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The rational number system is inadequate for many purposes, both as afield

and as an order set for many purpose. This leads to introduction of so called irrational
numbers. We can prove in many ways that the rational number system has certain
gaps and hence we fail to use it as an ordered set and as afield. a

@ Theorem
There isno rational p such that p®=2.

Proof
L et us suppose that there exists arational p such that p> =2.
Thisimplies we can write

m -
p=— where m,nl Z & m, n have no common factor.
n
2

Then p’=2 b =2 b nP=2n’
n

P nr iseven

P miseven

P misdivisible by 2 and so m* isdivisible by 4.

b 2n® isdivisible by 4 and so n” isdivisible by 2. oot =2n°
i.e. n’iseven b n iseven

P mand n both have common factor 2.
Which is contradiction. (because m and n have no common factor.)

Hence p® =2 isimpossible for rational p. Q

@ Theorem

Let A be the set of all positive rationals p such that p* <2 and let B consist of
all positive rationals p such that p* > 2 then A contain no largest member and B
contains no smallest member.

Proof
We are to show that for every p in A there exists arational qi A such that

p<q andfor al pl Bwe canfindrational i B suchthat q<p.
Associate with each rational p >0 the number

o pP-2 _ 2p+2 .
=p- = i
=P p+2 p+2 )
2 2
Then q2- 2=2P*20 2P -9 . (i)
&€ p+2 5 (p+2)
Now if pl Athen p°<2 b p*-2<0
2
Sincefrom (i) q=p- P P g>p

p+2

2
And Z(p—'22)<0 P g°-2<0 b ¢g’°<2 bql A
(p+2)
Now if pl B then p°>2 b p?-2>0
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p* -

Since form (i =p-
(i) g=p 0i?

P q<p

2
and 2AP-2 50 b g?-250p 252 b gl B
(p+2)

The purpose of above discussion is simply to show that the rational number
system has certain gaps, in spite of the fact that the set of rationals is densei.e. we
can always find arational between any two given rational numbers. These gaps are

r+s

filled by the irrational number. (e.g. if r <sthenr <T <s.) U

@ Order on a set
Let Sbe anon-empty set. An order on aset Sisarelation denoted by “ <” with
the following two properties
(M) 1f xI Sand ylI S,
then one and only one of the statement x<y, X=y, y<x istrue
(i) If x,y,zI Sandif x<y, y<zthen x<z.

@ Ordered Set
A set S issaid to be ordered set if an order is defined on S

@ Bound
Let Sbeanordered set and El1 S. If thereexistsa b1 S such that
xEb " xI E, thenwe say that E is bounded above, and b is known as upper

bound of E.
Lower bound can be define in the same manner with 2 in place of £.

@ Least Upper Bound (Supremum)

Suppose Sisan ordered set, E1 S and E is bounded above. Suppose there
existsanal S such that

(i) a isan upper bound of E.

(i1) If g <a then g isnot an upper bound of E.
Then a is called the least upper bound of E or supremum of E and is written as
supE=a.
In other words a isthe least member of the set of upper bound of E.

We can define the greatest lower bound or infimum of aset E, which is bounded
below, in the same manner. Q

@ Example
Consider the sets
A:{p: pl Q U p2<2}
B:{p: pl Q U p2>2}
where Q is set of rational numbers.

Then the set A is bounded above. The upper bound of A are the exactly the members
of B. Since B contain no smallest member therefore A has no supremumin Q.

Similarly B is bounded below. The set of all lower bounds of B consists of A and
ri Q with r £0. Since A has no largest member, therefore, B has no infimumin Q.

@ Example
If a issupremum of E then a may or may not belong to E.
Let E,={r:rT Q Ur <0}
E,={ririQUrzq
then supE, =inf E,=0 and Oi E, and O1 E,. a
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@ Example
Let E bethe set of all numbers of the form 1 where n is the natural numbers.
n
e E=l r L Y
723y
Then supE =1 whichisinE, but inf E=0 whichisnot in E. a

& Least Upper Bound Property
A set Sis said to have the least upper bound property if the followingsis true
(i) Sisnon-empty and ordered.
(i) If EI S and E is non-empty and bounded above then supE existsin S
Greatest lower bound property can be defined in a similar manner. a

@ Example
Let S be set of rational numbers and
E:{p: pl Q U p2<2}
then E1 Q, E is non-empty and also bounded above but supremum of E is not in S,
thisimpliesthat Q the set of rational numbers does not posses the least upper bound
property. Q
@ Theorem
Suppose Sis an ordered set with least upper bound property. B1 S, B is non-
empty and is bounded below. Let L be set of all lower bounds of B then a =supL
existsin Sand alsoa =inf B.
In particular infimum of B existsin S
OR
An ordered set which has the least upper bound property has also the greatest
lower bound property.
Proof
Since B is bounded below; therefore, L is non-empty.
Since L consists of exactly those yl S which satisfy the inequality.
y £ X " xi B
We see that every xI B isan upper bound of L.
P L isbounded above.
Since Sis ordered and non-empty therefore L has a supremum in S Let uscall it a .
If g<a, then g isnot upper bound of L.
P gi B L |
P a£x "xIB b all g;
Now if a <b then bl L because a =supL.
We have shownthat al L but b1 L if b >a . Inother words, a isalower

bound of B, but b isnotif b >a . Thismeansthat a =inf B. Q

B
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@ Field
A set F with two operations called addition and multiplication satisfying the
following axioms is known to be field.
Axioms for Addition:
(i) If x,yl F then x+yl F. ClosureLaw

(i) x+y=y+x " xyl F. CommutativelLaw

(i) x+(y+z)=(x+ty)+z " x,¥,z1 F. Associative Law

(iv) Forany xI F, $ Ol F suchthat x+0=0+Xx=x Additive | dentity
(v) Forany xI F,$ - xI F suchthat x+(-x)=(-X)+x=0  +tivelnverse

Axioms for Multiplication:
(i) If x,yl F then xyl F. Closure Law

(i) xy=yx " xylF Commutative Law

(i) x(y2)=(xy)z " xvy,zl F
(iv) Forany xI F, $ 11 F suchthat x®=1xx=x  Multiplicative Identity

(v) Forany xI F, x1 0, $ —I F, such that Xaelo_aelox 1 ~ tivelnverse.
&g Exp
DistributiveLaw
Forany x,y,zIl F, (i) x(y+2)=xy+xz
(i) (x+y)z=xz+yz g
@ Theorem
The axioms for addition imply the following:
@ If xty=x+ztheny=2z
(b) If x+y=xthen y=0
(c) If x+y=0then y=- Xx.
d -(-x=x
Proof
(@) Suppose x+y=x+2Z.
Since y=0+y
=(-Xx+Xx)+y v - X+x=0
=-X+(Xx+Yy) by Associative law
=-X+(Xx+2 by supposition
=(-x+X)+z by Associative law
=(0)+z - X+x=0
=z
(b) Take z=0 in(a)
X+y=x+0
P y=0

(c) Take z=-x in(a)
X+y=Xx+(-X)
P y=-Xx
(d) Since (- x) +x=0
then (c) gives x=- (- X) a
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@ Theorem
Axioms of multiplication imply the following.
(@ If x* 0Oand xy=xz then y=z.
(b) If x* Oand xy=xthen y=1.

(c) If x* 0and xy=1 then y:%.
(d) If x1 O,theni:x.
X
Proof
(a) Suppose Xy =Xz
Since y =1xy :aelxxgy 1><x:1
& o X
:%(xy) by associative law
21(xz) XY =XZ
X
:aelxxgz by associative law
&x o
=lxz=2z

(b) Take z=1in(a)
xy=x4 b y=1

(c) Take z:% in(a)

1 .
Xy=x»% le xy=1
X

P y:1
X

@  Since %xx -1

then (c) give

X=

X
@ Theorem
The field axioms imply the following.
(i) Oxx=0
(i) if x* O, y* Othen xy?* O.
(i) (- x)y=- (xy) =x(-y)
(v) (x)(-y)=xy
Proof
(i) Since Ox+0x=(0+0)x
P Ox+0x=0x
P 0x=0 wX+y=xb y=0
(ii) Suppose x* 0, y* O but xy=0

Since 1=

XYy

() (y)
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p 1= 1
(x)(y)
p 1=0 from(i) - x0=0
a contradiction, thus (ii) is true.
(ii) Snce (-X)y+xy = (-x+x)y = 0y = 0........ (1)
Also X-y)+xy = x(-y+y) = x0 =0......... (2
Also -(xy)+xy = 0 ..ol 3
Combining (1) and (2)
CXy+xy = x(-y)+xy
P (-XYy = X(-Y) cevevnnnnnn (4)
Combining (2) and (3)
X(Cy)txy = - (xy)+xy
P X(-y) = - Xy ceoviiinnn. (5)
From (4) and (5)
Xy = x(-y) = -xy
iv) X0CY) =-[x-9] =-[-9] =x using (iii) Q

(0 - xy=0,x10,yt0
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@ Ordered Field
An ordered field isafield F which is also an ordered set such that
1) X+y<x+z if x,y,zI F and y<z.
i) xy>0if x,yl F, x>0and y>0.
e.g. theset Q of rational number is an ordered field. a

@ Theorem

The following statements are true in every ordered field.
1) If x>0 then - x<0 and vice versa.
i) If x>0 and y<zthen xy<xz.

i) 1f x<0 and y<zthen xy>xz.

iv) If x* 0 then x*>0 in particular 1> 0.

V) If 0<x<y then 0<1<1.

y X
Proof
1) If x>0 then O=-x+x>-x+0 sothat -x<O0.
If x<O then 0=-Xx+x<-x+0 sothat - x>0.
i) Since z>y wehave z- y>y- y=0
which meansthat z- y>0, Also x>0
\ X(z-y)>0
P xz-xy>0
P xz- xy+xy>0+xy
P xz+0>0+xy
P xz>xy

i) Sincey<z b -y+y<-y+z
p z-y>0
Also x<0 b - x>0
Therefore - x(z- y)>0

P - xz+xy>0 P - Xxz+xy+xz>0+xz
P xy>xz

iv) If x>0then x>x>0 P x*>0
If x<0 then -x>0 b (-X)(-X)>0 P (-X)*>0 P x*>0
i.e. if x>0 then x*>0, since 1°=1 then 1>0.

v) If y>0and vEO then yv£0, But yael2:1>0 p 1>O
SYQI y
Likewise 1>O a x>0
X

If we multiply both sides of the inequality x <y by the positive quantity %%9
(4

. adlpelo &l o
weobtain o= ip—X<g—ip—=Y
EXYy EX@Ypg
. 1 1
i.e. <=
y X

finally 0<td 0

Yy X
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@ Existence of Real Field
There exists an ordered field R (set of reals) which has the least upper bound
property and it contain QQ (set of rationals) as a subfield. a

@ Theorem
a) If xI R, yl R and x>0 then there exists a positive integer n such that

nx >y . (Archimedean Property)
b) If xI R, yI R and x<y thenthereexists pi Q suchthat x<p<y .
I.e. between any two real numbers there is arational number or Q isdensein R.
Proof
a) Let A:{nx: nl Z*Ux>0,x1 R}
Suppose the given statement isfalsei.e. NX£y.

P yisan upper bound of A.
Since we are dealing with a set of reals, therefore, it has the least upper bound

property.
Leta =supA
P a - x isnot an upper bound of A.
b a- x<mx where mxl A for some positive integer m.
b a<(m+1)x where m+ 1isinteger, therefore (m+1)xI A

Which is impossible because a isleast upper bound of A i.e. a =supA.
Hence we conclude that the given statement istruei.e. nx>y.
b) Since x<y, therefore y- x>0

P $ a+iveinteger n such that
n(y- x)>1 (by Archimedean Property)

P ny>1+nx ............... (i)
We apply (a) part of the theorem again to obtain two +ive integers m and m,
suchthat m X >nx and m,x>-nx

P -m,<nx<m
then there exists an integers m(- m, £ m£ m) such that
m-1£nx<m
P nx<m and m£1+nx
P nx<m<1+nx
P nx<m<ny from (i)
p x<l< y
n
P x<p<y whee p:% iIsarational. U
@ Theorem
Given two real numbers x andy, x<'y thereisan irrational number u such that
X<u< y
Proof
Take x>0, y>0
Then $ arational number g such that
O<5<q<l where a isanirrational.
a a
P x<aqg<y
P Xx<u<y

Where u=aq isanirrational as product of rational and irrational isirrational. U
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@ Theorem

For every real number x thereisaset E of rational number such that x =supE.
Proof

Take E ={ql Q:qg<x} wherexisareal.

Then E is bounded above. Since E1 R therefore supremum of E existsin R .

Suppose supE =1 .

Itisclearthat | £ X.

If | =x then there is nothing to prove.

If | <xthen$ gl Q suchthat | <q<x

Which can not happen. Hence we conclude that real x is SupE. U

@ Theorem

For every real x>0 and every integer n> 0, there is one and only one real y such
that y" = x.

This number y is written Ux or x%‘.
Proof

Take y,,y,1 R suchthat 0<y,<y,.Then y] <y, i.e thereisat most one yI R
such that y" = x. This shows the uniqueness of y.

Let us suppose E be the set of all positive real numberst such that t" < x.

e E={t : tT R Ut"<x}
Taket:L then O<t<1.
1+X

Hence t" <t and we have t" < x
P t"<t<x
b tl E and E isnon-empty .
If t>1+x thent">t>x sothat ti E.

Thus 1+ x is an upper bound of E.
Since E is non-empty and bounded above therefore supE exists.

Take y=supE
To show that y" =x we will show that each of the inequality y" <x and y" > x

|leads to contradiction.
Consider

b"- a" =(b- a)(b™' +b" %a+hb" A% + xeeeoota™ ) where ni Z”.
Which yields the inequality (each a isreplaced by b on R.H.S of above)
b"- a”<(b- a)(Nb™™) w.coeveere. (i) where 0<a<b.

Now assume y" < X
X-y"

Choose hsothat O0<h<1 and h<———
n(y+1"

Puta=y and b=y+hin (i)
Then (y+h)"- y" <nh(y+h)"™"
<nh(y+D)"* » h<1
<X-y"
b (y+h) <x
P y+hl E
Since y+h>y thereforeit contradict the fact that yis supE.
Hence y" < x isimpossible.
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Now suppose y" > X
Put k=YX then 0<k<y
ny
Now if t3 y- k weget
Yy -t"<y"- (y- K)"<y"- (Y- nky"™) by binomial expansion
< kny”‘1 — yn - X
P -t"<-x b t">x and tl E
It followsthat y- k isan upper bound of E but y- k<y, which contradict the
factthat y is supE.
Hence we conclude that y" = x. a

& The Extended Real Numbers
The extended real number system consists of real field R and two symbols +¥
and - ¥ , We preserve the original order in R and define
¥ <x<+¥ " xI R.
The extended real number system does not form a field. Mostly we write +¥ =¥ .
We make following conventions

1) If xisreal then x+¥ =¥ | Xx- ¥ =-¥

) If x>0then x(¥)=¥ , x(-¥)=-¥.
i) If x<O then x(¥)=-¥, Xx(-¥)=¥.

@ Euclidean Space
For each positive integer k, let R* be the set of all ordered k-tuples

T O D . %)
where X, X, ...cce.... , X, arereal numbers, called the coordinates of x. The elements
of R* are called points, or vectors, especially when k >1.
1 Y= (Y Youreerenenes ,y,) and a isareal number, put
X+Y =X+ Y0 X+ Voreeernnn, Xt Y
and axX=@xX,aXy, oo ax)

Sothat x+yl R and axi R. These operations make R“ into a vector space

over the real field.
The inner product or scalar product of x and y is defined as

k
XY=Q XY =4+ XY, e + X Yi)

i=1

And the norm of X is defined by

k /2
= Gom =3 50
8 1 (4]
The vector space R* with the above inner product and norm is called

Euclidean k-space. a
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@ Theorem
Let x, yl R" then
) [ x[ =xx
i) H ZXXH £ x| H XH (Cauchy-Schwarz' s inequality)
Proof

1
i) Since || x| =(x>x)? therefore | x|* = x»x

i) For | T R we have
O x- 1 y|" =(x-1 y)4{x-1Y)

sofx- 1)+ -1 y{x- 1)

= XXX+ XA 1Y)+ (-1 y)x+(-1 y)X-1y)
=] x[F- 2 o) +1 7y

Now put | = X7y
|y[

2 2

b 05”1(”2_2(1()(2/)(5)(!) ( )HyH b O£||x|| ( )

/I

P o] x| y[ - oy

b O (Ix]] |+l 2)Ixl]x]- |y])
Which hold if and only if

oz x| | y[- [ x>y
e oy ][]y d
B Question
Suppose X, Y, z1 R" the prove that
3 |x+y|£]x]+]y]
b) | x- 2] €] x- v +]y- |

Proof
a) Consder | x+y[ =(x+y){x+y)
= XXFXY YK+ Y XY
= x| +2(xy)+ ] y[
e xI+2| x| y]+]y[ < xy]® xy
=(1x1+] y])
b H5+X‘£”5”+H2’H ............. (i)
b)Wehave | x- z[=[x- y+y- 2
£]x- y|+|y- 2] from (i) a
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& Question
If r isrational and x is irrational then provethat r + x and r x areirrational.

Proof
Let r + x berational.

= r+x:% where a,bl Z , b? 0 suchthat (a,b)=1
P X:E-r
b

Sincer isrational therefore r :g where ¢,dT Z, d* 0 suchthat (c,d)=1

b X:E_E b :ad- bc
b d bd

Which is rational, which can not happened because x is given to be irrational.

Similarly let us suppose that r x isrational then

for some a,bl Z, b® 0 suchthat (a,b) =1

Sincer isrational therefore r :g where ¢,dT Z, d* 0 suchthat (c,d)=1

a l ad ad
_a 1 _ad_

X=— = =
b C q b ¢ bc
Which shows that x is rational, which is again contradiction; hence we conclude
that r + x and r x areirrational. Q

& Question
If nisapositive integer which is not perfect square then prove that Jn isirrational
number.

Solution
There will be two cases
Case |. When n contain no square factor greater then 1.

Let us suppose that Jn isarational number.

b \/_:g where p,qi Z, q* 0 and (p,q) =1
2

p n:% P p?°=nf o (i)
2

p =

T

P np’ P NP (ii) (n| p means* ndividesp” )

P_

Now suppose — =c where cl Z
n

P p=nc b p’=n*’
Putting this value of p® in equation (i)
n2C2 — an

P nc®=q®> b c*=—
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From (ii) and (iii) we get p and g both have common factor ni.e. (p,q) =n
Which is a contradiction.
Hence our supposition is wrong.

Casell When n contain a square factor greater then 1.

Let us suppose n=k’m>1

b

Jn=kJm

Wherek is rational and ~/m isirrational because m has no square factor greater than
one, thisimplies Jn, the product of rational and irrational, isirrational. a
& Question

Prove that +/12 isirrational.

Proof
Suppose«/l_z Is rational.
b Jiz=P where p,qi Z, q* 0 and (p,q) =1
q
p2
p 12=- P p°=120% ............. (i)
2 2
p 2:& p 2: p
T T2
b 22‘ p> and S‘p2
P 2lp and 3p
P 2and 3areprimedivisor of p.
b 23 p ie 6p
p gzc, where c is an integer.
P p=6c
Put this value of p inequation (i) to get
36¢* =120
q2
b 3c¢*=¢> b c’=—
3
p 3q° P 3q
P (p,q)=3, whichisacontradiction.
Hence /12 isan irrational number. a

B Question
Let E be a non-empty subset of an ordered set, suppose a is alower bound of E
and b isan upper bound then provethat a £b .

Proof

Since E is a subset of an ordered set Si.e. EI S.
Also a isalower bound of E therefore by definition of lower bound

afx " Xl E .ooooeennl, (i)

Since b isan upper bound of E therefore by the definition of upper bound
XEb " XI E .....oooeonn (ii)

Combining (i) and (ii)
atxEb

P af£b asrequired. a
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Sequence

A sequence is a function whose domain of definition is the set of natural
numbers.

Or it can also be defined as an ordered set.

Notation:
An infinite sequence is denoted as

{Sni or {S,:nl N} or {S,S,S,cecereens } orsimply as {S}
e.g. |) {} ={123,......... }

1lg_1,11 (
) [ —v=1d—r—rinennnns
P b
i) {- D™} ={1,- 11- L. }
Subsequence

It is a sequence whose terms are contained in given sequence.

¥ ¥
A subsequence of {S, } isusually writtenas{S, }.
n=1

Increasing Sequence
A sequence { S} is said to be anincreasing sequence if S,,3 S, " n3 1.

Decreasing Sequence
A sequence { S} is said to be an decreasing sequenceif S,,,£S, " n2 1.

Monotonic Sequence

A sequence { S} is said to be monotonic sequence if it is either increasing or
decreasing.

{31} is monotonically increasing if S,,,- S,2 0 or %3 1, " n31

n

{S} is monotonically decreasingif S, - S,,,2 0 or SS” 31, " n31
n+l
Strictly Increasing or Decreasing
{31} Is called strictly increasing or decreasing according as

Sia>S, O S,,<S, " n°l.

Bernoulli’s Inequality
Let pl R, p3-1and pt 0 thenfor n3 2 we have

(1+ p)" >1+np

Proof:
We shall use mathematical induction to prove this inequality.
Ifn=2
LHS=(1+p)?=1+2p+p°
RH.S=1+2p
P LH.S>RH.S
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i.e. condition | of mathematical induction is satisfied.

Suppose (1+ p)k STHKD oo, (i) where k3 2

Now (1+p)“" =(1+ p)(1+ p)*
>(1+ p)(1+kp) using (i)
=1+kp+ p+kp®
=1+(k+1)p+kp’
31+(k+1)p ignoring kp?3 0

b (1+p)™>1+(k+1)p
Since the truth for n=k implies the truth for n=k +1 therefore condition Il of
mathematical induction is satisfied. Hence we conclude that (1+ p)" >1+np.

Example

Let S, =§[+%g where n3 1

. . . . 1 .
To prove that this sequence is an increasing sequence, weuse p=—, n3 2in
n

Bernoulli’ s inequality to have

&1_ i(..jn>1_£
€ npg
p % 108?[+1f >1-1
88 N g& N gg n
LN .-n .l-n .n-1 .n-1
p {,10.8 10 _an-16 " _en o _g, 10
€ ng & ng ng e&n-lz & n-lg
P S >S; "n3l
which showsthat { S} is increasing sequence.
Example
1..n+1
Let t =29+=2 - n31
&€ ng
then the sequence is decreasing sequence.
Weuse p= 21 1 in Bernoulli’ sinequality.
n -
w2 Osge N (i)
8 n“-1g n--1
where
1 _n* _&n Gen o
I+ ——=——= : =
n-1 n-1 8n-1£n+1g
b H+ 21 oaen 12:aen 2...............(”)
€ n-1@ n g &n-1p
Now tn_lzai+ig :&Lg
€ n-1g &n-1g

_ 1 Gan+160 .
_§+ n2-13% - é_ﬂ from (ii)
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ST 158 n 5
S8, n Gaan+10

: - from (i
& n2-1& n g 0
>ﬁ+10ﬁ1__|—10 . 2n >£2:1
& ngEn g -1 n n
n+1
aen+10 ¢
n g A
e t >t

Hence the given sequence is decreasing sequence.

Bounded Sequence

A sequence { S} is said to be bounded if there exists a positive real number |
suchthat |S|<l " ni N

If Sand s are the supremum and infimum of elements forming the bounded
sequence { S} wewrite S=supS, and s=infS,

All the elements of the sequence S, suchthat |S|<I " ni N liewithinthe
strip{y: - | <y<I}. But the elements of the unbounded sequence can not be
contained in any strip of afinite width.

Examples
M (U=

(i) {Vv.} —{smnx} is also bounded sequence. Its supremum is 1 and infimumiis - 1.

n..

g is a bounded sequence

(i1i) The geometric sequence {ar ”'1} , I >1 is an unbounded above sequence. It is

bounded below by a.

p .

(iv) 1tan > is an unbounded sequence.

Convergence of the Sequence
A sequence { S} of real numbersis said to convergent to limit ‘s’ asn® ¥, if

for every positive real number e >0, however small, there exists a positive integer n,,
depending upone , suchthat |S,- s|<e " n>n,.

Theorem
A convergent sequence of real number has one and only one limit (i.e. Limit of
the sequence is unique.)

Proof:
Suppose {S,} convergesto two limits s and t, where s t.

Put e :% then there exits two positive integers n, and n, such that
S, - s|<e " n>n
and |S, - t|<e " n>n,
|S,- s|<e and |S, - t|<e hold simultaneously " n>max(n,n,).
Thus for all n>max(n,n,) we have

[s-t[=s- §,+5,- |
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£[S, - s[+]S,- 1]
<et+te=2e
b |s-t]< 22510
& 2 g
b |s-t|<|s-t]
Which is impossible, therefore the limit of the sequence is unique.

Note: If {S} convergesto sthenall of itsinfinite subsequence convergetos.

Cauchy Sequence
A sequence {xn} of real number is said to be a Cauchy sequence if for given

positive real number e, $ a positive integer n,(e) such that

%, - x,|<e m,n>n,
Theorem
A Cauchy sequence of real numbers is bounded.
Proof
Let { S} be a Cauchy sequence.
Take e =1, then there exits a positive integers n, such that
S, - S.|<1 " mn>n,.
Fix m=n,+1 then
|Sn|:‘sn' Sno+1+SnG+1
E‘Sn - Sno+1 +‘ SnO+1
<1+[S,. " n>n,
<| " n>1,and | :1+‘S,h+1 (n, changes as e changes)

Hence we conclude that { Sn} Is a Cauchy sequence, which is bounded one.

Note:
(i) Convergent sequence is bounded.
(ii) The converse of the above theorem does not hold.
I.e. every bounded sequence is not Cauchy.

Consider the sequence { Sn} where S =(-1)", n3 1. It isbounded sequence because
[(-D7=1<2 " n31

But it is not a Cauchy sequence if it is then for e =1 we should be able to find a
positive integer n, suchthat | S, - S,|<1 forall mn>n,

But with m=2k +1, n=2k +2 when 2k +1>n,, we arrive at

| Sn _ Sm| — ‘ (_ 1)2n+2 _ (_ 1)2k+1
=|1+1|=2<1 isabsurd.

Hence {S,} is not a Cauchy sequence. Also this sequence is not a convergent

sequence. (it is an oscillatory sequence)




Divergent Sequence

Sequences and Series

A {Sn} Is said to be divergent if it is not convergent or it is unbounded.

e.g. { n2} is divergent, it is unbounded.

(ii) {(- 1)”} tendsto 1 or -1 according as n is even or odd. It oscillates finitely.

(iii) {(- 1)”n} is adivergent sequence. It oscillates infinitely.

Note: If two subsequence of a sequence converges to two different limits then the

sequence itself is a divergent.

Theorem
If S, <U, <t, "

n3 n, and if boththe {S)} and {t,} converge to same limits as

s, then the sequence {U, } also convergestos.

Proof

Since the sequence {S,} and {t,} converge to the same limit s, therefore, for
given e >0 there exists two positive integers n,, n, > n, such that

S, - sl<e "
t, - s|<e "
i.e. -e<§ <s+e "

S- e<t <s+e
Since we have given
Sn <Un <tn

n>n
n>n,

n>n
n>n,

" n>n,

\ s-e<§ <U <t <s+e " n>max(ny,,n,n,)
P s-e<U,<s+e " n>max(ny,,n,n,)

ie. U, - s|<e " n>max(n,n,n,)
I.e. limU, =s
n® ¥
Example
1
Show that limn" =1
n® ¥
Solution
Using Bernoulli’ s Inequality
6?[+1031+—3\/_31 "on.
& Jng ~ In
Also
2
..nuﬁ 2 1
g, 1 0 %+i20 >(\/ﬁ”>n”31
& Jnp ; Ngg
2
b 1em<He L
& \/_z

1

b liml£limnn <I|ma?[+

n® ¥ n® ¥ n®¥8

J_;a

1
P 1£limn"<1
n® ¥
1
[imnn =1.
n® ¥

I.e.
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Example
Show that lime—t+_ = 4 .. a2 8
m¥&(n+1)?  (n+2) 2n)? 5
Solution
We have
& 1 1 1 6
= + S S + -
H T CneD? (ne2y (2n)? 5
and
n n
< < —
(2n)2 Sh n2

1 1
b — < <=
4n S n

p Iimi < lim§, < Iim1

n®¥ 4n n® ¥ n®¥ n
P 0< LI®nQS” <0
b 1limS, =0

n® ¥

Theorem
If the sequence {S,} convergesto sthen $ a positive integer n

such that |Sn|>%s.
Proof
We fix e:%|s|>0
P $ apositiveinteger n, such that

S, - s|<e for n>n,
1
b |5n'5|<§|5|
Now
1, ., 1
Ysi=Isl- 2sf
<|s|-|S,- 5| £[s+(S,- )|
1
> Jsl</s|
Theorem

Let aand b be fixed real numbersif {S} and {t,} convergetosandt

respectively, then
(i) {aS,+bt,} convergestoas + bt.

(i) {S.t,} convergesto st.
(iii) :%g converges to TS providedt,* 0 " nandt?!O.
ih

Proof
Since {S,} and {t.} convergeto sand t respectively,

\ |S-s|<e " n>niN
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t, - t|<e "n>ni N
Also $ | >0 suchthat |S|<l " n>1 (- {S)} isbounded)
(i) We have
|(as, +bt,)- (as+bt)|=|a(S, - s)+b(t, - t)]
£|a(s, - s)|+|b(t,- t)]
<|ale+|ble " n>max(n,n,)
=g Where e, =|ale +|b|e acertain number.
Thisimplies {aS, +bt,} convergesto as+ bt.
(i) [St,- st| =|St,- S;t+St- st
=|S(t-1)+t(S- s)| ]S (L-1)[+[tA(S:- s)]

<le+|tle " n>max(n,n,)
=e, where e, =1 e +|t|e acertain number.
Thisimplies {St,} convergesto st.
oo [ty
(iii) E f_ (t
G-t e 1
n>max(n,n,) ot >t
EERETE I
:1 5 =€, Wheree3zle2 acertain number.
3/t] 3/t]
R R 1
Thisimplies | —y convergesto =.
it t
1S 0 _1 10 1 _ s .
Hence %K{\;_%Snxm\; convergesto s¥< = . ( from (ii) )
Theorem

For each irrational number x, there exists a sequence {r,} of distinct rational
numbers such that limr, = x.

n® ¥
Proof
Since x and x + 1 are two different real numbers
-+ $ arational number r, such that
X<r <x+1
Similarly $ arational number r,* r, such that
16

X<r <mina?,x+—;< X+1
2 81 2@

Continuing in this manner we have

x<r3<min§?2,x+%2< X+1

a

ing 16

x<r4<m|n83,x+—+< X+1
4g

: 16
X<Tr, <m|n8 L Xt—=<Xx+1

nNg
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Thisimpliesthat $ a sequence {rn} of the distinct rational number such that

1 1
X- =< X<I <X+=

n n
Since
. 16 .. 1
lim3x - —2:I|m8§<+—9:x
n®¥8 nﬂ n®¥8 nﬂ
Therefore
limr, =X
n® ¥
Theorem

Let asequence {S,} be abounded sequence.

(i) 1f {S,} is monotonically increasing then it converges to its supremum.
@i) If {&} Is monotonically decreasing then it converges to its infimum.

Proof

Let S=supS, and s=inf S,

Takee>0

(i) Since S=supS,
\ $ S, suchthat S-e<S,

Since{Sn} IS - ( - stands for monotonically increasing )
\ S-e<§ <§,<S<S+e forn>n,
P S-e<§<S+e for n>n,
|S,- S|<e for n>n,
P Iim§ =S

n® ¥
(i) Since s=inf S
\ $ S, suchthat § <s+e

Since{%} is . (~ stands for monotonically decreasing )
\ s-e<s<§ <§ <st+e forn>n
P s-e<§ <s+e for n>n
b |S,- s|<e for n>n,
Thus L|®rQSn S
Note

A monotonic sequence can not oscillate infinitely.

Example:

Consider {S,} = , 8 +19§

As shown earlier it isan increasi ng sequence

Tak =cl+—=
€ S & 2nég

Then +—
SZn 8 2n ﬂ

anﬂo 10

\/_ 82n+1g \/_ 8 2n+1g

Using Bernoulli’ s Inequality we have
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p -1 s N 5,01 -8 1 04y 0
/sZn 2n+1 2n 2 8 2n+lg@ 2n+1

p S, < 2 "'n=123.......

p S, <4 "'n=123.........

b S <S, <4 "'n=123.........

Which show that the sequence { S} is bounded one.
Hence {S,} isaconvergent sequence the number to which it convergesiis its
supremum, which is denoted by ‘€ and 2<e<3.

Recurrence Relation

A sequence is said to be defined recursively or by recurrencerelation if the
general term is given as arelation of its preceding and succeeding terms in the sequence
together with some initial condition.

Example
Let t,>0 and let {t,} be defined by tn+1>2-ti ©ns1
b t>0 " n31
1

Also t -t =t -2+=

n
n

:trf_ 2, +1 — (tn'l)2

>0
tn tn
Pt >t. " n31l
Thisimpliesthat t, is monotonically decreasing.
Since t, >1 " n3l

P t,isbounded below P t, isconvergent.
L et us suppose Ii®r§1tn =t

Then Ilimt . =limt
n® ¥ n+l n® ¥ n

. & o_.
p Ilm(‘~,2-i+:llmtn
n®¥e t n® ¥

b 2_1‘:]: b 2t_—1:
t t

b (t-1)°=0 b t=1

t b 2t-1=t> b t?-2t+1=0

Example

Let {S} bedefinedby S,,=,/S,+b ;n3land S=a>b.
Itisclearthat S, >0 " n3land S,>S and

Sva- S =(S,+b)- (S,, +b)

:Sn' Sn—l
p (Sn+1+$1)($1+1_ Sn):Sn_ Sn—l
R

SinceS,,+S, >0 " n31
Therefore S,,- S, and S, - S, ; have the same sign.
e. §,,>S, ifandonlyif S >S , and
S.<S ifandonlyif § <SS ;.
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But we know that S, > S therefore S,>S,, S,>S;, and soon.
Thisimplies the sequence is an increasing sequence.

Also S,- §=({/5,+b) - =5, +b- §
(st 5-)

Since S, >0 " n3 1, therefore S, istheroot (+ive) of the

S~ §,- b=0

. _1++1+4b
Takethisvalueof S, asa wherea T For equation ax +bx+ ¢ =0
- i —C
the other root of equation is therefore -b The product of rootsis ab A
a
SinceS,,>S, " n31l i.e. the other root b =——

aa

Also - (Sn'a)é%n-l-aggzsﬁﬂ' S§>O

\ sn+a9>o o -(S,-a)30
p S <a " n3l1
which showsthat S, is bounded and hence it is convergent.
Suppose L|® rQSn =s
. 2 —1:
Then lim(S,,,)" =1im(S, +D)
P s=s+b b s*-s-b=0

Which showsthat a = 1+vi+4o ;M'b is the limit of the sequence.
Theorem
Every Cauchy sequence of real numbers has a convergent subsequence.
Proof

Suppose {S,} isa Cauchy sequence.
Let e >0 then $ apositive integer n, 2 1 such that

‘Snk-Snkl<% " n,n_, K=1,23,.........
Pit b =(S,- S, )+(S,- S,)* +(s,-s,.)

b |bK|=‘(5nl S,)*(S, - S, )+ +(s, - s,)
5‘(%5%)‘+‘(5n25m)‘+ ............ +‘(Snk'snk1)
<E.&, + &

AT AR =
e 1 +i0:eg%(l' 21k)2:eael‘_ 16
8 2 T ZKB 8 1- 1 % 8 ZkB
b |<e " k31

b {h} isconvergent
. h(:snk- Sno \ Snk:bK+$10
Where S, isa certain fix number therefore { S, } which is a subsequence of {S}is
convergent.
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Theorem (Cauchy’s General Principle for Convergence)

A sequence of real number is convergent if and only if it is a Cauchy sequence.
Proof

Necessary Condition

Let {S,} be aconvergent sequence, which convergesto s.
Then for given e >0 $ apositive integer n,, such that

S-s[<5 " n>n,
Now for n>m>n,

[Si- Sal =[S, 5+S,- 8

E]S,- s|+[S,- s
e e _
<§+§ = e

Which showsthat { S} isa Cauchy sequence.
Sufficient Condition

Let us suppose that { S} is a Cauchy sequence then for e >0, $ apositive
integer m such that
e . .
|Sn-Sm|<§ nm>m .......... (i)
Since{S,} isaCauchy sequence

therefore it has a subsequence { Snk} converging to s (say).
P $ apositive integer m, such that

<_+_:e n

n > max(m,m,)
which showsthat { S} is a convergent sequence.

Example
Let {S} bedefineby 0<a<§<S,<b andaso

S =SS, N>2 ..., (i)
Here S,>0," n3land a<§<b
Let for some k > 2

a<§ <b
then a®°<aS <SS.,=(S.) <b’ VS TS S
e a®<S, <b’
P a<§,<b
b a<S <b " nI N
i>§
Sa b

" +1>=+1
+1
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S +S., S at+b
S b

n+l

p 3 5a >8I g isreplaceby S, | S, <5,

n

And Sn2+1-Sn2:Sn>Gn_1-Sn2 v SaTVS Sy
:sn(sn S)

Sia- S |= |S..- S|

b

S+S
® s, s

® |55,

a+b

S

n-1

p |Sn+1_Sn| -Sn: h

a+b

b
§a+b°|sn S,

b
<6€ 9|Snz'Sn3|

Take r =
a+b

Then for n>m we have
|Sn'Sm|:|Sn_Sn—1+Sn—1-Sh-2+ .............. +Sm+1-Sm|
E|S,- Sut #|Sia- SuolF e +|Sp- Syl
<(r”'2 " +rm'1)(b- a)
=e
Thisimpliesthat { S} isa Cauchy sequence, therefore it is convergent.

Example
Let {t,} bedefined by
t —1+1+1+ ............... o1
2 3
For m,nl N, n>m we have
It - t,|= SIS +=
m+1 m+2 n
> (n- m)1 =1
n
In particular if n=2m then
|tn' tm|>1
2

Thisimpliesthat {t,} is not a Cauchy sequence therefore it is divergent.

»

“
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Theorem (nested intervals)
Suppose that {I,} isasequence of the closed interval suchthat 1, =[a,.b,] .
l..1 1," n31,and (b,- a,)® 0O asn® ¥ then NI, contains one and only one
point.
Proof
Sincel ., | 1,
\ <3, <a <. <a,_,<a,<b,<b , <..... <b,<b,<b
{an} IS increasing sequence, bounded above by b, and bounded below by a,.
And {b } IS decreasing sequence bounded below by a and bounded above by b, .

b {a,} and{h} both are convergent.
Suppose {a,} convergestoa and {h,} convergesto b.
But |a- b|=|a- a,+a,- b,+h,- b]
£|a,- a|+|a,- b|+|b,-b| ® 0 a n® ¥.
P a=b
and a ,<a<b, " n31l

Theorem (Bolzano-Weierstrass theorem)
Every bounded sequence has a convergent subsequence.
Proof
Let {S,} beabounded sequence.
Take a, =inf S, and b =supS,
Then a, <SS <b " n31.
Now bisect interval [a,,l] such that at least one of the two sub-intervals contains

infinite numbers of terms of the sequence.
Denote this sub-interval by [a,,b,].

If both the sub-intervals contain infinite number of terms of the sequence then choose
the one on the right hand.
Thenclearly a £a,<b,£Db.

Suppose there exist a subinterval [a,,b,] suchthat
afaf...... £a <b £...... £b £b

1
b (b - ak):?(bl_ a)
Bisect the interval [a,,by] in the same manner and choose [a,,,,b.,] to have

afaf...... £a fa.,<b,Eb £...... £b, £b

1
and B - ak+1:F(b1' al)

Thisimplies that we obtain a sequence of interval [a,,b,] such that
b, - an:%(bl- a)® 0 as n® ¥.

P we have aunique point s such that

s=M[a,.b)]
there are infinitely many terms of the sequence whose length is e >0 that contain s.
For e =1 there are infinitely many values of n such that

55| <1

Let n, be one of such value then

S, <1
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Again choose n, >n, such that
1
-s|l < =
S5 < 3
Continuing in this manner we find a sequence { Snk} for each positive integer k such
that n <n,, and

'S, - s| <% " K=1,2,3
Hence there is a subsequence { Snk} which convergesto s.

Limit Inferior of the sequence
Suppose {S,} is bounded then we define limit inferior of { S} as follow

Ilm(lnfSn)—IlmU where U, =inf{S,:n3 k}

n® ¥

If S, isbounded below then
lim(inf S,) =-

n® ¥

Limit Superior of the sequence
Suppose {S,} is bounded above then we define limit superior of {S,} asfollow

Ilm(supSn)—IlmV where V, =inf{S,:n3 k}

n® ¥
If S, isnot bounded above then we have

lim(supS,) =+

n® ¥

Note:
(i) A bounded sequence has unique limit inferior and superior
(i) Let {S,} containsall the rational numbers, then every real number is a

subsequencial limit then limit superior of S, is +¥ and limit inferior of S, is - ¥
(iii) Let {S} =(- 1)”§i‘+19
n

then limit superior of S, is1 and limit inferior of S is - 1.
(iv) Let U, =inf{S,:n3 k}

=inf }ghigcoskp ,ghkiﬂgcos(k +1)p ,gH

10
—CoS(K+2)P,.ceeeerennnns
kﬂ APy s(k +2)p tv)

‘Ir ¢ _coskp if kisodd

Ig?\[+—_cos(k+1)p if kiseven

P lim(inf S) =limu, =-1

n® ¥
Also V, —sup{Sn.n3 k}
ig +i_cos(k+1)p if kis odd

Igi+—_coskp if kiseven

b I|m(|nf8n) imv, =1

n® ¥
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Theorem
If {S,} isaconvergent sequence then
limS = L|®r9(|nf8n) = LI@fQ(SUpSn)

n® ¥

Proof
Let L|®rQSn = s then for areal number e >0, $ apositive integer n, such that
S, - s|<e "N3 Ny e (i)
i.e. S-e<§,<s+e "ndn
If V. =sup{S,:n2 k}
Then s-e<V,<s+te " k3n,
P s-e<limV <s+e "kIny . (i)

from (i) and (ii) V\Il(silave
s=lim sup{S}

k® ¥
We can have the same result for limit inferior of {S,} by taking

U, =inf{S,:n3 k}

-15 -
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Infinite Series

¥
Given a sequence {an} , We use the notation é a, or smply é a, to denotesthe
i=1
sum a, +a, +a; t..eens and called ainfinite series or just series.

The numbers S, = é a, are called the partial sum of the series.
k=1
If the sequence { 31} converges to s, we say that the series converges and write
¥

é a, = s, the number sis called the sum of the series but it should be clearly
n=1
understood that the ‘s’ is the limit of the sequence of sums and is not obtained simply
by addition.

If the sequence {S,} diverges then the series is said to be diverge.

Note:
The behaviors of the series remain unchanged by addition or deletion of the certain
terms

Theorem
¥

I éan convergesthen lima, =0.

=1 n® ¥

Proof
Let S =a +a,+a,+....... +a,
Take imS =s=§ a,

n® ¥
Since a,=§,- S.;
Therefore  lima, = lim(S, - S,.)

n® ¥

=lims,- s,

=s-s=0
Note:
The converse of the above theorem is false

Example

¥
Consider the series 1
n=1 n

We know that the sequence {S,} where S, = 1+% +% Forrreeeeens +% is divergent

¥
therefore é E is divergent series, although Ii®ngan =0.

n=1

Thisimplies that if Ii®ngan1 0, then é a, isdivergent.
It is know as basic divergent test.

Theorem (General Principle of Convergence)
A series é a, isconvergent if and only if for any real number e >0, there exists a
positive integer n, such that

;
a a|<e

i=m+1

I’]>I’T]>I’]0

Proof

Let S, =a +a,+a, +............. +a,
then {S,} is convergent if and only if for e >0 $ apositive integer n, such that
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|S,- S./<e " n>m>n,
éa‘z|sn-sm|<e

i=m+1

b

Example
3 1
If |x|<1 then g x"=—
n=0 1- x
¥
Andif |x|2 1then g x" isdivergent.
n=0
Theorem
Let  a, beaninfinite series of non-negative termsand let {S} be a sequence of
its partial sumsthen § a, isconvergent if {S} isbounded and it divergesif {S} is
unbounded.
Proof
Sincea,*0 " n30
S\ =S ta, > S, " n30
therefore the sequence { Sn} IS monotonic increasing and hence it is converges if
{S} isbounded and it will diverge if it is unbounded.
Hence we conclude that é a, isconvergent if {Sn} is bounded and it divergent if
{S} isunbounded.

Theorem (Comparison Test)
Suppose é a, and é b, areinfinite seriessuchthat a, >0, b >0 " n.Also
suppose that for a fixed positive number | and positiveinteger k, a, <l b, " n3 k
Then é a, converges if é b, is converges and é b, isdivergesif é a, isdiverges.

Proof
Suppose é b, is convergent and
a,<lb "n3k......... (i)
then for any positive number e >0 there exists n, such that
g e
a q <— n>m>n,
i=m+1
from (i)
P §a<l dbh<e , n>m>n
i=m+1 i=m+1

P é a, isconvergent.

Now suppose g a, isdivergent then {S} is unbounded.
P $ area number b >0 such that

éq>lb , n>m
i=m+l
from (i)
P Ah>>§a>b . n>m

i=m+1 i=m+1

P & b, is convergent.
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Example

We know that § 1is divergent and
n

n3 \/ﬁ " n31
b g1
n+/n
= é_i is divergent as é_l is divergent
Jn n .

Example

The series § ia is convergent if a >1 and divergesif a £1.
n

1 1 1
Let =1+ —+—+ ., + —
> 2 F n®
If a>1 then
1 1
< and —«<
Sh SZn na (n_l)a
1 1 1 1 u
Now =al+—+—+—............
S 31 » 3 4 (2n)* H
e 1 1 1 u é1 1 1 1 u
=g+t —+—+....... SOt e ot e =0
e 3a 5 (Zn-l) u eza 4 6 (2n)
e 1 1 1 u 1¢ 1 1 1 u
=al+—+—+............ 1+ aAl+—+—+............ +
Slsa 5 (2n- 1° Y 2631 > 3 (n?* §
e 1 1 1 u 1
<@ttt 0t o
e 2a 4 (2n- 2) u 2a
replacing 3 by 2, 5 by 4 and so on.
1é¢ 1 1 u 1
=l+—al+—+..... —ut =S,
31 2 (n-1)*H4 22
1 1 1 1
=1+— +— =1+—S +— <S <
ZaSn—l ZaSh ZaSZn Za%n Sn—l Sh SZn
2
=1+—
ZaSZn
1
p SZn 1+2a-182n
16 a?t-10 2t
b H. =% <1 b 2S <1 b
8 1 Szn g -1 ﬂSZn SZn 2a1_1
. v
l.e. < <
Sh SZn 2a-1_1

P {Sn} is bounded and also monotonic. Hence we conclude that é_ ia IS
n

convergent when a >1.

If a £1 then
n" £n " n31
ST
n n

: é_ 1 Is divergent therefore é_ ia isdivergent when a £1.
n

n
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Theorem
Let a, >0, b >0 and |i®r9%:| 1 0 thenthe series § a, and g b, behave alike.
Proof
Since limr =
n®¥bn
b |&.||<e " n3 Ny -
Usee=—
2
an I n
b | 2-]| |<— ns3
b, 2 k
P | -|—<5<| +|_
2 b 2
b I_<$<i
2 b 2
then we got

a,<>h ad b <la

Hence by comparison test we conclude that é a, and é b, converge or diverge
together.

Example

o 1. X . .
To check g —sin’~ diverges or converges consider
n n

1. .Xx 1
=—sin“— andtake b =—
& n n " ond
then &=p2gn2X
b, n
sin?> &in* O
1 ¢ x -
" &n o
en g

Applying limitas n® ¥

2 2
%nfg &® sinfg
im3 = lim x2d— 0 =xdlim—NI =) =

ne¥ [ ne¥ X ey X .
n Q — - Q — =
eng e n o
p é a, and é b, have the similar behavior " finite values of x except x = 0.

: 1. : : .
Since é_ — is convergent series therefore the given series is also convergent for
n

finite values of x except x = 0.
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Theorem ( Cauchy Condensation Test )
Let 8.2 0,a, >a, " n31,thenthe series é a, and é 2”‘1a2n_1 converges or

diverges together.

Proof
L et us suppose

S=at+ta,+ta ... +a,
and t,=a +2a, + 2%, * e, +2"g ..

+a30 ad n<2"<2'-1
\ S <S,:1<S,, for n>2
then
S, Tatatat....ta,
=a +(a,+a,)+(a*ataga) ot (B F A, YA, Fet Ry )
<a+(a,+a,)+(a,+a,+8,+8,) * ot (B + s F By ot Ay
<at+2a,+2°a,+....+2"a,, =t

P S, <t,

P S <t,<2S, ..ccoiiiiin. (i)
Now consider

szn:a1+a2+a3+ ............... +a2n

:al+az+(ag+z;14)+(a,5 +a, +a7+a8)+ _______ +(a2n_l+1+a2n_l+2+a2n_l+3+____+a2n)
1
>Ea1+a2+(a4+a4)+(a8+a8+a8+a8)+ ______ +(a2n+a2n+a2n+ _____ +a2n)

=%a1+a2+2a4+22a8+ ................ +2"a,
=%(a1+2a2+23a4+23a8+ ................ +2”a2n)
p 82n>%tn ............ (i)
P 282n>tn

From (i) and (ii) we see that the sequence S, and t are either both bounded or both
unbounded, implies that é a, and é 2”‘1a2n_1 converges or diverges together.

Example

Consider the series é_ ip
n

If p£0 then Iimip1 0

n®¥ n
therefore the series divergeswhen p£0.
If p>0 then the condensation test is applicable and we are lead to the series

3 1 d 1

a2—--=a
o (2P (L 2¥F
¥ 1 _fel o
_2'02('0'1)" - 2—0 2D &
— 52(1 Pk
k=0

Now 2P < 1 iff 1- p <0 i.e.when p>1
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And the result follows by comparing this series with the geometric series having
common ratio less than one.

The series divergeswhen 2" ° =1 (i.e. when p=1)
The seriesisalso divergent if 0< p<1.

Example

¥
If p>1, 3
P2 i)

If p£1 theseriesisdivergent.

converges and

. . 1 1 0
-+ {Inn} isincreasing \ im%‘decreas&

and we can use the condensation test to the above series.

Wehave a, = .
n(Inn)
1 1
P a,=—— b 2"a, =
© 2(in27)’ Z (nin2)°
P we havethe series
o n o 1 1 o 1
a2a2n: = —

a (nin2)P (|n2)'O a nP
which convergeswhen p>1 and divergeswhen p£1.

Example

i 1
Consider 3 —
a Inn

Since {Inn} isincreasing there ili%l decreases.
rInn

And we can apply the condensation test to check the behavior of the series

sl oy gl
s Inn 2 In2"
so 2"a,= 2 p 2'a,= 2
2 In2" 2 nln2
since 2—>1 " n31l
n n

and é_ % is diverges therefore the given seriesis also diverges.

-21-
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Alternating Series
A series in which successive terms have opposite signs is called an alternating series.
o (-D™ 1 1 1

e.o. =1- —+—- —+ .. IS an alternating series.
9 a n 2 3 4 9

Theorem (Alternating Series Test or Leibniz Test)
Let {an} be a decreasing sequence of positive numbers such that lima, =0 then the

n® ¥

¥
aternating series é (-D™a =a-a,+a;- 3t converges.

n=1
Proof

Looking at the odd numbered partial sums of this series we find that

Spa=@- a)t(@-a,)t(@- a)t... +(Qn.1- &) Ty
Since {a,} is decreasing therefore all the terms in the parenthesis are non-negative

PS>0 " n
Moreover

Sones = S ™ ez F s
=S~ (Bunez ™ Bonea)

Since Qnr2 = Sones 3 0 therefore Szn+3 £ S2n+1

Hence the sequence of odd numbered partial sum is decreasing and is bounded below
by zero. (asit has +ive terms)

It is therefore convergent.

Thus S,,,, convergesto some limit | (say).

Now consider the even numbered partial sum. We find that

S2n+2 = S2n+1 - a2n+2
and

L|®r9 S2n+2 = L|®r9 ( S2n+1 - a2n+2)

=lim - lim
n® ¥ S2n+1 n® ¥ a2n+2

=1-0=l Ii®r9an:O
so that the even partial sumis also convergent to | .
P both sequences of odd and even partial sums converge to the same limit.

Hence we conclude that the corresponding series is convergent.

Absolute Convergence
é a, issaid to converge absolutely if é | an| converges.

Theorem
An absolutely convergent series is convergent.
Proof:
If & |a,| is convergent then for areal number e >0, $ a positive integer n, such that

<&lal<e " nm>n

i=m+1

P the series é a, isconvergent. (Cauchy Criterion has been used)

a a

i=m+1

Note
The converse of the above theorem does not hold.

o (-1)™
o 80

. 1.
is convergent but § = is divergent.
n
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Theorem (The Root Test)
: Y _
Let limSup|a,|™=p
Then é a, converges absolutely if p<1 and it divergesif p>1.

Proof
Let p<1 then we can find the positive number e >0 suchthat p+e<1
p |an|% < p+e<l " n>n,
b |a) < (p+e) <1
> & (p+e)" isconvergent because it is a geometric series with |r|<1.
\ " a|a,| is convergent
p é a, converges absolutely.
Now let p>1 then we can find anumber e, >0 such that p- e >1.
p |an|% > p+e >1
b |a,| > 1 forinfinitely many values of n.
> lima, 0
b

é a, isdivergent.

Note:
The above test give no information when p=1.

1
n?’

Qo

e.g. Consider the series é_% and

(BN

For each of these series p =1, but é_ — isdivergent and é_ iz IS convergent.
n

5

Theorem (Ratio Test)
The series é a,

G
a

(i) Convergesif I|®r£1 SUp‘ <1

(ii) Divergesif ‘ﬂ >1 for n3 n,, where n, issome fixed integer.
a,

Proof
If (i) holdswe can find b <1 and integer N such that
il forn3 N
a,
In particular

a'N+1 < b
aN

b |ay.,| < blay|

D |aN+2 < b|aN+1 < b2|aN|

b |ay.| < b’la]

b ‘amp < b’|a|

-23 -
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la,| <b""|a,| weput N+p=n.
ie |a|<|a|bb" forn3 N.
é b" isconvergent because it is geometric series with common ration <1.
Therefore é a, isconvergent (by comparison test)

Now if
&% |a,| forn3n
1
then L|® ma, 0
P a a, isdivergent.
Note
The knowledge G |2 implies nothing about the convergent or divergent of series.
a,
Example

én &nou
§n+1 8n+1g 0

Consider the series a, with a, =

n
—x<1 \ >0 " n
n+1 %
1 é n+1u'1
1 n a&n o
Also n = @ -
(a“) gn+1 8n+1g 0
, nal na-l
_an+16€ an oYU _an+lp€ an+lo U
=o—=:8-c——:0 T —:8-c—=
n gg éntlgy 8“&@8“&@
. el
-.e e u
- 5,105 . 5,10}
€ npg & ngg
-1
-.e nu
lima, = Iima?[+12§1- a?[+19 0
n® ¥ n®¥8 nﬂ" 8 nﬂ V4
e ¢!
-1
é 5" U
= Iimai+12 lim@l- aﬁ+12 G
n®¥8 nﬂ n®¥ A 8 nﬂ V4
e ¢!
. il & 10 _ ée-1y _ ée
= 1x -ellzg-_, = . = >1
BCH g Tfel Bt
P the seriesis divergent.
Theorem (Dirichlet)
Supposethat {S}, S,=a,+a, + a3 +.ccvvveenne. +a, isbounded. Let { b} be positive
term decreasing sequence such that I|®rQ b, =0, then é a, b, isconvergent.

Proof
-+ {S,} isbounded
\ $ apositive number | such that

|Sn|<l " n3l
Then h=(S-S.)b foris 2
:Sq SELY
=Sh-S,0+3b,-Sh,
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:S(h_ h+1)_ 3—1h+3h+1
P aah=a S(b-0.)- (Sibm- Sib)

i=m+1 i=m+1

-+ {b} isdecreasing

\ |4 ab|=|a S(b-0.)- Syb+Sb.
i=m+1 i=m+1
<A {Slb-9..)} +|Su|bns +] S, [bra
i=m+1
<a{l (a-b. )+ b+l b, | §)<l
i=m+1
=1 08 (B~ B) By, b0
8i=m+1 (4]
=1 (B - ) By +051) =21 (B,0)
b én ab|<e where e =2| (b,,,) acertain number
i=m+1

b Thed a, b, isconvergent. ( We have use Cauchy Criterion here. )

Theorem
Suppose that é a, isconvergent and that { bn} IS monotonic convergent sequence

then é a, b, isalso convergent.

Proof
Suppose { b} is decreasing and it convergesto b.
Put c,=b,-b

P ¢,20 andlimc,=0
n® ¥
é a, isconvergent

\ {S} S,=atatata +a_ isconvergent
P Itisbounded

p é a, ¢, isbounded.
- a,b,=a,c, +a,b and é a,c, and é a, b are convergent.
\ é a b, isconvergent.
Now if { b} isincreasing and convergesto b thenwe shall put ¢, =b- b,.

Example
2 is convergent if a >1 and divergent if a £1.
(nlnn)?
To see this we proceed as follows
1
%= (nlnn)?

Teke b= 2a, = — 2 _ = 2 _
(2"In27) (2" nin2)
2" 1

2™ n* (In2)° 2= "n? (In2)*
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ﬁ_o_(a—l)n
_ 1 g2p
(n2f

(a-Dn

. O
&2
converges to 0. Therefore b, is convergent

Since ia is convergent when a >1 and is decreasing for a >1 and it
n

o .
P a a, isalso convergent.
Now é b, isdivergent for a £1 therefore é a, divergesfora £1.

Example
To check é ¥ Is convergent or divergent.
n*Inn
Wehave a, =
% n" Inn

Tke b =2a,=—2 _ =_2 _
" % (2")* (In2") 2" (nIn2)

.(a-Dn

g 0
1 y‘zﬂ'a)” _ 1 )gzg

In2  n N2 n
o 1 . . T@-(.jn(a_l) ’ . . )
© a — isdivergentathough |c-+ vy isdecreasing, tending to zero for a >1
n ngﬂ b

therefore é b, isdivergent.
o . .
P a a, isdivergent.

The seriesalso divergent if a £1.
l.e. it is always divergent.
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< Limit of the function

Suppose
(i) (X,d,) and (Y,d,) betwo metric spaces
(i) ET X

(iii) f:E®Y ie f mapsE intoY.
(iv) p isthelimit point of E.
Wewrite f(X)® q as X® p or Ixi®rrgf(x):q, if thereisapoint g with the
following property;
For every e>0, thereexistsa d >0 suchthat d, (f(x),q) < e for al points
xI E for which d, (x,p) <d.

If X and Y arereplaced by areal line, complex plane or by Euclidean space R,
then the distances d, and d, arereplaced by absolute values or by appropriate

norms. |

Note: i) Itisto be noted that pI X but that p need not apoint of E in the above
definition ( p isalimit point of E which may or may not belongto E.)

ii) Evenif pl E, wemay have f(p)? Ii®mf(x). a
x® p
< Example
. 2X
lim—— =
x®¥ 14+ X
We have 2X ol = 2X- 2- 2X _ -2 <g
x-1 1+X 1+X X
Now if e>0 isgivenwe canfind d _2 So that
e
X 2|<e whenever x>d. a
1+X
< Example
. . x°-1
Consider the function f (x) = T
X_
Itisto be noted that f isnot definedat x=1 but if x* 1 andisvery closeto 1 or
lessthen f(x) equalsto 2. U

“ Definitions

i) Let X and Y be subsets of R, afunction f : X ® Y issaidto tend to limit |
as x® ¥, if for areal number e >0 however small, $ apositive number d which
depends upon e such that distance

| f(x)- ||<e when x>d andwe write limf () =I.

i) f issaidtotendtoarightlimit | as x® c if for e>0, $ d >0 such that
| f(X)- || < e whenever xI G and 0<x<c+d.

And we write f(c+) = Xlg@r(n f(x)=I

iii) f issaidtotendtoaleftlimit| as x® c if for e>0, $ ad >0 such that
| f(X)- || < e whenever xI G and O<c- d <x<c.

And we write f(c-):xl(i@rp f(x)=I. a
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< Theorem

Suppose
(i) (X,d,)and (Y,d,) betwo metric spaces
(i) ET X

(iii) f:E®Y ie f mapsE intoY.
(iv) p isthelimit point of E.
Then lim f (x)=q iff limf(p,)=q for every sequence { p,} in E such that
x® p n
1 i -
Pt P, limp,=p.
Proof
Suppose Ii®m f (x) =q holds.
X® p
Choose { p,} in E suchthat p,* p, lim p, = p, weare to show that
limf(p,) =g
Then there existsa d >0 such that

d,(f(x).q) <e if xI E and 0<d,(x,p) <d .......... 0]
Also $ apositive integer n, suchthat n>n,
P d(p,p)<d .cooerrnnnnn. (i)

from (i) and (ii), we have for n>nj

d,(f(p.).a) <e
Which shows that limit of the sequence

imi(p.) =

Conversely, suppose that L|®nQ f (pn) = q isfalse

Then $ some e >0 such that for every d >0, thereisapoint xI E for which
d,(f(x).q) 3 e but 0<d,(x p)<d.

In particular, taking d, :% , N=123,......

Wefind asequencein E satisfied p,?! p, L|®rQ p, = p for which L|®rQ f(p,)=q
is false. a
< Example

.1 :
[imsin— does not exist.
X® ¥ X

Suppose that I|®nQ sin— existsand take it to be I, then there exist a positive real
x X

number d such that

sni-1l<1 when 0<|x-0|<d (wetake e=1>0 here)
X
We can find a positive integer n such that
i<d then ——<d and _2 <
np (4n+1p (4n+3)p
It thus follows
sin@-l <1 P |1-1|<1
and sin@-l <1 b |-1-1]<1 o [|1+]]<1




So that
2:|1+I +1- I| £ |1+I|+|1- I| <1+l b 2<2

Thisis impossible; hence limit of the function does not exist. U
Alternative:
Consider X, -2 then limx, =0
(2n- Dp x® ¥

But {f(x,)} i.e ism%g is an oscillatory sequence
|

: 1. u
e {1-11,-1,........ } therefore { sin—v; diverges.
AR
Hence we conclude that Ii®nQ s n1 does not exit. U
x X

< Example
Consider the function
i X ; x<1
F(x)=j -
12+ (x-1°; x31
We show that i m f (x) does not exist.

To provethistake x =1- 1 then Ii®r£1xn:1 and Ii®an(xn):1
n X n
But if we take xn:1+1 then X, ® 1 asn® ¥
n

2

. o 1 .6 _
and lim f (x,) =lim 2+§ﬁ+_- 12 =2

n g
This show that { f (x,)} does not tend to a same limit as for all sequences {S}
such that x, ® 1.
Hence this limit does not exist. Q

< Example
Consider the function f :[0,]]® R defined as

i0 if xisrational
F(x) =i D
il if xisirratioanl

Show that lim f (x) where pl [0,1] doesnot exist.
x® p

Solution
Let Ii®m f(x)=q ,if given e >0 we canfind d >0 such that
x® p

| f(X)- q|]<e whenever |x- p|<d.
Consider theirrational (r- s,r +s) I [0,1] suchthat r isrational and s is
irrational.
Then f(r)=0 & f(s)=1
Suppose Ixi®ngf(x):q then

| f(s5)|=1
b 1=|f(s)- q+q|
=|(f(s)- g+q- 0

=[f(9)-q+q- f()] = 0=f(r)



E|f(s)- q|+| f(r)- q|<e+e
.e. l<e+e
b 1<isl jre=l
4 4 4
Which is absurd.
Hence the limit of the function does not exist.

<+ Exercise

limxsn—=0
x® 0
We have
xsini- O|<e where e>0 isapre-assigned positive number.
X
p xsin1 <e
X
b |x| sint|<e
X
1
b |x|<e sn=|£1
X
P |x- 0|]<e=d

It shows that Iimxsinlzo.

X® 0 X

Same the case for function for f (x) = xcos%

) ) 1
Also we can derived the result that I|®rr01 x’sin==0.
x X

% Theorem
If Ii(gn f (x) existsthen it is unique.
Proof
Suppose Ii®m f (x) i1s not unique.
Take Ii®rnf(x):l1 and Ii®rnf(x):l2 where 11 1,.
P $ rea numbers d, and d, such that
| f(x)- I|]<e whenever |x- c|<d,
& |f(x)-1,/<e whenever |x-c|<d,
Now [1,- L= (- 1,)- (F(x)-1,)
E|F(Q)- L[+ f(X)-1,]
<e+e whenever |x- c|<min(d,d,)
p 1, =l,



% Theorem
Suppose that areal valued function f is defined on an openinterval G except

possibly at ¢l G. Then Ii(gn f (x) =1 if and only if for every positive real number

e, thereisd >0 suchthat | f(t)- f(s)|<e whenever s & t arein
{x:|x- c|<d}.
Proof

Suppose Ixiéwgf(x):l

\ forevery e>0,$ d >0 suchthat

MEE I|<%e whenever 0<|s- c|<d

& |f(t)-||<%e whenever 0<|t- c|<d
b (- f@)|£]f(9)-1]+|F®)-1]

<§+% Whenever |s- c|<d & [t-c|<d

| f(t)- f(s)|<e whenever s & t arein {x:|x- c|<d}.
Conversely, suppose that the given condition holds.
Let { x,} be asequence of distinct elementsof G suchthat x,® c asn® ¥ .
Thenfor d >0 $ anatural number n, such that
|x,- I|<d and |x,-I|]<d " mn>n,.
And for >0
| f(x,)- f(x,)|<e whenever mn>n,

b {f(x,)} isaCauchy sequence and therefore it is convergent. a

< Theorem (Sandwiching Theorem)
Supposethat f, g and h are functions defined on an open interval G except
possibly at cT G.Let fEh£gonG.
If le(grclf(x):lxl(grclg(x):l,then le(grclh(x):l.
Proof
For e>0 $ d,,d,>0 suchthat
| f(X)- I|<e whenever 0<|x- c|<d,
& |g(x)- I|<e whenever 0<|x- c|<d,
b l-e< f(x)<l+e for 0<|x-c|<d,
& l-e<g(x)<l+e for  0<|x-c|<d,
P l-e< f(x) £ h(x) £ g(x) <l+e
P l-e<h(x)<l+e for 0<|x-c|<min(d,d,)
P limh(x)=I a

X® ¢
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% Theorem
Let (i) (X,d), (Y,d,) betwo metric spaces.
(i) EI X
(ii1) p isalimit point of E.
(iv) f:E® Y.
(V) g:E®Y
and limf(x)=A and Ixi®rrgg(x):B then

X® p
i- ngrg(f(x)ig(x)):AiB
ii-  lim(fg)(x) = AB

X® p
- im2 I0_ A ovided B 0.
©r&g(x) g B

Proof
Do yourself a

% Continuity
Suppose
i) (X,dy), (Y,d,) aretwo metric spaces
i) E‘IA X
i) pl E
iv) f:E®Y
Then f issaid to be continuousat p if for every e >0 $ ad >0 such that
d, (f(x), f(p)) < e foral points xI E for which d, (x, p) <d.

Note:

(i) If f iscontinuous at every point of E. Then f issaid to be continuouson E.

(ii) It isto be noted that f hasto be defined at p iff Ii®mf(x): f(p). a
x® p

< Examples
f(x)=x* iscontinuous " xI R.

Here f(X)=x%, Take pl R

Then |f(x)- f(p)|<e
b ‘xz - pz‘ <e
P |(x- p)(x+p)<e
P |x- p|<e=d

* p isarbitrary real number

\ thefunction f(x) iscontinuous " rea numbers. a



% Theorem
Let
1) X,Y,Z be metric spaces
i) EI X
i) f:E® Y, g:f(E)® Z and h:E® Z defined by h(x) =g( f (X))
If f iscontinuousat pl E andif g is continuous at the point f (p), then h is
continuous at p.

Proof

* g iscontinuous at f(p)
\ forevery e>0, $a d >0 suchthat

d,(9(y).9(f(p)) < e whenever d(y,f(p)) <d, ......... (i)
- f iscontinuousat pl E

\ $ a d >0 suchthat
d, (f(x), f(p)) < d, whenever d, (x,p) <d ............ (ii)

Combining (i) and (ii), we have
d,(9(y).9(f(p)) < e whenever d,(x p) <d
P d,(h(x),h(p)) <e whenever d,(x,p)<d
which shows that the function h is continuousat p. a

< Example
(i) f(X)=(- x?) iscontinuous " xI R and g(x)=~/X iscontinuous

x1 [0,¥], then g(f(x))=+v1- x* iscontinuous xI (-11).

. . _Ix-p , X£O

(i) Let g(x)=snx and f(x)_{x+p x>0

Then g(f(X))=-sinx " x

Then the function g( f (X)) iscontinuousat x=0, although f isdiscontinuous
a x=0. a

% Theorem

Let f bedefinedon X .If f iscontinuousat cI X then $ anumberd >0
such that f isbounded ontheopeninterval (c- d,c+d).

Proof

Since f iscontinuousat ci X.

Therefore for areal number e >0, $ area number d >0 such that

| f(x)- f(c)|<e whenever xI X and |x- c|<d.
p |f(x)|:| f(X)- f(c)+f(c)|



E[f(x)- £(0)]- | ()]
<e+|f(c)| whenever |x-c|<d.
It showsthat f isbounded on the openinterval |c- d,c+d . 0

% Theorem
Suppose f iscontinuouson [a,b].1f f(c)>0 for some cl [a,b] then there

exist anopeninterval G1 [a,b] suchthat f(x)>0 " xI G.
Proof

Take e:%f(c)

- f iscontinuouson [a,b]
\ | f(x)- f(c)|<e whenever |x- c|<d, xI [ab]
Teke G={xi [ab] : |x- c|<d}
b ()] =] f(9- f(©)+f(©)
£1(0- f©)]+ ()]
<e+|f(c)|] whenever |x- c|<d
For xI G, wehave

f(x) = f(c)- (f(0)- () ® f(©)-|F©)- f(
3 f(c)-| f(9- f(0)| > f(c)-%f(c)

b f(x)>%f(c)>0 Q

< Example
Define afunction f by
i Xcosx ; xlo
F(x)=j o
Y ; Xx=0
This function is continuous at X =0 because
| f(x)- f(0)| = |xcosx| £ |X]| ( -.'|cosx|£1)
Which shows that for e >0, we canfind d >0 such that
| f(x)- f(0)|]<e whenever 0 <|x-c|<d=e Q

< Example
f(x)=+/x iscontinuouson [0,¥ .
Let ¢ beanarbitrary point suchthat 0 < c < ¥
For e >0, we have

|f(X)- f(C)| :‘\/;_\/E‘ = \J;;f)g < |X\}EC|

[ - |

Je

P |f(X)- f(c)| <e whenever <e

ie |x-c|<<Jce=d
p f iscontinuousfor x=c.
-+ ¢ isan arbitrary point lying in [0,¥ |
\ " f(x) =+ iscontinuous on [0,¥ [ Q



< Example
Consider the function f defined on R such that
il , xisrationa
F() =] —
1-1 , xisirrational
This function is discontinuous every where but | f(x)| iscontinuouson R. U

% Theorem

A mapping of a metric space X into ametric space Y iscontinuouson X iff
f*(V) isopenin X for every opensetV inY.
Proof

Suppose f iscontinuouson X andV isopeninY.

Weareto show that f *(V) isopenin X i.e. every pointof f *(V) isan
interior point of (V).

Let pl X and f(p)i V

<V isopen

\ ' $ e>0 suchthat yiV if d,(y,f(p)) <e

- f iscontinuousat p

\ $d>0 suchthat d,(f(x),f(p)) <e when d,(x,p)<d ......... (ii)
From (i) and (ii), we conclude that

xI f*(V) assoonas d,(x p)<d

Which showsthat f (V) isopenin X.

Conversely, suppose f (V) isopenin X for every opensetV inY.

We areto provethat f iscontinuousfor this.

Fix pIl X and e>0.

Let V bethesetofal yi Y suchthat d,(y, f(p))<e

V isopen, f (V) isopen

P $d>0 suchthat xI f*(V) assoonas d,(x,p)<d.

Butif xI f*(V) then f(x)TV sothat d,(f(x),f(y))<e

Which provesthat f is continuous. a
Note
The above theorem can also be stated asamapping f: X ® Y iscontinuous iff
f1(C) isclosedin X forevery closedset C inY. a

% Theorem
Let f,f,,f;,...., f, berea valued functions on a metric space X and f bea

mapping from X onto R* defined by
()= (.00, £,0, f5(9,..... f, () , xI X
then f iscontinuouson X if andonly if f,,f,, f;,....., f, arecontinuouson X.
Proof
Let us suppose that the function f is continuouson X , we are to show that
f., f,, f5,......, f,_a@recontinuouson X.
It pl X, then d,.(f(x),f(p)) <e whenever dy(x p) <d

p Hi(x)- j(p)H <e whenever |x- p|<d
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b | f.09- f.(p), f.(X)- f,(p)seee f(X) - f(P)| <€ whenever |x- p| <d

P10~ () (f200 - £2(P)) e (Fe(X) - fk(m)zg% <e
whenever | x- p| <d

e A
e P & (f(0- f(p); <e whenever |x- p|<d
€i=1 u
b | f.(¥)- f(p)| <e whenever |x- p|<d
| £, - f,(p)|| <e whenever |x- p|<d

| f.09- f(¥)| <e whenever |x- p|<d
p all thefunctions f, f,, f,,....., f, arecontinuousat p.
"+ p isarbitrary point of x, therefore f,f,, f,,....., f, arecontinuouson X .
Conversely, suppose that the function f;, f,, f,,....., f, arecontinuouson X , we
are to show that f iscontinuouson X .
For pl X andgiven e >0, i=12,..k $ d >0, i=12,...,k
Such that
| f.(0- fi(p)|| <e whenever |x- p| <d,
| £,09- f,(p)| <e, whenever |x- p|<d,

| f.09- f.(X)| < e whenever |x- p|<d,
Take d =min(d,,d,,d,,....d,) then
| f(X)- f(p)| <e whenever |x- p|<d
b 500 1(P) +(HL09- L(P) +.t (£, fk(p))zll‘]l}/z < (e12+e22+....+ek2)}/2

whenever | x- p|<d

where (el2 +e2 +.... +e|f)}/2 =e
Then de(j(x),j(p)) < e whenever d,(x,p)<d

P f(x) iscontinuousat p.
" p isan arbitrary point therefore we conclude that f iscontinuouson X . U
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% Theorem

Suppose f is continuous on [a,b]

i)If f(a)<0 and f(b) >0 thenthereisapoint c, a<c<b suchthat f(c)=0.

i) If f(a)>0 and f(b) <0, thenthereisapoint c, a<c<b suchthat f(c)=0.
Proof

i) Bisect [a,b] then f must satisfy the given condition on at least one of the
sub-interval so obtained. Denote this interval by [a,,b,]

If f satisfiesthe condition on both sub-interval then choose the right hand one
[2:.b.]-

Itisobviousthat a£a, £b, £b. By repeated bisection we can find nested
intervals {1}, 1.1 1,, I,=[a,b,] sothat f satisfiesthe given condition on
[a,.b.]. n=12....

And a=afa,fa,£...£a £b £...£bED =D

alo
Where b, - a, =5 (b- a)

Then ﬂ |, contain one and only one point. Let that point be ¢ such that
i=1
f(c)=0
If f(c)t 0, let f(c)>0 thenthereisasubinterval [a,,b,]| suchthat a, <h, <c
Which can not happen. Hence f(c)=0
i) Do yourself as above Q
< Example
Show that x*- 2x°- 3x+1=0 hasasolution cl [-1]]
Solution
Let f(X)=x>- 2x*- 3x+1
* f(X) ispolynomial
\ itiscontinuous everywhere. (for being a polynomial continuous everywhere)
Now f(-1)=(-1°- 2(-2)*- 3(-1)+1
=-1- 2+3+1=1>0
fQ=0°-2(1)%- 301) +1
=1- 2- 3+1=-3<0
Therefore there isapoint ¢l [-1,1] suchthat f(c)=0
I.e. ¢ istheroot of the equation. a

% Theorem (The intermediate value theorem)

Suppose f iscontinuous on [a,b] and f(a)® f(b), then givenanumber | that
lies between f(a) and f(b), $ apoint c , a<c<b with f(c)=I .
Proof

Let f(a)<f(b) and f(a)<l <f(b).

Suppose g(x) = f(x)- |

Then g(a)=f(a)-1 <0 and g(b)=f(b)-1 >0

P $ apoint ¢ between a and b suchthat g(c)=0

p f(c)-1 =0 b f(c)=I
If f(a)> f(b) thentake g(x) =1 - f(x) to obtain the required result. U
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% Theorem
Suppose f is continuous on [a,b], then f isbounded on [a,b]
(Continuity implies boundedness)
Proof
Supposethat f is not bounded on [a,b],
We can, therefore, find asequence { x,} intheinterval [a,b] such that
f(x,) >n foral n3 1.
p {f(x,)} diverges.
But a £x,£b ; n31l

P $ asubsequence {xnk} such that {xnk} convergesto | .

p {f(xm)} also convergesto | .

p {f(x,)} convergesto! .

Which is contradiction
Hence our supposition is wrong. Q

< Uniform continuity
Let f beamapping of ametric space X into ametric space Y. We say that f
is uniformly continuous on X if for every e >0 there exists d >0 such that
d,(f(p)f(q) <e " pqgl X forwhich d,(paq)<d

The uniform continuity is a property of afunctiononaset i.e. it isaglobal
property but continuity can be defined at a single point i.e. it isalocal property.
Uniform continuity of a function at a point has no meaning.

If f iscontinuouson X thenitispossibleto find for each e >0 and for each

point p of X ,anumber d >0 suchthat d, (f(x),f(p)) <e whenever
dy (X, p) <d.Thennumber d dependsupon e andon p inthiscasebutif f is

uniformly continuous on X thenit is possible for each e >0 to find one number
d >0 which will do for all point p of X.

It is evident that every uniformly continuous function is continuous.

To emphasize a difference between continuity and uniform continuity on set S,
we consider the following examples. a
< Example

Let S beahaf openinterval O<x£1 andlet f bedefined for each x in S by

the formula f (X) = x*. It isuniformly continuous on S. To prove this observe that
we have

[f()- )| =¥y’
= [x-yl[x+y]|
< 2x-y|
If |x-y|<d then |[f(x)- f(y)|<2d=e
Henceif e is given we need only to take d :% to guarantee that

| £(x)- f(y)| < e forevery pair x,y with |x- y|<d
Thus f isuniformly continuous ontheset S. U
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< Example
f(x)=x", n 2 0 isuniformly continuous of [0,]

Solution
For any two values x,X, in [0,1] we have
n-1

X -] =] (% ) (K X% 4 X0 )
£n[x-%|

Given e >0, wecanfind d :% independent of x, and X, such that

‘xf xﬂ < n|x - x| <e whenever x,%1 [01] and |x - x,|<d :%
Hence the function f isuniformly continuous on [0,1]. a

< Example
Let S bethe half openinterval 0<x£1 and let afunction f be defined for each

X in S by the formula f (x) :%. This function is continuous on the set S,

however we shall prove that this function is not uniformly continuouson S.

Solution
Let suppose e =10 and suppose we canfinda d , 0<d <1, to satisfy the
condition of the definition.

Taking x=d , y:%,weobtain

1
|x-y| = THD d
and
[£(x)- f(y)| = di-% :E_O>1o

Hence for these two points we have | f(x)- f(y)| > 10 (always)

Which contradict the definition of uniform continuity.
Hence the given function being continuous on aset S is not uniformly
continuouson S. a

< Example

f(x):sin1 ; X1 0. isnot uniformly continuouson O<x£1 i.e (0,]].
X

Proof
Supposethat f isuniformly continuous on the given interval then for e =1,

thereis d >0 such that
| f(x)- f(x)| <1 whenever |x- x| <d
1

T = _—
ake x 3(n- %)p

—F— and Xx, =

(n- 3)p i

2

So that - <d = —/——+—
| %, - %, | 3(n- 3)p

But | f(x)- f(x)|= ‘sin(n-%)p-sin?,(n-%)p‘ =2>1

Which contradict the assumption.
Hence f isnot uniformly continuous on the interval. U
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< Example
Provethat f(x)=+/x isuniformly continuouson [0,1].

Solution
Suppose e =1 and suppose we canfind d, 0<d <1 to satisfy the condition of

the definition.

d2
Taking x=d?, ="
2 2
Then |x- y|:d2-d—:£<d
4 4
d2
And | f(x)- f(y)| = [Vd2- T
=ld-9]=]9]<1=e
2

Hence f is uniformly continuous on [0,1]. ]

% Theorem
If f iscontinuous on a closed and bounded interval [a, b], then f isuniformly

continuous on [a,b.

Proof
Supposethat f isnot uniformly continuous on [a,b] then $ areal number

e >0 such that for every real number d >0.
We canfind apair u, v satisfying
lu-vj<d but [f(u)- f(v)|2e>0

If d:%, n=123,...
We can determine two sequence {u,} and {v,} such that
u, - v, | <% but | f(u,)- f(v,)|2 e

watu £b " n=123.....

\ thereis asubsequence {unk} which converges to some number u, in [a,b]
p forsome | >0, wecanfind aninteger n, such that

- u0‘<l " n3n,

u

N

+ <1+|
‘unk-uo‘ H

P ‘vnk - uo‘ £ ‘vnk - U,
P {vnk} also convergesto u, .
p {f(um )} and {f(vnk )} convergeto f(u,) .

Consequently, ‘f(unk)- f(vnk)‘ < e whenever

Which contradict our supposition.
Hence we concludethat f is uniformly continuous on [a,b].

u -v [<e

N N
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% Theorem
Let f and g be two continuous mappings from a metric space X into R, then

the mappings f +g and f xg arealso continuouson X .

I.e. the sum and product of two continuous vector valued function are also
continuous.

Proof
i) - f & g arecontinuouson X.

\ by the definition of continuity, we have for apoint pi X.

| f00- f(p) <% whenever | x- p| <d,

and Hg(x)- g(p)H < % whenever || x- p| <d,

Now consider
| £09+909- £(9- g(p)]

=] 109~ 1(p)+9(0)- 9()]

E]100- f(m]+]9(0- g

< %+%:e whenever || x- p|<d where d =min(d,,d,)

which shows that the vector valued function f +g iscontinuousat x=p and
henceon X .

k
i) fxg=3 f>g

i=1
= f,0,+ f,0, + 30, +.... + fL g,
-» the function j and g ae continuous on X

\ their components f, and g, arecontinuouson X . Q

* Question
Suppose f isarea valued function defineon R which satisfies
Ll@grg[f(x+h)- f(x- h)] =0 xI R
Does this imply that the function f iscontinuouson R .
Solution
Ih|®rg[ f(x+h)- f(x-h)]=0 " xi R
P lim 1 Gce) = limf(x- )
p f(x+0) =f(x-0 " xI R
Alsoitisgiventhat f(x) = f(x+0) = f(x- 0)
It means f iscontinuouson XI R. a
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s Discontinuities

If x isapoint inthe domain of definition of the function f at which f isnot
continuous, we say that f isdiscontinuousat x or that f hasadiscontinuity at
X.

If the function f isdefined on an interval, the discontinuity is divided into two
types
1. Let f bedefinedon (a,b).If f isdiscontinuousat apoint x andif f(x+) and
f (x-) existthen f issaid to have a discontinuity of first kind or asimple

discontinuity at x.
2. Otherwise the discontinuity is said to be second kind.
For simple discontinuity
I. either f(x+)* f(x-) [f(X) isimmaterial]
i or f(x+)="f(x-) f(Xx a

< Example

. . _él , xisrational

) Define f(x)‘go , Xisirrational

The function f has discontinuity of second kind on every point x because
neither f(x+) nor f(x-) exists. a

éx , Xxisrationa
€0 , xisirrational
Then f iscontinuousat X =0 and has a discontinuity of the second kind at
every other point. a
éx+2 (-3<x<-2)
iii) Define f(x)=€&x-2 (-2<x<0)
Ex+2  (0<x<1)
The function has simple discontinuity at x =0 and it is continuous at every other
point of the interval (- 3,2) a

i) Define f(x)=

, X1 0

&L
iv) Define f(x)=€"% =0

&0
e
- neither f(0+) nor f(0-) exists, therefore the function f has discontinuity

of second kind.
f iscontinuous at every point except x=0. a
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“ Derivative of a function:
Let f be defined and real valued on [a,b]. For any point ce[a,b], form the
guotient

£(x)— f(c)
X—C
and define
£(c) = lim ) = 1)
X—C X—C

provided this limit exits.
We thus associate afunction f' with the function f , where domain of f' isthe

set of points at which the above limit exists.
The function f' isso defined is called the derivative of f .

(i) If ' isdefined at point X, we say that f is differentiable at x.
(i) f'(c) existsif and only if for areal number € >0, 3 area number 6 >0
such that

f(x)-f(c)

—f'(c)|<e Whenever |x—c|<§
X—C

(iii) If x—c=h thenwe have

£1(0) = lim f(c+h)—f(c)

h—0 h
(iv) f isdifferentiable at cif and only if ¢ is aremovable discontinuity of the
function go(x):—f ()= f(©)
X—C

< Example
(i) A function f :R —» R defined by
2sind - x#0
- front e
: X=0
This function is differentiable at x=0 because
_ f(x)-f@©) ,. x*sini-0
im————~ =|lim—2*—

x—0 X_O x—0 X_O
x’sinl
=1lim X =limxsini =0
x—0 X x—0
(i) Let f(X)=x" ; n>0 (nisinteger), xeR.
Then
. f(x)-f(c . X"=c"
||mM =lim——
X—C X—C X—>C X—C
_lim (X=C)(X" X" . +C"?x+c™h
X—C X—C
=lim (X"t +exX" +C"?x+c™h
X—C
=nc™*

impliesthat f is differentiable every whereand f'(x) = nx"™".
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% Theorem
Letf bedefined on [a,b], if f isdifferentiable at apoint xe[a,b], thenf is
continuous at x. (Differentiability implies continuity)

Proof
We know that
Itimwzf’(x) wheret=x and a<t<Db
—>X — X
Now

Itlrg( ft)-f(x)= l'm(WJ lim(t - x)

—X t—>Xx
= f'(x)-0
=0
= limf(t)=f(x).

Which show that f is continuous at x.

NOTE
(i) The converse of the above theorem does not hold.
: X if x>0
Consider f(x)=|x|= .
—X if x<O

f’(0) does not existsbut f (x) iscontinuousat x=0

(i) If fisdiscontinuous at ce D, then f’(c) does not exists.

e.g.
1 if x>0
f(x)= .
0 if x<0

is discontinuous at x= 0 therefore it is not differentiable at x=0.
(iii) f isdifferentiable at apoint cif and only if D, f(c) (right derivative) and
D_f(c) (left derivative) exists and equal.
i.e. D, f(c)=D_f(c)=Df(c)
< Example
Let f :R — R bedefined by

f (%) = NG if x>1
3 if x<1

then D, f(D)= lim ACiC]
e x-1

i f@ - f@ L @eh)?-1

h—0 1+h-1 h—0 h
2
LimAE 2L o) =2
h—0 h h—0
and
D f()= ”mw
P x-1
3_
:Iimf(l—h)—f(l) :”m(l—h) 1

h—0 1-h-1 h—0 —h

. 1-3h+3h°-h*-1
=lim

h—0 — h

=Ligg(3—3h+h2) =3
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SinceD, f()=D_f( = f'(1) doesnot exist even though f iscontinuous at
x=1. f'(x) exist for all other values of x.

< Theorem
Suppose f and g are defined on [a,b] and are differentiable at a point

xe[a,b], then f +g, fg and Al are differentiable at x and
g

) (F+9)(x)=1'(x)+g'(x)
(i) (fg)(x) = 1'(x)g(x) + F (x)g'(x)

(iii) (ij (X) = g(x)f’(x)z— F(x)9'(x)
g 9°(x)

The proof of this theorem can be get from any F.Sc or B.Sc text book.
NOTE

The derivative of any constant is zero.

Andif f isdefinedby f(x)=x then f'(x)=1

Andfor f(X)=x" then f'(x)=nx"" wheren ispositiveinteger, if n<0 we
have to restrict ourselvesto x=0.

Thus every polynomial P,(X) = a, + aX+a,X* +...cc..... +a, X" isdifferentiable
every where and so every rational function except at the point where denominator is
zero.

% Theorem (Chain Rule)

Suppose f iscontinuouson [a,b], f'(Xx) existsat some point xe[a,b]. A
function g isdefined on aninterval | which containstherangeof f,and g is
differentiable at the point f(x).

If ht)=g(f(t)); a<t<b

Then h isdifferentiableat x and h'(x)=g'( f(x))- f'(x).

Proof
Let y= f(X)
By the definition of the derivative we have
f(t)— f(x):(t—x)[f'(x)+u(t)] ............ (i)
and  g(s)-g(y)=(s-y)[g(WN+VI)] -.......... (i)

where te[a,b], sel andu(t) >0 ast—x and v(s) >0 as s— Y.
Let us suppose s= f(t) then
h(t)—h(x) =g( f(1)-g(f ()
=[f®-fM][g'()+w3)] by (ii)
=(t-X[ ') +u®][gM+v(e)] by ()
or if t=x

w =[£'() +u®)][g'(Y) + ()]

taking the limit as t — x we have
h'(x)=[f'(x)+0][g'(y)+0]
=g'(f(¥)-f'(¥ wy=1(x)
which is the required result.
It is known as chain rule.
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< Example
Let f bedefined by

.1
xsin— ; Xx=#0
f(X)= X <=0
0 ’ B
= f’(x):sinl—lcos1 where x = 0.
X X X

- at x=0, 1 is not defined.
X

. Applying the definition of the derivative we have

tgn}
f'(0) = Lrgw

— O t—0 t t—>0 t

which does not exit.
The derivative of the function f(x) does not exist at x=0 but it is continuous at

x=0 (i.e. it is not differentiable although it is continuous at x=0)
Same the case with absolute value function.

< Example
Let f bedefined by

sint ; xz0
f(X)= X <=0
0 : =
, .1 1
Wehave f (x):2x5|n——cos; where x= 0.
X
- a x=0, 1 is not defined.
X
. Applying the definition of the derivative we have
M:tgn} <t , (t=0)
t-0 t

Taking limitast — 0 weseethat f'(0)=0
Thus f isdifferentiable at points x but f’ isnot a continuous function, since

1 .
cos— doesnot tendto alimitas x — 0.
X

% Local Maximum
Let f beareal valued function defined on a metric space X , we say that f

has alocal maximum at apoint pe X if thereexist 6 >0 suchthat f(q)< f(p)

VvV ge X with d(p,q)<9d.
Local minimum is defined likewise.
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% Theorem
Let f bedefined on [a,b],if f hasalocal maximum at apoint xe[a,b] and
if f'(x) existthen f'(x)=0.
(The analogous for local minimum is of course also true)
Proof

Choose 6 such that
a<X—0<X<X+6<b

Now if Xx—0 <t< X then f(x)
fO-1(
t—x
Taking limitast — x we get
f'(X)>0 ............. (i) L RS
If X<t<Xx+6

Then
fO-1( _,
t—X
Again taking limit when t — x we get
f'(X)<0 oo, (ii)
Combining (i) and (ii) we have
f'(x)=0
% Generalized Mean Value Theorem
If f and g are continuous real valued functions on closed interval [a,b], then
thereisapoint xe(a,b) at which
[f(0)- T (a)]g'(x) =[a(b)- 9(@)] (X
The differentiability is not required at the end point.
Proof
Let
h(t) =[ f (b) - f (@)]a(t) -[a(b) - 9(a)] f (1) (a<t<b)
.+ hinvolves f and g therefore h is
i) Continuous on closeinterval [a,b].
i) Differentiable on open interval (a,b).
iii) and h(a) =h(b).
To prove the theorem we have to show that h'(x) =0 for some x € (a,b)

There are two cases to be discussed

(i) h isconstant function.
= h(x)=0 V xe(a,b)

(ii) If h isnot constant.
then h(t) > h(a) for some t € (a,b)
Let x bethe point intheinterval (a,b) at which h attain its maximum,
then h'(x)=0

Similarly,
if h(t)<h(a) forsome te(ab) then 3 apoint xe(ab) at whichthe
function h attain its minimum and since the derivative at alocal minimum is
zero thereforewe get h'(x) =0

Hence

W) =[f(0)-f(@)]g'(x)-[gb)-g@]f'(x)=0
This gives the desire resuilt.
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<+ Geometric Interpretation of M.V.T.
Consider aplane curve C represented by x= f(t), y=g(t) then theorem

states that thereisapoint S on C between two points P( f (a),g(a)) and
Q( f (b),g(b)) of C suchthat thetangent at S to the curve C is parallel to the
chord PQ.
% Lagrange’s M.V.T.
Let f be
1) continuouson [a,b]
i) differentiable on (a,b)
f)-f(a) _

then 3 apoint x e (a,b) such that

Proof
Let us design a new function
h(t):[f(b)— f(a)]t—(b—a)f(t) ,(@a<st<hb)
then clearly h(a) = h(b)
Since h(t) dependsupont and f (t) therefore it possess all the properties of f .
Now there are two cases
i) h isaconstant.
impliesthat h'(x)=0 VvV xe(a,b)
ii) h isnot aconstant, then
if h(t) >h(a) for some t € (a,b)
then 3 apoint xe (a,b) at which h attains its maximum
impliesthat h'(x)=0
and if h(t) < h(a)
then 3 apoint x e (a,b) at which h attain its minimum
impliesthat h'(x)=0
- h(t):[f(b)—f(a)]t—(b—a)f(t)
" h’(x):[f(b)— f(a)]—(b—a)f’(x)
Which gives
TO =@ _ f1(x)  asdesired.
b-a

% Theorem (Intermediate Value Theorem or Darboux,s Theorem)
Suppose f isareal differentiable function on some interval [a,b] and

suppose f'(a) < A < f'(b) then there exist apoint x e (a,b) suchthat f'(x)=A.

A similar result holdsif f'(a) > f'(b).
Proof

Put g(t)= f(t)-At

Then g'(t)=f'(t)—4

If t=a wehave

g'(a@="f'(a)-2
f'@-A<0 .. d'(a)<0
impliesthat g is monotonically decreasing at a.

f(X).

= 3 apoint t,  (a,b) suchthat g(a)> g(t,). a t, b

Similarly,
g'(b)=f'(b)-1
f'b)—A>0 .. d'(b)>0
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impliesthat g is monotonically increasing at b.
= J apoint t, € (a,b) suchthat g(t,) < g(b)
= thefunction attain its minimum on (a,b) at apoint x (say)
suchthat g'(xX)=0 = f'(x)—1=0
= f'(X)=A.
Note
We know that afunction f may have aderivative f' which exist at every point
but is discontinuous at some point however not every function is aderivative. In
particular derivatives which exist at every point on the interval have one important
property in common with function which are continuous on an interval is that
intermediate value are assumed.
The above theorem relates to this fact.
 Question
If aand c arereal numbers, c>0 and f isdefinedon [-11] by
£(%) :{xasinxc ; x#0
0 ; x=0
then discuss the differentiability as well as continuity at x=0.
Solution
£/(x) = lim+ Q=1
t>x  t—X
. tPsint™ - x*snx®
=lim
tox t—x
t?sint™
t
sint™

= £'(0)=lim

=limt*?!
t—0

If a-1>0, then limt*'sint®=0 = f'(0)=0 when a>0.

t—0
If a-1<0 i.e. when a<l wehave t*'=t

And limt®tsint =limt™sint™®
t—0 t—0

Which does not exist.
If a-1=0, weget limsint™®

t—o

Which also does not exist.
Hence f'(0) existsif andonlyif a>1.

Also limx®sinx™® exist and zero when a> 0, which equals the actual value of

x—0

 where b>0

the function f(x) at zero.
Hence the function is continuous at x=0.

s Question

Let f bedefined for all real x and suppose that

| f()-f(y)|<(x-y)* V rea x & y.Provethat f isconstant.
Solution

Since | F()— f(y)|<(x=y)?

Therefore

—(x=y)* < () - f(y) < (x-y)’
Dividing throughout by x-—y, we get
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—(x—y)sws(x—y) when x>y
and
—(x—y)zwz(x—y) when x<y
Taking limitas x— y, we get
0< f'(y)<0 L
Ozf’(y)zo} = T)=0

which shows that function is constant.
% Question
If f'(x)>0in (a,b) thenprovethat f isstrictly increasingin (a,b) andlet g
be its inverse function, prove that the function g isdifferentiable and that
1
"(f(x))=—— ; a<x<b
g'(f(¥)=- )
Solution
Let ye(f(a), f(b)
= y=1f(x) forsome xe(a,b)
z—Yy Z_y
f —g(f
_Jim g(f () = AL 0) =0 (T (9)
XX FO)— (X

£1((x,))- f(f()

= |lim
Xg—>X f(x,)— f(x)
= Jim 22X _ - -
_XZ—>Xf(XZ)— f(X) B lim f(Xz)_ f(X) - f’(X)
%X X, — X

s Question
Suppose f isdefined and differentiable for every x>0 and f'(x) >0 as
X—+o0wo put g(x)=f(x+1) - f(x).Provethat g(x) >0 as Xx—>+x.
Solution
Since f isdefined and differentiable for x> 0 therefore we can apply the
Lagrange’'sM.V. T. to have
f(x+D)-f(X)=(x+1-x)f'(x) where x<Xx.
- f'(X)>0 as Xx—>w
w f(x) >0 as x—>w
= f(x+)-f(X)>0 as x>0
= g(X)>0 as x—0
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* Question (L Hospital Rule)
Suppose f'(x), g'(x) exist, g'(X)=0 and f(x)=g(x)=0.

Prove that lim- 2 = F'(®)
=xg(t)  g'(x)

Proof
imt O i H0=0 _; FO=109 o () =g(x) =0
x gt) txgt)-0 tx gt)-(x)
i fO- 00 tox
tox t—X g(t) - (x)
(-1, 1

ST x M en-®
t—X
R IOERICN 1 TP SR ¢
=i t—X ”mg(t)—(X)_f(X) g(x) g(x)
tox =X

Q.E.D.
s Question
Suppose f isdefined inthe neighborhood of apoint x and f"(x) exists.
f(x+h)+ f(x=h)-2f(x)

Show that lim > = f"(X)
h—0 h
Solution
By use of Lagrange’s Mean Vaue Theorem
f(x+h)+ f(x)=hf'(x) where x<x <x+h ............... (i)
and
—[f(x=h)—f(X)]=hf'(Xx,) where X-h<X, <X ............... (i)

Subtract (ii) from (i) to get
f(x+h)+ f(x—=h)-2f(x)=h[f'(x)— f'(x,)]

N f(x+h)+ f(x—h)—2f(x): f'(x)— f'(x)

h? h

“ X%—-%—>0 a h—>0
therefore

limd (X0 + f(>§—h)—2f(X): lim 1) = T°0%)

h—0 h XX X =X,

— f”(Xz)
* Question
If co+&+&+ ......... Gy & g
2 3 n n+l

Where ¢,,C,C,,..cu.nn, c, arereal constants.

Provethat ¢, +CX+CX +......... +¢,X"'=0 hasat least one real root between 0
and 1.
Solution

Suppose f(x):cox+%x2+ .......... +—n_

Then f(0)=0 and f(l):co+cl+c—§+ .......... L5 g

2
= f(0)=f1=0
- f(x) isapolynomial therefore we have
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) It is continuous on [0,1]
i)  Itisdifferentiable on (0,2)
i) And f(a)=0= f(b)
— the function f haslocal maximum or alocal minimum at some point x<(0,1)
= f'(X)=¢, +CX+CX + e, +¢,x"=0 for some xe(0,1)
= the given equation has real root between O and 1.

< Riemann Differentiation of Vector valued function
If ()= f,(t)+i f,(t)

F(t) = 1) +i 1,0
where f,(t) and f,(t) arethereal and imaginary part of f(t).

The Rule of differentiation of real valued functions are valid in case of vector valued
function but the situation changes in the case of Mean Value Theorem.

< Example
Take f(x)=€*=cosx+isinx in (0,2r).
Then f(2r)=cos2z +isin2r =1
f (0) = cos(0) +isin(0) =1
= f(2r)-f(0)=0 but f'(x)=i€"
_, fen-1©
2r -0
= the M.V.T. fails.

In case of vector valued functions, the M.V.T. is not of the form as in the case of
real valued function.

=€ (thereisno such x)

% Theorem

Let f beacontinuous mapping of the interval [a,b] into aspace R* and f be
differentiablein (a,b) then 3 xe(ab) suchthat | f (b)- f (a)| < (b-a)| f'(¥)|.
Proof

Put 2= f (b) - £ ()

Andsuppose o¢(t)=z-f(t) (a<t<b)

o(t) sodefined isareal valued function and it possess the propertiesof f (t).

= M.V.T.isapplicableto ¢(t).

Wehave ¢(b)-¢(a)=(b-a)e'(x)

i.e. p(b)-¢p(@)=(b-a)z-f'(x) forsome xe(ab) ........... (i)
Also o(b)=z-f(b) and ¢(a)=z-f(a)
= o) -p@=2z-(f0)- (@) ccocovenn. (ii)

from (i) and (ii)
z-z=(b-a)z- f'(x)

<(b-2)|z|| ()|
= |2[ <(b-a)|z| f'(x)|
= | z|<(b-a)| f'(¥)|
e |fb)-f@|<b-a)|f'x)| =~ z=fO)-f@®
which is the required result.
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s Question
If f(x):\xﬂ,thencompute f'(x), f"(x) and f"(x), and show that f"(0) does

not exist.
Solution
x if x>0
f(x)=|x%=
X ‘ ‘ {—x3 if x<O
3_
Now D.f(0)= lim-+X=TO_ i X=0_imx -0
x—0+0 X—0 x>0+0 X —( x—0+0
—_— 3_
& Df0)=lim-XN=TO_ i, X=0_ i x)=0
x—>0-0 X—0 x->0-0 xX—0 x—>0-0

D, f(X)=D_f(x)
f'(x) existsat x=0 & f'(0)=0.
Now if x=0 and x>0 then
f(x)=x> = f'(X)=3x
andif x=0 and x<O then
f(X)=—xX = f'(X)=-3%°

3x* if x>0
e f'(x)=5 O if x=0
—3x*> If x<0
i _f! 2
Now D, f/(0)= lim ~ =110 _ ;) 3x°=0
x—0+0 X—0 x-0+0 X —(
= lim 3x=0
x—0+0
i N _ 2
AndNow D f'(0) = lim X =) _ jj, =3x' -0
x—0-0 X—0 x>0-0 xX—0
— lim (=3x) =0

X—0+0
D, f'(x)=D_f'(x)
f"(x) existsat x=0 & f"(0)=0.
Now if x=0 and x>0 then
f'(xX)=3x* = f"(X)=6x
andif x=0 and x<O then
f'(x)=-3x> = f"(x)=-6x

6x if x>0
ie f'(x)=4 0 if x=0
-6x if x<0
Now D f"(0)= lim =10 _ ., x=0_g
x—0+0 X—0 x>0+0 X —(
And D f'(0)= lim =10 _; =6x=0_ 4
x—0-0 X—0 x>0-0 x—0

D,f"(0)=D_f"(0)
f"(0) doest not exist.
But f"(0) existif x=0,andequalto 6 if x>0 andequalto —6 if x<O.

EEIOLA
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< Introduction

There is the basic difference between the calculus of functions of one variable and
the calculus of functions of two variables. But there is a slight difference between the
calculus of two variable and the calculus of functions of three, four or of many
variables. Therefore we shall emphasise mainly on the study of functions of two
variables.

< Function of two variables
If to each point (X,y) of acertain part of xy—plane, there is assigned a real number
z, then z isknown to be a function of two variable x and y.
eg. z=X-Vy°,z=X"+Yy°, Z=Xy €tc.
< Neighbourhood (nhood)
A neighbourhood of radius 6 of apoint (xo, yO) of the xy —plane is the set of
points which lies inside a circle with centre at (,, Y, ) and hasradius § .
N5 (Xo’ YO) :(X_ X0)2 +(y_ YO)Z <6°
Similarly, a nhood of aradius 6 of a point (xo,yo,zo) of a space is a sphere with
centre at (X,, Yo, %) and radius & .
N (%0 Yo%) = (X=%) +(y— o) +(2-2) <8

This definition can be extended to the definition of a nhood of a point of a space of
any dimension.

< Open Set
A set is known to be open set if each point (,, Y,) of the set has a nhood which
totally liesinside the set.

s Domain
A set D which is not empty and open is known to be a domain, if any two points
of the set can be joined by a broken line which lies completely within D .

“ Region
A domain D isknownto be aregion if some or all of the boundary points are
contained in D..

% Closed Region
A region is known to be closed if it contains all the boundary points.

eg. i) xX*+y°<1 (Domain) i) xy<1l  (Domain)
x*+y*=1 (Boundary) xy=2  (Boundary)
x*+y*<1 (Closed region) xy<1 (Closed Region)

% Limit & Continuity
Let z= f(x,y) beafunction of two variables defined in adomain D . Suppose
thereisapoint (X,,Y,) € D or isaboundary point then
lim f(x,y)=c

X=X
Y=Y

It means that given € >0 3 a 6 >0 such that
| f(xy)—c|<e whenever |(x,y)~ (%, ¥o)| <8 ¥ (% y)eN;(%, Vo)
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If limit of a function is equal to actual value of functionthen f issaidto be
continuous at the point (X,, Y, )
lim £ (x,) = f (%, %)
Y=Y

If f iscontinuous at every point of D, then f issaid to be continuouson D .

% Theorem
Let f(x,y) & g(xY) bedefinedinadomain D and suppose that
lim f(x,y)=u, & Ilimg(x,y)=Vv,
e ",
a) then (i) lim[f(xy)+9(xy)]=u+Vv
",
(i) Nim[f(xy)-g(xy)]=uy
Y=Y
iy lim2 Y W
e g(X%y) W
b) If f(x,y) & g(xYy) aredefinedin D, then
Imiy)=106%) & limg(xy)=09(x,Yo)
Y=Y Y=Y
l.e. T(x,Y), g(x,y) arecontinuous at (xO,yO) then so are the functions

f(x,y)+g(xy), f(x,y)g(xy) ad M provided g(x,y)=0.
g(x.y)

Proof

a () -~ Ilimf(xy)=u , Ilimg(xy) =V
X=> X—>X%g
ya;(; Y=>Yo

. given %>O i a 6,,0,>0 suchthat
&
[fxy)-w[<Z ¥ (%y)eN; (6, %)

& Ig(x,y)—v1|<% v (% y) e Ny, (%, o)

then |[f (% )+ 906 V)] - +w]|=|[ f O y) -] +[g0x y) - vi]|
S| f(X1y)_u1|+|g(X1y)_Vl|

<§+§ v (%) e Ny (%, Yo)

where § =min(§,,5,)
Which show that
1@0[ fO,yY)+a(xy)]=u+v

(ii) | f(x,y)-9(xYy) _U1V1| :| f(Xy) - g(xy)—ug(x,y) +ug(xy) _u1V1|
=|ox [ 1Y) -u]+ufg(xy) -]
<| g V6 Y) —w]|+|u[gxy)—v]|

8—

<|g(x,y>|§+u12 =gV (xYy)eN; (% Yo)
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= lim f(xy)-9(X,y)=uv
X=Xy

Y=Y

vari abl es

lii) Weprovethat lim ! :i
% g(X,y) v
Y=Y
‘ 1 _izvl_g(XsY)
axy) v v, 9(X,Y)
_lax ) v £
villax | wllaxy)]

%

o,

< <
|V1||g(XsY)_V1+V1| |V1|(|g(XsY)_V1|+|V1|)

%

&
2
< =& v (X1 y) € N52 (XO’ yO)
|V1|(%+|V1|)
1

= lim =—
% g(Xy) v
Y=Y
= limf(xy)=u & limg(xy)=v
X=Xy X—>Xg

Y=o Y=Y

By (ii) of theorem

lim f(x,y)- _imt Y)W
% g(xy) =eg(xy) v

Y=Y

b) Since it is given that the limiting values are the same as the actual values of the

functions f(x,y)+g(xy) , f(X¥y)-9(x,y) ad ;E)):yz at the point (%, Y,)

therefore these function are continuous on (X,, Y,) -

Note
It isto be noted that there is a difference between ( I)irr(l ) f(x,y) and limf(x,y)
X,y)—(a, X—a
y—b
ie Iimf(x,y):lirrg(limf(x,y)) or Iimf(x,y):lim(lirrgf(x,y))
X—a y—b \ x—>a X—a Xx—a\ y—
y—b y—b

Obviously in the two cases limits are taken first w.r.t one variable and then w.r.t
other variable. These limits are called the repeated limits. Since these are taken along
the special path, therefore repeated limits are the special cases of limits.

( |)iIT(l ) f(x,y) existsif and only if limiting vales are not depend upon any path
X,y)—>(a,

along which (x,y) — (a,b) .
< Example
Consider f:R*—>R givenby
X2y2

— , (X,y)#(0,0
fFy)=1x*+y* (xy)#(0.0)
0 , (x,y)=(0,0)
Now Iirgf(x,y):lirr(}f(x,y):o
X—> y—>
y—0 x—0

However aong the straight line y=mx, we have
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4

lim f(xy)= Z
(x,y)—>(0,0) 1+m
which is different for different values of m. Hence( I)i rr(lO , f (X,y) does not exist.
X, y)—>(U,
< Example
Consider f :R*— R given by
X*COSX — y*Cosy
, (X, y)#0
(=1 X1y Gey)
0 , (x,y)=0
then Iim[limf(x,y)}:limcosx:l
x—0| y—0 x—0
and Iim[limf(x,y)}:lim(—cosy):—l
y—0| x>0 y—0
= limf (x,y) doesnot exist.
s
< Example
Consider f :R* - R given by
sin(x® + y°
oy o 0TI = 0)
0 , (xy)=(0,0)
Use ﬂxx<l to get
| 009 -0 <[x+y[<[x[+]y|
Thus | f(x,y)-0||<e whenever |x|<% , |y|<%
Take 5 =< ,
2

It follows that for given ¢ >0, wecanfind 6 >0 such that
| f(x,y)— f(0,0)|<& whenever J(x=0+(y-0)° <5
l.e. V (X, Y) e Ny(0,0)
Limit of the function at (0,0) is equal to actual value of function at (0,0).
Hence f iscontinuousat (0,0).

% Partial Derivative
Let z= f(X,Yy) bedefined inadomain D of xy-planeand take (X,,Y,) €D,

then f(Xx,y,) isafunction of x aoneand its derivative may exist. If it exists then its
value at (X,,Y,) is known to be the partial derivative of f(x,y) at (X,,Y,) andis

denoted as a or oz
OX (%.¥0) OX (%.%)
The other notationsare z, , f, , f,.
ﬂ = lim f(X'*'AXsyo)_f(X’yo)
OX () x>0 AX

We can define Z—f in the same manner.
y
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< Geometrical Interpretation
z= f(X,y) represents asurfacein space. y=y, isaplane. z= (x, yO) is the curve

which ariseswhen y =y, cutsthesurface z= f(x,y). Thus 6_1; denotes the
(%:Yo)
slope of tangent to thecurve z= f(X,y,) a xX=X,. Smilarly a denotes the

(%:Yo)
slope of the tangent to thecurve z= f(x,,y) a y=Y,.

If the point (X, Y,) varies, then f, & f arethemselvesfunctionsof x & y.
In the case of functions of more than three variables it is necessary to indicate the

variable held constant during the process of differentiation as a suffix to avoid the

confusion.
. — , 0z 0z
For example, z= f (X, y,u,V), then partial derivatives are written as (a—) : (a—]
uj, \oy),
and so on. We take an example: x=u+v, y=u-Vv

(2) 0 (2) (2] -1 [2) -
ou ), ov ), ou ), ov ),
Also x+y=2u and x=2u-y, then

(%j =2 & % =-1 and so on.
ou ), oy ),

< Total Differential
In the case of partial derivative we have considered increments AX & Ay
separately.
Now take (x,y) & (X+ Ax,y+ Ay) two pointsin the domain of definition of z
thenif (z+ Az) correspond to the point (X+ AXx, y+ Ay) we have
Az=T(X+AX, y+Ay) - (X, Y)
If theincrement Az can be expressed as
AZ = aAX+ DAY + g,AX + g,Ay
and ¢,e, >0 as Ax,Ay — 0, then aAx+ bAy is known to be the total differential
of z denoted by dz, and we write
AZ=dz+ g AX+¢g,Ay
In case when z is differentiable function dz gives very close approximation of Az.

% Theorem
If z= f(x,y) hasatotal differential at apoint (x,y) € D, then
a= gz & b= oz .
OX oy
Proof

We have
Az=dz+gAX+¢g,Ay where g,6, >0 as AX,Ay -0

Let us supposethat Ay=0

then AZ = aAX + g,AX
Taking thelimitas Ax—0
0z
—=a
OX

Similarly we can get Q:b_
oy



6 Chap 5 — Function of several variables

% Theorem (Fundamental Lemma)
If z= f(X,y) hasacontinuous first order partial derivativein D then z has total
differential dz:gqutgAy at every point (x,y)eD.
OX oy
Proof
Take apoint (x,y) asafixed point inthe domain D . Suppose x changes alone.
Then we have
Az=T(X+AX,y)- f(XY)
= f, (X, Y)AX (x<x <X+Ax) (Itisby M. V. Theorem)
f, is continuous
e =f0y)-f(Xy)>0 a Ax—>0
= f(X+AXxYy)-f(Xy)=f (X, Y)AX+gAX .......... (i)
Now if both X,y changes, we obtain achange Az in z as
Az= T (X+AX, y+Ay) - (X, Y)
=[f(x+A%Yy)— f (% V) ]+[ f (X+AX, y+Ay) - f (x+AX, Y)]
that is we have expressed Az as the sum of terms representing the effect of a
change in x alone and subsequent change in y alone.
Now f(X+AXy+Ay)—f(x+Axy)=f (X+AXy)Ay (y<y, <y+Ay)
(It is by use of M.V. theorem)
- f, isgiven to be continuous
g = f X+ A% YY) - (X y) >0 as Ax,Ay—0
= f(X+AX Yy +Ay) - f(X+AX Y) = f (X, Y)AY + £,AY ........... (i)
Using (i) & (ii), we have
Az= 1, (X% Y)AX+ f (X Y)Ay + e AX+e,Ay  where g6, — 0 as AX,Ay — 0
which shows that the total differential dz of z exist & is given by
dz=f (X, Y)AX+ f (X, Y)AY ... (iii)

Note
(a) For reasons to be explained later; Ax & Ay can bereplaced by dx & dy in (iii).

Thuswe have dz= %dx + gdy
OX oy
Which is the customary way of writing the differential. The preceding analysis
extends at once to functions of three or more variables. For example, if

w= f(x,y,u,v), then dW:a—de+a—Wdy+a—Wdu +a—de.
OX oy ou ov
(b) Inthe following discussion, the function and their Ist order partial derivatives

will be considered to be continuous in their respective domain of definition.

Example
If z=x*—y?, then dz = 2xdx— 2ydy.

Example:

If w=2Y, then dw:zdx+§dy—ﬁ2dz
z

z X z
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PROBLEMS
1) Evaluate 22 and 2 if
OX oy
2 2 _
a) 7= 2X 5 Ans: %:y;xz , g:AZ
X“+y OX (x2+y2) OX (x2+y2)
. 0z . 0z
b) z=xsinxy Ans. — =sIN Xy + XyCOSXy, — = X° COSXy
OX oy
2 2 X+2y
0 X+xy’-xz+2°-2=0 Ang 23Xty —2e oz e y

Tox x* —37° , 6y_ ey _ y2

2) Evaluate the indicated partial derivatives:

a) (@) and(@] if u=x*-y? v=x+2y
oX oy ),

b) (ﬁ) and(@j if u=x-2y,v=u+2y Ans (ﬁ) :1,(@j 1
ou ), ov ), ou ), o), 2

3) Find the differentials of the following functions

8 z=2 Ans: ydx;zxdy
y y
b) z=logyx*+Yy* Ans: M
X2 4y
c) z= tan‘l(zj Ans: M
X X2 +y
d) u= 1 Ans —(xdx + ydy + zdz)

X+ Y2+ 2 ¢ +y2 +2%) 2
4)If z=x*+2xy, find Az intermsof Ax, Ay for x=1, y=1.
Ans: Az:4Ax+2Ay+E+2AxAy , dz=4AX+2Ay , dz=4Ax+2Ay.
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< Derivative and Differential of functions of functions
In the following discussion, the function and their first order partial derivatives
will be considered to be continuous in their respective domain of definitions.

% Theorem (Chain Rule I)
Let z=f(x,y), x=9(t) & y=h(t) bedefinedinadomain D, then
dz g dx oz dy
dt ox dt ay dt
Proof
- z=1(Xx,y), x=9(t), y=h(t) aredefined in D, are continuous and have Ist

order partial derivatives.
. By using the fundamental lemma we have
Az :a—Ax+a—Ay+gle+g AY ool (1)
OX oy
where ¢,,6, >0 as Ax,Ay -0
Also Ax=g(t+ At) — g(t)
Ay = h(t + At) — h(t)
Dividing (i) by At, we get
Az 0z AX 0z Ay AX Ay
—+——+g—+E&,—
At ox At oy At At At
Take the limit as At —» 0, we get

Gz_02 &, Z Y s desired.

dt ox dt oy dt
% Theorem (Chain Rule II)
Let z=f(X,y), x=9g(u,v), y=h(u,v) bedefinedinadomainD and have
continuous first order partial derivativein D, then
0z_oz ox 0z oy
ou oOX ou oy ou
0z_oz ox 0z oy
oV OX oV oy oV
Proof
* the functions are continuous having first order partial derivativesin D,

therefore by the fundamental lemma, we have
Az :a—Ax+a—Ay+gle+g AY ool (1)
OX oy
where Ax=g(u+Au,v)-g(u,v), Ay=h(u+ Au,v)-h(u,v)
and ¢,6,—>0as AX,Ay—>0 i.e. Au—0
Dividing (i) by Au throughout to have
Az oz Ax 0z Ay Ay
+81 +82
AU X Au ay Au AU Au
Taking the limit as Au— 0 i.e. AX,Ay — 0, we have
0z_oz x 0z oy
du X ou oy au
Similarly if Ax=g(u,v+Av)-g(u,v)
Ay = h(u,v+ Av) — h(u,v)
Then dividing (i) by Av throughout, we obtain
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Az oz Ax oz Ay 8Ax+ Ay

—_— 8 —_—

AV X AV oy AV AV ZAv
Taking the limit as Av— 0, we have
0z 0z 0X 0z oy

N X ov ay oV

s Note
We have proved inchainrulel, that if z= f(x,y) , x=9g(t) , y=h(t), then

dz_oz dx oz dy

— et — = (i)
dt ox ot oy dt

The three functions of t considered here: x=g(t) , y=h(t) , z=f(g(t),h(t))

have differentials dx= %At , dy= ﬂAt , dz= ﬁAt
dt dt dt

From (i) we conclude that

L ——(dXAtj az(dymj
dt dt ) oyl dt
0Z

0z .
dz——dx+—d ............ i
= x>t oy y (i)

Similarly, dx:%Au %Av
ou ov
QAU—FQAV
ou ov

dz= gAu +§Av
ou oV

are the corresponding differentialswhen z= f(x,y), x=9(u,v), y=h(u,v)

= e (@g oz ay] u{gg oz ay]

dy =

OoX ou ay ou OX oV ay oV
:ﬁ(aXA + X v+ j (@Au +@Avj

ox\ ou ov oy\ ou ov
:de+§dy

OX oy

which is again (ii)
The generalization of this permits to conclude that:
The differential formula

dzzng'F gdyqtgdt + e
OX oy ot
which holdswhen z= f (X, y,t,....) and dx=Ax, dy=Ay, dt =At,......, remain the
true when X, y,t,....., and hence z, are all functions of other independent variables
and dx,dy,dt,.....,dz are the corresponding differentials.

As a conseguence we can conclude:

Any equation in differentials which is correct for one choice of independent
variables remains true for any other choice. Another way of saying this isthat any
equation in differentials treats all variables on an equal basis.

Thus, if dz=2dx—3dy at agiven point, then dx:%dz+gdy isthe

corresponding differentials of x intermsof y and z.
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< Example
2 2
x“—1 then dz= 2xydx—(2x —1Ddy
y y
0z 2x 0z 1-x°
Hence —=— , —=——
ox y oy oy
< Example
If r?=x°+y?, then rdr = xdx + ydy

and (ﬂj :E , ﬂ :X , (%j :L , etc.
ox), r oy) r or), X
< Example

If z= tan‘l(zj (x=0), then

X X° +y

If z=

X

and hence
@y o x
X Xe+y: oy XP+y?
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< Implicit Function
If F(x,Yy,2) isagivenfunctionof X,y & z, thenthe equation F(X,y,z)=0 isa
relation which may describe one or several functions z of x & .

Thusif x°+y?+2z°-1=0, then

Z=41-X—y* o z=—1-X*-V*
Where both functions being defined for x* + y* <1. Either function is said to be
implicitly defined by the equation x*+ y*+ z*-1=0.
Similarly, an equation F (X, Y, z,w) =0 may define one or more implicit functions
w of X,y,z. If two such equations are given,
F(x,y,Zzw)=0 , G(x,y,zw)=0,
It isin general possible (at least in theory) to reduce the equations by elimination to
the form
w="f(xy) . z=9(xy)
I.e. to obtain two functions of two variables. In general, if m equationsin n
unknown are given (m<n), it is possible to solve for m of the variables in terms of

the remaining n—m variables; the number of dependent variables equals the number
of equations

< Example
If 3x+2y+z+2w=0
2Xx+3y—-z-w=0
then w=f(X,y)=-5x-5y & z=9g(x,y)=7x+8y

< Example

Suppose that the functions w= f (X,y) & z=g(x,y) areimplicitly defined by
2x° +y*+ 72— 2w=0
X*+y*+22°-8+2zw=0

Then taking the differentials, we obtain
Axdx+ 2ydy + 2zdz—wdz - zdw=0 ......... (i)
wdz + zdw+ 2xdx + 2ydy + 4zdz=0 ......... (i)

Eliminate dw between (i) and (ii) to have
6xdXx + 4ydy + 6zdz=0

= dz:—zdx—ﬂdy

z 3X
0z X oz 2y
- — = —— , —_—=——
OX z oy 3z
Eliminating of dz from (i) and (ii) gives
6x(2z+w)dx +4y(z+w)dy - 6z°dw = 0

2 2
= dw = a Z2+W)dx+ y(Z;Lw)dy
z 3z
OW _ X(2X+ W) ow _2y(z+w)

2 2

OX X G, z
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< Examples
Suppose that the functions w= f(x,y) & z=g(X,y) areimplicitly define by
F(x,y,zw)=0 and G(X,Y,z)=0, then
Fdx+Fdy+F,dz+F,dwv=0
and G,dx+G,dy+G,dz+G,dw=0
= F,dz+F,dw= —[ F.dx + Fydy]
and G,dz+G,dw=— [Gxdx + Gydy}
Then by crammer rule, we have

Fdx+Fdy F, F F, F, K
G,dx+G,dy G, G, G, G, G,
dz= F, F, “Te £|%TE £V
G, G, G, G, G, G,
F. F, F, F,
oz G, G, g___Gy G,
OX F, F,| = oy F, F,
G, G, G, G,
o(F,G) o(F,G)
0z o(X,w 0z o(y,w . o(F,G
= &:— —a((F,G)) : a_y:_—a((lz/,G)) provided a((z,w)) #0
o(z,w) o(z,w)

Similarly, we have
G, Gax+Gdy
F, F

z w

G, G,

F, Fdx+Fdy ‘

dw=—

and we can find a—W and a—W in the same manner.
OX oy

% Particular Cases
1) One equation in 2 unknowns i.e. F(x,y)=0
= Fdx+Fdy=0
&y__K (Fy # O)
ax F
I1) One equation in 3 unknowns i.e. F(X,y,2)=0
Fdx+Fdy+F,dz=0
F
z_ ka2 R oo
OX F, oy F,
lii) 2 equationsin 3 unknown
F(xy,2=0 , G(xY,2=0
o(F,G) o(F,G)
oz__dyx)  0z__owy)

ox O(F.G) ' gy O(F.G)
a(y.2) o(z,w)
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< Example
Find the partial derivativesw.r.t x & y, when
U+2v—x+y*=0

2u—-v—-2xy=0
Solution
Take the differentials
du+ 2dv—2xdx+2ydy=0 ............ (i)
2du—dv—-2xdy—2ydx=0 ............. (i)

Eliminating dv between (i) and (ii), we have
5du— (2x+4y)dx+ (2y—4x)dy =0

= du :%(2x+4y)dx—%(2y—4x)dy

ou 1 ou 1
= —=—(2x+4 & —=—=(2y-4x
OX 5( y) oy 5( Y )
Eliminating du between (i) and (ii), we get

5dv —(4x—2y)dx+(4y+2x)dy =0
= dv:%(4x— 2y)dx—%(4y+ 2x)dy

ov 1 ov 1
= —=—(4x-2y) & —=—-—(4y+2X
OX 5( y) oy 5( Y )
s Question
Give that
2X+y—-3z-2u=0
& X+2y+z+u=0

o (5).(3)- (). @)

Solution
Take the differentials
2dx+dy—3dz—-2du=0 ............ (i)
dx+2dy+dz+du=0 ............... (i)
Eliminating du between (i) and (ii), we have
4dx+5dy —dz=0 .......... (iii)

= dx:—§dy+1dz
4 4

OX 5
= | = | =—
(@/l 4

From (iii), we have
5dy = dz— 4dx

= dyzldz—ﬂdx
5 5

- (2]
0z), 5

Eliminating dz between (i) & (ii), we get
5dx+7dy+du=0

13
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Now eliminating dy between (i) & (ii), we get
—3dx—-5dz-3du=0

= dz:—gdx—gdu

5 5

s Question

(azj 3
= | —| =—=
ou), 5
Given that

X+ Y +Z U V=1 ..., (i)
XY+ Z U+ =2 (i)
a) Find du & dv interms of dx,dy & dz at the point
x=1,y=1,z=2,u=3 & v=2.

OX a_y
¢) Find approximately the valuesof u & v for x=1.1, y=12, z=1.8

Solutions
Differential gives

b) Find (@) : (a\/] at the point given above.
(y,2) (x,2)

2xdx + 2ydy + 2zdz—2udu + 2vdv=0 ......... (iii)
2xdx — 2ydy + 2zdz+ 2udu + 2vdv=0 ......... (iv)
a) Putting x=1, y=1, z=2,u=3 & v=2 in(iii) & (iv), we obtain
2dx+ 2dy+ 4dz—6du+4dv=0 ............ (V)
& 2dx—2dy+4dz+6du+8dv=0 ............ (vi)
Adding gives

12dv = —(4dx + 8dz)
= dv:—%(dx+0-dy+2dz)
Similarly eliminating dv between (v) and (vi), we get

du= é(dx+ 3dy + 2dz)

b) v du= %(dx+ 3dy + 2dz)

. (iuj 1
S \ox),, 9

& - dv= —%(dx+ 0-dy + 2dz)
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s Question
Find the transformation of x=rcosf, y=rsinf from rectangular to polar
coordinates. Verify the relations
a) dx = cosfdr —rsin6do
dy =sinfdr + r cosfdo
b) dr = cosfdx + sinfdy

do = ——S”:G dx+_corst9 dy

C) (%j —cosf (Q) _sech or.0) 1
or Jo or )y o(xy) r

Solutions

Giventhat x=rcosf® & y=rsnf

a) Differential gives
dx=cosfdr —rsinfdeo .......... (i)
dy=sinfdr +rcosodo .......... (i)

b) Multiplying (i) by cosf & (ii) by snf and adding, we get
dr = cosfdx + sinfdy

Now multiply (i) by sn@ & (ii) by cosf and subtract to obtain

siné N cos6 dy

do =- dx
r r

c) Given x=r cosO

= (%j = Cos0O
or J,

We have already shown that dr = cosOdx +sinfdy
dr

Which can be written as dx=—— — tan0dy
cosf
- (3]
or y

OX OX

o A0 cosf® -rsiné
o(xy) _|or 00| _ _ =rcos’f +rsin0 =r
o(r,0) |oy oy sin@ rcosf

or 00

T A e sng
or,0) |ox oy| _ CO-SQ Smg —1c0320+lsin20 1
oy |20 20| T|-SE SE| T

oX oy ' '

s Question
Giventhat x°—y’cosuv+z>=0
X+ y*—sinuv+2z°=2
and xy-sinucosv+z=0
Find (ﬁ) : (%j a x=1, y=1, u:z, v=0, z=0
ou), \ov), 2

Solution
Differential gives
2xdx— 2ycosuvdy + y*sinuv- udv + y*sinuv-vdu + 2zdz=0 ....... (i)
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2xdx+ 2ydy — cosuv-udv —cosuv-vdu + 4zdz=0 ......... (i)
& xdy+ ydx—cosu-cosvdu+sinu-sinvdv+dz=0 ......... (iii)
At the given point, these equations reduce to
20x—2dy=0 ........cennnn. (iv)
20X + 2dy—%dv =0 o, (v)
& dx+dy+dz=0 ............... (vi)
Adding (iv) & (v), we have
4dx—Zdv=0
2
= dx=2dv+0-du = (%j =0, (%j _I
8 ou ), o), 8

s Question

Find (@) if X’-y*+u*+2v°=1
ox ),
X+ Yy —ut-v =2
Solution
Taking the differentials, we have
2xdx—2ydy +2udu+4vdv=0
2xdx+2ydy —2udu—2vdv=0
Eliminating dv, we get
6xdx+2ydy—-2udu=0

= du :%dX'FXdy
u u

( ou j 3x
— | =] =22
ox), u
s Question
Given the transformation
X=U—-2v
y=2Uu+V
a) Write the equations of the inverse transformation
b) Evaluate the Jacobian of the transformation and that of the inverse
transformation.
Solution
a) From the equations, we have

u—1x+gy
5 5

v——gx+1y
5 5

which are the equations of the inverse transformation.
OX OX
o(xy) _|ou v
ouy) |oy oy
ou ov

b) Jacobian of the given transformation =

|1 -2
12 1
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u
o(u,v) |ox 0oy
oxy) |ov v
oxX oy

Jacobian of the inverse transformation =

gl 3alN
Ul

* Question

17

Given the transformation x= f (u,v), y=g(u,v) with Jacobian J = o(x.y) , Show

o(u,v)
that for the inverse transformation one has
u_loy ou_ 1ox ov_ 1oy ou_1ox
ox Jov oy Jov  ox  Jou ' oy Jéu
Solution
The given equations are
f(uv)—x=0.......... (i)
g(uv)—y=0 .......... (i)
Differentiating w.r.t. x, we get
fu@uv@—l:o
OX OX
ou ov
—+9,—-0=0
guax gVaX
Solving these equations by Crammer’ s rule, we have
-1 f,
u_ 10 o) g 1y (- 2
OX f, f, J  Jov Cov Y
9. 9
f, -1
v__19 O] 9. __ 1%
OX J J Jaou
Differentiating (i) & (ii) w.r.t. y, we have
fu@qufvﬂ—O:O
oy oy
gu@+gvﬂ—1zo
o oy
Solving these equations by Crammer’ s rule, we get
0 f,
u__|=tel __f __10
oy J J Jov
f, O
ov__ 19 S _f, _1oX

oy J J Jau
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s Question
Given the transformation

Chap 5 — Function of several

vari abl es

X=U’—-V?

y = 2uv
a) Compuite its Jacobian.

b) Evaluate (@j & (@j
oX ), 0X )y

Solution

The given equations can be written as

u>-v?—x=0
=0

2uv -y

Differentiating (i) & (ii) partially w.r.t. x, we have

ZU@—

OX
ou

2V—+2u—-0=0

OX
OX
ou
oy
ou
Solving (iii) & (iv) by Crammer’

3_9xy) _
o(u,v)

2v@—1:0
OX

oV

OX
OX
oV
oy
oV
srule, we have

2u u

-1 -2v
(i?U)
OX y

2u -1
2v O

- 4% +v?) - 2(u® +Vv%)

-2V -V

_ 0 2
J
&)
oX ), J
Note
ou ov
oy
s Question
Provethat if F(X,y,2) =0, then

SR

- 4% +v?) - 2(u® +Vv%)

(a_y] & (—] can be determined in the same manner.

o (@j 1
oy ), \oz),

Solution
F(x,y,2=0
= Fdx+F,dy+F,dz=0
F F
= dx:——ydy—idz SN (G I
I:X I:X ay z Fx
& dy:—idx—idz = ¥ .k
F, F, 0z ), F,
F
dZ:—idx——ydy — g :_i
F, F OX F

z

N



Chap 5 — Function of several variables

Hence

215

* Question
Provethat, if x= f(u,v), y=g9(u,v), then

2325
= (2(5) (5] (2)
e (] (2] -1

© f(u,v)—x=0
g(u,v)-y=0

(@j _9 (@j __ 9%
Clox), 3 \ex), 3

Solution

au :_L, Ny _& as already shown
oy ), J oy) J

Taking differentials of the given equations, we have
f,du+ f,dv—-dx=0
g,du+g,dv—-dy=0

= dx= f,du+ f,dv

= f,-=t=g,-—, whichistrue
J J

Similarly, we have the second relation.
Eliminating dv between (i) & (ii), we get
(f,-9,—f,-g,)du—g,dx+ f,dy=0
_— dX:%.du_dey

f,g,— f
and dy:%dx_M du

\ \

oy . 9 ox), f

- [ X (Q} 9
8yu ox), 9, f

\Y

19
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s Question
Giventhat x= f (u,v,w), y=g(u,v,w), z=h(u,v,w) with the Jacobian

J= M , show that for the inverse transformation one has

o(u,v,w)
3 ou_14(y,2 ou_10(zx) ou_14(xy)
ox Ja(v,w) ay Jo(v,w) 8z Ja(v,w)
i) ov_10(y,z2 ov_10d(zx) ov_10dkxy)
ox Jowu) dy Jawu) oz J(wu)
i) ow_140(y,z2 ow_19(zx) ow_19(xy)
ox Jo,yv) oy Jouyv)  dz I ou,v)
Solution
Wehave f(u,v,w)—x=0
g(u,v,w)—y=0
h(u,v,w)—z=0

Differentiating w.r.t. to x, we get

fu@'F fV@'F fwa_vv_1:O
OX OX OX

g @+g @+g a—W—O—O
“ox  TUox T oX
ou oV oW
—+h,—+h,—-0=0
hbax h’8x h’Vax
By Crammer’ s rule, we have
-1 f, f,
0 g9 9. |9 9
ou_ |0 h h| |h h|_13gh _1d(y2
OX J J Jo(v,w)  Jo(v,w)
f, -1 f,
9, 0 g, 9 Yu
o_|h 0 h| |h h| _ 108(gh _14(y.2
OX J J Jo(w,u)  Jo(w,u)
f, f, -1
9 9 0 |a g
ow_ |h h 0] [h h| _105gh) _15(y.2)

X J J Jouyv)  Jauv)
We can find the other relations in the same way by differentiating given relation
w.r.t. y and w.r.t. z respectively.
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< Partial Derivative of Higher Order

Let afunction z= f(X,y) be given. Then itstwo partial derivatives ? & ?
X y

are themselves functionsof x & y.
: 0z 0z
e —=f(xy) , —="f (X

Hence each can be differentiablew.r.t. x & y.
Thus, we obtain four partial derivatives

2z 0%z
v fo(XY)

= £, (%)

X O
27 0°z
=f (XV), =f (X,
yox w(XY) EYd w(XY)
2 2

a—f is the result of differentiating oz w.r.t. x, where
OX OX 0y OX

Is the result of

differentiating ? w.r.t. y. If al the derivatives concerned are continuous in the
X

2 2
domain considered, then 0z = 0z I.e. order of differentiation is immaterial.
OXoy 0oyoX
Third and higher order partial derivatives are defined in the same manner and
under appropriate assumptions of continuity the order of differentiation does not

matter.

* Laplacian of z
If z= f(x,y), thenthe Laplacian of z isdenoted by V?z isthe expression
2 2
sz:a—f+a—f
ox~ oy
if w=1f(x,y,2), the Laplacian of w isthe expression
o'w  o°'w  d°w
2 + 2 + 2
ox- oy® o0z
The symbol “ V” is avector differential operator define as

V—£|+£I+ilz
oX~ oy~ OX

We then have symbolically

Vaw=

o 0% &
+ +
ox*  oy* 07

Vi=V.V=

< Harmonic Function
If z= f(x,y) has continuous second order derivativesin adomain D and V*z=0
in D, then z issaid to be Harmonic in D . The same term is used for the function of

three variables which has continuous 2™ derivatives in adomain D in space and
whose Laplacianis zero in D . The two equations for harmonic functions

2 02

Viz=—+—5=0
x> oy°

Vo — o° \/2v o° W o° w_
ox> oy’ az

are known as the Laplace equations in two and three dimensions respectively.
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“ Bi-Harmonic Equations
Another important combination of derivatives occurs in the equation
0z . 0z . o'z
oxt  Toxtoy: oyt
which is known to be the Bi-harmonic equation. This combination can be
expressed in terms of Laplacian as
V3(Viz) = V*z =0
The solutions of V*z=0 are termed as Pri-harmonic functions.

“» Higher Derivatives of Functions of Functions
(1) Let z=f(x,y) and x=g(t), y=h(t) sothat z can be expressed in terms of t

aone. Then
dz oz dx oz dy

+
dt ox dt oy dt

d’z d(dz azdx dx d azdy dy d .
— = — — t——F | . (i)
d°  dtldt,) ox o dt di\ ox dy dt?  dt dt ay

Using (i), we have
d(azj 822%+ 0’z dy
dt ox® dt  oyox dt

d(az] 02z dx+azzdy

dt\ oy ) oxozdt oy® dt

Putting these values in (ii), we have
d_zzzgd_%(+a_zz(%j2+2 °z dx dy+82 (dyj ozd%y
dt®>  ox dt’ dt oxoy dt dt oy?\dt) oy dt’

2 If z=1f(x,y) and x=g(u,v) , y=h(u,v), then
0z_oz x oz oy
ou oOX ou oy ou
o0z 0z ax oz oy
N ox av ay oV
0%z oz *x 0 (azj X az(a y] &y 0 (az] .
— =t — == — | i (iv)
ou® ox ou® du\ox) ou oyl ou®) ou oul oy

Using (iii), we have

a(azj 0’z ox  o°z oy

aulox) o ou oyox ou

i(%]_ 0’z x 02y
oul oy ) oxoy ou oy* ou
Putting these valuesin (iv), we get
dz_o20% %z (axj+2 o’z x oy oz (ijg_@
ou® oxou® ox*\ou OX3y du ou oy° dy ou?
0%z 0%z

We can find the values of & —
ouov ov

&

in the same manner.
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< The Laplacian in Polar, Cylindrical and Spherical Co-ordinate
We consider first the two-dimensional Laplacian
V2= o° W+ o*w
ox*  oy°

and its expression in terms of polar co-ordinates r & 6.

Thuswe aregiven w= f(x,y) and x=rcosf, y=rsind and we wish to express
VAw intermsof r, 8 and derivatives of w with respect to r and 6. The solution is
asfollows. One has

ow_ow or ow a0

+_._
ax ar oX 00 0X

ow _ aw or ow 00 .
—+—-— by chainrule
ay or oy 00 oy

To evaluate ﬂ, @ ﬂ 140 , We use the equations
ox ox oy oy

dx=cosO dr —rsin6 do
dy=sinf dr +r cosb do

These can be solved for dr and d6 by determinants or by elimination to give
dr = cosO dx+ sinf dy

sno cosf

do =— r dx+ r dy
Hence ﬂ:cos@, T _sn 0, 00 __sno 4 99 _coso
X oy ox r oy T
Putting these values above in expressions of X & Ve we have
y
ow ow sSing ow
— =C0S0 ——
X or r oo i)
ow_ y a_vv cosh ow |
ay or r o6

These equations provide general rules for expressing derivativesw.r.t. x or y in
terms of derivativesw.r.t. r and 6. By applying the first equation to the function

a—W , one finds that

OX
R, a(awj a(awj sing a(awj
>=—| — | =C0S0 —| — |-————| —
OX OX\ oX or \ ox r 00\ ox

By (i) this can be written as follows:

o°w 0 ow sing ow) snd o ow  sing ow
> = C0SO —| cost) — — - coSO) — ————

OX or or r oo r oo or r 00

The rule for differentiation of a product gives finally

R, 2, 0°W_ 2sinfcosd o°w S|n20 o*w
> =C0S"0 - — —
OX or r arae r 00
sn‘0 ow 2sinfcosh ow ..
+ —+ 5 — s (i)
r 00 r 00

In the same manner one finds

82W a aw 0 aw cosO ow) cosf O ( . .OwW €0SsO ow
=sng—| sinO + sIng —+ ————
ay ay ay or ar r o6 r o060 or r o6
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.2, 0°W 2sinfcosd o°w 00320 R,
=sn“0 -—+ — =
or r arae r 00
cos’ 0 0w 2sind cos® ow
+ T eeene (iii)
r ar r 80

Adding (ii) & (iii), we conclude
o°w aw o’'w 1 o*w 1ow (iv)

VW=—+ + St
oxC oy or? r2p02 ror

Thisis the desired result.
Equation (iv) at once permits one to write the expression for the 3-demensional

Laplacian in cylindrical co-ordinates for the transformation of coordinates
X=rcosf , y=rsing , z=z

involvesonly x & Y. Inthe same way as above, we have
o'w  o°'w  d°w
2 + 2 + 2
ox- oy® o0z
a w 10w 1low o°w
>+ — 792 +-—t—
o 00° ror oz

Vaw=

< Laplacian in Spherical Polar Coordinates
The transformation form rectangular to spherical polar coordinates is
X=psSinpcoshd , y=psSinpsing , z= pCcose

Writing r = psSing, we have
X=rcosf , y=rsing , z=z
Which can be considered as a transformation from rectangular to cylindrical

coordinates (r,0,z)

We have
Vaw= aW+125";’+16W AR (i)
or? 002 ror o7
where  z= pCose (i)
f=psing [T

We have transformation from (x,y) to (r,0) as
o° W o° w o° W 10°w 1low

+
Py oy?  or? " e0° v o0
Now if we take transformation from (zr) to (p,¢), then
o'w 0w o'w 1 o°w 16w
st s T et a2t
0z or° oOp° p op° pop
oW _ow op oW O
o Op or Op or

X
Where p*=72°+r1% , tangp=—
z

Also

2 2
& seczqg-a—(p:l _, Op _cos'p _cosp _cosp
o z or z p COS@p p
ow a—W-sin +@-@ ............ (iv)

= —= [0
or op op
Substituting (iii) & (iv) in (i), we have
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o°'w o°w) 10w 1low
VW=| —+— +—2—2+——
0z>  or? 00 r or
o°w 1aw 1aw 1 aw 1 oW _. OW COSQ
=— +— +— —sSinp +——
p® 0p° pap p’sin‘e 0602 pSng

op op op p
aw+1 oW aw 1 aw+1aw coty ow
op? p? op? p op planie 007 p op  p? og

1
o,
a_iaz L20w 1 o'w cotp ow
op® p® 0p° p Op p°sine 90° p° Og
s Question
If u & v arefunctionsof x & Yy defined by the equations
Xy+uv=1, xu+yw=1

2

then find a—lzj
OX
Solution
ydx+ xdy+vdu+udv=0 ......... (i)
udx+vdy +xdu+ ydv=0 ......... (ii)

Eliminating dv between (i) & (ii)
(v?—u?)dx+(xy —uv)dy +(vy—ux)du=0

2 2

U =Y ax+ M=%y

Vy — UX Vy — UX

@:uz_yzzuz_yz

OX Vwy—ux 1-2ux

o%u

ou
. _(1 2UX) - 2U - a——(u -y )[( 2U) — Zxax}

ox? (1- 2ux)®

= du=

(using given eg. )

s Question

o'W o°w

ox* 7
1

1Y
X

Find — when

1) w=

i) w=tan"

2 2

i) w=e*"
% Question
Show that the following functions are harmonicin x & y
i) €“cosy
i) x°—3xy?

iii) logyx®+y°



26 Chap 5 — Function of several variables

 Sufficient Condition for the Validity of Reversal in the Order
of Derivation
We now prove two theorems which lay sufficient conditions for the equality of f,

and fyx.

% Schawarz’s Theorem
If (a,b) beapoint of the domain of afunction f (x,y) such that

1) f.(Xy) existsinacertain nhood of (a,b).

i) f,(xy) iscontinuousat (a,b).

then f,(a,b) existsand isequal to f, (a,b).
Proof

The given conditions imply that there exists a certain nhood of (a,b) at every point
(%, y) of which f (x,y), f,(xy) and f(xy) exist. Let (a+h,b+k) beany point

of this nhood. We write
#(h,k)=f(a+h,b+k)- f(a+h,b)- f(a,b+k)+ f(a,b)

g(y)=f(a+hy)-f(ay)
sothat ¢(hk)=gb+k)—g) ........... (i)

- f, existsinanhood of (a,b), the function g(y) in derivablein [b,b+k], and,
therefore, by applying the M.V. theorem to the expression on R.H.S of (i), we have
¢#(h,K) =kg'(b+6Kk) (0<6<1)
=k(f,(a+hb+6k) - f (ab+0Kk)) ......... (ii)
Againsince f,, existsinanhood of (a,b), the function f (x,b+06k) of x is

derivablew.r.t. x ininterval (a,a+ h) and, therefore, by applying the M.V. theorem
to theright of (ii), we have

$(h,k)=hk f_(a+6'h,b+6k) (0<6'<1)
o %( f(a+hb+ kr)]— fab+k) f(a+ h,br)]— f(a,b)j: [ (a+0'hb 0K

Since f,(X,y) existsinanhood of (a,b), this giveswhen h— 0,
f.(a,b+k)- f (ab)

k
Let, now, k— 0. Since f, (x,y) iscontinuousat (a,b), we obtain

f,(ab)=limlimf,(a+0'hb+6k) = f, (ab)

k—0 h—0

=lim f,,(a+0',b+0k)

* Young’s Theorem
If (a,b) beapoint of the domain of definition of afunction f(x,y) such that

f.(xy) and f (xy) areboth differentiable at (a,b), then
fy(@b)=f,(ab)
Proof
The differentiability of f, and f, at (a,b) impliesthat they exist in a certain
nhood of (a,b) andthat f,, f,, f, f, existat (a,b).
Let (a+ h,b+h) be apoint of this nhood. We write
#(h,h)=f(a+h,b+h)—f(a+hb)-f(ab+h)+ f(ab)

g(y)=f(a+hy)-f(ay)
sothat ¢(h,h)=gb+h)—g) .......... (i)
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Since f, existsinanhood of (a,b), the function g(y) isderivablein (b,b+h),
and, therefore, by applying the M.V. theorem to the expression on the right of (i),
we have

¢(h,h)=hg'(b+6h) (0<6<1)
=h(f,(a+hb+0h)-f (ab+6h)) ......... (ii)
Since f (xy) isdifferentiable at (a,b), we have, by definition,
f,(@a+hb+0oh)-f (a,b)=hf (ab)+0hf, (ab)
+he,(h,h) +0hy,(h,h) ...... (iii)

and f (ab+0h)-f (a,b)=0hf, (ab)+0hy,(hh) ... (iv)

where ¢,, v, v, dl >0ash—-0

From (ii), (iii) and (iv), we obtain

h,h
¢(h2 ): fy(@b)+¢,(h,h)+0y,(hh)-0w,(hh) ........ (V)
By a similar argument and on considering
g(x) = f(x,b+k)— f(x,b)
We can show that

M::;h) = f,(a,b) +ws(h,h) +0'p,(h,h) - 0'p,(h,h) ........... (Vi)

where ¢,, @,,y, dl >0 ash—0
Equating the right hand side of (v) and (vi) and making h— O, we obtain
fy(ab)=f,(ab)
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* Maxima and Minima for Functions of Two Variables
Let (X,.Y,) bethe point of the domain of afunction f(x,y), then f(x,,Y,) saidto
an extreme value of the function f (x,y), if the expression

Af = f(xo+h’YO+h)_ f(XO’yO)
preservesits sign for all h and k.
The extreme value of f (x,,Y,) being called a maximum or a minimum value

according as this difference is positive or negative respectively.

Necessary Condition
The Necessary Condition for f (x,,Y,) to be an extreme value of function f (x,y)
isthat f, (%), Y,)=0=f,(XY,), provided that these partial derivatives exist.

It isto be noted that it is impossible to determine the nature of a critical point by
studying the function f(x,y,) and f(x,,Y).

eg. Let f(x,y)=1+x"-y°
then f(0,y)=1-y* = f'(0,y)=-2y=0 = (0,0) isaturning point.
Now f"(0,y)=-2 = (0,0) isapoint of maximum value.
But f(x,0)=1+x°
= '(x,00=2x=0 = x=0 = (0,0) isthecritical point
= "(x,00=2>0 = (0,0) isthe maximum value
Hence we fail to decide the nature of the critical point in this way.
Sufficient Condition
Let z= f(x,y) bedefined and have continuous 1% and 2™ order partial derivatives
inadomain D . Suppose (X, Y,) isapoint of D for which f, and f, are both zero.
Let A= 1, (%, ¥): B=1,(%: ¥0), C=1,0%,¥)
then we have the following cases
i) B>~ AC<0and A+C<0 = relativemaximumat (X,,Y,).

i) B>~ AC<0and A+C>0 = relative minimum at (x,,Y,)
iii) B>~ AC>0 = saddlepointat (X,,Y,)
iv) B>~ AC=0 = nature of the critical point is undetermined
Pré);fthe application of M.V. theorem for function of two variables we have
Af =hf, (%, +0h,y, +0k) + K, (X, +0h,y, +0k) (0<0 <1)
= h[ (% +6h, Y, +0K) = (%, Yo) ] +K[ f, (%, +0h, y, +0K) = (%, Yo) ]
(it isbecause f,(x;,Y,) = f, (%, Yo) =0, aturning point)
= h[ Ohf, (X, Yo) + OKE (X, Vo) + £0N + £,0K |
+k[ ONf, (X5, o) +OKF, (X5, Vo) + £0h+£,0K |
where ¢,,¢,,6;, & €,>0ashk—0
Af = (%, Yo) + 20K £, (%0, Yo) + K £, (X5, Yo) +6:0° + (&, + 5)k + £,k
= Af =h’A+2hkB+Kk°C +&,h* + (g, + £;)hk + £,k*
The sign of Af depends upon the quadratic d*f = h*A+ 2hk B+ k*C
i & ii) Let B°-~AC<0, (Az0)

= d?f :%(h2A+ 2hk AB + kZAC)
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= %(thz + 2hk AB + k’B? + (k*AC - k’B?))

= %((hA+ kB)® +k*(AC - B?))

Since (hA+kB)? is positive and AC — B* (supposed) is +ive, therefore the sign of

d*f depends upon the sign of A.
= Af >0 if A>0 & Af <0 if A<O

Again, since B°~AC<0 = B°<AC = AC>0
= A and C are either both +ive or both —ive.

If A0, C>0 then A+C>0 andif A<O, C<0 then A+C<DO0.
Hence we have the following result
a) Af >0 when A+C>0 = (X,,Y,) isapoint of minimum value.

b) Af <O when A+C<0 = (X, Y,) isapoint of maximum value.
iii) Let B>— AC >0, then

d?f :%((hA+ kB) + k*(AC - B?))

1
=—((hA+kB)*—k*(B* - AC

NG )? —K*( ))

which may be +ive or —ive for certain value of h & k, therefore (x,,Y,) isa
saddle point.

iv) Let B>~ AC=0, A%0

= d*f :%(hA'F kB)2

which may vanish for certain values of h and k, implies that nature of the point

remain undetermined.

s Question
Test for maxima and minima

z=1-x°-y°
Solution
g:—2x:0 = x=0
OX
gz—Zy:O = y=0
oy
= (0,0) istheonly critical point.
2 2 2
A:a_fz_ =% _¢o :a_fz_g
OX oxoy oy

B°~-AC=0-4=-4<0 and A+C=-2-2=-4<0
= the function has maximum value at (0,0).

s Question
Test for maxima and minima

z=Xx-3xy*
Solution
g:3x2—3y2:0 = X=-y & X=Yy
oy
0z
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= (0,0) isthe critical point.

0%z
A=—=6x=0 at (0,0
ox? 0.0
2
8=22 __6y-0 a (0,0)
oxoy
0%z

C=—5=-6x=0 a (0,0
5 (0,0)

B°~4AC=0 aso A+C=0
Therefore we need further consideration for the nature of point
Az=2z(0+h,0+k) - z(0,0)
= z(h,k) — z(0,0)
= h® - 2hk?
For h=k
Az=h’-3h*=-2h°
= Az>0 if h<0 & Az<O if h>0
Hence (0,0) is a saddle point.

% Question
Examine the function
z=f(x,y)=xy’
Solution
f=0 = 2xy*°=0
f,=0 = 2yx*=0
implies that (0,0) isthe critical point
A=f_=2y*=0 at (0,0)
B=f,,=-4xy=0 at (0,0)
C= fW=2X2=O a (0,0)
Since B°-4AC=0 andalso A+C=0
Therefore we need further consideration for the nature of point.
Af = f(h,k) - (0,0)
= h’k?
Af >0 foral h & k
Hence (0,0) isthe point where function has minimum value.
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< Lagrange’s Multiplier
(Maxima & Minima for Function with Side Condition)

A problem of considerable importance for application is that of maximizing and
minimizing of function (optimization) of several variables where the variables are
related by one or more equations, which are turned as side condition. e.g. the
problem of finding the radius of largest sphere inscribable in the ellipsoid
x* + 2y* +37° = 6 is equivalent to minimizing the function w= x* + y* + z° with the
side condition x* + 2y* +7° =6.

To handle such problem, we can, if possible, eliminate some of the variables by
using the side conditions and reduce the problem to an ordinary maximum and
minimum problem such as that consider previously.

This procedure is not always feasible and following procedure often is more
convenient which treat the variable in more symmetrical manner, so that various
simplifications may be possible.

Consider the problem of finding the extreme values of the function f (x,X,,....,X,)
when the variable are restricted by a certain number of side conditions say

0.0, X101 %,) = O

05 (X Xpsnms%,) = O

0, (X %5y X)) = 0
We then form the linear combination

QX X)) = F OG0 X)) A0, (0 X)) + 2,0, (X0, X)) + e + A0 (Xsees X,)
where 4,,A,,....,A,, are m constants.

We then differentiate ¢ w.r.t. each coordinate and consider the following system
of n+m equations.
D,o(X,%,....%)=0 , r=12..,n
0 (X, %,....X,)=0 , k=12..,m
Lagrange discovered that if the point (X, X,,....,X,) isasolution of the extreme

problem then it will also satisfy the system of n+ m equation.
In practise, we attempt to solve this system for n+ m unknowns, which are

M Agreen Ay & X, X500 X

The point so obtain must then be tested to determine whether they yield a
maximum, a minimum or neither.

The numbers 4,,4,,....,4,,, which are introduced only to help to solve the system

for x,X,,....,x, are known as Lagrange's multiplier. One multiplier is introduced for
each side condition.
s Question

Find the critical points of w= xyz, subject to condition x*+ y*+ z* =1.
Solution

We form the function

O =Xyz+ A(X*+y* + 77 -1)
then

a—(P: yz+2Ax=0
OX

a—(P:xz+ 21y=0
oy
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a—(P:xy+2)uz:0
0z

& X+y*+7°-1=0
Multiplying the first three equations by X,y & z respectively, adding and using
the fourth equation, we find
P 3x2yz
using this relation we find that (0,0,+1), (0,£1,0), (+1,0,0) and

1 1 1 . .
+—,t—,+ are the critical points.
( NERNE ﬁ] P
s Question
Find the critical points of w= xyz, where x* + y* =1 & x—z=0. Also test for

maxima and minima.
Solution

Consider F = xyz+,(X* + y* +1) + A, (X~ 2)
For the critical points, we have

F.=YZ+2A4X+A,=0 ........... (1)
F,=xz+24y=0 ......ccoee (i)
F,=xy—A,=0 ... (iii)
and XA+Y =1 i, (iv)
X=2=0 . (V)
From (iii), A,=xy & from (ii) 21:—2—
y

Use these values in equation (i) to have
2

yz->Z4 =0
y
= yz-Xz+xy’=0
=z from (v)
L YX=X+xy’=0 = 2xy°-x’=0
But y*=1-x?, from (iv)

g 2x(1—x) =0 = 2x-3=0 = x= O,i\/?

. . . . 2 1 2
Thisimplies the critical pointsare | +, |—,—, — . =
p pomsire 2542 (15 42

(0,0), (0,-10)
A=F_ =24
B=F,=2
C=F,=24
B°-AC=2"-42;

222—4 =

(i) At (i %%i\g} , we have
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= function has maximum value at (i Eii E)
3'37\3
Similarly, we can show that F isaso maximumat (0,—1,0) and is minimum at
remaining points. (Check yourself)
s Question
Find the point of the curve
X*—xy+y —z°=1, xX*+y°=1
which is nearest to the origin.
Solution
Let apoint on a given curve be (X, Y, z)
Implies that we are to minimize the function
f=d’=x+y*°+7
subject to the conditions
X —-xy+y’ —-z°=1
x> +y*=1
Consider
F=xX+y +7 +21(x2 —xy+y -7° —1) W%Z(X2 +y° —1)
For the critical points

Fo=2x(1+ A4, +4,)-A4,y=0 ........... (i)
F,=2y(1+ A4 +2,)-A4x=0 ........... (ii)
F,=2z(1-2,)=0 ............ (iii)
X2 —Xy+Vy —z2°=1.......... (iv)
XC+ Y =1, (V)
From equation (iii), we have
z=0 and A =1

Put z=0 inequation(iv), gives
x> —xy+y’-1=0

= xy=x+y’ -1

= xy=0 by (v)

= x=0 or y=0 or bothare zero.
z=0, x=01in (v) gives, y*=1 = y=#1
= (0,+1,0) are the critical points.
z=0,y=0 = x=x1 = (£10,0) arethecritical points.
We can not take x=0, y=0 at the same time, because it gives (0,0,0) which is

origin itself as a critical point.

-+ d*=1 at all these four points.
.. these are the required point at which function is nearest to origin.
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s Question
Find the point on the curve
X*+y*+7°=1
which is farthest from the point (1,2,3)

Solution
We are the maximize the function

f :(x—l)2 +(y—2)2 +(z—3)2
subject to the condition
X+y* +7°=1
Let
F :(x—1)2+(y—2)2 +(z—3)2 +A(x2+ y* + 22—1)
For the critical points, we have

X=1+AXx=0 ............. (i)
Yy—2+Ay=0 ...cccoents (i)
z-3+Az2=0 ............ (i)
& X+y+7=1..... (iv)

2 1

= X=—, y:— =
1+ A 1+ 3+
Putting in (iv)

2
(ﬁj (1+4+9)=1 = (1+1) =14 = A=-1+ 14
+

2 .3
++/14

1
= X=—1—, :
s T

= critical points are

Its clear that the required point which is farthest from the point (1,2,3) is
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% Directional Derivative
i)Let f:V—>R,whereV cR",isnhood of aeR". Then the directional

derivative D, f at a inthedirection of 8 eR", isdefined by the limit, if it exists,
flathp)-f(@
h

D, f (a) =lim

h—0
i) The directional derivative of f(%,%,,...%,...X,) & a=(a,,a,,...a,...,.a,) in
the direction of the unit vector (0,0,...,1,0,0,...,0) is called partial derivative of f at
a w.r.t. theith component x and is denoted by

D f@ o 12

or fx,- (a)

where D f (a) =lim f (a1a2a1 +h""’an)_ f (aiazaah)

h—0 h

< Example
Let f(X,y)=%"+ Yy +x+V,then f hasadirectional derivative in every direction
and at every point in R?.
Since, if g =(a,b)eR?, wehave
2 2 2 2
Dﬂf(x,y):LiLr()l(X+ha) +(y+hb) +(x+hs)+(y+hb)—x ) i &
:Liirg(Zax+2by+ ha’ + hb’ +a+b)

=2(ax+by)+a+b
< Exercise
f( ) XY(XZ—YZ) : X4+y4¢0
Let T(Xy)=y x*+y*
: (x,¥)#=(0,0
0 (x,y)=(0,0)

Note that if 8 =(a,b)eR?,
0+ ah)(0+bh)| (0+ah)” —(0+bh)’
o 100y &N (0 (0]
h-0 | (0+ah)’ +(0+bh)’ |
ab(a® - b’
h—0 h(a4+b4)
This limit obviously existsonly if =(1,0) or (0,1). Hence the directional

derivativesof f at (0,0) that exists are the partial derivatives f, and f, given by
f =0, f,=0.
X vy

< Example
Let

Y (xy)=(00)

D= )09

It is discontinuous at (0,0). To seeit, note that

lim f(xy) iszeroalong y=0 and is%along y* =X,

(x,y)—(0,0)
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However, if B =(a,b), then

2
(. (0.0)=tim (O+ah2(0+bh) 4
"Oh| (0+ah)”+(0+bh)*|
ah-b*h? . ab?

=lim =lim————
h—0 h|:a2h2 + b4h4:| h—0 a2 + h2b4

b2
_ A , az0
0 , a=0

Hence the directional derivative of f at (0,0) existsin every direction.

* Question
Let z=f(x,y) , x=u*—v?, y=2uv. Then show that

EREE CRE)

Solution
We have
%:Zu %:—Zv : QzZV : @=2V
ou ov ou ov
Also
1:2u@—2v@ , O:ZUQ—ZVﬂ
OX OX oy oy
and O:2va—u+2u@ , 1:2va—u+2u@
OX OX oy oy
Solving these four equations for @, @, au & @, we get
OX OX oy oy
ou___u N__ v
ox 2(u2+v2) ' oX 2(u2+v2)
ou v oV _ u
oy 2(u2+v2) Y 2(u2+v2)
And
0z_oz ou oz v
OX OUu 0OX oV OX
SN . 1
2(u2+v2) ou oV
0z 0Z Oou 0z ov
& - .
oy oOu oy ov oy
SN W 1
2(u2+v2) ou oV
Hence

&5 - 53]
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s Question
Let f:R*—R begivenby

Xy .
f(xy)=1 X +Y° » (xy)=(0.0)

o) (xw)=(00)
Show that f, f, existat (0,0) but f isdiscontinuous at (0,0).
Solution

. ah)(bh
fs (0,0)= LerO] h[(;h)z)i (b)h)z} where 8 =(a,b)
_lim—22
h—0 h(a2 + b2)
Which exists only when =(10) or (0,1).
= f & f, existat (0,0)
Now

im f(xy)= lim — 2
()00 (D00 X2 + y
Let y=mx,then
2
im Y= lim—
(x,y)—>(0,0) X~ + y x=0 X 4+ mM°X

Which is different for different m.
= f(x,y) isdiscontinuousat (0,0).

s Question

Let f:R*— R begivenby

2

Xy . (X
; (x,y)#(0,0)
f(xy)=<x*+Vy°
; (Xy)=(0,0
Y (xy)=(00)
Show that f , f, existat (0,0) but f isdiscontinuous at (0,0).
Solution
(a?h®)(bh)
f,(0,0)=Ilim =(a,b
ﬂ( ) h—0 h|:a4h4+b2h2:| ﬁ ( )
_jim— 2P
h-0 a*h® + b*
2
B % b=0
0 b=0

) 1
N lim f(xy) iszeroaong x=0 andis = along y=X*
ow (x,y)la(o,O) ( y) 9 2 gy

= itisdiscontinuousat (0,0).



38 Chap 5 — Function of several variables

s Question
Find the greatest volume of the box contained in the ellipsoid 3x* + 2y? + z* =18,
when each of its edges is parallel to one of the coordinate axes.
Solution
V =volume of the box = (12x)(2y)(2z) = 8xyz
We need to find maximum of V subject to 3x* + 2y* + 2 —18=0
Consider ¢(x,y,z)=8xyz+(3x* +2y* + 7 ~18)=0
Then
0, =8yz+6Ax=0
0, =82+ 41y =0
0, =8xy+212=0
= 4xyz+3Ax*=0
2xyz+ Ay =0
4xyz+ 22" =0
= (3% -2y*)=0
A(sz - 22) =0
2y* Z°

- x¥*="2 =
3 3

Substituting these valuesin
3X°+2y*+27°-18=0
We get
X +3x°+3x°=18 = 9x*=18

= x=+/2, y:\/§ and z=+/6

Which gives
f(x Yy, z)=8xyz=48
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“+ Definition

If f:R" >R, aeR" then

A@) @ @, o)
i 0% 0%, 0%, X,

vi(a) =

“+ Definition
Let f:G—> R, Gisanopensetin R".
i) f issaidtohavealocal maximumat aeG, if thereisanhood V,(a) such that
f(x)<f(a) v xeV..
ii) f issaidtohavealocal minimumat aeG, if thereisanhood V. (a) such that
f(x)>f(a) v xeV..

< Theorem
Let f:G—> R, Gisanopensetin R".If f hasalocal extremumat ae G, then
vf(a)=0.
Proof
. . 0(a) .
Itisclear that Vf(a)=0 iff W:O, i=123....,Nn
Write f(x +t)=f(X,%,.. X +t,...,%,) = f(X)
If f hasalocal maximumat a, then
f(“tz_f(a) <0 if t>0
fla+t)-f(a)
t

IA

= lim 0O if t>0

t—0

soth 218) < g

ox
Similarly,
|imf(a+t2_f(a) >0 if t<O

t—0

sothat 118)5

X
of .
Hence ﬂ:o , 1=123,....,n
X
= Vf(a)=0
Note
There are situations when Vf (g):o but f hasno local maximum or minimum at

a. If soand if the sign of f(x)— f(a) depends upon thedirectionof x and a, f is
said to have asaddle point at a.

={END }=



Maxima ard Mirima for Farctiors with side
corditiors. bagrarge’s Maltiplier.

Question
Find the critical points of w= xyz subject to the condition

XC+y +27° =1,

Solution

We form the function
j =f+lg=xyz+l (X +y*+2°- 1)

and obtain four equations
1
x
1

=yz+2l x=0

=xz+2l y=0

1
9z

& X+y*+7°-1=0

Multiplying the first three equations by X, Y, z respectively, adding

and using in fourth equation we find | =- BTXYZ

Using this relation we have (0,0,+1), (0,£1,0), (x1,0,0), and

=xy+2l z=0

g—i L 13,i L 2 asthe critical points.

NIRRT

Question
Find the critical points of the function z=x* + 24xy +8y?

where x* + y* =25, Test for maxima & minima.

Solution
F(X,y,])=x*+24xy+8y* +| (X* +y* - 25)
F,.=2X+24y+2l x=0 ................ (i)
F,=24x+16y+2 y=0 ............... (i)
& X2+ Y- 25=0 i, (iii)
(i) P A+ )x+12y=0 ............... (iv)
(i) P 12x+ @B+ )y=0 ....c.cceeee.. (V)

Multiplying equation (iv) by 12, (v) by (1+1 ) and adding
12(1+1 )x+144y =0
(12141 )x+(@+1)(8+1)y=0

144y - (1+1)(B+1)y=0
y=0 or [%+9 -136=0
y=0, | =8, -17
From(ii)), y=0 P x=0
.+ (0,0) does not satisfy (iii) \ Itisnot acritical point.

b
b

| =8 P x:-4—3y form (iv)
Put thisvalue of x in (iii)

Remarks



2
b —169y +y?=25 b y=+3
P (-43) & (4,-3) arethecritical points.

Similarly when | =-17, we have x:?% from (iv)

And putting the value of x in (iii) weget y=+4
P (x£3x4) arethe other two critical points.
A=F_ =2+2
B=F,=24
C=F, =16+2
When | =8
A=2+16=18, B=24, C=16+16=32
andso B*- AC=576- 576=0
F(Xx,y, )=x*+24xy+8y* +8(x*+y*- 25) when!| =8
P F(XY)=9x"+24xy+16y° - 200
At (-4,3)
DF =F(-4+h,3+h)- F(-4,3)
=9(- 4+h)*+24(- 4+ h)(3+h) +16(3+h)* - 200
- 9(- 4)® + 24(- 4)(- 3) - 16(3)* + 200
=9(16- 8h+h*) +24(h*- h- 12) +16(9+ 6h+ h?)

- 144+ 288 - 144

=144- 72h+9h? + 24h? - 24h- 288 +144 + 96h + 26h?

- 144+ 288 - 144

=49h?3 0
P (-4,3) isthe point of minimum value.
Similarly (4,- 3) givesapoint of minimum value.
Andwhen | =-17, (x3,£4) are the point of maximum value.

Question
Find the critical pointsof w=x+z, where x*+y*+2z° =1.
Test for a maxima and minima.

Solution
Consider the function

F(X,y,2)=Xx+z+| (xX*+y*+7°-1)
F=1+21x, F =2y, F,=1+21z
For critical points, we have

1+21 X=0 .o, (i)
20 y=0 ..., (i)
1+21 z=0 ..o (iii)
and X+y+722=1 .. (iv)
: . 1
Solving these equationswe have | =+—
g €q NG
1 : &l _-10 . .
| =—= gives ~~—,0,—=_- asthecritical point.
J2 &2 \2p
1 : el 16 . .
| =- —= gives ~——=,0,—=_~- asthecritical point.
V2 &2 \2p

Remarks



A=F,=2l, B=F, =0, C=F,=2

: 1
) | =—= b A=42, B=0, C=42
NG
so B*- AC—O 2<0 and A>0
ael 0 : : -
— = Isapoint of relative minimum value.
" Iz
. 1
i) 1=-—— b A=-42, B=0, C=-42
)T
so B’- AC—O 2<O and A<O
el o] : : :
— ~ Isapoint of relative maximum value.
" Iz
Question

Find the critical pointsof w=xyz where x*+y*=1&
Xx- z=0. Test for the maxima and minima.
Solution
Consider F=xyz+| (*+Yy -1+l ,(x- 2
For critical points

F.=yz+2l x+1,=0 ............. (1)
Fo=xz+2l y=0......ccooonnnn. (i)
F,=xy-1,=0 ..o (iii)
& XY =1 e, (iv)
X-2Z=0 i (V)
From (iii) |, =xy and from (ii) I1:-2—
y

Putting in (i), we get

2

yz- —=+xy=0
y

b y’z- X’z+xy*=0
o x=z form(iv) \ y’x- X +xy°=0
b 2xy’- x*=0
But from (iv), y*=1-x* b 2x(1- x*)- xX*=0

P 3X-2x=0P x@3x*-2)=0 b x=0, J_r\/g

e 0
P Thecritical p0|ntsareg+ _T \F 2 \/} \F

(0,1,0) and (0,- 1,0).
A=F, =2, B:ny:Z’ C:Fyy:2|1
B2- AC=2%- 4] 2
25,2 2.2 200,22
From (i) 12=22 b B?- AC=27- 22 :Z(y2 x°)
4y y y

2 ) 2(1.2
i) At ¥ Zi+\E+, we have BZ-AC:3(3 3)<o
1%}

3’3" %

Remarks



L)

And A=F =2 =-2-"Z9
7@

0]
P Function is maximum at g 2 L \/E

f
Similarly we can show that w is maximum at (0,- 1,0) and
2
minimum at + - — \f & (0,1,0).
'S =
Question

Find the point to the curves x*- xy+y*- z° =1, xX*+y*=1
nearest to the origin (0,0,0,).

Solution
Let (X,Yy,z) beapoint onthe curve. Then its distance from the

originis given by /x* + y* + 7°
Weareto minimize f =d*=x*+y*+ 7
subject to the conditions x* - xy+y*- 2 =1, x*+y*=1
Consider
F :x2+y2+22+ll(x2- xy+y’- 2z - 1)+I 2(x2+y2- 1)
F,=2x+(2x- y)I ;+2l ,x
Fy :2y+(2y' X)l 1+2I 34
F,=2z+1,(-22)
For critical points, we have

2X(1+1,+1,)-1,y=0 .coeeene (i)
2y(L+1  +1,) - 1 X=0 rovereee . (ii)
22(1-1,)=0 tvoovoeeeeee e (iii)
X - Xy+y?-272°-1=0 ............. (iv)
XY -1=0 i (V)

From (iii), wehave z=0 & |, =
z=0in(iv)gives x*- xy+y°-1=0 b xy=x"+y*-1
But x*+y*-1=0 b xy=0
P x=0 or y=0 or botharezero.
We can not take x=0, y=0 at asame time because it gives
(0,0,0) whichisorigin itself.
z=0, x=0in(v) P y*=1 b y=+#1
P (0,£1,0) arethecritical points
& z=0,y=0in(v) P x*=1 P x=#1
P (£10,0) are the other critical points.
- f =d? =1 at these four points

\  These are the required points at which function is nearest to origin.

Remarks



Question
Find the shortest distance from the origin to the curve
X* +8xy +7y* =225
Solution
We areto find the minimum value of f =d*=x*+y?

subject to the condition x* +8xy + 7y* = 225,

Consider F=x*+y*+| (X*+8xy+7y’ - 225)
F,=2x+1 (2x+8y)
F, =2y+I (8x+14y)

For critical points

X+l (X+4y)=0 ..ccovvnnnnnnn. (i)
y+1 (4X+7y)=0 ..ccoeenannnn. (i)
X +8xy+7y*- 225=0 ........ (iii)

: X 4

) p A+l )x+4 y=0 b —=-——

(i) @+1) y vy I+

(i) b 4 x+(1+71)y=0 b 2= 1;7'

Xoo A By qez=1e1 )@ 7l)
y 1+ 4

p 16l *=1+1 +71 +71> P 9 %-8 -1=0

b (I -1 +1)=0 b | =1 _é
X

| =1 b =-2b x=-2y
y

Putting this value of x inequation (iii) we have
(- 2y)* +8(- 2y) y + 7y* = 225
b 4y*-16y*+7y*=225 b -5y*=225
which gives imaginary values of .
p X = ( %) %o _ P y=2x

1
9 y 1-1 8 2
Putting in (iii), we have
X* +8x(2X) + 7(2x)* = 225
P x*+16x* + 28x° = 225
b 45x2=225 b x*=5b x=#+/5
x=+5 b y:2x/§
& x=-5 b y=-25
\  Thecritical points are (\@ 2\5) & (\@2\5)

2 —
d2 . ,,5=25

b Shortest distance = d=5

Remarks



Question
Find apoint (x,y,z) onthe sphere x>+ y*+ z*> =1 whichis
farthest from the point (1,2,3).

Solution
We areto maximize

f(xy,2)=(x-D*+(y- 2)*+(z- 3)°
subject to the condition x> +y*+27° =1
Let F=(X-D?+(y- 2°+(z- 3*+| (X +y*+7°- 1)
For critical points
F.=2(x-D)+2l x=0
F,=2(y-2)+2l y=0
F,=2(z-3)+21 z=0 and x*+y’+72°=1

P x-1+Ix=0 ......cceeenin. (i)
y-2+ly=0 ..., (i)
z-3+1z=0................ (iii)
XC+Y+Z2=1 i, (iv)
1 2 3

:—, y:— , Z:—

1+ 1+ 1+

Putting in (iv)
el o L 2 o L 3 o
&1+1 81+| %] 81+| %]

b 14=(1+])

b | +1=+/14 b | =-1+/14
1 2 3

P X=—— =

= , 7=—
\/ Y +v14 +/14
Clearly - |sthe point which is farthest from (1,2,3).
8x/ \/ 14 x/ 2

Question
Find the extreme valuesof z=6- 4x- 3y, provided X & y

satisfy x*+y* =1.

Solution
Define  F =6- 4x- 3y +| (x2+ y’ - 1)
For critical points, we have

F,=-4+21 x=0 ............. (i)
F,=-3+2ly=0............. (i)
and XC+y =1 i, (iii)
From (i) and (ii) we have x=— yz%
Putting these valuesin (iii) weget | :ig
5 2 _4 3 _3
| =— P X=—=— & = =_
2 5,5 © Y728, 5

Remarks



| —_§ b X—i—_ﬂ & y:i:_g
2 -% 5 24-%) 5
P aej§9 & aeil§9 are the critical points.
&'55 & 5 5p
A=F,=21, B=F, =0, C=F, =2
2
b B- AC=0-412=-4%2%-_25<0
& 25
P F ismaximum or minimum at the critical points.
Now at ae_4§9 wehave A=5>0
&5'57
And at a@ﬂ,-§9,wehave A=-5<0
& 5 55
al 30 &4 306

P Thefunctionismin. a ~~,—-and max. at - —,- —=.
85 59 8

Question
Find the critical point of f(X,y) =X* +2y° + 2xy + 2x + 3y.
Where x*- y=1. Test for maxima and minima.
Solution
Define F=x"+2y* +2xy+2x+3y+| (x*- y- 1)
For critical points, we have

F =2x+2y+2+2l x=0 .......... (i)
F,=4y+2x+3-1 =0 ............ (i)
and  X°-y-1=0 ....cccoeerrinnnnn, (iii)
From (i) | =X Y1
X
From(ii) | =2x+4y+3
p X ¥ 2 y_1:2x+4y+3
X

P - Xx-y-1=2x"+4xy+3x

b 2xX°+4x+4xy+y+1=0
But from (iii) x*=1+y

P 2(1+y)+4x+4xy+y+1=0

P 4x+4xy+3y+3=0

P 4x(1+y)+3(y+1)=0

P (y+1)(4x+3)=0

p Either y=-1 or x:-g
If y=-1, weget x*=0 from (iii)
P (0,-1) isacritical pointand | =-1inthis case.

3 9 . 7
If x=-—, weget —-1= e, y=- —
4 9 16 y y 16

3 70

16¢g

Remarks



Now A=F,=2+2, B=F =2, C=F, =4
b B?- AC=4- 42+2 )=-4-8

| =-1 b B?- AC=4>0 b f isnether maximum nor

minimum at (0,1).

|:_1 p BZ_A0:-4-888-19:-4+2:-2<0
4 & 47
_ B e 1o 1
and A=2+2] =2+25-=:=2-=>0
& 45 2
3 70. . _
- —,- —+ isthe point of minimum value.
& 4" 165
Question

Find the critical pointsof z=x*+y* when X%+ y®=6xy,

Also test for maxima and minima.
Solution
Define F =x* + y* +1 (X* + y® - 6xy)
For critical points we have
F =2x+3 x*- 6l y=0 ........... (i)
F,=2y+3 y*- 6l x=0 ........... (ii)

and XC+y -6xy=0 .............. (iii)

from(@) | =
0 3x% - By

| =2

3y“ - 6X

-2x -2y
3x2- 6y 3y’- 6X
X(3y” - 6x) = y(3x - 6y)
X(y*- 2x) = y(x* - 2y)
X2 - 2%2 = X2y - 2y
XCy- Xy*+2x°- 2y =0
Xy(x- y) +2(x- y)(x+y) =0
P (X- y)(2x+2y+xy)=0

P Either x- y=0 or 2x+2y+xy=0

If x- y=0 then (iii) becomes x*+x*- 6x*=0

from (ii)

U T U UTUTUTU T

P 2x*-6x°=0P x*(x-3)=0

P x=0, 3

P x=0,y=0 & x=3,y=3

P (0,0) & (3,3) arethecritical points.

At (00), | =—22X =
3xX°- 6y 3x°- 6X
= _2 = _2 :l
3x-6 30)-6 3
Andat (3,3), | :-g

wX-y=0bP x=y

Remarks



C=F,=2+6ly
At (0,0), wehave A=2, B=-2, C=2
And \ B®*- AC=0
Consider Dz=z(h,h)- z(0,0)=h*+h*=2h*3 0
P (0,0) isthe point of minimum value.

At (3,3), wehave A= 2+6§539(3)_-10

B=-6Z 294
& 35
C= 2+6§-’39(3)_-10
and \ B®- AC=16-100<0 and A=-10<0
P (3,3) isapoint of maximum value.

Question

Find the points in the plane 2x + 3y - z=5 nearest to the origin.

Solution
Weareto minimize f =d*=x*+y*+ 7
subject to 2x+3y- z- 5=0.
Define  F=x*+y*+2°+| (2x+3y- z- 5)

F.=2x+2l =0 ..., (i)
Fy:2y+3l =0 (i)
F,=2z-1 =0 ..o, (iii)
and 2X+3y- z-5=0 ........... (Iv)
x=-1, :% , z:IE from (i), (ii) & (iii) resp.
(iv) becomes -2l %%5 0
P 4 +9 +] =-10
| =- 10 _§
14 7
b _5 y= 15 :_E
"7 14’ 14
= a@ E—S_ Is the critical point.
§7'14" 14

A=F,=2, B=F, =0, C=F, =2
- AC=0-4<0 and A=2>0

3§_5_50
1

P F isreative minimum at
€714’

point.

= so thisisthe required

Remarks
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Maxima ard Mirima for Farctiors of Two Yariable

Question
Test for maxima and minima
(i) z=1- x*-y? (i) z=x*+y?
(iii) z=xy (iv) z=x>- 3xy°
(V) z=x%? (i) z=4-y?
Solution
(i) z=1- x*-y?
E:-2x : E:-2y
fix iy
For critical points Tz_ =0= Tz
fix Ty
P x=0, y=0 P (0,0) isthecritical point.
2
A=YTZ_ 5 B 2 g c-= ﬂ—f--z
fix ixTy Ty

B?- AC=0-4=-4<0 and A+C=-2-2=-4<0
P (0,0) isthe point of maximum value
and maximum value of zat (0,0) is 1.

(i) Do yourself as above

(i) z=xy
E:y, E:X
Tix Ty
For critical points ﬂ—:o_E
T y
P y=0 and x=0 P (0,0) isthecritical point.
2 2
A:ﬂ—fzo, - Tz =1, C_ﬂ_f_o
fix Ty Ty

B*- AC=(1)*- (0)(0)=1>0
Therefore (0,0) is asaddle point.

(iv) z=x>- 3xy°
%:O P 3x*-3y’=0 b x=-y & X=Yy

E:O P -6xy=0 P xy=0
Ty

P either x=0 or y=0 or botharezero
P (0,0) istheonly critical point.

A=TZ_6x-0 @00
x>
_ Tz
—-6y=0 a (0,0
= Ity y (0,0)
c=T2__6x=0 (00

y*

Remarks



b B°- AC=0 and A+C=0
so we need further consideration for the nature of point.
Dz=2z(0+h,0+Kk)- z(0,0)
=z(h,k) - z(0,0)
=z(h,k) =h®- 3hk
For h=k we have

>0 if h<O
Dz=h®- 3h° =- 2h° )
<0 if h>0

P (0,0) isasaddle point.

V) z=f(xy)=xYy’
f,.=0 b 2xy*=0, f,=0 b 2x’y=0
P (0,0) isthe critical point.
A=f_=2y*=0 at (0,0)
B=f,=4xy=0 at (0,0)
C= fW:2x2:O at (0,0)
P B°- AC=0 and A+C=0
so we need further consideration
Df = (% +h Y, +h)- f(x,¥)
= f(h,k) - f(0,0) =h%k?
If h=k, we have
Df =h*30 " h
Thus (0,0) isthe point of minimum value.

Question
Find the critical points of the following functions and test for
maxima and minima.

(@) z=1-x*-y°

(b) z=2x"- xy- 3y*- 3x+7y
(© z=1+x*+y?

(d) z=x*-5xy-y’

€ z=x*-2xy+y’

() z=x-3xy*+y’

Solution
(@) z=41- xX*- y?
ﬂZ 1 1 - X
1- X°- 2(-2X)=—F———==0 b x=0
ﬂx 2( y ) ( ) [1_ X2_ y2
‘ﬂz

—2 =0 b y=0
Ty \/1 X2 - yP

P (O, O) is the only critical point

x> 1x-y2

8:'&8

Remarks



- - VXY 14y
3 - 3
(1_ %2 - yz)/z (1_ %2 - yz)/z
2
b A:%:-l at (0,0)

Pz _fazo_1® -y O
@

ixqy ﬂXSﬂYﬂ ﬁé«/l -y 5
:-yf _(1 X2 - 2_5-2x): -xy23

oo

(1- %~ y)?
Z
B= Xﬂy:o a (0,0)
Y
Tz _ (1) yé\/lxiéa -1+x°
e 1- x*- y? (1_ v yz)i
|4

b C=12=_1 a(0,0)
Ty

P B°- AC=0-(-1)(-)=-1<0 and A+C=-1-1=-2<0
P z hasarelative maximaat (0,0).

(b) z=2x"- xy- 3y*- 3x+7y
1z 1z

— =4x-y- 3, — =-X-6y+7
fix iy /
For critical points E:O, E—O
fix iy
P 4x-y-3=0 ...ccocvinen.. (i)
& X+6y-7=0..cccceninnnn (i)
Multiplying equation (i) by 6 and adding in (ii)
24x- 6y-18=0
x+6y-7 =0
25X - 25=0

P x=1 b y=1
P (11) isthecritical point
Tz_ Tz _ c—E_-a
T ixfy Ty*
B’- AC=(-1)%- (-4)(-6)=25>0
P Thereisasaddle point at (1,1).

A=

(© z=1+x*+y?
E:2x, — =2y
fix iy

ix

For critical points E:O %—O P (0,0) isthe critical point.
y

Remarks



2 2
a=lZ-p g=T2_4 c=T2_,
X %9y Ty
b B2- AC=(0)2- (2)(2)=-4<0 and A+C=2+2=4>0

P The function has arelative minimaat (0,0).

Z {1z

—=2x-5 — =-5x- 2

x Y iy Y

E:O P 2x-5y=0............ (i)

ix

12_0 b -Bx-2y=0....... (i)

fy

(i) and (ii) gives (0,0) isthe critical point.
2 2 2
A:ﬂ—§:2, B:ﬂZ:-5, C:ﬂ—fz'z

X %My fy

P B?’- AC=(-5°- (2)(-2)=25+4=29>0
P Thereisasaddle pointat (0,0).

() z=x*-2xy+ Yy’

1z 9z

— =2X- 2y, — =2y- 2X

ix y iy y

9z 9z

—=0, —=0 P x-y=0 b x=
ix iy Y Y

P Every point ontheline y = x isacritical point.

2 2 2
A:ﬂ—fzz, B= 'z =-2, C:ﬂ—fz
ix ixTy Ty

P B*’- AC=(-2°-(2(2=4- 4=0

Consider Dz=2z(x+h,y+k)- z(X,y)

v X=y \ Dz=2z(x+hx+Kk)- z(x,X)
= (x+h)%- 2(x+h)(x+k) +(x+k)*
=[(x+h)- (x+k)]"2 0

P Each point ontheline y=Xx givesarelative minimum.

f) z=x-3xy’+y°

E:3x2-3y2, E:-6xy+3y2

X Ty

20 b 3¢-32=0 .. 0)
ix

20 b -6xy+3y2=0 e (i)
Ty

From (i) and (ii), we have
3X°-6xy=0 b x(x-2y)=0 b x=0, x=2y
Now x=0 b y=0
And x=2y P (2y)*- y*=0 b y=0
Hence (0,0) isthe only critical point.

Remarks



A:W:esx:o at (0,0)
Tz

= =-6y=0 at (0,0
ixTy y (0,0)
Tz

C=—-=-6x+6y=0 at (0,0)
Ty

P B*- AC=0
Consider Dz=z(h,k) - z(0,0)
=h®- 3hk*+k® =h®-3n®+h® when h=k
5|<0 when h>0
>0 when h<0
P Thereisasaddle point a (0,0)

Note: (i) If forapoint A=B=C =0 and Dz?2 0, then z is minimum
at that point and if Dz£ 0, then z is maximum at that point.

(ii) If A, B, C are not zero and B”- AC =0 then z isneither
maximum nor minimum.

Question
Find the critical points of the following functions and test for
maxima and minima.

@ z=x-2xy*+y’

(b) z=x>+y%- 3x-12y+20

(© z=x*+y’- 63(x+Yy)+12xy
d z=xy(a- x-y)

(€ z=X-2xy+y* +x°- y*+25
(f) z=x%y*- 5x° - 8xy- 5y°

@ z=2(x-y)*-x"-y

() z=2(x- y)’- (x*- y")

(i) z=x*-5xy- Yy

Solution

@ z=xX-2x°+y’
Boae-zy, oy
X iy
'”_)Z(:o b 3x-2y*=0 oo (i)
E:o P -4xy+3y*=0 ............. (ii)
y

Adding (i) and (i), we get
3X°-4xy+y* =0 b 3x*- 3xy- xy+y*=0
b 3x(x-y)- y(x-y)=0 P (x-y)(3x-y)=0
If x- y=0, then x=vy in(i) gives
3x°-2x*=0 b x=0 P y=0.
Andif 3x- y=0, then y=3xin(i) gives
3X*-2(3xX)°=0 P x=0 b y=0
P (0,0) isthe only critical point.

Remarks



T’z

A:W:GX:O at (0,0)
Tz

= =-4y=0 a (0,0
ixTy y (0,0)
2

C:ﬂ—yf:6y-4x:0 at (0,0)

P A=B=C=0 at (0,0) and hence B*- AC=0
Now consider Dz=z(h,k)- z(0,0)
=h®- 2hk® +Kk®
=h®-2h°+h®*=0  when h=k
P The nature of the point is undetermined.

(b) z=x*+y’- 3x-12y+20
E:3x2-3, E:3y2-12
fix iy

Z_0 b x-1=0

ix

E:O P y*-4=0
Ty

P x=z%1, y=+2, andthecritical points are
12),1-2),(-12),(-1-2

Azﬁf:GX, g= T2 _g :ﬂ—zf:6y
ix ™xTy Ty
b B2- AC=-36xy
B?- AC =-36(1)(2)=-72<0 a (12)
B?- AC=-36(1)(-2)=72>0 a (L-2)
B?- AC=-36(-1)(2)=72>0 a (-12)

B’- AC=-36(-1)(-2)=-72<0 at (-1-2)
P Thereisasaddle pointat (1,-2) and (- 12).
B*- AC<0 while A=6>0 at (1,2)
and A=-6<0 at (-1-2)
P 2z hasrelativeminimaat (1,2) & relative maximaat (- 1,- 2).

(© z=x+y%- 63(x+y)+12xy

E:sz- 63+12y, E:3y2- 63+12x
fix iy
For critical points E:O, E:O.
fix iy
P 3x*+12y- 63=0 ....ccevvnneen (i)
& 3y?+12X-63=0 .coevvrieennnnn, (i)

Subtracting (ii) from (i) , we get
3x°- 3y*+12y- 12x=0
b x*- y*+4(y- x)=0
b (x- y)(x+y)- 4(x-y)=0
b (x-y)(x+y-4)=0

Remarks



If x- y=0 then(i) gives 3x*+12x- 63=0
P x*+4x-21=0
P (x+7)(x-3)=0 b x=-7,3
P Thecritical pointsare (-7,-7) & (3,3).
If x+y-4=0 then x=4-y
Put thisvalue of x in(ii), we have
3y*+12(4- y)- 63=0
P y*+4(4- y)- 21=0
P y*-4y-5=0
b (y-9(y+)=0 b y=5, -1
y=5 P x=-1 & y=-1 P x=5
P (-15) and (5,- 1) arethe other two critical points.
2 2 2
=TZ_6x, B=TZ=12, c=T2_¢y
fix ixfly iy
P B?- AC=(12)- 36xy =144 - 36xy
At (-7,-7), we have
B’- AC=144-36(-7)(-7)<0 and A<O
P (-7,7) isapoint of relative maximum value.
At (3,3), we have

A

B2- AC =144- 36(3)(3) =144- 324<0 and A>0.

P (3,3) isapoint of relative minimum value.
At (-15), we have
B?- AC=144- 36(- )(5) >0
P (-15) isasaddle point.
At (-5, we have
B*- AC=144- (-5 (1) >0
P (-521) isalsoasaddle point.

d z=xy(a- x-y) =axy- x’y- xy*

Subtracting (i) and (ii)
ay- 2xy- y*=0
2
] ax;2xy;x =0

ay- ax- y°+x°=0
b (xX*-y?)-a(x- y)=0
P (X-y)(x+y)- a(x- y)=0
P (x-y)(x+y-a)=0

Remarks



If x- y=0 P x=y then (i) give
ax- 2x°- x*=0 b ax- 3x*=0
b x(a-3x)=0 b x:O,%

P (0,00 & (%%) are the critical points.
If x+y-a=0 then y=a- x and (i) gives
a(a- x)- 2x(a- x)- (a- X)*=0
P a’- ax- 2ax+2x*- a*- x> +2ax=0
P x*-ax=0P x(x-a)=0 P x=0, a
P (0,a) & (a,0) arethe other two critical points.

2 2 2
A:ﬂ—fz-Zy, Bzﬂz:a-2x-2y, C:ﬂZ:-Zx
X ixTy ixfly

b B?- AC=(a- 2x- 2y)*- 4xy
At (0,0), wehave B>- AC=a*>0 b (0,0) isasaddle point.

At (% %) , we have
57~ AC=(a- 234~ 23) - 4(34)(%4)

a® 4a’

=—-—<0 and A<O
9 9

p @,EQ is a point of maximum value.
&3'3p

At (0,a), wehave B?- AC=(a- 2a)’- 4(0)(a)=a’>0
P (0,a) isasaddle point.

At (a,0), wehave B?- AC=(a- 2a)’- 4(a)(0)=a’>0
P (a,0) isalso asaddle point.

e z=xX-2xy+y’+x-y’+25
Tz _ ox- 2y + 3%
x

E:-2x+2y- 3y?

iy
E:O P 3x*+2X-2y=0 .....eoevnnnnn.. (i)
x
E:O P 3y*+2x-2y=0 ....covvnnnnn, (ii)
iy
Subtracting (i) and (ii), we have
3x*- 3y’ =0
b 3(x- y)(x+y)=0
Xx-y=0P x=y,usingin (i) we have
3X°+2x- 2x=0 b x=0
And x+y=0P x=-y,usingin (i) we have
3x° +2x+2x=0
P 3x*+4x=0 b x(3x+4)=0

= x:O,x:-ﬁé

Remarks



4 4
x=0 b y=0and x=-— b y=—
4 3 y 3
i - &4 406
P Thecritical pointsare (0,0) & ¢ —,—=
& 3'3p
A= T’z —2+6x
-2
X‘ITy
’z
C=—=2-6y
Ty

B*- AC =4- (2+6x)(2- 6Y)
At (0,0), wehave B°- AC=4- 4=0 b Nature undetermined

Ata@iﬂg, we have
& 3'3p
B2- AC=4- (2- 8)(2- 8)=4- (-6)(-6)<0 and A<O
&4 40

\ Reative maximumat &= —,—
& 3’35

(f) z=x%y*- 5x* - 8xy - 5y*
E:2xy2 - 10x - 8y
ix
1z =2x°y- 10y - 8x
Ty
For critical points, we have
Xy> - 5X- 4y=0 ............. (i)
X’y - 5y- 4x=0 ............. (i)
Adding (i) and (ii), we have
Xy> +x°y- 9x- 9y =0
P xy(y+x)- 9(x+y)=0
b (x+y)(xy-9)=0
x+y=0 P y=-x in(i)gives

x*- 5x+4x=0
P x*-x=0 P x(x-1)(x+1)=0
P x=0,1-1
x=0 b y=0
x=1 b y=-1
x=-1pb y=1

P (0,0, (L-1, (-11) arethecritical points.
If xy-9=0, then y:g in (i) gives xX*-9=0P x=%3
X
x=3pbP y=3 ad x=-3 b y=-3

P (33 & (-3,-3) arealso the critical points.

‘IT z 1%z
ixfly

B?- AC =(4xy- 8)*- (2y*- 10)(2x* - 10)

A= =2y*-10, B= :4xy-8,C—::TT— 2x°- 10
y?

Remarks



10
At (0,0), we have
B’- AC=64- (-10)(-10)<0 and A=-10<0
P (0,0) isthe point of maximum value.
At (1,- 1), wehave
B>- AC=(-4- 8)*- (2- 10)(2- 10) =144- 64>0
P (1-1) isasaddle point.
At (-11), we have
B>- AC=(-4- 8)*- (2- 10)(2- 10) =144- 64>0
P (-11) isasaddle point.
At (3,3), we have
B?- AC=(36- 8)*- (18- 10)(18- 10) =(24)*- 64>0
P (3,3 isasaddle point.
At (- 3,- 3), we have
B?- AC=(36- 8)*- (8)(8)>0
P (-3-23) isagain asaddle point.

@ z=2(x-y)*-x*-y

E:4(x- y) - 4x°
ix
B o ax-y)- 2y
Ty
For critical points
ﬂZ—O P X-y-X=0....ccocennn..n. (i)
ix
E:o P -Xx+y-Vy'=0.............. (ii)
Ty
Addition of (i) and (ii) gives
X3+y3 :O

P (x+y)(X*- xy+y*)=0
P x+y=0 or Xx°- xy+Yy>=0 which givesimaginary values.
Xx+y=0 b y=-xin(i) gives
X+x-x2=0 b 2x- x*=0
b x2-x)=0 b x=0, +/2

x=0 b y=0
x=+2 b y:-x/E
x=-y2 b y=+2
b Thecritical pointsare (0,0), (ﬁﬁ) ( )
A= E_4 12¢, B=YVZ -4 c= ﬂ— = 4- 12y?
X ixfy Ty*

B?- AC=16- (4- 12x%)(4- 12y?)
At (0,0), wehave B*- AC=0
Consider Dz=2z(h,k)- z(0,0)
=2(h- k)*>- h*-k*=-2h*£0 if h=k
P (0,0) isthe points of maximum value.

Remarks



At (\@ ﬁ) we have

B?- AC=16- (4- 24)(4- 24)
=16- (-20)(-20)<0 and A<O.

p (ﬁﬁ) isapoint of maximum value.
At (ﬁﬁ) we have

B2- AC=16- (4- 24)(4- 24)<0 and A<O.

p ( ﬁﬁ) is also a point of maximum vale.

(h) z=2(x- y)*- (x*- vy

2 6(x- y)?- 44 =0 . (i)
ix
2 B(x- y)2+4y=0 e (if)
iy

Adding (i) and (ii), we get
y-x=0P (y-X)(y' +xy+x’)=0
y-x=0 P y=x in(i) gives
4°=0pbP x=0b y=0
x* + xy + y* =0 gives imaginary values
P (0,0) isthe only critical point

Tz

A:W =12(x- y)- 12x°
1°z

B= =-12(x-
Xty (x-y)
1°z

C=—==12(x- y)+12y?
Ty?

a (0,0, A=B=C=0 b B?’- AC=0
Consider  Dz=z(h,h)- z(0,0)=0
P Nature undecided.

(i) z=x*-5xy-Vy®

E:2x- 5y=0 .coiiiiiii (i)
x
E:-Sx- 3Y*=0 i (ii)
y
From (i) y=—
-
(ii) becomes - Bx- 3o =0
€25 g

b -125x-12x*=0
P 12x* +125x=0
125

P x(12x+125)=0 b x=0, - —
12

11

Remarks



12

x=0P y=0 & x=- 12 b y:ga?%g:_ﬁ Remarks
12 5¢ 125 6
P (00 & ag%,-z—sgarethecritical points
& 12’ 6p
2 2 )
L cSPSRNUE S
T Ty Ty

B*- AC=25+12y
At (0,0), wehave B>- AC=25>0 b (0,0) isasaddle point.
e 125 250

At o< —,- — =, we have
&€ 12° 65
B?- Ac:25+12§?2—:9:-25<0 and A=2>0
2
\ @@,-52 isapoint of maximum value.
€ 12' 63
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> Introduction

In elementary treatment of Integral Calculus the subject of integration is
treated as inverse of differentiation. The subject arose in connection with the
determination of areas of plane regions and was based on the notion of the limit of a
type of sum when the number of terms in the sum tends to infinity and each term
tends to zero. In fact the name Integral Calculus has its origin in this process of
summation. It was only afterwards that it was seen that the subject of integration
can also be viewed from the point of the inverse of differentiation.

> Partition
Let [a,b] beagiveninterval. A finite set P ={a= X, X, Xy.ee, Xgoeens X, =0} S
said to be a partition of [a,b] which dividesit into n such intervals
[% X0 ] [%0 X0 ] 0 [ %00 Xa] e [ X ]
Each sub-interval is called a component of the partition.
Obviously, corresponding to different choices of the points x we shall have
different partition.

The maximum of the length of the components is defined as the norm of the
partition.

> Riemann Integral
Let f be area-valued function defined and bounded on [a,b] . Corresponding to
each partition P of [a,b], we put
M; =sup f () (X4 <X<X)
m =inf f(X) (X, <X<X)
We define upper and lower sums as M

U(P, )= M, Ax m
i=1

and L(P,f):zn:mmg
i=1
where Ax =x-x, (=12,...,n)

and finally _dex:infU(P,f) ................ (i)
jfdx:supL(P, F) e (ii)

Where the infi_mum and the supremum are taken over all partitions P of [a,b].
b b
Then _[ fdx and _[ f dx are called the upper and lower Riemann Integrals of f

over [a,b] respectively.

In case the upper and lower integrals are equal, we say that f is Riemann-
Integrable on [a,b] and wewrite f eR, where R denotes the set of Riemann
integrable functions.



2 Riemann-stielges Integral

b b
The common value of (i)and (ii) is denoted by _[fdx or by _[f(x)dx.

Which is known as the Riemann integral of f over [a,b].

> Theorem
The upper and lower integrals are defined for every bounded function f .

Proof
Take M and m to be the upper and lower boundsof f(x) in [a,b].
= m< f(x) <M (a<x<h)
Then M;<M and m=m (i=12...,n)
Where M, and m denote the supremum and infimum of f(x) in (x_,,X ) for
certain partition P of [a,b].

= L(P,f) ZmAx>ZmA>q (A% =X, -X)

= L(P,f)szAx

But iA)g = (% = %) + (% = %) + (% = %) + oo+ (X, = X,4)

=X, ~%=b-a
= L(P,f)>m(b-a)
Similarity U(P, f)<M(b-a)
= m(b-a)<L(P,f)<U(P,f)<M(b-a)
Which shows that the numbers L(P, f ) and U (P, f ) form a bounded set.
= The upper and lower integrals are defined for every bounded function f. ®

> Riemann-Stieltjes Integral
It is a generalization of the Riemann Integral. Let o (x) be a monotonically

increasing functionon [a,b]. a(a) and «a(b) being finite, it followsthat «(X)
Is bounded on [a,b] . Corresponding to each partition P of [a,b], wewrite
Ady =a(x)-a(X )
( Difference of valuesof o at x & % ;)
- a(X) is monotonically increasing.
. Aa; 20
Let f bearea function which is bounded on [a,b] .

Put P f a ZM Ac

L(P, f,a) Zm Aa,
Where M, and m havethelr usual meanings.
Define

fda=infU (P, f,a) ooorenen. (i)

f da=SUpL(P, f,a) coovrvennnn, (ii)

1D ey T Q) ey T



Riemann-stielges Integral 3

Where the infimum and supremum are taken over all partitionsof [a,b].
b b b b
If Ifda:I f doe , we denote their common value by _[fda or _[f(x)da(x).

Thisisthe Ri_emann-StieItje£ integral or simply the Stieltjes Integral of f w.r.t.
o over [a,b].

If J:fda exists, we say that f isintegrablew.r.t. a, inthe Riemann sense,

and write f eR(«a).

> Note

The Riemann-integral is a special case of the Riemann-Stieltjes integral when we
take a(X) = x.

" The integral depends upon f,a,a and b but not on the variable of integration.

b b
.. We can omit the variable and prefer to write J f do instead of J f(X)da(X).

In the following discussion f will be assume to be real and bounded, and «
monotonically increasing on [a,b] .

> Refinement of a Partition
Let P and P* betwo partitions of an interval [a,b] suchthat P < P" i.e. every

point of P isapoint of P*, then P* is said to be arefinement of P.

> Common Refinement
Let P, and P, be two partitions of [a,b] . Then a partition P* is said to be their
common refinement if P* =B UP,.

> Theorem
If P* isarefinement of P, then
L(P,f.a) < L(P",f,a) oo, 0)
and U(P,f,a) > U(P',fa) . o, (ii)
Proof

Let us suppose that P~ contains just one point x* more than P such that
X, <X <x where x_, and x are two consecutive pointsof P.
Put

w, =inf f(x) (XHSXSX*) Xx_, X* X
w, =inf f(x) (x" <x<x)
Itisclear that w,>m & w,>m where m =inf f(x) , (X, <x<X).
Hence
L(P", f.a)=L(P, f,a)=w|a(X') —a(xy) |+ W[ a(x) - a(xX') ]
-m [a (%) —a(X)]
= a(X) —a(Xy) |+ W[ a(x)-a(xX) ]
—m[a(x)—a(X) +a(x)-a(x,)]
= (w; —m)| o (X) —er(% ;) |+ Wy —m) [ (%) —ax(X) |
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" o Isamonotonically increasing function.
La(X)-a(x )20, a(x)-a(X)=0

= L(P",f,a)-L(P,f,a) = 0

= L(P,f,a) < L(P",f,a) whichis(i)

If P* contains k points morethan P, we repeat this reasoning k times and
arrive a (i).
Now put
W, =sup f(x) (X <x<X)
and W, =supf(x) (X" <x<x)
Clearly M, zW, & M, 2>W,
Consider

U(P,f,a)-U(P" f.a)=M[a(x)-a(x,)]
“W[ o (x) — (X 1) | -Wo[ (%) —a(X') ]
=M [a(x)—a(x)+a(x)—a(x,)]
“W[a(x) — (X 5) | -Wo[ (%) —a(X') ]
= (M, =W)[ @ (X) = (%) |+ (M, W, )| a(x) —a(X) | > 0
( o iST)
= U(P,f,a) = U(P", f,a) whichis(ii)
®

> Theorem
Let f bearea valued function defined on [a,b] and a be a monotonically

increasing functionon [a,b]. Then
supL(P, f,a) < infU(P,f,a)

b b
ie. jfda < jfda

Proof
Let P* be the common refinement of two partitions P, and P,. Then
L(R, f.a) < L(P",f.a) < U(P',f,a) < U(R,f,a)
Hence L(B,f,a) < U(R,f.a) .ccccc...... (i)
If P, isfixed and the supremum is taken over all B, then (i) gives

b
[fda < U(PR,f.a)
Now take the infimum over all P,

b
:»jfdas f dot ®

QD ey T |
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> Theorem (Condition of Integrability or Cauchy’s Criterion for
Integrability.)
f eR(a) on [a,b] iff forevery >0 thereexistsapartition P such that
U (P, f,a)— L(P, f ,a) <¢€
Proof
Let U(P,f,a)—L(P,f,a)<8 ............. (i)

b
= [fda-L(P.f,a)>0 ad U(P,fa)-

QD ey T
—_
o
K
AV
o

Adding these two results, we have

b b

[fdo—[fda—L(P f,a)+U(P f,a)=0
b

fda-[fda <U(P fa)-L(P.fa)<e  from()

a

=

QD C—— T |

l.e. 0L |fda-|fda <& forevery £>0.

Q C——y T
1Q) Sy T

b b
= [fda = [fda ie feR()
Conversely, let f eR(a) and let &> 0

b b b
:jfda:jfda:jfda

b b
Now [fda=infU(P,f.a) ad [fda=supL(P,f.a)
There exist partitions P, and P, such that

U(R,f.a)-fda <% .............. ) Tu(p.fia)-54<]fda

p fda<L(P,f,a)+¢
and [ fda-L(RT.a) <5 giy | 179e<tE® )+ 7,

We choose P to be the common refinement of B, and P,.
Then

b
U(P,f,a)SU(Pz,f,a)<_[fda+%< L(R,f,a)+e<L(P f,a)+e

So that
U(P,f,a)—L(P,f,a) < ¢ ®
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> Theorem
a)If U(P,f,a)-L(P,f,ax)<e holdsfor some P and some ¢, thenit holds

(with the same ¢ ) for every refinement of P.
b)If U(P, f,a)-L(P,f,a)<e holdsfor P={x,,...,x,} and §,t; arearbitrary

pointsin [Xx_;,% ], then

Z| f(s)— f(ti)|Aai <&
i=1
c) If f eR(a) and the hypotheses of (b) holds, then

Proof
a) Let P’ bearefinement of P. Then
L(P,f.a) < L(P",f,a)
and U(P",f,a) <U(Pfa)
= L(P,f,a)+U(P", f,a) < L(P",f,a)+U(P,f.a)
= U(P", fa)-L(P" f,a) < U(P fa)-L(Pfa)
U(P,f,a)—L(P,f,a)<8
- U(P", fa)-L(P,fa)<e

b) P={X,....x,} and §, t, arearhitrary pointsin [x_;,x |.
= f(s) and f(t) bothliein [m,M,].

= |f(51)_f(ti)| < Mj-m X_1 § t X;
= |f(S1)—f(ti)|Aoci < MAg, —mAg,

= i| f(s)—f(ti)|Aoci < iMiAai—imAai
= i| f(s)- ft)|Aq < U(P,f,a)-L(P fa)
UI_(P,f,a)—L(P,f,a) < ¢

" i| f(s)—f(ti)|Aoci < €

0 vm<ft) <M,

" ZmAa < Z (t)Ac, Z

= L(P,fa) < ) f(t)Ax < U(P f a)

anddso L(P,f,a) < [fda < U(P,f,a)
Using (b), we have
b
‘Zf(ti)Aai—jfda < ®




Riemann-stielges Integral 7

> Theorem
If f iscontinuouson [a,b] then f eR(a) on [a,b].

Proof

Let >0 begiven. Choose S >0 so that
[a(b)—a(a)]ﬁ <ég

f iscontinuouson [a,b] = f isuniformly continuouson [a,b].

— Thereexistsa 6 >0 such that

| f(s)-f(t)|<p if xe[ab], te[ab] and |x-t|<5 ........... (i)
If P isany partition of [a,b] suchthat Ax <& forall i
then (i) implies that M,-m<p , (=12,...,n)
= U(P,f,a)-L(P,f,a)=) MAq; - ) mAg,

:Z(Mi -m)Ac,
S[BZAai :ﬁ[a(b)—a(a)] <eg
= f eR(a) by Cauchy Criterion. ®

> Theorem
If f ismonotonicon [a,b], andif « iscontinuouson [a,b], then f eR(a).
( Monotonicity of ¢ still assumed. )
Proof
Let ¢ >0 beagiven positive number.
For any positive integer n, choose a partition P = {xo,xl, ..... ,xn} of [a,b]
such that
_a(b)—a(a)
- n
Thisis possible because « is continuous and monotonic increasing on the closed
interval [a,b] and thus assumes every value between its bounds, o(a) and o(b).

Let f bemonotonic increasing on [a,b], so that its lower and upper bounds
m,M, in [x_,x]| aregivenby
m=f(x,) , M=Ff(x) ,i=L2..,n

o U(P fa)-L(P,fa)=) (M, -m)Ag,

i=1

- B 31 x) - 11x.0)
:—“(b);“(a) [f(b)- f(a)]

<& iIf n istaken large enough.

Aa,

, i=12,...,Nn

= feR(@) on [a,b].

Note: f cR(a) when either
1) f iscontinuousand o ismonotonic, or
i) f ismonotonic and o is continuous, of course ¢ is still monotonic.
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> Properties of Integral
i) If feR(ax) on [a,b],then cf eR(a) for every constant ¢ and

b b
jcfda:cjfda.

Proof
- feR(a)
. 3 apartition P such that
U(P,f,a)-L(P,f,a)<e , where¢ isanarbitrary +ive number.

Now U (P,cf ,oc):zn“cMi A, :czn“Mi A,
i=1 i=1

& L(P,cf,a) ZcmAa —chAa

= U(P,f,a)-L(P,f,a)= [ZM Ao, —ZmAa}
=c[U(P,f,a)-L(P,f,a)]
<ce=g
= cf eR(a)
w U(Pcf,a)=clU(P,fa)] & L(P.cf,a)=c[L(P f.a)]
~ infU(P,cf,a)=c[infU(P,f,a)] & supL(P,cf,a)=c[supL(P,f,a)]
where infimum and supremum are taken over all P on [a,b].

b b b b
:»jcfda:cjfda & jcfda:cjfda

b ba Bél bél
jcfda:jcfda j j
: _chda:c_[fda ®

ii) If f eR(a) and f,eR(x) on [a,b],then f + f,eR(ax) and
b

[(f+ fz)daszldmffzda.

a

Proof
If f=f+f, and P isany partition of [a,b], we have

m+m'<m <M, <M +M/
where M/,m/,M" m" and M,,m arethe bounds of f,,f, and f respectively in
(%% -
Multiplying throughout by Ac;, and adding the inequalities for i=1,2,....,n,
we get
L(P, f,a)+L(P,f,,a)<L(P,f,a)<U(P,f,a)<U(P,f,a)+U(P,f,,a) .......(i)
Since f,eR(a) and f,eR(x) on [a,b] therefore 3 ¢>0 andthereare
partitions B and P, such that
U(R, f,a)-L(R, f,a) < ¢ } i
and U (P, f0)-L(Py fpat) < & |
These inequalities hold if B, and P, are replaced by their common refinement P.
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(i) = [U(P,fLa)+U (P, fa)|-[L(P f,a)+L(P, fa)] < 2¢
Using (i) we have
U(P, f,a)- L(P, f,a) < 2¢
which provesthat f e R(a) on [a,b]
With the same partition P, we have

b
U(P, fLa) < Iflda+8

and U(P,f,a)< _szda +e
Hence (i) implies that )
j)‘fda <U(P,f,a) < j)‘flda+j)‘f2da+28
"+ ¢ Isarbitrary, we conclude th;t )
j)‘f da < j)‘flda+j)‘ f,da
Similarly if we consider the lower su?ns we arrive at
j)‘f da > j)‘flda+j)‘ f,da
Combining the ab?)ve two r;sults, WS have

b b b
[ fda=]fdo+][f,do

iii) If f(x) < f,(x) on [ab], then
b b
[f.do < [f,da

Proof
Let f(x)>O then M; 20 = U(P,f,a)>0

—
N

. f,—f,>0

da >0 :j‘fzda—j‘fldazo

U

Q Sy T m'—.o- _hm'—.

b
fida < [ f,do

> Note

(i) (f+9)(x) = F(X)+9g(x) < supf+supg
= sup(f+qg) < supf +supg

(i) (f+9)(x) = f(x)+9g(x) > inf f +infg
= inf(f+g) > inf f +inf g
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iv) If feR(a)on [a,b] andif a<c<b,then f eR(a) on [a,c] andon [c,b]
and

'dea:jfda+'t|lfda

Proof
Since f eR(a) on [a,b], thereforefor ¢ >0, 3 apartition P such that

U(P, f,a)—L(P,f,a) <¢€
Let P* betherefinement of P suchthat P*=Pu{c}
 L(P,fa) < L(P", fa) <U(P,f,a) SU(P,f o) oo (i)
= U(P", fa)-L(P" fa)<U(P,fa)-L(P,fa) <& ......... (ii)
Let B,P, denotethe setsof pointsof P* between [a,c],[c,b] respectively.
Clearly B,P, arepartitionsof [a,c],[c,b] respectivelyand P' =R UR,.
Ao U(P',f.a)=U(R,f,a)+U(R,f,a) .......... (iii)
and L(P", f.a)=L(R, f.a)+L(Pfa) oo (iv)
= {U(R.f.a)-L(R, f.a)}+{U(R, f.a)-L(R, f.a)]
=U (P, f,a)-L(P" f.a)<e
Since each bracket on the left is non-negative, it follows that
U(Pl,f,a)—L(Pl, f,a) <€
and U(R,f,a)-L(R,fa)<e¢
= feR(a) on [a,c] andon [c,b].
We know that for any functions f, and f,,if f=1f +f,, then
inf f > inf f +inf f,
and supf < supf +supf,
Now for any partitions B,P, of [a,c],[c,b] respectively, if P*=PB uPR,, then
U(P",f,a)=U(R,f,a)+U(P,f.a)
Hence on taking the infimum for all partitio_ns, we get

b [« b
[fda > [fda+|fda
Butsince f eR(a) on [a,c],[c,b],[a,b]

.'._deazjfda+_tffda ............. v)

Agan  L(P",f.a)=L(R, f.a)+L(P,f.a)
and on taking the supremum for all partitions, we get

b c b
jfda < jfda+jfda
Butsince f eR(x) on [ac],[cb],[ab]

b
.-.jfdas

QD C—y O

b
fda+jfda ............... (Vi)

(v) and (vi) imply that

jfda :jfda+_tffda ®

a
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v) If feR(a) on [ab] and |f(x)| <M on [ab], then

jfda < M[a(b)-a(a)]
Proof
We know that
[fda < U(Pf,a)
a :ZMiAaiSMZAai
But
ZAai =a(b)—a(a)
< M[a(b)—a(a)] O]

vi) If feR(a,) and f eR(w,), then f eR(a,+a,) and
_de(al+a2):jafdal+jafda2

andif feR(x) and c i;apositiveconstaant, thenaf e R(ca) and
_de(ca) = c_tffda

Proof

Since f eR(a;) and f eR(x,), thereforefor &> 0, there exists partitions
P,P, of [a,b] such that

U(R, f.)-L(R.f.a) <

[95)
|m'\’|

and U(R,f,a,)-L(R,f,a,) <
Let P=RUPR,

2

~ U(P f,a)-L(P f,y) <

Nl N,

& U(P,f,a,)-L(P,f,a,) <

Let m , M, beboundsof f in [X_4,%]
Take a=a,+a,
= Aag, :AoclI + Aoy,

Pfa ZMAa

="M, (Aay +Aay )
:U(P,f,a1)+U(P,f,a2)
Similarly
L(P, f,a): L(P, f,a1)+ L(P, f,az)
" U(P,f,a)—L(P,f,a):U(P,f,al)—L(P,f,a1)+U(P,f,a2)—L(P, f,az)

< 54—5 = & by(|)

= feR(x) where a=a,+a,
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To prove the second part, we notice that
b

[fda = infU(P,f,a)

inf {U(P, f,a)+U (P, f,a,)}
> infU (P, f,op)+infU(P, f,a,)

b b
= [fday+[fdo oo (ii)
Similarly by taking the supremum of lower sum of partition we arrive that
b

jfda S_deal+j)‘fda2

................. (iii)
From (ii) and (|||)
jfda = jfdal+jfda2
e Ifd(al+a2) = Ifdal+_[fda2 va=o+a,
Now - feR(a; - for g>0,aE| apartiteilon P of [a,b] such that
U(P,f,a)—L(P,f,a) < E i, (iv)

Let a'=ca then Aa'=A(ca,)=CAq,
P f a ZM Ao

=> M, (cAc;)

=CZMiAoci

=CU(P,f,a)

Similarly, L(P, f,a')=cL(P,f,a)

= U(P,f.a')-L(P,f,a')=c{U(P,f,a)-L(P,f.a)} <ce  by(iv)
= feR(a') where o' =ca

b
Also  [fda'=infU(P,f,a')

=inf cU(P, f,a)
=cinfU(P, f,a)

b
:c_[fda
and
b
[ fda'=supL (P, f,a')

=supcU (P, f,a)
=csupU (P, f,a)

b
:c_[fda
Hence

_dea’:c_dea where a'=ca ®
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» Lemma
If M & m arethesupremum and infimumof f and M', m arethe
supremum & infimumof | f | on [a,b] then M'—m < M —m.
Proof
Let x,X, €[a,b], then
[ F )= FOR|| <] FO) = FOQ) | wovviiinne, (A)
- M and m denote the supremum and infimumof f(x) on [a,b]
LM & f(X)>m vV xelab]
X, X% € [a,b]
)£ M oand  f(x) =2 m
= f(x) <M and —f(x)<-m

= f(x)—-f(%)<M-m........ce...... (i)
Interchanging x, & X,, weget
[FO)-F)]<M-—m .o, (ii)
()& (i) = [f(x)-f(x)|<M-m
= |[f)-]f()||<M-m byeq. (A .......... )

* M’ and m denote the supremum and infimum of |f(x)| on [a,b]
f[ <M and [f(X)|2m vV xe[ab]
= 3 ¢ >0 such that

[F()] > M =€ covrrnee (iii)

and |f(x) <m+e = —|[f(x)|+e >-n .............. (iv)

From (iii) and (iv), we get

|f(X1)|—|f(X2)|+8 >M'-nm—¢

= 2e+|f(x)|-|f (%) > M'—n

g isarbitrary . M/ =m < O F )] o (V)
Interchanging x, & X,, weget
M = < —(|FO)|=[F)]) wreerannn. (vi)
Combining (v) and (vi), we get
M=l < [[F )= FOQ|| oo (I
From (1) and (I1), we have the require result
M'—m <M-m O]
> Theorem
b b
If feR(a) on [ab],then | f|eR(a) on [a,b] and jfda < j|f|da.
Proof
- feR(a)

. given e >0 3 apartition P of [a,b] such that
U(P, f,a)— L(P, f ,a) <
e ZMiAoci —Zm A, :Z(Mi -m)Ag; < &
Where M, and m are supremum and infimum of f on [x_;,X]
Now if M/ and m/ are supremum and infimumof | f | on [x_,x ] then
Mi-m < M;-m
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= Z(Mi'—r’r’()Aoci < Z(Mi—rr])Aoci
= U(P|f|.a)-L(P|fl.a) <U(P fa)-L(P,f,a)<e
= | f|eR(a).

Take c=+1 or —1 to make c_[fda >0

Then

b
jfda

Also  cf(x) < |f(x)| V xe[ab]
b b b b
= [cfda < [[f|de = c[fda < [|f]do .......... (if)
From (i) and (ii), we have
b

< [|f]da ©

a

b
jfda

> Theorem
If feR(a) on [a,b],then f*cR(a) on [a,b].
Proof
feR(@) = |f|eR(a)
= [f(x)| <M vV xe[a,b]
- feR(a) ..given £>0, 3 apartition P of [a,b] such that

U(P, f.a)=L(P,f.a) <&y wmmnee (i)
If M; & m denotethesup. & inf.of f on[x_,X]then M? & ny arethe
sup. & inf. of f%on[x_;,%].
= U(P, f%a)-L(P,f%a)=3 (M -n})Ac,
=2 (M; +m)(M; -m)Ac,
() <|f(X] <M v xel[ab]
and f2=|f[
MM & m<M
= U(P, f%a)-L(P,f%a)<> (M +M)(M,-m)Aq,

=2M > (M, -m)Aq;
&
=2M[U (P, f,a)-L(P,f,a)] <2M TV
= f?eR(a) O]
> Corollary
If feR(ax) & geR(ax) on [a,b] then fgeR(x) on [a,b].
Proof

- feR(a), geR(x)
~ f+geR(a), f-geR(a)
= (f+9)°eR(a) , (f -9)*eR(a)
= (f+9)*—(f —g9)’cR(a) = 4fgeR(a)

and ultimately
fgeR(a) on [a,b] ®
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> Theorem
Assume « increases monotonically and a'eR on [a,b]. Let f bebounded

real functionon [a,b]. Then f eR(a) iff fa’'eR.Inthat case

'dea:jif(x)-a’(x)dx

Proof
 a'eR on [ab]
. given £>0 3 apartition P of [a,b] such that
U(Pa')-L(P,a') <& .covouvrrenn (i)
The Mean-value theorem furnishes point t; [x_;,% ] suchthat
Mg, = a(x)-a(X.)

=o'(t)Ax for i=12..,n ... (i)
If s e[x.,%], thenform (i) we have
‘Za'(S)AXi —Za'(ti)AXi‘ <& | Previously proved at page 6
= Y |a(s)-a'(t)|Ax <& oo (iii)
Put M =sup| f(x)| and consider
| 1(5)Ac =D F(S)a'(S)AX] o (A)

=| > f(s)a'(t)Ax -Y f(s)a'(s)Ax| by (ii)

= | > () (e'(t) - a'(5)) Ax]

<YM (a't)-a'(5))] Ax

SME e, (iv) by (ii)
= > f(§)Aq < D f(s)a'(5)A% +Me  forall choicesof § e[x_;,x]
= U(P,f,a) < U(P,fa')+ Me

The same arguments leads from (A) to

U (P, fa') <U (P, f ,a)+ Me
Thus |U (P, f,a)-U(P.fa')| < Me ..o, (v)
.+ (i) remainstrueif P isreplaced by any refinement
. (v) asoremains true

b b
= | [ fda-[f()a'(x)dx| < Me

"+ & was arbitrary
b b
j fda = j f(X)a'(x)dx  for any bounded f .

Using the same argument, we can prove from (iv) by considering the infimum of
| f(X)| that

19 ey T

fdo = j)'f(x)a’(x)dx

Hence

_dea: fda < jf(x)a'(x)dx:jf(x)a'(x)dx

19 Sy &

Equivalently f eR(ax) < fdo'eR(a).
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> Theorem (Change of Variable)
Suppose ¢ isastrictly increasing continuous function that maps an interval

[A B] onto [a,b]. Suppose & is monotonically increasing on [a,b] and f e R(«)
on [a,b].Define B and g on [A B] by
By)=a(e(y)) . a(y)="f(e(y)

then geR(B) and [gdB=fda.

Proof

To each partition P ={Xx,,....,X,} of [ab] corresponds a partition
Q={Yps-- ¥y} Of [AB] because ¢ maps [AB] onto [ab].
= X =0(¥)
All partitionsof [A B| are obtained in this way.
.+ Thevaluetakenby f on [x_;,% ] are exactly the same asthose taken by g
on [y, Y] weseethat
U(Q.9.8)=U(P,f,a)
and L(Q,9,8)=L(P,f,a)
- feR(@) on [a,b]
. given £>0, wehave
U(P, f,a)—L(P,f,a) <¢€

= U(Q’g’ﬁ)_L(Q1g’ﬁ) <é
= geR(B) ad [gdB=|fda o
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INTEGRATION AND DIFFERENTIATION
> Theorem (Ist Fundamental Theorem of Calculus)

Let f eR on [a,b]. For a<x<b, put F(x):J'f(t)dt,then F is continuous

on [a,b]; furthermore, if f iscontinuousat point X, of [a,b], then F is
differentiableat x,, and F'(x,) = f(X,)-

Proof
- feR
. f isbounded.
Let |f(t)| <M for te[ab]
If a<x<y<hb, then a X vy b

[F(y)-F(x)|=

Jy'f(t)dt—JX'f(t)dt

- Jx'f(t)dt+Jy'f(t)dt—JX'f(t)dt

- Jy'f(t)dt

< T| f(t)|dt < M_Tdt =M (y—-X)

= |F(y)-F(x)| <& for >0 provided M|y-x| < ¢
ie. |F(y)-F(X)|<e whenever |y—x|< ﬁ

This proves the continuity (and, in fact, uniform continuity) of F on [a,b].

Next, we have to provethat if f iscontinuousat x,e[a,b] then F is
differentiableat x, and F'(x,) = f (X))
e limFO=FO) ¢
=% T—X,
Suppose f iscontinuousat x,.Given ¢>0,3 6 >0 suchthat
[ f(t)-f(x)| <e if [t—x| <5 where te[ab]

= f(x)—e< f(t) < f(x)+e if x-0 <t<x,+6

t

= j'(f(XO)—g)dt < Jt'f(t)dt < j.(f(xo)+g)dt A Xems X Xoto
% % "

f(xo)—g)jdt < Jt'f(t)dt < (f(x0)+g)jdt
X0 X0

X

= (

= (F(%)—&){t-%) < F{)=F(%) < (f(x)+&)({t—%)

F(t) - F (%)
t

= f(x)-¢ < < f(x)+e

_ | FO-Fy)
=%

mFO=F0Q) _
= =S B = 1)

= F'(%) = T(x) ©

~ )| < 6
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> Theorem (IInd Fundamental Theorem of Calculus)
If f eR on [a,b] andif thereisadifferentiable function F on [a,b] such that

F'=1f, then
Tf(x)dx: F(b)-F(a)

Proof

 feR on [ab]

. given £>0, 3 apartition P of [a,b] such that
U(P,f)-L(P,f)<e

- F isdifferentiable on [a,b]

-3 t e[%,%] such that

F(x)—F(x_)=F'(t)Ax
= F(x)-F(x_)=ft)Ax for i=L2,...,n -~ F'=f

= ;f(ti)A‘:F(b)_F(a) .+ if f eR(a) then

= |F(b)-F(@)-[f()dx| < ¢ T rwaa [ rda|<e
g Isarbitrary )
Tf(x)dx:F(b)—F(a) ®

> Theorem (Integration by Parts)
Suppose F and G aredifferentiable functionon [a,b], F'=f eR and

G'=geR then
TF(X)Q(X)dh F(b)G(b) - F(2)G(a) —T f (X) G(X) dx

Proof

Put H(X) = F(X)G(x)

= H'=F'(X)G(X)+F(X)G'(x)=h

Now - HeR and heR on [a,b]

.. By applying the fundamental theorem of calculusto H and its derivative h,
we have

Tth: H(b) - H(a)

= b [F'(})G(x)+ F(x)G'(x)]dx=H (b) - H(a)

= [ ()G dx+ [F(x)g(x)dx=F(b)G(b) - F (a) G(a)

a a
b b

= [F(x)g(¥)dx=F(b)G(b)-F(a)G(a)- [ f () G(x)dx ®

a a
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» Question
Show that the function f defined on [0,1] by

1 : Xisrational
f(X)= L
0 : Xisirrationd
is not integrable on [0,1]
Solution
For any partition P of [0,1], m =0, M, =1

= S(P,f) ZMAXk ZAxklOl

and  L(P,f)=>mAx =0

k=1

1
so that jfdx:l , fdx=0
0

10 ey

1 1
i.e. dex;tjfdx = f isnotintegrableon [0,1]. ®
0 0

» Question

Show that f (X) =sinx is Riemann integrable over [O%}

Solution
Take P= {Oi T 3—” ..... n—ﬂ} by dividing [O,E} into n equal parts.
2n'n’'2n’ 2n 2
kr (k Dr
Then M, =sin— =
2n > M= 2n
kr (k-Dr
= S(P,f)-L(P,f)= sin——sin
( ) ( ) Z( 2n 2n jZn

T T
<— <e¢ for n>n,=—
2n 2¢

= f isRiemann integrable over [O%} O]

» Question

%( : X isrationa ,0< x<1

Show that f(x):{ L
0 , X isirrational

isintegrable on [0,1].
Solution
f iscontinuous at each irrational. And rational numbers are dense in [0,1].

1
Also L(P,f)=0 forany partition P of [0,1] sothat dex:O

- f>0 . S(Pf)20 = [fda >0 ..., 0
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" There are only finite number of points P (rationals) for which f (_p] 9, %
q a) P

. Suppose f(x) 2% for k valuesof x in [0,1]

Take B suchthat |B <§.

n

Consider S(B, f)=> M, (x—x_)

i=1

Thereare at most k values for which %s M, <1. For al other values M, >%.

= S(Pl’f): Z Mi()ﬁ_xi—l)'i' Z Mi()ﬁ_xi—l)

k values other values
& & & &
< Z k4 X iz
oK +22(X| %_1) < 2+2 e
"+ ¢ isarbitrary
1
© S(R,f)<0 and [fdx<O ... (if)
0
By (i) and (ii), we have
1
jfdx:o
0
1
Hence _[fdx:O ®
0

> Note
If f isintegrablethen | f| isalso integrable but the converse s false.

For example, let f beafunction defined on [a,b] by
f(x) = 1 ; xGQr.\[a,b]

-1 ; otherwise

Then | f | isRiemann-integrable but f isnot.

References: (1) Lectures (Year 2003-04)
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We shall now discuss the concept of functions of bounded variation which is

closely associated to the concept of monotonic functions and has wide application in
mathematics. These functions are used in Riemann-Stieltjes integrals and Fourier
series.

Let afunction f be defined on aninterval [a,b] and P ={a=X;,X........ %, =b}

be a partition of [a,b] . Consider thesum »’| f(x) — f(x_,)|. The set of these sums
i=1

is infinite. It changes when we make a refinement in a partition. If this set of sumsis
bounded above then the function f is said to be a bounded variation and the
supremum of the set is called the total variation of the function f on [a,b], and is

denoted by V(f;ab) or V,(ab) anditisalso affiliated as V(f) or V.
Thus

V(f;ab)=spY | f(x)- f(x.)]

The supremum being taken over all the partition of [a,b].
Hence the function f is said to be of bounded variation on [a,b] if, and only, if
its total variation isfinite i.e. V(f;ab) <.

< Note
Sincefor x < ¢ <y, wehave

MOEMCIESMOEMOIEIRICER IS
Thereforethesum | f(x)— f(x_)| can not be decrease (it can, in fact only
increase) by the refinement of the partition.

< Theorem
A bounded monotonic function is a function of bounded variation.
Proof
Suppose afunction f is monotonically increasing on [a,b] and P is any partition
of [a,b] then

n n

D) -f(x)| =D (f(x)-f(xy) =f(b)-f(a)

i=1 i=1
V(f;a,b):sup2| f(x)-— f()g_1)| = f(b)- f(a) (finite)
Hence the function f is of bounded variation on [a,b].
Similarly a monotonically decreasing bounded function is of bounded variation
with total variation = f (a) — f (b).
Thus for a bounded monotonic function f
V(f):|f(b)—f(a)| Q
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< Example
A continuous function may not be a function of bounded variation.
e.g. Consider afunction f, where

xsin~ ; when 0<x<1
f(X) X
; when x=0
0
Itis clear that f iscontinuouson [0,]].
. 2 2 2 2
Let us choose the partition P =10, : peeennen —,—,1
2n+1 2n-1 53
Then

ZIf(>§)—f(>§_1)|=‘f(1)_f@j N f@j_f@j

. 2 . (3n 2 . (3n 2. (5x
snz —=sin| — ||+|=sin| — |-=sin| —
3 2 3 2 5 2

..... + 2 (2n+ Dz 0
2n+1 2
2 (2 2 2 2 2 2 2
=—F| =+ = |+]| == [+ e + + +
3 \3 5 5 7 2n-1 2n+1) 2n+1
:22+22+22+ ............. + 2 2
3 5 7 2n+1
1 11 1
=4 =+ =+ =+ +
(3 5 7 2n+1j
: o .1 1 1 . : :
Since the infinite series =+ c + > F rrevreeeen Is divergent, therefore its partial sums
sequence {S,}, where Sn:1+1+1+ ........ + , isnot bounded above.
3 5 7 2n+1

Thus ) | f(x)— f(x_,)| canbe made arbitrarily large by taking n sufficiently

large.
= V(f;01)—>x andso f isnot of bounded variation. Q

< Remarks
A function of bounded variation is not necessarily continuous.
e.g. the step-function f (x)=[x], where [x] denotes the greatest integer not

greater than x, is afunction of bounded variation on [0,2] but is not continuous.

< Theorem
If the derivative of the function f exists and is bounded on [a,b], then f is of

bounded variation on [a,b] .

Proof
f’ isbounded on [a,b]

- 3 k suchthat | f'(x)| < k V xe[ab].
Let P be any partition of the interval [a,b] then
D) - F(x D)= x—%4f'(c) , celab] (byM.V.T)
< k|b-a|
= V(f;ab) isfinite. = f isof bounded variation. Q
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Note
Boundedness of f' isasufficient condition for V(f) to befinite and is not

necessary.
< Theorem
A function of bounded variation is necessarily bounded.

Proof
Suppose f isof bounded variation on [a,b].

For any xe[a,b], consider the partition {a,x,b}, consisting of just three points
then
| f(0)—f(@)|+] fB)- ()| < V(f;ab)
= |f(0-f(@)] < V(f;ab)
Again
£ (x)|=] @)+ f()-f(a)]
<|f@)|+| f()-f(@)
<|f@|+V(f;ab) <
= f isboundedon[a,b]. a

< Properties of functions of bounded variation
1) The sum (difference) of two functions of bounded variation is also of bounded

variation.

Proof
Let f and g be two functions of bounded variation on [a,b] . Then for any

partition P of [a,b] we have
P +a) )= (F+a) x| =2 { Fx)+90%)} = {F(x_p) + 9(X_)} |
=2 [ F06) = T (%) +9(%) —g(x.,)|
<00 = 06 |+ 2 9(x) —9(x.)]
<V(f;ab)+V(g;ab)
= V(f +g;ab) < V(f;ab)+V(g;ab)
This show that the function f + g is of bounded variation.
Similarly it can be shownthat f —g isalso of bounded variation.
ie. V(f-g) < V(f)+V(9) a

Note
() If f and g are monotonic increasing on [a,b] then (f — g) is of bounded

variation on [a,b] .
(if) If ¢ is constant, the sums )| f(x)— f(X_,)| and therefore the total variation
function, V(f) issamefor f and f —c.

2) The product of two functions of bounded variation is also of bounded

variation.

Proof
Let f and g be two functions of bounded variation on [a,b].

= f and g arebounded and 3 anumber k such that
[ f(X)] < k & |g(¥)| <k V xe[ab].
For any partition P of [a,b] we have
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> (fg)(x)=(fg) (%)
= > [ F)a(%) - F(%_)9(X,))
=] F(x)g(x) = F(x)g(x_) + F(x)a(x_) — f(x_)a(x_)|
=2 F00){a06) - g6} + 906 D {F(6) = (%)}
DRI ICIET[CHIEDI L [CHIRICIERICI]

<k [90¢) = g(x) [+ k2| F (%)~ f (%)
<kV(g)+kV(f)
= fg isof bounded variation on [a,b]. a

< Note
Theorems like the above, could not be applied to quotients of functions because the
reciprocal of afunction of bounded variation need not be of bounded variation.

eg.if f(x) >0 as x— X,, then % will not be bounded and therefore can not
X

be of bounded variation on any interval which contains X, .

Therefore to consider quotient, we avoid functions whose val ues becomes
arbitrarily close to zero.

3) If f isafunction of bounded variation on [a,b] and if 3 a positive number k
suchthat | f(x)| > k V xe[ab] then % is also of bounded variation on [a,b] .

Proof
For any partition P of [a,b], we have

ZH(&)—%(M) :

1
‘Z‘ F(x) (%)
5| f(x) = F (%)
Z‘ f(x)f ()

Z|f(>ﬂ_1)—f(>ﬂ)| (f:a,b)

= % is of bounded variation on [a,b]. Q

4) If f isof bounded variationon [a,b], thenit isalso of bounded variation on
[a,c] and [c,b], where c isapoint of [a,b], and conversely. Also
V(f;a,b)=V(f;ac)+V(f;cb).

Proof

a) Let, first, f beof bounded variation on [a,b].

Take B ={a=X,X,....X,=C} & P={c=Yy, V... y,=b} anytwo
partitionsof [a,c] and [c,b] respectively.

Evidently, P=RUPR, ={a=Xy,.... Xy, Yo, ¥, =D} isapartition of [a,b].
We have

{31 100- 161+ 300 1) < V(tian)
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= ST~ 1] < V(fab)

and i| f(y)—-f(yi)| < V(f;ab)

= f isof bounded variationon [a,c] and [c,b] both.
b) Let, now, f be of bounded variationon [a,c] and [c,b] both.
Let P={a=2,z,...,z,=b} beapartitionof [a,b].
If it does not contain the point c, let us consider the partition P* =P u{c}
Let ce[z_,,z] e z,<c<z, r<n c

X

Then a 4 L., z
S| t@)- @] =X f@)- @)+ @)= @[+ | f@)-f(z)]

i=r+1

si| ()= 13|+ (- (z.)]

+ f(z)- @O+ il f(z)-f(z.)|

i=r+l
<V(f;ac)+V(f;cb)

= f isof bounded variation on [a,b] if it is of bounded variationon [a,c] &

[c,b] both, then
V(f;ab) < V(f;ac)+V(fich) ............. (i)

Now let £ >0 be any arbitrary number.

Since V(f;a,c) and V(f;cb) arethetotal variationof f on [a,c] & [c,b]
respectively therefore 3 partition B ={a=X;,%,%,,...... X, =¢} and

P, ={C= VY5 Yy Y5 Y, =b} Of [a,c] & [c,b] respectively such that

m

D110 )] > V(Fiae) =% (if)
& Z| foy)—f(ya)| > V(f;c,b)—% ............... (iii)

Adding (ii) and (iii) we get
D00 = F) [+ 2] F) = F(y)] > V(Fac)+ V(ficb)—e

= V(f;ab) > V(f;ac)+V(f;cb)-¢
But ¢ isarbitrary positive number therefore we get
V(f;ab)> V(f;ac)+V(fich) .....ooein (iv)
From (i) and (iv), we get
V(f;ab)=V(f;ac)+V(f;cb) Q

(o X-XoR LR oL: XX LR XoRoRogoLogoRogoRogoLoRoLoRoLoge Lol
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< Variation Function
Let f beafunction of bounded variation on [a,b] and x isapoint of [a,b].

Then the total variation of f is V(f;a, x) on [a,X], whichis clearly afunction of X,
Is called the total variation function or simply the variation function of f andis
denoted by V. (x) , and when there is no scope for confusion, it is simply written as
V(X).
Thus V,(x)=V(f;a,x) ; (as<x<b)
If x,X, aretwo points of the interval [a,b] suchthat x, > X, then
0<] F06)~ Q)| V(ix,%)
=V (fiax)-V(fiax)
=V, (%) -V, (%)
= V, (%) 2V, (%)
implies that the variation function is monotonically increasing function on [a,b] .

CHARACTERIZATION OF FUNCTIONS OF BOUNDED VARIATION

< Theorem
A function of bounded variation is expressible as the difference of two

monotonically increasing function.

Proof
We have

f(X) :%(V(x)+ f(x))—%(V(x)— f(x))
=G(x)-H(x)  (say)
We shall prove that these two functions G(x) and H(x) are monotonically

increasing on [a,b].
Now, if X, > X, wehave

G(x) - G(x) =5 [V () ~V () + 1 ()~  (x)]

1
=V = (F(x) = f(x))]
Since V(f;x,%) 2 F(x)—-f(x)
= G(X%)-G(x) 20 ie G(x)=G(x)
so that the function G(x) is monotonically increasing on [a,b] .
Again, we have

H () = H00) = 5[ (V06) -V ) = (00~ (%))

=2[V(Fix,%) ~(100) - 1))

so that as before
H(x)-H(x)=0 ie H(X)>H(x).
I.e. H(X) isaso monotonically increasing function.

Hence the result. a

< Note
A function f (x) isof bounded variation over the interval [a,b] iff it can be

expressed as the difference of two monotonically functions.



Chap 7 — Functions of bounded variation.

< Theorem
Let f beof bounded variationon [a,b].Let V bedefined on [a,b] asfollows:
V(X)=V;(x)=V(f;ax) if a<x<b, V(a)=0.
Then
1) V isanincreasing functionon [a,b].
ii) (V—f) isanincreasing functionon [a,b].
Proof
If a<x<y<b,wecanwrite
V(fia,y)=V(f;ax)-V(f;xy)
= V(y)-V(x)=V(f:xy)
“ V(f;xy) >0
S V(yY)-V(X) 20 = V(X)<V(y) and(i) holds.
To prove (ii), let D(x)=V(X)-f(x) if xe[a,b].
Then, if a<x<y<b, wehave
D(y)-D() =[V(y) -V(X)]-[f ()~ f(¥)]
=V(f;xy)=[f(y)-f(X)]
But from the definition of V(f;X,y), it follows that
Fy)-f(x) <V(f;xy)
Thismeansthat D(y)—D(x) > 0 and (ii) holds. a

Q>
X

<
O

< Theorem
If ¢ beany pointof [a,b], then V(X) iscontinuousat c if andonly if
f(x) iscontinuousat c.
I.e. A point of continuity of f(x) isalsoapoint of continuity of V(x) and
conversely.

Proof
Firstly suppose that V (x) iscontinuousat c.

Let £ >0 begiven, then 3 o >0 such that

V(X)-V()|<e for |[x-c|<d ..o (i)
Also, we have

[f)=F@©Q] <VX)-V(©) if X>C rcoverrrrrn. (ii)
And

[ f(X)- )| <V()-V(X) if X<C oo, (iii)

From (i), (ii) and (iii), we deduce that
| f(x)- )| <|[V(X-V()|<e for |x-c|<35
Which showsthat f(x) iscontinuousat c.
Now supposethat ¢ isapoint of continuity of f(x) andlet ¢ >0 begiven,
then 3 6 >0 suchthat

| f(0-f(0)] <% for |x—c|<é
Also 3 apartition P={C=yy,Y;.ons Vg Yareoon Yo =D} OF [C,b] such that

i\ F(Ye)— T (You)| > V(f;c,b)—%g ............... (iv)

Since as aresult of introducing addition points to the partition P, the
corresponding sum of the moduli of the differences of the function values at end
points will not be decreased, therefore we may assume that
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O<y-Cc<9$o
&
so that |f(y1)—f(c)|<§ ................ (V)

Thus (iv) becomes
1 1 Q 1
V(fich)—Ze < Ze+ )| f(Y)— F(yen)| < Se+V(fiy,b)
2" 2 4 2

= V(f;c,b)-V(f;y,b) < ¢
= V(y)-V(0) <&
Thusfor 0 < y,—c <o, wehave 0 <V(y,)-V(c) < ¢
lim V (x) =V (c)

x—>c+0
Similarly, we can have
IimOV(x) =V(c)

Which showsthat V(x) iscontinuousat c.

< Note
V(x) iscontinuousin [a,b] iff f(x) iscontinuousin [a,b].

< Corollary
A function f isof bounded variationon [a,b] iff thereisabounded increasing

function g on [a,b] suchthat for any two points X' and X" in [a,b], X <X,
we have
| F(X) = F(X)| < g(x) - g(X)
Moreover, if g iscontinuousat X', sois f.
Proof

X <b
Take g(x):{ 2 asx
0 , X=a
Then g isincreasing and bounded on [a,b].
Also, | f(X)- ()| <V (f) = g(X) - 9(X)
Which also yieldsthat if g iscontinuousat X', sois f.

< Question
Show that the function f defined by
X*Si n1 . xz0
f(X)= X
0 ; x=0
is of bounded variation on [0,1].

Solution
f isdifferentiableon [0,1] and f'(x)=2x sin%—sinx for 0< x<1.
Also

/(0] <

2XSl n1
X

+|sinx| <2+1=3

i.e. f'(x) isboundedon [0,1]
Hence f isof bounded variationon [0,1].
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< Question
X
xcos— , O0<x<1 | .
Show that  g(X) = 2 - is not of bounded variation on [0,1]
. CX=
Solution
Let P= O,i, ! o ll1 be a partition of [0,1].
2n 2n-1 32
Then

D)= ()]

o (S - G -

T 1 T 1 T 1 T
= | COS— — —CO0S— —COS— — —C0S—
2 2 4 2 4 3 6

1 T 1 T 1 T 1 T
=2| =cos— |+ 2| =c0oS— |+ 2| —cOS— |+.....+ 2| —COS—
2 4 3 6 4 8 2n 4n

1 T 1 T 1 T 1 T
= 2| —COS— + —C0S— + —COS— + ...... +—C0S—
2 3 6 4 8 2

+ +

which is not bounded.
Hence f(x) isnot of bounded variation on [0,1]. Q

Alternative
We have

| 9(%.1) — (%) | +] (%) — 9(X ) |

1 (k+hr 1 /1 /1 1 (k-Drn

= CoS —— COS—

= +
k+1 2 k 2

1cos - cos
k 2 k-1

2 ©if k iseven
K
1 1
—+— .
k+1 k-1 '
1 &1
SAACEDIEDY

k=1 k=1 k

if k isodd

Z% isdivergent .. V"(g) isnot finite.
k=1

Hence g is not of bounded variation. a

References: (1) Lectures & Notes (Year 2003-04)
Prof. Syyed Gul Shah
Chairman, Department of Mathematics.
University of Sargodha, Sargodha.
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We discussed Riemann-Stieltjes' s integrals of the form J: f da under the

restrictions that both f and « are defined and bounded on a finite interval [a,b] .
To extend the concept, we shall relax these restrictionson f and o .

> Definition
The integral _[bf do is called an improper integral of first kind if a=-o or

b=+ or both i.e. oneor both integration limits is infinite.

> Definition
The integral _[bf do iscalled an improper integral of second kind if f(x) is

unbounded at one or more points of a< x<b. Such points are called singularities
of f(X).

> Notations
We shall denote the set of all functions f suchthat f € R(a) on [a,b] by

R(a;a,b). When a(X) = x, we shall simply write R(a,b) for this set. The notation
a T on [a,0) will meanthat o is monotonically increasing on [a,) .

> Definition
Assumethat f € R(a;a,b) forevery b>a. Keep a,a and f fixed and define
afunction | on [a,«) asfollows:

I(b):_Tf(x)da(x) if b>a ............ ()

The function | so defined is called an infinite ( or an improper ) integral of first
kind and is denoted by the symbol | °° f(x)dar(x) orby [ °° f det .
The integral _[: f do is said to converge if the limit
Liml(b) URTRTRR (1))
exists (finite). Otherwise, _[ : f da issaidto diverge.

If the limit in (ii) exists and equals A, the number A is called the value of the
integral and we write _[: fda=A

> Example
Consider jlb x P dx.

if p=1, theintegral Jx‘pdx divergesif p<1.When
1

p>1, it converges and has the value il
p_

If p=1, weget Jlbx‘ldx:logb—mo a b>wo. = _[;Ox‘ldx diverges.
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> Example
b
Consider _[S| n 27z xdx
0

(1— cos2rzb)
- 2 5y
2r

b
_[sinandx: as b—ow.
0

.. the integral _[sinandx diverges.
0

> Note

If _[ f da and _[f do are both convergent for some value of a, we say that

—0o0 a

the integral _[ f do isconvergent and its value is defined to be the sum

[ fda= [ fda+]fda
The choice of the point a is clearly immaterial.

0 b
If the integral _[ f do converges, its value is equal to the limit:  lim _[ f do .
—© -b

b—+o0

> Theorem
Assumethat & T on[a,+o) and supposethat f e R(c;a,b) for every b>a.

Assumethat f(x)>0 foreach x>a. Then J':fda converges if, and only if,

there exists a constant M > 0 such that

b
Ifda < M forevery b>a.

Proof
We have I(b):_[f(x)da(x), b>a

= | T on [a+x)
Then lim | (b) =sup{l(b)|b>a} =M >0 and the theorem follows

b
= _[ f da <M for every b>a whenever the integral converges.

SRR RPRBRBE S
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> Theorem: (Comparison Test)
Assumethat a T on[a,+x).If f e R(a;ab) forevery b>a, if

0< f(x)<g(x) forevery x>a, and if _[ gda converges, then _[ f da converges

and we have
dea < nga
Proof a a
Let Il(b):ifda and Iz(b):igda , b>a
aOs f(x)<g(x) for e\jery X>a
<L) (i)
nga converges .. 3 aconstant M >0 such that
]OgdaSM , b>a ... (i)
From (i) and (i?)wehave l,(b)<M , b>a.

= Limll(b) exists and is finite.

= _[f do converges.

Also Limll(b)sLimlz(b)SM

= [fda<[gda.
> Theorem (Limit Comparison Test)

Assumethat a T on [a,+%). Supposethat f e R(c;a,b) and that
g e R(a;a,b) forevery b>a,where f(x)>0 and g(x)>0 if x>a.lf

then _[ f da and _[ gda both converge or both diverge.

Proof
For all b>a, wecanfindsome N >0 such that
) ‘<g vV x>N forevery &>0.
g(x)
= 1-¢ <M<l+g
g(x)
Let g:%, then we have
1_f( 3
2  g(x 2

= g(X)<2F(X) e i) ad  2f(X)<39(X) woooeren(ii)
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From (i) ]Ogda < Zdea

= _[gda converges if _[fda converges and _[fda divergesif _[fda
diverges.

From (ii) Zdea < Snga

= _[fda converges if _[gda converges and _[gda divergesif _[fda
diverges.
= Theintegrals _[fda and _[gda converge or diverge together.

> Note

The above theorem also holdsif lim E ;_c, providedthat c=0.If c=0,
X—0 g X

we can only conclude that convergence of _[ gda implies convergence of _[ fda.

> Example

For every real p, theintegral Je‘xxpdx converges.

This can be seen by comparison of this integral with _[iz dx.

f(x) ,._e’"xP xop 1
Since lim (X)_Ilm where f(xX)=e"x" and g(x):F.
g }f(z
p+2
= lim ()_Iime‘xx"’*zzlimxX =0
X—>00 g(x) X—00 X @

and - _[izdx is convergent
1 X

.. the given integral _[e‘xxp dx isalso convergent.

> Theorem

Assume o T on[a,+x).If f eR(x;a,b) for every b>a and if '|'| f |dor

converges, then J' f doe also converges.

Or: An absolutely convergent integral is convergent.
Proof
If x>a, £f(x) <|f(X)
= |f(x)|— f(x)>0
= O£| f(x)|— f(x)£2| f(x)|
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=3 T(| f |- f)da converges.

a

Subtracting from _[| f |do wefind that _[fda converges.
( - Difference of two convergent integrals is convergent )
> Note

_[fda is said to converge absolutely if _[| f |do converges. It is said to be

convergent conditionally if _[f da converges but _[| f |do diverges.

> Remark
Every absolutely convergent integral is convergent.

> Theorem
Let f be apositive decreasing function defined on [a,+0) such that

f(X) >0 as x—+w. Let o bebounded on [a,+x) and assume that
f € R(a;a,b) for every b>a. Thenthe integral J': f da is convergent.

Proof
Integration by parts gives

_Tf do=| f(x)-a(x) |:—_Ta(x)df

= f(b)-a(b) - f(a)-a(a)+_Ta d(-f)

Itisobviousthat f(b)a(b) >0 as b— +wx
("~ a isboundedand f(x) >0 as X— +x)
and f(a)a(a) isfinite.

. the convergence of _[ f doe depends upon the convergence of _[a d(-f).

Actually, this integral converges absolutely. To see this, suppose |a(x)|< M for
al x>a (- a(x) isgivento be bounded )

= [la(|d(-f) < [Md(-f)
But_TM d(—f):M|—f|2:M f(@—M f(b)>M f(a) asb—w.

= _[M d(—f) isconvergent.
- —f isanincreasing function.

g _[|a|d(—f) is convergent.  (Comparison Test)

= _[fda IS convergent.

SRR RPRBRBE L
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> Theorem (Cauchy condition for infinite integrals)
Assumethat f € R(a;a,b) for every b>a. Then the integral J' f da converges
if, and only if, for every ¢ >0 thereexistsa B> 0 suchthat c>b> B implies

ff(mdaoo

<&

Proof

Let _[fda be convergent. Then 3 B> 0 such that

b 0
J'fda—J'fda <% forevery b>B ........... (i)

Also for c>b> B,

jfda—dea <% ................. (i)

Consider

jfda
b

fda——dea

fda—dea+dea—dea

IA

Il
S T N S J S—y

—
o
)
|

QD ey
—
o
)
+

QD ey 8
—_
o
)
|

Q C——y T
—_
o
)
A
|
+
|
Il
M

= <e¢ when c>b>B.

jfda
b

Conversely, assume that the Cauchy condition holds.

a+n

Define a,= | fda if n=12,....

The sequence {a,} isa Cauchy sequence = it converges.
Let lima, =A

n—o

Given ¢ >0, choose B so that <% if c>b>B.

jfda
b

and also that |an—A|<% whenever a+n>B.

Choose aninteger N suchthat a+ N>B i.ee N>B-a
Then, if b>a+ N, wehave

b a+N b
jfda—A: jfda—A+jfda
a a a+N
<|ay - Al+ ijda < %+%:e
:>dea:A

This completes the proof.
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> Remarks

It follows from the above theorem that convergence of JOO f da implies

lim v f do =0 for every fixed € > 0.

b—>w Jb

However, this does not imply that f(x) >0 as x — «.

> Theorem
Every convergent infinite integral J'w f (X)de(X) can be written as a convergent
infinite series. In fact, we have

a+k

Tf(x)doc(x):z.j:ak where a, = J f(X)da(X) ........... (1)

a+k-1

Proof

_[fda converges, the sequence {J:m f da} also converges.

a+n n

But _[ f da =) a,. Hencethe series > a, converges and equals _[ f do .
a k=1 a

k=1

> Remarks
It is to be noted that the convergence of the seriesin (1) does not always imply

k
convergence of the integral. For example, suppose a, = J sin2z xdx. Then each
k-1

a, =0 and ) a converges.

0 b
However, the integral Jsin 2 Xadx = Limjsin 2 Xdx = Iiml_LSZrb diverges.
0 0

b—o0 T

IMPROPER INTEGRAL OF THE SECOND KIND

> Definition
Let f bedefined on the half open interval (a,b] and assumethat f € R(a;x,b)
for every xe(a,b]. Defineafunction I on (a,b] asfollows:

b
I(x):_[fda if xe(ab] .......... (i)
The function | so defined is called an improper integral of the second kind and
b b
is denoted by the symbol j f (t)da(t) or j f det .

b
The integral dea Is said to converge if the limit

lim1(X) .........>i1) exists (finite).

X—a+

b
Otherwise, J f doe issaid to diverge. If the limit in (ii) exists and equals A, the

a+

b
number A is called the value of the integral and we write _[ f do = A.

a+
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Similarly, if f isdefinedon[a,b) and f € R(x;a,X) V xe[a,b) then

I(x):_[fda if xe[a,b) isalso animproper integral of the second kind and is

b—
denoted as [ fda andis convergent if lim1(x) exists (finite).

> Example
f(X) =x " isdefined on (0,b] and f € R(x,b) for every xe (0,b].

I(x):_Tx‘pdx if xe(0,b]

b b
:Ix‘pdx =lim | xPdx
0+

£—0
O+¢

1-p b 1—p_81—p
=lim =lim——— , (p=#)
e-0(]1— p . e—0 1- P
| finite , p<1
| infinite, p>1

b
When p=1, we get I%dx:logb—loge—mo as ¢ —0.

b
= _[x‘l dx also diverges.
0+

Hence the integral convergeswhen p<1 and divergeswhen p>1.

> Note
b—

If the two integrals _[ f do and _[ f da both converge, we write

k]‘_fdoc:j‘fdoc+k]‘_fdoc

The definition can be extended to cover the case of any finite number of sums.
We can also consider mixed combinations such as

b © 0
jfda +_[fda which can be written as jfda.

a+ b a+

> Example

Consider _[ e*x"tdx , (p>0)
0+
Thisintegral must be interpreted as a sum as

0 1 0
_[ e *xPtdx = _[ e X xPtdx+ _[e‘x xP1dx
0+ 0+ 1

=1+, (i)
I, the second integral, converges for every real p asproved earlier.

Totest |, putt:1 = dx:—tizdt
X



Chap. 8 — Improper Integrais. 9

1 1 _1 1 % 1
= | :Iim_[e‘xxp‘ldx =lim [e WP —=dt | =lim |e 't dt
b oo §—-0 t2 §—-0

Take f(t):e‘flt‘p‘1 and g(t)=t"*

1

TPt “
HOTAC _t_l =1 and since _[t‘p‘ldt convergeswhen p>0
t—a0 g(t) too 7P 1

21
_[e ttP*dt convergeswhen p>0
1

Thus _[ e *x"*dx convergeswhen p>0.
O+

When p >0, the value of the sumin (i) is denoted by I'(p). The function so
defined is called the Gamma function.

> Note

The tests developed to check the behaviour of the improper integrals of Ist kind
are applicable to improper integrals of 11nd kind after making necessary
modifications.

> A Useful Comparison Integral
b
J' dx

> (x—a)"

Wehave, if n#1,
-T dx :‘ 1
a+g(X_a)n (1_ n) (X_a)n_l a+e

1 1 1
T @-nl-a)

Which tendsto 1 — Or +oo accordingas n<lor n>1,as ¢ —>0.
(1-n)(b-2a)
Again, if n=1,
¢ dx

——=log(b—-a)-loge ->+o as e&—0.

ate

dx

converges iff n<1.

n

b
Hence the improper integral J'( )
2 (X—a

SRR RPRBRBE L
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> Question
Examine the convergence of

¢ dx R h

R e B vorve erraey
Solution

. F dXx

0 '!x%(1+x2)

Here ‘O’ isthe only point of infinite discontinuity of the integrand.
We have

1
O )
Take g(x):i}/
X3
Then lim ()—ll L >=1

x—0 g(x) x>0 1+ X°

= J';f(x)dx and J'Og(x)dx have identical behaviours.

j% converges .. j% also converges.

o X3 31+x2)

1
. dx
i ——
(1 -([x2(1+ X)?
Here ‘O’ isthe only point of infinite discontinuity of the given integrand.
We have

1
Ry
Take g(x)_i2
Then [im ()—ll L =1

x—0 g()() x—0 (1+ X)

= j;f(x)dx and jog(x)dx behave alike.

But n=2 being greater than 1, the integral J';g(x) dx does not converge. Hence
the given integral also does not converge.
1
dx
(iii) —_
J; X2 (1- x)%
Here‘O’ and ‘1’ are the two points of infinite discontinuity of the integrand.

We have
1

X2 (1- x)%

f(x) =

We take any number between 0 and 1, say }/2 and examine the convergence of
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2 1
the improper integrals _[f(x)dx and _[f(x)dx.
° %
%

To examine the convergence of J'

1
—— - dX, wetake g(X) =—~
0 x%(l— x)%‘ X2

Then
lim M: lim ! =1
x—0 g(X) x—0 (1_ X)}é
7 Lo
y _[—dx converges .. jﬁ dx is convergent.
0 X2 0 X?2(1-x)"3
; 1 1
To examine the convergence of _[ — dx, wetake g(x)=
L x2(1-%) 1-x%)"
Then
im ) _jim L
x—1 g()() x—=1 X%
1 1
1 :
y _[ 7 dx converges - ﬁdx IS convergent.
L (A-x)7 I x2(1-x)"3

Hence J'; f (X)dx converges.

> Question

1
Show that _[xm‘l(l— x)”_ldx existsiff m, n are both positive.
0

Solution

The integral isproper if m>1 and n>1.

The number ‘O’ isapoint of infinite discontinuity if m<1 and the number ‘1’ is
apoint of infinite discontinuity if n<1.

Let m<1l and n<1.

We take any number, say }/2 between 0 & 1 and examine the convergence of

% 1
the improper integrals _[xr“(l— x)"dx and _[xr“(l— x)"'dx a0 and ‘1
0 b
respectively.
Convergence at O:
We write
_ n-1
r9=xma- = andtae g(9=—1

Then M—A as x—0
g(x)

»

As j

0

dx isconvergentat O iff 1-m<1 i.ee m>0

b
We deduce that the integral _[ X" (1- x)”_ldx is convergent at 0, iff m is +ive.
0

1-m
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Convergence at 1.

Wewrite f(x)=x"*1-x)"'= a0 and take g(X)=(1_X)1_n
Then f( )—>1 as x—1
9(x)

1

As_[

) —dx isconvergent, iff 1-n<1 i.e. n>0.
i - X

%

1
We deduce that the integral _[ X" (1- x)”_ldx convergesiff n>0
Thus _[xm (1 x) dx exists for positive values of m, n only
0

It is afunction which depends upon m & n and is defined for all positive values
of m & n. Itiscalled Betafunction
> Question

Show that the following improper integrals are convergent.

(iii) leog)x dx (iv) _[Iogx log(1+ X) dx

Solution
(i) Let f(X):sinZ% and g(x)—i

then

=lim X —|j

lim——= LG SinZl_ m(w]2:1
X*)Oog(X) X—>0 1 y

— y—0

= [f(0dx ad [ dx behavealike
1 lX

[ee]

_[—2 dx isconvergent .. _[sin
X
1

— dx is also convergent.
X
2

(ii) Tg:‘(zxdx

1

i 2

Take £()=3"% and g(x) ==
X X
' 2
snx<l = szxsiz A Xe(l,oo)
X X

0 o - 2
and _[iz dx converges .. Ism X dx converges.
1 X 1
> Note
sin? 2
_[ dx Is a proper integral because I|m
X?
0

Xx—0 2

=1 sothat ‘0’ is not a point
X

0 . 2
of infinite discontinuity. Therefore _[

dx is convergent.
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x log x

(iii) £(1+ ? dx

wlogx < x, xe(0)

. xlogx < X

x log x NG
9% -

(1+ x)2 (1+ x)2
Now £(1+ x)
¢ xlogx
' £(1+ x)2

dx isaproper integral.

2

dx isconvergent.

(iv) jlogx- log(1+ x) dx

v logx < x oo log(x+1) < x+1
= logx-log(1+ x) < x(x+1)

1 1
_[x(x+1)dx Isaproper integral .. _[Iogx-log(1+ X)dx is convergent.
0 0

> Note

(i) J% dx divergeswhen p>1 and converges when p<1.
0

(i) J% dx convergesiff p>1.

UNIFORM CONVERGENCE OF IMPROPER INTEGRALS

> Definition
Let f beareal valued function of two variables x & y, xe[a,+x), ye§

where S < R . Suppose further that, for each y in S, the integral I: f(x,y)da(x)
is convergent. If F denotes the function defined by the equation

Fy)=[f(xy)da(x) if yeSs
the integral is said to converge pointwiseto F on S
> Definiton

Assume that the integral I: f (X, y)da(x) converges pointwise to F on S. The

integral is said to converge Uniformly on S if, for every ¢ >0 thereexistsa B> 0
(depending only on ¢) such that b> B implies

F)-[fxy)da(x)| <& V yes.

( Pointwise convergence means convergence when vy is fixed but uniform
convergenceis for every ye S ).
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> Theorem (Cauchy condition for uniform convergence.)
The integral I: f (x,y)da(x) converges uniformly on S, iff, for every ¢ >0
thereexistsa B >0 (dependingon ¢) suchthat c>b>B implies

j'f(x,y)da(x) <ege V yes.

Proof
Proceed asin the proof for Cauchy condition for infinite integral J'OO fda .

> Theorem (Weierstrass M-test)

Assumethat & T on [a,+) and suppose that the integral I: f(X,y)da(X)
exists for every b>a and for every y in S. If there is a positive function M
defined on [a,+0) such that the integral I:M (X)da(x) converges and
| f(x,y)| < M(x) foreach x>a andevery y in S, then the integral
I: f (X, y)da(x) converges uniformly on S'.

Proof
| £(%y)|<M(x) foreach x>a andevery y in S.
.. For every c>b, we have

j f(x,y)da(X)| < j| f(x,y) da(X) st dot v, (i)

| :_[M do is convergent
. given ¢>0,3 B>0 suchthat b> B implies

b
[Mda -1 <% ............... (i)
Alsoif ¢>b> B, then

C

(M da - | <% ............... (iii)
c ! c b
Then _[Mda = Mda—J'Mda
b % a
C b
=({[Mda—1+1-]Mda
c )
<|[Mda—1]+|[Mda-I <82+72=g (By ii & iii)

= <&, c>b>B&foreach ye$S

j:' f (X, y)da(X)

Cauchy condition for convergence (uniform) being satisfied.

Therefore the integral J': f (x,y)da(x) converges uniformly on S'.

SRR RPRBRBE S
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> Example
Consider _[e‘xy sinx dx
0

‘e‘xysinx‘ < ‘e‘xy‘ e (- |sinx|<1)
and e¥y<e™ if c<y
Now take M (X)=€*

The integral _[ M (X)dx = _[e“’x dx isconvergent & converging to % :
0 0

. The conditions of M-test are satisfied and _[e‘xy sinx dx converges
0

uniformly on [c,+) for every c>0.

> Theorem (Dirichlet’s test for uniform convergence)
b
Assumethat o isbounded on [a,+o0) and suppose the integral _[ f(X,y)da(X)

exists for every b>a and for every y in S. For each fixed y in S, assume that
f(x,y)< f(X,y) if a<x <x<+oo. Furthermore, suppose there exists a positive
function g, defined on [a,+), such that g(x) - 0 as X — +o0 and such that
x>a implies

| f(xy)| < g(x) forevery yinS$.

Then the integral I: f (x,y)da(x) converges uniformly on S'.

Proof
Let M >0 bean upper bound for || on [a,+wx).

Given ¢ >0, choose B>a suchthat x> B implies

&
X —_
g()<4|v|

(v g(x) is+iveand -0 as x —»> o .. |g(x)—0|<ﬁ for x> B)

If c>Db, integration by parts yields
jfda :|f(x,y)-a(x)|‘;—ja df
b b

= f(c,y)a(c) - f(b,y)a(b)+_[ad(—f) ............ (i)
b
But, since — f isincreasing (for each fixed y), we have
jad(—f) < de(—f) (- upper bound of |a|is M)
b b

=M f(b,y)-M f(c,y) ..ocevnnnn.nn (ii)
Now if ¢>b> B, we have from (i) and (ii)

<| f(c,y)a(c)- f (b, y)a(b) |+

jiad(—f)‘

<|a (|t (c.y)|+| f (b, )] aB)|+ M| F(b,y) - F(c. )]
£|a(c)|| f(c, y)|+|a(b)|| f (b, y)|+ M| f(b,y)|+ M| f(c, y)|

jfda
b
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<M g(c)+ M g(b) + M g(b) + M g(c)
=2M[g(b) + g(0)]

<M |-+ =g
AM  4AM

<g forevery yinS.

jifda
b

Therefore the Cauchy condition is satisfied and _[ f (X, y)da(Xx) converges
uniformly on S'.

> Example
—xy
Consider _[ ——sinxadx

— Xy

Take a(x)=cosx and f(x,y):eT if x>0, y>0.

If $=[0,+0) and g(x):é on [&,+) forevery £>0 then

) f(xy)<f(X,y) if X<xanda(x) isboundedon [&,+).
i) g(x)—>0 as x—+x

i) | fOoy)|=|2

So that the conditions of Dirichlet’ s theorem are satisfied.
Hence

s%:g(x) vV yes.

— Xy — Xy
_[—smxdx +_[— d(—cosx) converges uniformly on [.s +oo) if €>0.

Iirg Sinx =1 _[ e Xy—dx converges being a proper integral.
X—> X
= _[e SN X i also converges uniformly on [0,+0).
X

0

> Remarks

Dirichlet’ s test can be applied to test the convergence of the integral of a
product. For this purpose the test can be modified and restated as follows:
Let ¢ (x) be bounded and monotonic in [a,+oo) and let ¢ (x) > 0, when

X
X — 0. Also let j f (x)dx be bounded when X > a.
Then _[f(x)ql)(x)dx IS convergent.

> Example
Consider _[—dx

sinx
v ———>1 aa x—-0.
X
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. 0 isnot apoint of infinite discontinuity.

Now consider the improper integral I% ax.

The factor 1 of the integrand is monotonic and -0 as X — 0.
X
Also

J'sinxdx =|-cosX +cos(l) |<|cos X |+ cos(1) | < 2

X
So that _[sinx dx isbounded above for every X >1.
o = 1 .-
= I% dx isconvergent. Now since I%dx IS aproper integral, we see
X X

that I%dx IS convergent.
X

> Example
Consider _[sinxz dx.
. . 2 1 . 2
Wewrite snx =—- 2X-SinXx
2X
Now Isinxzdx:Ii-Zx-sinxzdx
2X
1 . .
— ismonotonicand -0 as x— o .

2X

Also :‘—cosX2+cos(1)‘<2

X
J'szinx2 dx
1

X
So that _[szinxzdx is bounded for X >1.

T 1 : . T .
Hence _[2—-2x-5|nx2dx ie. _[smxzdx is convergent.
X
1

Since _[S| nx*dx isonly aproper integral, we see that the given integral is

convergent.
> Example
Consider _[ ‘ax%dx , a>0
X

Cax : : ts€nx .
Here e ** is monotonic and bounded and _[—dx is convergent.
X

Hence _[ e 3Ny s convergent.
X

SRR RPRBRBE L
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> Example

Show that I% dx is not absolutely convergent.
X

Solution
””|sinx| We need not
Consider the proper integral _[ = ldx take | x|
o X because x>0.

where n is apositive integer. We have

rjf|sinx|dX:Z”: rjf |sinx|OI

o X r=1l(r-)r X
Put x=(r-1)z +y sothat y variesin [0,7].
Wehave [sin[(r -1z +y]|=|(-D)*siny|=siny
J- |S|nX|d J- siny q
-Dr+y
* rr isthe max. valueof [(r-Dz+y] in [07]

¢ siny 17, _ 2 _. Division by max. value
' I(r dy > _[smydy— { " will lessen the value

-Dr+y ~ rx rm
|S|nx| i_gnl
-[ rn_nzllr

n
Z——)oo as n—> o, we seethat
r
1

Tlsnx
I dXx—>ow as n—ow.
Let, now, X be any real number.

There exists a +tive integer n suchthat nr < X <(n+rx.

We have _[| _[|Smx|

nx|

X .
Si

Let X >0 sothat n aso — «. Then we see that _[|—dx—>oo
X

So that I@ dx does not converge.

> Questions
Examine the convergence of

. X | f dx

(i) {de (i) {mdx (i) J;W

Solution

() Let f(x)=—0—
(1+ X

As lim—= 1) =lim X =
e g(x) ow (L+x)°
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Therefore the two integrals _[ wE sdx and I%dx have identical behaviour
+ 1
for convergenceat .
1 : K :
.+ | =dx isconvergent .. dx isconvergent.
-[xz J -[(1+ x)* J

. 1 1 1

i) Let f(X)=———+= andtake g(X)=—F—=—%~
(ii) ()(1+X)& g()X& 7

Wehave fim _jim—>X__1

X—>00 g(x) x>0 4+ X
| :
and dx is convergent. Thus dx isconvergent.
{X% J ) (1+ x)\/_
(iii) Let f(x):;
x%‘(1+ x)}/2
1 1
wetake g(x)= =
We have I|m _1 and _[ i dx isconvergent .. _[f(x)dx IS convergent.
X—0 g X 1 X 6

> Question

Show that J' > dx is convergent.

1+ x°

Solution
We have

Tl ¢ 1
-[1+x2dX:LLrQ _-[a1+x OIX+-[1+x

:IimJ' dx+J' =2lim L dx
an| ¢ 14+ X 1+x 2w O1+x2

= 21im|tan* x| = (5)-

therefore the integral is convergent.

> Question

TtanTtx .
Show that _[ an >-dx is convergent.

Solution
. 2 tan_l 1 T
(1+x)-(1+X2):tan x—>§ as X—>o Heref(x)_t]_azxzx
0 1 0
[ Xgx & [——dx behavealike and g0 =1+x
5 L+ X 5L+ X

o0

_[1 >dx isconvergent .. A givenintegral isconvergent.
+ X

0
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> Question
snx
A+ x)*

Show that _[ dx converges for a >0.
0

Solution

0 X
_[sinxdx IS bounded because _[sinxdxsz vV x>0.
0 0

Furthermore the function

, a >0 ismonotonic on [0,+x).
(1+ X)*

o0

= theintegral _[

0

snx
1+ x)“

dx is convergent.

> Question

Show that _[e‘xcosxdx is absolutely convergent.
0

Solution
‘e‘xcosx‘ <e”* and _[e‘x dx=1
0
. the given integral is absolutely convergent. (comparison test)

> Question

—X

e

\1-x*
Solution

v e7%<l and 1+ x°>1
e - 1 - 1
J1-x* \/(1— x%) (1+ x°) \/1— X?

Alsoj L dx:limT L ax
0

1
Show that _[ dx isconvergent.
0

1-x° 620 4 J1-x°
_ A"
= |£I msin 1-¢) >
1 e_x
= _[ dx is convergent. (by comparison test)
ov1-x*
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