x f p
→

= . 

 

❖ Examples 

  A function 
2( )f x x=  is continuous for all x . 

   Here 
2( )f x x= . Take p  and 0  .  

   Then we have to show  

   ( ) ( )f x f p −    
2 2x p  −   whenever x p −  . 

    Now   
2 2 ( )( )x p x p x p− = − +  

                               ( )( 2 )x p x p p= − − +  

( )2| |x p x p p − − +  

   Now if x p −  , then we have 

     
( )

( )

2 2 2 | |

2 | | .

x p x p x p p

p  

−  − − +

 + =
 

   Since p  is arbitrary real number,  

   therefore, the function ( )f x  is continuous for all real numbers.    ❑ 
 

❖ Example 

   A function ( )f x x=   is continuous on   0, . 

   Let  c  be an arbitrary point such that  0 c    

   For  0  , we have 

( ) ( )f x f c x c− = −   

                        
x c

x c

−
=

+
 

x c

c

−
  

    ( ) ( )f x f c  −      whenever    
x c

c


−
  

   i.e.  x c c  −  =  

   f  is continuous for x c= . 

   c  is an arbitrary point lying in  0,    
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   ( )f x x =  is continuous on  0,           ❑ 

❖ RIGHT CONTINUOUS AND LEFT CONTINUOUS 

Definition: Let f be a real valued function. It is said to be right continuous at point a if  

lim ( ) ( )
x a

f x f a
→ +

=  and it is said to be left continuous at point a if lim ( ) ( )
x a

f x f a
→ −

= . 

 

❖ Example 

 
Consider a function given in above graph. We see f  is not continuous at point 0x . It is right 

continuous at point 0x  but not left continuous at point 0x .  
 

❖ Example 

   Let  
2

2

1 2,

( ) 4
2.

2

x if x

f x x
if x

x

 + 


=  −


−

 

   Then f  is left continuous at 2  but it is not right continuous at 2.  

 

❖ RIGHT CONTINUOUS AND LEFT CONTINUOUS 

Definition: A function :[ , ]f a b →  is said to be continuous on closed interval [ , ]a b  if 

f  is continuous on ( ),a b   

f  is right continuous at a . 

f  is left continuous at b . 

 

❖ Theorem (The intermediate value theorem) 

   Suppose  f  is continuous on  ,a b  and ( ) ( )f a f b , then given a number   that lies between 

( )f a  and ( )f b , there exist a point ( , )c a b  with ( )f c = . 

Proof 

   Without loss of generality, we can consider ( ) ( )f a f b   and  ( ) ( )f a f b  . 

Also let  [ , ] | ( )S x a b f x =   . Then S  is non-empty as a S  and b  is an upper bound of .S   

Since we are dealing with the set of real numbers, therefore supremum of S  exist in , say 

supc S= .  

   Since f  is continuous on  ,a b , in particular at x c= , therefore for all 0   there exists 0   

such that 

( ) ( )f x f c −   whenever 0 x c  −  . 

This means that 
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     ( )      ( ) ( )f x f c f x −   +   for all x  between        c −  and       .c +   

By the properties of the supremum, there exist 1x   between c − δ and c that is contained in S, so that  

1( ) ( )       f c f x   +  + .  ………….. (i) 

 Choose 2x  between c and c + δ. Then 2x S , so we have 

2( ) ( )         .f c f x    −  −   …………. (ii) 

From (i) and (ii), we have for all 0  ,  

         )    (f c  −   + . 

     ( )  f c −   

So ultimately, we have      ( )f c = .      ❑ 

 

❖ UNIFORM CONTINUITY 

Definition: Suppose  :f E →  is a real valued function. We say that f  is uniformly continuous 

on E  if for every 0   there exists 0   such that  

   ( ) ( )f p f q −       ,p q E   for which   p q −  . 

 

   The uniform continuity is a property of a function on a set, that is, it is a global property but 

continuity can be defined at a single point  i.e. it is a local property. 

   Uniform continuity of a function at a point has no meaning. 

   It is evident that every uniformly continuous function is continuous. 

   To emphasize a difference between continuity and uniform continuity on set S , we consider the 

following examples. 

 

❖ Example 

   Let S  be a half open interval  0 1x   and let ( )f x  be defined for each x  in S  by the formula 

2( )f x x= . It is uniformly continuous on S . To prove this, assume , (0,1]x y  and take 

2 2( ) ( )f x f y x y− = −  

   x y x y= − +  

   2 x y −  

   If   x y −    then   ( ) ( ) 2f x f y  −  =  

   Hence if   is given we need only to take  
2


 =  to guarantee that  

( ) ( )f x f y −   for every pair  ,x y  with  x y −   

   Thus f  is uniformly continuous on the set S .         ❑ 
 

❖ Example 

   Let S  be the half open interval 0 1x   and let a function f  be defined for each x  in S  by the 

formula 
1

( )f x
x

= . This function is continuous on the set S , however we shall prove that this 

function is not uniformly continuous on S .       

 
Solution 

   Let suppose 10 =  and suppose we can find a    , 0 1  , to satisfy the condition of the 

definition. 
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   Taking  x =  ,  
11

y


= , we obtain  

10

11
x y


− =   

     and 

   
1 11 10

( ) ( ) 10f x f y
  

− = − =   

   Hence for these two points we have  ( ) ( ) 10f x f y−  . 

   This contradict the definition of uniform continuity. 

   Hence the given function being continuous on a set S  is not uniformly continuous on S . 

               ❑ 
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Chapter 05 

Differentiation  

Differentiation: the art of knowing the next step, precisely --- Dr. Ben 

Carter, Data Scientist 

Differentiation allows us to find rates of change. For example, it allows us to find the rate of change of 

velocity with respect to time (which is acceleration). Calculus courses succeed in conveying an idea of 

what a derivative is, and the students develop many technical skills in computations of derivatives or 

applications of them. We shall return to the subject of derivatives but with a different objective. 

Now we wish to see a little deeper and to understand the basis on which that theory develops. 

Let f  be defined and real valued on ( ),a b . For any point ( ),c a b , form the quotient 

( ) ( )f x f c

x c

−

−
. 

We fix point c  and study the behaviour of this quotient as x c→ . 
 

❖ DERIVATIVE OF A FUNCTION 

Definition: Let f  be defined on an open interval ( ),a b , and assume that ( , )c a b . Then f is said to 

be differentiable at c whenever the limit 

( ) ( )
lim
x c

f x f c

x c→

−

−
 

exists. This limit is denoted by ( )f c  and is called the derivative of f at point c. 

Definition: If f  is differentiable at each point of ( ),a b , then we say f  is differentiable on ( ),a b . 

 

❖ Remarks 

• There are so many notations to represents the derivative of the function in the 

literature. 

• If x c h− = , then we have 

0

( ) ( )
( ) lim .

h

f c h f c
f c

h→

+ −
 =  

 

❖ Example 

(i) A function :f →  defined by  

2 1 ; 0sin
( )

; 00

x xx
f x

x


= 

=
 

  This function is differentiable at 0x =  because 

0

( ) (0)
lim

0x

f x f

x→

−

−
 

2

0

1sin 0
lim

0x

xx

x→

−
=

−
 

2

0

1sin
lim
x

xx

x→
=    

       
0

1lim sin
x

xx
→

=  0= . 
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(ii) Let  ( ) nf x x=   ;  0n    (n is integer),   x . 

Then  

( ) ( )
lim
x c

f x f c

x c→

−

−
   lim

n n

x c

x c

x c→

−
=

−
 

         

1 2 2 1( )( ... )
lim

n n n n

x c

x c x cx c x c

x c

− − − −

→

− + + + +
=

−
 

    
1 2 2 1lim ( ... )n n n n

x c
x cx c x c− − − −

→
= + + + +  

    
1nnc −= . 

This implies that f  is differentiable every where and  
1( ) nf x nx − = . 

 

❖ Theorem (Differentiability implies continuity) 

Let f  be defined on ( ),a b , if f  is differentiable at a point  ( ),x a b , then f  is continuous at 

x.  

Proof 

We know that  

( ) ( )
lim ( )
t x

f t f x
f x

t x→

−
=

−
, where t x    and  a t b  . 

Now  

( ) ( )
( ) ( )

lim ( ) ( ) lim lim
t x t x t x

f t f x
f t f x t x

t x→ → →

− 
− = − 

− 
 

       ( ) 0f x=     

       0=  

     lim ( ) ( )
t x

f t f x
→

 = . 

This show that f is continuous at x.         ❑ 
 

❖ Remarks 

(i) The converse of the above theorem does not hold. 

   Consider   
0,

( )
0.

x if x
f x x

x if x


= = 

− 
 

   Then (0)f   does not exists but ( )f x  is continuous at 0x = . 

(ii) If f is discontinuous at some point c of the domain of the function then ( )f c  does not exist. e.g.  

1 0,
( )

0 0.

if x
f x

if x


= 


  

A function f is discontinuous at 0x =  therefore it is not differentiable at 0x = . 

❖ Question 

 Prove that a differentiable function is continuous, but the converse is not true. 

 

 

 

❖ Theorem 
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Suppose f  and g  are defined on ( , )a b  and are differentiable at a point ( , )x a b , then f g+ , 

fg  and 
f

g
 are differentiable at x and  

(i)     ( ) ( ) ( ) ( )f g x f x g x  + = + , 

(ii)    ( ) ( ) ( ) ( ) ( ) ( )fg x f x g x f x g x  = + , 

(iii)   
2

( ) ( ) ( ) ( )
( )

( )

f g x f x f x g x
x

g g x

    −
= 

 
, proved ( ) 0g x  . 

  The proof of this theorem can be get from any F.Sc or B.Sc textbook. 
 

❖ Remark 

  As we know 
( ) ( )

lim ( )
t x

f t f x
f x

t x→

−
=

−
, this gives 

( ) ( )
( ) ( )

f t f x
f x u t

t x

−
= +

−
,  

where ( )u t  is a function such that ( ) 0u t →  as t x→ . 

This gives us  ( ) ( ) ( ) ( ) ( )f t f x t x f x u t− = − + , where ( ) 0u t →  as t x→ , as an alternative 

definition of derivative. 
 

❖ Theorem (Chain Rule) 

Suppose f  is continuous on [ , ]a b , ( )f x  exists at some point ( , )x a b . A function g  is defined 

on an interval I  which contains the range of f , and g  is differentiable at the point ( )f x . If    

( )( ) ( )h t g f t=  ;  a t b  , then h  is differentiable at x  and   

( )( ) ( ) ( )h x g f x f x  =  . 

Proof 

   Let ( )y f x= . 

   By the definition of the derivative, we have 

 ( ) ( ) ( ) ( ) ( )f t f x t x f x u t− = − +  ………... (i) 

and  ( ) ( ) ( ) ( ) ( )g s g y s y g y v s− = − +  ……….. (ii) 

   where   ,t a b , s I  and ( ) 0u t →  as t x→  and ( ) 0v s →  as s y→ . 

   Let us suppose  ( )s f t= . Then  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )h t h x g f t g f x g s g y− = − = −   

         ( ) ( )s y g y v s= − +      by (ii) 

         ( ) ( ) ( ) ( )f t f x g y v s= − +      

         ( ) ( ) ( ) ( ) ( )t x f x u t g y v s = − + +   by (i) 

   or  if t x  

  
( ) ( )

( ) ( ) ( ) ( )
h t h x

f x u t g y v s
t x

−
 = + +

−
, 

   taking the limit as t x→  we have 

  ( ) ( ) 0 ( ) 0h x f x g y  = + +  

        ( )( ) ( )g f x f x =  ,  ( )y f x=  



 

62 

Available at MathCity.org 

   This is the required result.          ❑ 
 

❖ Example 

Let us find the derivative of sin(2 )x , One way to do that is through some trigonometric identities. 

Indeed, we have 

sin(2 ) 2sin( )cos( )x x x=   

So we will use the product formula to get  

sin(2 ) 2 sin ( )cos( ) sin( )cos ( )( ) ( )x x x x x  = +
 

which implies 

2 2sin(2 ) 2 cos ( ) sin ( )( ) ( )x x x = −   

Using the trigonometric formula 
2 2cos(2 ) cos ( ) sin ( )x x x= − , we have 

sin(2 ) 2cos(2 )( )x x =   

Once this is done, you may ask about the derivative of sin(5 )x ? The answer can be found using 

similar trigonometric identities, but the calculations are not as easy as before. We will see how the 

Chain Rule formula will answer this question in an elegant way. 

Let us find the derivative of sin(5 )x    

We have  ( )( ) ( )h x f g x=  , where ( )   5g x x=  and  ( ) sinf x x=  . Then the Chain rule implies 

that '( )h x  exists and  

 ( ) 5 cos(5 ) 5cos(5 )[ ]h x x x =  =   

 

❖ Maxima and Minima of Functions 

Maxima and minima of a function are the largest and 

smallest value of the function   respectively either within 

a given range or on the entire domain. Collectively they 

are also known as extrema of the function. The maxima 

and minima are the respective plurals of maximum and 

minimum of a function. Before understanding maxima 

and minima in detail, let’s understand the local maximum 

and minimum value of the function first. 
 

❖ LOCAL MAXIMUM 

Definition: Let f  be a real valued function defined on 

a set E  , we say that f  has a local maximum at a point p E  if there exist 0   such that 

( ) ( )f x f p  for all x E  with x p −  . 

 

Local minimum is defined likewise.  

❖ GLOBAL (OR ABSOLUTE) MAXIMUM AND MINIMUM 

Definition: The maximum or minimum over the entire domain of the function is called an "global" or 

"absolute" maximum or minimum. 

 

❖ Remark: There might be only one global maximum (and one global minimum) but there can be 

more than one local maximum or minimum. 

 

❖ Theorem 
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Let f  be defined on  ,a b  and it is differentiable on ( , )a b . If f  has a local maximum at a point 

( , )x a b  and if ( )f x  exist, then ( ) 0f x = . 

Proof 

   Choose a 0   such that  

a x x x b  −   +   

   Now if  x t x−     then 

( ) ( )
0

f t f x

t x

−


−
. 

      Taking limit as t x→   we get 

   ( ) 0f x   …………. (i) 

      If  x t x   + , then    

( ) ( )
0

f t f x

t x

−


−
 

      Again, taking limit when t x→  we get 

( ) 0f x   ……………. (ii) 

      Combining (i) and (ii) we have  ( ) 0f x = .      ❑ 

❖ Theorem 

Let f  be defined on  ,a b  and it is differentiable on ( , )a b . If f  has a local minimum at a point 

( , )x a b  and if ( )f x  exist then ( ) 0f x = . 
 

The proof of this theorem is like the proof of above theorem. 

 

❖ Lagrange’s Mean Value Theorem. 
  Let f  be continuous on [ , ]a b and differentiable on  ( , )a b . Then there exists a point  ( , )c a b  

such that    

( ) ( )
( )

f b f a
f c

b a

−
=

−
. 

Proof. 

Let us design a new function  

 ( ) ( ) ( ) ( ) ( )h t f b f a t b a f t= − − −  , ( )a t b   

   then clearly  ( ) ( )h a h b= . 

   Since ( )h t  depends upon t  and ( )f t  therefore it possesses 

all the properties of f . 

   Now there are two cases: 

i)   h  is a constant. 

      implies that  ( ) 0h x =   ( , )x a b  . 

ii)  h  is not a constant, then 

      if ( ) ( ) ( )h t h a h b =  for some ( , )t a b , 

      then there exists a point ( , )c a b  at which h   

      attains its maximum implies that  ( ) 0h c = . 

      and  if ( ) ( ) ( )h t h a h b =  

      then there exists a point ( , )c a b  at which h   

      attain its minimum implies that ( ) 0h c = . 

a b x –  t x +  t x 

f(x) 

case when h(t) < h(a). 
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Since  ( ) ( ) ( ) ( ) ( )h t f b f a t b a f t= − − − ,   

therefore   ( ) ( ) ( ) ( ) ( )h c f b f a b a f c = − − − . 

This gives that 
( ) ( )

( )
f b f a

f c
b a

−
=

−
  as desired.       ❑ 

❖ Generalized Mean Value Theorem 

If f  and g  are continuous real valued functions on closed interval  ,a b  and f  and  g  are 

differentiable on ( ),a b , then there is a point ( ),c a b  at which 

   ( ) ( ) ( ) ( ) ( ) ( )f b f a g c g b g a f c − = − , 

Proof. 

   Let 

    ( ) ( ) ( ) ( ) ( ) ( ) ( )h t f b f a g t g b g a f t= − − −       ( )a t b   

   Since h  involves f  and g  therefore h  is  

i)    continuous on close interval  ,a b . 

ii)   differentiable on open interval ( , )a b . 

iii)  and ( ) ( )h a h b= . 

   To prove the theorem, we have to show that ( ) 0h c =  for some ( , )c a b . 

There are two cases to be discussed: 

   (i) If h  is constant function, then ( ) 0h x =   ( , )x a b  . 

   (ii) If h  is not constant, then 

         if ( ) ( ) ( )h t h a h b =  for some ( , )t a b , 

      then there exists a point ( , )c a b  at which h  attains its maximum,  

      this implies that  ( ) 0h c = , 

      and if ( ) ( ) ( )h t h a h b =  for some ( , )t a b , 

      then there exists a point ( , )c a b  at which h  attain its minimum, 

      this implies that ( ) 0h c = . 

   Hence    

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0h c f b f a g c g b g a f c  = − − − =  

   This gives the desire result.          ❑ 

 

 

❖ Geometric interpretation of generalized MVT 

  Consider a plane curve C  represented by  

                  ( )x f t= , ( )y g t= . 

 

  Then generalized mean value theorem (MVT) states that 

there is a point S  on C  between two points 

( )( ), ( )P f a g a  and ( )( ), ( )Q f b g b  of C   such that 

the tangent at S  to the curve C  is parallel to the chord 

PQ .  

 

❖ Theorem (Darboux’s Theorem) 
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Suppose f  is a real differentiable function on some interval I  with  , ,a b I a b   and suppose   

is a number between ( )f a and ( )f b  then there exist a point ( , )x a b  such that ( )f x  = . 

Proof 

Without loss of generality assume that ( ) ( )f a f b   .     

Also assume that ( ) ( )g t f t t= −  for t I .  

   Then  ( ) ( )g t f t  = −  

 If  t a=   we have 

( ) ( )g a f a  = − . 

Since ( ) 0f a  −  , therefore  ( ) 0g a  . 

This implies that g  is monotonically decreasing at a . 

So there exists a point 1 ( , )t a b  such that 1( ) ( )g a g t . 

   Similarly,  

( ) ( )g b f b  = −  

Since ( ) 0f b  −  , therefore ( ) 0g b  . 

This implies that g  is monotonically increasing at b . 

So there exists a point 2 ( , )t a b  such that 2( ) ( )g t g b  

This implies the function attain its minimum on  ( , )a b  at a point x  (say) 

such that  ( ) 0g x =    ( ) 0f x  − =  

    ( )f x  = .        ❑ 
 

❖ Question 

   Let f  be defined for all real x and suppose that 
2( ) ( ) ( )f x f y x y−  −  for all real x  and y . 

Then prove that f  is constant. 

Solution 

   Since  
2( ) ( ) ( )f x f y x y−  − , 

   Therefore  
2 2( ) ( ) ( ) ( )x y f x f y x y− −  −  − . 

   Dividing throughout by x y−  for x y , we get 

( ) ( )
( ) ( )

f x f y
x y x y

x y

−
− −   −

−
     when   x y  

   and  

( ) ( )
( ) ( )

f x f y
x y x y

x y

−
− −   −

−
     when   x y  

   Taking limit as  x y→ , we get 

0 ( ) 0
( ) 0

0 ( ) 0

f y
f y

f y

  
 =  

 

   This shows that function is constant. 
 

❖ Question (L’Hospital Rule) 

   Suppose  ( ), ( )f x g x   exist,  ( ) 0g x    and  ( ) ( ) 0f x g x= = . 

a    1t             2t     b 
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    Prove that 
( ) ( )

lim
( ) ( )t x

f t f x

g t g x→


=


 . 

Proof  

    
( ) ( ) 0

lim lim
( ) ( ) 0t x t x

f t f t

g t g t→ →

−
=

−

( ) ( )
lim

( ) ( )t x

f t f x

g t x→

−
=

−
  ( ) ( ) 0f x g x= =  

        
( ) ( )

lim
( ) ( )t x

f t f x t x

t x g t x→

− −
= 

− −
 

        
( ) ( ) 1

lim lim
( ) ( )t x t x

f t f x

g t xt x

t x

→ →

−
= 

−−

−

 

        
( ) ( ) 1

lim
( ) ( )

lim
t x

t x

f t f x

g t xt x

t x

→

→

−
= 

−−

−

 
1

( )
( )

f x
g x

= 


( )

( )

f x

g x


=


. 

     

…………………………… 
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Chapter 06 

Riemann Integrals  

It is through logic that we prove, but through intuition that we discover. 

The Riemann integral, at its heart, is an intuitive leap in quantifying 

accumulation. 

We assume that the reader is familiar at least informally with the integral from a calculus course (FSc 

or BSc). In addition, they know about integrating a function on an interval [ , ]a b  and know few of its 

interpretation as the "area under the graph", or its many applications to physics, engineering, economics, 

etc. Here our aim is to focus on the purely mathematical aspects of the integral. However, we first recall 

some basic terms that will be frequently used (see [1]). 
 

Partition 
   Let [ , ]a b  be a given interval. By a partition P  of [ , ]a b , we mean a finite set of points 0 1, ,..., nx x x , 

where 

0 1 1... −=     =n na x x x x b . 

The points of P are used to divide [ , ]a b  into n  non-overlapping subintervals  

                                      
0 1 1 2 2 3 1
, , , , , ,..., ,

−n n
x x x x x x x x . 

Each sub-interval is called a component of the partition.  

Obviously, corresponding to different choices of the points 
ix  we shall have different partition. 

The maximum of the length of the components is defined as the norm of the partition and it is denoted 

by P , that is, 

 1 0 2 1 1max , ,..., −= − − −n nP x x x x x x . 

 

Examples 

   Consider an interval  1,10  and following partitions of this interval. 

 
1

1,2,3,10=P , 

 
2

1,2,3,6,9,10=P , 

 3

9 9 9 9
1,1 ,1 2 ,1 3 ,...,1 99 ,10

100 100 100 100
= + + + +

     
     
     

P  

and more generally for any positive integer n, we can write 

 4

9 9 9 9 9
1,1 ,1 2 ,1 3 ,...,1 ( 1) ,1 10= + + + + − + =

       
       
       

n n
n n n n n

P . 

Also note that 
1

7=P ,  
2

3=P , 
3

9

100
=P , 

4

9
=P

n
. 

 

Refinement of a Partition 

   Let P   and 


P  be two partitions of an interval  ,a b  such that 


P P  i.e. 


P  contains all the 

points of P  and possibly some other points as well. Then 


P  is said to be a refinement of P . 
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Example 

   Note that 2P  is refinement of 1P .  

Remark 

   Note that if 1 2P P   implies
1 2P P , that is, refinement of a partition decreases its norm but the 

convers does not necessarily hold.  
-----------------------------------------------------------------------------------------------------------  

▪ How many partition can be made for any closed interval [ , ]a b ? 

▪ Can you write two different partitions of  1,3  with same norm? 

▪ Can you write two partitions 1P  and 2P  of   0,5  such that 
1 2P P  but 

1 2P P . 

-----------------------------------------------------------------------------------------------------------  

    

Riemann Integral 

   Let f  be a real-valued function defined and bounded on  [ , ]a b . Corresponding to each partition P  

of  [ , ]a b , we put 

                               sup ( )=
i

M f x     
1

( )
−
 

i i
x x x  

                               inf ( )=
i

m f x   
1

( )
−
 

i i
x x x  

   We define upper and lower sums as  

                               ( )
1

,
=

= 
n

i i

i

U P f M x  

                    and      ( )
1

,
=

= 
n

i i

i

L P f m x , 

   where   
1

( 1,2, , )
−

 = − =
i i i

x x x i n . 

   Now we define inf ( , )=
b

a

f dx U P f , ………….… (i) 

              sup ( , )=
b

a

f dx L P f , ……………..(ii) 

 where the infimum and the supremum are taken over all partitions P  of  [ , ]a b  . Then  ( )
b

a
f x dx   

and  ( )
b

a
f x dx    are called the upper and lower Riemann integrals of f  over  [ , ]a b   respectively. 

In case the upper and lower integrals are equal, we say that f  is Riemann integrable on [ , ]a b  and we 

write  [ , ]f a b , where [ , ]a b  denotes the set of Riemann integrable functions over [ , ]a b . 

   The common value of ( )i and ( )ii  is denoted by  
b

a

f dx   or by  ( )
b

a

f x dx . 

   Which is known as the Riemann integral of f  over [ , ]a b . 

 

 

Exercises 

1. Let  1 1,2,3,4,5=P  be partition of [1,5] and :[1,5]→f  be function defined by 
2( ) =f x x . 

Find 1( , )U P f  and 1( , )L P f .  

2. Let  2
2 3 6 2 3

0, , , , ,    =P  be partition of  0,  and  : 0, →f  be function defined by 

( ) sin=f x x . Find 1( , )U P f  and 1( , )L P f .  

xi – 1 xi 

Mi 

mi 
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-----------------------------------------------------------------------------------------------------------  

▪ If a function f  is increasing on [ , ]a b , then 
[ , ]

max ( ) ( )


=
x a b

f x f b  and 

[ , ]
min ( ) ( )


=
x a b

f x f a . 

▪ If a function f  is decreasing on [ , ]a b , then what about its maximum and 

minimum value over interval  [ , ]a b . 

▪ Let f  be bounded on interval [ , ]a b . Can you guess its maximum and 

minimum value over interval  [ , ]a b .  

-----------------------------------------------------------------------------------------------------------  

 

Theorem 

   The upper and lower integrals are defined for every bounded function f  over interval [ , ]a b . 

Proof 

   Since f  is bounded on [ , ]a b , so its supremum and infimum values exist over [ , ]a b .   

Take M  and m  to be the maximum and minimum value of  f   in  [ , ]a b  respectively, that is, 

( ) m f x M      ( ) a x b  

Let  iM  and im  denote the supremum and infimum of f  in 1[ , ]−i ix x  for certain partition P  of [ , ]a b  

respectively. Then 


i

M M    and   
i

m m   ( 1,2,....., )=i n . 

This gives 

       ( )
1 1

,
= =

=    
n n

i i i

i i

L P f m x m x      
1

( )
−

 = −
i i i

x x x  

( )
1

,
=

  
n

i

i

L P f m x  

But      
1 0 2 1 3 2 1

1

( ) ( ) ( ) .... ( )
−

=

 = − + − + − + + −
n

i n n

i

x x x x x x x x x ,  

                           
0

= − = −
n

x x b a . 

This gives 

( ), ( ) −L P f m b a .   ……. (i) 

Similarity one can have   

( ), ( ) −U P f M b a .  ……. (ii) 

Also we have  ( , ) ( , )L P f U P f  ……. (iii) 

Combining (i), (ii) and (iii), we have 

( ) ( )( ) , , ( )−    −m b a L P f U P f M b a  

This shows that the numbers ( ),L P f  and ( ),U P f  form a bounded set over all the partitions P of 

[ , ]a b . 

This gives the upper and lower integrals are defined for every function f   over interval. 
 

Remark: In mathematics, different author approached to Riemann integral with the same ideas but 

slightly different than above e.g. see [2] and [3]. 
 

Theorem 

   If P

 is a refinement of P , then following holds: 

(i) ( ) ( ), ,L P f L P f


 , 

(ii) ( ) ( ), ,U P f U P f


 . 
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Theorem 

   Let f   be a real and bounded function defined on [ , ]a b . Then  

                 ( ) ( )sup , inf ,L P f U P f  i.e.  

b b

a a

f dx f dx  . 

 

Theorem (Condition of Integrability or Cauchy’s Criterion for Integrability.) 

    A function [ , ]f a b  if and only if for every 0  . there exists a partition P  such that  

( ) ( ), ,U P f L P f −  . 

 

Theorem 

   If  [ , ]f a b , then  [ , ]f a b  and   

b b

a a

f dx f dx  . 

Theorem (Fundamental Theorem of Calculus) 

   If  [ , ]f a b   and if there is a differentiable function  F  on  [ , ]a b  such that  F f = ,  then 

                                 ( ) ( ) ( )

b

a

f x dx F b F a= − . 

Theorem 

   Suppose f   is bounded on [ , ]a b , f   has only finitely many points  of discontinuity on [ , ]a b . Then 

[ , ]f a b .  

 

 

----------------------------------------- 
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