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❖ Metric Spaces 

   Let X be a non-empty set and  denotes the set of real numbers. A 

function :d X X →  is said to be metric if it satisfies the following axioms

, ,x y z X  . 

[M1]  ( , ) 0d x y     i.e.  d is finite and non-negative real valued function. 

[M2]  ( , ) 0d x y =  if and only if x = y. 

[M3]  ( , ) ( , )d x y d y x=      (Symmetric property) 

[M4]  ( , ) ( , ) ( , )d x z d x y d y z +   (Triangular inequality) 

    The pair (X, d ) is then called metric space. 

d is also called distance function and d(x, y) is the distance from x to y. 

  Note: If (X, d) be a metric space then X is called underlying set. 

❖ Examples:  

i) Let X be a non-empty set. Then :d X X →  defined by 

    
1

( , )
0

if x y
d x y

if x y


= 

=
 

is a metric on X and is called trivial metric or discrete metric. 
 

ii) Let  be the set of real number. Then :d  →  defined by 

       ( , )d x y x y= −   is a metric on .  

The space ( ),d  is called real line and d is called usual metric on . 
 

iii) Let X be a non-empty set and :d X X →  be a metric on X. Then 

:d X X  →  defined by  ( )( , ) min 1, ( , )d x y d x y =  is also a metric on X. 

Proof:  

[M1]  Since d is a metric so ( , ) 0d x y    

          as ( , )d x y  is either 1 or ( , )d x y  so ( , ) 0d x y  . 

[M2]  If x = y  then ( , ) 0d x y =  and then ( , )d x y  which is ( )min 1, ( , )d x y  will be        

          zero. 

         Conversely, suppose that ( , ) 0d x y =    ( )min 1, ( , ) 0d x y =  

  ( , ) 0d x y =  x y =    as d is metric. 

[M3]  ( ) ( )( , ) min 1, ( , ) min 1, ( , ) ( , )d x y d x y d y x d y x = = =         ( , ) ( , )d x y d y x=  

https://www.mathcity.org/open-notes/metric-space
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[M4]  We have ( )( , ) min 1, ( , )d x z d x z =  

( , ) 1d x z   or  ( , ) ( , )d x z d x z   

         We wish to prove ( , ) ( , ) ( , )d x z d x y d y z   +  

          now if ( , ) 1d x z  , ( , ) 1d x y    and ( , ) 1d y z        

then ( , ) 1d x z = , ( , ) 1d x y =  and ( , ) 1d y z =    

and ( , ) ( , ) 1 1 2d x y d y z + = + =   

therefore ( , ) ( , ) ( , )d x z d x y d y z    +  

Now if ( , ) 1d x z  , ( , ) 1d x y    and ( , ) 1d y z   

Then ( , ) ( , )d x z d x z = , ( , ) ( , )d x y d x y =  and ( , ) ( , )d y z d y z =  

As d is metric therefore ( , ) ( , ) ( , )d x z d x y d y z +  

 ( , ) ( , ) ( , )d x z d x y d y z    +     

◼ 
 

iv) Let :d X X →  be a metric space. Then :d X X  →  defined by 

( , )
( , )

1 ( , )

d x y
d x y

d x y
 =

+
 is also a metric. 

Proof. 

[M1] Since ( , ) 0d x y   therefore 
( , )

( , ) 0
1 ( , )

d x y
d x y

d x y
= 

+
 

[M2] Let ( , ) 0d x y =  
( , )

0
1 ( , )

d x y

d x y
 =

+
  ( , ) 0d x y =  x y =  

         Now conversely suppose x y=  then ( , ) 0d x y = . 

         Then 
( , ) 0

( , ) 0
1 ( , ) 1 0

d x y
d x y

d x y
 = = =

+ +
 

[M3]  ( )
( , ) ( , )

( , ) ,
1 ( , ) 1 ( , )

d x y d y x
d x y d y x

d x y d y x
 = = =

+ +
  

[M4] Since d is metric therefore ( , ) ( , ) ( , )d x z d x y d y z +  

         Now by using inequality  
1 1

a b
a b

a b
  

+ +
. 

         We get    
( , ) ( , ) ( , )

1 ( , ) 1 ( , ) ( , )

d x z d x y d y z

d x z d x y d y z

+


+ + +
 

                                 
( , ) ( , )

( , )
1 ( , ) ( , ) 1 ( , ) ( , )

d x y d y z
d x z

d x y d y z d x y d y z
  +

+ + + +
 

    
( , ) ( , )

( , )
1 ( , ) 1 ( , )

d x y d y z
d x z

d x y d y z
  +

+ +
 

  ( , ) ( , ) ( , )d x z d x y d y z    +  

◼ 
 

v) The space C[a, b] is a metric space and the metric d is defined by 
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( , ) max ( ) ( )
t J

d x y x t y t


= − , 

where  J = [a, b] and x, y are continuous real valued function defined on [a, b]. 

Proof. 

[M1] Since ( ) ( ) 0x t y t−    therefore  ( , ) 0d x y  . 

[M2] Let ( , ) 0d x y =  ( ) ( ) 0 ( ) ( )x t y t x t y t − =  =  

        Conversely suppose x y=  

        Then ( , ) max ( ) ( ) max ( ) ( ) 0
t J t J

d x y x t y t x t x t
 

= − = − =   

[M3] ( , ) max ( ) ( ) max ( ) ( ) ( , )
t J t J

d x y x t y t y t x t d y x
 

= − = − =  

[M4] ( , ) max ( ) ( ) max ( ) ( ) ( ) ( )
t J t J

d x z x t z t x t y t y t z t
 

= − = − + −  

                    max ( ) ( ) max ( ) ( )
t J t J

x t y t y t z t
 

 − + −  

( , ) ( , )d x y d y z= +  

◼ 
 

vi)  :d  →  is a metric, where  is the set of real number and d defined by 

( , )d x y x y= −   
 

vii) Let 1 1( , )x x y=  , 2 2( , )y x y= . We define  

   
2 2

1 2 1 2( , ) ( ) ( )d x y x x y y= − + −  is a metric on   

and called Euclidean metric on 2  or  usual metric on 2 . 
 

viii) :d  →  is not a metric, where  is the set of real number and d defined by 
2( , ) ( )d x y x y= −   

Proof. 

[M1] Square is always positive therefore 
2( ) ( , ) 0x y d x y− =   

[M2] Let ( , ) 0d x y =   
2( ) 0x y − =    0x y − =    x y =  

        Conversely suppose that  x y=   

        then 
2 2( , ) ( ) ( ) 0d x y x y x x= − = − =  

[M3] 
2 2( , ) ( ) ( ) ( , )d x y x y y x d y x= − = − =  

[M4] Suppose that triangular inequality holds in d. then for any , ,x y z  

           ( , ) ( ) ( , )d x z d x y d y z − +  

     
2 2 2( ) ( ) ( )x z x y y z −  − + −  

        Since , ,x y z  therefore consider 0, 1x y= =  and 2z= . 

    
2 2 2(0 2) (0 1) (1 2) −  − + −  

           4 1 1  +    4 2    

        which is not true so triangular inequality does not hold and d is not metric. 
◼ 
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ix)  Let 1 2( , )x x x=  , 
2

1 2( , )y y y=  . We define  

1 1 2 2( , )d x y x y x y= − + −   

is a metric on 2 , called Taxi-Cab metric on 2 . 
 

x)  Let n  be the set of all real n-tuples. For  

1 2( , ,..., )nx x x x=  and 1 2( , ,..., )ny y y y=  in n  

we define   
2 2 2

1 1 2 2( , ) ( ) ( ) ... ( )n nd x y x y x y x y= − + − + + −  

          then d is metric on n , called Euclidean metric on n  or usual metric on n . 
 

xi) The space l  . As points we take bounded sequence 

1 2( , ,...)x x x= , also written as ( )ix x= , of complex numbers such that  

1,2,3,...i xx C i  =  

where xC  is fixed real number. The metric is defined as 

( , ) sup i i
i

d x y x y


= −   where ( )iy y=  

 

xii) The space 
pl , 1p   is a real number, we take as member of 

pl , all sequence 

( )jx =  of complex number such that 
1

p

j

j




=

  . 

The metric is defined by  ( )

1

1

,
pp

j j

j

d x y  


=

 
= − 
 
 , where ( )jy =  such that 

1

p

j

j




=

  . 

Proof. 

[M1] Since 0j j −   therefore  ( )

1

1

, 0
pp

j j

j

d x y 


=

 
− =  

 
 . 

[M2] If x y=  then  

 ( )

1 1 1

1 1 1

, 0 0
p p pp p p

j j j j

j j j

d x y    
  

= = =

     
= − = − == =     
     
    

  

Conversely, if ( ), 0d x y =  

       

1

1

0
pp

j j

j

 


=

 
 − = 

 
   0j j  − =   ( ) ( )j j  =   x y =  

[M3]  ( ) ( )

1 1

1 1

, ,
p pp p

j j j j

j j

d x y d y x   
 

= =

   
= − = − =   
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[M4]  Let  ( )jz = , such that  
1

p

j

j




=

   

     then  ( )

1

1

,
pp

j j

j

d x z  


=

 
= − 
 
  

           

1

1

pp

j j j j

j

   


=

 
= − + − 
 
  

Using *Minkowski’s Inequality 
1 1

1 1

p pp p

j j j j

j j

   
 

= =

   
 − + −   
   
   

( ) ( ), ,d x y d y z= + . 

◼ 
 

❖ Pseudometric 

Let X be a non-empty set. A function :d X X →  is called 

pseudometric if and only if 

i) ( , ) 0d x x =   for all  x X . 

ii) ( , ) ( , )d x y d y x=   for all  ,x y X . 

iii) ( , ) ( , ) ( , )d x z d x y d y z +   for all  , ,x y z X . 

OR 

A pseudometric satisfies all axioms of a metric except ( , ) 0d x y =  

may not imply x = y but x = y implies ( , ) 0d x y = . 

Example 

Let 
2,x y   and 1 2( , )x x x=  , 1 2( , )y y y=  

Then 1 1( , )d x y x y= −  is a pseudometric on 2 . 

Let (2,3)x =  and  (2,5)y =  

Then ( , ) 2 2 0d x y = − =  but x y  

Note: Every metric is a pseudometric, but pseudometric is not metric. 
 

Minkowski’s Inequality 

      If ( )1 2, ,...,i n   =  and ( )1 2, ,...,i n   =  are in n  and 1p  , then 

1 1 1

1 1 1

p p pp p p

i i i i

i i i

   
  

= = =

     
+  +          
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❖ Distance between sets 

Let ( , )X d  be a metric space and ,A B X . The distance between A and B 

denoted by ( , )d A B  is defined as  ( , ) inf ( , ) | ,d A B d a b a A b B=    

If  A x=  is a singleton subset of X, then ( , )d A B  is written as ( , )d x B  and is 

called distance of point x from the set B. 
 

❖ Theorem 

Let ( , )X d  be a metric space. Then for any ,x y X   

( , ) ( , ) ( , )d x A d y A d x y−  . 

Proof. 

Let z A  then ( , ) ( , ) ( , )d x z d x y d y z +  

       then ( , ) inf ( , ) ( , ) inf ( , )
z A z A

d x A d x z d x y d y z
 

=  +   

      ( , ) ( , )d x y d y A= +  

   ( , ) ( , ) ( , ) ( )d x A d y A d x y i −              

Next  

( , ) inf ( , ) ( , ) inf ( , )
z A z A

d y A d y z d y x d x z
 

=  +  

  ( , ) ( , )d y x d x A= +  

      ( , ) ( , ) ( , )d x A d y A d y x − +   

      ( )( , ) ( , ) ( , ) ( )d x A d y A d x y ii − −                 ( , ) ( , )d x y d y x=  

Combining equation (i) and (ii) 

( , ) ( , ) ( , )d x A d y A d x y−  . 

◼ 

❖ Diameter of a set 

          Let ( , )X d  be a metric space and A X , we define diameter of A denoted by  

,

( ) sup ( , )
a b A

d A d a b


=  

Note: For an empty set  , following convention are adopted 

(i) ( )d  = −  ,  some authors take ( )d   also as 0. 

(ii) ( , )d p  =    i.e distance of a point p from empty set is  . 

(iii) ( , )d A  =  ,  where A is any non-empty set. 
 

❖ Bounded Set 

 Let ( , )X d  be a metric space and A X , we say A is bounded if diameter of A 

is finite i.e. ( )d A   . 
 

❖ Theorem 

The union of two bounded set is bounded. 

Proof. 
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Let ( , )X d  be a metric space and ,A B X  be bounded. We wish to prove 

A B  is bounded. 

   Let ,x y A B    

   If ,x y A  then since A is bounded therefore ( , )d x y    

and hence 
,

( ) sup ( , )
x y A B

d A B d x y
 

 =   then A B  is bounded. 

   Similarity if ,x y B  then A B  is bounded. 

   Now if x A  and y B  then  

( , ) ( , ) ( , ) ( , )d x y d x a d a b d b y + +   where ,a A b B  . 

   Since ( , ), ( , )d x a d a b  and ( , )d b y  are finite  

   Therefore ( , )d x y    i.e A B  is bounded.  

◼ 

❖ Open Ball 

Let ( , )X d  be a metric space. An open ball in ( , )X d  is denoted by 

    0 0( ; ) | ( , )B x r x X d x x r=   , 

where 0x  is called centre of the ball and r is called radius of ball and 0r  . 

❖ Closed Ball 

Let ( , )X d  be a metric space. A closed ball in ( , )X d  is denoted by 

 0 0( ; ) | ( , )B x r x X d x x r=   , 

where 0x  is called centre of the ball and r is called radius of ball and 0r  .  

❖ Sphere  

Let ( , )X d  be a metric space. A sphere in ( , )X d  is denoted by 

 0 0( ; ) | ( , )S x r x X d x x r=  = , 

where 0x  is called centre and r is called radius of sphere and 0r  .  

❖ Examples 

Consider the set of real numbers with usual metric d x y= −  ,x y   

then  ( ; ) | ( , )B x r x d x x r=    

i.e.   ( ; ) :B x r x x x r=  −   

  i.e.   0x r x x r−   + = 0 0( , )x r x r− +  

i.e. open ball is the real line with usual metric is an open interval. 

And  0( ; ) :B x r x x x r=  −    

i.e.  0 0x r x x r−   + = 0 0[ , ]x r x r− +  

i.e.  closed ball in a real line is a closed interval. 

And  0( ; ) :S x r x x x r=  − = = 0 0,x r x r− +   

i.e.  two point 0x r−  and 0x r+  only. 
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❖ Open Set 

Let ( , )X d  be a metric space and set G is called open in X  if for every x G , 

there exists an open ball ( ; )B x r G . 
 

❖ Theorem  

An open ball in metric space X is open. 

Proof. 

Let 0( ; )B x r  be an open ball in ( , )X d . 

Let 0( ; )y B x r  then 0 1( , )d x y r r=   

Let 2 1r r r − , then 2 0( ; ) ( ; )B y r B x r  

Hence 0( ; )B x r  is an open set. 

◼ 

 

Alternative:  

Let 0( ; )B x r  be an open ball in ( , )X d . 

Let 0( ; )x B x r  then 0 1( , )d x x r r=   

Take 2 1r r r= −  and consider the open ball 2( ; )B x r   

we show that 2( ; ) ( ; )B x r B x r . 

For this let 2( ; )y B x r  then 2( , )d x y r   

and  0 0( , ) ( , ) ( , )d x y d x x d x y +  

          1 2r r +  r=  

hence 0( ; )y B x r  so that 2 0( ; ) ( ; )B x r B x r . Thus 0( ; )B x r  is an open. 

◼ 
 

Note: Let ( ),X d be a metric space then 

i)   X and   are open sets. 

ii)  Union of any number of open sets is open. 

iii) Intersection of a finite number of open sets is open. 
 

❖ Limit point of a set 

Let ( , )X d  be a metric space and A X , then x X  is called a limit point  or 

accumulation point of A if for every open ball ( ; )B x r  with centre x, 

    ( ; ) { }B x r A x  −  . 

i.e. every open ball contain a point of A other than x. 

❖ Closed Set 

A subset A of metric space X is closed if it contains every limit point of itself. 

The set of all limit points of A is called the derived set of A and denoted by A . 
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❖ Theorem 

A subset A of a metric space is closed if and only if its complement cA  is open. 

Proof. 

Suppose A is closed, we prove cA  is open. 

Let 
cx A  then x A . 

x  is not a limit point of A. 

then by definition of a limit point there exists an open ball ( ; )B x r  such that  

( ; )B x r A  = . 

This implies ( ; ) cB x r A . Since x is an arbitrary point of cA . So cA  is open. 

Conversely, assume that cA  is an open then we prove A is closed. 

i.e.  A contain all of its limit points. 

Let x be an accumulation point of A. and suppose 
cx A . 

then there exists an open ball ( ; ) cB x r A    ( ; )B x r A   = .  

This shows that x is not a limit point of A. this is a contradiction to our assumption. 

Hence x A . Accordingly A is closed. 

The proof is complete. 
◼ 

 

❖ Theorem 

A closed ball is a closed set. 

Proof. 

Let ( ; )B x r  be a closed ball. We prove  ( ; )
c

B x r C=  (say) is an open ball. 

Let y C  then  ( , )d x y r . 

Let 1 ( , )r d x y=  then  1r r . And take 2 1r r r= −  

Consider the open ball 2;
2

r
B y
 
 
 

 we prove 2;
2

r
B y C
 

 
 

. 

For this let 2;
2

r
z B y

 
  

 
 then 2( , )

2

r
d z y   

By the triangular inequality  
( , ) ( , ) ( , )d x y d x z d z y +  

    ( , ) ( , ) ( , )d x y d z x d z y  +    ( , ) ( , )d y z d z y=  

    ( , ) ( , ) ( , )d z x d x y d z y  −  

    2 1 2 1 1 1
1

2 2
( , )

2 2 2 2

r r r r r r r r
d z x r

− − + +
  − = = =   2 1r r r= −  

    ( , )
2

r r
d z x r

+
  =                1 2 10r r r r r− =     

    ( ; )z B x r   This shows that z C  

    2;
2

r
B y C
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  Hence C is an open set and consequently ( ; )B x r  is closed. 

◼ 

❖ Theorem 

Let ( , )X d  be a metric space and A X . If x X  is a limit point of A. Then 

every open ball ( ; )B x r with centre x contain an infinite numbers of point of A. 

Proof. 

Suppose ( ; )B x r contain only a finite number of points of A. 

Let 1 2, ,..., na a a  be those points.  

and let ( , )i id x a r=  where 1,2,...,i n= . 

also consider 1 2min( , ,..., )nr r r r =  

Then the open ball ( ; )B x r  contain no point of A other than x. then x is not limit point 

of A. This is a contradiction therefore ( ; )B x r  must contain infinite numbers of point of 

A. 
◼ 

❖ Closure of a Set 

Let ( , )X d  be a metric space and M X . Then closure of M is denoted by 

M M M =   where M   is the set of all limit points of M. It is the smallest closed 

superset of M. 

❖ Dense Set 

Let (X, d) be a metric space the a set M X  is called dense in X if M X= . 
 

❖ Countable Set 

A set A is countable if it is finite or there exists a function :f A→  which is 

one-one and onto, where  is the set of natural numbers. 

e.g. ,  and  are countable sets . The set of real numbers, the set of irrational 

numbers and any interval are not countable sets. 

❖ Separable Space 

A space X is said to be separable if it contains a countable dense subsets. 

 e.g. the real line  is separable since it contain the set  of rational numbers, which is 

dense is . 

❖ Theorem 

Let (X, d) be a metric space, A X  is dense if and only if A has non-empty 

intersection with any open subset of X. 

Proof. 

Assume that A is dense in X. then A X= . 

Suppose there is an open set G X  such that A G  = . 
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Then if x G  then ( ){ }A G x  − =  

which show that x is not a limit point of A. 

This implies x A  but x X   A X   

This is a contradiction. 

Consequently A G    for any open G X . 

Conversely suppose that A G    for any open G X . 

We prove A X= , for this let x X . 

If x A  then x A A A  =  then X A= . 

If x A  then let  iG  be the family of all the open subset of X such that ix G  for 

every i. 

Then by hypothesis iA G    for any i. i.e iG contain point of A other then x. 

This implies that x is an accumulation point of A. i.e.  x A  

Accordingly x A A A  =  and X A= . 

The proof is complete. 
◼ 

❖ Neighbourhood of a Point 

Let (X, d) be a metric space and  0x X  and a subset N X  is called a 

neighbourhood of 0x  if there exists an open ball 0( ; )B x   with centre 0x  such that 

0( ; )B x N  . 

Shortly “neighbourhood ”  is written as  “nhood ”. 
 

❖ Interior Point 

Let (X, d) be a metric space and A X , a point 0x X  is called an interior point 

of A if there is an open ball 0( ; )B x r  with centre 0x  such that 0( ; )B x r A . 

The set of all interior points of A is called interior of A and is denoted by int(A) or A . 

It is the largest open set contain in A. i.e. A A . 
 

❖ Continuity 

A function  ( ) ( ): , ,f X d Y d →  is called continuous at a point 0x X  if for any 

0   there is a  0   such that  ( )0( ), ( )d f x f x     for all x satisfying 0( , )d x x  . 

Alternative: 
:f X Y→  is continuous at 0x X  if for any 0  , there is a 0   such that  

   0( ; )x B x       ( )0( ) ( );f x B f x   . 

❖ Theorem 

:( , ) ( , )f X d Y d→  is continuous at 0x X  if and only if 
1( )f G−

 is open is X 

wherever G is open in Y. 
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Note : Before proving this theorem note that if :f X Y→  , 
1 :f Y X− →  and A X , 

B Y  then 
1 ( )f f A A−   and 

1( )f f B B−  . 

Proof. 

Assume that :f X Y→  is continuous and G Y  is open. We will prove 
1( )f G−

 

is open in X. 

   Let 
1( )x f G−   

1( ) ( )f x f f G G−    

When G is open, there is an open ball ( )( );B f x G  . 

   Since :f X Y→  is continuous, therefore for 0   there is a  0   such that     

              ( ; )y B x    ( )( ) ( );f y B f x G     then  
1 1( ) ( )y f f G f G− −   

   Since y is an arbitrary point of  
1( ; ) ( )B x f G − . Also x was arbitrary, this show that 

1( )f G−
 is open in X. 

   Conversely, for any G Y  we prove :f X Y→  is continuous. 

   For this let x X  and 0   be given. Now ( )f x Y  and let ( )( );B f x   be an open 

ball in Y.  then by hypothesis  ( )( )1 ( );f B f x −   is open in X  and ( )( )1 ( );x f B f x −  

   As  ( ) ( )( )1; ( );y B x f B f x −   

( )( ) ( )1( ) ( ); ( );f y f f B f x B f x −     i.e.  ( )( ) ( );f y B f x   

  Consequently :f X Y→  is continuous. 

The proof is complete. 
◼ 

❖ Convergence of Sequence: 

Let 1 2( ) ( , ,...)nx x x=  be a sequence in a metric space ( , )X d , we say ( )nx  

converges to x X  if  lim ( , ) 0n
n

d x x
→

= . 

We write lim n
n

x x
→

=  or simply nx x→   as  n → . 

Alternatively, we say nx x→  if for every 0   there is an  0n  , such that  

  0n n  ,  ( , )nd x x  . 

❖ Theorem 

If ( )nx  is converges then limit of ( )nx  is unique. 

Proof. 

Suppose nx a→  and nx b→ ,  

Then 0 ( , ) ( , ) ( , ) 0 0n nd a b d a x d x b  + → +    as n →       ( , ) 0d a b =  a b =  

   Hence the limit is unique.   

Alternative 

Suppose that a sequence ( )nx  converges to two distinct limits  a and  b.  

and ( , ) 0d a b r=   

   Since nx a→ , given any 0  , there is a natural number 1n  depending on   
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 such that  

( , )
2

nd x a


   whenever  1n n  

   Also nx b→ , given any 0  , there is a natural number 2n  depending on   

 such that  

( , )
2

nd x b


   whenever  2n n  

Take 0 1 2max( , )n n n=  then 

( , )
2

nd x a


      and    ( , )
2

nd x b


  whenever 0n n  

Since   is arbitrary, take r =  then 

   ( , ) ( , ) ( , )n nr d a b d a x d x b=  +  

                 
2 2

r r
r + =    ( , ) ( , )

2
n nd a x d x a


=   

Which is a contradiction, Hence a b=   i.e. limit is unique. 
◼ 

❖ Theorem 

i) A convergent sequence is bounded. 

ii) If nx x→  and ny y→   then  ( , ) ( , )n nd x y d x y→ . 

Proof. 

     (i) Suppose  nx x→ , therefore for any 0   there is 0n   such that  

0n n  ,    ( , )nd x x   

   Let   1 2max ( , ), ( , ),............, ( , )na d x x d x x d x x=   and   max ,k a=  

   Then by using triangular inequality for arbitrary ( ),i j nx x x  

( )0 , ( , ) ( , )i j i jd x x d x x d x x  +  

2k k k + =  

   Hence ( )nx  is bounded. 

   (ii)  By using triangular inequality  

( ) ( ) ( ) ( ), , , ,n n n nd x y d x x d x y d y y + +  

    ( ) ( ) ( ) ( ), , , , 0 0n n n nd x y d x y d x x d y y −  + → +     as   n →  ...........( )i  

   Next          ( ) ( ) ( ) ( ), , , ,n n n nd x y d x x d x y d y y + +  

    ( ) ( ) ( ) ( ), , , , 0 0n n n nd x y d x y d x x d y y −  + → +     as   n →  ..........( )ii  

   From (i) and (ii) 

( ) ( ), , 0n nd x y d x y− →  as n →  

   Hence  

( )lim , ( , )n n
n

d x y d x y
→

= . 

◼ 
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❖ Cauchy Sequence 

A sequence ( )nx  in a metric space ( , )X d  is called Cauchy if any 0   there is a 

0n    such that  0, , ( , )m nm n n d x x    . 

 

❖ Theorem 

A convergent sequence in a metric space ( , )X d  is Cauchy. 

Proof. 

Let  nx x X→  ,  therefore any 0   there is 0n   such that  

0,m n n  ,    ( , )
2

nd x x


    and   ( , )
2

md x x


 . 

   Then by using triangular inequality  

( ) ( ) ( ), , ,m n m nd x x d x x d x x +  

     ( ) ( ), ,m nd x x d x x +    ( , ) ( , )d x y d y x=  

    
2 2

 
 + =  

   Thus every convergent sequence in a metric space is Cauchy. 
◼ 

❖ Example 

Let ( )nx  be a sequence in the discrete space ( , )X d . If ( )nx  be a Cauchy sequence, then 

for 1
2 = , there is a natural number 0n  depending on   such that  

1
2( , )m nd x x   0,m n n   

Since in discrete space d is either 0 or 1 therefore ( , ) 0m nd x x =   m nx x x = = (say) 

Thus a Cauchy sequence in ( , )X d  become constant after a finite number of terms,  

 i.e.   ( ) ( )
01 2, ,..., , , , ,...n nx x x x x x x=  

❖ Subsequence 

Let  1 2 3( , , ,...)a a a   be a sequence  ( , )X d   and let  1 2 3( , , ,...)i i i   be a sequence of 

positive integers such that 1 2 3 ...i i i    then  ( )
1 2 3
, , ,...i i ia a a  is called subsequence of 

( ):na n . 

❖ Theorem 

(i) Let ( )nx be a Cauchy sequence in ( , )X d , then ( )nx  converges to a point x X  if 

and only if ( )nx  has a convergent subsequence ( )
knx  which converges to x X . 

(ii) If ( )nx  converges to x X , then every subsequence ( )
knx  also converges to 

x X . 

Proof. 



 

15 

Available at MathCity.org 

   (i) Suppose nx x X→   then ( )nx  itself is a subsequence which converges to x X . 

   Conversely, assume that ( )
knx  is a subsequence of ( )nx  which converges to x. 

   Then for any 0   there is 0n   such that  0kn n  ,  ( ),
2knd x x


 . 

   Further more ( )nx  is Cauchy sequence  

   Then for the 0   there is 1n   such that 1,m n n  ,  ( ),
2

m nd x x


 . 

   Suppose 2 0 1max( , )n n n=  then by using the triangular inequality we have 

( ) ( ) ( ), , ,
k kn n n nd x x d x x d x x +  

                 
2 2

 
 + =   2,kn n n   

    

   This show that nx x→ . 

   (ii)  nx x→   implies for any  0    0n    such that  ( ),nd x x   

   Then in particular ( ),
knd x x      0kn n   

   Hence
knx x X→  . 

◼ 

❖ Example 

Let ( )0,1X =  then ( ) ( ) ( )1 1 1
2 3 41 2 3, , ,... , , ,...nx x x x= =  is a sequence in X. 

Then 0nx →  but 0 is not a point of X. 

❖ Theorem 

Let ( , )X d  be a metric space and M X . 

(i) Then x M  if and only if there is a sequence ( )nx  in M such that nx x→ . 

(ii) If for any sequence ( )nx  in M, nx x x M→   , then M is closed. 

Proof. 

   (i)  Suppose x M M M  =   

   If x M , then there is a sequence ( , , ,...)x x x  in M which converges to x. 

   If x M , then x M    i.e.  x is an accumulation point of M, therefore each n  the 

open ball 
1

;B x
n

 
 
 

 contain infinite number of point of M. 

   We choose nx M  from each 
1

;B x
n

 
 
 

 

   Then we obtain a sequence ( )nx  of points of M and since  
1

0
n
→   as  n → . 

   Then  nx x→   as  n → . 

   Conversely, suppose  ( )nx   such that  nx x→ . 
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   We prove  x M  

   If x M   then  x M .   M M M =   

   If x M , then every neighbourhood of x contain infinite number of terms of ( )nx . 

   Then x is a limit point of M    i.e.  x M   

   Hence  x M M M  =  . 

(iii) If ( )nx  is in M and nx x→ , then  x M   then by hypothesis  M M= , then M 

is closed. 
◼ 

❖ Complete Space  

A metric space ( , )X d  is called complete if every Cauchy sequence in X 

converges to a point of  X. 

❖ Subspace 

Let ( , )X d  be a metric space and Y X  then Y is called subspace if Y is itself a 

metric space under the metric  d. 

❖ Theorem 

A subspace of a complete metric space ( , )X d  is complete if and only if Y is 

closed in X. 

Proof. 

Assume that Y  is complete we prove Y is closed.  

   Let x Y  then there is a sequence ( )nx  in Y  such that nx x→ . 

  Since convergent sequence is a Cauchy and Y is complete then nx x Y→  . 

   Since x was arbitrary point of Y     Y Y   

    

   Therefore Y Y=         Y Y  

   Consequently Y is closed. 

   Conversely, suppose Y is closed and ( )nx  is a Cauchy sequence. Then ( )nx  is Cauchy 

in X  and since X  is complete so  nx x X→  .  

   Also  x Y    and  Y X . 

   Since Y is closed   i.e.  Y Y=   therefore  x Y . 

   Hence Y is complete. 
◼ 

❖ Nested Sequence: 

A sequence sets 1 2 3, , ,...A A A  is called nested if 1 2 3 ...A A A    

❖ Theorem (Cantor’s Intersection Theorem) 

A metric space ( , )X d  is complete if and only if every nested sequence of non-

empty closed subset of X, whose diameter tends to zero, has a non-empty intersection. 
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Proof. 

Suppose ( , )X d  is complete and let  1 2 3 ...A A A    be a nested sequence of 

closed subsets of  X. 

   Since iA  is non-empty we choose a point na  from each  nA . And then we will prove 

1 2 3( , , ,...)a a a   is Cauchy in X. 

   Let  0    be given, since  lim ( ) 0n
n

d A
→

=   then there is 0n   such that  ( )
0

0nd A   

   Then for  0,m n n ,   ( , )m nd a a  . 

   This shows that ( )na  is Cauchy in X. 

   Since X is complete so  na p X→  (say) 

   We prove  n

n

p A ,  

   Suppose the contrary that  n

n

p A   then   a  k  such that  kp A . 

   Since kA  is closed, ( , ) 0kd p A =  . 

   Consider the open ball ;
2

B p
 

 
 

  then kA  and  ;
2

B p
 

 
 

 are disjoint 

Now 1 2, , ,...k k ka a a+ +  all belong to kA  then all these points do not belong to ;
2

B p
 

 
 

 

   This is a contradiction as p is the limit point of  ( )na . 

   Hence  n

n

p A . 

   Conversely, assume that every nested sequence of closed subset of X has a non-empty 

intersection. Let ( )nx  be Cauchy in X, where 1 2 3( ) ( , , ,...)nx x x x=  

   Consider the sets 

 1 1 2 3, , ,...A x x x=  

 2 2 3 4, , ,...A x x x=  

  ………………… 

  ………………… 

  ………………… 

 :k nA x n k=   

   Then we have 1 2 3 ...A A A    

   We prove lim ( ) 0n
n

d A
→

=  

   Since ( )nx  is Cauchy, therefore   0n   such that 

    0,m n n  ,  ( , )m nd x x  ,    i.e.    lim ( ) 0n
n

d A
→

= . 

   

    Now ( ) ( )n nd A d A=   then  lim ( ) lim ( ) 0n n
n n

d A d A
→ →

= =  

   Also  1 2 3 ...A A A    
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   Then by hypothesis  n

n

A  . Let n

n

p A  

   We prove nx p X→   

   Since lim ( ) 0n
n

d A
→

=  therefore    0k   such that  ( )
0kd A   

   Then for  0n k ,  ,n nx p A     ( , )nd x p     0n k   

   This proves that  nx p X→  . 

   The proof is complete. 
◼ 

❖ Complete Space (Examples) 

(i) The discrete space is complete. 

   Since in discrete space a Cauchy sequence becomes constant after finite terms 

   i.e. ( )nx  is Cauchy in discrete space if it is of the form  

1 2 3( , , ,..., , , ,...)nx x x x b b b=  

 

    (ii) The set  0, 1, 2,...=    of integers with usual metric is complete. 

 

(iii) The set of rational numbers with usual metric is not complete. 

   (1.1,1.41,1.412,...)  is a Cauchy sequence of rational numbers but its limit is 2 , 

which is not rational. 

 

(iv) The space of irrational number with usual metric is not complete. 

   We take ( ) ( ) ( ) ( )1 1 1 1 1 1
2 2 3 31,1 , , , , ,..., ,n n− − − −  

   We choose one irrational number from each interval and these irrational tends to zero  

as we goes toward infinity, as zero is a rational so space of irrational is not complete. 

❖ Theorem 

The real line is complete. 

Proof. 

Let ( )nx  be any Cauchy sequence of real numbers. 

   We first prove that ( )nx  is bounded. 

  Let 1 0 =    then  0n    such that  0,m n n  ,  ( , ) 1m n m nd x x x x= −   

In particular for 0n n  we have 

0
1n nx x−     

0 0
1 1n n nx x x −   +  

   Let  
01 2max , ,..., 1nx x x = +   and   

01 2min , ,..., 1nx x x = −  

   then  nx n    . 

   this shows that ( )nx  is bounded with    as lower bound and    as upper bound. 

   Secondly we prove ( )nx  has convergent subsequence ( )
inx . 
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   If the range of the sequence is    1 2 3, , ,...nx x x x=  is finite, then one of the term is the 

sequence say  b  will repeat infinitely  i.e.   b, b ,b ,……….  

   Then ( , , ,...)b b b  is a convergent subsequence which converges to  b. 

   If the range is infinite then by the Bolzano Weirestrass theorem, the bounded infinite 

set  nx  has a limit point, say b. 

   Then each of the open interval 1 ( 1, 1)S b b= − + , ( )2
1 1

2 2,S b b= − +  , 

( )2
1 1

3 3,S b b= − + , … has an infinite numbers of points of the set  nx .  

  i.e.  there are infinite numbers of terms of the sequence ( )nx  in every open interval nS . 

  We choose a point 
1i

x  from 1S , then we choose a point 
2i

x  from 2S  such that 1 2i i  

 i.e. the terms 
2i

x  comes after 
1i

x  in the original sequence ( )nx . Then we choose a term 

3i
x  such that  2 3i i , continuing in this manner we obtain a subsequence 

( ) ( )
1 2 3
, , ,

ni i i ix x x x= . 

   It is always possible to choose a term because every interval contain an infinite 

numbers of terms of the sequence ( )nx . 

   Since 1
nb b− →  and 1

nb b+ →   as n → . Hence we have convergent subsequence 

( )
ni

x  whose limit is  b. 

   Lastly we prove that  nx b→  . 

   Since ( )nx  is a Cauchy therefore for any  0   there is  0n   such that 

0,m n n      
2

m nx x


−   

   Also since 
ni

x b→  there is a natural number mi  such that 0mi n  

   Then 0, , mm n i n     

( ),
m mn n n i id x b x b x x x b= − = − + −  

                        
2 2m mn i ix x x b
 

 − + −  + =  

   Hence  nx b→    and the proof is complete. 

◼ 

❖ Theorem 

The Euclidean space n  is complete. 

Proof. 

Let ( )mx  be any Cauchy sequence in  n . 

   Then for any 0  , there is 0n   such that  0,m r n   
1

2 2( ) ( )

( , ) ..............( )
m r

m r j jd x x i  
  

= −      
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   where 
( ) ( ) ( ) ( ) ( )

1 2 3, , , ,
m m m m m

m j nx     
   

= =   
   

   and 
( ) ( ) ( ) ( ) ( )

1 2 3, , , ,
r r r r r

r j nx     
   

= =   
   

 

   Squaring both sided of (i) we obtain 
2

( ) ( )
2

m r

j j  
 

−  
 

  

       
( ) ( )

1,2,3, ,
m r

j j j n   −   =  

   This implies  
( ) (1) (2) (3)

, , ,
m

j j j j   
   

=   
   

 is a Cauchy sequence of real numbers for every 

1,2,3, ,j n= . 

   Since  is complete therefore 
( )m

j j →   (say)  

   Using these n limits we define  

( ) ( )1 2 3, , , ,j nx     = =   then clearly 
nx . 

   We prove mx x→  

   In (i)   as  r → ,  ( ) 0,md x x m n    which show that  
n

mx x→   

  And the proof is complete. 
◼ 

 

Note: In the above theorem if we take n = 2 then we see complex plane 2=  is 

complete. Moreover the unitary space n   is complete.  

❖ Theorem  

The space l   is complete. 

Proof. 

Let ( )mx  be any Cauchy sequence in l  .  

   Then for any 0   there is 0n   such that 0,m n n   
( )

( , ) sup .......... ( )
m n

m n j j
j

d x x i  = −   

   Where  
( ) ( ) ( ) ( )

1 2 3, , ,
m m m m

m jx    
   

= =   
   

   and  
( ) ( ) ( ) ( )

1 2 3, , ,
n n n n

n jx    
   

= =   
   

 

   Then from (i) 
( ) ( )

..........( )
m n

j j ii  −     1,2,3,j =   and   0,m n n   

   It means 
( ) (1) (2) (3)

, , ,
m

j j j j   
   

=   
   

 is a Cauchy sequence of real or complex numbers for 

every  1,2,3,j =  

   And since  and  are complete therefore 
( )m

j j →   or  (say). 
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  Using these infinitely many limits we define ( ) ( )1 2 3, , ,jx    = = . 

   We prove x l  and mx x→ . 

   In (i) as n →  we obtain  
( )

..........( )
m

j j iii  −     0m n   

   We prove x is bounded.  

   By using the triangular inequality 
( ) ( ) ( ) ( )m m m m

j j j j j j j mk       = − +  − +  +  

   Where  
( )m

j mk    as mx  is bounded. 

   Hence ( )j x =  is bounded. 

   This shows that nx x l→  .  

   And the proof is complete. 
◼ 

 

❖ Theorem 

The space C of all convergent sequence of complex number is complete. 

Note:  It is subspace of l  . 

Proof. 

First we prove C is closed in l  . 

   Let ( )jx = C ,  then there is a sequence ( )nx   in C such that nx x→ , 

 where 
( ) ( ) ( ) ( )

1 2 3, , ,
n n n n

n jx    
   

= =   
   

. 

   Then for any 0  , there is 0n   such that 0n n   

( )
( )

, sup
3

n

n j j
j

d x x


 = −  . 

   Then in particular for 0n n=  and 1,2,3,...........j =  

0( )

3

n

j j


 −  . 

   Now 
0nx C  then 

0nx  is a convergent sequence therefore  1n     

such that 1,j k n   

 
0 0( ) ( )

3

n n

j k


 −  . 

   Then by using triangular inequality we have 
0 0 0 0( ) ( ) ( ) ( )n n n n

j k j j j k k k       − = − + − + −  

    
0 0 0 0( ) ( ) ( ) ( )n n n n

j j j k k k      − + − + − . 
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3 3 3

  
 + + =   1,j k n  . 

   Hence x is Cauchy in l   and x is convergent 

   Therefore xC  and      =C C. 

   i.e.  C is closed in l   and l   is complete. 

   Since we know that a subspace of complete space is complete if and only if it is 

closed in the space. 

   Consequently C is complete. 
◼ 

 

❖ Theorem 

The space 
pl , 1p   is a real number, is complete. 

Proof. 

Let ( )nx  be any Cauchy sequence in  
pl . 

   Then for every 0  , there is 0n   such that  0,m n n   

( )

1

( ) ( )

1

,

p pm n

m n j j

j

d x x   


=

 
= −   
 
  ………….. (i) 

   where 
( ) ( ) ( ) ( )

1 2 3, , ,
m m m m

m jx    
   

= =   
   

 . 

   Then from (i)  
( ) ( )m n

j j  −   ……… (ii)   0,m n n   and for any fixed  j. 

   This shows that 
( )m

j
 
 
 

 is a Cauchy sequence of numbers for the fixed j. 

   Since  and  are complete therefore  
( )m

j j →   or   (say)  as m → . 

   Using these infinite many limits we define ( ) ( )1 2 3, , ,jx    = = . 

   We prove  
px l   and  mx x→   as m → . 

   From (i) we have  
1

( ) ( )

1

p pk m n

j j

j

  
=

 
−   

 
 , 

i.e.  
( ) ( )

1

pk m n
p

j j

j

  
=

−   …………. (iii) 

   Taking as n → , we get 

 
( )

1

pk m
p

j j

j

  
=

−   ,  k = 1, 2, 3, ……. 

   Now taking k → , we obtain 
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( )
p

m
p

j j  −   ………… (iv)       1,2,3,..........j =  

   This shows that ( ) p

mx x l−   

   Now 
pl  is a vector space and 

p

mx l , 
p

mx x l−    then  ( ) p

m mx x x x l+ − =  . 

   Also from (iv) we see that  

 ( )( , )
p p

md x x          0m n   

  i.e.     ( , )md x x          0m n   

   This shows that 
p

mx x l→    as  x → . 

   And the proof is complete. 

❖ Theorem 

The space C[a, b] is complete. 

Proof. 

Let ( )nx  be a Cauchy sequence in C[a, b]. 

   Therefore for every 0  , there is 0n   such that  0,m n n   

    ( , ) max ( ) ( )m n m n
t J

d x x x t x t 


= −   ………… (i)  where  ,J a b= . 

   Then for any fix 0t t J=   

0 0( ) ( )m nx t x t −   0,m n n   

   It means  ( )1 0 2 0 3 0( ), ( ), ( ),x t x t x t  is a Cauchy sequence of real numbers. And since  

is complete therefore  0 0( ) ( )mx t x t→   (say)  as  m → . 

   In this way for every  t J , we can associate a unique real number ( )x t  with ( )nx t . 

   This defines a function ( )x t  on  J. 

   We prove ( )x t C[a, b]  and ( ) ( )mx t x t→  as m → . 

   From (i) we see that  

( ) ( )m nx t x t −      for every t J   and  0,m n n  . 

   Letting  n → ,  we obtain for all t J  

( ) ( )mx t x t −    0m n  . 

   Since the convergence is uniform and the nx ’s are continuous, the limit function ( )x t  

is continuous, as it is well known from the calculus. 

   Then  ( )x t  is continuous. 

   Hence  ( ) [ , ]x t a bC ,  also  ( ) ( )mx t x t −     as  m →  

   Therefore    ( ) ( ) [ , ]mx t x t a b→ C . 

   The proof is complete. 
◼ 

❖ Theorem 

If ( )1,X d  and ( )2,Y d  are complete then X Y  is complete. 

 Note: The metric d (say) on X Y  is defined as ( ) ( )( )1 1 2 2 1 2( , ) max , , ,d x y d d   =     
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where ( )1 1,x  = , ( )2 2,y  =  and 1 2, X   , 1 2, Y   . 

Proof. 

   Let ( )nx  be a Cauchy sequence in  X Y . 

   Then for any 0  , there is 0n   such that  0,m n n   

( )
( ) ( ) ( ) ( )

1 2, max , , ,
m n m n

m nd x x d d    
    

=     
    

 

          
( ) ( )

1 ,
m n

d   
 

 
 

 and 
( ) ( )

2 ,
m n

d   
 

 
 

 0,m n n   

   This implies 
( ) (1) (2) (3)

, , ,
m

   
   

=   
   

 is a Cauchy sequence in X. 

and 
( ) (1) (2) (3)

, , ,
m

   
   

=   
   

 is a Cauchy sequence in Y. 

   Since X and Y are complete therefore 
( )m

X →  (say)  and  
( )m

Y →  (say)  

   Let ( ),x  =   then  x X Y  . 

  Also  ( )
( ) ( )

1 2, max , , , 0
m m

md x x d d   
    

= →    
    

   as   n → . 

   Hence mx x X Y→   . 

   This proves completeness of X Y . 
◼ 

❖ Theorem 

( ) ( ): , ,f X d Y d →   is continuous at  0x X  if and only if  nx x→   implies 

0( ) ( )nf x f x→ . 

   Proof. 

Assume that  f  is continuous at 0x X  then for given 0   there is a 0    

such that   

0( , )d x x     ( )0( ), ( )d f x f x   . 

   Let 0nx x→ ,  then for our  0    there is  0n    such that  

( )0,nd x x  ,    0n n   

   Then by hypothesis  ( )0( ), ( )nd f x f x   ,     0n n    

i.e.  ( ) ( )0nf x f x→  

   Conversely, assume that 0nx x→      0( ) ( )nf x f x→  

   We prove  :f X Y→   is continuous at  0x X , suppose this is false 

   Then there is an 0   such that for every 0   there is an x X  such that 

( )0,d x x     but    ( )0( ), ( )d f x f x    

   In particular when  
1

n
 = ,  there is  nx X   such that  
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( )0,nd x x     but    ( )0( ), ( )nd f x f x  . 

   This shows that 0nx x→   but  0( ) ( )nf x f x→    as n → . 

   This is a contradiction. 

   Consequently  :f X Y→   is continuous at  0x X . 

   The proof is complete. 
◼ 

❖ Rare (or nowhere dense in X ) 

Let X be a metric, a subset  M X  is called rare (or nowhere dense in X ) if M  

has no interior point  i.e.  ( )int M = . 

❖ Meager ( or of the first category) 

Let X be a metric, a subset M X  is called meager (or of the first category) if M 

can be expressed as a union of countably many rare subset of X. 

❖ Non-meager ( or of the second category) 

Let X be a metric, a subset M X  is called non-meager (or of the second 

category) if it is not meager (of the first category) in X. 

❖ Example: 

   Consider the set  of rationales as a subset of a real line . Let  q , then 

   q q=  because   ( ) ( ), ,q q q− = −    is open. Clearly  q  contain no open ball. 

Hence  is nowhere dense in  as well as in . Also since  is countable, it is the 

countable union of subsets  q , q . Thus  is of the first category. 

❖ Bair’s Category Theorem 

If X   is complete then it is non-meager in itself. 

OR 

A complete metric space is of second category. 

Proof. 

   Suppose that X is meager in itself then 
1

k
k

X M


=

= , where each kM  is rare in X. 

   Since 1M  is rare then int( )M M = =  

   i.e.  1M  has non-empty open subset 

   But  X  has a non-empty open subset ( i.e. X itself )  then 1M X . 

   This implies 1 1

c

M X M= −   is a non-empty and open. 

   We choose a point  1 1

c

p M   and an open ball  ( )1 1 1 1;
c

B B p M=  , where 
1

1
2

  . 

   Now 2

c

M  is non-empty and open  
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   Then  a point 2 2

c

p M  and open ball ( )2 2 2 2 1 1

1
; ;

2

c

B B p M B p 
 

=    
 

 

   ( 2M  has no non-empty open subset then 
2 1 1

1
;
2

c

M B p 
 

  
 

 is non-empty and open.) 

   So we have chosen a point 2p  from the set  
2 1 1

1
;
2

c

M B p 
 

  
 

 and an open ball 

( )2 2,B p   around it, where  1

2 1

1 1 1
2

2 2 2
  −    . 

   Proceeding in this way we obtain a sequence of balls kB  such that 

1

1
;
2

k k k kB B p B+

 
  

 
   where    ( );k k kB B p =    1,2,3,.......k =  

   Then the sequence of centres kp  is such that for m n  

( ) 1

1 1
, 0

2 2
m n m m

d p p 
+

  →    as   m → . 

   Hence the sequence ( )kp  is Cauchy. 

   Since X is complete therefore  kp p X→  (say)  as  k → . 

   Also  

( ) ( ) ( ), , ,m m n nd p p d p p d p p +  

     ( )
1

,
2

m nd p p +  

     ( ), 0m n md p p  + → +    as   n → . 

mp B     m      i.e.  
c

mp M   m   ( )2 1 1
1
2

;
c

m m mB M B p − −=   

c

m mB M      m mB M   =  

mp M   m   p X   

   This is a contradiction. 

   Bair’s Theorem is proof. 
◼ 
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