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+ Metric Spaces

Let X be a non-empty set and R denotes the set of real numbers. A
function d: X x X = R is said to be metric if it satisfies the following axioms

vV x,y,ze X.
[Mi] d(x,y)=0 1.e. dis finite and non-negative real valued function.
[M;] d(x,y)=0 if and only if x = y.
[M3] d(x,y)=d(y,x) (Symmetric property)
[M4] d(x,z)<d(x,y)+d(y,z) (Triangular inequality)
The pair (X, d ) is then called metric space.

d 1s also called distance function and d(x, y) is the distance from x to y.
Note: If (X, d) be a metric space then X is called underlying set.

« Examples:
i) Let X be a non-empty set. Then d: X x X — R defined by

1 if x+y

d(x,y) = { :

0 if x=y
is a metric on X and is called trivial metric or discrete metric.
ii) Let R be the set of real number. Then d: RxR — R defined by

d(x,y)=|x—y| is ametricon R.

The space (R,d) is called real line and d is called usual metric on R.

iii) Let X be a non-empty set and d : X x X — R be a metric on X. Then
d': X xX —>R defined by d'(x,y)=min(L, d(x,y)) is also a metric on X.

Proof:
[M,] Since d is a metric so d(x,y) =0

as d'(x,y) is either 1 or d(x,y) so d'(x,y)=0.
[Mz] Ifx=y then d(x,y)=0 and then d'(x,y) which is min(l,d (x, y)) will be

zZero.
Conversely, suppose that d'(x,y)=0 = min(l, d(x, y)) =0

= d(x,y)=0 = x=y asd is metric.
[M3] d'(x,y) = min(l, d(x,y)) = min(l, d(y,x)) =d'(y,x) wd(x,y)=d(y,x)
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[M4] We have d'(x,z)=min(l,d(x,z))
= d'(x,z)<lor d'(x,z)<d(x,z)
We wish to prove d'(x,z) < d'(x,y) +d'(y,z)
now if d(x,z)>1, d(x,y)>1 and d(y,z)>1
then d'(x,z) =1, d'(x,y)=1and d'(y,z) =1
and d'(x,y)+d'(y,z)=1+1=2
therefore = d'(x,z) < d'(x,y) +d'(y,2)
Now if d(x,z) <1, d(x,y) <1 and d(y,z) <1
Then d'(x,z) =d(x,z), d'(x,y) =d(x,y) and d'(y,z) =d(y,2)
As d is metric therefore d(x,z) < d(x,y) +d(y,z)
= d'(x,z) <d'(x,y)+d'(y,z)

iv) Let d: X x X —> R be a metric space. Then d': X x X - R defined by

d'(x,y) = _dxy) is also a metric.
1+d(x,y)

Proof.

[M;] Since d(x,y) >0 therefore _dxy) =d'(x,y)>0
1+d(x,y)

[Mz] Let d'(x,y)=0 = M:O = dx,y)=0 = x=y
1+d(x,y)
Now conversely suppose x = y then d(x,y)=0.
dx,y) _ 0 _
1+d(x,y) 1+0
, d X, d s X ’

(Ms] d'(x,y) = Ly _ dpx) _, (7.%)
I+d(x,y) 1+d(y,x)

[M4] Since d is metric therefore d(x,z) < d(x,y) +d(y,z)

Then d'(x,y) =

Now by using inequality a<b = L<L.
l+a 1+b
Weget 42 _ _d(ny)+d(p2)

1+d(x,z) 1+d(x,y)+d(y,z)
PR (3 B (125)
1+d(x,y)+d(y,z) 1+d(x,y)+d(y,2)
L gy <4y | d0no)
1+d(x,y) 1+d(y,z)
= d'(x,z) <d'(x,y)+d'(y,z2)

v) The space C|a, b] is a metric space and the metric d is defined by
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b

d(x,y) =max | x(t) - y(t)

where J = [a, b] and x, y are continuous real valued function defined on [a, b].
Proof.

[M,] Since |x(t) —y(2) | >0 therefore d(x,y)=>0.
[Mo] Let d(x,y) =0 = |x(t))— y())|=0 = x(¢) = y(¢)
Conversely suppose x =y
Then d(x,y) = max ‘ x(t) —y(1) ‘ = max ‘ x(t) —x(¢) ‘ =0
[Ms] d(x, y) =max | x(t) - y(®)| = max | y(6) = x(t) | = d(y.x)
[Ma] d(x,2) =max | x(t) - z(2) | = max | x(t) — y() + 1(t) = (1)

< max | x(¢) - (1) | + max| (1) — (1)
= d(x,y) +d(y,2)

vi) d:RxR— R is a metric, where R is the set of real number and d defined by

d(x,y) =[x~ y|

vii) Let x = (x,,»,) , ¥ =(x,,»,). We define

d(x,y) = \(x,—x,)* + (34— »,)* is a metric on R

and called Euclidean metric on R* or usual metric on R?.

viii) d : RxR — R is not a metric, where R is the set of real number and d defined by

d(x,y) = (x= )’
Proof.
[M,] Square is always positive therefore (x —y)> =d(x,y) >0
[My] Let d(x,7)=0 = (x-»)’=0 = x-y=0 = x=y
Conversely suppose that x =y
then d(x,y)=(x—y) =(x—x)"=0
[M3] d(x,9)=(x=»)" =(y—x)’ =d(y,x)
[M4] Suppose that triangular inequality holds in d. then for any x,y,z e R
d(x,z)<d(x—-y)+d(y,z)
= (x-2)"<(x-y) +(y-z2)’
Since x, ),z € R therefore consider x=0, y=1 and z=2.
= (0-2’<(0-1)°+(1-2)
= 4<1+1 = 4<2

which is not true so triangular inequality does not hold and d is not metric.
|



ix) Let x=(x,x,) , ¥ =(,»,) € R*. We define
d(x,y) :|x1 - |+|x2 —y2|
is a metric on R?, called Taxi-Cab metric on R>.
x) Let R” be the set of all real n-tuples. For
x =(x,,%,,....,x,) and y =(,,¥,,....»,) iIn R"
we define d(x,y) = \/(xl — )+ 0=y, e+ (x, — )

then d is metric on R”, called Euclidean metric on R" or usual metric on R".

xi) The space /”. As points we take bounded sequence
x=(x,X,,...) , also written as x =(x;,), of complex numbers such that
|x|<C, Vi=123,.
where C_ 1s fixed real number. The metric is defined as

d(x,y) = where y =(y,)

xii) The space /7, p>1 is a real number, we take as member of /”, all sequence

xX= (f j) of complex number such that i‘ < ‘p <00,

The metric is defined by d x y [Z‘f -1, ‘ j where y =(77j) such that

© P
2‘77/‘ <,
=

Proof.

1
[M,] Since ‘é‘j —771.‘20 therefore [i‘ ¢, —nj‘pjp =d(x,)=0.

=1
[My] If x =y then

1

wor{gier]-{gs-s1f g -

Conversely, if d(x,y)=0

= (i‘fj_njpjpzo = ‘51_771‘:0 = (5;):(’71) = X=Yy

[Ms] d(x,y)—{ji 3 —nj\p)p —(i\ 7 —fj\p]; =d(y,x)



[M4] Let z:(é’j),suchthat i‘gi‘p<oo
=1

SRS

then d(x,z) =[i‘ < _gj‘pj

_[i“vzj —7; 7+, _‘;j‘pJP

Using "Minkowski’s Inequality

S(i‘é _"f‘p]p +[i‘ 1 _gf‘pjp

=d(x,y)+d(y,z).

 Pseudometric
Let X be a non-empty set. A function d: X x X - R is called

pseudometric if and only if
1) d(x,x)=0 forall xe X.

1) d(x,y)=d(y,x) forall x,ye X.
iii) d(x,z)<d(x,y)+d(y,z) forall x,y,ze X .
OR
A pseudometric satisfies all axioms of a metric except d(x,y) =0

may not imply x =y but x = y implies d(x,y)=0.

Example
Let x,y e R> and x = (x,%) , y=01,)
Then d(x,y) =|x, -y, | is a pseudometric on R’.
Let x =(2,3) and y =(2,5)
Then d(x,y)=|2-2|=0 but x=y
Note: Every metric is a pseudometric, but pseudometric is not metric.

* Minkowski’s Inequality
If & =(&.6,,...¢,) and 17, =(7,.7,,...,n,) arein R” and p>1, then

(i &+, T{ilél Jp{ilml jp

i=1



< Distance between sets

Let (X,d) be a metric space and 4, B < X . The distance between 4 and B
denoted by d(4,B) is defined as d(4,B)=inf{d(a,b)|a € 4, b e B}

If A={x} is a singleton subset of X, then d(4,B) is written as d(x,B) and is

called distance of point x from the set B.

«» Theorem
Let (X,d) be a metric space. Then for any x, y € X
‘ d(xaA)_d(yaA) ‘ < d(xay)
Proof.
Let ze A4 then d(x,z)<d(x,y)+d(y,z)
then d(x, A) :infd(x,z) <d(x,y) +in£d(y,z)
=d(x,y)+d(y,A)
= d(x,A)—d(y’A)Sd(x’y) ............ (l)
Next
d(y,A)=infd(y,z) <d(y,x) +inf d(x,z)
=d(y,x)+d(x,4)
= —d(x,A)+d(y,4)<d(y,x)
= —(d(x, ) =d(y,A)) Sd(x,p) -eevvveeeee (if) vd(x,y)=d(y,x)
Combining equation (i) and (i7)
‘ d(X,A) - d(yaA) ‘ < d(-xay)

+ Diameter of a set
Let (X,d) be a metric space and 4 X, we define diameter of A denoted by
d(A)= sup d(a,b)

a,bed
Note: For an empty set ¢, following convention are adopted
(1) d(¢) = —oo, some authors take d(¢) also as 0.
(11) d(p,p) = 1i.e distance of a point p from empty set is co.
(111) d(4, ¢) = ©, where 4 is any non-empty set.

< Bounded Set
Let (X,d) be a metric space and 4 X, we say 4 is bounded if diameter of 4
1s finite 1.e. d(A) < .

¢ Theorem

The union of two bounded set is bounded.
Proof.



Let (X,d) be a metric space and 4, B < X be bounded. We wish to prove

AU B 1s bounded.
Let x,ye AUB

If x, y € A then since A is bounded therefore d(x,y) <o
and hence d(AW B)= sup d(x,y)<oo then AU B is bounded.

x,ye AUB
Similarity if x, y € B then 4 U B is bounded.
Now if x € 4 and y € B then
d(x,y)<d(x,a)+d(a,b)+d(b,y) where ae€ A,be B.
Since d(x,a), d(a,b) and d(b,y) are finite
Therefore d(x,y) <o 1.e 4\ UB is bounded.

¢ Open Ball
Let (X,d) be a metric space. An open ball in (X,d) is denoted by
B(xy;r) = {x e X |d(x,,x)< r} ,
where x, 1s called centre of the ball and r 1s called radius of ball and » > 0.

¢ Closed Ball
Let (X,d) be a metric space. A closed ball in (X,d) is denoted by
E(xo;r) = {x e X |d(x,,x)< r} ,
where x, is called centre of the ball and r is called radius of ball and » > 0.

«» Sphere
Let (X,d) be a metric space. A sphere in (X,d) is denoted by
S(xy;7) = {x e X |d(x,,x)= r} ,
where x, is called centre and r is called radius of sphere and r > 0.

< Examples
Consider the set of real numbers with usual metric d = \ xX—y \ Vx,yelR
then B(x;r)={xeR|d(x ,x)<r}
rLe. B(x;r)= {x eR :‘x—xo‘ < r}
1Le. x,—r<x<x+r=(x,—r,x,+r)
i.e. open ball is the real line with usual metric is an open interval.
And E(xo;r) = {x € R:‘x—xo‘ < r}
ie. x,—r<x<x,+r=[x,—r,x,+r]
i1.e. closed ball in a real line is a closed interval.
And S(x;r)= {x eR:|x—x| :r}={x0 —r,x, + 7}

1.e. two point x, —7 and x, +7 only.
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< Open Set
Let (X,d) be a metric space and set G is called open in X if for every xe G,
there exists an open ball B(x;r)cG.

* Theorem

An open ball in metric space X is open.
Proof.
Let B(x,; r) be an open ball in (X,d).
Let ye B(x,; r) then d(x,,y)=r<r
Let r, <r—r, then B(y;r,) < B(x,;r)
Hence B(x,; r) 1s an open set.

Alternative:
Let B(x,; r) be an open ball in (X,d).
Let x € B(x,;r) then d(x,,x)=r <r
Take r, =r —1, and consider the open ball B(x ; 7,)
we show that B(x;r)c B(x ;7).
For this let y € B(x;r,) then d(x,y)<r,
and d(x,,y)<d(x,,x)+d(x,y)
<n+r =r
hence y € B(x,;r) so that B(x;r,) < B(x,;r). Thus B(x,;r) 1s an open.

Note: Let (X,d)be a metric space then
1) Xand ¢ are open sets.

i1) Union of any number of open sets is open.
i11) Intersection of a finite number of open sets is open.

+» Limit point of a set
Let (X,d) be a metric space and A X, then x € X 1s called a limit point or
accumulation point of A if for every open ball B(x;r) with centre x,
B(x;r)ym {A — {x}} Q.
1.e. every open ball contain a point of 4 other than x.

% Closed Set

A subset 4 of metric space X is closed if it contains every limit point of itself.
The set of all limit points of A4 is called the derived set of A and denoted by A4'.



+ Theorem
A subset 4 of a metric space is closed if and only if its complement A° is open.
Proof.
Suppose 4 is closed, we prove A° is open.
Let x€ A° then x ¢ A.
= x 1s not a limit point of 4.

then by definition of a limit point there exists an open ball B(x;r) such that
B(x;rymA=¢.

This implies B(x;r) < A°. Since x is an arbitrary point of 4°. So A° is open.
Conversely, assume that 4° is an open then we prove 4 is closed.

i.e. A4 contain all of its limit points.

Let x be an accumulation point of 4. and suppose x € 4°.

then there exists an open ball B(x;r)c A = B(x;r)mnA=¢.

This shows that x is not a limit point of 4. this is a contradiction to our assumption.
Hence x € 4. Accordingly 4 is closed.
The proof is complete.

** Theorem

A closed ball is a closed set.
Proof.

Let E(x;r) be a closed ball. We prove B’ (x;7)=C (say) is an open ball.
Let yeC then d(x,y)>r.
Let r,=d(x,y) then r >r.Andtake r, =1 —r

Consider the open ball B( y;%j we prove B ( y;%j cC.

For this let zeB(y;%j then d(z,y)<%2

By the triangular inequality
d(x,y)<d(x,z)+d(z,y)

= d(x,y)<d(z,x)+d(z,y) v d(y,z)=d(z,y)

= d(Z,X)Zd(X,y)—d(Z,y)

= a’(z,x)>r1—r—2zzrl_r2 _2ThEr _htr =0
2 2 2 2

= d(z,x)>r+r=r wh=r=n>0 "n>r

zZ¢ Z_3(x;r) This shows that z € C

- B(y;@c C

U



Hence C is an open set and consequently B(x;r) is closed.

+ Theorem
Let (X,d) be a metric space and A X . If x € X is a limit point of 4. Then
every open ball B(x;r)with centre x contain an infinite numbers of point of A4.

Proof.
Suppose B(x;r)contain only a finite number of points of 4.

Let a,,a,,...,a, be those points.

and let d(x,a,)=r, where i=1,2,....,n.

also consider 7' =min(#,7,...,7,)

Then the open ball B(x;r") contain no point of A other than x. then x is not limit point
of 4. This is a contradiction therefore B(x;7) must contain infinite numbers of point of

A.
|

¢ Closure of a Set
Let (X,d) be a metric space and M — X . Then closure of M is denoted by

M =M UM’ where M' is the set of all limit points of M. It is the smallest closed
superset of M.

+ Dense Set
Let (X, d) be a metric space the a set M < X is called dense in X if M=X.

< Countable Set
A set A4 is countable if 1t is finite or there exists a function f: A — N which is

one-one and onto, where N 1is the set of natural numbers.
e.g. N,Q and Z are countable sets . The set of real numbers, the set of irrational

numbers and any interval are not countable sets.

+«» Separable Space

A space X is said to be separable if it contains a countable dense subsets.
e.g. the real line IR is separable since it contain the set Q of rational numbers, which is

denseis R.

* Theorem

Let (X, d) be a metric space, A X is dense if and only if 4 has non-empty
intersection with any open subset of X.
Proof.

Assume that A is dense in X. then 4= X .
Suppose there is an open set G < X suchthat ANG=¢.
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Then if x€ G then Am(G—{x}) =@
which show that x is not a limit point of A.
This implies xg A but xe X = A#X

This is a contradiction.
Consequently 4G # ¢ for any open G < X .

Conversely suppose that 4G # ¢ for any open G < X .

We prove A= X, for this let xe X .

If xe Athen xe AU A =Athen X = 4.

If x ¢ A4 then let {G,.} be the family of all the open subset of X such that x € G, for
every I.

Then by hypothesis A NG, # ¢ for any i. 1.e G, contain point of A other then x.
This implies that x is an accumulation point of 4. i.e. xe€ A’

Accordingly xe AuA'=Aand X = 4.
The proof is complete.

+» Neighbourhood of a Point

Let (X, d) be a metric space and x, € X and a subset N — X 1s called a
neighbourhood of x, if there exists an open ball B(x,;&) with centre x, such that
B(x,;e)c N.

Shortly “neighbourhood ” 1s written as “nhood ™.

< Interior Point
Let (X, d) be a metric space and 4 X, a point x, € X is called an interior point
of 4 1f there 1s an open ball B(x,;r) with centre x, such that B(x,;7) = 4.

The set of all interior points of 4 is called interior of A and is denoted by int(4) or A" .
It is the largest open set contain in A.i.e. 4" C 4.

< Continuity
A function f:(X,d)—(Y,d") is called continuous at a point x, € X if for any
£>0 thereisa & >0 suchthat d'(f(x),f(x,))<e forall x satisfying d(x,x,)<5.

Alternative:
J:X =Y is continuous at x, € X if for any £ >0, there is a 0 >0 such that

xeB(x;8) = f()eB(f(x):e).

+ Theorem
f(X,d)—>(Y.,d') is continuous at x, € X if and only if f~'(G) is open is X
wherever G is open in Y.

11



Note : Before proving this theorem note thatif f: X =Y , f:Y > X and Ac X,
BcY then f'f(A)> A4 and f f'(B)c B.
Proof.
Assume that f: X — Y is continuous and G =Y is open. We will prove f'(G)

is open in X.

Let xe f'(G) = f(x)eff (GG
When G is open, there is an open ball B( f(x);¢)cG.

Since f: X — 7Y is continuous, therefore for £ >0 thereisa 6 >0 such that

yeB(x;6) = f(»)eB(f(x);e)cG then ye [ f(G)c f7(G)

Since y is an arbitrary point of B(x;8)c f'(G). Also x was arbitrary, this show that
£7(G) is open in X.

Conversely, for any G <Y we prove f: X — Y is continuous.

For this let x € X and &£ >0 be given. Now f(x)eY and let B(f(x);g) be an open

ball in Y. then by hypothesis 1 (B(f(x);g)) is openin X and xe [ (B(f(x);g))
As yeB(x;8)c f (B(f(x);g))

= [ e/ (B(f(x):e))cB(f(x):¢) ie. f(»)eB(f(x):e)
Consequently f: X — Y is continuous.

The proof is complete.

«» Convergence of Sequence:
Let (x,) =(x,,x,,...) be a sequence in a metric space (X,d), we say (x,)
converges to x € X if limd(x ,x)=0.

N—>0

We write lim x, =x or simply x, ->x as n-—oo.

Nn—>0

Alternatively, we say x, — x if for every £ >0 there is an n, € N, such that
V n>n,, d(x,x)<e&.

+ Theorem
If (x,) 1s converges then limit of (x,) is unique.

Proof.
Suppose x, > a and x, = b,

Then 0<d(a,b)<d(a,x,)+d(x,,b) >0+0 asn—>0 = d(a,b)=0 = a=b
Hence the limit is unique. O,
Alternative
Suppose that a sequence (xn) converges to two distinct limits @ and b.

and d(a,b)=r>0
Since x, = a, given any ¢ >0, there is a natural number », depending on ¢

12



such that
g
d(x,,a)<— whenever n>n,
2

Also x, > b, given any ¢ > 0, there is a natural number n, depending on &
such that

d(x,,b)< g whenever n > n,
Take n, = max(n,,n,) then
d(x,,a)< % and d(x,,b)< g whenever n > n,
Since ¢ is arbitrary, take £ =r then
r=d(a,b)<d(a,x,)+d(x,,b)
ror

&g
<—+—-= wd(a,x)=d(x,,a)<—
Sty (@,x,)=d(x,,a) <5

Which is a contradiction, Hence a =5 1i.e. limit is unique.

+» Theorem
i) A convergent sequence is bounded.
ii) Ifx, »>xand y, >y then d(x,y,)—>d(x,y).
Proof.
(i) Suppose x, = x, therefore for any ¢ >0 there 1s n, € N such that
Vn>n,, d(x,x)<&
Let a=max{d(x,x),d(xX,,X),cccccee. ,d(x,,x)} and k=max{e,a}
Then by using triangular inequality for arbitrary x,,x, € (xn)
0<d(x,x,)<d(x,x)+d(x,x))
<k+k=2k
Hence (x,) is bounded.
(ii) By using triangular inequality

d(xn,yn)éd(xn,x)+d(x,y)+d(y,yn)
= d(x,,y,)-d(x,y)<d(x,,x)+d(y,y,)>0+0 as n—>o ...
Next d(x,y)<d(x,x,)+d(x,,y,)+d(y,.»)
= d(x,y)—d(x,,y,)<d(xx,)+d(y,,y)>0+0 as n—>oo ...... (i7)

From (i) and (ii)

‘d(xn,yn)—d(x,y)‘—>0 as n—» oo
Hence

limd(xn,yn) =d(x,y).

n—»0

13



«» Cauchy Sequence
A sequence (x,) in a metric space (X,d) is called Cauchy if any & >0 thereis a
n, €N suchthat V m,n>n,, d(x, ,x)<e¢.

«» Theorem
A convergent sequence in a metric space (X,d) is Cauchy.

Proof.
Let x, >xe X, therefore any & >0 there is n, € N such that

Y mn>n,, d(xn,x)<§ and d(xm,x)<g.

Then by using triangular inequality
d(x,,x,)<d(x,,x)+d(x,x,)

Sd(xm,x)+d(xn,x) wd(x,y)=d(y,x)
E ¢

<—t+=—=¢

2 2

Thus every convergent sequence in a metric space is Cauchy.

« Example
Let (x,) be a sequence in the discrete space (X,d). If (x,) be a Cauchy sequence, then
for = % , there is a natural number 7, depending on ¢ such that

d(xm,xn)<y2 VY m,nzn,
Since in discrete space d is either O or 1 therefore d(x,,,x, )=0 = x, =x, =x(say)
Thus a Cauchy sequence in (X,d) become constant after a finite number of terms,

1.e. (xn) = (xl,xz,...,xno ,x,x,x,...)

+» Subsequence
Let (a,a,,a,,...) be asequence (X,d) andlet (i,i,,i,...) be asequence of

positive integers such that i, <i, <i, <... then (al.l,al.z,al.3,...) is called subsequence of
(an ‘ne N).
«» Theorem

(i) Let (x,) be a Cauchy sequence in (X,d), then (x,) converges to a point x € X if
and only if (x,) has a convergent subsequence (xnk ) which converges to x € X .

(ii) If (x,) converges to x € X, then every subsequence (xnk ) also converges to

xeX.
Proof.

14



(i) Suppose x, —>x e X then (x,) itself is a subsequence which converges to x e X .

Conversely, assume that (xn ) is a subsequence of (xn) which converges to x.

Then for any ¢ >0 thereis n, € N such that V n, >n,, d(xnk,x) <§.

Further more (x,) is Cauchy sequence

Then for the £ >0 there is n, €N such that V m,n > n, d(xm,xn)<§.

Suppose n, =max(n,,n,) then by using the triangular inequality we have

d(xn,x)Sd(xn,xnk)+d(xnk,x)
<§+g:€ YV n,.,n>n,
This show that x, — x.

(i) x, >x implies forany £>0 3 n,eN suchthat d(x,,x)<¢
Then in particular d (xnk ,x) <g& V n >n,

Hencex, —>xeX.

< Example
Let X =(0,1) then (x,)=(x,,%,,%;,...) =(%, 4, %....) is a sequence in X.
Then x, — 0 but 0 is not a point of X.

«* Theorem
Let (X,d) be a metric space and M < X.

(i) Then xeM ifand only if there is a sequence (x,) in M such that x, — x.
(ii)  If for any sequence (x,) in M, x, >x = xe M, then M is closed.
Proof.
(i) Suppose xe M =M UM’
If x e M , then there is a sequence (x,x,Xx,...) in M which converges to x.
If xg M ,then xe M’ i.e. xisan accumulation point of M, therefore each n €N the

open ball B(x;lj contain infinite number of point of M.
n

We choose x, € M from each B(x;lJ
n

: : : 1
Then we obtain a sequence (x,) of points of M and since ——>0 as n— .
n

Then x, ->x as n—oo.
Conversely, suppose (x,) suchthat x — x.

15



We prove xe M
If xe M then xeM. w M=MUM'
If x ¢ M , then every neighbourhood of x contain infinite number of terms of (x, ).
Then x is a limit point of M i.e. xeM’
Hence xeM =M UM'.
@iii) If (x,) isimMand x, > x,then xe M then by hypothesis M = M , then M

1s closed.
[ |

+» Complete Space
A metric space (X,d) is called complete if every Cauchy sequence in X
converges to a point of X.

+» Subspace
Let (X,d) be a metric space and Y — X then Y is called subspace if Y is itself a
metric space under the metric d.

«» Theorem
A subspace of a complete metric space (X,d) is complete if and only if Y'is

closed in X.
Proof.
Assume that Y is complete we prove Y is closed.

Let xeY then there is a sequence (x,) in ¥ such that x, — x.
Since convergent sequence is a Cauchy and Y 1s complete then x, > xeY.

Since x was arbitrary pointof Y = YcY

Therefore Y =Y YcY

Consequently Y is closed.
Conversely, suppose Y is closed and (x,) 1s a Cauchy sequence. Then (x,) 1s Cauchy

in X and since X is complete so x, »>xe X.

Also xeY and Yc X .

Since Yis closed ie. Y=Y therefore xeY .
Hence Y is complete.

+» Nested Sequence:
A sequence sets A4,,4,,4;,... 1s called nested it 4 54, > 4, >...

<* Theorem (Cantor’s Intersection Theorem)
A metric space (X,d) is complete if and only if every nested sequence of non-
empty closed subset of X, whose diameter tends to zero, has a non-empty intersection.
16



Proof.
Suppose (X,d) i1s complete and let 4 DA, D 4, ... be a nested sequence of

closed subsets of X.

Since A is non-empty we choose a point a, from each A . And then we will prove
(a,,a,,a,,...) 1s Cauchy in X.

Let £>0 be given, since limd(A,)=0 then thereis n, €N such that d (Ano ) <0

Then for m,n>n,, d(a,,a)<e¢.

This shows that (a,) is Cauchy in X.

Since X 1s complete so a, = p € X (say)

We prove peﬂA ,

Suppose the contrary that p ¢ ﬂ A thend a keN suchthat pe 4, .
Since 4, is closed, d(p,4,)=6>0.

Consider the open ball B ( p;gj then 4, and B( p;gj are disjoint

Now aq,,a, ,,q,,,,... all belong to 4, then all these points do not belong to B ( p;gj
This is a contradiction as p is the limit point of (a, ).

Hence pe ﬂAn .

Conversely, assume that every nested sequence of closed subset of X has a non-empty
intersection. Let (x,) be Cauchy in X, where (x,) = (x,x,,x;,...)

Consider the sets

.....................

Then we have 4 24,54, >...
We prove limd(4,)=0

Since (x,) is Cauchy, therefore 3 n, € N such that
VvV m,n>n,, d(x,,x,)<e&, ie. limd(4,)=0.

Now d(Z):d(An) then limd(4,)=1limd(4,)=0
Also 4, D4, D4, >..

17



Then by hypothesis ﬂATl zp.Llet pe ﬂA_n

We prove x, > pe X
Since limd(zn) =0 therefore 3 k&, €N such that d (A_ko) <&

Then for n>k,, xn,pezn = d(x,p)<e V n>k,
This proves that x, > pe X.
The proof is complete.

«» Complete Space (Examples)

(7) The discrete space is complete.
Since in discrete space a Cauchy sequence becomes constant after finite terms
1.e. (x,) 1s Cauchy in discrete space if it is of the form

(x,,%,,%;,....,x, =b,b,b,...)
(i) The set Z = {O,il,i2,...} of integers with usual metric is complete.

(iii) The set of rational numbers with usual metric is not complete.
o (1.1,1.41,1.412,...) 1s a Cauchy sequence of rational numbers but its limit is \/5 ,
which is not rational.

(iv) The space of irrational number with usual metric is not complete.
We take (_1,1);(_%,%)7(_%3%)9“'9(_%7%)

We choose one irrational number from each interval and these irrational tends to zero
as we goes toward infinity, as zero is a rational so space of irrational is not complete.

* Theorem

The real line is complete.
Proof.
Let (x,) be any Cauchy sequence of real numbers.

We first prove that (x,) is bounded.
Let 6=1>0 then 3 n,eN suchthat V mn=>n,, d(x,,x,)= | X, —X,

In particular for n > n, we have

<1

xo—xn‘SI = x, —1=sx,<x, +1

Let a= max{xl,xz,...,xno + 1} and fB= rnin{xl,xz,...,xn0 —1}

then f<x <a Vn.

this shows that (x,) is bounded with £ as lower bound and « as upper bound.
Secondly we prove (x,) has convergent subsequence (x, ).

18



If the range of the sequence is {x,} ={x,x,,x,,...} is finite, then one of the term is the

sequence say b will repeat infinitely i.e. b,b,b,..........
Then (b,b,b,...) is a convergent subsequence which converges to b.

If the range is infinite then by the Bolzano Weirestrass theorem, the bounded infinite
set {x,} has a limit point, say b.

Then each of the open interval S, =(b—-1,b+1), S, =(b— 5.6+ %),
S,=(b-Y.b+)%), ... has an infinite numbers of points of the set {x,}.

1.e. there are infinite numbers of terms of the sequence (x,) in every open interval §, .

We choose a point x, from S, then we choose a point x, from S, such that i <i,

i.e. the terms x;, comes after x, in the original sequence (x,). Then we choose a term

x, such that i, <i;, continuing in this manner we obtain a subsequence

(xin ) :(xl.1 2 X, 5 X, 5 )
It is always possible to choose a term because every interval contain an infinite
numbers of terms of the sequence (x,).
Since b—Y,—b and b+, —>b as n— . Hence we have convergent subsequence
(x, ) whose limit is b.
Lastly we prove that x, >beR.
Since (x,) is a Cauchy therefore for any & >0 therei1s n, € N such that

&
<=
2

Also since x, — b there is a natural number i, such that i, >n,

Y m,n>n, ‘xm—xn

Then V m,n,i >n,
d(x,,b)=

X, =X, +x —b‘

m

xn—b‘z

<

> xn—xl.m‘+‘x.

Im

Hence x, > b <R and the proofis complete.

+ Theorem
The Euclidean space R” is complete.

Proof.
Let (x,) be any Cauchy sequence in R".

Then for any ¢ >0, there is n, € N such that V m,r >n,

m (") %
d(xm,xr)—{z(gj—gjn <E e, )
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(m) (m) (m) (m) — (m) (r) RGN
where x :(fjj :(51,52,53,...,95") and Xx, =(§jj :(51,52,53,...,5,1]
Squaring both sided of (i) we obtain

m N
2(51_ fjj <€
(m) ()

é‘é

= <g¢ V j=L23,...n

(m) M 2 3
This implies (5}.) = (gj,gj,gj,. : j is a Cauchy sequence of real numbers for every
j=12,3,...,n.

Since R is complete therefore (fmj) — &, €R (say)
Using these n limits we define
x=(&)=(&.4,.4.....£,) thenclearly xeR".
We prove x, —x
In () as r—oo, d(x,,x)<& ¥V m>n, which show that x, > xeR"
And the proof is complete.

Note: In the above theorem if we take n = 2 then we see complex plane C =R is
complete. Moreover the unitary space C* is complete.

«* Theorem
The space [” is complete.
Proof.
Let (x,) be any Cauchy sequence in /”.
Then for any ¢ >0 there is n, >N such that V m,n>n,

(m) n

gj_gj

(m) (m) (m) (m) (n) (n) (n) (n)
Where x, :(éjj :(51,52,53,...j and x, :(cj‘jj :(51,52,53,...)
Then from (7)

<E wvvernnn. @)

d(x,,x,)=sup
j

(m) (n)

=& |<E . @ VvV j=L23,.. and V m,n>n,

(m) m @ G
It means (5 ’) = (5 12675850 ) is a Cauchy sequence of real or complex numbers for
every j=1,2,3,...
(m)
And since R and C are complete therefore &, — &, eR or C (say).
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Using these infinitely many limits we define x = (5 j) = (51,52,53,. . ) :

We prove xe!” and x, > x.
(m)

5.1_ 98.1'

In (i) as n — o we obtain <E v @) YV m>n,

We prove x is bounded.
By using the triangular inequality

(m) (m)
‘ S ‘ -

gj _§j+§j

(m)

é:j_gj

(m)

< +|S, [<e+k,

(m)

)

Hence (5 j) =x 1s bounded.

This shows that x, > x e[”.
And the proof is complete.

Where <k, as x, 1s bounded.

+» Theorem
The space C of all convergent sequence of complex number is complete.

Note: It is subspace of /”.
Proof.

First we prove C is closed in [”.
Let x= (5 j) € C, then there is a sequence (x,) in C such that x, > x,

(n) (n) (n) (m)
where x, =| &, [=| §,5,,855--- |-

Then for any ¢ >0, there is n, € N such that V n>n,
(m)

S5

Then in particular for n=n, and V j=1,2,3,...........

(n9)

gj - 5]‘ < g .
Now x, €C then x, isa convergent sequence therefore 3 n, e N

such that V j,k>n,

&
< =

d = .
(xn,x) 51]1_p 3

g

(ny)  (ng) &
96.1’ — & | < §
Then by using triangular inequality we have
(ng) (mg) (ng) (mg)
& -&|=|g -5+ & -E+E-¢
(m) (ng)  (ng) (m)
< 5_;_5_/' + gj_é:k + gk_é:k :
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<—+—+§=g YV j,k>n,.

Hence x is Cauchy in /* and x is convergent

Therefore xeC and = C=C.

i.e. Cisclosedin /” and /” is complete.

Since we know that a subspace of complete space is complete if and only if it is
closed in the space.

Consequently C is complete.

«» Theorem

The space [”, p>1 is areal number, is complete.
Proof.

Let (x,) be any Cauchy sequence in /”.

Then for every ¢ >0, there is n, € N such that V m,n>n,
1

o [m) o |7 \P .
d(x,,x,)=| D |E=E| | <€ oviiiiinns (i)
jAl
(m) (m) (m) (m)
where x :(ggjj:(gﬁ,@,é,... :
() (n)
Then from (7) S,—& <€ i (i1) VYV m,n>n, and for any fixed ;.

(m)

This shows that (5 ]) is a Cauchy sequence of numbers for the fixed ;.

(m)
Since R and C are complete therefore &, —>¢& eR or C (say) as m — .

Using these infinite many limits we define x = (5 j) = (51,52,53,. . ) :

We prove xe/” and x, ->x as m — .

1
P \p
<&,

From (i) we have

(m) (n)

k
Z 51_51
j=1
_ k L my (m) |P
ie.  D|E-E | <€ i, (iii)
j=1
Taking as n — o, we get
k

(m) p

Z é:j_(:/ <g’ > k=1,2,3,.......
j=1
Now takingk — oo, we obtain
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(m)

Z 5;‘_5]

This shows that (x, —x)e/”

Now [” is a vector space and x, €/”, x—x,€l” then x,+(x—x, )=x€l”.

P
<€ i, (iv) V j=1,23.

Also from (iv) we see that
(d(xm,x))p <&l VvV m>n,
re. d(x,,x)<e& V m>n,
This shows that x, > x€/” as x —> .
And the proof is complete.

** Theorem

The space C[a, b] 1s complete.
Proof.
Let (x,) be a Cauchy sequence in C[a, b].

Therefore for every £ >0, there is n, € N such that V m,n>n,
d(xm,xn):m%x‘xm(t)—xn(t)‘<8 ............ (i)  where J=[a,b].
te

Then for any fix t =1, J

x,(t)—x,(t,)|< & YV m,n>n,
It means (x,(,),x,(%,),x;(t,),...) is a Cauchy sequence of real numbers. And since R
1s complete therefore x (¢,) > x(¢,) €R (say) as m — .
In this way for every e J, we can associate a unique real number x(¢) with x (7).
This defines a function x(¢) on J.
We prove x(¢) € Cla, b] and x, () = x(t) as m — oo.
From (i) we see that
x, (t)—x, (1) ‘ <g¢ foreveryteJ and V m,n>n,.

Letting n — oo, we obtain for all t e J
x,(D—x(t)|<e Y m<n,.

Since the convergence is uniform and the x, ’s are continuous, the limit function x(z)

1s continuous, as it is well known from the calculus.
Then x(¢) is continuous.

Hence x(7) e Cla,b], also |x,(1)—x(t)|<e as m— oo
Therefore x (¢) = x(¢) e ([a,b].
The proof is complete.

«* Theorem
If (X.d,) and (Y,d,) are complete then X xY is complete.

Note: The metric d (say) on X xY is defined as d(x,y)=max(d,(&.%,).d,(n.m,))
23



where x:(gl’nl)’ y:(ézanz) and §,,6, € X, n,m, €Y.
Proof.
Let (x,) be a Cauchy sequence in X'xY.

Then for any ¢ >0, there is n, € N such that V m,n > n,
(m) (n) (m) (n)
d(x,,x,)=max dl(f,‘fj,dz(n,nj <&
(m) (n) (m) (n)
= d| ¢,8 |<eand d,| 1,17 |<e YV m,n>n,
o (m) 1) () 3) _ .
This implies ( & ) = (5 , .68, ) 1s a Cauchy sequence in X.

(m) M@ 3 _ .
and | n |=|n,n,n,... | 1s a Cauchy sequence in Y.

(m) (m)
Since X and Y are complete therefore & — & € X (say) and 7 — €Y (say)
Let xz(f,,u) then xe X xY.

(m) (m)
Also d(xm,x):max(d{f,éj,dz(n,n}j—)O as n-—> oo,

Hence x, >xe X xY.
This proves completeness of X xY.

¢ Theorem
f:(X,d)—>(Y.,d") is continuous at x, € X ifand onlyif x, —x implies
F(x,) > f(x,).
Proof.
Assume that f is continuous at x, € X then for given £>0 thereisa 0 >0

such that
d(x,x,)<8 = d'(f(x),[f(x))<e.
Let x, = x,, then forour 6 >0 thereis n, €N such that
d(x,,x)<8, ¥ n>n,
Then by hypothesis d'(f(x,),f(x)))<e, ¥V n>n,
ie.  f(x,)—> f(x)
Conversely, assume that x, - x, = f(x,)— f(x,)
We prove f:X —Y iscontinuous at x, € X, suppose this is false

Then there is an ¢ >0 such that for every 6 >0 there is an x € X such that
d(x,x))<6 but d'(f(x),f(x,))=¢

In particular when ¢ = l, thereis x € X such that
n
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d(x,,x,)<d but d(f(x,).f(x))=¢.
This shows that x, > x, but f(x,) > f(x,) as n—>o.

This is a contradiction.
Consequently f:X —Y iscontinuous at x,€.X .

The proof is complete.

+ Rare (or nowhere dense in X))

Let X be a metric, a subset M < X is called rare (or nowhere dense in X) if M

has no interior point i.e. int (M ) =@.

«» Meager ( or of the first category)

Let X be a metric, a subset M — X is called meager (or of the first category) if M
can be expressed as a union of countably many rare subset of X.

¢ Non-meager ( or of the second category)

Let X be a metric, a subset M — X 1is called non-meager (or of the second
category) if it 1s not meager (of the first category) in X.

« Example:
Consider the set (Q of rationales as a subset of a real line R. Let ¢ € Q, then

{q}={q} because R —{q} =(-0,q)(g,») is open. Clearly {¢} contain no open ball.
Hence Q is nowhere dense in R as well as in Q. Also since Q is countable, it is the
countable union of subsets {¢}, g € Q. Thus Q is of the first category.

+« Bair’s Category Theorem
If X # ¢ is complete then it is non-meager in itself.

OR
A complete metric space is of second category.
Proof.

Suppose that X is meager in itself then X =J M, , where each M, is rare in X.
k=1

Since M, is rare then int(M)=M"=¢
1.e. ]\71 has non-empty open subset
But X has a non-empty open subset ( i.e. X itself' ) then ﬁl =X .

This implies ]\71 =X —]\71 is a non-empty and open.

We choose a point p, € M," and an open ball B, =B(p;;&)c M, , where & <y2.

Now ]\72 " s non-empty and open
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Then 3 a point p, € M, and open ball B, = B(p,;¢,) eM, mB(pl;%glj
(1\72 has no non-empty open subset then ﬁz ‘N B( pl;%glj 1s non-empty and open.)

So we have chosen a point p, from the set M, N B( pl;%glj and an open ball

: | |
B( p,.¢,) around it, where &, <54 <5-5<2 L

Proceeding in this way we obtain a sequence of balls B, such that
1
B, < B(pk;agkj c B, where B,=B(p;¢) V k=1273,..
Then the sequence of centres p, 1s such that for m >n

—>0 as m— o,

1
d(pmapn) <§gm < 2m+1

Hence the sequence (p, ) is Cauchy.
Since X 1s complete therefore p, — p € X (say) as k — oo.

Also
d(p,.p)<d(p,.p,)+d(p,.p)
<%gm+d(pn,p)
<e,+d(p,.p)—>¢€,+0 as n—oo.
— peB VY m ie peM,kK V¥V m " B, =M, " B(p, :}¢,.)

:>BmcM_mc = B, "M, =¢
=>peM, Vm =pgX

This 1s a contradiction.
Bair’s Theorem is proof.

Open Notes on Metric Spaces
CC BY-NC-SA 4.0 by MathCity.org

26



