
 

The rational number system is inadequate for many purposes, both as a field 
and as an order set for many purpose. This leads to introduction of so called irrational 
numbers. We can prove in many ways that the rational number system has certain 
gaps and hence we fail to use it as an ordered set and as a field.    q 
 

Í Theorem 
There is no rational  p such that 2 2p = . 

Proof 
Let us suppose that there exists a rational p such that 2 2p = . 

This implies we can write  
mp
n

=   where ,m n∈¢  & m, n have no common factor. 

Then 2 2p =     
2

2 2m
n

⇒ =     2 22m n⇒ =  
2m⇒  is even 

m⇒  is even  
m⇒  is divisible by 2 and so 2m  is divisible by 4. 

22n⇒  is divisible by 4 and so 2n  is divisible by 2. 2 22m n=∵  
i.e. 2n  is even n⇒  is even 
⇒   m and n both have common factor 2.  

Which is contradiction. (because m and n have no common factor.) 
Hence 2 2p =  is impossible for rational p.       q 

 

Í Theorem 
Let A be the set of all positive rationals p such that 2 2p <  and let B consist of 

all positive rationals p such that 2 2p >  then A contain no largest member and B 
contains no smallest member. 
Proof 

We are to show that for every p in A there exists a rational q A∈  such that 
p q<  and for all p B∈ we can find rational q B∈  such that q p< . 

Associate with each rational 0p >  the number 
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Now if p A∈  then 2 2p <    2 2 0p⇒ − <  

Since from (i)    
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    q p⇒ >  

And   
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2( 2) 0
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p
p

−
<

+
   2 2 0q⇒ − <      2 2q⇒ <      q A⇒ ∈  

Now if p B∈   then  2 2p >    2 2 0p⇒ − >  
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Since form (i)     
2 2

2
pq p
p

−
= −

+
    q p⇒ <  

And    
2

2
2( 2) 0
( 2)

p
p

−
>

+
      2 2 0q⇒ − > 2 2q⇒ >    q B⇒ ∈  

The purpose of above discussion is simply to show that the rational number 
system has certain gaps, in spite of the fact that the set of rationals is dense i.e. we 
can always find a rational between any two given rational numbers. These gaps are 

filled by the irrational number. (e.g. if r s<  then 2
r sr s+< < .)        q 

 

Í Order on a set 
Let S be a non-empty set. An order on a set S is a relation denoted by “<” with 

the following two properties 
(i) If  x S∈  and y S∈ ,  
     then one and only one of the statement  x y<  , x y= ,  y x<  is true. 
(ii) If , ,x y z S∈  and if  x y< ,  y z<  then  x z< .      
 

Í Ordered Set 
A set S  is said to be ordered set if an order is defined on S.  
 

Í Bound 
Let S be an ordered set and E S⊂ . If there exists a Sβ ∈  such that 

x x Eβ≤ ∀ ∈ , then we say that E is bounded above, and β  is known as upper 
bound of E. 

Lower bound can be define in the same manner with ≥  in place of ≤ .  
 

Í Least Upper Bound (Supremum) 
Suppose S is an ordered set, E S⊂  and E is bounded above. Suppose there 

exists an Sα ∈  such that 
(i) α  is an upper bound of E. 
(ii) If γ α<   then γ  is not an upper bound of  E. 

Then α  is called the least upper bound of E or supremum of E and is written as 
sup E α= . 
In other words α  is the least member of the set of upper bound of E. 
      We can define the greatest lower bound or infimum of a set E , which is bounded 
below, in the same manner.          q 
 

Í Example 
Consider the sets 

{ }2: 2A p p p= ∈ ∧ <¤  

{ }2: 2B p p p= ∈ ∧ >¤      
where ¤  is set of rational numbers. 

  Then the set A is bounded above. The upper bound of A are the exactly the members 
of B. Since B contain no smallest member therefore A has no supremum in ¤ .  
   Similarly B is bounded below. The set of all lower bounds of B consists of A and  
r ∈¤  with 0r ≤ . Since A has no largest member, therefore, B has no infimum in ¤ . 

 

Í Example 
If α  is supremum of E then α  may or may not belong to E. 

Let { }1 : 0E r r r= ∈ ∧ <¤  
      { }2 : 0E r r r= ∈ ∧ ≥¤  
       then 1 2sup inf 0E E= =   and 10 E∉  and 20 E∈ .     q 
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Í Example 

Let E  be the set of all numbers of the form  1
n

, where n is the natural numbers. 

i.e. 1
1 1 1, , , .......
2 3 4

,..E  =  
 

 

   Then sup 1E =  which is in E, but inf 0E =  which is not in E.     q 
 

Í Least Upper Bound Property 
A set S is said to have the least upper bound property if the followings is true 
(i)  S is non-empty and ordered. 
(ii) If E S⊂  and E is non-empty and bounded above then supE exists in S. 

    Greatest lower bound property can be defined in a similar manner.    q 
 

Í Example 
Let S  be set of rational numbers and 

{ }2: 2E p p p= ∈ ∧ <¤  
then E ⊂ ¤ , E is non-empty and also bounded above but supremum of E is not in S, 
this implies that ¤  the set of rational numbers does not posses the least upper bound 
property.             q 
 

Í Theorem 
Suppose S is an ordered set with least upper bound property. B S⊂ , B is non-

empty and is bounded below. Let L be set of all lower bounds of B then sup Lα =  
exists in S and also inf Bα = . 

In particular infimum of B exists in S.     
OR 

An ordered set which has the least upper bound property has also the greatest 
lower bound property. 
Proof 

Since B is bounded below; therefore, L is non-empty. 
   Since L consists of exactly those y S∈  which satisfy the inequality. 

 y x≤      x B∀ ∈  
   We see that every x B∈  is an upper bound of L. 

⇒    L is bounded above. 
  Since S is ordered and non-empty therefore L has a supremum in S. Let us call it α . 
  If  γ α< ,  then γ  is not upper bound of L. 

Bγ⇒ ∉  
x x B Lα α⇒ ≤ ∀ ∈ ⇒ ∈  

   Now if α β<   then Lβ ∉  because  sup Lα = . 
   We have shown that Lα ∈  but  Lβ ∉  if β α> . In other words, α  is a lower 
bound of B, but β  is not if β α> . This means that inf Bα = .          q 
 

 
………………………

α 
L B 

γ 
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Í  Field  
A set F with two operations called addition and multiplication satisfying the 

following axioms is known to be field. 
Axioms for Addition: 

(i)   If ,x y F∈   then  x y F+ ∈ . Closure Law 
(ii)  ,x y y x x y F+ = + ∀ ∈ . Commutative Law 
(iii) ( ) ( ) , ,x y z x y z x y z F+ + = + + ∀ ∈ .  Associative Law 
(iv)  For any x F∈ , 0 F∃ ∈  such that 0 0x x x+ = + =   Additive Identity 
(v)   For any x F∈ , x F∃ − ∈  such that ( ) ( ) 0x x x x+ − = − + =       +tive Inverse 

 

Axioms for Multiplication: 
     (i)  If ,x y F∈   then  x y F∈ .  Closure Law 
     (ii)  ,x y y x x y F= ∀ ∈    Commutative Law 
     (iii)  ( ) ( ) , ,x y z x y z x y z F= ∀ ∈  
     (iv)  For any x F∈ , 1 F∃ ∈  such that 1 1x x x⋅ = ⋅ =   Multiplicative Identity 

     (v)  For any x F∈ , 0x ≠ ,  1 F
x

∃ ∈ ,  such that 1 1 1x x
x x

   = =   
   

  × tive Inverse. 

Distributive Law 
For any , ,x y z F∈ ,  (i)  ( )x y z xy xz+ = +  

(ii)  ( )x y z xz yz+ = +      q 
 

Í  Theorem 
The axioms for addition imply the following: 

(a)  If x y x z+ = +  then y z=  
(b)  If x y x+ =  then 0y =  
(c)  If 0x y+ =  then y x= − . 
(d)  ( )x x− − =  

Proof 
(a) Suppose  x y x z+ = + . 

Since   0y y= +  
     ( )x x y= − + +    0x x− + =∵  
     ( )x x y= − + +    by Associative law 
     ( )x x z= − + +    by supposition 
     ( )x x z= − + +    by Associative law 
     (0) z= +     0x x− + =∵  
     z=  

(b) Take 0z =  in (a) 
0x y x+ = +  

0y⇒ =  
(c) Take z x= −  in (a) 

( )x y x x+ = + −  
y x⇒ = −  

(d) Since ( ) 0x x− + =  
then (c) gives ( )x x= − −          q 
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Í  Theorem 
Axioms of multiplication imply the following. 

(a)  If 0x ≠  and x y x z=   then  y z= . 
(b)  If 0x ≠  and x y x=  then  1y = . 

(c)  If 0x ≠  and 1x y =   then  1y
x

= . 

(d)  If 0x ≠ , then 1
1 x

x
= . 

Proof 
(a) Suppose x y x z=  

Since 1y y= ⋅  1 x y
x

 = ⋅ 
 

  1 1x
x

⋅ =∵  

   ( )1 x y
x

=     by associative law 

        ( )1 x z
x

=     x y x z=∵  

   1 x z
x

 = ⋅ 
 

   by associative law 

   1 z z= ⋅ =  
(b) Take 1z =  in (a) 

1x y x= ⋅  1y⇒ =  

(c) Take 1z
x

=  in (a) 

1x y x
x

= ⋅     i.e. 1x y =  

1y
x

⇒ =  

(d)  Since       1 1x
x

⋅ =  

then (c) give  
1
1x

x
=         q 

 

Í  Theorem 
The field axioms imply the following. 
   (i)  0 0x⋅ =  
    (ii)  if 0x ≠ , 0y ≠  then 0xy ≠ . 

    (iii) ( ) ( ) ( )x y xy x y− = − = −  
    (iv) ( )( )x y xy− − =  
Proof 
(i)         Since  0 0 (0 0)x x x+ = +  

0 0 0x x x⇒ + =  
        0 0x⇒ =    0x y x y+ = ⇒ =∵  

(ii)  Suppose 0, 0x y≠ ≠  but 0x y =  

Since 11
( )( )

x y
x y

= ⋅  
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    11 (0)
( )( )x y

⇒ =   0 , 0 , 0xy x y= ≠ ≠∵  

   1 0⇒ =     from (i)     0 0x =∵  
a contradiction, thus (ii) is true. 

(iii)     Since ( ) ( ) 0 0x y xy x x y y− + = − + = = …….. (1) 
   Also          ( ) ( ) 0 0x y xy x y y x− + = − + = =  ……… (2) 
   Also          ( ) 0xy xy− + =  …………. (3) 
   Combining (1) and (2) 

       ( ) ( )x y xy x y xy− + = − +  
 ( ) ( )x y x y⇒ − = −  ………… (4) 

   Combining (2) and (3) 
( ) ( )x y xy xy xy− + = − +  

      ( )x y xy⇒ − = −  …………. (5) 
   From (4) and (5)  

      ( ) ( )x y x y xy− = − = −  
(iv)     [ ] [ ]( )( ) ( )x y x y xy xy− − = − − = − − =            using (iii)    q 
 

 
7⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅8 
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Í Ordered Field 
   An ordered field is a field F which is also an ordered set such that  

      i)  x y x z+ < +   if  , ,x y z F∈   and  y z< . 
     ii)  0xy >  if  ,x y F∈  ,  0x >  and 0y > . 

   e.g.  the set ¤  of rational number is an ordered field.      q 
  

Í Theorem 
The following statements are true in every ordered field. 

  i)  If 0x >  then 0x− <  and vice versa. 
ii)  If 0x >  and y z<  then  xy xz< . 

   iii)  If 0x <  and y z<  then  xy xz> . 
  iv)  If 0x ≠  then 2 0x >  in particular  1 0> . 

v)  If 0 x y< <  then 1 10
y x

< < . 

Proof 
 i)   If 0x >   then  0 0x x x= − + > − +    so that   0x− < . 

 If 0x <   then  0 0x x x= − + < − +    so that  0x− > . 
 ii) Since  z y>  we have  0z y y y− > − =  

which means that  0z y− > , Also  0x >  
∴    ( ) 0x z y− >  

   0xz xy⇒ − >  
0xz xy xy xy⇒ − + > +  

0 0xz xy⇒ + > +  
xz xy⇒ >  

 
iii) Since y z<    ⇒    y y y z− + < − +  

 0z y⇒ − >   
 Also  0x <    0x⇒ − >  
 Therefore    ( ) 0x z y− − >  

    0xz xy⇒ − + >   0xz xy xz xz⇒ − + + > +  
    xy xz⇒ >  

 

iv)   If 0x >  then  0x x⋅ >    2 0x⇒ >  
  If 0x <   then   0x− >   ( ) ( ) 0x x⇒ − − >   2( ) 0x⇒ − >    2 0x⇒ >  
  i.e.   if 0x >   then  2 0x > ,  since  21 1=   then 1 0> . 
 

v)    If 0y >  and 0v ≤    then   0yv ≤ , But 1 1 0y
y

 
= > 

 
    1 0

y
⇒ >  

 Likewise    1 0
x

>    as   0x >  

If we multiply both sides of the inequality x y<  by the positive quantity 1 1
x y

  
  
  

 

we obtain  1 1 1 1x y
x y x y

      <      
      

 

i.e.      1 1
y x

<  

 finally  1 10
y x

< <          q 
 



 Ch. 01 - Real Number System - 8 

Í Existence of Real Field 
   There exists an ordered field ¡  (set of reals) which has the least upper bound 
property and it contain ¤  (set of rationals) as a subfield.     q 
 

Í Theorem 
  a)  If x∈¡ , y ∈¡  and 0x >   then there exists a positive integer n such that 
       nx y> . (Archimedean Property) 
  b)  If x∈¡ , y ∈¡  and x y<  then there exists p∈¤  such that  x p y< <  . 
      i.e. between any two real numbers there is a rational number or ¤  is dense in ¡ . 
Proof 
a) Let { }: 0,A nx n x x+= ∈ ∧ > ∈¢ ¡  
   Suppose the given statement is false i.e.  nx y≤ . 

⇒   y is an upper bound of A. 
   Since we are dealing with a set of reals, therefore, it has the least upper bound 
property. 
   Let sup Aα =  

⇒  xα −  is not an upper bound of A. 
⇒  x mxα − <   where mx A∈  for some positive integer m. 
⇒  ( 1)m xα < +   where  m + 1 is integer, therefore ( 1)m x A+ ∈  

   Which is impossible because α  is least upper bound of A  i.e. sup Aα = . 
   Hence we conclude that the given statement is true i.e. nx y> . 
b) Since x y< ,  therefore 0y x− >  
   ⇒  ∃ a +ive integer n such that  

( ) 1n y x− >   (by Archimedean Property) 
        1ny nx⇒ > +  …………… (i) 

   We apply (a) part of the theorem again to obtain two +ive integers 1m  and 2m   
 such that  1 1m nx⋅ >   and  2 1m nx⋅ > −  

    2 1m nx m⇒ − < <  
   then there exists an integers  2 1( )m m m m− ≤ ≤  such that  

1m nx m− ≤ <  
 

   nx m⇒ <    and   1m nx≤ +  
   1nx m nx⇒ < < +  
   nx m ny⇒ < <     from (i) 

   mx y
n

⇒ < <  

  x p y⇒ < <     where   mp n=   is a rational.     q 
 

Í Theorem 
   Given two real numbers x and y, x y<  there is an irrational number u such that 
         x u y< <  
Proof 
   Take 0, 0x y> >  
   Then ∃ a rational number q such that  

0 x yq
α α

< < <   where α  is an irrational. 

     x q yα⇒ < <  
     x u y⇒ < <  

   Where u qα=  is an irrational as product of rational and irrational is irrational.  q 
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Í Theorem 
   For every real number x there is a set  E of rational number such that supx E= . 
Proof 
   Take { : }E q q x= ∈ <¤  where x is a real. 
   Then E is bounded above. Since E ⊂ ¡  therefore supremum of E exists in ¡ . 
   Suppose sup E λ= . 
   It is clear that  xλ ≤ . 
   If xλ =  then there is nothing to prove. 
   If xλ <  then ∃  q ∈¤  such that  q xλ < <  
   Which can not happen. Hence we conclude that real x is supE.    q 
 

Í Theorem  
   For every real 0x >  and every integer 0n > , there is one and only one real y such 
that ny x= .   

   This number y is written n x  or 
1

nx . 
Proof 
   Take 1 2,y y ∈¡  such that 1 20 y y< < . Then 1 2

n ny y<   i.e. there is at most one y ∈¡    
such that ny x= . This shows the uniqueness of y. 
   Let us suppose E be the set of all positive real numbers t such that nt x< . 

i.e. { : }nE t t t x= ∈ ∧ <¡  

   Take 
1

xt
x

=
+

 then 0 1t< < . 

   Hence nt t<  and we have nt x<  
nt t x⇒ < <  

t E⇒ ∈  and E is non-empty . 
   If 1t x> +  then nt t x> >  so that t E∉ . 
   Thus 1 x+  is an upper bound of E. 
   Since E is non-empty and bounded above therefore sup E  exists. 
   Take supy E=  
   To show that ny x=  we will show that each of the inequality ny x<   and ny x>  
leads to contradiction. 
   Consider 
           1 2 3 2 1( )( )n n n n n nb a b a b b a b a a− − − −− = − + + + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ +   where n +∈¢ . 
   Which yields the inequality (each a is replaced by b on R.H.S of above) 
          1( )( ) ..................( )n n nb a b a nb i−− < −   where 0 a b< < .  
   Now assume ny x<  

   Choose h so that  0 1h< <   and  1( 1)

n

n
x yh

n y −

−
<

+
 

   Put a y=  and  b y h= +  in  (i) 

   Then  ( ) ( ) 1n nny h y nh y h −+ − < +  
              1( 1)nnh y −< +     1h <∵  

    nx y< −  

   ( )ny h x⇒ + <  
   y h E⇒ + ∈    

   Since  y h y+ >  therefore it contradict the fact that  y is sup E . 
   Hence ny x<  is impossible. 
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   Now suppose ny x>  

   Put 1

n

n
y xk
ny −

−
= ,  then 0 k y< <  

   Now if  t y k≥ −   we get 
      1( ) ( )n n n n n n ny t y y k y y nky −− < − − < − −   by binomial expansion 

     1n nkny y x−< = −  
         nt x⇒ − < −    nt x⇒ >   and  t E∉  
   It follows that y k−  is an upper bound of  E  but y k y− < , which contradict the 
fact that y is sup E . 
   Hence we conclude that ny x= .        q 
 

Í The Extended Real Numbers 
   The extended real number system consists of real field ¡  and two symbols +∞  
and −∞ , We preserve the original order in ¡  and define 
   x x− +∞ < < ∞ ∀ ∈¡ . 
   The extended real number system does not form a field. Mostly we write +∞ = ∞ .    
   We make following conventions 

i) If x is real then , , 0x xx x −
−

+ ∞ = ∞ − ∞ = ∞ = =
∞ ∞

      

ii) If 0x >  then ( ) , ( )x x − −∞ = ∞ ∞ = ∞ . 
iii) If 0x <  then ( ) , ( )x x− −∞ = ∞ ∞ =∞ . 

 

Í Euclidean Space 
   For each positive integer k, let k¡  be the set of all ordered k-tuples  
      1 2( , ,............., )kx x x x=    
   where 1 2, ,............, kx x x  are real numbers, called the coordinates of x . The elements 
of k¡  are called points, or vectors, especially when 1k > . 
   If 1 2( , ,..........., )ny y y y=  and α  is a real number, put 
   1 1 2 2( , ,.............., )k kx y x y x y x y+ = + + +  
    and  1 2( , ,..........., )kx x x xα α α α=  
   So that kx y+ ∈¡   and  kxα ∈¡ . These operations make k¡  into a vector space 
over the real field. 
   The inner product or scalar product of x  and y  is defined as  

   1 1 2 2
1

. ( .......... )
k

i i k k
i

x y x y x y x y x y
=

= = + + +∑  

   And the norm of x  is defined by 

   
12

1
2 2

1

( )
k

ix x x x = ⋅ =  
 
∑  

   The vector space k¡  with the above inner product and norm is called  
Euclidean k-space.           q 
 

�…………………..…………..� 
 
 
 
 
 
 
 
 



 Ch. 01 - Real Number System - 11 

Í Theorem 
   Let , nx y ∈¡  then 

i) 2x x x= ⋅  
ii) x y x y⋅ ≤   (Cauchy-Schwarz’s inequality) 

Proof 

i)  Since 
1
2( )x x x= ⋅   therefore 2x x x= ⋅  

ii)  For λ ∈¡  we have 
2

0 x yλ≤ −   ( ) ( )x y x yλ λ= − ⋅ −  

    ( ) ( ) ( )x x y y x yλ λ λ= ⋅ − + − ⋅ −  
    ( ) ( ) ( ) ( )x x x y y x y yλ λ λ λ= ⋅ + ⋅ − + − ⋅ + − ⋅ −  

    
22 22 ( )x x y yλ λ= − ⋅ +  

   Now put 2

x y

y
λ

⋅
=   (certain real number) 

 
( )( ) ( )2

22
2 40 2

x y x y x y
x y

y y

⋅ ⋅ ⋅
⇒ ≤ − +     

( )2

2
20

x y
x

y

⋅
⇒ ≤ −     

2 220 x y x y⇒ ≤ − ⋅  

( )( )0 x y x y x y x y⇒ ≤ + ⋅ − ⋅  
Which hold if and only if  

      0 x y x y≤ − ⋅  

i.e. x y x y⋅ ≤          q 
 

Í Question  
   Suppose , , nx y z ∈¡  the prove that 

a) x y x y+ ≤ +  

b) x z x y y z− ≤ − + −  

Proof 

 a)  Consider      ( ) ( )2
x y x y x y+ = + ⋅ +  

x x x y y x y y= ⋅ + ⋅ + ⋅ + ⋅  

   ( ) 22 2x x y y= + ⋅ +  

   
22 2x x y y≤ + +   .x y x y≥∵  

   ( )2
x y= +  

    x y x y⇒ + ≤ +   …………. (i) 

b) We have           x z x y y z− = − + −  

x y y z≤ − + −   from (i)    q 
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Í Question 
   If r is rational and x is irrational then prove that r x+  and r x  are irrational. 
Proof 
   Let r x+  be rational. 

ar x
b

⇒ + =    where ,a b∈¢  , 0b ≠  such that ( ), 1a b =  

ax r
b

⇒ = −  

   Since r is rational therefore cr
d

=   where ,c d ∈¢ , 0d ≠  such that ( ), 1c d =  

a cx
b d

⇒ = −    ad bcx
bd
−

⇒ =  

   Which is rational, which can not happened because x is given to be irrational. 
   Similarly let us suppose that r x  is rational then  

       ar x
b

=         for some ,a b∈¢ , 0b ≠  such that ( ), 1a b =  

1ax
b r

⇒ = ⋅  

   Since r is rational therefore cr
d

=   where ,c d ∈¢ , 0d ≠  such that ( ), 1c d =  

1a a d adx cb b c bcd
⇒ = ⋅ = ⋅ =  

   Which shows that x is rational, which is again contradiction; hence we conclude 
that r x+  and r x  are irrational.          q 

 

Í Question  
   If n is a positive integer which is not perfect square then prove that n  is irrational 
number. 
Solution 
   There will be two cases 
Case I. When n contain no square factor greater then 1. 
   Let us suppose that n  is a rational number. 

pn
q

⇒ =    where ,p q ∈¢ , 0q ≠  and ( ), 1p q =  

2

2
pn
q

⇒ =     2 2 ...............( )p nq i⇒ =  

2
2 pq

n
⇒ =  

2n p⇒     ................( )n p ii⇒   ( n p  means “ n divides p” ) 

   Now suppose  p c
n

=  where c∈¢  

p nc⇒ =  2 2 2p n c⇒ =  
   Putting this value of 2p  in equation (i) 

       2 2 2n c nq=  

2 2nc q⇒ =    
2

2 qc
n

⇒ =  

2n q⇒    .................( )n q iii⇒   
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   From (ii) and (iii) we get p and q both have common factor n i.e. ( , )p q n=  
   Which is a contradiction. 
   Hence our supposition is wrong. 
Case II  When n contain a square factor greater then 1. 
Let us suppose 2 1n k m= >  

n k m⇒ =   
Where k is rational and m   is irrational because m has no square factor greater than 
one, this implies n , the product of rational and irrational, is irrational.   q 
 

Í Question 
   Prove that 12  is irrational. 
Proof 
   Suppose 12  is rational. 

12 p
q

⇒ =   where ,p q ∈¢ , 0q ≠  and ( ), 1p q =  

2

212 p
q

⇒ =      2 212p q⇒ =  ………….. (i) 

2
2

12
pq⇒ =   

2
2

22 3
pq⇒ =

⋅
 

2 22 p⇒    and    23 p  

2 p⇒       and    3 p  
⇒   2 and 3 are prime divisor of  p. 

2 3 p⇒ ⋅    i.e.  6 p  

6
p c⇒ = ,  where c is an integer. 

6p c⇒ =  
   Put this value of  p in equation (i) to get 

     2 236 12c q=  

2 23c q⇒ =     
2

2

3
qc⇒ =  

23 q⇒          3 q⇒  

( ), 3p q⇒ = ,  which is a contradiction.  
   Hence  12  is an irrational number.        q 
 

Í Question 
   Let E be a non-empty subset of an ordered set, suppose α  is a lower bound of E 
and β  is an upper bound then prove that α β≤ . 
Proof 
   Since E is a subset of an ordered set S i.e. E S⊆ . 
   Also α  is a lower bound of E therefore by definition of lower bound  

xα ≤   x E∀ ∈  …………… (i) 
   Since β  is an upper bound of E therefore by the definition of upper bound 

x β≤   x E∀ ∈  …………… (ii) 
   Combining (i) and (ii) 

xα β≤ ≤  
    α β⇒ ≤   as required.          q 
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 Sequence  
A sequence is a function whose domain of definition is the set of natural 

numbers. 
Or it can also be defined as an ordered set. 

 

Notation: 
An infinite sequence is denoted as  

 
1

{ }n
n

S
∞

=
 or  { }:nS n∈¥  or  { }1 2 3, , ,...........S S S  or simply as { }nS  

  e.g.        i)   { } { }1,2,3,..........n =  

    ii) 1 1 11, , ,...............
2 3n

   =   
   

 

   iii) { } { }1( 1) 1, 1,1, 1,.............n+− = − −  
 

Subsequence 
It is a sequence whose terms are contained in given sequence. 

A subsequence of 
1

{ }n
n

S
∞

=
 is usually written as { }

knS
∞

. 
 

Increasing Sequence  
A sequence { }nS  is said to be an increasing sequence if 1 1n nS S n+ ≥ ∀ ≥ . 
 

Decreasing Sequence 
A sequence { }nS  is said to be an decreasing sequence if 1 1n nS S n+ ≤ ∀ ≥ . 

 

Monotonic Sequence 
A sequence { }nS  is said to be monotonic sequence if it is either increasing or 

decreasing. 

{ }nS  is monotonically increasing if 1 0n nS S+ − ≥   or  1 1n

n

S
S

+ ≥ ,  1n∀ ≥   

{ }nS  is monotonically decreasing if 1 0n nS S +− ≥   or  
1

1n

n

S
S +

≥ ,  1n∀ ≥   
 

Strictly Increasing or Decreasing 
{ }nS  is called strictly increasing or decreasing according as  

    1n nS S+ >   or  1n nS S+ <     1n∀ ≥ . 
 

Bernoulli’s Inequality 
Let  p∈¡ , 1p ≥ −  and 0p ≠  then for 2n ≥  we have 

      ( )1 1np np+ > +  
Proof: 

We shall use mathematical induction to prove this inequality. 
  If n = 2 

L.H.S 2 2(1 ) 1 2p p p= + = + +  
R.H.S 1 2 p= +  

. . . .L H S R H S⇒ >  
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i.e. condition I of mathematical induction is satisfied. 
  
Suppose  ( )1 1 .................. ( )kp kp i+ > +   where  2k ≥  

Now    ( ) ( )( )11 1 1k kp p p++ = + +  
       ( )( )1 1p kp> + +     using (i) 
       21 kp p kp= + + +  
       21 ( 1)k p kp= + + +  
       1 ( 1)k p≥ + +       ignoring  2 0kp ≥  

      ( ) ( )11 1 1kp k p+⇒ + > + +  
Since the truth for n k=  implies the truth for 1n k= +  therefore condition II of 

mathematical induction is satisfied. Hence we conclude that ( )1 1np np+ > + . 
 

Example 

Let  11
n

nS
n

 = + 
 

    where 1n ≥  

   To prove that this sequence is an increasing sequence, we use  2

1p
n
−

= ,   2n ≥  in 

Bernoulli’s inequality to have 

      2 2

11 1
n n

n n
 − > − 
 

 

         1 1 11 1 1
n

n n n
   ⇒ − + > −      

 

         
1 1 1 11 1 1 11 1 1

1 1

n n n n nn n
n n n n n

− − − −−         ⇒ + > − = = = +         − −         
 

         1n nS S −⇒ >    1n∀ ≥  
   which shows that { }nS  is increasing sequence. 
 

Example 

    Let   
111

n

nt n

+
 = + 
 

 ; 1n ≥  

   then the sequence is decreasing sequence. 

   We use 2

1
1

p
n

=
−

 in Bernoulli’s inequality. 

2 2

11 1
1 1

n n
n n

 + > + − − 
……….. (i) 

where      
2

2 2
11

1 1 1 1
n n n

n n n n
  + = =   − − − +  

 

                      2
1 11

1 1
n n

n n n
+    ⇒ + =    − −    

 …………… (ii) 

Now  1
11

1 1

n n

n
nt

n n−
   = + =   − −   

  

     2
1 11

1

n
n

n n
 +   = +   −   

   from (ii) 



Sequences and Series - 3 - 

     2

1 11
1

n nn
n n

+   = +   −   
 

   2

11
1

nn n
n n

+  > +  −  
    from (i) 

   1 11
nn

n n
+  > +  

  
    2 2

1
1

n n
n n n

> =
−

∵  

  
11 n

n
n t

n

++ = = 
 

 

i.e.  1n nt t− >  
   Hence the given sequence is decreasing sequence. 
 

Bounded Sequence 
A sequence { }nS  is said to be bounded if there exists a positive real number λ  

such that  nS nλ< ∀ ∈¥  
If S and s are the supremum and infimum of elements forming the bounded 

sequence { }nS  we write  sup nS S=    and   inf ns S=  
All the elements of the sequence nS  such that nS nλ< ∀ ∈¥  lie with in the 

strip { }:y yλ λ− < < . But the elements of the unbounded sequence can not be 
contained in any strip of a finite width. 
 

Examples 

(i) { } ( 1)n

nU
n

 −
=  

 
 is a bounded sequence  

(ii)   { } { }sinnV nx=  is also bounded sequence. Its supremum is 1 and infimum is 1− . 
(iii)  The geometric sequence { }1nar − , 1r >  is an unbounded above sequence. It is 
bounded below by a. 

(iv) tan
2

nπ 
 
 

 is an unbounded sequence.   
 

Convergence of the Sequence 
A sequence { }nS  of real numbers is said to convergent to limit  ‘s’  as n → ∞ , if 

for every positive real number 0ε > , however small, there exists a positive integer 0n , 
depending uponε , such that   nS s ε− <    0n n∀ > . 
 

Theorem 
A convergent sequence of real number has one and only one limit (i.e. Limit of 

the sequence is unique.) 
Proof: 
   Suppose { }nS  converges to two limits  s  and  t, where s t≠ . 

Put 
2

s t
ε

−
=   then there exits two positive integers 1n  and 2n  such that 

nS s ε− <    1n n∀ >  
and     nS t ε− <    2n n∀ >  
⇒   nS s ε− <   and  nS t ε− <  hold simultaneously 1 2max( , )n n n∀ > . 

Thus for all  1 2max( , )n n n>  we have 

n ns t s S S t− = − + −  
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n nS s S t≤ − + −  
2ε ε ε< + =  

    2
2

s t
s t

 − 
⇒ − <  

 
 

    s t s t⇒ − < −  
   Which is impossible, therefore the limit of the sequence is unique. 
 

Note:  If { }nS  converges to s then all of its infinite subsequence converge to s. 
 

Cauchy Sequence 
A sequence { }nx  of real number is said to be a Cauchy sequence if for given 

positive real number ε , ∃ a positive integer 0 ( )n ε  such that  
     n mx x ε− <   0,m n n∀ >  
 

Theorem 
A Cauchy sequence of real numbers is bounded. 

Proof 
   Let { }nS be a Cauchy sequence. 
Take 1ε = , then there exits a positive integers 0n  such that 

 1n mS S− <   0,m n n∀ > . 
Fix 0 1m n= +  then 

0 01 1n n n nS S S S+ += − +  

       
0 01 1n n nS S S+ +≤ − +  

       
0 11 nS +< +   0n n∀ >  

            λ<   1n∀ >  , and 
0 11 nSλ += +    ( 0n  changes as ε  changes) 

   Hence we conclude that { }nS is a Cauchy sequence, which is bounded one. 
Note:  
   (i) Convergent sequence is bounded. 
   (ii) The converse of the above theorem does not hold. 
         i.e. every bounded sequence is not Cauchy. 
   Consider the sequence { }nS  where ( 1)n

nS = − ,  1n ≥ . It is bounded sequence because  

( 1) 1 2n− = <   1n∀ ≥  
   But it is not a Cauchy sequence if it is then for 1ε =  we should be able to find a 
positive integer 0n  such that 1n mS S− <  for all 0,m n n>  
   But with 2 1m k= + , 2 2n k= +  when 02 1k n+ > , we arrive at  

2 2 2 1( 1) ( 1)n k
n mS S + +− = − − −  

    1 1 2 1= + = <   is absurd. 
    Hence { }nS  is not a Cauchy sequence. Also this sequence is not a convergent 
sequence. (it is an oscillatory sequence) 
 

 
…………………………… 
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Divergent Sequence 
A { }nS  is said to be divergent if it is not convergent or it is unbounded. 

     e.g.  { }2n  is divergent, it is unbounded. 

   (ii) { }( 1)n−  tends to 1 or -1 according as n is even or odd. It oscillates finitely.  

  (iii) { }( 1)n n−  is a divergent sequence. It oscillates infinitely. 
 

  Note:  If two subsequence of a sequence converges to two different limits then the 
sequence itself is a divergent. 
 

Theorem 
If n n nS U t< <   0n n∀ ≥  and if both the { }nS  and { }nt  converge to same limits as 

s, then the sequence { }nU  also converges to s. 
   Proof 

Since the sequence { }nS  and { }nt  converge to the same limit s, therefore, for 
given 0ε >   there exists two positive integers 1 2 0,n n n>  such that 

nS s ε− <    1n n∀ >  

nt s ε− <    2n n∀ >  
   i.e.   ns S sε ε− < < +  1n n∀ >  

ns t sε ε− < < +  2n n∀ >  
 Since we have given 

n n nS U t< <     0n n∀ >  
 n n ns S U t sε ε∴ − < < < < +   0 1 2max( , , )n n n n∀ >  

         ns U sε ε⇒ − < < +    0 1 2max( , , )n n n n∀ >  
  i.e.        nU s ε− <   0 1 2max( , , )n n n n∀ >  
  i.e.  lim nn

U s
→∞

=  
 

Example 

Show that 
1

lim 1n
n

n
→∞

=  

Solution 
  Using Bernoulli’s Inequality 

11 1 1
n n n

n n
 + ≥ + ≥ ≥ 
 

  n∀ . 

Also 
2

21 11 1
n n

n n

    + = +    
     

 ( )
2 1

1n nn n> > ≥  

  
21 11 1nn

n
 ⇒ ≤ < + 
 

 

21 1lim1 lim lim 1n
n n n

n
n→∞ →∞ →∞

 ⇒ ≤ < + 
 

 

1

1 lim 1n
n

n
→∞

⇒ ≤ <  

      i.e.   
1

lim 1n
n

n
→∞

= . 

…………………….. 
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Example 

Show that   2 2 2
1 1 1lim ............ 0

( 1) ( 2) (2 )n n n n→∞

 
+ + + = + + 

 

Solution 
 We have  

2 2 2
1 1 1............

( 1) ( 2) (2 )nS
n n n

 
= + + + + + 

 

    and  

2 2(2 ) n
n nS
n n

< <  

    1 1
4 nS

n n
⇒ < <  

   1 1lim lim lim
4 nn n n

S
n n→∞ →∞ →∞

⇒ < <   

   0 lim 0nn
S

→∞
⇒ < <  

   lim 0nn
S

→∞
⇒ =  

 

Theorem 
If the sequence { }nS  converges to s then ∃ a positive integer n  

 such that  1
2nS s> . 

   Proof 

    We fix  1 0
2

sε = >  

    ⇒ ∃  a positive integer 1n   such that 
 nS s ε− <    for 1n n>  

     1
2nS s s⇒ − <  

Now    
1 1
2 2

s s s= −  

        ns S s< − −   ( )ns S s≤ + −  

    1
2 ns S⇒ <  

 

Theorem 
Let a and b be fixed real numbers if { }nS  and { }nt  converge to s and t 

respectively, then 
(i)   { }n naS bt+  converges to as + bt. 
(ii)  { }n nS t  converges to st. 

(iii) n

n

S
t

 
 
 

 converges to s
t

, provided 0nt n≠ ∀  and 0t ≠ . 

   Proof 
Since { }nS  and { }nt  converge to s and t respectively, 

nS s ε∴ − <  1n n∀ > ∈¥  
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     nt t ε− <  2n n∀ > ∈¥  
  Also 0λ∃ >  such that  nS λ<    1n∀ >    ( { }nS∵  is bounded ) 
(i) We have  

( ) ( ) ( ) ( )n n n naS bt as bt a S s b t t+ − + = − + −  

       ( ) ( )n na S s b t t≤ − + −  

       a bε ε< +    1 2max ( , )n n n∀ >  
       1ε=     Where 1 a bε ε ε= +  a certain number. 

This implies { }n naS bt+  converges to as + bt. 
(ii)  n n n n n nS t st S t S t S t s t− = − + −  

       ( ) ( )n n nS t t t S s= − + −    ( ) ( )n n nS t t t S s≤ ⋅ − + ⋅ −  

       tλε ε< +   1 2max ( , )n n n∀ >  
       2ε=    where 2 tε λ ε ε= +  a certain number. 

This implies { }n nS t  converges to st. 

(iii) 1 1 n

n n

t t
t t t t

−
− =  

  1
2

n

n

t t
t t t t

ε−
= <   1 2max ( , )n n n∀ >   1

2nt t>∵  

  321
2 t

ε
ε= =     where 3 21

2 t
ε

ε =   a certain number. 

             This implies  1
nt

 
 
 

  converges to  1t . 

   Hence 1n
n

n n

S St t
   = ⋅   
   

 converges to  1 ss t t⋅ = .   ( )from (ii)  
 

Theorem 
For each irrational number x, there exists a sequence { }nr  of distinct rational 

numbers such that  lim nn
r x

→∞
= . 

   Proof 
   Since x and x + 1 are two different real numbers 

∃∵  a rational number 1r  such that 
1 1x r x< < +  

 Similarly ∃ a rational number 2 1r r≠  such that  

2 1
1min , 1
2

x r r x x < < + < + 
 

 

Continuing in this manner we have  

3 2
1min , 1
3

x r r x x < < + < + 
 

 

4 3
1min , 1
4

x r r x x < < + < + 
 

 

…………………………….......... 
…………………………….......... 
…………………………….......... 

1
1min , 1n nx r r x x
n−

 < < + < + 
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   This implies that ∃ a sequence { }nr  of the distinct rational number such that 
1 1

nx x r x
n n

− < < < +  

   Since       

  1 1lim lim
n n

x x x
n n→∞ →∞

   − = + =   
   

 

   Therefore      
lim nn

r x
→∞

=  
 
Theorem 

Let a sequence { }nS  be a bounded sequence. 
  (i)  If { }nS  is monotonically increasing then it converges to its supremum. 
  (ii)  If { }nS  is monotonically decreasing then it converges to its infimum. 
Proof 
  Let sup nS S=  and inf ns S=  
 Take 0ε >  
(i)    Since sup nS S=   

∴ ∃ 
0nS  such that 

0nS Sε− <  
Since { }nS  is ↑      ( ↑  stands for monotonically increasing ) 

0n nS S S S Sε ε∴ − < < < < +    for 0n n>  
        nS S Sε ε⇒ − < < +              for 0n n>  
        nS S ε⇒ − <       for 0n n>  
        lim nn

S S
→∞

⇒ =  

(ii) Since inf ns S=  
∴ ∃ 

1nS  such that 
1nS s ε< +  

Since { }nS  is ↓ .     ( ↓  stands for monotonically decreasing ) 

1n ns s S S sε ε∴ − < < < < +   for 1n n>  
       ns S sε ε⇒ − < < +   for 1n n>  
       nS s ε⇒ − <   for 1n n>  
   Thus  lim nn

S s
→∞

=  
 

Note 
A monotonic sequence can not oscillate infinitely. 

 

Example: 

Consider { } 11
n

nS
n

   = +  
   

 

As shown earlier it is an increasing sequence  

Take 
2

2
11

2

n

nS
n

 = + 
 

 

Then 2
11

2

n

nS
n

 = + 
 

 

    
2

1 2
2 1

n

n

n
nS

 ⇒ =  + 
      

2

1 11
2 1

n

n nS
 ⇒ = − + 

 

Using Bernoulli’s Inequality we have  
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2

1 11 1
2 1 2 2n

n n
n nS

⇒ ≥ − > − =
+

   1
1 1

2 1 2 1

n n
n n

− ≥ −
+ +

 
 
 

∵  

   2 2nS⇒ <   1,2,3,..........n∀ =  
   2 4nS⇒ <   1,2,3,..........n∀ =  
   2 4n nS S⇒ < <       1,2,3,..........n∀ =  
Which show that the sequence { }nS  is bounded one. 
Hence { }nS  is a convergent sequence the number to which it converges is its 
supremum, which is denoted by  ‘e’  and 2 3e< < . 
 

Recurrence Relation 
A sequence is said to be defined recursively or by recurrence relation if the 

general term is given as a relation of its preceding and succeeding terms in the sequence 
together with some initial condition. 
 

Example 

Let 1 0t >  and let { }nt  be defined by   1
12n
n

t
t+ > −  ;  1n ≥  

  0nt⇒ >    1n∀ ≥  

Also   1
12n n n
n

t t t
t+− = − +  

   
2 2 1n n

n

t t
t

− +
=  ( )21

0n

n

t
t
−

= >  

            1n nt t +⇒ >     1n∀ ≥  
This implies that nt  is monotonically decreasing. 
   Since  1nt >  1n∀ ≥  
  nt⇒  is bounded below     nt⇒  is convergent. 
Let us suppose  lim nn

t t
→∞

=  

     Then     1lim limn nn n
t t+→∞ →∞

=  

             1lim 2 lim nn n
n

t
t→∞ →∞

 
⇒ − = 

 
 

         12 t
t

⇒ − =       2 1t t
t
−

⇒ =      22 1t t⇒ − =    2 2 1 0t t⇒ − + =  

             ( )21 0t⇒ − =     1t⇒ =  
 

Example 
Let { }nS  be defined by  1n nS S b+ = +     ; 1n ≥  and  1S a b= > . 

It is clear that 0nS >  1n∀ ≥  and 2 1S S>  and 
( ) ( )2 2

1 1n n n nS S S b S b+ −− = + − +  
    1n nS S −= −  

 ( )( )1 1 1n n n n n nS S S S S S+ + −⇒ + − = −  

 1
1

1

n n
n n

n n

S SS S
S S

−
+

+

−
⇒ − =

+
 

Since 1 0n nS S+ + >    1n∀ ≥  
Therefore 1n nS S+ −  and 1n nS S −−  have the same sign. 
   i.e.  1n nS S+ >   if and only if  1n nS S −>  and  
          1n nS S+ <  if and only if 1n nS S −< . 
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But we know that 2 1S S>  therefore  3 2S S> ,  4 3S S> ,  and so on. 
This implies the sequence is an increasing sequence. 

Also  ( )22 2 2 2
1n n n n n nS S S b S S b S+ − = + − = + −  

   ( )2
n nS S b= − − −  

Since 0nS >   1n∀ ≥ , therefore nS  is the root (+ive) of the  
2 0n nS S b− − =  

Take this value of nS  as α   where 1 1 4
2

b
α

+ +
=   

the other root of equation is therefore  b
α
−  

Since 1n nS S+ >  1n∀ ≥  

Also  ( ) 2 2
1 0n n n n

bS S S Sα
α +

 − − + = − > 
 

 

0n
bS
α

∴ + >    or    ( ) 0nS α− − ≥  

                     nS α⇒ <   1n∀ ≥  
which shows that nS  is bounded and hence it is convergent. 
Suppose lim nn

S s
→∞

=  

Then 2
1lim( ) lim( )n nn n

S S b+→∞ →∞
= +  

    2s s b⇒ = +     2 0s s b⇒ − − =  

Which shows that 1 1 4
2

b
α

+ +
=  is the limit of the sequence. 

 

Theorem 
Every Cauchy sequence of real numbers has a convergent subsequence. 

  Proof 
Suppose { }nS  is a Cauchy sequence. 

Let 0ε >  then ∃ a positive integer 0 1n ≥  such that 

1 2k kn n kS S ε
−

− <    1, , 1,2,3,.........k kn n k−∀ =  

Put      ( ) ( ) ( )1 0 2 1 1
............

k kk n n n n n nb S S S S S S
−

= − + − + + −  

   ( ) ( ) ( )
1 0 2 1 1

............
k kk n n n n n nb S S S S S S

−
⇒ = − + − + + −  

               ( ) ( ) ( )
1 0 2 1 1

............
k kn n n n n nS S S S S S

−
≤ − + − + + −  

     2 ............
2 2 2k
ε ε ε

< + + +  

     2
1 1 1............
2 2 2kε  = + + + 

 
 

( )1 1
2 2

1
2

1 11
1 2

k

kε ε
 −   = = −  −    

 

   kb ε⇒ <  1k∀ ≥  
   ⇒    { }kb  is convergent 

0kk n nb S S= −∵     
0kn k nS b S∴ = +  

   Where 
0nS  is a certain fix number therefore { }knS  which is a subsequence of { }nS is 

convergent. 
 

For equation 2 0ax bx c+ + =  
The product of roots is c

aαβ =  

i.e. the other root c
a

β
α

=  
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Theorem (Cauchy’s General Principle for Convergence) 
A sequence of real number is convergent if and only if it is a Cauchy sequence. 

Proof 
Necessary Condition   
 Let { }nS  be a convergent sequence, which converges to s . 
  Then for given 0ε >  ∃ a positive integer 0n , such that 

 2nS s ε− <    0n n∀ >  

  Now for 0n m n> >  
 n m n mS S S s S s− = − + −  

      n mS s S s≤ − + −  

      2 2
ε ε< +  ε=  

Which shows that { }nS  is a Cauchy sequence. 
Sufficient Condition  

Let us suppose that { }nS  is a Cauchy sequence then for 0ε > , ∃ a positive 
integer 1m  such that  

2n mS S ε
− <  1,n m m∀ >  ……….. (i) 

   Since { }nS  is a Cauchy sequence  

   therefore it has a subsequence { }knS  converging to s (say). 
⇒ ∃ a positive integer 2m  such that  

2knS s ε
− <   2n m∀ >  ……….. (ii) 

   Now  

k kn n n nS s S S S s− = − + −  

  
k kn n nS S S s≤ − + −  

  
2 2
ε ε

ε< + =   1 2max( , )n m m∀ >  

   which shows that { }nS  is a convergent sequence. 
 

Example 
Let { }nS  be define by   1 20 a S S b< < < <   and also  

1 1n n nS S S+ −= ⋅ , 2n >  ………. (i) 
Here 0nS > , 1n∀ ≥  and 1a S b< <  
Let for some 2k >  

ka S b< <  
then  2 2 2

1 1( )k k k ka a S S S S b− +< < = <    1 1n n nS S S+ −=∵  
   i.e.  2 2 2

1ka S b+< <  
     1ka S b+⇒ < <  
     na S b⇒ < <     n∀ ∈¥  

      
1

n

n

S a
S b+

>∵  

     
1

1 1n

n

S a
S b+

∴ + > +  
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     1

1

n n

n

S S a b
S b

+

+

+ +
⇒ >  

     1n n

n

S S a b
S b

++ +
⇒ >   1nS +  is replace by nS   1n nS S +∴ <  

And    2 2 2
1 1n n n n nS S S S S+ −− = ⋅ −   1 1n n nS S S+ −=∵  

                         ( )1n n nS S S−= −  

 1 1
1

n
n n n n

n n

SS S S S
S S+ −

+

⇒ − = −
+

 

   1n n
b S S

a b −< −
+

 

 1 1n n n n
bS S S S

a b+ −⇒ − < −
+

 1 1n n n nS S S S− −− = −∵  

   
2

1 2n n
b S S

a b − −
 < − + 

 

   
3

2 3n n
b S S

a b − −
 < − + 

 

   ……………………… 
   ……………………… 
   ……………………… 

   ( )
1nb b a

a b

−
 < − + 

 

Take   1br
a b

= <
+

  

Then for n m>  we have 
1 1 2 1..............n m n n n n m mS S S S S S S S− − − +− = − + − + + −  

    1 1 2 1..............n n n n m mS S S S S S− − − +≤ − + − + + −  
    ( )2 3 1............... ( )n n mr r r b a− − −< + + + −  
    ε=  

This implies that { }nS  is a Cauchy sequence, therefore it is convergent. 
 

Example 
Let { }nt  be defined by 

1 1 11 ...............
2 3nt n

= + + + +  

For  ,m n∈¥ , n m>  we have 
1 1 1.............

1 2n mt t
m m n

− = + + +
+ +

 

   1( )n m
n

> −   =  1 m
n

−  

In particular if 2n m=  then  
1
2n mt t− >  

This implies that { }nt  is not a Cauchy sequence therefore it is divergent. 
 

7⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅8 
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Theorem (nested intervals) 
Suppose that  { }nI  is a sequence of the closed interval such that [ ],n n nI a b=  , 

1n nI I+ ⊂  1n∀ ≥ , and ( ) 0n nb a− →  as n → ∞  then nI∩  contains one and only one 
point. 
Proof 
   Since 1n nI I+ ⊂  

∴ 1 2 3 1 1 3 2 1............. ..........n n n na a a a a b b b b b− −< < < < < < < < < < <  
   { }na  is increasing sequence, bounded above by 1b  and bounded below by 1a . 
And { }nb  is decreasing sequence bounded below by 1a  and bounded above by 1b . 
    ⇒   { }na  and { }nb  both are convergent. 
Suppose { }na  converges to a  and { }nb  converges to  b. 
  But   n n n na b a a a b b b− = − + − + −  

n n n na a a b b b≤ − + − + −  0→    as   n → ∞ . 
⇒  a b=  

and      n na a b< <    1n∀ ≥ . 
 

Theorem (Bolzano-Weierstrass theorem) 
Every bounded sequence has a convergent subsequence. 

Proof 
   Let { }nS  be a bounded sequence. 
Take  1 inf na S=   and  1 sup nb S=  
Then  1 1na S b< <   1n∀ ≥ . 
   Now bisect interval [ ]1 1,a b  such that at least one of the two sub-intervals contains 
infinite numbers of terms of the sequence. 
   Denote this sub-interval by [ ]2 2,a b . 
   If both the sub-intervals contain infinite number of terms of the sequence then choose 
the one on the right hand. 
   Then clearly  1 2 2 1a a b b≤ < ≤ . 
Suppose there exist a subinterval  [ ],k ka b   such that  

1 2 2 1........... ...........k ka a a b b b≤ ≤ ≤ < ≤ ≤ ≤  

   ( ) ( )1 1
1
2k k kb a b a⇒ − = −  

   Bisect the interval [ ],k ka b  in the same manner and choose [ ]1 1,k ka b+ +  to have  

1 2 1 1 2 1........... ...........k k k ka a a a b b b b+ +≤ ≤ ≤ ≤ < ≤ ≤ ≤ ≤  

   and    ( )1 1 1 11

1
2k k kb a b a+ + +− = −  

   This implies that we obtain a sequence of interval [ ],n na b  such that 

1 1
1 ( ) 0
2n n nb a b a− = − →   as  n → ∞ . 

   ⇒  we have a unique point  s  such that  
[ ],n ns a b= ∩   

there are infinitely many terms of the sequence whose length is  0ε >  that contain  s. 
For 1ε =  there are infinitely many values of n such that  

1nS s− <  
   Let 1n  be one of such value then 

1
1nS s− <  
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  Again choose 2 1n n>  such that 

2

1
2nS s− <  

   Continuing in this manner we find a sequence { }knS  for each positive integer k such 
that   1k kn n +<   and 

1
knS s

k
− <   1,2,3,............k∀ =  

  Hence there is a subsequence { }knS  which converges to s. 
 

Limit Inferior of the sequence 
Suppose { }nS  is bounded then we define limit inferior of { }nS  as follow 

    ( )lim inf limn kn n
S U

→∞ →∞
=    where   { }inf :k nU S n k= ≥  

   If nS  is bounded below then  
    ( )lim inf nn

S
→∞

= −∞  
 
 

Limit Superior of the sequence 
Suppose { }nS  is bounded above then we define limit superior of { }nS  as follow 
   ( )lim sup limn kn n

S V
→∞ →∞

=   where  { }inf :k nV S n k= ≥  

   If nS  is not bounded above then we have  
    ( )lim sup nn

S
→∞

= +∞  
 

Note:   
(i)  A bounded sequence has unique limit inferior and superior  
(ii) Let { }nS  contains all the rational numbers, then every real number is a 
subsequencial limit then limit superior of nS  is +∞  and limit inferior of nS  is −∞  

(iii)  Let { } 1( 1) 1n
nS

n
 = − + 
 

 

then limit superior of nS  is 1 and limit inferior of nS  is 1− . 
(iv)  Let { }inf :k nU S n k= ≥  

                  1 1 1
1 cos , 1 cos( 1) , 1 cos( 2) ,................

1 2
inf k k k

k k k
π π π+ + + + +

+ +
      =       

      
 

                 

11 cos

11 cos( 1)
1

k if k is odd
k

k if k is even
k

π

π

  +   =   + + + 

 

( )lim inf lim 1n kn n
S U

→∞ →∞
⇒ = = −  

Also    { }sup :k nV S n k= ≥  

                

11 cos( 1)
1

11 cos

k if k is odd
k

k if k is even
k

π

π

 + +  + =   +  

 

( )lim inf lim 1n kn n
S V

→∞ →∞
⇒ = =  

 

ï⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ð 
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Theorem 
  If { }nS  is a convergent sequence then  
    ( ) ( )lim lim inf lim supn n nn n n

S S S
→∞ →∞ →∞

= =  

Proof 
    Let lim nn

S s
→∞

=  then for a real number 0ε > , ∃ a positive integer 0n  such that 

nS s ε− <      0n n∀ ≥  ……….. (i) 
           i.e.      ns S sε ε− < < +  0n n∀ ≥  
  If     { }sup :k nV S n k= ≥  
Then   ns V sε ε− < < +   0k n∀ ≥  

lim nk
s V sε ε

→∞
⇒ − < < +   0k n∀ ≥  …………. (ii) 

from (i) and (ii) we have 
{ }lim sup nk

s S
→∞

=  

We can have the same result for limit inferior of { }nS  by taking 
{ }inf :k nU S n k= ≥  

 
 

ï⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ð 
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Infinite Series 

Given a sequence { }na , we use the notation 
1

n
i

a
∞

=
∑  or simply na∑  to denotes the 

sum 1 2 3 ..............a a a+ + +  and called a infinite series or just series. 

   The numbers 
1

n

n k
k

S a
=

= ∑  are called the partial sum of the series. 

If the sequence { }nS  converges to s, we say that the series converges and write 

1
n

n
a s

∞

=

=∑ , the number s is called the sum of the series but it should be clearly 

understood that the ‘s’ is the limit of the sequence of sums and is not obtained simply 
by addition. 
   If the sequence { }nS  diverges then the series is said to be diverge. 
Note: 
   The behaviors of the series remain unchanged by addition or deletion of the certain 
terms  
 

Theorem 

If  
1

n
n

a
∞

=
∑  converges then  lim 0nn

a
→∞

= . 

Proof 
Let  1 2 3 ..........n nS a a a a= + + + +  

   Take          lim n nn
S s a

→∞
= = ∑  

   Since  1n n na S S −= −   
   Therefore    ( )1lim limn n nn n

a S S −→∞ →∞
= −  

            1lim limn nn n
S S −→∞ →∞

= −  

            0s s= − =  
 

Note:  
The converse of the above theorem is false 

 

Example 

Consider the series  
1

1
n n

∞

=
∑ . 

   We know that the sequence { }nS  where 1 1 11 .............
2 3nS

n
= + + + +  is divergent 

therefore  
1

1
n n

∞

=
∑   is divergent series, although   lim 0nn

a
→∞

= . 

   This implies that if    lim 0nn
a

→∞
≠ , then  na∑  is divergent. 

   It is know as basic divergent test. 
 

 Theorem (General Principle of Convergence) 
   A series na∑  is convergent if and only if for any real number 0ε > , there exists a 
positive integer 0n  such that  

     
1

i
i m

a ε
∞

= +

<∑      0n m n∀ > >  

Proof 
   Let 1 2 3 .............n nS a a a a= + + + +    
   then { }nS  is convergent if and only if for  0ε >  ∃ a positive integer 0n  such that  



Sequences and Series - 17 - 

n mS S ε− <       0n m n∀ > >   

               
1

i n m
i m

a S S ε
∞

= +

⇒ = − <∑  
 

Example  

   If   1x <   then  
0

1
1

n

n
x

x

∞

=

=
−∑   

   And if 1x ≥  then  
0

n

n
x

∞

=
∑   is divergent. 

 

Theorem 
   Let  na∑  be an infinite series of non-negative terms and let { }nS  be a sequence of 

its partial sums then na∑  is convergent if { }nS  is bounded and it diverges if { }nS  is 
unbounded. 
Proof 

Since 0na ≥     0n∀ ≥  
          1 1n n n nS S a S− −= + >  0n∀ ≥  

   therefore the sequence { }nS  is monotonic increasing and hence it is converges if  
{ }nS  is bounded and it will diverge if it is unbounded. 
   Hence we conclude that na∑  is convergent if { }nS  is bounded and it divergent if 

{ }nS  is unbounded. 
 

Theorem (Comparison Test) 
   Suppose na∑  and nb∑  are infinite series such that  0na > , 0nb >   n∀ . Also 
suppose that for a fixed positive number λ  and positive integer k , n na bλ<   n k∀ ≥  
   Then na∑  converges if nb∑  is converges and nb∑  is diverges if na∑  is diverges. 
Proof 
    Suppose nb∑  is convergent and  
          n na bλ<     n k∀ ≥  …………. (i) 
   then for any positive number 0ε >  there exists 0n  such that 

      
1

n

i
i m

b ε
λ= +

<∑   0n m n> >  

   from (i)  

1 1

n n

i i
i m i m

a bλ ε
= + = +

⇒ < <∑ ∑     ,     0n m n> >  

               na⇒ ∑  is convergent. 

   Now suppose na∑  is divergent then { }nS  is unbounded. 
    ⇒ ∃ a real number 0β >  such that  

     
1

n

i
i m

b λ β
= +

>∑        ,     n m>  

   from (i) 

1 1

1n n

i i
i m i m

b a β
λ= + = +

⇒ > >∑ ∑      ,     n m>  

nb⇒ ∑  is convergent. 
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Example 

We know that 1
n∑  is divergent and  

   n n≥  1n∀ ≥  

      1 1
n n

⇒ ≤  

      1
n

⇒ ∑  is divergent as  1
n∑   is divergent. 

 

Example 

    The series 1
nα∑  is convergent if 1α >  and diverges if 1α ≤ . 

    Let    1 1 11 ..................
2 3nS

nα α α= + + + +  

    If  1α >   then 

     2n nS S<     and    1 1
( 1)n nα α<

−
 

Now   2
1 1 1 11 ............
2 3 4 (2 )nS

nα α α α

 
= + + + + 

 
  

                1 1 1 1 1 1 11 ............ ............
3 5 (2 1) 2 4 6 (2 )n nα α α α α α α

   
= + + + + + + + + +   −   

 

                1 1 1 1 1 1 11 ............ 1 ............
3 5 (2 1) 2 2 3 ( )n nα α α α α α α

   
= + + + + + + + + +   −   

 

               1 1 1 11 ............
2 4 (2 2) 2 nS

nα α α α

 
< + + + + + − 

      

replacing 3 by 2, 5 by 4 and so on. 

      1 1 1 11 1 ............
2 2 ( 1) 2 nS

nα α α α

 
= + + + + + − 

 

      1
1 11
2 2n nS Sα α−= + +    2 2

1 11
2 2n nS Sα α= + +   1 2n n nS S S− < <∵  

       2
21
2 nSα= +  

    2 21

11
2n nS Sα−⇒ < +  

   21
11 1

2 nSα−
 ⇒ − < 
 

 
1

21
2 1 1

2 nS
α

α

−

−

 −
⇒ < 

 
    

1

2 1
2

2 1nS
α

α

−

−⇒ <
−

 

   i.e.  
1

2 1
2

2 1n nS S
α

α

−

−< <
−

 

   { }nS⇒  is bounded and also monotonic. Hence we conclude that 1
nα∑  is 

convergent when 1α > . 
   If 1α ≤  then 

n nα ≤    1n∀ ≥  

   1 1
n nα⇒ ≥    1n∀ ≥  

   1
n∑∵   is divergent therefore 1

nα∑  is divergent when 1α ≤ . 
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Theorem 

   Let 0na > , 0nb >  and lim 0n
n

n

a
b

λ
→∞

= ≠  then the series na∑  and nb∑  behave alike. 

Proof 

   Since    lim n
n

n

a
b

λ
→∞

=  

n

n

a
b

λ ε⇒ − <     0n n∀ ≥ . 

    Use 
2
λ

ε =  

2
n

n

a
b

λ
λ⇒ − <     0n n∀ ≥ . 

2 2
n

n

a
b

λ λ
λ λ⇒ − < < +  

3
2 2

n

n

a
b

λ λ
⇒ < <  

   then we got 
3
2n na bλ

<    and    2
n nb a

λ
<  

   Hence by comparison test we conclude that  na∑  and  nb∑  converge or diverge 
together. 
 

Example 

    To check 21 sin x
n n∑   diverges or converges consider 

21 sinn
xa

n n
=     and take    3

1
nb

n
=  

   then     2 2sinn

n

a xn
b n

=  

                     
2

2

sin

1

x
n

n

=    

2

2
sin x

nx x
n

 
 

=  
 
 

 

   Applying limit as n → ∞  
2 2

2 2 2 2
sin sin

lim lim lim (1)n
n n n

n

x x
a n nx x x xx xb

n n
→∞ →∞ →∞

   
   

= = = =   
   
   

 

   na⇒ ∑  and nb∑  have the similar behavior ∀  finite values of  x except x = 0. 

   Since 3

1
n∑  is convergent series therefore the given series is also convergent for 

finite values of x except x = 0. 
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Theorem ( Cauchy Condensation Test ) 
    Let  0na ≥  , 1n na a +>  1n∀ ≥ , then the series  na∑  and   1

1
2

2 n
n a −

−∑  converges or 
diverges together. 
Proof 

Let us suppose 
1 2 3 ...............n nS a a a a= + + + +  

       and 2 1
2 1

1 2 2 22 2 ................ 2 n
n

nt a a a a −
−= + + + + . 

0na ≥∵    and   12 2 1n nn −< < −  
1 2 12 nnnS S S− −∴ < <    for 2n >  

  then  
      1 2 32 1 2 1......n nS a a a a

− −= + + + +      

              ( ) ( ) ( )1 1 11 2 3 4 5 6 7 2 12 2 1 2 2....... ..... nn n na a a a a a a a a a a− − − −+ +
= + + + + + + + + + + + +  

               ( ) ( ) ( )1 1 1 11 2 2 4 4 4 4 2 2 2 2....... .....n n n na a a a a a a a a a a− − − −< + + + + + + + + + + + +  

               1
2 1

1 2 4 22 2 ....... 2 n
n

na a a a t−
−< + + + + =  

   n nS t⇒ <  
   

2
2 nn nS t S⇒ < <  …………. (i) 

Now consider 
    1 2 32 2...............n nS a a a a= + + + +   

( ) ( ) ( )1 1 11 2 3 4 5 6 7 8 22 1 2 2 2 3....... .... nn n na a a a a a a a a a a a− − −+ + +
= + + + + + + + + + + + + +

          ( ) ( ) ( )1 2 4 4 8 8 8 8 2 2 2 2
1 ...... .....
2 n n n na a a a a a a a a a a a> + + + + + + + + + + + + +  

2 1
1 2 4 8 2

1 2 2 ................ 2
2 n

na a a a a−= + + + + +  

( )3 3
1 2 4 8 2

1 2 2 2 ................ 2
2 n

na a a a a= + + + + +  

   2
1
2n nS t⇒ >  ………… (ii) 

   22 n nS t⇒ >   
   From (i) and (ii) we see that the sequence nS  and nt  are either both bounded or both 
unbounded, implies that na∑  and 1

1
2

2 n
n a −

−∑   converges or diverges together. 
 

Example 

   Consider the series 1
pn∑  

   If 0p ≤  then  1lim 0pn n→∞
≠   

   therefore the series diverges when 0p ≤ . 
   If 0p >  then the condensation test is applicable and we are lead to the series  

0 0

1 12
(2 ) 2

k
k p kp k

k k

∞ ∞

−
= =

=∑ ∑  

                             ( 1) ( 1)
0 0

1 1
2 2

k

p k p
k k

∞ ∞

− −
= =

 = =  
 

∑ ∑  

        (1 )

0

2 p k

k

∞
−

=

= ∑  

   Now 12 1p− <   iff  1 0p− <   i.e. when  1p >  
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   And the result follows by comparing this series with the geometric series having 
common ratio less than one. 
   The series diverges when 12 1p− =   ( i.e. when 1p = ) 
   The series is also divergent if 0 1.p< <  
 

Example 

If  1p > , 
2

1
(ln ) p

n n n

∞

=
∑  converges and 

If  1p ≤  the series is divergent. 

{ }ln n∵  is increasing     1
lnn n

 ∴  
 

 decreases 

   and we can use the condensation test to the above series. 

   We have  
( )

1
lnn pa

n n
=  

 
( )2

1

2 ln 2
n pn n

a⇒ =   
( )2

12
ln 2

n
n

pa
n

⇒ =  

⇒     we have the series  

( )2

1 1 12
( ln 2) ln 2

n
n

pp pa
n n

= =∑ ∑ ∑  

   which converges when 1p >   and diverges when 1p ≤ . 
 

Example 

Consider  1
ln n∑  

   Since { }ln n  is increasing there 1
ln n

 
 
 

 decreases. 

   And we can apply the condensation test to check the behavior of the series 

 1
lnna

n
=∵      

2

1
ln 2n na∴ =  

   so    
2

22
ln 2n

n
n

na =      
2

22
ln 2n

n
n a

n
⇒ =  

   since  2 1n

n n
>  1n∀ ≥  

   and  1
n∑   is diverges therefore the given series is also diverges. 
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Alternating Series 
   A series in which successive terms have opposite signs is called an alternating series. 

e.g.   
1( 1) 1 1 11 ...............

2 3 4

n

n

+−
= − + − +∑  is an alternating series. 

 

Theorem (Alternating Series Test or Leibniz Test) 
   Let { }na  be a decreasing sequence of positive numbers such that lim 0nn

a
→∞

=  then the 

alternating series 1
1 2 3 4

1

( 1) ................n
n

n
a a a a a

∞
+

=

− = − + − +∑   converges. 

Proof 
    Looking at the odd numbered partial sums of this series we find that 

2 1 1 2 3 4 5 6 2 1 2 2 1( ) ( ) ( ) ........... ( )n n n nS a a a a a a a a a+ − += − + − + − + + − +  
   Since { }na  is decreasing therefore all the terms in the parenthesis are non-negative 
      2 1 0nS +⇒ >    n∀  
   Moreover     

      2 3 2 1 2 2 2 3n n n nS S a a+ + + += − +  
               ( )2 1 2 2 2 3n n nS a a+ + += − −  

   Since   2 2 2 3 0n na a+ +− ≥    therefore  2 3 2 1n nS S+ +≤  
   Hence the sequence of odd numbered partial sum is decreasing and is bounded below 
by zero.  (as it has +ive terms) 
   It is therefore convergent. 
   Thus 2 1nS +  converges to some limit l  (say). 
  Now consider the even numbered partial sum. We find that 

   2 2 2 1 2 2n n nS S a+ + += −  
   and   

  ( )2 2 2 1 2 2lim limn n nn n
S S a+ + +→∞ →∞

= −  

      2 1 2 2lim limn nn n
S a+ +→∞ →∞

= −  

      0l= − l=     lim 0nn
a

→∞
=∵  

   so that the even partial sum is also convergent to l . 
   ⇒   both sequences of odd and even partial sums converge to the same limit. 
   Hence we conclude that the corresponding series is convergent. 
 

Absolute Convergence 

na∑  is said to converge absolutely if na∑  converges. 
 

Theorem 
An absolutely convergent series is convergent. 

Proof: 
   If na∑  is convergent then for a real number 0ε > , ∃ a positive integer 0n  such that 

1 1

n n

i i
i m i m

a a ε
= + = +

< <∑ ∑      0,n m n∀ >  

   ⇒  the series na∑  is convergent.  (Cauchy Criterion has been used) 
 

Note 
   The converse of the above theorem does not hold. 

e.g.     
1( 1)n

n

+−∑  is convergent   but 1
n∑  is divergent. 
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Theorem (The Root Test) 

Let    
1

lim n
nn

Sup a p
→∞

=  

   Then na∑  converges absolutely if 1p <  and it diverges if 1p > . 
Proof 
   Let 1p <  then we can find the positive number 0ε >  such that 1p ε+ <  

1
1n

na p ε⇒ < + <  0n n∀ >  

( ) 1n
na p ε⇒ < + <  

      ( )np ε+∑∵  is convergent because it is a geometric series with 1r < . 

      na∴ ∑  is convergent 

      na⇒ ∑  converges absolutely. 
   Now let 1p >  then we can find a number 1 0ε >  such that 1 1p ε− > . 

1
1n

na p ε⇒ > + >  
1na⇒ >   for infinitely many values of n. 

lim 0nn
a

→∞
⇒ ≠     

na⇒ ∑  is divergent. 
 

Note: 
The above test give no information when 1p = . 

   e.g.   Consider the series  1
n∑   and  2

1
n∑ . 

  For each of these series 1p = , but  1
n∑   is divergent and  2

1
n∑   is convergent. 

 

Theorem (Ratio Test) 
The series na∑  

  (i)    Converges if 1lim 1n
n

n

aSup
a

+

→∞
<  

  (ii)   Diverges if 1 1n

n

a
a

+ >  for 0n n≥ , where 0n  is some fixed integer. 

Proof 
If  (i) holds we can find 1β <  and integer N such that  

1n

n

a
a

β+ <  for n N≥  

   In particular  

1N

N

a
a

β+ <  

    1N Na aβ+⇒ <  
    2

2 1N N Na a aβ β+ +⇒ < <  
    3

3N Na aβ+⇒ <  
……………………. 
……………………. 
……………………. 

   p
N p Na aβ+⇒ <  
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   n N
n Na aβ −⇒ <   we put N p n+ = . 

 i.e.   N n
n Na a β β−<   for n N≥ . 

   ∵ nβ∑  is convergent because it is geometric series with common ration 1< . 

   Therefore na∑  is convergent (by comparison test) 
Now if  

1n na a+ ≥      for 0n n≥  
 then  lim 0nn

a
→∞

≠  

     na⇒ ∑  is divergent. 
 

Note 

   The knowledge 1 1n

n

a
a

+ =  implies nothing about the convergent or divergent of series. 
 

Example 

    Consider the series  na∑  with   
1

1 1

nn

n
n na

n n

−+  = −  + +   
 

     ∵  1
1

n
n

<
+

  ∴   0na >  n∀ . 

     Also   ( )
111

1 1

n

n
n

n na
n n

−+  = −  + +   
 

    
1

1 1
1

nn n
n n

−
 +   = −    +     

  
1

1 11
nn n

n n

−− + +   = −    
     

 

    
1

1 11 1 1
n

n n

−−    = + − +    
     

 

  
1

1 1lim lim 1 1 1
n

nn n
a

n n

−−

→∞ →∞

    = + − +    
     

 

   
1

1 1lim 1 lim 1 1
n

n nn n

−−

→∞ →∞

    = + − +    
     

 

   
111 1 e

−− = ⋅ −   
111

e

−
 = −  

 
11e

e

−− =   
 

1
e

e
 =  − 

   1>  

      ⇒  the series is divergent. 
 

Theorem (Dirichlet) 
   Suppose that { }nS , 1 2 3 .............n nS a a a a= + + + +   is bounded. Let { }nb  be positive 
term decreasing sequence such that  lim 0nn

b
→∞

= ,  then n na b∑  is convergent. 

Proof 
   { }nS∵  is bounded  
   ∴ ∃ a positive number λ  such that  

nS λ<  1n∀ ≥ . 
   Then  ( )1i i i i ia b S S b−= −   for 2i ≥  

       1i i i iS b S b−= −  
       1 1 1i i i i i i i iS b S b S b S b− + += − + −  
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        ( )1 1 1i i i i i i iS b b S b S b+ − += − − +  

         ( ) ( )1 1 1
1 1

n n

i i i i i m m n n
i m i m

a b S b b S b S b+ + +
= + = +

⇒ = − − −∑ ∑  

   ∵ { }nb  is decreasing  

   ( )1 1 1
1 1

n n

i i i i i m m n n
i m i m

a b S b b S b S b+ + +
= + = +

∴ = − − +∑ ∑  

   ( ){ }1 1 1
1

n

i i i m m n n
i m

S b b S b S b+ + +
= +

< − + +∑  

   ( ){ }1 1 1
1

n

i i m n
i m

b b b bλ λ λ+ + +
= +

< − + +∑   iS λ<∵  

   ( )1 1 1
1

n

i i m n
i m

b b b bλ + + +
= +

 
= − + + 

 
∑  

   ( )( )1 1 1 1m n m nb b b bλ + + + += − + + ( )12 mbλ +=  

   
1

n

i i
i m

a b ε
= +

⇒ <∑   where ( )12 mbε λ +=  a certain number 

   ⇒   The n na b∑  is convergent.  ( We have use Cauchy Criterion here. ) 
 

Theorem 
   Suppose that na∑  is convergent and that { }nb  is monotonic convergent sequence 

then n na b∑  is also convergent. 
Proof 
  Suppose { }nb  is decreasing and it converges to b . 
  Put n nc b b= −  
 ⇒  0nc ≥   and lim 0nn

c
→∞

=  

  na∑∵  is convergent  
  { }nS∴ ,  1 2 3 .................n nS a a a a= + + + +  is convergent  
  ⇒  It is bounded 
  ⇒   n na c∑  is bounded. 
   ∵  n n n n na b a c a b= +  and n na c∑  and na b∑  are convergent. 

   ∴  n na b∑  is convergent. 
   Now if { }nb  is increasing and converges to b  then we shall put n nc b b= − . 
 

Example 
1

( ln )n n α∑  is convergent if 1α >  and divergent  if 1α ≤ . 

   To see this we proceed as follows 
1

( ln )na
n n α=  

   Take  
( )2

22
2 ln 2

n

n
n

n n n
b a α= =   

( )
2

2 ln 2

n

n n
α=  

            
( )

2
2 ln 2

n

n n αα α
=   

( )
1

2 ln 2n n n αα α−
=  
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( )

( 1)1
1 2

ln 2

n

n

α

α α

−
 
 
 = ⋅  

Since 1
nα∑  is convergent when 1α >  and 

( 1)1
2

nα −
 
 
 

 is decreasing for 1α >  and it 

converges to 0. Therefore nb∑  is convergent  

   na⇒ ∑  is also convergent. 

   Now nb∑  is divergent for 1α ≤  therefore na∑  diverges for 1α ≤ . 
 

Example 

To check 1
lnn nα∑  is convergent or divergent. 

   We have 1
lnna

n nα=  

   Take        2
22

(2 ) (ln 2 )n

n
n

n n nb a α= =    2
2 ( ln 2)

n

n nα=  

         
(1 )1 2

ln 2

n

n

α−

= ⋅   

( 1)1
21

ln 2

n

n

α −
 
 
 = ⋅  

    1
n∑∵   is divergent although  

( 1)1
2

n α −   
  

   
 is decreasing, tending to zero for 1α >  

therefore nb∑  is divergent. 

   na⇒ ∑  is divergent. 
      The series also divergent if  1α ≤ . 
      i.e. it is always divergent. 
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v Limit of the function 
   Suppose 

(i)  ( , )XX d  and ( , )YY d  be two metric spaces 
(ii)  E X⊂  
(iii)  :f E Y→    i.e.  f  maps E   into Y . 
(iv)  p  is the limit point of E . 

   We write ( )f x q→  as x p→   or  lim ( )
x p

f x q
→

= ,  if there is a point q  with the 

following property; 
   For every  0ε > , there exists a  0δ >  such that  ( )( ),Yd f x q ε<   for all points 
x E∈  for which  ( , )Xd x p δ< . 
   If X  and Y  are replaced by a real line, complex plane or by Euclidean space k¡ , 
then the distances Xd  and Yd  are replaced by absolute values or by appropriate 
norms.               q 
 

Note:   i) It is to be noted that p X∈  but that p  need not a point of E  in the above 
definition ( p  is a limit point of E  which may or may not belong to E .) 
   ii) Even if p E∈ , we may have ( ) lim ( )

x p
f p f x

→
≠ .         q 

v Example 
2lim 2

1x

x
x→∞

=
+

 

   We have    2 2 2 2 2 22
1 1 1

x x x
x x x x

− − −
− = = <

− + +
 

   Now if  0ε >  is given we can find  2
δ

ε
=  so that  

2 2
1

x
x

ε− <
+

    whenever   x δ> .         q 
 

v Example 

Consider the function 
2 1( )

1
xf x
x

−
=

−
. 

It is to be noted that f  is not defined at 1x =  but if 1x ≠  and is very close to 1 or 
less then ( )f x  equals to 2.             q 
 

v Definitions 
   i) Let X  and Y  be subsets of ¡ , a function :f X Y→  is said to tend to limit l  
as x → ∞ , if for a real number 0ε >  however small, ∃ a positive number δ  which 
depends upon ε  such that distance 
   ( )f x l ε− <   when x δ>   and we write  lim ( )

x
f x l

→∞
= . 

   ii) f  is said to tend to a right limit l  as x c→  if for 0ε > ,  ∃  0δ >  such that  
( )f x l ε− <  whenever x G∈  and 0 x c δ< < + . 

   And we write ( ) lim ( )
x c

f c f x l
→ +

+ = =   

   iii) f  is said to tend to a left limit l  as x c→  if for 0ε > , ∃ a 0δ >  such that  
( )f x l ε− <  whenever  x G∈  and 0 c x cδ< − < < . 

   And we write ( ) lim ( )
x c

f c f x l
→ −

− = = .           q 
 

Chapter 3 – Limit and Continuity 
Subject: Real Analysis (Mathematics)     Level: M.Sc.  
Source: Syyed Gul Shah (Chairman, Department of Mathematics, US Sargodha) 
Collected & Composed by: Atiq ur Rehman (mathcity@gmail.com), http://www.mathcity.org 
 

mailto:(mathcity@gmail.com)
http://www.mathcity.org


 2 

v Theorem 
   Suppose 

(i)  ( , )xX d  and ( , )yY d  be two metric spaces 
(ii)  E X⊂  
(iii)  :f E Y→    i.e.  f  maps E   into Y . 
(iv)  p  is the limit point of E . 

   Then  lim ( )
x p

f x q
→

=  iff  lim ( )nn
f p q

→∞
=  for every sequence { }np  in E  such that 

np p≠ , lim nn
p p

→∞
= . 

Proof 
   Suppose lim ( )

x p
f x q

→
=  holds. 

   Choose { }np  in E  such that np p≠ , lim nn
p p

→∞
= , we are to show that 

lim ( )nn
f p q

→∞
=  

  Then there exists a 0δ >  such that 
                 ( )( ),yd f x q ε<    if x E∈   and  0 ( , )xd x p δ< <  ………. (i) 
   Also ∃ a positive integer 0n  such that  0n n>  
            ( ),x nd p p δ⇒ <  ………….. (ii) 
   from (i) and (ii), we have for 0n n>   

( )( ),y nd f p q ε<  
   Which shows that limit of the sequence 

( )lim nn
f p q

→∞
=  

   Conversely, suppose that  ( )lim nn
f p q

→∞
=  is false. 

   Then ∃ some 0ε >  such that for every 0δ > , there is a point x E∈  for which 
( )( ),yd f x q ε≥  but 0 ( , )xd x p δ< < . 

   In particular, taking  1
n n

δ =   ,  1,2,3,......n =  

   We find a sequence in E  satisfied  np p≠ ,  lim nn
p p

→∞
=  for which  lim ( )nn

f p q
→∞

=  

is false.                q 
 

v Example 

   1lim sin
x x→∞

   does not exist. 

   Suppose that  1lim sin
x x→∞

  exists and take it to be  l, then there exist a positive real 

number δ  such that  
1sin 1l
x

− <     when   0 0x δ< − <    (we take  1 0ε = >  here) 

   We can find a positive integer n  such that  

             2
n

δ
π

<    then    2
(4 1)n

δ
π

<
+

   and   2
(4 3)n

δ
π

<
+

 

   It thus follows 
(4 1)sin 1

2
n lπ+

− <   1 1l⇒ − <  

    and  (4 3)sin 1
2

n lπ+
− <   1 1l⇒ − − <     or    1 1l+ <  
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   So that  

2 1 1 1 1 1 1l l l l= + + − ≤ + + − < +      2 2⇒ <  
   This is impossible; hence limit of the function does not exist.        q 
 

Alternative: 

Consider    2
(2 1)nx

n π
=

−
   then   lim 0nx

x
→∞

=  

   But  { }( )nf x   i.e.  1sin
nx

 
 
 

  is an oscillatory sequence 

   i.e.  {1, 1,1, 1,..........}− −   therefore 1sin
nx

 
 
 

 diverges. 

   Hence we conclude that  1lim sin
x x→∞

 does not exit.          q 
 

v Example 
   Consider the function  

    2

; 1
( )

2 ( 1) ; 1
x x

f x
x x

<
=  + − ≥

 

   We show that  
1

lim ( )
x

f x
→

 does not exist.  

   To prove this take  11nx
n

= − ,  then  lim 1nx
x

→∞
=   and  lim ( ) 1nn

f x
→∞

=  

   But if we take  11nx
n

= +   then  1nx →   as n → ∞  

   and  
21lim ( ) lim 2 1 1 2nx x

f x
n→∞ →∞

 = + + − = 
 

 

   This show that  { }( )nf x  does not tend to a same limit as for all sequences  { }nS  
such that 1nx → . 
   Hence this limit does not exist.            q 
 

v Example 
   Consider the function  :[0,1]f → ¡   defined as 

    
0

( )
1

if x is rational
f x

if x is irratioanl


= 


 

   Show that  lim ( )
x p

f x
→

  where  [0,1]p∈   does not exist. 

Solution 
   Let lim ( )

x p
f x q

→
=  , if given 0ε >  we can find 0δ >  such that 

( )f x q ε− <   whenever  x p δ− < . 
   Consider the irrational  ( , ) [0,1]r s r s− + ⊂  such that r  is rational and s  is 
irrational. 
   Then  ( ) 0f r =   &  ( ) 1f s =  
   Suppose  lim ( )

x p
f x q

→
=   then 

( ) 1f s =      
  1 ( )f s q q⇒ = − +  
         ( ( ) 0f s q q= − + −  

( ) ( )f s q q f r= − + −       0 ( )f r=∵  
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( ) ( )f s q f r q ε ε≤ − + − < +  
                     i.e.   1 ε ε< +  

                       1 11
4 4

⇒ < +  if 1
4

ε =  

   Which is absurd. 
   Hence the limit of the function does not exist.          q 
 

v Exercise 

   
0

1lim sin 0
x

x
x→

=  

   We have 
1sin 0x
x

ε− <     where  0ε >  is a pre-assigned positive number. 

    1sinx
x

ε⇒ <  

    1sinx
x

ε⇒ <  

    x ε⇒ <  1sin 1
x

≤∵  

    0x ε δ⇒ − < =  

   It shows that    
0

1lim sin 0
x

x
x→

= . 

   Same the case for function for 1( ) cosf x x
x

=  

   Also we can derived the result that 2

0

1lim sin 0
x

x
x→

= .        q 
 

v Theorem 
   If lim ( )

x c
f x

→
 exists then it is unique. 

Proof 
   Suppose lim ( )

x c
f x

→
 is not unique. 

   Take  1lim ( )
x c

f x l
→

=    and   2lim ( )
x c

f x l
→

=     where   1 2l l≠ . 

    ⇒ ∃  real numbers  1δ  and  2δ  such that  

1( )f x l ε− <     whenever    1x c δ− <  
  &     2( )f x l ε− <     whenever    2x c δ− <  

    Now     ( ) ( )1 2 1 2( ) ( )l l f x l f x l− = − − −  
       1 2( ) ( )f x l f x l≤ − + −  
       ε ε< +     whenever    1 2min( , )x c δ δ− <  

        1 2l l⇒ =                 q 
 

 
………………… 
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v Theorem 
   Suppose that a real valued function f  is defined on an open interval G  except 
possibly at c G∈ . Then lim ( )

x c
f x l

→
=  if and only if for every positive real number 

ε , there is 0δ >  such that  ( ) ( )f t f s ε− <   whenever s  & t  are in 

{ }:x x c δ− < . 

Proof 
   Suppose  lim ( )

x c
f x l

→
=  

   ∴ for every  0ε > , ∃  0δ >  such that  

                            1( )
2

f s l ε− <    whenever    0 s c δ< − <  

&    1( )
2

f t l ε− <     whenever    0 t c δ< − <  

                      ( ) ( ) ( ) ( )f s f t f s l f t l⇒ − ≤ − + −  

         
2 2
ε ε

< +         whenever   s c δ− <   &  t c δ− <  

       ( ) ( )f t f s ε− <   whenever  s  & t  are in  { }:x x c δ− < . 
   Conversely, suppose that the given condition holds. 
   Let { }nx  be a sequence of distinct elements of G  such that nx c→  as n → ∞ . 
   Then for 0δ >  ∃ a natural number 0n  such that  

nx l δ− <   and   mx l δ− <     0,m n n∀ > . 
   And for  0ε >  

( ) ( )n mf x f x ε− <     whenever   0,m n n>  
   { }( )nf x⇒  is a Cauchy sequence and therefore it is convergent.       q 
 

v Theorem (Sandwiching Theorem) 
   Suppose that f , g  and h  are functions defined on an open interval G  except 
possibly at c G∈ . Let  f h g≤ ≤  on G . 
   If   lim ( ) lim ( )

x c x c
f x g x l

→ →
= = , then  lim ( )

x c
h x l

→
= . 

Proof 
   For  0ε >   1 2, 0δ δ∃ >   such that  

( )f x l ε− <    whenever   10 x c δ< − <  
     &  ( )g x l ε− <     whenever   20 x c δ< − <  

      ( )l f x lε ε⇒ − < < +     for   10 x c δ< − <  
     &   ( )l g x lε ε− < < +     for   20 x c δ< − <  
      ( ) ( ) ( )l f x h x g x lε ε⇒ − < ≤ ≤ < +  
      ( )l h x lε ε⇒ − < < +     for    1 20 min( , )x c δ δ< − <  
      lim ( )

x c
h x l

→
⇒ =         q 

 

 
………………………. 
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v Theorem 
   Let   (i)  ( , )X d  , ( , )yY d  be two metric spaces. 

 (ii)  E X⊂  
 (iii)  p  is a limit point of E . 
 (iv)  :f E Y→ . 
 (v)  :g E Y→  

   and   lim ( )
x p

f x A
→

=   and   lim ( )
x p

g x B
→

=   then 

    i-   ( )lim ( ) ( )
x p

f x g x A B
→

± = ±  

    ii-   lim( )( )
x p

fg x AB
→

=  

   iii-  ( )lim
( )x p

f x A
g x B→

 
= 

 
  provided 0B ≠ . 

Proof 
Do yourself         q 

 
v Continuity 
Suppose 

i)   ( ), XX d , ( ), YY d  are two metric spaces 
ii) E X⊂  
iii) p E∈  
iv) :f E Y→  

   Then f  is said to be continuous at p  if for every 0ε >  ∃ a 0δ >  such that 
( )( ), ( )Yd f x f p ε<  for all points x E∈  for which ( ),Xd x p δ< .          

 

Note:  
  (i) If f  is continuous  at every point of E . Then f  is said to be continuous on E . 
  (ii) It is to be noted that f  has to be defined at p  iff  lim ( ) ( )

x p
f x f p

→
= .     q 

 

v Examples 
   2( )f x x=  is continuous ∀  x∈¡ . 
   Here 2( )f x x= , Take p∈¡  
   Then     ( ) ( )f x f p ε− <  

2 2x p ε⇒ − <  

( )( )x p x p ε⇒ − + <  
x p ε δ⇒ − < =  

   ∵ p  is arbitrary real number  
   ∴ the function ( )f x  is continuous ∀  real numbers.         q 
 

……………………….. 
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v Theorem 
   Let 

i)   , ,X Y Z  be metric spaces  
ii)  E X⊂  
iii) :f E Y→  , : ( )g f E Z→  and :h E Z→  defined by ( )( ) ( )h x g f x=  

   If f  is continuous at p E∈  and if g  is continuous at the point ( )f p , then h  is 
continuous at .p  
Proof 

X

f 

f 

f(x) 

f(p) 

x 
p 

h(x) 

g 

g 

h 

h 

h(p) 

Y Z 
E 

=  g(f(x)) 

g(f(p)) =  

 
   ∵  g  is continuous at ( )f p  
   ∴  for every 0ε > ,  ∃ a  0δ >  such that  

( )( )( ), ( )Zd g y g f p ε<  whenever  ( ) 1, ( )Yd y f p δ<  ……….. (i) 
   ∵ f  is continuous at p E∈  
   ∴  ∃  a  0δ >  such that  

( ) 1( ), ( )Yd f x f p δ<  whenever  ( ),Xd x p δ<  ………… (ii) 
   Combining ( )i  and ( )ii , we have 

( )( )( ), ( )Zd g y g f p ε<   whenever   ( ),Xd x p δ<  
    ( )( ), ( )Zd h x h p ε⇒ <    whenever   ( , )Xd x p δ<  

   which shows that the function h  is continuous at p .        q 
  

v Example 
   (i)  2( ) (1 )f x x= −   is continuous  x∀ ∈¡   and  ( )g x x=   is continuous 

[ ]0,x∀ ∈ ∞ , then  ( ) 2( ) 1g f x x= −   is continuous  ( )1,1x∈ − . 
 

   (ii)  Let  ( ) sing x x=   and  { , 0( ) , 0
x xf x x x

π
π

− ≤= + >   

   Then    ( )( ) sing f x x= −   x∀  
   Then the function  ( )( )g f x   is continuous at  0x = , although f  is discontinuous 
at  0x = .                q 
 

v Theorem 
   Let  f  be defined on  X . If  f  is continuous at c X∈  then  ∃ a number 0δ >  
such that f  is bounded on the open interval  ( , )c cδ δ− + . 
 Proof 
   Since f  is continuous at  c X∈ . 
   Therefore for a real number  0,ε > ∃  a real number  0δ >  such that  

( ) ( )f x f c ε− <    whenever  x X∈   and   x c δ− < . 
( ) ( ) ( ) ( )f x f x f c f c⇒ = − +  
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      ( ) ( ) ( )f x f c f c≤ − −  
      ( )f cε< +     whenever   x c δ− < . 

   It shows that  f  is bounded on the open interval  ] [,c cδ δ− + .      q 
 

v Theorem 
   Suppose f  is continuous on  [ ],a b . If ( ) 0f c >   for some [ ],c a b∈  then there 
exist an open interval  [ ],G a b⊂  such that  ( ) 0f x >   ∀  x G∈ . 
Proof 

   Take  1 ( )
2

f cε =  

   f∵   is continuous on  [ ],a b  
   ( ) ( )f x f c ε∴ − <    whenever  [ ], ,x c x a bδ− < ∈  
   Take  [ ]{ }, :G x a b x c δ= ∈ − <  
   ( ) ( ) ( ) ( )f x f x f c f c⇒ = − +  

( ) ( ) ( )f x f c f c≤ − +  
( )f cε< +     whenever   x c δ− <  

   For  x G∈ ,  we have 
 ( )( ) ( ) ( ) ( )f x f c f c f x= − −  ( ) ( ) ( )f c f c f x≥ − −  

( ) ( ) ( )f c f x f c≥ − −  1( ) ( )
2

f c f c> −  

     1( ) ( ) 0
2

f x f c⇒ > >             q 
 

v Example 
   Define a function f  by 

   
cos ;

( )
0 ; 0

x x x o
f x

x
≠

=  =
 

   This function is continuous at  0x =  because 
( ) (0) cosf x f x x− =  x≤         ( )cos 1x ≤∵  

   Which shows that for  0ε > , we can find  0δ >  such that  
( ) (0)f x f ε− <     whenever    0 x c δ ε< − < =      q 

 

v Example 
   ( )f x x=   is continuous on  [ [0,∞ . 
   Let  c  be an arbitrary point such that  0 c< < ∞  
   For  0ε > , we have 

( ) ( )f x f c x c− = −  
x c
x c

−
=

+
 

x c
c

−
<  

    ( ) ( )f x f c ε⇒ − <     whenever    
x c

c
ε

−
<  

   i.e.  x c c ε δ− < =  
   f⇒  is continuous for x c= . 
   c∵  is an arbitrary point lying in [ [0,∞    
   ( )f x x∴ =  is continuous on [ [0,∞           q 

……………………….. 
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v Example 
   Consider the function f  defined on ¡  such that 

1 ,  is rational
( )

1 ,  is irrational
x

f x
x


= −

 

   This function is discontinuous every where but ( )f x  is continuous on ¡ .    q 
 

v Theorem 
   A mapping of a metric space X  into a metric space Y  is continuous on X  iff 

1( )f V−  is open in X  for every open set V  in Y . 
Proof 
   Suppose f  is continuous on X  and V  is open in Y . 
   We are to show that  1( )f V−  is open in X   i.e. every point of  1( )f V−  is an 
interior point of  1( )f V− . 
   Let  p X∈  and  ( )f p V∈  
   V∵   is open  
  ∴ ∃   0ε >   such that   y V∈   if  ( ), ( )Yd y f p ε<  …….. (i) 
   f∵  is continuous at p  
   ∴ ∃  0δ >   such that  ( )( ), ( )Yd f x f p ε<    when  ( , )Xd x p δ<  ……… (ii) 
   From (i) and (ii), we conclude that  

1( )x f V−∈   as soon as  ( ),Xd x p δ<  
   Which shows that  1( )f V−  is open in X . 
   Conversely, suppose  1( )f V−  is open in X  for every open set V  in Y . 
   We are to prove that f  is continuous for this. 
   Fix p X∈  and  0ε > . 
   Let  V  be the set of all  y Y∈  such that  ( ), ( )Yd y f p ε<  
   V  is open,  1( )f V−  is open 
   0δ⇒ ∃ >   such that  1( )x f V−∈   as soon as  ( , )Xd x p δ< . 
   But if  1( )x f V−∈  then  ( )f x V∈  so that   ( )( ), ( )Yd f x f y ε<  
   Which proves that  f  is continuous.           q 
 

Note 
   The above theorem can also be stated as a mapping  :f X Y→   is continuous iff  

1( )f C−   is closed in X  for every closed set C  in Y .        q 
 

v Theorem 
   Let  1 2 3, , ,...., kf f f f   be real valued functions on a metric space X  and f   be a 
mapping from X  on to k¡  defined by  
   ( )1 2 3( ) ( ), ( ), ( ),....., ( )kf x f x f x f x f x=   ,   x X∈  
then f  is continuous on X  if and only if  1 2 3, , ,....., kf f f f   are continuous on X . 

Proof 
   Let us suppose that the function  f  is continuous on X , we are to show that 

1 2 3, , ,......, kf f f f  are continuous on X . 
   If  p X∈ , then  ( )( ), ( )kd f x f p ε<¡    whenever  ( , )Xd x p δ<  

   ( ) ( )f x f p ε⇒ − <     whenever   x p δ− <  
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   1 1 1 1( ) ( ), ( ) ( ),...... ( ) ( )k kf x f p f x f p f x f p ε⇒ − − − <    whenever  x p δ− <  

   ( ) ( ) ( )22 2
1 1 2 2

1
2( ) ( ) , ( ) ( ) ,......, ( ) ( )k kf x f p f x f p f x f p ε ⇒ − − − <   

  whenever x p δ− <  

i.e.    ( )2

1

1
2

( ) ( )
k

i i
i

f x f p ε
=

 
⇒ − < 

 
∑    whenever   x p δ− <  

         1 1( ) ( )f x f p ε⇒ − <     whenever   x p δ− <  
     2 2( ) ( )f x f p ε− <    whenever   x p δ− <  
     …………………… 
     …………………… 
     …………………… 
    ( ) ( )k kf x f x ε− <    whenever   x p δ− <  

   ⇒ all the functions  1 2 3, , ,....., kf f f f   are continuous at p . 
   p∵  is arbitrary point of x , therefore  1 2 3, , ,....., kf f f f   are continuous on X . 
   Conversely, suppose that the function  1 2 3, , ,....., kf f f f   are continuous on X , we 
are to show that f  is continuous on X .  
   For  p X∈  and given  0iε >  ,  1,2,.....i k=  ∃  0iδ > ,  1,2,....,i k=  
   Such that 

    1 1 1( ) ( )f x f p ε− <     whenever    1x p δ− <  
    2 2 2( ) ( )f x f p ε− <    whenever    2x p δ− <  
    …………………… 
    …………………… 
    …………………… 
   ( ) ( )k k kf x f x ε− <     whenever    kx p δ− <  

   Take  ( )1 2 3min , , ,...., kδ δ δ δ δ=  then 
  ( ) ( )i i if x f p ε− <     whenever    x p δ− <  

( ) ( ) ( ) ( )2 2 2 2 2 2
1 1 2 2 1 2

1 12 2( ) ( ) ( ) ( ) .... ( ) ( ) ....k k kf x f p f x f p f x f p ε ε ε⇒ − + − + + − < + + + 
 

   i.e.  ( ) ( ) ( )22 2
1 1 2 2

1
2( ) ( ) ( ) ( ) ..... ( ) ( )k kf x f p f x f p f x f p ε ⇒ − + − + + − <    

     whenever x p δ− <  

   where  ( )2 2 2
1 2

1
2..... kε ε ε ε+ + + =  

   Then  ( )( ), ( )kd f x f p ε<¡    whenever   ( , )Xd x p δ<  
   ( )f x⇒  is continuous at p . 
   p∵  is an arbitrary point therefore we conclude that f  is continuous on X .    q 
 
 

………………………… 
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v Theorem 
   Suppose f  is continuous on [ ],a b  
   i) If ( ) 0f a <  and ( ) 0f b >  then there is a point c , a c b< <  such that ( ) 0f c = . 
   ii) If ( ) 0f a >  and ( ) 0f b < , then there is a point c , a c b< <  such that ( ) 0f c = . 
Proof 
   i) Bisect  [ ],a b  then  f  must satisfy the given condition on at least one of the 
sub-interval so obtained. Denote this interval by  [ ]2 2,a b  
   If  f  satisfies the condition on both sub-interval then choose the right hand one 
[ ]2 2,a b . 
   It is obvious that  2 2a a b b≤ ≤ ≤ . By repeated bisection we can find nested 
intervals  { }nI ,  1n nI I+ ⊆ ,  [ ],n n nI a b=   so that f  satisfies the given condition on 
[ ],n na b , 1,2,.......n =  
   And   1 2 3 2 1..... .....n na a a a a b b b b= ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ =  

   Where  ( )1
2

n

n nb a b a − = − 
 

 

  Then  
1

n

n
i

I
=
∩  contain one and only one point. Let that point be c  such that 

( ) 0f c =  
   If ( ) 0f c ≠ , let ( ) 0f c >  then there is a subinterval [ ],m ma b  such that m ma b c< <  
Which can not happen. Hence ( ) 0f c =  
 

 ii) Do yourself as above             q 
 

v Example 
   Show that  3 22 3 1 0x x x− − + =  has a solution  [ ]1,1c∈ −  
Solution 
   Let  3 2( ) 2 3 1f x x x x= − − +  
   ∵ ( )f x  is polynomial    
   ∴  it is continuous everywhere. (for being a polynomial continuous everywhere) 
   Now  3 2( 1) ( 1) 2( 1) 3( 1) 1f − = − − − − − +  

   1 2 3 1 1 0= − − + + = >  
     3 2(1) (1) 2(1) 3(1) 1f = − − +  

   1 2 3 1 3 0= − − + = − <  
   Therefore there is a point [ ]1,1c∈ −  such that ( ) 0f c =  
   i.e. c  is the root of the equation.            q 
 

v Theorem (The intermediate value theorem) 
   Suppose  f  is continuous on [ ],a b  and ( ) ( )f a f b≠ , then given a number λ  that 
lies between ( )f a  and ( )f b , ∃ a point c  , a c b< <  with ( )f c λ= . 
Proof 
   Let  ( ) ( )f a f b<   and  ( ) ( )f a f bλ< < . 
   Suppose  ( ) ( )g x f x λ= −  
   Then  ( ) ( ) 0g a f a λ= − <    and    ( ) ( ) 0g b f b λ= − >  
   ⇒ ∃  a point c  between a  and b  such that  ( ) 0g c =  

( ) 0f c λ⇒ − =    ( )f c λ⇒ =  
   If ( ) ( )f a f b>  then take ( ) ( )g x f xλ= −  to obtain the required result.      q 
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v Theorem 
   Suppose f  is continuous on [ ],a b , then f  is bounded on [ ],a b  
   (Continuity implies boundedness) 
Proof 
   Suppose that f  is not bounded on [ ],a b , 
   We can, therefore, find a sequence { }nx  in the interval [ ],a b  such that  

( )nf x n>   for all  1n ≥ . 
    { }( )nf x⇒  diverges. 
   But   na x b≤ ≤   ; 1n ≥  

   ⇒ ∃  a subsequence  { }knx  such that  { }knx  converges to λ . 

   ( ){ }knf x⇒   also converges to λ . 

   { }( )nf x⇒   converges to λ . 
   Which is contradiction  
   Hence our supposition is wrong.            q 
 

v Uniform continuity 
   Let  f  be a mapping of a metric space X  into a metric space Y . We say that f  
is uniformly continuous on X  if for every 0ε >  there exists 0δ >  such that  
   ( )( ), ( )Yd f p f q ε<   ∀   ,p q X∈   for which   ( ),xd p q δ<  
   The uniform continuity is a property of a function on a set  i.e. it is a global 
property but continuity can be defined at a single point  i.e. it is a local property. 
Uniform continuity of a function at a point has no meaning. 
   If f  is continuous on X  then it is possible to find for each  0ε >  and for each 
point p  of X , a number  0δ >  such that  ( )( ), ( )Yd f x f p ε<   whenever 

( , )Xd x p δ< . Then number δ  depends upon ε  and on p  in this case but if f  is 
uniformly continuous on X  then it is possible for each  0ε >  to find one number  

0δ >  which will do for all point p  of X . 
   It is evident that every uniformly continuous function is continuous. 
   To emphasize a difference between continuity and uniform continuity on set S , 
we consider the following examples.            q 
 

v Example 
   Let S  be a half open interval  0 1x< ≤  and let f  be defined for each x  in S  by 
the formula 2( )f x x= . It is uniformly continuous on S . To prove this observe that 
we have 

2 2( ) ( )f x f y x y− = −  

   x y x y= − +  
   2 x y< −  

   If   x y δ− <   then   ( ) ( ) 2f x f y δ ε− < =  

   Hence if ε  is given we need only to take  
2
ε

δ =  to guarantee that  

( ) ( )f x f y ε− <  for every pair  ,x y  with  x y δ− <  
   Thus f  is uniformly continuous on the set S .         q 
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v Example 
   ( ) nf x x=  , 0n ≥  is uniformly continuous of [ ]0,1  
Solution 
   For any two values  1 2,x x   in  [ ]0,1  we have 

( )( )1 2 3 2 1
1 2 1 2 1 1 2 1 2 2.....n n n n n nx x x x x x x x x x− − − −− = − + + + +  

     1 2n x x≤ −  

   Given 0ε > , we can find  
n
ε

δ =   independent of  1x  and  2x  such that  

2 2
1 2 1 2x x n x x ε− < − <   whenever  [ ]1 2, 0,1x x ∈   and  1 2x x

n
ε

δ− < =  

   Hence the function f  is uniformly continuous on [ ]0,1 .        q 
 

v Example 
   Let S  be the half open interval 0 1x< ≤  and let a function f  be defined for each 

x  in S  by the formula 1( )f x
x

= . This function is continuous on the set S , 

however we shall prove that this function is not uniformly continuous on S .       
Solution 
   Let suppose 10ε =  and suppose we can find a  δ  , 0 1δ< < , to satisfy the 
condition of the definition. 

   Taking  x δ=  ,  
11

y δ
= , we obtain  

10
11

x y δ
δ− = <  

     and 

   1 11 10( ) ( ) 10f x f y
δ δ δ

− = − = >  

   Hence for these two points we have  ( ) ( ) 10f x f y− >  (always) 
   Which contradict the definition of uniform continuity. 
   Hence the given function being continuous on a set S  is not uniformly 
continuous on S .              q 
 

v Example 

   1( ) sinf x
x

=  ; 0x ≠ .  is not uniformly continuous on 0 1x< ≤  i.e (0,1]. 

Proof 
   Suppose that  f  is uniformly continuous on the given interval then for  1ε = , 
there is 0δ >  such that   

1 2( ) ( ) 1f x f x− <   whenever  1 2x x δ− <  

   Take  
( )1 1

2

1x
n π

=
−

  and   
( )2 1

2

1
3

x
n π

=
−

    ,   1n ≥ . 

   So that   
( )1 2 1

2

2
3

x x
n

δ
π

− < =
−

 

   But    ( ) ( )1 1
1 2 2 2( ) ( ) sin sin3f x f x n nπ π− = − − −  2 1= >  

   Which contradict the assumption. 
   Hence f  is not uniformly continuous on the interval.         q 
 



 14 

v Example 
   Prove that  ( )f x x=    is uniformly continuous on  [ ]0,1 . 
Solution 
   Suppose 1ε =  and suppose we can find  δ , 0 1δ< <  to satisfy the condition of 
the definition. 

   Taking   2x δ=  ,  
2

4
y δ

=  

   Then    
2 2

2 3
4 4

x y δ δ
δ δ− = − = <  

   And    
2

2( ) ( )
4

f x f y δ
δ− = −  

      1
2 2
δ δ

δ ε= − = < =  

   Hence f  is uniformly continuous on [ ]0,1 .        q 
 

v Theorem 
   If  f  is continuous on a closed and bounded interval  [ ],a b , then f  is uniformly 
continuous on [ ],a b . 
Proof 
   Suppose that f  is not uniformly continuous on [ ],a b  then  ∃ a real number  

0ε >   such that for every real number  0δ > . 
   We can find a pair  u , v  satisfying  

u v δ− <     but   ( ) ( ) 0f u f v ε− ≥ >  

   If    1
n

δ = ,  1,2,3,....n =  

   We can determine two sequence  { }nu  and  { }nv  such that 
1

n nu v
n

− <    but   ( ) ( )n nf u f v ε− ≥  

   na u b≤ ≤∵   1,2,3.......n∀ =  

   ∴ there is a subsequence  { }knu  which converges to some number  0u  in  [ ],a b  

   ⇒ for some  0λ > , we can find an integer 0n  such that 

0knu u λ− <   0n n∀ ≥  

    0 0k k k kn n n nv u v u u u⇒ − ≤ − + −
1
n

λ< +  

   { }knv⇒  also converges to 0u . 

   ( ){ }knf u⇒  and  ( ){ }knf v  converge to 0( )f u  . 

   Consequently,  ( ) ( )k kn nf u f v ε− <    whenever   
k kn nu v ε− <  

   Which contradict our supposition. 
   Hence we conclude that f  is uniformly continuous on [ ],a b .       q 
 
 

……………………………. 
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v Theorem 
   Let f  and g  be two continuous mappings from a metric space X  into k¡ , then 
the mappings  f g+   and  f g⋅  are also continuous on X . 
   i.e. the sum and product of two continuous vector valued function are also 
continuous. 
Proof 
   i)    f∵  & g  are continuous on X . 
          ∴ by the definition of continuity, we have for a point p X∈ . 

( ) ( )
2

f x f p ε
− <     whenever   1x p δ− <   

and     ( ) ( )
2

g x g p ε
− <     whenever    2x p δ− <  

   Now consider  
    ( ) ( ) ( ) ( )f x g x f x g p+ − −  

 ( ) ( ) ( ) ( )f x f p g x g p= − + −  

( ) ( ) ( ) ( )f x f p g x g p≤ − + −  

2 2
ε ε

ε< + =     whenever   x p δ− <    where  ( )1 2min ,δ δ δ=  

   which shows that the vector valued function  f g+  is continuous at  x p=  and 
hence on X . 

ii)     
1

k

i i
i

f g f g
=

⋅ = ⋅∑  

       1 1 2 2 3 3 ..... k kf g f g f g f g= + + + +  
   ∵ the function  f  and  g  are continuous on X  
   ∴ their components  if  and  ig  are continuous on X .        q 
 
v Question 
   Suppose f  is a real valued function define on  ¡  which satisfies 
    [ ]

0
lim ( ) ( ) 0
h

f x h f x h
→

+ − − =     x∀ ∈¡  

   Does this imply that the function f  is continuous on ¡ . 
Solution 
    [ ]

0
lim ( ) ( ) 0
h

f x h f x h
→

+ − − =∵    x∀ ∈¡  

         
0 0

lim ( ) lim ( )
h h

f x h f x h
→ →

⇒ + = −  

         ( 0) ( 0)f x f x⇒ + = −  x∀ ∈¡  
   Also it is given that  ( ) ( 0) ( 0)f x f x f x= + = −  
   It means f  is continuous on  x∈¡ .           q 
 
 

…………………………… 
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v Discontinuities 
   If  x  is a point in the domain of definition of the function f  at which f  is not 
continuous, we say that  f  is discontinuous at x  or that  f  has a discontinuity at 
x . 
   If the function f  is defined on an interval, the discontinuity is divided into two 
types 
 1. Let f  be defined on ( ),a b . If f  is discontinuous at a point x  and if ( )f x+  and 

( )f x−  exist then f  is said to have a discontinuity of first kind or a simple 
discontinuity at x . 
 2. Otherwise the discontinuity is said to be second  kind. 
    For simple discontinuity  

i.  either ( ) ( )f x f x+ ≠ −     [ ( )f x  is immaterial] 
  ii.  or ( ) ( ) ( )f x f x f x+ = − ≠            q 
 

v Example 

   i)   Define  1 ,  is rational( ) 0 ,  is irrational
xf x x

= 
 

   The function f  has discontinuity of second kind on every point x  because 
neither ( )f x+  nor ( )f x−  exists.            q 
 

   ii)   Define  ,  is rational( ) 0 ,  is irrational
x xf x x

= 
 

   Then f  is continuous at  0x =  and has a discontinuity of the second kind at 
every other point.               q 

   iii)   Define   
2 ( 3 2)

( ) 2 ( 2 0)
2 (0 1)

x x
f x x x

x x

+ − < < −
= − − − < <
 + < <

 

   The function has simple discontinuity at  0x =  and it is continuous at every other 
point of the interval ( 3,1)−             q 
 

   iv)    Define   
1 , 0sin( ) , 00

xf x x x

 ≠=
=

 

   ∵  neither  (0 )f +   nor  (0 )f −  exists, therefore the function  f  has discontinuity 
of second kind. 
   f  is continuous at every point except  0x = .         q 
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v Derivative of a function: 
Let f  be defined and real valued on [ ],a b . For any point [ ],c a b∈ , form the 

quotient 
( ) ( )f x f c

x c
−
−

 

   and define   
( ) ( )( ) lim

x c

f x f cf c
x c→

−′ =
−

 

provided this limit exits. 
   We thus associate a function f ′  with the function f , where domain of f ′  is the 
set of points at which the above limit exists. 
   The function f ′  is so defined is called the derivative of f . 
 (i)  If f ′  is defined at point x, we say that f is differentiable at x. 
 (ii) ( )f c′  exists if and only if for a real number 0ε > , ∃ a real number 0δ >   
such that  

( ) ( ) ( )f x f c f c
x c

ε− ′− <
−

  whenever    x c δ− <  

  (iii) If x c h− =   then we have 

    
0

( ) ( )( ) lim
h

f c h f cf c
h→

+ −′ =  

  (iv) f  is differentiable at c if and only if c is a removable discontinuity of the 

function  ( ) ( )( ) f x f cx
x c

ϕ
−

=
−

 . 
 

v Example 
(i) A function :f →¡ ¡  defined by  

2 1 ; 0sin
( )

; 00
x xx

f x
x

≠
=  =

 

   This function is differentiable at 0x =  because 

0

( ) (0)lim
0x

f x f
x→

−
−

 
2

0

1sin 0lim
0x
xx

x→

−
=

−
 

       
2

0

1sinlim
x

xx
x→

=   
0

1lim sin
x xx
→

=  0=  

(ii) Let  ( ) nf x x=   ;  0n ≥   (n is integer),   x∈¡ . 
Then  

( ) ( )lim
x c

f x f c
x c→

−
−

   lim
n n

x c

x c
x c→

−
=

−
 

         
1 2 2 1( )( .......... )lim

n n n n

x c

x c x cx c x c
x c

− − − −

→

− + + + +
=

−
 

    1 2 2 1lim ( .......... )n n n n

x c
x cx c x c− − − −

→
= + + + +  

    1nnc −=  
implies that f  is differentiable every where and  1( ) nf x nx −′ = . 

 

Chapter 4 – Differentiation 
Subject: Real Analysis     Level: M.Sc.  
Source: Syed Gul Shah (Chairman, Department of Mathematics, UoS Sargodha) 
Collected & Composed by: Atiq ur Rehman (mathcity@gmail.com), http://www.mathcity.org/msc 



  Chap 4 – Differentiation 2 

v Theorem  
Let f  be defined on [ ],a b , if f  is differentiable at a point  [ ],x a b∈ , then f  is 

continuous at x. (Differentiability implies continuity)  
Proof 

We know that  
( ) ( )lim ( )

t x

f t f x f x
t x→

− ′=
−

   where t x≠    and  a t b< <  

   Now  

( ) ( )( ) ( )lim ( ) ( ) lim lim
t x t x t x

f t f xf t f x t x
t x→ → →

− − = − − 
 

       ( ) 0f x′= ⋅    
       0=  

     lim ( ) ( )
t x

f t f x
→

⇒ = . 

   Which show that f is continuous at x. 
 

Note 
(i) The converse of the above theorem does not hold. 

   Consider   
0

( )
0

x if x
f x x

x if x
≥

= = − <
 

   (0)f ′  does not exists but ( )f x  is continuous at 0x =  
 

(ii) If f is discontinuous at fc∈D  then ( )f c′  does not exists. 
e.g.  

1 0
( )

0 0
if x

f x
if x

>
=  ≤

  

           is discontinuous at 0x =  therefore it is not differentiable at 0x = . 
 

(iii) f  is differentiable at a point c if and only if ( )D f c+  (right derivative) and 
( )D f c−  (left derivative) exists and equal. 

i.e.    ( ) ( ) ( )D f c D f c Df c+ −= =  
 

v Example 
Let :f →¡ ¡  be defined by  

2

3

1
( )

1
if xx

f x
if xx

>
=  ≤

 

  then   
0

1

( ) (1)(1) lim
1h

x h

f x fD f
x→

+ → +

−
=

−
 

  
0

(1 ) (1)lim
1 1h

f h f
h→

+ −
=

+ −
 

2

0

(1 ) 1lim
h

h
h→

+ −
=  

   
2

0

1 2 1lim
h

h h
h→

+ + −
=  

0
lim (2 )
h

h
→

= +  2=  

  and  

0
1

( ) (1)(1) lim
1h

x h

f x fD f
x→

− → −

−
=

−
 

  
0

(1 ) (1)lim
1 1h

f h f
h→

− −
=

− −
  

3

0

(1 ) 1lim
h

h
h→

− −
=

−
 

  
2 3

0

1 3 3 1lim
h

h h h
h→

− + − −
=

−
 ( )2

0
lim 3 3
h

h h
→

= − +  3=  
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   Since (1) (1)D f D f+ −≠   ⇒   (1)f ′  does not exist even though f  is continuous at 
1x = . ( )f x′  exist for all other values of x. 

 

v Theorem 
    Suppose f  and g  are defined on [ , ]a b  and are differentiable at a point 

[ , ]x a b∈ , then f g+ , fg  and f
g

 are differentiable at x and  

(i)     ( ) ( ) ( ) ( )f g x f x g x′ ′ ′+ = +  
(ii)    ( ) ( ) ( ) ( ) ( ) ( )fg x f x g x f x g x′ ′ ′= +  

(iii)   2
( ) ( ) ( ) ( )( )

( )
f g x f x f x g xx
g g x

′ ′ ′  −
= 

 
 

   The proof of this theorem can be get from any F.Sc or B.Sc text book. 
 

Note 
   The derivative of any constant is zero.  
   And if f  is defined by  ( )f x x=    then    ( ) 1f x′ =  
   And for ( ) nf x x=    then   1( ) nf x n x −′ =  where n is positive integer, if  0n <  we 
have to restrict ourselves to 0x = . 
   Thus every polynomial 2

0 1 2( ) .......... n
n nP x a a x a x a x= + + + +   is differentiable 

every where and so every rational function except at the point where denominator is 
zero.  
 

v Theorem (Chain Rule) 
Suppose f  is continuous on [ , ]a b , ( )f x′  exists at some point [ , ]x a b∈ . A 

function g  is defined on an interval I  which contains the range of f , and g  is 
differentiable at the point ( )f x . 
   If    ( )( ) ( )h t g f t=  ;  a t b≤ ≤  
   Then h  is differentiable at x  and  ( )( ) ( ) ( )h x g f x f x′ ′ ′= ⋅ . 
Proof 
   Let ( )y f x=  
   By the definition of the derivative we have 

[ ]( ) ( ) ( ) ( ) ( )f t f x t x f x u t′− = − +  ………... (i) 
and [ ]( ) ( ) ( ) ( ) ( )g s g y s y g y v s′− = − +  ……….. (ii) 

   where  [ ],t a b∈ , s I∈  and ( ) 0u t →  as t x→  and ( ) 0v s →  as s y→ . 
   Let us suppose  ( )s f t=  then  

( ) ( )( ) ( ) ( ) ( )h t h x g f t g f x− = −  
       [ ][ ]( ) ( ) ( ) ( )f t f x g y v s′= − +      by (ii) 
       [ ][ ]( ) ( ) ( ) ( ) ( )t x f x u t g y v s′ ′= − + +   by (i) 

   or  if t x≠  

[ ][ ]( ) ( ) ( ) ( ) ( ) ( )h t h x f x u t g y v s
t x

− ′ ′= + +
−

 

   taking the limit as t x→  we have 
[ ][ ]( ) ( ) 0 ( ) 0h x f x g y′ ′ ′= + +  

        ( )( ) ( )g f x f x′ ′= ⋅   ( )y f x=∵  
   which is the required result. 
   It is known as chain rule. 
 

……………………………………………….. 
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v Example 
Let f  be defined by 

1 ; 0sin
( )

; 00

xx
f x x

x

 ≠=  =

 

   1 1 1( ) sin cosf x
x x x

′⇒ = −        where 0x ≠ . 

   ∵  at 0x =  ,  1
x

 is not defined. 

   ∴  Applying the definition of the derivative we have 

0

( ) (0)(0) lim
0t

f t ff
t→

−′ =
−

 
0

1sin
lim
t

t
t

t→
=  

0

1limsin
t t→

=  

   which does not exit. 
   The derivative of the function ( )f x  does not exist at 0x =  but it is continuous at 

0x =  (i.e. it is not differentiable although it is continuous at 0x = ) 
   Same the case with absolute value function. 
 

v Example 
Let f  be defined by  

2 1 ; 0sin
( )

; 00

xx
f x x

x

 ≠=  =

 

   We have  1 1( ) 2 sin cosf x x
x x

′ = −           where 0x ≠ . 

   ∵  at 0x =  ,  1
x

 is not defined. 

   ∴  Applying the definition of the derivative we have 
( ) (0) 1sin

0
f t f t t

t t
−

= ≤
−

  , ( 0)t ≠  

   Taking limit as 0t →  we see that (0) 0f ′ =  
   Thus f  is differentiable at points x  but f ′  is not a continuous function, since 

1cos
x

 does not tend to a limit as 0x → . 
 

v Local Maximum 
Let f  be a real valued function defined on a metric space X , we say that f  

has a local maximum at a point p X∈  if there exist 0δ >  such that ( ) ( )f q f p≤  
q X∀ ∈  with ( , )d p q δ< . 

Local minimum is defined likewise. 
 
 
 

………………………………………….. 
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v Theorem 
Let f  be defined on [ ],a b , if f  has a local maximum at a point [ ],x a b∈  and 

if ( )f x′  exist then ( ) 0f x′ = . 
   (The analogous for local minimum is of course also true) 
Proof 
   Choose δ  such that  

a x x x bδ δ< − < < + <  
   Now if  x t xδ− < <   then 

( ) ( ) 0f t f x
t x

−
≥

−
 

      Taking limit as t x→   we get 
   ( ) 0f x′ ≥  …………. (i) 

      If  x t x δ< < +  
      Then    

( ) ( ) 0f t f x
t x

−
≤

−
 

      Again taking limit when t x→  we get 
( ) 0f x′ ≤  ……………. (ii) 

      Combining (i) and (ii) we have 
( ) 0f x′ =  

 

v Generalized Mean Value Theorem 
If f  and g  are continuous real valued functions on closed interval [ ],a b , then 

there is a point ( ),x a b∈  at which 
[ ] [ ]( ) ( ) ( ) ( ) ( ) ( )f b f a g x g b g a f x′ ′− = −  

   The differentiability is not required at the end point. 
Proof 
   Let 

 [ ] [ ]( ) ( ) ( ) ( ) ( ) ( ) ( )h t f b f a g t g b g a f t= − − −       ( )a t b≤ ≤  
   h∵  involves f  and g  therefore h  is  

i)    Continuous on close interval [ ],a b . 
ii)   Differentiable on open interval ( , )a b . 
iii)  and ( ) ( )h a h b= . 

   To prove the theorem we have to show that ( ) 0h x′ =  for some ( , )x a b∈  
There are two cases to be discussed 
   (i) h  is constant function. 
        ( ) 0h x′⇒ =   ( , )x a b∀ ∈  
   (ii) If h  is not constant.  
         then ( ) ( )h t h a>  for some ( , )t a b∈  
         Let x  be the point in the interval ( , )a b  at which h  attain its maximum, 
         then  ( ) 0h x′ =  
   Similarly, 
         if  ( ) ( )h t h a<   for some  ( , )t a b∈   then  ∃  a point  ( , )x a b∈   at which the  
         function h  attain its minimum and since the derivative at a local minimum is  
         zero therefore we get ( ) 0h x′ =  
   Hence  

   [ ] [ ]( ) ( ) ( ) ( ) ( ) ( ) ( ) 0h x f b f a g x g b g a f x′ ′ ′= − − − =  
   This gives the desire result. 
 

a b x – δ t x + δ t x 

f(x) 
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v Geometric Interpretation of M.V.T. 
Consider a plane curve C  represented by ( )x f t= , ( )y g t=  then theorem 

states that there is a point S  on C   between two points ( )( ), ( )P f a g a  and 
( )( ), ( )Q f b g b  of C   such that the tangent at S  to the curve C  is parallel to the 

chord PQ . 
 

v Lagrange’s M.V.T. 
   Let f  be 

i)   continuous on  [ , ]a b  
ii) differentiable on  ( , )a b  

     then ∃ a point  ( , )x a b∈  such that   ( ) ( ) ( )f b f a f x
b a

− ′=
−

. 

Proof 
   Let us design a new function  

[ ]( ) ( ) ( ) ( ) ( )h t f b f a t b a f t= − − −  , ( )a t b≤ ≤  
   then clearly  ( ) ( )h a h b=  
   Since ( )h t  depends upon t  and ( )f t  therefore it possess all the properties of f . 
   Now there are two cases 
i)   h  is a constant. 
      implies that  ( ) 0h x′ =   ( , )x a b∀ ∈  
ii)  h  is not a constant, then 
      if ( ) ( )h t h a>  for some ( , )t a b∈  
      then ∃ a point ( , )x a b∈  at which h  attains its maximum 
      implies that  ( ) 0h x′ =  
      and  if ( ) ( )h t h a<  
      then ∃ a point ( , )x a b∈  at which h  attain its minimum  
      implies that ( ) 0h x′ =  
      [ ]( ) ( ) ( ) ( ) ( )h t f b f a t b a f t= − − −∵    
      [ ]( ) ( ) ( ) ( ) ( )h x f b f a b a f x′ ′∴ = − − −  
Which gives 

  ( ) ( ) ( )f b f a f x
b a

− ′=
−

    as desired. 
 

v Theorem (Intermediate Value Theorem or Darboux,s Theorem) 
Suppose f  is a real differentiable function on some interval [ , ]a b  and 

suppose ( ) ( )f a f bλ′ ′< <  then there exist a point ( , )x a b∈  such that ( )f x λ′ = . 
   A similar result holds if  ( ) ( )f a f b′ ′> . 
Proof 
   Put   ( ) ( )g t f t tλ= −  
   Then  ( ) ( )g t f t λ′ ′= −  
   If  t a=   we have 

( ) ( )g a f a λ′ ′= −  
( ) 0f a λ′ − <∵   ( ) 0g a′∴ <  

   implies that g  is monotonically decreasing at a . 
   ⇒ ∃  a point 1 ( , )t a b∈  such that 1( ) ( )g a g t> . 
   Similarly,  

( ) ( )g b f b λ′ ′= −  
( ) 0f b λ′ − >∵  ( ) 0g b′∴ >  

a    1t            2t      b 
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   implies that g  is monotonically increasing at b . 
   ⇒ ∃ a point 2 ( , )t a b∈  such that 2( ) ( )g t g b<  
   ⇒   the function attain its minimum on  ( , )a b  at a point x  (say) 
such that  ( ) 0g x′ =    ( ) 0f x λ′⇒ − =  

    ( )f x λ′⇒ = . 
 

Note 
   We know that a function f  may have a derivative f ′  which exist at every point 
but is discontinuous at some point however not every function is a derivative. In 
particular derivatives which exist at every point on the interval have one important 
property in common with function which are continuous on an interval is that 
intermediate value are assumed. 
   The above theorem relates to this fact. 
 

v Question 
If  a  and  c   are real numbers,  0c >   and  f   is defined on  [ 1,1]−   by 

; 0sin
( )

; 00

a c xx x
f x

x

− ≠
=  =

 

then discuss the differentiability as well as continuity at  0x = . 
Solution 

 ( ) ( )( ) lim
t x

f t f xf x
t x→

−′ =
−

 

sin sinlim
a c a c

t x

t t x x
t x

− −

→

−
=

−
 

     
0

sin(0) lim
a c

t

t tf
t

−

→
′⇒ =  

1

0
lim sina c

t
t t− −

→
=  

   If   1 0a − > ,  then   1

0
lim sin 0a c

t
t t− −

→
=     (0) 0f ′⇒ =   when  0a > . 

   If   1 0a − <    i.e.  when  1a <   we have   1a bt t− −=   where  0b >  
   And   1

0 0
lim sin lim sina c b c

t t
t t t t− − − −

→ →
=  

   Which does not exist. 
   If   1 0a − = ,  we get limsin c

t
t−

→∞
 

   Which also does not exist. 
   Hence  (0)f ′   exists if and only if  1a > . 
   Also  

0
lim sina c

x
x x−

→
  exist and zero when  0a > , which equals the actual value of 

the function  ( )f x   at zero. 
   Hence the function is continuous at 0x = . 
 

v Question 
   Let  f   be defined for all real  x   and suppose that  
   2( ) ( ) ( )f x f y x y− ≤ −     ∀   real  x   &  y . Prove that  f   is constant. 
Solution 
   Since  2( ) ( ) ( )f x f y x y− ≤ −  
   Therefore  

2 2( ) ( ) ( ) ( )x y f x f y x y− − ≤ − ≤ −  
   Dividing throughout by  x y− , we get 
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( ) ( )( ) ( )f x f yx y x y
x y

−
− − ≤ ≤ −

−
     when   x y>  

   and  
( ) ( )( ) ( )f x f yx y x y

x y
−

− − ≥ ≥ −
−

     when   x y<  

   Taking limit as  x y→ , we get 
0 ( ) 0

( ) 0
0 ( ) 0

f y
f y

f y
′≤ ≤  ′⇒ =′≥ ≥ 

 

   which shows that function is constant. 
 

v Question 
If  ( ) 0f x′ >  in  ( , )a b  then prove that  f  is strictly increasing in  ( , )a b   and let  g  
be its inverse function, prove that the function  g   is differentiable and that  

( ) 1( )
( )

g f x
f x

′ =     ;     a x b< <  

Solution 
   Let      ( )( ), ( )y f a f b∈  
       ( )y f x⇒ =    for some   ( , )x a b∈  

    ( ) ( )( ) lim
z y

g z g yg y
z y→

−′⇒ =
−

 

           ( )lim ( )
z

zx x
g f x

→
= ( ) ( )( ) ( )

( ) ( )
z

z

g f x g f x
f x f x

−
=

−
 

         ( ) ( )1 1( ) ( )
lim

( ) ( )z z

z
x x

f f x f f x
f x f x

− −

→

−
=

−
 

         lim
( ) ( )z z

z
x x

x x
f x f x→

−
=

−
 1

( ) ( )lim
z

z

z
x x

f x f x
x x→

=
−
−

1
( )f x

=
′

 

 

v Question  
   Suppose  f  is defined and differentiable for every  0x >   and ( ) 0f x′ →   as 
x → +∞   put  ( ) ( 1) ( )g x f x f x= + − . Prove that  ( ) 0g x →   as  x → +∞ . 
Solution 
   Since  f   is defined and differentiable for  0x >  therefore we can apply the 
Lagrange’s M.V. T. to have 
               1( 1) ( ) ( 1 ) ( )f x f x x x f x′+ − = + −      where    1x x< . 
     ( ) 0f x′ →∵    as   x → ∞  
     1( ) 0f x′∴ →    as  x → ∞  
   ( 1) ( ) 0f x f x⇒ + − →   as  0x →  
   ( ) 0g x⇒ →   as  0x →  
 
 
 
 
 
 

…………………………… 
 
 
 
 
 
 
 
 
 
 
 
 

 



  Chap 4 – Differentiation 9 

v Question (L Hospital Rule) 
   Suppose  ( ), ( )f x g x′ ′  exist,  ( ) 0g x′ ≠   and  ( ) ( ) 0f x g x= = . 

    Prove that ( ) ( )lim
( ) ( )t x

f t f x
g t g x→

′
=

′
  

Proof  

    ( ) ( ) 0lim lim
( ) ( ) 0t x t x

f t f t
g t g t→ →

−
=

−
( ) ( )lim
( ) ( )t x

f t f x
g t x→

−
=

−
  ( ) ( ) 0f x g x= =∵  

        ( ) ( )lim
( ) ( )t x

f t f x t x
t x g t x→

− −
= ⋅

− −
 

        ( ) ( ) 1lim lim ( ) ( )t x t x

f t f x
g t xt x

t x
→ →

−
= ⋅

−−
−

 

        ( ) ( ) 1lim ( ) ( )limt x

t x

f t f x
g t xt x

t x
→

→

−
= ⋅

−−
−

 1( )
( )

f x
g x

′= ⋅
′

( )
( )

f x
g x

′
=

′
      

 Q.E.D. 
v Question  
   Suppose  f   is defined in the neighborhood of a point  x  and  ( )f x′′  exists. 

   Show that  20

( ) ( ) 2 ( )lim ( )
h

f x h f x h f x f x
h→

+ + − − ′′=  

Solution  
   By use of Lagrange’s Mean Value Theorem 

1( ) ( ) ( )f x h f x hf x′+ + =     where   1x x x h< < +  …………… (i) 
   and  
                  2[ ( ) ( )] ( )f x h f x hf x′− − − =   where   2x h x x− < <  …………… (ii) 
  Subtract (ii) from (i) to get 

1 2( ) ( ) 2 ( ) [ ( ) ( )]f x h f x h f x h f x f x′ ′+ + − − = −  

    1 2
2

( ) ( ) 2 ( ) ( ) ( )f x h f x h f x f x f x
h h

′ ′+ + − − −
⇒ =  

   2 1 0x x− →∵   as  0h →  
   therefore  

   
1 2

1 2
20

1 2

( ) ( ) 2 ( ) ( ) ( )lim lim
h x x

f x h f x h f x f x f x
h x x→ →

′ ′+ + − − −
∴ =

−
 

         2( )f x′′=  
 

v Question 

   If   1 2 1
0 ......... 0

2 3 1
n nc c c cc
n n

−+ + + + + =
+

 

   Where   0 1 2, , ,......., nc c c c   are real constants.  
   Prove that  2

0 1 2 ......... 0n
nc c x c x c x+ + + + =   has at least one real root between 0 

and 1. 
Solution 

   Suppose 2 11
0( ) ..........

2 1
nnc cf x c x x x

n
+= + + +

+
 

   Then  (0) 0f =   and  1 2
0(1) .......... 0

2 3 1
nc c cf c

n
= + + + + =

+
 

   (0) (1) 0f f⇒ = =  
   ( )f x∵   is a polynomial therefore we have 
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i) It is continuous on  [0,1]  
ii) It is differentiable on  (0,1)  
iii) And  ( ) 0 ( )f a f b= =  

  ⇒  the function  f  has local maximum or a local minimum at some point  ( )0,1x∈  
          ( )f x′⇒ = 2

0 1 2 ......... 0n
nc c x c x c x+ + + + =   for some ( )0,1x∈  

          ⇒   the given equation has real root between 0 and 1. 
 

v Riemann Differentiation of Vector valued function 
If    1 2( ) ( ) ( )f t f t i f t= +  

      1 2( ) ( ) ( )f t f t i f t′′ ′= +   
where  1( )f t   and  2 ( )f t   are the real and imaginary part of  ( )f t . 
The Rule of differentiation of real valued functions are valid in case of vector valued 
function but the situation changes in the case of Mean Value Theorem. 
 

v Example 
   Take  ( ) cos sinixf x e x i x= = +   in  (0,2 )π . 
   Then  (2 ) cos2 sin 2 1f iπ π π= + =  
             (0) cos(0) sin(0) 1f i= + =  

(2 ) (0) 0f fπ⇒ − =   but  ( ) ixf x ie′ =  

          (2 ) (0)
2 0

ixf f i eπ
π

−
⇒ ≠

−
  (there is no such x ) 

          ⇒   the M.V.T. fails. 
   In case of vector valued functions, the M.V.T. is not of the form as in the case of 
real valued function. 
 

v Theorem 
   Let  f  be a continuous mapping of the interval  [ , ]a b   into a space  k¡  and  f  be 

differentiable in  ( , )a b   then  ∃  ( , )x a b∈   such that  ( ) ( ) ( ) ( )f b f a b a f x′− ≤ − . 
Proof 
   Put ( ) ( )z f b f a= −   
   And suppose   ( ) ( )t z f tϕ = ⋅     ( )a t b≤ ≤  
   ( )tϕ   so defined is a real valued function and it possess the properties of  ( )f t . 
    ⇒  M.V.T. is applicable to  ( )tϕ .  
   We have   ( ) ( ) ( ) ( )b a b a xϕ ϕ ϕ′− = −  
             i.e.  ( ) ( ) ( ) ( )b a b a z f xϕ ϕ ′− = − ⋅    for some   ( , )x a b∈  ……….. (i) 
   Also  ( ) ( )b z f bϕ = ⋅    and   ( ) ( )a z f aϕ = ⋅  

       ( )( ) ( ) ( ) ( )b a z f b f aϕ ϕ⇒ − = ⋅ −  …………. (ii) 
   from (i) and (ii) 

   ( ) ( )z z b a z f x′⋅ = − ⋅  
          ( ) ( )b a z f x′≤ −  

       2 ( ) ( )z b a z f x′⇒ ≤ −  

       ( ) ( )z b a f x′⇒ ≤ −  

       i.e. ( ) ( ) ( ) ( )f b f a b a f x′− ≤ −         ( ) ( )z f b f a= −∵  
   which is the required result. 
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v Question  
If  3( )f x x= , then compute  ( ), ( )f x f x′ ′′  and  ( )f x′′′ ,  and show that  (0)f ′′′  does 
not exist. 
Solution 

  
3

3
3

0
( )

0
if xx

f x x
if xx

≥
= =  <−

 

   Now   
3

0 0 0 0

( ) (0) 0(0) lim lim
0 0x x

f x f xD f
x x+ → + → +

− −
= =

− −
 2

0 0
lim 0

x
x

→ +
= =  

      &     
3

0 0 0 0

( ) (0) 0(0) lim lim
0 0x x

f x f xD f
x x− → − → −

− − −
= =

− −
 2

0 0
lim ( ) 0

x
x

→ −
= − =  

   ( ) ( )D f x D f x+ −=∵  
   ( )f x′∴    exists at  0x =    &  (0) 0f ′ = . 
   Now if   0x ≠   and  0x >   then 
   3 2( ) ( ) 3f x x f x x′= ⇒ =  
   and if  0x ≠   and  0x <   then 
   3 2( ) ( ) 3f x x f x x′= − ⇒ = −  

       i.e.   

2

2

3 0
( ) 0 0

03

x if x
f x if x

if xx

 >
′ = =
 <−

 

   Now  
2

0 0 0 0

( ) (0) 3 0(0) lim lim
0 0x x

f x f xD f
x x+ → + → +

′ ′− −′ = =
− −

 

                          
0 0

lim 3 0
x

x
→ +

= =  

And Now  
2

0 0 0 0

( ) (0) 3 0(0) lim lim
0 0x x

f x f xD f
x x− → − → −

′ ′− − −′ = =
− −

 

                               
0 0

lim ( 3 ) 0
x

x
→ +

= − =  

   ( ) ( )D f x D f x+ −′ ′=∵  
   ( )f x′′∴   exists at  0x =   &  (0) 0f ′′ = . 
   Now if  0x ≠   and  0x >   then 
          2( ) 3 ( ) 6f x x f x x′ ′′= ⇒ =  
   and if  0x ≠   and  0x <   then 
          2( ) 3 ( ) 6f x x f x x′ ′′= − ⇒ = −  

              i.e.  
6 0

( ) 0 0
6 0

x if x
f x if x

x if x

>′′ = =
− <

 

   Now       
0 0 0 0

( ) (0) 6 0(0) lim lim 6
0 0x x

f x f xD f
x x+ → + → +

′′ ′′− −′′ = = =
− −

 

   And        
0 0 0 0

( ) (0) 6 0(0) lim lim 6
0 0x x

f x f xD f
x x− → − → −

′′ ′′− − −′′ = = = −
− −

 

   (0) (0)D f D f+ −′′ ′′≠∵  
   (0)f ′′′∴   doest not exist. 
But (0)f ′′′  exist if  0x ≠ , and equal to  6  if  0x >   and equal to  6−   if  0x < . 
 

………………………………. 
 





 

v Introduction 
   There is the basic difference between the calculus of functions of one variable and 
the calculus of functions of two variables. But there is a slight difference between the 
calculus of two variable and the calculus of functions of three, four or of many 
variables. Therefore we shall emphasise mainly on the study of functions of two 
variables. 
 

v Function of two variables 
If to each point ( ),x y  of a certain part of xy − plane, there is assigned a real number 
z , then z  is known to be a function of two variable x  and y . 

e.g.    2 2z x y= − , 2 2z x y= +  , z xy=  etc. 
 

v Neighbourhood (nhood) 
   A neighbourhood of radius δ  of a point ( )0 0,x y  of the xy − plane is the set of 
points which lies inside a circle with centre at ( )0 0,x y  and has radius δ . 

( ) ( )2 2 2
0 0 0 0( , )N x y x x y yδ δ= − + − <  

   Similarly, a nhood of a radius δ  of a point ( )0 0 0, ,x y z  of a space is a sphere with 
centre at ( )0 0 0, ,x y z  and radius δ . 

   ( ) ( ) ( ) ( )2 2 2 2
0 0 0 0 0 0, ,N x y z x x y y z zδ δ= − + − + − <  

   This definition can be extended to the definition of a nhood of a point of a space of 
any dimension. 
 

v Open Set 
   A set is known to be open set if each point ( )0 0,x y  of the set has a nhood which 
totally lies inside the set. 
 

v Domain 
   A set D  which is not empty and open is known to be a domain, if any two points 
of the set can be joined by a broken line which lies completely with in D . 
 

v Region 
   A domain D  is known to be a region if some or all of the boundary points are 
contained in D . 
 

v Closed Region 
   A region is known to be closed if it contains all the boundary points. 

e.g.   i)  2 2 1x y+ <     (Domain)        ii)   1x y <         (Domain) 
        2 2 1x y+ =     (Boundary)     2x y =        (Boundary) 

     2 2 1x y+ ≤     (Closed region)    1xy ≤          (Closed Region) 
 

v Limit & Continuity 
    Let  ( , )z f x y=  be a function of two variables defined in a domain D . Suppose 
there is a point ( )0 0,x y  D∈  or is a boundary point then 

0

0

lim ( , )
x x
y y

f x y c
→
→

=  

   It means that given 0ε >  ∃ a 0δ >  such that 
              ( , )f x y c ε− <    whenever 0 0( , ) ( , )x y x y δ− <    0 0( , ) ( , )x y N x yδ∀ ∈  
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   If limit of a function is equal to actual value of function then f  is said to be 
continuous at the point ( )0 0,x y  

0

0

0 0lim ( , ) ( , )
x x
y y

f x y f x y
→
→

=  

   If f  is continuous at every point of D , then f  is said to be continuous on D . 
 

v Theorem 
   Let  ( , )f x y   &  ( , )g x y  be defined in a domain D  and suppose that 

0

0

1lim ( , )
x x
y y

f x y u
→
→

=    &   
0

0

1lim ( , )
x x
y y

g x y v
→
→

=  

a)  then  (i)      [ ]
0

0

1 1lim ( , ) ( , )
x x
y y

f x y g x y u v
→
→

+ = +  

    (ii)     [ ]
0

0

1 1lim ( , ) ( , )
x x
y y

f x y g x y u v
→
→

⋅ =  

    (iii)    
0

0

1

1

( , )lim
( , )x x

y y

f x y u
g x y v→

→

=  

b)  If  ( , )f x y   &  ( , )g x y  are defined in D , then  

0

0

0 0lim ( , ) ( , )
x x
y y

f x y f x y
→
→

=    &    
0

0

0 0lim ( , ) ( , )
x x
y y

g x y g x y
→
→

=  

   i.e. ( , )f x y  , ( , )g x y  are continuous at  ( )0 0,x y  then so are the functions  

 ( , ) ( , )f x y g x y+  ,  ( , ) ( , )f x y g x y   and  ( , )
( , )

f x y
g x y

,   provided  ( , ) 0g x y ≠ . 

Proof 
a)   (i)    

0

0

1lim ( , )
x x
y y

f x y u
→
→

=∵    ,     
0

0

1lim ( , )
x x
y y

g x y v
→
→

=  

    ∴  given    0
2
ε

>    ∃  a  1 2, 0δ δ >   such that 

 1( , )
2

f x y u ε
− <      

1 0 0( , ) ( , )x y N x yδ∀ ∈  

  &  1( , )
2

g x y v ε
− <       ( )

2 0 0( , ) ,x y N x yδ∀ ∈  

  then  [ ] [ ] [ ] [ ]1 1 1 1( , ) ( , ) ( , ) ( , )f x y g x y u v f x y u g x y v+ − + = − + −  
                  1 1( , ) ( , )f x y u g x y v≤ − + −  

                          
2 2
ε ε

< +    0 0( , ) ( , )x y N x yδ∀ ∈   

        where ( )1 2min ,δ δ δ=  
    Which show that 

 [ ]
0

0

1 1lim ( , ) ( , )
x x
y y

f x y g x y u v
→
→

+ = +  

 

(ii)  1 1( , ) ( , )f x y g x y u v⋅ − 1 1 1 1( , ) ( , ) ( , ) ( , )f x y g x y u g x y u g x y u v= ⋅ − + −  
       [ ] [ ]1 1 1( , ) ( , ) ( , )g x y f x y u u g x y v= − + −  
       [ ] [ ]1 1 1( , ) ( , ) ( , )g x y f x y u u g x y v≤ − + −  

       1( , )
2 2

g x y uε ε
< +  1ε=      0 0( , ) ( , )x y N x yδ∀ ∈  



  Chap 5 – Function of several variables 3 

0

0

1 1lim ( , ) ( , )
x x
y y

f x y g x y u v
→
→

⇒ ⋅ =  

 

iii)    We prove that    
0

0
1

1 1lim
( , )x x

y y
g x y v→

→

=  

1

1 1

1 1 ( , )
( , ) ( , )

v g x y
g x y v v g x y

−
− =  

  1

1

( , )
( , )

g x y v
v g x y

−
=    

1

2
( , )v g x y

ε
<  

                 
1 1 1

2
( , )v g x y v v

ε
<

− +
  ( )1 1 1

2
( , )v g x y v v

ε
<

− +
 

                   
( )1 1

2

2v v

ε

ε
<

+
 1ε=     

2 0 0( , ) ( , )x y N x yδ∀ ∈  

       
0

0
1

1 1lim
( , )x x

y y
g x y v→

→

⇒ =  

  
0

0

1lim ( , )
x x
y y

f x y u
→
→

⇒ =∵    &   
0

0

1lim ( , )
x x
y y

g x y v
→
→

=  

   By (ii) of theorem 

   
0 0

0 0

1

1

1 ( , )lim ( , ) lim
( , ) ( , )x x x x

y y y y

f x y uf x y
g x y g x y v→ →

→ →

⋅ = =  

 

b) Since it is given that the limiting values are the same as the actual values of the 

functions ( , ) ( , )f x y g x y+  ,  ( , ) ( , )f x y g x y⋅   and  ( , )
( , )

f x y
g x y

  at the point 0 0( , )x y  

therefore these function are continuous on 0 0( , )x y . 
 

Note 
   It is to be noted that there is a difference between  

( , ) ( , )
lim ( , )

x y a b
f x y

→
 and lim ( , )

x a
y b

f x y
→
→

 

   i.e.   ( )lim ( , ) lim lim ( , )
x a y b x a
y b

f x y f x y
→ → →
→

=    or     ( )lim ( , ) lim lim ( , )
x a x a y b
y b

f x y f x y
→ → →
→

=  

   Obviously in the two cases limits are taken first w.r.t one variable and then w.r.t 
other variable. These limits are called the repeated limits. Since these are taken along 
the special path, therefore repeated limits are the special cases of limits. 
   

( , ) ( , )
lim ( , )

x y a b
f x y

→
 exists if and only if limiting vales are not depend upon any path 

along which ( , ) ( , )x y a b→ . 
 

v Example 
   Consider  2:f →¡ ¡   given by 

2 2

4 4 , ( , ) (0,0)( , )
, ( , ) (0,0)0

x y x yf x y x y
x y


≠=  +

 =

 

   Now   
0 0
0 0

lim ( , ) lim ( , ) 0
x y
y x

f x y f x y
→ →
→ →

= =  

   However along the straight line y mx= , we have 
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4

4( , ) (0,0)
lim ( , )

1x y

mf x y
m→

=
+

 

   which is different for different values of m . Hence 
( , ) (0,0)

lim ( , )
x y

f x y
→

 does not exist. 
 

v Example 
   Consider 2:f →¡ ¡  given by 

2 2

2 2
cos cos , ( , ) 0( , )

, ( , ) 00

x x y y x yf x y x y
x y

 −
≠=  +

 =

 

   then   
0 0 0

lim lim ( , ) limcos 1
x y x

f x y x
→ → →

  = =  
 

   and    
0 0 0

lim lim ( , ) lim( cos ) 1
y x y

f x y y
→ → →

  = − = −   

      
0
0

lim ( , )
x
y

f x y
→
→

⇒  does not exist. 

 

v Example 
   Consider 2:f →¡ ¡  given by 

2 2

2 2
sin( ) , ( , ) (0,0)( )( , )

, ( , ) (0,0)0

x y x yx yf x y x y
x y

 +
≠+=  +

 =

 

   Use   sin 1x
x

<   to get 

( , ) 0f x y x y x y− ≤ + < +  

   Thus  ( , ) 0f x y ε− <     whenever    
2

x ε
<   ,  

2
y ε

<  

   Take  
2
ε

δ =  , 

    It follows that for given  0ε > , we can find  0δ >  such that 
( , ) (0,0)f x y f ε− <   whenever 2 2( 0) ( 0)x y δ− + − <   

              i.e. ( , ) (0,0)x y Nδ∀ ∈  
   Limit of the function at (0,0)  is equal to actual value of function at (0,0) . 
   Hence f  is continuous at (0,0) . 
 

v Partial Derivative 
   Let  ( , )z f x y=  be defined in a domain D  of  xy -plane and take  0 0( , )x y D∈ , 
then 0( , )f x y  is a function of x  alone and its derivative may exist. If it exists then its 
value at 0 0( , )x y  is known to be the partial derivative of ( , )f x y  at 0 0( , )x y  and is 

denoted as  
0 0( , )x y

f
x

∂
∂

  or   
0 0( , )x y

z
x

∂
∂

 

   The other notations are  xz  , xf  , 1f . 

0 0

0 0
0( , )

( , ) ( , )lim
xx y

f f x x y f x y
x x∆ →

∂ + ∆ −
=

∂ ∆
 

   We can define  f
y

∂
∂

 in the same manner. 
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v Geometrical Interpretation 
   ( , )z f x y=  represents a surface in space. 0y y=  is a plane. ( )0,z x y=  is the curve 

which arises when  0y y=  cuts the surface  ( , )z f x y= . Thus  
0 0( , )x y

f
x

∂
∂

 denotes the 

slope of tangent to the curve  0( , )z f x y=  at  0x x= . Similarly  
0 0( , )x y

f
y

∂
∂

  denotes the 

slope of the tangent to the curve  0( , )z f x y=  at 0y y= .  
   If the point ( )0 0,x y  varies, then xf  & yf  are themselves functions of x  & y . 
In the case of functions of more than three variables it is necessary to indicate the 
variable held constant during the process of differentiation as a suffix to avoid the 
confusion. 

   For example, ( , , , )z f x y u v= , then partial derivatives are written as 
x

z
u

∂ 
 ∂ 

, 
v

z
y

 ∂
 ∂ 

 

and so on. We take an example:  x u v= + , y u v= −  

1
v

x
u

∂  = ∂ 
, 1

u

x
v

∂  = ∂ 
, 1

v

y
u

∂  = ∂ 
, 1

u

y
v

∂  = − ∂ 
 

Also 2x y u+ =  and 2x u y= − , then 

2
y

x
u

∂  = ∂ 
 & 1

u

x
y

 ∂
= − ∂ 

 and so on. 

 

v Total Differential 
   In the case of partial derivative we have considered increments  x∆  & y∆  
separately. 
   Now take ( , )x y  & ( , )x x y y+ ∆ + ∆  two points in the domain of definition of z  
then if ( )z z+ ∆  correspond to the point ( , )x x y y+ ∆ + ∆  we have 

( , ) ( , )z f x x y y f x y∆ = + ∆ + ∆ −  
   If the increment  z∆  can be expressed as  

1 2z a x b y x yε ε∆ = ∆ + ∆ + ∆ + ∆  
   and  1 2, 0ε ε →  as  , 0x y∆ ∆ → , then a x b y∆ + ∆  is known to be the total differential 
of z  denoted by dz , and we write 

1 2z dz x yε ε∆ = + ∆ + ∆  
   In case when z  is differentiable function dz  gives very close approximation of z∆ . 
 

v Theorem 
   If ( , )z f x y=  has a total differential at a point ( , )x y D∈ , then 

za
x

∂
=

∂
   &   zb

y
∂

=
∂

. 

Proof 
   We have  

1 2z dz x yε ε∆ = + ∆ + ∆   where 1 2, 0ε ε →   as  , 0x y∆ ∆ →  
   Let us suppose that  0y∆ =  
   then  1z a x xε∆ = ∆ + ∆  
   Taking the limit as  0x∆ →  

z a
x

∂
=

∂
 

   Similarly we can get   z b
y

∂
=

∂
. 
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v Theorem (Fundamental Lemma) 
   If  ( , )z f x y=  has a continuous first order partial derivative in D  then z  has total 

differential   z zdz x y
x y

∂ ∂
= ∆ + ∆

∂ ∂
  at every point ( , )x y D∈ . 

Proof 
   Take a point ( , )x y  as a fixed point in the domain D . Suppose x  changes alone. 
Then we have 

( , ) ( , )z f x x y f x y∆ = + ∆ −  
     1( , )xf x y x= ∆                 ( )1x x x x< < + ∆   ( It is by M. V. Theorem) 

   ∵  xf  is continuous  
   ∴  1 1( , ) ( , ) 0x xf x y f x yε = − →    as  0x∆ →  
   1( , ) ( , ) ( , )xf x x y f x y f x y x xε⇒ + ∆ − = ∆ + ∆  ………. (i) 
   Now if both  ,x y  changes, we obtain a change  z∆  in z  as 

( , ) ( , )z f x x y y f x y∆ = + ∆ + ∆ −  
     [ ] [ ]( , ) ( , ) ( , ) ( , )f x x y f x y f x x y y f x x y= + ∆ − + + ∆ + ∆ − + ∆  

   that is we have expressed z∆  as the sum of terms representing the effect of a 
change in x  alone and subsequent change in y  alone. 
   Now  1( , ) ( , ) ( , )yf x x y y f x x y f x x y y+ ∆ + ∆ − + ∆ = + ∆ ∆     ( )1y y y y< < + ∆  

 (It is by use of M.V. theorem) 
   yf∵  is given to be continuous 
   2 1( , ) ( , ) 0y yf x x y f x yε∴ = + ∆ − →   as  , 0x y∆ ∆ →  
   2( , ) ( , ) ( , )yf x x y y f x x y f x y y yε⇒ + ∆ + ∆ − + ∆ = ∆ + ∆  ……….. (ii) 
   Using (i) & (ii), we have 
  1 2( , ) ( , )x yz f x y x f x y y x yε ε∆ = ∆ + ∆ + ∆ + ∆    where 1 2, 0ε ε →  as , 0x y∆ ∆ →  
   which shows that the total differential dz  of z  exist & is given by 

( , ) ( , )x ydz f x y x f x y y= ∆ + ∆  ………….. (iii) 
 

Note 
 (a) For reasons to be explained later; x∆  & y∆  can be replaced by  dx  & dy  in (iii). 

Thus we have   z zdz dx dy
x y

∂ ∂
= +

∂ ∂
  

   Which is the customary way of writing the differential. The preceding analysis 
extends at once to functions of three or more variables. For example, if     

            ( , , , )w f x y u v= ,   then    w w w wdw dx dy du dv
x y u v

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
. 

(b)  In the following discussion, the function and their Ist order partial derivatives 
will be considered to be continuous in their respective domain of definition. 
 

Example 
   If 2 2z x y= − , then 2 2dz xdx ydy= − . 
 

Example: 

   If xyw
z

= , then 2
y x xydw dx dy dz
x z z

= + −  
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PROBLEMS 
 

1)   Evaluate z
x

∂
∂

 and z
y

∂
∂

 if 

   a)    2
xz

x y2=
+

          Ans: 
( )

2 2

22 2

z y x
x x y

∂ −
=

∂ +
  ,   

( )22 2

2z xy
x x y

∂ −
=

∂ +
 

   b)    sinz x xy=     Ans: sin cosz xy xy xy
x

∂
= +

∂
, 2 cosz x xy

y
∂

=
∂

 

   c)    3 2 2 3 2 0x xy x z z+ − + − =  Ans: 
2 2

2 2
3 2

3
z x y xz
x x z

∂ + −
=

∂ −
 ,  

2

2 2

x y

x y

z e y
y e y

+

+

∂ −
=

∂ −
 

2) Evaluate the indicated partial derivatives: 

   a)    
y

u
x

∂ 
 ∂ 

 and 
x

v
y

 ∂
 ∂ 

  if  2 2u x y= − , 2v x y= +  

   b)    
y

x
u

∂ 
 ∂ 

 and 
u

y
v

∂ 
 ∂ 

  if  2u x y= −  , 2v u y= +       Ans: 1
y

x
u

∂  = ∂ 
 , 1

2u

y
v

∂  = ∂ 
 

3) Find the differentials of the following functions 

   a)    xz
y

=                Ans: 2
ydx xdy

y
−  

   b)    2 2logz x y= +              Ans: 2 2
xdx ydy

x y
+
+

 

   c)    1tan yz
x

−  =  
 

            Ans: 2 2
ydx ydy
x y

− +
+

  

   d)    
2 2 2

1u
x y z

=
+ +

            Ans: 3
22 2 2

( )
( )
xdx ydy zdz
x y z

− + +

+ +
 

4) If  2 2z x xy= + ,  find z∆  in terms of  x∆ , y∆   for 1x = , 1y = . 

Ans:  24 2 2z x y x x y∆ = ∆ + ∆ + ∆ + ∆ ∆   ,   4 2dz x y= ∆ + ∆   ,   4 2dz x y= ∆ + ∆ . 
 
 

………………………………….. 
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v Derivative and Differential of functions of functions 
    In the following discussion, the function and their first order partial derivatives 
will be considered to be continuous in their respective domain of definitions. 
 

v Theorem (Chain Rule I) 
   Let  ( , )z f x y=  ,  ( )x g t=   &  ( )y h t=   be defined in a domain D , then 

   dz z dx z dy
dt x dt y dt

∂ ∂
= ⋅ + ⋅

∂ ∂
 

Proof 
   ∵  ( , )z f x y= , ( )x g t= , ( )y h t=  are defined in D , are continuous and have Ist 
order partial derivatives. 
   ∴  By using the fundamental lemma we have 

1 2
z zz x y x y
x y

ε ε
∂ ∂

∆ = ∆ + ∆ + ∆ + ∆
∂ ∂

 ………… (i) 

where 1 2, 0ε ε →   as  , 0x y∆ ∆ →  
   Also  ( ) ( )x g t t g t∆ = + ∆ −  

  ( ) ( )y h t t h t∆ = + ∆ −  
   Dividing (i) by t∆ , we get 

  1 2
z z x z y x y
t x t y t t t

ε ε
∆ ∂ ∆ ∂ ∆ ∆ ∆

= ⋅ + ⋅ + +
∆ ∂ ∆ ∂ ∆ ∆ ∆

 

   Take the limit as 0t∆ → , we get 
dz z dx z dy
dt x dt y dt

∂ ∂
= ⋅ + ⋅

∂ ∂
    as desired. 

 

v Theorem (Chain Rule II) 
    Let ( , )z f x y= , ( , )x g u v= , ( , )y h u v=  be defined in a domain D  and have 
continuous first order partial derivative in D , then 

z z x z y
u x u y u

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

      and  z z x z y
v x v y v

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

Proof 
   ∵  the functions are continuous having first order partial derivatives in D , 
therefore by the fundamental lemma, we have 

1 2
z zz x y x y
x y

ε ε
∂ ∂

∆ = ∆ + ∆ + ∆ + ∆
∂ ∂

 ………… (i) 

   where   ( , ) ( , )x g u u v g u v∆ = + ∆ − ,  ( , ) ( , )y h u u v h u v∆ = + ∆ −     
                and  1 2, 0ε ε →  as  , 0x y∆ ∆ →   i.e. 0u∆ →  
   Dividing (i) by u∆  throughout to have 

         1 2
z z x z y x y
u x u y u u u

ε ε
∆ ∂ ∆ ∂ ∆ ∆ ∆

= ⋅ + ⋅ + +
∆ ∂ ∆ ∂ ∆ ∆ ∆

 

   Taking the limit as 0u∆ →   i.e. , 0x y∆ ∆ → , we have 
z z x z y
u x u y u

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

   Similarly if  ( , ) ( , )x g u v v g u v∆ = + ∆ −  
   ( , ) ( , )y h u v v h u v∆ = + ∆ −  

   Then dividing (i) by v∆  throughout, we obtain 
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1 2
z z x z y x y
v x v y v v v

ε ε
∆ ∂ ∆ ∂ ∆ ∆ ∆

= ⋅ + ⋅ + +
∆ ∂ ∆ ∂ ∆ ∆ ∆

 

   Taking the limit as 0v∆ → , we have 
z z x z y
v x v y v

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

 

v Note 
We have proved in chain rule I, that if  ( , )z f x y=  , ( )x g t=  , ( )y h t= , then  

dz z dx z dy
dt x dt y dt

∂ ∂
= ⋅ + ⋅

∂ ∂
 ……….. (i) 

   The three functions of t  considered here:  ( )x g t=  ,  ( )y h t=  ,  ( )( ), ( )z f g t h t=  

have differentials  dxdx t
dt

= ∆  ,  dydy t
dt

= ∆ ,  dzdz t
dt

= ∆ . 

   From (i) we conclude that 
dz z dx z dyt t t
dt x dt y dt

∂ ∂   ∆ = ∆ + ∆   ∂ ∂   
 

                  z zdz dx dy
x y

∂ ∂
⇒ = +

∂ ∂
 ………… (ii) 

   Similarly,     x xdx u v
u v

∂ ∂
= ∆ + ∆

∂ ∂
 

    y ydy u v
u v

∂ ∂
= ∆ + ∆

∂ ∂
 

    z zdz u v
u v

∂ ∂
= ∆ + ∆

∂ ∂
  

   are the corresponding differentials when ( , )z f x y= , ( , )x g u v= , ( , )y h u v=  
z x z y z x z ydz u v
x u y u x v y v

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
⇒ = ⋅ + ⋅ ∆ + ⋅ + ⋅ ∆   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

z x x z y yu v u v
x u v y u v

∂ ∂ ∂ ∂ ∂ ∂   = ∆ + ∆ + ∆ + ∆   ∂ ∂ ∂ ∂ ∂ ∂   
 

z zdx dy
x y

∂ ∂
= +

∂ ∂
 

   which is again (ii) 
   The generalization of this permits to conclude that: 
   The differential formula  

......z z zdz dx dy dt
x y t

∂ ∂ ∂
= + + +

∂ ∂ ∂
 

   which holds when ( , , ,....)z f x y t=  and dx x= ∆ , dy y= ∆ , dt t= ∆ ,…..., remain the 
true when , , ,.....x y t , and hence z , are all functions of other independent variables 
and , , ,.....,dx dy dt dz  are the corresponding differentials. 
   As a consequence we can conclude: 
   Any equation in differentials which is correct for one choice of independent 
variables remains true for any other choice. Another way of saying this is that any 
equation in differentials treats all variables on an equal basis. 

   Thus, if  2 3dz dx dy= −  at a given point, then 1 3
2 2

dx dz dy= +  is the 

corresponding differentials of x  in terms of y  and z . 
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v Example 

   If  
2 1xz
y
−

=  ,  then  
2

2
2 ( 1)xy dx x dydz

y
− −

=  

   Hence   2z x
x y

∂
=

∂
   ,    

2

2
1z x

y y
∂ −

=
∂

 
 

v Example 
   If  2 2 2r x y= + , then rdr xdx ydy= +   

   and  
y

r x
x r

∂  = ∂ 
  ,  

x

r y
y r

 ∂
= ∂ 

 ,  
y

x r
r x

∂  = ∂ 
 ,  etc. 

 

v Example 

   If  1tan yz
x

−  =  
 

  ( 0)x ≠ , then 

    2
1 .

1

ydz d
xy

x

 =  
  +  

 

  2 2
xdy ydx

x y
−

=
+

 

   and hence 

2 2
z y
x x y

∂
= −

∂ +
  ,     2 2

z x
y x y

∂
=

∂ +
  

 
………………………………….. 
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v Implicit Function 
   If  ( , , )F x y z  is a given function of ,x y  & z , then the equation ( , , ) 0F x y z =  is a 
relation which may describe one or several functions z  of x  & y .  
Thus if  2 2 2 1 0x y z+ + − = , then 

2 21z x y= − −    or    2 21z x y= − − −  
   Where both functions being defined for 2 2 1x y+ ≤ . Either function is said to be 
implicitly defined by the equation 2 2 2 1 0x y z+ + − = . 
   Similarly, an equation ( , , , ) 0F x y z w =  may define one or more implicit functions 
w  of  , ,x y z . If two such equations are given; 

( , , , ) 0F x y z w =   ,  ( , , , ) 0G x y z w =  , 
   It is in general possible (at least in theory) to reduce the equations by elimination to 
the form 

( , )w f x y=   ,   ( , )z g x y=  
   i.e. to obtain two functions of two variables. In general, if m  equations in n  
unknown are given ( )m n< , it is possible to solve for m  of the variables in terms of 
the remaining n m−  variables; the number of dependent variables equals the number 
of equations 
 

v Example 
   If   3 2 2 0x y z w+ + + =  

2 3 0x y z w+ − − =  
   then ( , ) 5 5w f x y x y= = − −     &   ( , ) 7 8z g x y x y= = +  
 

v Example 
   Suppose that the functions ( , )w f x y=  & ( , )z g x y=  are implicitly defined by  

2 2 22 0x y z zw+ + − =  
2 2 22 8 0x y z zw+ + − + =  

   Then taking the differentials, we obtain 
4 2 2 0xdx ydy zdz wdz zdw+ + − − =  ……… (i) 

2 2 4 0wdz zdw xdx ydy zdz+ + + + =  ……… (ii) 
   Eliminate dw  between ( )i  and ( )ii  to have 

6 4 6 0xdx ydy zdz+ + =  

     2
3

x ydz dx dy
z x

⇒ = − −  

     z x
x z

∂
⇒ = −

∂
   ,    2

3
z y
y z

∂
= −

∂
 

   Eliminating of dz  from ( )i  and ( )ii  gives 

( ) ( ) 26 2 4 6 0x z w dx y z w dy z dw+ + + − =  

    ( ) ( )
2 2

2 2
3

x z w y z w
dw dx dy

z z
+ +

⇒ = +  

2
(2 )w x x w

x x
∂ +

=
∂

   ,    2
2 ( )w y z w

y z
∂ +

=
∂
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v Examples 
Suppose that the functions ( , )w f x y=  & ( , )z g x y=  are implicitly define by  

( , , , ) 0F x y z w =    and   ( , , ) 0G x y z = , then 
   0x y z wF dx F dy F dz F dw+ + + =  

   and    0x y z wG dx G dy G dz G dw+ + + =  

       z w x yF dz F dw F dx F dy ⇒ + = − +   

   and    z w x yG dz G dw G dx G dy + = − +   
   Then by crammer rule, we have 

x y w

x y w

z w

z w

F dx F dy F
G dx G dy G

dz
F F
G G

+
−

+
=     

y wx w

y wx w

z w z w

z w z w

F FF F
G GG G

dx dy
F F F F
G G G G

= − −  

        ⇒    

x w

x w

z w

z w

F F
G Gz
F Fx
G G

∂
= −

∂
     ,     

y w

y w

z w

z w

F F
G Gz
F Fy
G G

∂
= −

∂
 

      ⇒   

( , )
( , )
( , )
( , )

F G
z x w

F Gx
z w

∂
∂ ∂= −

∂∂
∂

  ,   

( , )
( , )
( , )
( , )

F G
z y w

F Gy
z w

∂
∂ ∂= −

∂∂
∂

        provided  ( , ) 0
( , )
F G
z w

∂
≠

∂
 

   Similarly, we have 
z x y

z x y

z w

z w

F F dx F dy
G G dx G dy

dw
F F
G G

+
+

= −  

   and we can find w
x

∂
∂

 and w
y

∂
∂

 in the same manner. 

v Particular Cases 
   i) One equation in 2 unknowns  i.e.  ( , ) 0F x y =  

0x yF dx F dy⇒ + =  

x

y

dy F
dx F

⇒ = −    ( )0yF ≠  

   ii) One equation in 3 unknowns  i.e. ( , , ) 0F x y z =  
     0x y zF dx F dy F dz+ + =  

  x

z

z F
x F

∂
⇒ = −

∂
   ,   y

z

Fz
y F

∂
= −

∂
    ( 0)zF ≠  

   iii)  2 equations in 3 unknown 
    ( , , ) 0F x y z =   ,  ( , , ) 0G x y z =  

      

( , )
( , )
( , )
( , )

F G
z y x

F Gx
y z

∂
∂ ∂= −

∂∂
∂

    ,    

( , )
( , )
( , )
( , )

F G
z w y

F Gy
z w

∂
∂ ∂= −

∂∂
∂

 

 

……………………………… 
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v Example 
   Find the partial derivatives w.r.t x  & y , when  

2 22 0u v x y+ − + =  
2 2 0u v xy− − =  

Solution 
   Take the differentials 

2 2 2 0du dv xdx y dy+ − + =  ………… (i) 
2 2 2 0du dv xdy y dx− − − =  …………. (ii) 

   Eliminating  dv  between ( )i  and ( )ii , we have 
5 (2 4 ) (2 4 ) 0du x y dx y x dy− + + − =  

     ( ) ( )1 12 4 2 4
5 5

du x y dx y x dy⇒ = + − −  

( )1 2 4
5

u x y
x

∂
⇒ = +

∂
   &   ( )1 2 4

5
u y x
y

∂
= − −

∂
 

   Eliminating du  between ( )i  and ( )ii , we get 
( ) ( )5 4 2 4 2 0dv x y dx y x dy− − + + =  

     ( ) ( )1 14 2 4 2
5 5

dv x y dx y x dy⇒ = − − +  

( )1 4 2
5

v x y
x

∂
⇒ = −

∂
   &   ( )1 4 2

5
v y x
y

∂
= − +

∂
 

 

v Question 
    Give that 

2 3 2 0x y z u+ − − =  
    &    2 0x y z u+ + + =  

    Find   
z

x
y

 ∂
 ∂ 

, 
u

y
x

∂ 
 ∂ 

 , 
x

z
u

∂ 
 ∂ 

 , 
x

y
z

∂ 
 ∂ 

 

Solution 
   Take the differentials 

2 3 2 0dx dy dz du+ − − =  ………… (i) 
2 0dx dy dz du+ + + =  ………...… (ii) 

   Eliminating du  between (i) and (ii), we have 
4 5 0dx dy dz+ − =  ………. (iii) 

      5 1
4 4

dx dy dz⇒ = − +  

      5
4z

x
y

 ∂
⇒ = − ∂ 

 

   From (iii), we have   
5 4dy dz dx= −  

    1 4
5 5

dy dz dx⇒ = −  

    1
5x

y
z

∂ ⇒ = ∂ 
 

   Eliminating dz  between ( )i  & ( )ii , we get 
5 7 0dx dy du+ + =  



  Chap 5 – Function of several variables 14 

     5 1
7 7

dy dx du⇒ = − −  

5
7u

y
x

∂ ⇒ = − ∂ 
 

Now eliminating dy  between ( )i  & ( )ii , we get 
   3 5 3 0dx dz du− − − =  

3 3
5 5

dz dx du⇒ = − −  

         3
5x

z
u

∂ ⇒ = − ∂ 
 

 

v Question 
   Given that   

2 2 2 2 2 1x y z u v+ + − + =  …………... (i) 
2 2 2 2 22 2x y z u v− + + + =  ………… (ii) 

   a) Find du  & dv  in terms of ,dx dy  & dz  at the point  
1x =  , 1y =  , 2z =  , 3u =   &  2v = . 

   b) Find  
( , )y z

u
x

∂ 
 ∂ 

, 
( , )x z

v
y

 ∂
 ∂ 

 at the point given above. 

   c) Find approximately the values of u  & v  for 1 1x = ⋅  , 1.2y =  , 1.8z =  
Solutions 
   Differential gives 

2 2 2 2 2 0xdx ydy zdz udu vdv+ + − + =  ……… (iii) 
2 2 2 2 2 0xdx ydy zdz udu vdv− + + + =  ……… (iv) 

   a) Putting 1x = , 1y = , 2z = , 3u =  & 2v =  in (iii) & (iv), we obtain 
2 2 4 6 4 0dx dy dz du dv+ + − + =  ………… (v) 

  &     2 2 4 6 8 0dx dy dz du dv− + + + =  ………… (vi) 
   Adding gives  

( )12 4 8dv dx dz= − +  

    ( )1 0 2
3

dv dx dy dz⇒ = − + ⋅ +  

   Similarly eliminating dv  between ( )v  and ( )vi , we get 

   ( )1 3 2
9

du dx dy dz= + +  

   b)           ( )1 3 2
9

du dx dy dz= + +∵  

         
,

1
9y z

u
x

∂ ∴ = ∂ 
 

  &    ( )1 0 2
3

dv dx dy dz= − + ⋅ +∵  

         
,

0
x z

v
y

 ∂
∴ = ∂ 

 

 
………………………………….. 
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v Question 
   Find the transformation of cosx r θ= , siny r θ=   from rectangular to polar 
coordinates. Verify the relations 

a)  cos sindx dr r dθ θ θ= −  
sin cosdy dr r dθ θ θ= +  

b)  cos sindr dx dyθ θ= +  
sin cosd dx dy

r r
θ θ

θ = − +  

c)  cosx
r θ

θ∂  = ∂ 
  ,   sec

y

x
r

θ
∂  = ∂ 

   ,    ( , ) 1
( , )
r
x y r

θ∂
=

∂
 

Solutions 
   Given that  cosx r θ=   &   siny r θ=  
   a) Differential gives 

cos sindx dr r dθ θ θ= −  ………. (i) 
sin cosdy dr r dθ θ θ= +  ………. (ii) 

   b) Multiplying (i) by cosθ  & (ii) by sinθ  and adding, we get 
cos sindr dx dyθ θ= +  

   Now multiply (i) by sinθ  & (ii) by cosθ  and subtract to obtain 
sin cosd dx dy

r r
θ θ

θ = − +  

   c) Given   cosx r θ=  

  cosx
r θ

θ∂ ⇒ = ∂ 
 

   We have already shown that  cos sindr dx dyθ θ= +  

   Which can be written as  tan
cos

drdx dyθ
θ

= −  

    sec
y

x
r

θ
∂ ⇒ = ∂ 

 

( , )
( , )

x x
x y r

y yr
r

θ
θ

θ

∂ ∂
∂ ∂ ∂=

∂ ∂∂
∂ ∂

 
cos sin
sin cos

r
r

θ θ
θ θ

−
=  2 2cos sinr rθ θ= +  r=  

 and  ( , )
( , )

r r
x yr

x y
x y

θ
θ θ

∂ ∂
∂ ∂∂

=
∂ ∂∂
∂ ∂

 
cos sin
sin cos

r r

θ θ
θ θ=

−
 2 21 1cos sin

r r
θ θ= +  1

r
=  

 

v Question 
    Given that  2 2 2cos 0x y uv z− + =  

2 2 2sin 2 2x y uv z+ − + =  
and  sin cos 0xy u v z− + =  

   Find  
v

x
u

∂ 
 ∂ 

 ,  
u

x
v

∂ 
 ∂ 

 at  1x = , 1y = , 
2

u π
= , 0v = , 0z =  

Solution 
   Differential gives 

2 22 2 cos sin sin 2 0xdx y uvdy y uv udv y uv vdu zdz− + ⋅ + ⋅ + =  ……. (i) 
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2 2 cos cos 4 0xdx y dy uv udv uv vdu zdz+ − ⋅ − ⋅ + =  ……… (ii) 
    &  cos cos sin sin 0xdy y dx u vdu u vdv dz+ − ⋅ + ⋅ + =  ……... (iii) 
   At the given point, these equations reduce to  

2 2 0dx dy− =  …………..…. (iv) 

2 2 0
2

dx dy dvπ
+ − =  ……… (v) 

        &  0dx dy dz+ + =  …………... (vi) 
   Adding (iv) & (v), we have 

4 0
2

dx dvπ
− =  

     0
8

dx dv duπ
⇒ = + ⋅     0

v

x
u

∂ ⇒ = ∂ 
  ,  

8u

x
v

π∂  = ∂ 
 

 

v Question 

   Find  
y

u
x

∂ 
 ∂ 

 if  2 2 2 22 1x y u v− + + =  

        2 2 2 2 2x y u v+ − − =  
Solution 
   Taking the differentials, we have 

2 2 2 4 0xdx y dy u du vdv− + + =  
2 2 2 2 0xdx y dy u du v dv+ − − =  

   Eliminating dv , we get 
6 2 2 0xdx y dy u du+ − =  

    3x ydu dx dy
u u

⇒ = +  

    3

y

u x
x u

∂ ⇒ = ∂ 
 

 

v Question 
   Given the transformation   

2x u v= −     
2y u v= +  

  a) Write the equations of the inverse transformation 
  b) Evaluate the Jacobian of the transformation and that of the inverse  
      transformation. 
Solution 
   a) From the equations, we have 

1 2
5 5

u x y= +  

2 1
5 5

v x y= − +  

   which are the equations of the inverse transformation. 

   b) Jacobian of the given transformation  ( , )
( , )
x y
u v

∂
=

∂
 

x x
u v
y y
u v

∂ ∂
∂ ∂=
∂ ∂
∂ ∂

 

       
1 2
2 1

−
= 5=  



  Chap 5 – Function of several variables 17 

   Jacobian of the inverse transformation ( , )
( , )
u v
x y

∂
=

∂
 

u u
x y
v v
x y

∂ ∂
∂ ∂

=
∂ ∂
∂ ∂

 

    

1 2
5 5
2 1
5 5

=
−

 1
5

=  

 

v Question 

   Given the transformation ( , )x f u v= , ( , )y g u v=  with Jacobian ( , )
( , )
x yJ
u v

∂
=

∂
, show 

that for the inverse transformation one has  
1u y

x J v
∂ ∂

=
∂ ∂

   ,  1u x
y J v

∂ ∂
= −

∂ ∂
  ,  1v y

x J u
∂ ∂

= −
∂ ∂

  ,   1u x
y J u

∂ ∂
=

∂ ∂
 

Solution 
   The given equations are 

( , ) 0f u v x− =  ………. (i) 
( , ) 0g u v y− =  ………. (ii) 

   Differentiating w.r.t. x , we get 

1 0u v
u vf f
x x

∂ ∂
+ − =

∂ ∂
 

0 0u v
u vg g
x x

∂ ∂
+ − =

∂ ∂
 

   Solving these equations by Crammer’s rule, we have 
1

0
v

v

u v

u v

f
gu

f fx
g g

−

∂
= −

∂
 vg

J
=  1 y

J v
∂

=
∂

   v
y g
v

∂ = ∂ 
∵  

1
0

u

u

f
gv

x J

−

∂
= −

∂
  ug

J
= −  1 y

J u
∂

= −
∂

 

   Differentiating (i) & (ii)  w.r.t. y , we have 

0 0u v
u vf f
y y

∂ ∂
+ − =

∂ ∂
 

1 0u v
u vg g
y y

∂ ∂
+ − =

∂ ∂
 

   Solving these equations by Crammer’s rule, we get 
0
1

v

v

f
gu

y J
−∂

= −
∂

   vf
J

= −    1 x
J v

∂
= −

∂
 

0
1

u

u

f
gv

y J
−∂

= −
∂

   uf
J

=    1 x
J u

∂
=

∂
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v Question 
   Given the transformation    

2 2x u v= −   
2y uv=  

   a) Compute its Jacobian. 

   b) Evaluate  
y

u
x

∂ 
 ∂ 

 &  
y

v
x

∂ 
 ∂ 

 

Solution 
   The given equations can be written as  

2 2 0u v x− − =  ……….. (i) 
2 0uv y− =  ……...…… (ii) 

   Differentiating (i) & (ii) partially w.r.t. x , we have 

2 2 1 0u vu v
x x

∂ ∂
− − =

∂ ∂
 …………. (iii) 

2 2 0 0u vv u
x x

∂ ∂
+ − =

∂ ∂
 …………. (iv) 

   ( , )
( , )

x x
x y u vJ

y yu v
u v

∂ ∂
∂ ∂ ∂= =

∂ ∂∂
∂ ∂

   
2 2
2 2
u v
v u

−
=    2 24( )u v= +  

   Solving (iii) & (iv) by Crammer’s rule, we have 
1 2

0 2

y

v
uu

x J

− −

∂  = − ∂ 
   2 2

2
4( )

u
u v

=
+

   2 22( )
u

u v
=

+
 

2 1
2 0

y

u
vv

x J

−

∂  = − ∂ 
  2 2

2
4( )

v
u v
−

=
+

   2 22( )
v

u v
−

=
+

 

 

Note 

x

u
y

 ∂
 ∂ 

 & 
x

v
y

 ∂
 ∂ 

 can be determined in the same manner. 

  

v Question 
   Prove that if ( , , ) 0F x y z = , then 

1
y xz

z x y
x y z

 ∂ ∂ ∂   ⋅ ⋅ = −    ∂ ∂ ∂    
 

Solution 
( , , ) 0F x y z =  

     0x y zF dx F dy F dz⇒ + + =  

     y z

x x

F Fdx dy dz
F F

⇒ = − −  y

xz

Fx
y F

 ∂
⇒ = − ∂ 

 

               &   x z

y y

F Fdy dx dz
F F

= − −   z

x y

y F
z F

∂ ⇒ = − ∂ 
 

           yx

z z

FFdz dx dy
F F

= − −   x

y z

z F
x F

∂ ⇒ = − ∂ 
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   Hence  

yx z

y x z x yz

Fz x y F F
x y z F F F

    ∂ ∂ ∂   ⋅ ⋅ = − ⋅ − ⋅ −         ∂ ∂ ∂          
 1= −  

 

v Question 
Prove that, if ( , )x f u v= , ( , )y g u v= , then 

v y u x

x u y v
u x v y

 ∂ ∂ ∂ ∂     =       ∂ ∂ ∂ ∂       
 

and     
u y vx

x v u y
v x y u

 ∂ ∂ ∂ ∂     =      ∂ ∂ ∂ ∂      
 

also that  1
uu

x y
y x

 ∂ ∂  =  ∂ ∂  
 

Solution    
( , ) 0f u v x− =∵  

     ( , ) 0g u v y− =  

v

y

u g
x J

∂ ∴ = ∂ 
   ,    u

y

v g
x J

∂  = − ∂ 
 

     v

x

u f
y J

 ∂
= − ∂ 

  ,   u

x

v f
y J

 ∂
= ∂ 

   as already shown 

   Taking differentials of the given equations, we have 
      0u vf du f dv dx+ − =  
      0u vg du g dv dy+ − =  

u vdx f du f dv⇒ = +  ………… (i) 
      u vdy g du g dv= +  ……..…. (ii) 

          u
v

x f
u

∂ ⇒ = ∂ 
   ,    v

u

x f
v

∂  = ∂ 
 

      u
v

y g
u

∂  = ∂ 
   ,    v

u

y g
v

∂  = ∂ 
 

  Now  
v y u x

x u y v
u x v y

 ∂ ∂ ∂ ∂     ⋅ = ⋅       ∂ ∂ ∂ ∂       
 

                v u
u v

g ff g
J J

⇒ ⋅ = ⋅ ,   which is true 

   Similarly, we have the second relation. 
   Eliminating dv  between ( )i  & ( )ii , we get 

( ) 0u v v u v vf g f g du g dx f dy⋅ − ⋅ − + =  

    u v v u v

v v

f g f g fdx du dy
g g
−

⇒ = ⋅ +  

and     u v v uv

v v

f g f ggdy dx du
f f

−
= −  

   v

vu

x f
y g

 ∂
⇒ = ∂ 

    &   v

u v

y g
x f

∂  = ∂ 
 

   1v v

u v vu

x y f g
y x g f

 ∂ ∂ ⇒ ⋅ = ⋅ =  ∂ ∂  
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v Question 
Given that ( , , )x f u v w= ,  ( , , )y g u v w= , ( , , )z h u v w=   with the Jacobian 
( , , )
( , , )
x y zJ
u v w

∂
=

∂
, show that for the inverse transformation one has 

i)  1 ( , )
( , )

u y z
x J v w

∂ ∂
=

∂ ∂
  ,  1 ( , )

( , )
u z x
y J v w

∂ ∂
=

∂ ∂
  ,  1 ( , )

( , )
u x y
z J v w

∂ ∂
=

∂ ∂
 

ii)  1 ( , )
( , )

v y z
x J w u

∂ ∂
=

∂ ∂
  ,  1 ( , )

( , )
v z x
y J w u

∂ ∂
=

∂ ∂
  ,  1 ( , )

( , )
v x y
z J w u

∂ ∂
=

∂ ∂
 

iii)  1 ( , )
( , )

w y z
x J u v

∂ ∂
=

∂ ∂
  ,  1 ( , )

( , )
w z x
y J u v

∂ ∂
=

∂ ∂
  ,  1 ( , )

( , )
w x y
z J u v

∂ ∂
=

∂ ∂
 

Solution 
   We have    ( , , ) 0f u v w x− =  

( , , ) 0g u v w y− =  
( , , ) 0h u v w z− =  

   Differentiating w.r.t. to x , we get 

1 0u v w
u v wf f f
x x x

∂ ∂ ∂
+ + − =

∂ ∂ ∂
 

0 0u v w
u v wg g g
x x x

∂ ∂ ∂
+ + − =

∂ ∂ ∂
 

0 0u v w
u v wh h h
x x x

∂ ∂ ∂
+ + − =

∂ ∂ ∂
 

   By Crammer’s rule, we have 
1

0
0

v w

v w

v w

f f
g g
h hu

x J

−

∂
= −

∂
 

v w

v w

g g
h h

J
=  1 ( , )

( , )
g h

J v w
∂

=
∂

 1 ( , )
( , )
y z

J v w
∂

=
∂

 

1
0
0

u w

u w

u w

f f
g g
h hv

x J

−

∂
= −

∂
 

u w

u w

g g
h h

J
= −  1 ( , )

( , )
g h

J w u
∂

=
∂

 1 ( , )
( , )

y z
J w u

∂
=

∂
 

1
0
0

u v

u v

u v

f f
g g
h hw

x J

−

∂
= −

∂
 

u v

u v

g g
h h

J
=  1 ( , )

( , )
g h

J u v
∂

=
∂

 1 ( , )
( , )
y z

J u v
∂

=
∂

 

   We can find the other relations in the same way by differentiating given relation 
w.r.t. y  and w.r.t. z  respectively. 
 
 

…………………………………. 
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v Partial Derivative of Higher Order 

   Let a function ( , )z f x y=  be given. Then its two partial derivatives  z
x

∂
∂

  &  z
y

∂
∂

  

are themselves functions of x  & y . 

i.e.   ( , )x
z f x y
x

∂
=

∂
  ,   ( , )y

z f x y
y

∂
=

∂
 

   Hence each can be differentiable w.r.t. x  & y . 
   Thus, we obtain four partial derivatives 

       
2

2 ( , )xx
z f x y

x
∂

=
∂

   ,    
2

( , )xy
z f x y

x y
∂

=
∂ ∂

 

      
2

( , )yx
z f x y

y x
∂

=
∂ ∂

 ,     
2

2 ( , )yy
z f x y

y
∂

=
∂

 

   
2

2
z

x
∂
∂

  is the result of differentiating  z
x

∂
∂

  w.r.t. x , where  
2z

y x
∂

∂ ∂
  is the result of 

differentiating  z
x

∂
∂

  w.r.t. y . If all the derivatives concerned are continuous in the 

domain considered, then 
2 2z z

x y y x
∂ ∂

=
∂ ∂ ∂ ∂

   i.e. order of differentiation is immaterial. 

   Third and higher order partial derivatives are defined in the same manner and 
under appropriate assumptions of continuity the order of differentiation does not 
matter. 
 

v Laplacian of z 
   If ( , )z f x y= , then the Laplacian of z  is denoted by 2z∇  is the expression 

2 2
2

2 2
z zz

x y
∂ ∂

∇ = +
∂ ∂

 

   if ( , , )w f x y z= , the Laplacian of w  is the expression 
2 2 2

2
2 2 2
w w ww

x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

 

   The symbol “∇” is a vector differential operator define as 
ˆˆ ˆi j k

x y x
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

 

   We then have symbolically 
2 2 2

2
2 2 2x y z

∂ ∂ ∂
∇ = ∇ ⋅ ∇ = + +

∂ ∂ ∂
 

 

v Harmonic Function 
   If ( , )z f x y=  has continuous second order derivatives in a domain D  and 2 0z∇ =  
in D , then z  is said to be Harmonic in D . The same term is used for the function of 
three variables which has continuous 2nd derivatives in a domain D  in space and 
whose Laplacian is zero in D . The two equations for harmonic functions 

2 2
2

2 2 0z zz
x y

∂ ∂
∇ = + =

∂ ∂
 

2 2 2
2

2 2 2 0w w ww
x y z

∂ ∂ ∂
∇ = + + =

∂ ∂ ∂
 

   are known as the Laplace equations in two and three dimensions respectively. 
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v Bi-Harmonic Equations 
   Another important combination of derivatives occurs in the equation 

4 4 4

4 2 2 42 0z z z
x x y y

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
 

   which is known to be the Bi-harmonic equation. This combination can be 
expressed in terms of Laplacian as 

( )2 2 4 0z z∇ ∇ = ∇ =  

   The solutions of 4 0z∇ =  are termed as Pri-harmonic functions. 
 

v Higher Derivatives of Functions of Functions 
   (1) Let ( , )z f x y=  and ( )x g t= , ( )y h t=  so that z  can be expressed in terms of t  
alone. Then  

dz z dx z dy
dt x dt y dt

∂ ∂
= +

∂ ∂
 ……….. (i) 

2 2 2

2 2 2
d z d dz z d x dx d z z d y dy d z
dt dt dt x dt dt dt x y dt dt dt y

 ∂ ∂ ∂ ∂   = = + + +     ∂ ∂ ∂ ∂     
  ……… (ii) 

   Using (i), we have 
2 2

2
d z z dx z dy
dt x x dt y x dt

∂ ∂ ∂  = + ∂ ∂ ∂ ∂ 
 

   &  
2 2

2
d z z dx z dy
dt y x z dt y dt

 ∂ ∂ ∂
= + ∂ ∂ ∂ ∂ 

 

   Putting these values in ( )ii , we have 
2 22 2 2 2 2 2

2 2 2 2 22d z z d x z dx z dx dy z dy z d y
dt x dt x dt x y dt dt y dt y dt

∂ ∂ ∂ ∂ ∂   = + + ⋅ + +   ∂ ∂ ∂ ∂ ∂ ∂   
 

 

   (2)  If  ( , )z f x y=  and  ( , )x g u v=  , ( , )y h u v= , then  
z z x z y
u x u y u

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 ……….. (iii) 

z z x z y
v x v y v

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 ……….. (iv) 

2 2 2

2 2 2
z z x z x z y y z

u x u u x u y u u u y
   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = ⋅ + ⋅ + + ⋅    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 …………. (iv) 

   Using (iii), we have 

 
2 2

2
z z x z y

u x x u y x u
∂ ∂ ∂ ∂ ∂ ∂  = ⋅ + ⋅ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

   and   
2 2

2
z z x z y

u y x y u y u
 ∂ ∂ ∂ ∂ ∂ ∂

= + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

   Putting these values in ( )iv , we get 
22 2 2 2 2 2

2 2 2 2 22z z x z x z x y z y z y
u x u x u x y u u y u y u

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   = + + ⋅ + + ⋅   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

   We can find the values of  
2z

u v
∂

∂ ∂
  &  

2

2
z

v
∂
∂

 in the same manner. 

 
 

……………………………………….. 
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v The Laplacian in Polar, Cylindrical and Spherical Co-ordinate 
   We consider first the two-dimensional Laplacian 

2 2
2

2 2
w ww

x y
∂ ∂

∇ = +
∂ ∂

  

   and its expression in terms of polar co-ordinates r  & θ .  
   Thus we are given ( , )w f x y=  and cosx r θ= , siny r θ=  and we wish to express 

2w∇  in terms of r , θ  and derivatives of w  with respect to r  and θ . The solution is 
as follows. One has 

w w r w
x r x x

θ
θ

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

w w r w
y r y y

θ
θ

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
  by chain rule 

   To evaluate  r
x

∂
∂

,  
x
θ∂

∂
, r

y
∂
∂

, 
y
θ∂

∂
 , we use the equations  

cos sindx dr r dθ θ θ= −  
sin cosdy dr r dθ θ θ= +  

   These can be solved for dr  and dθ  by determinants or by elimination to give 
cos sindr dx dyθ θ= +  

sin cosd dx dy
r r
θ θ

θ = − +  

   Hence   cosr
x

θ
∂

=
∂

,  sinr
y

θ
∂

=
∂

,  sin
x r
θ θ∂

= −
∂

   and   cos
y r
θ θ∂

=
∂

 

   Putting these values above in expressions of  w
x

∂
∂

  &  w
y

∂
∂

,  we have 

sincos
.............. ( )

cossin

w w w
x r r i
w w w
y r r

θ
θ

θ
θθ

θ

∂ ∂ ∂ = − ∂ ∂ ∂ 
∂ ∂ ∂ = +

∂ ∂ ∂ 

 

   These equations provide general rules for expressing derivatives w.r.t. x  or y  in 
terms of derivatives w.r.t. r  and θ . By applying the first equation to the function 

w
x

∂
∂

, one finds that 
2

2
w w

x x x
∂ ∂ ∂ =  ∂ ∂ ∂ 

 sincos w w
r x r x

θθ
θ

∂ ∂ ∂ ∂   = −   ∂ ∂ ∂ ∂   
 

   By (i) this can be written as follows: 
2

2
sin sin sincos cos cosw w w w w

x r r r r r r
θ θ θθ θ θ

θ θ θ
∂ ∂ ∂ ∂ ∂ ∂ ∂   = − − −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

   The rule for differentiation of a product gives finally 
2 2 2 2 2

2
2 2 2 2

2sin cos sincosw w w w
x r r r r

θ θ θθ
θ θ

∂ ∂ ∂ ∂
= ⋅ − ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

        
2

2
sin 2sin cosw w

r r
θ θ θ

θ θ
∂ ∂

+ ⋅ + ⋅
∂ ∂

 ……. (ii) 

   In the same manner one finds 

    
2

2
cossin sinw w w w

y y y r r r
θθ θ

θ
 ∂ ∂ ∂ ∂ ∂ ∂ = = +  ∂ ∂ ∂ ∂ ∂ ∂  

cos cossin w w
r r r

θ θθ
θ θ
∂ ∂ ∂ + + ∂ ∂ ∂ 
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2 2 2 2

2
2 2 2

2sin cos cossin w w w
r r r r

θ θ θθ
θ θ

∂ ∂ ∂
= ⋅ + ⋅ + ⋅

∂ ∂ ∂ ∂
 

   
2

2
cos 2sin cosw w

r r r
θ θ θ

θ
∂ ∂

+ ⋅ − ⋅
∂ ∂

 …… (iii) 

   Adding (ii) & (iii), we conclude 
2 2

2
2 2
w ww

x y
∂ ∂

∇ = +
∂ ∂

2 2

2 2 2
1 1w w w

r r r rθ
∂ ∂ ∂

= + +
∂ ∂ ∂

 ………. (iv) 

   This is the desired result. 
   Equation (iv) at once permits one to write the expression for the 3-demensional 
Laplacian in cylindrical co-ordinates for the transformation of coordinates 

cosx r θ=   ,   siny r θ=    ,   z z=  
   involves only x  & y . In the same way as above, we have 

2 2 2
2

2 2 2
w w ww

x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

 

        
2 2 2

2 2 2 2
1 1w w w w

r r r r zθ
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

 
 

v Laplacian in Spherical Polar Coordinates 
   The transformation form rectangular to spherical polar coordinates is  

sin cosx ρ ϕ θ=  ,  sin siny ρ ϕ θ=  ,  cosz ρ ϕ=  
   Writing  sinr ρ ϕ= , we have 

cosx r θ=  ,  siny r θ=  ,  z z=  
   Which can be considered as a transformation from rectangular to cylindrical 
coordinates ( , , )r zθ  
   We have 

2 2 2
2

2 2 2 2
1 1w w w ww

r r r r zθ
∂ ∂ ∂ ∂

∇ = + + +
∂ ∂ ∂ ∂

 ……….. (i) 

    
where cos

sin
z
r

ρ ϕ
ρ ϕ

= 
= 

 ………. (ii) 

   We have transformation from ( , )x y  to ( , )r θ  as 
2 2 2 2

2 2 2 2 2
1 1w w w w w

x y r r rθ θ
∂ ∂ ∂ ∂ ∂

+ = + +
∂ ∂ ∂ ∂ ∂

 

   Now if we take transformation from ( ),z r  to ( ),ρ ϕ , then 

   
2 2 2 2

2 2 2 2 2
1 1w w w w w

z r ρ ρ ϕ ρ ϕ
∂ ∂ ∂ ∂ ∂

⇒ + = + +
∂ ∂ ∂ ∂ ∂

 

                  Also    w w w
r r r

ρ ϕ
ρ ϕ

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

   Where   2 2 2z rρ = +   ,   tan r
z

ϕ =  

          2 2r
r
ρ

ρ
∂

⇒ =
∂

  sin sinr
r
ρ ρ ϕ

ϕ
ρ ρ

∂
⇒ = = =

∂
 

          &   2 1sec
r z
ϕ

ϕ
∂

⋅ =
∂

   
2 2cos cos

cosr z
ϕ ϕ ϕ

ρ ϕ
∂

⇒ = =
∂

cosϕ
ρ

=  

    cossinw w w
r

ϕ
ϕ

ρ ϕ ρ
∂ ∂ ∂

⇒ = ⋅ + ⋅
∂ ∂ ∂

 ………… (iv) 

   Substituting (iii) & (iv) in (i), we have 
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2 2 2
2

2 2 2 2
1 1w w w ww

z r r r rθ
 ∂ ∂ ∂ ∂

∇ = + + + ∂ ∂ ∂ ∂ 
 

        
2 2 2

2 2 2 2 2 2
1 1 1

sin
w w w w

ρ ρ ϕ ρ ρ ρ ϕ θ
∂ ∂ ∂ ∂

= + + + ⋅
∂ ∂ ∂ ∂

1 cossin
sin

w w ϕϕ
ρ ϕ ρ ϕ ρ

 ∂ ∂
+ + ∂ ∂ 

 

        
2 2 2

2 2 2 2 2 2 2
1 1 1 1 cot

sin
w w w w w wϕ

ρ ρ ϕ ρ ρ ρ ϕ θ ρ ρ ρ ϕ
∂ ∂ ∂ ∂ ∂ ∂

= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂ ∂ ∂

 

        
2 2 2

2 2 2 2 2 2 2
1 2 1 cot

sin
w w w w wϕ

ρ ρ ϕ ρ ρ ρ ϕ θ ρ ϕ
∂ ∂ ∂ ∂ ∂

= + ⋅ + ⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂ ∂

 

 
v Question  
   If u  & v  are functions of x  & y  defined by the equations 

1xy uv+ =  ,  1xu yv+ =  

   then find  
2

2
u

x
∂
∂

. 

Solution 
0y dx xdy vdu u dv+ + + =  ……… (i) 
0u dx vdy x du y dv+ + + =  ……... (ii) 

   Eliminating dv  between (i) & (ii) 
( ) ( ) ( )2 2 0y u dx xy uv dy vy ux du− + − + − =  

     
2 2u y uv xydu dx dy

vy ux vy ux
− −

⇒ = +
− −

 

     
2 2 2 2

1 2
u u y u y
x vy ux ux

∂ − −
⇒ = =

∂ − −
      ( using given eq. ) 

     
( )

2 2
2

22

(1 2 ) 2 ( ) ( 2 ) 2

1 2

u uux u u y u x
u x x

x ux

∂ ∂ − ⋅ ⋅ − − − − ∂ ∂ ∂ ⇒ =
∂ −

 

 

v Question 

   Find  
2

2
w

x
∂
∂

,  
2

2
w

y
∂
∂

  when 

i)   
2 2

1w
x y

=
+

 

ii)  1tan yw
x

−=  

iii) 
2 2x yw e −=  

 

v Question 
   Show that the following functions are harmonic in x  & y  

i)    cosxe y  
ii)   3 23x xy−  

iii)  2 2log x y+  
 

……………………………………… 
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v Sufficient Condition for the Validity of Reversal in the Order 
    of Derivation 
   We now prove two theorems which lay sufficient conditions for the equality of xyf  
and yxf . 
 

v Schawarz’s Theorem 
   If ( , )a b  be a point of the domain of a function ( , )f x y  such that 
   i) ( , )xf x y  exists in a certain nhood of ( , )a b . 
   ii) ( , )xyf x y  is continuous at ( , )a b . 
   then ( , )yxf a b  exists and is equal to ( , )xyf a b . 
Proof 
   The given conditions imply that there exists a certain nhood of ( , )a b  at every point 
( , )x y  of which ( , )xf x y , ( , )yf x y  and ( , )xyf x y  exist. Let ( , )a h b k+ +  be any point 
of this nhood. We write 

( , ) ( , ) ( , ) ( , ) ( , )h k f a h b k f a h b f a b k f a bφ = + + − + − + +  
( ) ( , ) ( , )g y f a h y f a y= + −  

      so that    ( , ) ( ) ( )h k g b k g bφ = + −  ……….. (i) 
   yf∵  exists in a nhood of ( ),a b , the function ( )g y  in derivable in [ ],b b k+ , and, 
therefore, by applying the M.V. theorem to the expression on R.H.S of ( )i , we have 

( , ) ( )h k kg b kφ θ′= +    ( )0 1θ< <  
                                ( )( , ) ( , )y yk f a h b k f a b kθ θ= + + − +  ……….. (ii) 
   Again since xyf  exists in a nhood of ( , )a b , the function ( , )yf x b kθ+  of x  is 
derivable w.r.t. x  in interval ( , )a a h+  and, therefore, by applying the M.V. theorem 
to the right of ( )ii , we have 

( , ) ( , )xyh k hk f a h b kφ θ θ′= + +    ( )0 1θ ′< <  

   or     1 ( , ) ( , ) ( , ) ( , ) ( , )xy
f a h b k f a b k f a h b f a b f a h b k

k h h
θ θ+ + − + + −  ′− = + + 

 
 

   Since ( , )xf x y  exists in a nhood of ( , )a b , this gives when 0h → , 

0

( , ) ( , ) lim ( , )x x
xyh

f a b k f a b f a h b k
k

θ θ
→

+ − ′= + +  

   Let, now, 0k → . Since ( , )xyf x y  is continuous at ( , )a b , we obtain 

0 0
( , ) limlim ( , ) ( , )yx xy xyk h

f a b f a h b k f a bθ θ
→ →

′= + + =  
 

v Young’s Theorem 
   If ( , )a b  be a point of the domain of definition of a function ( , )f x y  such that 

( , )xf x y  and ( , )yf x y  are both differentiable at ( , )a b , then 
( , ) ( , )xy yxf a b f a b=  

Proof 
   The differentiability of xf  and yf  at ( , )a b  implies that they exist in a certain 
nhood of ( , )a b  and that xxf , yxf , xyf , yyf  exist at ( , )a b .  
   Let ( , )a h b h+ +  be a point of this nhood. We write 

( , ) ( , ) ( , ) ( , ) ( , )h h f a h b h f a h b f a b h f a bφ = + + − + − + +  
( ) ( , ) ( , )g y f a h y f a y= + −  

     so that     ( , ) ( ) ( )h h g b h g bφ = + −  ………. ( )i  



Chap 5 – Function of several variables 27 

   Since yf  exists in a nhood of ( , )a b , the function ( )g y  is derivable in ( , )b b h+ , 
and, therefore, by applying the M.V. theorem to the expression on the right of ( )i , 
we have 

( , ) ( )h h h g b hφ θ′= +       ( )0 1θ< <  
 ( )( , ) ( , )y yh f a h b h f a b hθ θ= + + − +  ……….. ( )ii  

   Since ( , )yf x y  is differentiable at ( , )a b , we have, by definition, 
   ( , ) ( , ) ( , ) ( , )y y xy yyf a h b h f a b h f a b h f a bθ θ+ + − = +  

        1 1( , ) ( , )h h h h h hϕ θ ψ+ +  …… (iii) 
   and    2( , ) ( , ) ( , ) ( , )y y yyf a b h f a b h f a b h h hθ θ θ ψ+ − = +  ….….. ( )iv  
   where 1ϕ , 1ψ , 2ψ  all 0→  as 0h →  
   From ( )ii , ( )iii  and ( )iv , we obtain 

1 1 22
( , ) ( , ) ( , ) ( , ) ( , )xy
h h f a b h h h h h h
h

φ
φ θψ θψ= + + −  …..…. ( )v  

   By a similar argument and on considering  
( ) ( , ) ( , )g x f x b k f x b= + −  

   We can show that 

3 2 32
( , ) ( , ) ( , ) ( , ) ( , )yx
h h f a b h h h h h h
h

φ
ψ θ ϕ θ ϕ′ ′= + + −  ……….. ( )vi  

   where 2 3 3, ,ϕ ϕ ψ  all 0→  as 0h →   
   Equating the right hand side of ( )v  and ( )vi  and making 0h → , we obtain 

( , ) ( , )xy yxf a b f a b=  
 

…………………………………. 
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v Maxima and Minima for Functions of Two Variables 
   Let 0 0( . )x y  be the point of the domain of a function ( , )f x y , then 0 0( , )f x y  said to 
an extreme value of the function ( , )f x y , if the expression 

0 0 0 0( , ) ( , )f f x h y h f x y∆ = + + −  
   preserves its sign for all h  and k . 
   The extreme value of 0 0( , )f x y  being called a maximum or a minimum value 
according as this difference is positive or negative respectively. 
 

Necessary Condition 
   The Necessary Condition for 0 0( , )f x y  to be an extreme value of function ( , )f x y  
is that 0 0 0 0( , ) 0 ( , )x yf x y f x y= = ,  provided that these partial derivatives exist. 
   It is to be noted that it is impossible to determine the nature of a critical point by 
studying the function 0( , )f x y  and 0( , )f x y . 
   e.g.  Let   2 2( , ) 1f x y x y= + −    
   then  2(0, ) 1f y y= −     (0, ) 2 0f y y′⇒ = − =    (0,0)⇒  is a turning point. 
   Now (0, ) 2f y′′ = −    (0,0)⇒  is a point of maximum value. 
   But  2( ,0) 1f x x= +  
    ( ,0) 2 0f x x′⇒ = =    0x⇒ =    (0,0)⇒  is the critical point 
    ( ,0) 2 0f x′′⇒ = >    (0,0)⇒  is the maximum value 
   Hence we fail to decide the nature of the critical point in this way. 
 

Sufficient Condition 
   Let ( , )z f x y=  be defined and have continuous 1st and 2nd order partial derivatives 
in a domain D . Suppose 0 0( , )x y  is a point of D  for which xf  and yf  are both zero. 
   Let  0 0( , )xxA f x y= , 0 0( , )xyB f x y= , 0 0( , )yyC f x y=  ,  
   then we have the following cases 
   i) 2 0B AC− <  and 0A C+ <    ⇒   relative maximum at 0 0( , )x y . 
   ii) 2 0B AC− <  and 0A C+ >   ⇒   relative minimum at 0 0( , )x y  
   iii) 2 0B AC− >    ⇒   saddle point at 0 0( , )x y  
   iv) 2 0B AC− =    ⇒   nature of the critical point is undetermined 
Proof 
   By the application of M.V. theorem for function of two variables we have 

0 0 0 0( , ) ( , )x yf hf x h y k kf x h y kθ θ θ θ∆ = + + + + +     (0 1)θ< <  

                [ ]0 0 0 0( , ) ( , )x xh f x h y k f x yθ θ= + + − 0 0 0 0( , ) ( , )y yk f x h y k f x yθ θ + + + −   
     (it is because 0 0 0 0( , ) ( , ) 0x yf x y f x y= = , a turning point) 

     0 0 0 0 1 2( , ) ( , )xx yxh hf x y kf x y h kθ θ ε θ ε θ = + + +   

                             0 0 0 0 3 4( , ) ( , )xy yyk hf x y kf x y h kθ θ ε θ ε θ + + + +   
   where 1 2 3, ,ε ε ε  & 4 0ε →  as , 0h k →  

2 2
0 0 0 0 0 0( , ) 2 ( , ) ( , )xx xy yyf h f x y hk f x y k f x y∆ = + + 2 2

1 2 3 4( )h hk kε ε ε ε+ + + +  
    2 2 2 2

1 2 3 42 ( )f h A hkB k C h hk kε ε ε ε⇒ ∆ = + + + + + +  
   The sign of f∆  depends upon the quadratic 2 2 22d f h A hk B k C= + +  
   i & ii) Let   2 0B AC− <  ,  ( 0)A ≠   

( )2 2 21 2d f h A hk AB k AC
A

⇒ = + +  
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             ( )2 2 2 2 2 2 21 2 ( )h A hk AB k B k AC k B
A

= + + + −  

   ( )2 2 21 ( ) ( )hA kB k AC B
A

= + + −  

   Since 2( )hA kB+  is positive and 2AC B−  (supposed) is  +ive, therefore the sign of 
2d f  depends upon the sign of A . 

   0f⇒ ∆ >   if  0A >   &  0f∆ <   if  0A <  
   Again, since 2 0B AC− <     2B AC⇒ <     0AC⇒ >  
   A⇒  and C  are either both  +ive or both  –ive. 
   If  0A >  ,  0C >   then  0A C+ >   and if  0A <  ,  0C <   then  0A C+ < . 
   Hence we have the following result 
   a)   0f∆ >   when 0A C+ >    0 0( , )x y⇒  is a point of minimum value. 
   b)   0f∆ <   when 0A C+ <    0 0( , )x y⇒  is a point of maximum value. 
   iii)  Let 2 0B AC− > , then 

  ( )2 2 2 21 ( ) ( )d f hA kB k AC B
A

= + + −  

( )2 2 21 ( ) ( )hA kB k B AC
A

= + − −  

   which may be  +ive or  –ive for certain value of h  & k , therefore 0 0( , )x y  is a 
saddle point.  
   iv)  Let 2 0B AC− =  ,  0A ≠  

      ( )22 1d f hA kB
A

⇒ = +  

   which may vanish for certain values of h  and k , implies that nature of the point 
remain undetermined. 
 

v Question 
   Test for maxima and minima 

2 21z x y= − −  
Solution 

2 0z x
x

∂
= − =

∂
   0x⇒ =  

2 0z y
y

∂
= − =

∂
   0y⇒ =  

     (0,0)⇒  is the only critical point. 
2

2 2zA
x

∂
= = −

∂
   ,  

2

0zB
x y
∂

= =
∂ ∂

   ,   
2

2 2zC
y

∂
= = −

∂
 

   2 0 4 4 0B AC− = − = − <    and   2 2 4 0A C+ = − − = − <  
   ⇒ the function has maximum value at (0,0) . 
 

v Question 
   Test for maxima and minima  

3 23z x xy= −  
Solution 

    2 23 3 0z x y
y

∂
= − =

∂
   x y⇒ = −   &   x y=  

          6 0z xy
y

∂
= − =

∂
   0xy⇒ =  
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   (0,0)⇒  is the critical point. 

   
2

2 6 0zA x
x

∂
= = =

∂
   at (0,0)  

   
2

6 0zB y
x y
∂

= = − =
∂ ∂

   at (0,0)  

   
2

2 6 0zC x
y

∂
= = − =

∂
   at (0,0)  

   2 4 0B AC− =    also   0A C+ =  
   Therefore we need further consideration for the nature of point 

     (0 ,0 ) (0,0)z z h k z∆ = + + −  
( , ) (0,0)z h k z= −  
3 22h hk= −  

   For h k=  
     3 3 33 2z h h h∆ = − = −  

0z⇒ ∆ >   if  0h <    &   0z∆ <   if  0h >  
   Hence (0,0)  is a saddle point. 
 

v Question 
   Examine the function 

2 2( , )z f x y x y= =  
Solution 
   0xf =    22 0xy⇒ =  
   0yf =    22 0yx⇒ =  
   implies that (0,0)  is the critical point  
   22 0xxA f y= = =     at (0,0)  
   4 0xyB f xy= = − =     at (0,0)  

   22 0yyC f x= = =     at (0,0)  
   Since  2 4 0B AC− =   and also  0A C+ =  
   Therefore we need further consideration for the nature of point. 

( , ) (0,0)f f h k f∆ = −  
     2 2h k=  

          0f∆ >    for all  h  & k  
   Hence (0,0)  is the point where function has minimum value. 
 
 

…………………………………….. 
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v Lagrange’s Multiplier  
   (Maxima & Minima for Function with Side Condition) 
   A problem of considerable importance for application is that of maximizing and 
minimizing of function (optimization) of several variables where the variables are 
related by one or more equations, which are turned as side condition. e.g. the 
problem of finding the radius of largest sphere inscribable in the ellipsoid 

2 2 22 3 6x y z+ + =  is equivalent to minimizing the function 2 2 2w x y z= + +  with the 
side condition 2 2 22 6x y z+ + = . 
   To handle such problem, we can, if possible, eliminate some of the variables by 
using the side conditions and reduce the problem to an ordinary maximum and 
minimum problem such as that consider previously. 
This procedure is not always feasible and following procedure often is more 
convenient which treat the variable in more symmetrical manner, so that various 
simplifications may be possible. 
   Consider the problem of finding the extreme values of the function 1 2( , ,...., )nf x x x  
when the variable are restricted by a certain number of side conditions say 

1 1 2( , ,...., ) 0ng x x x =  
2 1 2( , ,...., ) 0ng x x x =  

……………………   
………………….... 
…………………… 

1 2( , ,...., ) 0m ng x x x =  
   We then form the linear combination   
       1 1 1 1 1 2 2 2( ,..., ) ( ,..., ) ( ,..., ) ( ,..., )n n n nx x f x x g x x g x xϕ λ λ= + + + 1....... ( ,..., )m m ng x xλ+  
   where 1 2, ,...., mλ λ λ  are m  constants. 
   We then differentiate ϕ   w.r.t. each coordinate and consider the following system 
of n m+  equations. 

1 2( , ,...., ) 0r nD x x xϕ =    ,    1,2,....,r n=  
1 2( , ,...., ) 0k ng x x x =       ,    1,2,....,k m=  

   Lagrange discovered that if the point 1 2( , ,...., )nx x x  is a solution of the extreme 
problem then it will also satisfy the system of n m+  equation. 
   In practise, we attempt to solve this system for n m+  unknowns, which are 

1 2, ,...., mλ λ λ  & 1 2, ,...., nx x x  
   The point so obtain must then be tested to determine whether they yield a 
maximum, a minimum or neither. 
   The numbers 1 2, ,...., mλ λ λ , which are introduced only to help to solve the system 
for 1 2, ,...., nx x x  are known as Lagrange’s multiplier. One multiplier is introduced for 
each side condition. 
 

v Question 
   Find the critical points of  w xyz= , subject to condition 2 2 2 1x y z+ + = . 
Solution 
   We form the function 

2 2 2( 1)xyz x y zϕ λ= + + + −  
   then  

2 0yz x
x
ϕ

λ
∂

= + =
∂

 

2 0xz y
y
ϕ

λ
∂

= + =
∂
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   2 0xy z
z
ϕ

λ
∂

= + =
∂

 

  &     2 2 2 1 0x y z+ + − =  
   Multiplying the first three equations by ,x y  & z  respectively, adding and using 
the fourth equation, we find 

3
2

x y z
λ = −  

using this relation we find that ( )0,0, 1± , ( )0, 1,0± , ( )1,0,0±  and 
1 1 1, ,
3 3 3

 ± ± ± 
 

 are the critical points. 
 

v Question  
   Find the critical points of w xyz= , where 2 2 1x y+ =  & 0x z− = . Also test for 
maxima and minima. 
Solution 
   Consider ( ) ( )2 2

1 21F xyz x y x zλ λ= + + + + −  
   For the critical points, we have 

1 22 0xF yz xλ λ= + + =  ……….. (i) 
12 0yF xz yλ= + =  ………...….. (ii) 

2 0zF xy λ= − =  …………...….. (iii) 
  and          2 1x y2+ =  ………...….…. (iv) 

       0x z− =  …………………. (v) 

   From ( )iii , 2 xyλ =   &   from ( )ii  1 2
xz
y

λ = −  

   Use these values in equation ( )i  to have 
2

0x zyz xy
y

− + =  

    2 2 2 0y z x z xy⇒ − + =  
   ∵   x z=   from ( )v  
   2 3 2 0y x x xy∴ − + =     2 32 0xy x⇒ − =  
   But 2 21y x= − , from ( )iv  

   ( )2 32 1 0x x x∴ − − =     32 3 0x x⇒ − =     0x⇒ =  , 2
3

±  

   This implies the critical points are 2 1 2, ,
3 33

 
± ± 

 
, 2 1 2, ,

3 33
 

± − ± 
 

, 

( )0,1,0 , ( )0, 1,0−  

12xxA F λ= =  
xyB F z= =  

12yyC F λ= =  
2 2 2

14B AC z λ− = −  

                         
2 2

2
24

4
x zz

y
= −  

( )2 2 2

2

z y x
y

−
=  

   (i)  At 2 1 2, ,
3 33

 
± ± 

 
, we have 
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2

2 1 2
3 3 3

1
3

B AC

 − 
 − = 0<  

    &  12xxA F λ= =
xz
y

= −
2

3
1

3

 
 = −  
 

0<  

   ⇒ function has maximum value at 2 1 2, ,
3 33

 
± ± 

 
 

   Similarly, we can show that F  is also maximum at (0, 1,0)−  and is minimum at 
remaining points. (Check yourself) 
 

v Question 
   Find the point of the curve 

2 2 2 1x xy y z− + − =  ,  2 2 1x y+ =  
   which is nearest to the origin. 
Solution 
   Let a point on a given curve be ( ), ,x y z  
   Implies that we are to minimize the function  

2 2 2 2f d x y z= = + +  
   subject to the conditions 

2 2 2 1x xy y z− + − =  
2 2 1x y+ =  

   Consider 
( )2 2 2 2 2 2

1 1F x y z x xy y zλ= + + + − + − − ( )2 2
2 1x yλ+ + −  

   For the critical points 
( )1 2 12 1 0xF x yλ λ λ= + + − =  ……….. ( )i  
( )1 2 12 1 0yF y xλ λ λ= + + − =  ……….. ( )ii  
( )12 1 0zF z λ= − =  ………… ( )iii  

       2 2 2 1x xy y z− + − =  ………… ( )iv  
       2 2 1x y+ =  ………….. ( )v  

   From equation ( )iii , we have    
0z =   and  1 1λ =  

   Put 0z =  in equation ( )iv , gives 
2 2 1 0x xy y− + − =  

    2 2 1xy x y⇒ = + −  
    0xy⇒ =    by  ( )v  
    0x⇒ =   or  0y =   or  both are zero. 

   0z = , 0x =  in ( )v  gives,  2 1y =     1y⇒ = ±  
   ( )0, 1,0⇒ ±  are the critical points. 
   0z = , 0y =     1x⇒ = ±    ( )1,0,0⇒ ±  are the critical points. 
   We can not take 0x = , 0y =  at the same time, because it gives ( )0,0,0  which is 
origin itself as a critical point. 
   2 1d =∵  at all these four points. 
   ∴ these are the required point at which function is nearest to origin. 
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v Question 
   Find the point on the curve 

2 2 2 1x y z+ + =  
   which is farthest from the point ( )1,2,3  
Solution 
   We are the maximize the function 

( ) ( ) ( )2 2 21 2 3f x y z= − + − + −   
   subject to the condition 

2 2 2 1x y z+ + =  
   Let  

( ) ( ) ( ) ( )2 2 2 2 2 21 2 3 1F x y z x y zλ= − + − + − + + + −  
   For the critical points, we have 

1 0x xλ− + =  …………. ( )i  
2 0y yλ− + =  …..…..… ( )ii  
3 0z zλ− + =  ………… ( )iii  

   &    2 2 2 1x y z+ + =  ……….. ( )iv  
1

1
x

λ
⇒ =

+
 ,  2

1
y

λ
=

+
 ,  1

3
z

λ
=

+
 

   Putting in ( )iv  

   ( )
21 1 4 9 1

1 λ
  + + = + 

   ( )21 14λ⇒ + =    1 14λ⇒ = − ±  

1
14

x⇒ =
±

 ,  2
14

y =
±

 ,  3
14

z =
±

 

   ⇒  critical points are  
1 2 3, ,
14 14 14

 ± ± ± 
 

 

   Its clear that the required point which is farthest from the point (1,2,3)  is 
1 2 3, ,
14 14 14

 − − − 
 

 

 
……………………………………… 
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v Directional Derivative 
   i) Let :f V → ¡ , where nV ⊂ ¡ , is nhood of na ∈¡ . Then the directional 
derivative D fβ  at a  in the direction of nβ ∈¡ , is defined by the limit, if it exists, 

( )
0

( )
( ) lim

h

f a h f a
D f a

hβ

β
→

+ −
=   

   ii) The directional derivative of ( )1 2, ,..., ,...,i nf x x x x  at ( )1 2, ,..., ,...,i na a a a a=  in 
the direction of the unit vector ( )0,0,...,1,0,0,...,0  is called partial derivative of f  at 
a   w.r.t. the ith component ix  and is denoted by 

( )iD f a    or   ( )f a
x

∂
∂

   or   ( )
ixf a  

    where ( ) ( )1 2 1 2

0

, ,..., ,..., , ,..., ,...,
( ) lim i n i n

i h

f a a a h a f a a a a
D f a

h→

+ −
=  

 

v Example 
   Let 2 2( , )f x y x y x y= + + + , then f  has a directional derivative in every direction 
and at every point in 2¡ . 
   Since, if ( ) 2,a bβ = ∈¡ , we have 

   ( ) ( ) ( ) ( ) ( )2 2 2 2

0
, lim

h

x ha y hb x ha y hb x y x y
D f x y

hβ →

+ + + + + + + − − − −
=  

( )2 2

0
lim 2 2
h

ax by ha hb a b
→

= + + + + +  

( )2 ax by a b= + + +  
 

v Exercise 

   Let   
( )

( )

2 2
4 4

4 4
; 0

( , )
; , (0,0)

0

xy x y
x y

f x y x y x y

 −
+ ≠=  + ≠



 

   Note that if ( ) 2,a bβ = ∈¡ ,  

( )( ) ( ) ( )
( ) ( )

2 2

4 40

0 0 0 0
(0,0) lim

0 0h

ah bh ah bh
D f

h ah bh
β →

 + + + − + =
 + + + 

 

      
( )

( )
2 2

4 40
lim
h

ab a b

h a b→

−
=

+
 

   This limit obviously exists only if ( )1,0β =  or ( )0,1 . Hence the directional 
derivatives of f  at ( )0,0  that exists are the partial derivatives xf  and yf  given by 

0xf = , 0yf = . 
 

v Example 
   Let  

   
( ) ( )
( ) ( )

2

4 4 ; , 0,0
( , )

; , 0,0
0

xy x y
f x y x y

x y


== + ≠



 

   It is discontinuous at ( )0,0 . To see it, note that 

( )
( , ) (0,0)

lim ,
x y

f x y
→

  is zero along  0y =  and is  1
2

 along  2y x= . 
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   However, if  ( ),a bβ = , then 

( ) ( )( )
( ) ( )

2

2 40

0 0
0,0 lim

0 0h

ah bh
f

h ah bh
β →

+ +
=

 + + + 

 

   
2 2

2 2 4 40
lim
h

ah b h
h a h b h→

⋅
=

 + 
  

2

2 2 40
lim
h

ab
a h b→

=
+

 

   
2 , 0

, 00

b aa
a

 ≠=  =
 

   Hence the directional derivative of f  at ( )0,0  exists in every direction. 
 

v Question 
   Let  ( , )z f x y=  ,  2 2x u v= − ,  2y uv= . Then show that 

( )
22 2 2

2 2

1
4

z z z z
x y u vu v

  ∂ ∂ ∂ ∂      + = +       ∂ ∂ ∂ ∂+         
 

Solution 
   We have 

2x u
u

∂
=

∂
  ,    2x v

v
∂

= −
∂

   ,    2y v
u

∂
=

∂
   ,   2y v

v
∂

=
∂

 

   Also 

1 2 2u vu v
x x

∂ ∂
= −

∂ ∂
    ,    0 2 2u vu v

y y
∂ ∂

= −
∂ ∂

 

   and   0 2 2u vv u
x x

∂ ∂
= +

∂ ∂
   ,     1 2 2u vv u

y y
∂ ∂

= +
∂ ∂

 

   Solving these four equations for  u
x

∂
∂

, v
x

∂
∂

, u
y

∂
∂

 & v
y

∂
∂

, we get 

( )2 22
u u
x u v

∂
=

∂ +
   ,    

( )2 22
v v
x u v

∂ −
=

∂ +
 

( )2 22
u v
y u v

∂
=

∂ +
   ,    

( )2 22
v u
y u v

∂
=

∂ +
 

   And  
z z u z v
x u x v x

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

     
( )2 2

1
2

z zu v
u vu v

∂ ∂ = ⋅ − ⋅ ∂ ∂+  
 

     &   z z u z v
y u y v y

∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 

     
( )2 2

1
2

z zv u
u vu v

∂ ∂ = ⋅ + ⋅ ∂ ∂+  
 

   Hence  

( )
22 2 2

2 2

1
4

z z z z
x y u vu v

  ∂ ∂ ∂ ∂      + = +       ∂ ∂ ∂ ∂+         
 

 

………………………………………………….. 
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v Question 
   Let 2:f →¡ ¡  be given by 

( ) ( )
( ) ( )

2 2 ; , 0,0
( , )

; , 0,0
0

xy
x y

x yf x y
x y

 ≠ +=  =

 

   Show that xf , yf  exist at ( )0,0  but f  is discontinuous at ( )0,0 . 
Solution  

( ) ( )( )
( ) ( )2 20

0,0 lim
h

ah bh
f

h ah bh
β →

=
 + 

  where ( ),a bβ =  

   
( )2 20

lim
h

ab
h a b→

=
+

 

   Which exists only when  ( )1,0β =   or  ( )0,1 . 
   xf⇒  & yf  exist at ( )0,0  
   Now   

( ) 2 2( , ) (0,0) ( , ) (0,0)
lim , lim

x y x y

xyf x y
x y→ →

=
+

 

   Let  y mx=  , then 
2

2 2 2 2 2( , ) (0,0) 0
lim lim

x y x

xy mx
x y x m x→ →

=
+ +

 

                20
lim

1x

m
m→

=
+

 

   Which is different for different m . 
   ( ),f x y⇒  is discontinuous at ( )0,0 . 
 

v Question 
   Let 2:f →¡ ¡  be given by 

( ) ( )
( ) ( )

2

4 2 ; , 0,0
( , )

; , 0,0
0

x y x y
f x y x y

x y


≠= + =



 

   Show that xf , yf  exist at ( )0,0  but f  is discontinuous at ( )0,0 . 
Solution 

( ) ( )( )2 2

4 4 2 20
0,0 lim

h

a h bh
f

h a h b hβ →
=

 + 
 ,   ( ),a bβ =  

  
2

4 2 20
lim
h

a b
a h b→

=
+

 

  

2
, 0
, 0

0

a b
b b

 ≠=  =

 

   Now ( )
( , ) (0,0)

lim ,
x y

f x y
→

 is zero along 0x =  and is 1
2

 along 2y x=  

   ⇒    it is discontinuous at (0,0) . 
………………………………….. 
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v Question 
   Find the greatest volume of the box contained in the ellipsoid 2 2 23 2 18x y z+ + = , 
when each of its edges is parallel to one of the coordinate axes. 
Solution 
    V = volume of the box ( )( )( )12 2 2x y z= 8xyz=  
   We need to find maximum of V  subject to 2 2 23 2 18 0x y z+ + − =  
   Consider ( ) ( )2 2 2, , 8 3 2 18 0x y z xyz x y zϕ λ= + + + − =  
   Then  

  8 6 0x yz xϕ λ= + =  
  8 4 0y xz yϕ λ= + =  
  8 2 0z xy zϕ λ= + =  

24 3 0xyz xλ⇒ + =  
        22 0xyz yλ+ =  
        24 0xyz zλ+ =  

      ( )2 23 2 0x yλ⇒ − =  

      ( )2 23 0x zλ − =  
2 2

2 2
3 3
y zx⇒ = =  

   Substituting these values in  
      2 2 23 2 18 0x y z+ + − =  

   We get 
      2 2 23 3 3 18x x x+ + =     29 18x⇒ =  

2x⇒ =  ,  3y =   and  6z =   
   Which gives 

( ), , 8f x y z xyz= 48=  
 

…………………………………….. 
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v Definition 
   If : nf →¡ ¡  ,  na ∈¡  then  

    
1

( )( )
n

k k

f af a
x=

∂
∇ =

∂∑  
1 2

( ) ( ) ( )....
n

f a f a f a
x x x

∂ ∂ ∂
= + + +

∂ ∂ ∂
 

 

v Definition 
   Let :f G → ¡ , G  is an open set in n¡ . 
i)   f  is said to have a local maximum at a G∈ , if there is a nhood  ( )V aε  such that  
     ( ) ( )f x f a≤  x Vε∀ ∈ . 
ii)  f  is said to have a local minimum at a G∈ , if there is a nhood  ( )V aε  such that  
     ( ) ( )f x f a≥  x Vε∀ ∈ . 
 

v Theorem 
   Let  :f G → ¡ , G  is an open set in n¡ . If f  has a local extremum at a G∈ , then 

( ) 0f a∇ = . 
Proof 

   It is clear that  ( ) 0f a∇ =   iff   ( ) 0
i

a
x

∂
=

∂
 ,  1,2,3,....,i n=  

   Write   ( ) ( )1 2, ,...., ,....,i i nf x t f x x x t x+ = +  ( )f x=  
   If f  has a local maximum at a , then 

( ) ( ) 0i if a t f a
t

+ −
≤    if   0t >  

 ( ) ( )
0

lim 0i i

t

f a t f a
t→

+ −
⇒ ≤     if   0t >  

So that    ( ) 0
i

f a
x

∂
≤

∂
 

   Similarly,  

       ( ) ( )
0

lim 0i i

t

f a t f a
t→

+ −
≥     if    0t <  

So that ( ) 0
i

f a
x

∂
≥

∂
 

   Hence  ( ) 0
i

f a
x

∂
=

∂
  ,   1,2,3,....,i n=  

     ( ) 0f a⇒ ∇ =  
 

Note 
   There are situations when ( ) 0f a∇ =  but f  has no local maximum or minimum at 
a . If so and if the sign of ( ) ( )f x f a−  depends upon the direction of x  and a , f  is 
said to have a saddle point at a . 
 
 
 

={ END }= 
 
 



Maxima and Minima for Functions with side 
conditions. Lagrange’s Multiplier. 

  
Question 

Find the critical points of w xyz=  subject to the condition 
2 2 2 1x y z+ + = . 

Solution 
   We form the function  

2 2 2( 1)f g xyz x y zϕ λ λ= + = + + + −  
and obtain four equations 

2 0yz x
x
ϕ

λ
∂

= + =
∂

 

2 0xz y
y
ϕ

λ
∂

= + =
∂

 

2 0xy z
z
ϕ

λ
∂

= + =
∂

 

   &  2 2 2 1 0x y z+ + − =  
   Multiplying the first three equations by , ,x y z  respectively, adding 

and using in fourth equation we find  3
2
xyz

λ = − . 

   Using this relation we have  (0,0, 1)± , (0, 1,0)± , ( 1,0,0)± , and 
1 1 1, ,
3 3 3

 ± ± ± 
 

  as the critical points. 

 
Question  

Find the critical points of the function   2 224 8z x xy y= + +  
where 2 2 25x y+ = . Test for maxima & minima. 
Solution 

   2 2 2 2( , , ) 24 8 ( 25)F x y x xy y x yλ λ= + + + + −  
2 24 2 0xF x y xλ= + + =  ……….…… (i) 
24 16 2 0yF x y yλ= + + =  …………… (ii) 

   &          2 2 25 0x y+ − =  …………….….. (iii) 
 (i)  (1 ) 12 0x yλ⇒ + + =  ………..…. (iv) 
(ii) 12 (8 ) 0x yλ⇒ + + =  ………...…. (v) 

   Multiplying equation  (iv)  by  12,  (v)  by  (1 )λ+  and adding 

        
12(1 ) 144 0
12(1 ) (1 )(8 ) 0

144 (1 )(8 ) 0

x y
x y

y y

λ
λ λ λ

λ λ
− −

+ + =
+ + + + =

− + + =

 

        0y⇒ =    or    2 9 136 0λ λ+ − =  
        0y⇒ = ,   8, 17λ = −  

   From (ii),     0y =     0x⇒ =  
       (0,0)  does not satisfy (iii)   ∴  It is not a critical point. 

   8λ =    4
3
yx⇒ = −   form (iv) 

   Put this value of  x  in  (iii) 

Remarks 
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2

216 25
9
y y⇒ + =     3y⇒ = ±  

( 4,3)⇒ −    &  (4, 3)−   are the critical points. 

   Similarly when 17λ = − ,  we have  3
4
yx =   from (iv) 

   And putting the value of  x  in (iii)  we get  4y = ±  
        ( 3, 4)⇒ ± ±  are the other two critical points. 

2 2xxA F λ= = +  
24xyB F= =  
16 2yyC F λ= = +  

   When 8λ =  
2 16 18A = + =  ,    24B = ,    16 16 32C = + =  

    and so      2 576 576 0B AC− = − =  
2 2 2 2( , , ) 24 8 8( 25)F x y x xy y x yλ = + + + + −      when 8λ =  

    2 2( , ) 9 24 16 200F x y x xy y⇒ = + + −  
   At ( 4,3)−  

( 4 ,3 ) ( 4,3)F F h h F∆ = − + + − −  
      2 29( 4 ) 24( 4 )(3 ) 16(3 ) 200h h h h= − + + − + + + + −  

2 29( 4) 24( 4)( 3) 16(3) 200− − + − − − +  
      2 2 29(16 8 ) 24( 12) 16(9 6 )h h h h h h= − + + − − + + +  

144 288 144− + −  
      2 2 2144 72 9 24 24 288 144 96 26h h h h h h= − + + − − + + +  

144 288 144− + −  
      249 0h= ≥  

   ( 4,3)⇒ −  is the point of minimum value. 
Similarly  (4, 3)−   gives a point of minimum value. 
And when 17λ = − , ( 3, 4)± ±  are the point of maximum value. 
 
Question  

Find the critical points of  w x z= + , where  2 2 2 1x y z+ + = . 
Test for a maxima and minima. 
Solution 
   Consider the function 

2 2 2( , , ) ( 1)F x y z x z x y zλ= + + + + −  
   1 2xF xλ= + ,    2yF yλ= ,    1 2zF zλ= +  
For critical points, we have 

1 2 0xλ+ =  …………...… (i) 
2 0yλ =  ……………..…. (ii) 
1 2 0zλ+ =  …………….. (iii) 

    and  2 2 2 1x y z+ + =  ………… (iv) 

Solving these equations we have 1
2

λ = ±  

1
2

λ =      gives   1 1,0,
2 2

− − 
 
 

   as the critical point. 

 1
2

λ = −    gives   1 1,0,
2 2

 
 
 

   as the critical point. 
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 2xxA F λ= = ,    0xyB F= =  ,    2yyC F λ= =  

  i)   1
2

λ =     2A⇒ = ,   0B = ,   2C =  

   so    2 0 2 0B AC− = − <     and    0A >  

       1 1,0,
2 2

− − ⇒  
 

  is a point of relative minimum value. 

ii)    1
2

λ = −     2A⇒ = − ,  0B = ,  2C = −  

  so    2 0 2 0B AC− = − <     and   0A <  

       1 1,0,
2 2

 ⇒  
 

  is a point of relative maximum value. 

 
Question 

Find the critical points of   w xyz=   where  2 2 1x y+ =  & 
0x z− = .  Test for the maxima and minima. 

Solution 
   Consider    2 2

1 2( 1) ( )F xyz x y x zλ λ= + + − + −  
   For critical points 

1 22 0xF yz xλ λ= + + =  …………. (i) 
12 0yF xz yλ= + =  ………….….. (ii) 

2 0zF xy λ= − =  ……………….. (iii) 
     &         2 2 1x y+ =  …………..……. (iv) 

       0x z− =  …………….……. (v) 

   From (iii)   2 xyλ =   and from (ii)    1 2
xz
y

λ = −  

   Putting in (i), we get 
2

0x zyz xy
y

− + =  

   2 2 2 0y z x z xy⇒ − + =  
x z=    form (iv)    ∴ 2 3 2 0y x x xy− + =  

2 32 0xy x⇒ − =  
   But from (iv),   2 21y x= −      2 32 (1 ) 0x x x⇒ − − =  

  33 2 0x x⇒ − =  2(3 2) 0x x⇒ − =   20,
3

x⇒ = ±  

    ⇒  The critical points are 2 1 2, ,
3 33

 
± ± 

 
, 2 1 2, ,

3 33
 −

± ± 
 

, 

( )0,1,0  and (0, 1,0)− . 

12xxA F λ= = ,    xyB F z= = ,    12yyC F λ= =  
2 2 2

14B AC z λ− = −  

  From (ii)  
2 2

2
1 24

x z
y

λ =     
2 2 2 2 2

2 2
2 2

( )z x z y xB AC z
y y

−
⇒ − = − =  

i)    At   2 1 2, ,
3 33

 
± ± 

 
,   we have   ( )2

2 1 2
3 3 3

1
3

0B AC
−

− = <  
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      And    1

2
3

1
3

2 0xx
xzA F
y

λ
−

= = = − = <  

   ⇒  Function is maximum at 2 1 2, ,
3 33

 
± ± 

 
. 

   Similarly we can show that  w  is maximum at (0, 1,0)−  and 

minimum at 2 1 2, ,
3 33

 −
± ± 

 
 & (0,1,0) . 

 

Question 
Find the point to the curves  2 2 2 1x xy y z− + − = ,  2 2 1x y+ =  

nearest to the origin (0,0,0,) . 
Solution 
   Let ( , , )x y z  be a point on the curve. Then its distance from the 

origin is given by 2 2 2x y z+ +  
   We are to minimize 2 2 2 2f d x y z= = + +  
subject to the conditions 2 2 2 1x xy y z− + − =  ,  2 2 1x y+ =  
   Consider 

   ( ) ( )2 2 2 2 2 2 2 2
1 21 1F x y z x xy y z x yλ λ= + + + − + − − + + −  

   1 22 (2 ) 2xF x x y xλ λ= + − +  
   1 22 (2 ) 2yF y y x yλ λ= + − +  
   12 ( 2 )zF z zλ= + −  

   For critical points, we have 
( )1 2 12 1 0x yλ λ λ+ + − =  ………… (i) 

1 2 12 (1 ) 0y xλ λ λ+ + − =  ………….(ii) 
12 (1 ) 0z λ− =  …………………..... (iii) 

2 2 2 1 0x xy y z− + − − =  …………. (iv) 
2 2 1 0x y+ − =  ………………..….. (v) 

   From (iii),  we have  0z =   &  1 1λ = . 
   0z =  in (iv) gives   2 2 1 0x xy y− + − =    2 2 1xy x y⇒ = + −  
   But   2 2 1 0x y+ − =    0xy⇒ =  

0x⇒ =   or  0y =   or   both are zero. 
   We can not take 0x = ,  0y =   at a same time because it gives 
(0,0,0)  which is origin itself. 
   0, 0z x= =  in (v)  2 1y⇒ =    1y⇒ = ±  
                                  (0, 1,0)⇒ ±   are the critical points 
   &  0, 0z y= =   in (v)  2 1x⇒ =   1x⇒ = ±  

( )1,0,0⇒ ±  are the other critical points. 
      2 1f d= =  at these four points 
 ∴ These are the required points at which function is nearest to origin. 
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Question 
Find the shortest distance from the origin to the curve 

2 28 7 225x xy y+ + =  
Solution 
   We are to find the minimum value of  2 2 2f d x y= = +   

     subject to the condition 2 28 7 225x xy y+ + = . 
Consider      2 2 2 2( 8 7 225)F x y x xy yλ= + + + + −  

2 (2 8 )xF x x yλ= + +  
2 (8 14 )yF y x yλ= + +  

For critical points 
        ( 4 ) 0x x yλ+ + =  ……….……. (i) 
        (4 7 ) 0y x yλ+ + =  ………..…. (ii) 
        2 28 7 225 0x xy y+ + − =  …….. (iii) 

    (i)  ⇒  (1 ) 4 0x yλ λ+ + =    4
1

x
y

λ
λ

⇒ = −
+

 

   (ii)  ⇒  4 (1 7 ) 0x yλ λ+ + =    1 7
4

x
y

λ
λ

+
⇒ = −  

4 1 7
1 4

x
y

λ λ
λ λ

+
⇒ = − = −

+
      216 (1 )(1 7 )λ λ λ⇒ = + +  

2 216 1 7 7λ λ λ λ⇒ = + + +     29 8 1 0λ λ⇒ − − =   

( 1)(9 1) 0λ λ⇒ − + =           11,
9

λ⇒ = −  

1λ =   2x
y

⇒ = −  2x y⇒ = −  

Putting this value of x  in equation (iii) we have 
2 2( 2 ) 8( 2 ) 7 225y y y y− + − + =  

    2 2 24 16 7 225y y y⇒ − + =     25 225y⇒ − =  
which gives imaginary values of  y. 

1
9

λ = −    ( )1 49 9
81

9 9

4 1
1 2

x
y

−
⇒ = − = =

−
   2y x⇒ =   

Putting in (iii), we have 
2 28 (2 ) 7(2 ) 225x x x x+ + =  

   2 2 216 28 225x x x⇒ + + =  
   245 225x⇒ =   2 5x⇒ =  5x⇒ = ±  

5x =     2 5y⇒ =  
&       5x = −   2 5y⇒ = −  

 ∴ The critical points are ( )5,2 5  & ( )5, 2 5− − . 
2
( 5, 2 5)

25d
± ±

=  
 ⇒   Shortest distance  =  d = 5 
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Question 
Find a point ( , , )x y z  on the sphere 2 2 2 1x y z+ + =  which is 

farthest from the point (1,2,3) . 
Solution 
   We are to maximize 

2 2 2( , , ) ( 1) ( 2) ( 3)f x y z x y z= − + − + −   
subject to the condition  2 2 2 1x y z+ + =  

      Let  2 2 2 2 2 2( 1) ( 2) ( 3) ( 1)F x y z x y zλ= − + − + − + + + −  
  For critical points  

2( 1) 2 0xF x xλ= − + =  
2( 2) 2 0yF y yλ= − + =  
2( 3) 2 0zF z zλ= − + =    and  2 2 2 1x y z+ + =  

           1 0x xλ⇒ − + =  …………….. (i) 
       2 0y yλ− + =  …………… (ii) 
       3 0z zλ− + =  ……….…... (iii) 
       2 2 2 1x y z+ + =  ………….. (iv) 

1
1

x
λ

⇒ =
+

,    2
1

y
λ

=
+

 ,   3
1

z
λ

=
+

 

Putting in (iv)  
2 2 21 2 3 1

1 1 1λ λ λ
     + + =     + + +     

 

   214 (1 )λ⇒ = +  
   1 14λ⇒ + = ±     1 14λ⇒ = − ±  

   1
14

x⇒ =
±

,    2
14

y =
±

,   3
14

z =
±

 

 Clearly 1 2 3, ,
14 14 14
− − − 

 
 

 is the point which is farthest from (1,2,3) . 

 
Question  

Find the extreme values of  6 4 3z x y= − − ,  provided  x  &  y 
satisfy  2 2 1x y+ = . 
Solution 
   Define  ( )2 26 4 3 1F x y x yλ= − − + + −  
  For critical points, we have 

4 2 0xF xλ= − + =  …………. (i) 
3 2 0yF yλ= − + =  …………. (ii) 

and             2 2 1x y+ =  …..………. (iii) 

From (i) and (ii) we have   2x
λ

=  ,   3
2

y
λ

=  

Putting these values in (iii) we get    5
2

λ = ±  

   5
2

λ =     5
2

2 4
5

x⇒ = =     &   5
2

3 3
2 5

y = =
⋅
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5
2

λ = −     5
2

2 4
5

x⇒ = = −
−

     &   
( )5

2

3 3
2 5

y = = −
⋅ −

 

4 3,
5 5

 ⇒  
 

  &  4 3,
5 5

 − − 
 

  are the critical points. 

       2xxA F λ= = ,   0xyB F= = ,   2yyC F λ= =  

2 20 4B AC λ⇒ − = −
254 25 0

2
 = − ± = − < 
 

 

F⇒  is maximum or minimum at the critical points. 

Now at  4 3,
5 5

 
  

, we have  5 0A = >  

And at  4 3,
5 5

 − −  
, we have  5 0A = − <  

     ⇒  The function is min. at  4 3,
5 5

 
 
 

 and max. at  4 3,
5 5

 − − 
 

. 

 
Question  

Find the critical point of   2 2( , ) 2 2 2 3f x y x y xy x y= + + + + . 
Where  2 1x y− = . Test for maxima and minima.  
Solution 
   Define  2 2 22 2 2 3 ( 1)F x y xy x y x yλ= + + + + + − −  
For critical points, we have 

2 2 2 2 0xF x y xλ= + + + =  …..….. (i) 
4 2 3 0yF y x λ= + + − =  ………… (ii) 

     and       2 1 0x y− − =  ……….……… (iii) 

   From (i)    1x y
x

λ
− − −

=  

   From (ii)   2 4 3x yλ = + +  

    1 2 4 3x y x y
x

− − −
⇒ = + +  

    21 2 4 3x y x xy x⇒ − − − = + +  
    22 4 4 1 0x x xy y⇒ + + + + =  

   But from (iii)    2 1x y= +  
   2(1 ) 4 4 1 0y x xy y⇒ + + + + + =  
   4 4 3 3 0x xy y⇒ + + + =  
   4 (1 ) 3( 1) 0x y y⇒ + + + =  
   ( 1)(4 3) 0y x⇒ + + =  

     ⇒    Either  1y = −    or   3
4

x = −  

   If   1y = − ,   we get   2 0x =    from (iii) 
(0, 1)⇒ −  is a critical point and 1λ = −  in this case. 

   If  3
4

x = − ,  we get   9 1
16

y− =    i.e.  7
16

y = −  

  3 7,
4 16

 ⇒ − −  
 is the other critical point and 1

4
λ = −  in this. case. 
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   Now    2 2xxA F λ= = + ,    2xyB F= = ,    4yyC F= =  
2 4 4(2 2 ) 4 8B AC λ λ⇒ − = − + = − −  

   1λ = −     2 4 0B AC⇒ − = >     f⇒  is neither maximum nor 
minimum at (0,1) . 

   1
4

λ = −    2 14 8
4

B AC  ⇒ − = − − − 
 

4 2= − + 2 0= − <  

                and  1 12 2 2 2 2 0
4 2

A λ  = + = + − = − > 
 

 

3 7,
4 16

 ⇒ − − 
 

  is the point of minimum value. 

 
Question 

Find the critical points of  2 2z x y= +  when  3 3 6x y xy+ = , 
Also test for maxima and minima. 
Solution 
   Define 2 2 3 3( 6 )F x y x y xyλ= + + + −  
For critical points we have  

22 3 6 0xF x x yλ λ= + − =  …..……. (i) 
22 3 6 0yF y y xλ λ= + − =  ……….. (ii) 

and   3 3 6 0x y xy+ − =  …………… (iii) 

 from (i)    2

2
3 6

x
x y

λ
−

=
−

 

 from (ii)   2

2
3 6

y
y x

λ
−

=
−

 

2 2

2 2
3 6 3 6

x y
x y y x
− −

⇒ =
− −

 

2 2(3 6 ) (3 6 )x y x y x y⇒ − = −  
2 2( 2 ) ( 2 )x y x y x y⇒ − = −  

2 2 2 22 2xy x x y y⇒ − = −  
2 2 2 22 2 0x y xy x y⇒ − + − =  
( ) 2( )( ) 0xy x y x y x y⇒ − + − + =  

( ) (2 2 ) 0x y x y xy⇒ − + + =  
⇒   Either  0x y− =    or   2 2 0x y xy+ + =  

   If 0x y− =   then (iii) becomes   3 3 26 0x x x+ − =  
        3 22 6 0x x⇒ − =  2 ( 3) 0x x⇒ − =  

   0, 3x⇒ =  
   0, 0x y⇒ = =   &  3, 3x y= =  

(0,0)⇒  & (3,3)  are the critical points. 

At  (0,0),   2 2

2 2
3 6 3 6

x x
x y x x

λ
− −

= =
− −

  0x y x y− = ⇒ =   

2 2 1
3 6 3(0) 6 3x

− −
= = =

− −
 

And at (3,3) ,   2
3

λ = −  
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2 6xxA F xλ= = +  

6xyB F λ= = −  
  2 6yyC F yλ= = +  
   At (0,0) , we have   2A =  ,   2B = − ,   2C =  
   And      2 0B AC∴ − =  
 Consider   ( , ) (0,0)z z h h z∆ = − 2 2h h= + 22 0h= ≥  

(0,0)⇒  is the point of minimum value. 

  At (3,3) ,  we have   22 6 (3) 10
3

A  = + − = − 
 

 

    26 4
3

B  = − − = 
 

 

    22 6 (3) 10
3

C  = + − = − 
 

 

   and  2 16 100 0B AC∴ − = − <   and  10 0A = − <  
⇒  (3,3)  is a point of maximum value. 

 
Question 

Find the points in the plane 2 3 5x y z+ − =  nearest to the origin. 
Solution 
  We are to minimize 2 2 2 2f d x y z= = + +   

subject to 2 3 5 0x y z+ − − = . 
   Define  ( )2 2 2 2 3 5F x y z x y zλ= + + + + − −  

2 2 0xF x λ= + =  …………….... (i) 
2 3 0yF y λ= + =  ……………... (ii) 
2 0zF z λ= − =  ………………..(iii) 

and            2 3 5 0x y z+ − − =  …...….. (iv) 

x λ= −  ,   3
2

y λ−
=  ,   

2
z λ

=       from (i), (ii) & (iii) resp. 

   (iv) becomes   92 5 0
2 2
λ λ

λ− − − − =  

4 9 10λ λ λ⇒ + + = −  
10 5
14 7

λ⇒ = − = −  

5
7

x⇒ =  ,   15
14

y = ,   5
14

z = −  

5 15 5, ,
7 14 14

− ⇒   
  is the critical point. 

2xxA F= = ,   0xyB F= = ,   2yyC F= =  
2 0 4 0B AC− = − <     and    2 0A = >  

   F⇒  is relative minimum at 5 15 5, ,
7 14 14

− 
  

 so this is the required 

point. 
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 1 
Maxima and Minima for Functions of Two Variable 

 
Question  
   Test for maxima and minima 

(i)     2 21z x y= − −        (ii)    2 2z x y= +  
(iii)   z xy=          (iv)    3 23z x xy= −  
(v)     2 2z x y=         (vi)    24z y= −  

 
Solution 
   (i)  2 21z x y= − −  

2z x
x

∂
= −

∂
 ,      2z y

y
∂

= −
∂

 

   For critical points   0z z
x y

∂ ∂
= =

∂ ∂
 

0, 0x y⇒ = =   (0,0)⇒  is the critical point. 

   
2

2 2zA
x

∂
= = −

∂
,     

2

0zB
x y
∂

= =
∂ ∂

,    
2

2 2zC
y

∂
= = −

∂
 

   2 0 4 4 0B AC− = − = − <      and    2 2 4 0A C+ = − − = − <  
   ⇒   (0,0)  is the point of maximum value 
           and maximum value of z at ( )0,0  is 1. 
 

 (ii)    Do yourself as above 
 

 (iii)   z xy=  
z y
x

∂
=

∂
 ,     z x

y
∂

=
∂

 

   For critical points   0z z
x y

∂ ∂
= =

∂ ∂
     

     0y⇒ =   and  0x =     (0,0)⇒  is the critical point. 

    
2

2 0zA
x

∂
= =

∂
,     

2

1zB
x y
∂

= =
∂ ∂

,    
2

2 0zC
y

∂
= =

∂
 

   2 2(1) (0)(0) 1 0B AC− = − = >  
   Therefore (0,0)  is a saddle point. 
 

 (iv)    3 23z x xy= −  

       0z
x

∂
=

∂
    2 23 3 0x y⇒ − =     x y⇒ = −   &  x y=  

0z
y

∂
=

∂
    6 0xy⇒ − =          0xy⇒ =  

   ⇒   either  0x =   or  0y =  or  both are zero 
   (0,0)⇒   is the only critical point. 

   
2

2 6 0zA x
x

∂
= = =

∂
           at (0,0)  

   
2

6 0zB y
x y
∂

= = − =
∂ ∂

 at (0,0)  

   
2

2 6 0zC x
y

∂
= = − =

∂
 at (0,0)  
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   2 0B AC⇒ − =     and    0A C+ =  
so we need further consideration for the nature of point. 

 

(0 ,0 ) (0,0)z z h k z∆ = + + −  
     ( , ) (0,0)z h k z= −    
     ( , )z h k=  3 3h hk= −  

For h k=  we have  

         3 3 3 0 0
3 2

0 0
if h

z h h h
if h

> <
∆ = − = −

< >
 

   ⇒  (0,0)   is a saddle point. 
 

(v)   2 2( , )z f x y x y= =  
       0xf =   22 0xy⇒ = ,     0yf =    22 0x y⇒ =  
   (0,0)⇒  is the critical point. 
         22 0xxA f y= = =     at (0,0)  
         4 0xyB f xy= = =     at (0,0)  

         22 0yyC f x= = =     at (0,0)  

    2 0B AC⇒ − =     and    0A C+ =  
so we need further consideration  

0 0 0 0( , ) ( , )f f x h y h f x y∆ = + + −  
     2 2( , ) (0,0)f h k f h k= − =  

If h k= , we have  
4 0f h∆ = ≥    h∀  

Thus (0,0)  is the point of minimum value. 
 
Question 

Find the critical points of the following functions and test for 
maxima and minima. 

(a)    2 21z x y= − −  
(b)    2 22 3 3 7z x xy y x y= − − − +  
(c)    2 21z x y= + +  
(d)    2 25z x xy y= − −  
(e)    2 22z x xy y= − +  
(f)    3 2 33z x xy y= − +  

Solution 

   (a)   2 21z x y= − −  

       ( ) ( )
1

2 2 21 1 2
2

z x y x
x

−∂
= − − −

∂ 2 2
0

1
x

x y
−

= =
− −

    0x⇒ =  

       
2 2

0
1

z y
y x y

∂ −
= =

∂ − −
    0y⇒ =  

   (0,0)⇒  is the only critical point. 

      

2 2

2 22

2 2 2

1
1

1

xx y x
x yz

x x y

  − − − − − ⋅    − −∂   =
∂ − −
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( )

2 2 2

3
2 2 2

1

1

x y x

x y

 − − − + =
− −

   
( )

2

3
2 2 2

1

1

y

x y

− +
=

− −
 

   
2

2 1zA
x

∂
⇒ = = −

∂
        at (0,0)  

   
2

2 21
z z y

x y x y x x y

  ∂ ∂ ∂ ∂ −
= =     ∂ ∂ ∂ ∂ ∂ − −   

 

  ( ) ( )
3

2 2 21 1 2
2

y x y x
− = − ⋅ − − − − 

 
  

( )
3

2 2 21

xy

x y

−
=

− −
 

   
2

0zB
x y
∂

⇒ = =
∂ ∂

      at (0,0)  

   
( )

1
2 2 2

2 22

2 2 2

1 (1)
1

1

yx y y
x yz

y x y

  − − − − −    − −∂   =
∂ − −

  
( )

2

3
2 2 2

1

1

x

x y

− +
=

− −
 

   
2

2 1zC
y

∂
⇒ = = −

∂
     at (0,0)  

 

   2 0 ( 1)( 1) 1 0B AC⇒ − = − − − = − <    and  1 1 2 0A C+ = − − = − <  
   z⇒   has a relative maxima at (0,0) . 
 

(b)    2 22 3 3 7z x xy y x y= − − − +  

        4 3z x y
x

∂
= − −

∂
,        6 7z x y

y
∂

= − − +
∂

 

For critical points   0z
x

∂
=

∂
,   0z

y
∂

=
∂

 

     4 3 0x y⇒ − − =  …..………… (i) 
    &    6 7 0x y+ − =  …………… (ii) 
Multiplying equation (i) by 6 and adding in (ii) 

24 6 18 0
6 7 0

25 25 0

x y
x y

x

− − =
+ − =

− =

 

    1x⇒ =     1y⇒ =  
      (1,1)⇒  is the critical point 

           
2

2 4zA
x

∂
= =

∂
,   

2

1zB
x y
∂

= = −
∂ ∂

,  
2

2 6zC
y

∂
= = −

∂
 

           2 2( 1) ( 4)( 6) 25 0B AC− = − − − − = >  
   ⇒   There is a saddle point at (1,1) . 
 

(c)    2 21z x y= + +  

        2z x
x

∂
=

∂
,      2z y

y
∂

=
∂

 

  For critical points  0z
x

∂
=

∂
,   0z

y
∂

=
∂

   (0,0)⇒  is the critical point. 
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2

2 2zA
x

∂
= =

∂
,    

2

0zB
x y
∂

= =
∂ ∂

,    
2

2 2zC
y

∂
= =

∂
 

   2 2(0) (2)(2) 4 0B AC⇒ − = − = − <    and   2 2 4 0A C+ = + = >  
   ⇒  The function has a relative minima at (0,0) . 
 

(d)  2 25z x xy y= − −  

         2 5z x y
x

∂
= −

∂
,       5 2z x y

y
∂

= − −
∂

 

         0z
x

∂
=

∂
   2 5 0x y⇒ − =  …..……. (i) 

         0z
y

∂
=

∂
   5 2 0x y⇒ − − =  ……… (ii) 

  (i) and (ii) gives (0,0)  is the critical point. 

            
2

2 2zA
x

∂
= =

∂
 ,    

2

5zB
x y
∂

= = −
∂ ∂

,    
2

2 2zC
y

∂
= = −

∂
 

     2 2( 5) (2)( 2) 25 4 29 0B AC⇒ − = − − − = + = >  
     ⇒   There is a saddle point at  (0,0) . 
 

(e)   2 22z x xy y= − +  

           2 2z x y
x

∂
= −

∂
,        2 2z y x

y
∂

= −
∂

 

           0z
x

∂
=

∂
,  0z

y
∂

=
∂

     0x y⇒ − =    x y⇒ =  

    ⇒  Every point on the line y x=  is a critical point. 

        
2

2 2zA
x

∂
= =

∂
,      

2

2zB
x y
∂

= = −
∂ ∂

,      
2

2 2zC
y

∂
= =

∂
 

 2 2( 2) (2)(2) 4 4 0B AC⇒ − = − − = − =  
 Consider       ( , ) ( , )z z x h y k z x y∆ = + + −  
 x y=    ( , ) ( , )z z x h x k z x x∴ ∆ = + + −  

       2 2( ) 2( )( ) ( )x h x h x k x k= + − + + + +  

       [ ]2( ) ( ) 0x h x k= + − + ≥  
     ⇒  Each point on the line y x=   gives a relative minimum. 
 

(f)    3 2 33z x xy y= − +  

          2 23 3z x y
x

∂
= −

∂
,       26 3z xy y

y
∂

= − +
∂

 

         0z
x

∂
=

∂
    2 23 3 0x y⇒ − =  …………... (i) 

         0z
y

∂
=

∂
    26 3 0xy y⇒ − + =  ....……… (ii) 

From (i) and (ii), we have 
23 6 0x xy− =     ( 2 ) 0x x y⇒ − =    0, 2x x y⇒ = =  

Now 0x =   0y⇒ =  
And 2x y=   2 2(2 ) 0y y⇒ − =   0y⇒ =  
Hence (0,0) is the only critical point. 
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2

2 6 0zA x
x

∂
= = =

∂
       at (0,0)  

         
2

6 0zB y
x y
∂

= = − =
∂ ∂

   at (0,0)  

          
2

2 6 6 0zC x y
y

∂
= = − + =

∂
     at (0,0)  

   2 0B AC⇒ − =  
Consider   ( , ) (0,0)z z h k z∆ = −  

  3 2 33h hk k= − +   3 3 33h h h= − +     when h k=  

  3 0 0
0 0

when h
h

when h
< >

= −
> <

 

⇒   There is a saddle point at (0,0)  
 

Note : (i) If for a point 0A B C= = =  and 0z∆ ≥ , then  z  is minimum 
at that point and if 0z∆ ≤ , then  z  is maximum at that point. 

(ii) If A, B, C are not zero and 2 0B AC− =  then  z  is neither 
maximum nor minimum.   
 
Question  

Find the critical points of the following functions and test for 
maxima and minima. 

(a)    3 2 32z x xy y= − +  
(b)    3 3 3 12 20z x y x y= + − − +  
(c)    3 3 63( ) 12z x y x y xy= + − + +  
(d)    ( )z xy a x y= − −  
(e)    2 2 3 32 25z x xy y x y= − + + − +  
(f)    2 2 2 25 8 5z x y x xy y= − − −  
(g)    2 4 42( )z x y x y= − − −  
(h)    3 4 42( ) ( )z x y x y= − − −  
(i)    2 35z x xy y= − −  

Solution 
 (a)  3 2 32z x xy y= − +  

2 23 2z x y
x

∂
= −

∂
,       24 3z xy y

y
∂

= − +
∂

 

0z
x

∂
=

∂
    2 23 2 0x y⇒ − =  …….…….... (i) 

0z
y

∂
=

∂
    24 3 0xy y⇒ − + =  …………. (ii) 

Adding (i) and (ii), we get  
2 23 4 0x xy y− + =     2 23 3 0x xy xy y⇒ − − + =  

    3 ( ) ( ) 0x x y y x y⇒ − − − =    ( )(3 ) 0x y x y⇒ − − =  
If  0x y− = ,  then  x y=  in (i) gives  

2 23 2 0x x− =    0x⇒ =    0y⇒ = . 
And if  3 0x y− = ,  then  3y x=  in (i) gives 

2 23 2(3 ) 0x x− =     0x⇒ =    0y⇒ =  
   (0,0)⇒  is the only critical point. 
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2

2 6 0zA x
x

∂
= = =

∂
             at (0,0)  

     
2

4 0zB y
x y
∂

= = − =
∂ ∂

        at (0,0)  

      
2

2 6 4 0zC y x
y

∂
= = − =

∂
    at (0,0)  

  0A B C⇒ = = =   at (0,0)  and hence  2 0B AC− =  
Now consider    ( , ) (0,0)z z h k z∆ = −  

           3 2 32h hk k= − +  
 3 3 32h h h= − + 0=        when h k=  

   ⇒  The nature of the point is undetermined. 
 

(b)   3 3 3 12 20z x y x y= + − − +  

            23 3z x
x

∂
= −

∂
 ,      23 12z y

y
∂

= −
∂

 

         0z
x

∂
=

∂
    2 1 0x⇒ − =  

         0z
y

∂
=

∂
   2 4 0y⇒ − =  

   1x⇒ = ± ,  2y = ± ,  and the critical points are  
(1,2) , (1, 2)− , ( 1,2)− , ( 1, 2)− −  

       
2

2 6zA x
x

∂
= =

∂
,    

2

0zB
x y
∂

= =
∂ ∂

,    
2

2 6zC y
y

∂
= =

∂
 

    2 36B AC xy⇒ − = −  
          2 36(1)(2) 72 0B AC− = − = − <            at (1,2)  
          2 36(1)( 2) 72 0B AC− = − − = >            at (1, 2)−  
          2 36( 1)(2) 72 0B AC− = − − = >            at ( 1,2)−  

2 36( 1)( 2) 72 0B AC− = − − − = − <       at ( 1, 2)− −  
   ⇒  There is a saddle point at (1, 2)−  and ( 1,2)− . 
    2 0B AC− <    while  6 0A = >   at (1,2)  
                               and 6 0A = − <   at ( 1, 2)− −  

z⇒   has relative minima at (1,2)   &  relative maxima at ( 1, 2)− − . 
 

(c)     3 3 63( ) 12z x y x y xy= + − + +  
23 63 12z x y

x
∂

= − +
∂

,      23 63 12z y x
y

∂
= − +

∂
 

     For critical points   0z
x

∂
=

∂
,  0z

y
∂

=
∂

. 

⇒  23 12 63 0x y+ − =  ……………… (i) 
&   23 12 63 0y x+ − =  …….……….. (ii) 

   Subtracting  (ii)  from  (i) ,  we get 
2 23 3 12 12 0x y y x− + − =  

   2 2 4( ) 0x y y x⇒ − + − =  
   ( ) ( ) 4( ) 0x y x y x y⇒ − + − − =  
   ( ) ( 4) 0x y x y⇒ − + − =  
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   If  0x y− =   then (i)  gives   23 12 63 0x x+ − =  

2 4 21 0x x⇒ + − =  
( 7)( 3) 0x x⇒ + − =     7, 3x⇒ = −  

⇒   The critical points are  ( 7, 7)− −  & (3,3) .  
   If 4 0x y+ − =   then  4x y= −  
   Put this value of  x  in (ii) ,  we have 

       23 12(4 ) 63 0y y+ − − =  
2 4(4 ) 21 0y y⇒ + − − =  
2 4 5 0y y⇒ − − =   

( 5)( 1) 0y y⇒ − + =     5, 1y⇒ = −  
      5y =   1x⇒ = −     &   1y = −   5x⇒ =  
     ⇒  ( 1,5)−  and (5, 1)−  are the other two critical points. 

2

2 6zA x
x

∂
= =

∂
,    

2

12zB
x y
∂

= =
∂ ∂

,    
2

2 6zC y
y

∂
= =

∂
 

   2 2(12) 36 144 36B AC xy xy⇒ − = − = −  
    At ( 7, 7)− − , we have  

    2 144 36( 7)( 7) 0B AC− = − − − <     and   0A <  
( 7,7)⇒ −   is a point of relative maximum value. 

    At (3,3) , we have 
   2 144 36(3)(3) 144 324 0B AC− = − = − <   and  0A > . 

(3,3)⇒   is a point of relative minimum value. 
    At ( 1,5)− , we have  

   2 144 36( 1)(5) 0B AC− = − − >  
( 1,5)⇒ −  is a saddle point. 

   At ( 5,1)− , we have  
   2 144 ( 5)(1) 0B AC− = − − >  

( 5,1)⇒ −   is also a saddle point. 
 

(d)     ( )z xy a x y= − −  2 2axy x y xy= − −  
22z ay xy y

x
∂

= − −
∂

 

2 2z ax x xy
y

∂
= − −

∂
 

   0z
x

∂
=

∂
   22 0ay xy y⇒ − − =  ………………. (i) 

   0z
y

∂
=

∂
   2 2 0ax x xy⇒ − − =  ……………… (ii) 

Subtracting (i) and (ii) 
2

2

2 2

2 0
2 0

0

ay xy y
ax xy x

ay ax y x
− + +

− − =

− − =

− − + =

 

  2 2( ) ( ) 0x y a x y⇒ − − − =  
  ( ) ( ) ( ) 0x y x y a x y⇒ − + − − =  
  ( ) ( ) 0x y x y a⇒ − + − =  
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   If 0x y− =   x y⇒ =   then  (i)  give 
   2 22 0ax x x− − =     23 0ax x⇒ − =  

   ( 3 ) 0x a x⇒ − =   0 , 3
ax⇒ =  

(0,0)⇒   &  ( ),3 3
a a   are the critical points. 

   If 0x y a+ − =   then  y a x= −  and  (i) gives 
2( ) 2 ( ) ( ) 0a a x x a x a x− − − − − =  

    2 2 2 22 2 2 0a ax ax x a x ax⇒ − − + − − + =  
   2 0x ax⇒ − =  ( ) 0x x a⇒ − =   0,x a⇒ =  

    (0, )a⇒  & ( ,0)a  are the other two critical points. 

     
2

2 2zA y
x

∂
= = −

∂
,    

2

2 2zB a x y
x y
∂

= = − −
∂ ∂

,    
2

2zC x
x y
∂

= = −
∂ ∂

 

    2 2( 2 2 ) 4B AC a x y xy⇒ − = − − −  
   At (0,0) , we have 2 2 0B AC a− = >  (0,0)⇒  is a saddle point. 

   At ( ),3 3
a a , we have  

  ( ) ( )( )2
2 2 2 43 3 3 3

a a a aB AC a− = − − −  

    
2 24 0

9 9
a a

= − <     and   0A <   

     ,
3 3
a a ⇒  

 
  is a point of maximum value. 

   At (0, )a , we have  2 2 2( 2 ) 4(0)( ) 0B AC a a a a− = − − = >  
(0, )a⇒  is a saddle point. 

   At ( ,0)a , we have  2 2 2( 2 ) 4( )(0) 0B AC a a a a− = − − = >  
( ,0)a⇒  is also a saddle point. 

 
(e)      2 2 3 32 25z x xy y x y= − + + − +  

22 2 3z x y x
x

∂
= − +

∂
 

22 2 3z x y y
y

∂
= − + −

∂
 

    0z
x

∂
=

∂
  23 2 2 0x x y⇒ + − =  ……………. (i) 

    0z
y

∂
=

∂
 23 2 2 0y x y⇒ + − =  ………….…(ii) 

Subtracting (i) and (ii), we have 
        2 23 3 0x y− =   
   3( )( ) 0x y x y⇒ − + =  

        0x y− =  x y⇒ = , using in (i)  we have  
     23 2 2 0x x x+ − =    0x⇒ =  

And  0x y+ =  x y⇒ = − , using in (i) we have  
     23 2 2 0x x x+ + =  

23 4 0x x⇒ + =   (3 4) 0x x⇒ + =   
40, 3x x⇒ = = −  
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0 0x y= ⇒ =   and  4 4
3 3

x y= − ⇒ =  

⇒  The critical points are (0,0)  & 4 4,
3 3

 − 
 

 

2

2 2 6zA x
x

∂
= = +

∂
 

2

2zB
x y
∂

= = −
∂ ∂

 

2

2 2 6zC y
y

∂
= = −

∂
 

        2 4 (2 6 )(2 6 )B AC x y− = − + −  
   At (0,0) ,  we have 2 4 4 0B AC− = − =  ⇒  Nature undetermined 

  At 4 4,
3 3

 −  
,  we have  

2 4 (2 8)(2 8) 4 ( 6)( 6) 0B AC− = − − − = − − − <    and   0A <   

∴  Relative maximum at  4 4,
3 3

 − 
 

. 

 

(f)   2 2 2 25 8 5z x y x xy y= − − −  
22 10 8z xy x y

x
∂

= − −
∂

 

22 10 8z x y y x
y

∂
= − −

∂
 

For critical points, we have  
2 5 4 0xy x y− − =  …………. (i) 

2 5 4 0x y y x− − =  …………. (ii) 
Adding (i) and (ii), we have 

2 2 9 9 0xy x y x y+ − − =  
   ( ) 9( ) 0xy y x x y⇒ + − + =  
   ( ) ( 9) 0x y xy⇒ + − =  

   0x y+ =   y x⇒ = −   in (i) gives 
3 5 4 0x x x− + =  

    3 0x x⇒ − =    ( 1)( 1) 0x x x⇒ − + =  
    0, 1, 1x⇒ = −  

        0x =     0y⇒ =  
        1x =     1y⇒ = −  
        1x = −   1y⇒ =  
  (0,0), (1, 1), ( 1,1)⇒ − −   are the critical points. 

   If  9 0xy − = ,  then  9y
x

=   in (i) gives  2 9 0x − =  3x⇒ = ±  

       3x =  3y⇒ =   and  3x = −  3y⇒ = −  
   (3,3)⇒   &  ( 3, 3)− −  are also the critical points. 

     
2

2
2 2 10zA y

x
∂

= = −
∂

,  
2

4 8zB xy
x y
∂

= = −
∂ ∂

 ,  
2

2
2 2 10zC x

y
∂

= = −
∂

 

     2 2 2 2(4 8) (2 10)(2 10)B AC xy y x− = − − − −  

Remarks 
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   At (0,0) , we have  

2 64 ( 10)( 10) 0B AC− = − − − <    and   10 0A = − <  
⇒  (0,0)  is the point of maximum value. 

   At (1, 1)− , we have 
2 2( 4 8) (2 10)(2 10) 144 64 0B AC− = − − − − − = − >  

(1, 1)⇒ −  is a saddle point. 
   At ( 1,1)− , we have 

2 2( 4 8) (2 10)(2 10) 144 64 0B AC− = − − − − − = − >  
( 1,1)⇒ −  is a saddle point. 

   At (3,3) , we have  
2 2 2(36 8) (18 10)(18 10) (24) 64 0B AC− = − − − − = − >  

(3,3)⇒  is a saddle point. 
   At ( 3, 3)− − , we have 

2 2(36 8) (8)(8) 0B AC− = − − >  
( 3, 3)⇒ − −  is again a saddle point. 

 

(g)    2 4 42( )z x y x y= − − −  
34( ) 4z x y x

x
∂

= − −
∂

 

34( ) 4z x y y
y

∂
= − − −

∂
 

For critical points 

    0z
x

∂
=

∂
  3 0x y x⇒ − − =  ……………. (i) 

   0z
y

∂
=

∂
  3 0x y y⇒ − + − =  ………..… (ii) 

Addition of  (i)  and  (ii)  gives 
3 3 0x y+ =   

   2 2( )( ) 0x y x xy y⇒ + − + =  
    0x y⇒ + =    or   2 2 0x xy y− + =   which gives imaginary values. 
   0x y+ =   y x⇒ = −   in (i)  gives  

3 0x x x+ − =  32 0x x⇒ − =  
      2(2 ) 0x x⇒ − =   0, 2x⇒ = ±  

   0x =     0y⇒ =  
   2x =     2y⇒ = −  
   2x = −     2y⇒ =  

   ⇒  The critical points are  ( ) ( ) ( )0,0 , 2, 2 , 2, 2− − . 
2

2
2 4 12zA x

x
∂

= = −
∂

,    
2

4zB
x y
∂

= = −
∂ ∂

,    
2

2
2 4 12zC y

y
∂

= = −
∂

 

     2 2 216 (4 12 )(4 12 )B AC x y− = − − −  
   At (0,0) , we have  2 0B AC− =  
      Consider     ( , ) (0,0)z z h k z∆ = −  

          2 4 42( )h k h k= − − − 42 0h= − ≤     if h k=  
   (0,0)⇒  is the points of maximum value. 

Remarks 
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   At ( )2, 2− , we have  

    2 16 (4 24)(4 24)B AC− = − − −  
        16 ( 20)( 20) 0= − − − <     and   0A < . 

( )2, 2⇒ −  is a point of maximum value. 

   At ( )2, 2− , we have  

   2 16 (4 24)(4 24)B AC− = − − − 0<    and   0A < . 

( )2, 2⇒ −  is also a point of maximum vale. 
 

(h)    3 4 42( ) ( )z x y x y= − − −  
2 36( ) 4 0z x y x

x
∂

= − − =
∂

 ……..…….. (i) 

2 36( ) 4 0z x y y
y

∂
= − − + =

∂
 …………. (ii) 

   Adding (i) and (ii), we get  
3 3 0y x− =  2 2( )( ) 0y x y xy x⇒ − + + =  

       0y x− =  y x⇒ =   in (i) gives    
34 0x =  0x⇒ =  0y⇒ =  

      2 2 0x xy y+ + =  gives imaginary values 
(0,0)⇒  is the only critical point 

2
2

2 12( ) 12zA x y x
x

∂
= = − −

∂
 

2

12( )zB x y
x y
∂

= = − −
∂ ∂

 

2
2

2 12( ) 12zC x y y
y

∂
= = − +

∂
 

   at (0,0) ,  0A B C= = =   2 0B AC⇒ − =  
Consider  ( , ) (0,0) 0z z h h z∆ = − =  

⇒  Nature undecided. 
 

(i)     2 35z x xy y= − −  

2 5 0z x y
x

∂
= − =

∂
 ……………….. (i) 

25 3 0z x y
y

∂
= − − =

∂
 …………….. (ii)  

   From (i)    2
5
xy =  

(ii)  becomes      
245 3 0

25
xx

 
− − = 

 
 

      2125 12 0x x⇒ − − =   
      212 125 0x x⇒ + =  

      (12 125) 0x x⇒ + =   1250,
12

x⇒ = −  

Remarks 
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      0x =  0y⇒ =     &   125
12

x = −  2 125
5 12

y  ⇒ = − 
 

25
6

= −  

   (0,0)⇒   &  125 25,
12 6

 − − 
 

 are the critical points 

 
2

2 2zA
x

∂
= =

∂
,    

2

5zB
x y
∂

= = −
∂ ∂

,     
2

2 6zC y
y

∂
= = −

∂
 

    2 25 12B AC y− = +  
   At (0,0) , we have 2 25 0B AC− = >   (0,0)⇒  is a saddle point. 

   At 125 25,
12 6

 − − 
 

, we have  

   2 2525 12
6

B AC  − = + − 
 

25 0= − <   and  2 0A = >   

     125 25,
12 6

 ∴ − −  
  is a point of maximum value. 
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Ø Introduction 

In elementary treatment of Integral Calculus the subject of integration is 
treated as inverse of differentiation. The subject arose in connection with the 
determination of areas of plane regions and was based on the notion of the limit of a 
type of sum when the number of terms in the sum tends to infinity and each term 
tends to zero. In fact the name Integral Calculus has its origin in this process of 
summation. It was only afterwards that it was seen that the subject of integration 
can also be viewed from the point of the inverse of differentiation.  
 

Ø Partition 
   Let [ , ]a b  be a given interval. A finite set { }0 1 2, , ,...., ,....,k nP a x x x x x b= = =  is 
said to be a partition of [ , ]a b  which divides it into n  such intervals  
                               [ ] [ ] [ ] [ ]0 1 1 2 2 3 1, , , , , ,......, ,n nx x x x x x x x−  
   Each sub-interval is called a component of the partition. 
   Obviously, corresponding to different choices of the points ix  we shall have 
different partition. 
   The maximum of the length of the components is defined as the norm of the 
partition. 
 

Ø Riemann Integral 
   Let f  be a real-valued function defined and bounded on  [ , ]a b . Corresponding to 
each partition P  of  [ , ]a b , we put 
                               sup ( )iM f x=     1( )i ix x x− ≤ ≤  
                               inf ( )im f x=   1( )i ix x x− ≤ ≤  
   We define upper and lower sums as  

                               ( )
1

,
n

i i
i

U P f M x
=

= ∆∑  

                    and  ( )
1

,
n

i i
i

L P f m x
=

= ∆∑  

   where   1 ( 1,2,...., )i i ix x x i n−∆ = − =  

   and finally     inf ( , )
b

a

f dx U P f=∫  ………….… (i) 

               sup ( , )
b

a

f dx L P f=∫  ……………..(ii) 

   Where the infimum and the supremum are taken over all partitions P  of  [ , ]a b . 

Then  
b

a

f dx∫   and  
b

a

f dx∫   are called the upper and lower Riemann Integrals of f  

over  [ , ]a b   respectively. 
   In case the upper and lower integrals are equal, we say that f  is Riemann-
Integrable on [ , ]a b  and we write  f ∈R , where R  denotes the set of Riemann 
integrable functions. 

Chapter 6 – Riemann-Stieltjes Integral. 
Subject: Real Analysis (Mathematics)     Level: M.Sc.  
Source: Syyed Gul Shah (Chairman, Department of Mathematics, US Sargodha) 
Collected & Composed by: Atiq ur Rehman (atiq@mathcity.org), http://www.mathcity.org 
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Riemann-Stieltjes Integral 2 

   The common value of ( )i and ( )ii  is denoted by  
b

a

f dx∫   or by  ( )
b

a

f x dx∫ . 

   Which is known as the Riemann integral of f  over [ , ]a b . 
 

Ø Theorem 
   The upper and lower integrals are defined for every bounded function  f . 
Proof 
   Take M  and m  to be the upper and lower bounds of  ( )f x   in  [ , ]a b . 

( )m f x M⇒ ≤ ≤          ( )a x b≤ ≤  
   Then   iM M≤    and   im m≥    ( 1,2,....., )i n=  
Where iM  and im  denote the supremum and infimum of ( )f x  in ( )1,i ix x−  for 
certain partition P  of  [ ],a b . 

( )
1 1

,
n n

i i i
i i

L P f m x m x
= =

⇒ = ∆ ≥ ∆∑ ∑      1( )i i ix x x−∆ = −  

( )
1

,
n

i
i

L P f m x
=

⇒ ≥ ∆∑  

   But      1 0 2 1 3 2 1
1

( ) ( ) ( ) .... ( )
n

i n n
i

x x x x x x x x x −
=

∆ = − + − + − + + −∑   

                          0nx x b a= − = −  
( ), ( )L P f m b a⇒ ≥ −  

   Similarity  ( ), ( )U P f M b a≤ −  
( ) ( )( ) , , ( )m b a L P f U P f M b a⇒ − ≤ ≤ ≤ −  

   Which shows that the numbers ( ),L P f  and ( ),U P f  form a bounded set. 
   ⇒  The upper and lower integrals are defined for every bounded function f .     ¤ 
 

Ø Riemann-Stieltjes Integral 
   It is a generalization of the Riemann Integral. Let ( )xα  be a monotonically 
increasing function on  [ , ]a b .  ( )aα   and  ( )bα  being finite, it follows that  ( )xα   
is bounded on [ , ]a b . Corresponding to each partition P  of  [ , ]a b , we write                         
                                         1( ) ( )i i ix xα α α −∆ = −  
                                                   ( Difference of values of α  at ix  & 1ix −  ) 
   ∵  ( )xα  is monotonically increasing. 
   0iα∴ ∆ ≥   
   Let f  be a real function which is bounded on [ , ]a b . 

   Put   ( )
1

, ,
n

i i
i

U P f Mα α
=

= ∆∑  

                     ( )
1

, ,
n

i i
i

L P f mα α
=

= ∆∑  

   Where  iM   and  im   have their usual meanings. 
   Define  

                     ( )inf , ,
b

a

f d U P fα α=∫  ……………. (i) 

                     ( )sup , ,
b

a

f d L P fα α=∫  ……………. (ii) 
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   Where the infimum and supremum are taken over all partitions of  [ , ]a b . 

   If   
b b

a a

f d f dα α=∫ ∫ ,  we denote their common value by  
b

a

f dα∫  or  ( ) ( )
b

a

f x d xα∫ . 

   This is the Riemann-Stieltjes integral or simply the Stieltjes Integral of  f   w.r.t. 
α   over  [ , ]a b . 

   If  
b

a
f dα∫  exists, we say that  f  is integrable w.r.t. α , in the Riemann sense, 

and write  ( )f α∈R . 
 
Ø Note 
   The Riemann-integral is a special case of the Riemann-Stieltjes integral when we 
take ( )x xα = . 
   ∵ The integral depends upon , ,f aα  and b  but not on the variable of integration. 

   ∴ We can omit the variable and prefer to write  
b

a

f dα∫  instead of   ( ) ( )
b

a

f x d xα∫ . 

   In the following discussion  f  will be assume to be real and bounded, and α  
monotonically increasing on  [ , ]a b . 
 

Ø Refinement of a Partition 
   Let P  and P∗  be two partitions of an interval [ ],a b  such that P P∗⊂  i.e. every 
point of P  is a point of P∗ , then P∗  is said to be a refinement of P . 
 

Ø Common Refinement 
   Let 1P  and 2P  be two partitions of [ , ]a b . Then a partition P∗  is said to be their 
common refinement if  1 2P P P∗ = ∪ . 
 

Ø Theorem 
   If P∗  is a refinement of P , then 
                               ( ) ( ), , , ,L P f L P fα α∗≤  ……..………… (i) 

                     and  ( ) ( ), , , ,U P f U P fα α∗≥  ………………. (ii) 

Proof 
   Let us suppose that *P  contains just one point x∗  more than P  such that 

1i ix x x∗
− < <   where 1ix −  and ix  are two consecutive points of  P . 

   Put  
1 inf ( )w f x=   ( )1ix x x∗

− ≤ ≤  

2 inf ( )w f x=  ( )ix x x∗ ≤ ≤  

   It is clear that  1 iw m≥   & 2 iw m≥   where inf ( )im f x=    ,  ( )1i ix x x− ≤ ≤ . 
Hence  
     ( ) ( ) 1 1 2, , , , ( ) ( ) ( ) ( )i iL P f L P f w x x w x xα α α α α α∗ ∗ ∗

−   − = − + −     

       [ ]1( ) ( )i i im x xα α −− −  
   1 1 2( ) ( ) ( ) ( )i iw x x w x xα α α α∗ ∗

−   = − + −     

       1( ) ( ) ( ) ( )i i im x x x xα α α α∗ ∗
− − − + −   

   *
1 1 2( ) ( ) ( ) ( ) ( ) ( )i i i iw m x x w m x xα α α α∗

−   = − − + − −     

xi – 1 x* xi 
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   α∵  is a monotonically increasing function. 
   1( ) ( ) 0ix xα α∗

−∴ − ≥     ,     ( ) ( ) 0ix xα α ∗− ≥  
          ( ) ( ), , , , 0L P f L P fα α∗⇒ − ≥  

          ( ) ( ), , , ,L P f L P fα α∗⇒ ≤       which is (i) 

   If P∗  contains k  points more than  P , we repeat this reasoning k  times and 
arrive at (i). 
   Now put  

1 sup ( )W f x=   1( )ix x x∗
− ≤ ≤  

and  2 sup ( )W f x=   ( )ix x x∗ ≤ ≤  
   Clearly     1iM W≥    &    2iM W≥  
   Consider 
        ( ) ( ) [ ]1, , , , ( ) ( )i i iU P f U P f M x xα α α α∗

−− = −  

                                   1 1 2( ) ( ) ( ) ( )i iW x x W x xα α α α∗ ∗
−   − − − −     

1( ) ( ) ( ) ( )i i iM x x x xα α α α∗ ∗
− = − + −   

            1 1 2( ) ( ) ( ) ( )i iW x x W x xα α α α∗ ∗
−   − − − −     

( ) ( )1 1 2( ) ( ) ( ) ( ) 0i i i iM W x x M W x xα α α α∗ ∗
−   = − − + − − ≥     

  ( )isα ↑∵  

( ) ( ), , , ,U P f U P fα α∗⇒ ≥      which is (ii)             
¤ 

 

Ø Theorem 
   Let f  be a real valued function defined on [ , ]a b  and α  be a monotonically 
increasing function on  [ , ]a b . Then  
                                 ( ) ( )sup , , inf , ,L P f U P fα α≤  

                         i.e.   
b b

a a

f d f dα α≤∫ ∫  

Proof 
   Let *P  be the common refinement of two partitions 1P  and 2P . Then  

( ) ( ) ( ) ( )1 2, , , , , , , ,L P f L P f U P f U P fα α α α∗ ∗≤ ≤ ≤  

   Hence    ( ) ( )1 2, , , ,L P f U P fα α≤  …………. (i) 
   If 2P  is fixed and the supremum is taken over all 1P  then (i) gives 

      ( )2 , ,
b

a

f d U P fα α≤∫  

   Now take the infimum over all 2P  
b b

a a

f d f dα α⇒ ≤∫ ∫              ¤ 

 
 

{{{{{{{{{{{{{{{{{{{{ 
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Ø Theorem (Condition of Integrability or Cauchy’s Criterion for  
                  Integrability.) 
    ( )f α∈R   on  [ , ]a b   iff for every  0ε >   there exists a partition P  such that  
                              ( ) ( ), , , ,U P f L P fα α ε− <  
Proof 
   Let      ( ) ( ), , , ,U P f L P fα α ε− <  …………. (i) 

   Then   ( ) ( ), , , ,
b b

a a

L P f f d f d U P fα α α α≤ ≤ ≤∫ ∫  

          ( ), , 0
b

a

f d L P fα α⇒ − ≥∫     and    ( ), , 0
b

a

U P f f dα α− ≥∫  

   Adding these two results, we have 

     ( ) ( ), , , , 0
b b

a a

f d f d L P f U P fα α α α− − + ≥∫ ∫  

    ( ) ( ), , , ,
b b

a a

f d f d U P f L P fα α α α ε⇒ − ≤ − <∫ ∫         from (i) 

i.e.    0
b b

a a

f d f dα α ε≤ − <∫ ∫      for every  0ε > . 

    
b b

a a

f d f dα α⇒ =∫ ∫      i.e.   ( )f α∈R  

   Conversely, let  ( )f α∈R  and let  0ε >  
b b b

a a a

f d f d f dα α α⇒ = =∫ ∫ ∫  

   Now    ( )inf , ,
b

a

f d U P fα α=∫    and    ( )sup , ,
b

a

f d L P fα α=∫  

   There exist partitions 1P  and 2P  such that  

( )2 , ,
2

b

a

U P f f d εα α− <∫  ……..…… (ii) 

and ( )1, ,
2

b

a

f d L P f εα α− <∫  ……..…… (iii) 

   We choose P  to be the common refinement of  1P  and 2P . 
   Then 

( ) ( ) ( ) ( )2 1, , , , , , , ,
2

b

a

U P f U P f f d L P f L P fεα α α α ε α ε≤ < + < + ≤ +∫  

   So that  
( ) ( ), , , ,U P f L P fα α ε− <              ¤

          
�-----------------------------� 

 
 
 
    

 

( )2 , , 2U P f f dεα α− < ∫  

( )1, , 2f d P fL εα α< +∫  
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Ø Theorem 
   a) If  ( ) ( ), , , ,U P f L P fα α ε− <   holds for some P  and some ε ,  then it holds  
        (with the same ε ) for every refinement of P . 
   b) If  ( ) ( ), , , ,U P f L P fα α ε− <   holds for { }0 ,...., nP x x=  and ,i is t  are arbitrary  
        points in [ ]1,i ix x− , then  

                                          
1

( ) ( )
n

i i i
i

f s f t α ε
=

− ∆ <∑  

   c) If  ( )f α∈R  and the hypotheses of (b) holds, then  

                                         
1

( )
bn

i i
i a

f t f dα α ε
=

∆ − <∑ ∫  

Proof 
   a)  Let P∗  be a refinement of  P . Then  

( ) ( ), , , ,L P f L P fα α∗≤  

and  ( ) ( ), , , ,U P f U P fα α∗ ≤  

   ( ) ( ) ( ) ( ), , , , , , , ,L P f U P f L P f U P fα α α α∗ ∗⇒ + ≤ +  

   ( ) ( ) ( ) ( ), , , , , , , ,U P f L P f U P f L P fα α α α∗ ∗⇒ − ≤ −  

   ( ) ( ), , , ,U P f L P fα α ε− <∵  
   ( ) ( ), , , ,U P f L P fα α ε∗ ∗∴ − <  
 

   b)  { }0 ,...., nP x x=  and is , it  are arbitrary points in [ ]1,i ix x− .  
   ( )if s⇒  and  ( )if t  both lie in  [ ],i im M . 
   ( ) ( )i i i if s f t M m⇒ − ≤ −  
   ( ) ( )i i i i i i if s f t M mα α α⇒ − ∆ ≤ ∆ − ∆  

   
1 1 1

( ) ( )
n n n

i i i i i i i
i i i

f s f t M mα α α
= = =

⇒ − ∆ ≤ ∆ − ∆∑ ∑ ∑  

   ( ) ( )
1

( ) ( ) , , , ,
n

i i i
i

f s f t U P f L P fα α α
=

⇒ − ∆ ≤ −∑  

   ( ) ( ), , , ,U P f L P fα α ε− <∵  

   
1

( ) ( )
n

i i i
i

f s f t α ε
=

∴ − ∆ <∑  

 
   c)     ( )i i im f t M≤ ≤∵  

   ( )i i i i i im f t Mα α α∴ ∆ ≤ ∆ ≤ ∆∑ ∑ ∑  
   ( ) ( ), , ( ) , ,i iL P f f t U P fα α α⇒ ≤ ∆ ≤∑  

   and also   ( ) ( ), , , ,
b

a

L P f f d U P fα α α≤ ≤∫  

   Using (b), we have  

( )
b

i i
a

f t f dα α ε∆ − <∑ ∫                        ¤ 

 

�-----------------------------� 

xi – 1 ti xi si 
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Ø Theorem 
   If  f  is continuous on  [ , ]a b  then  ( )f α∈R  on  [ , ]a b . 
Proof 
   Let  0ε >  be given. Choose  0β >  so that 

[ ]( ) ( )b aα α β ε− <  
   f  is continuous on  [ , ]a b     f⇒  is uniformly continuous on  [ , ]a b . 
   ⇒   There exists a  0δ >   such that  

( ) ( )f s f t β− <     if  [ , ]x a b∈ , [ , ]t a b∈  and  x t δ− <  ………..(i) 
If P  is any partition of  [ , ]a b  such that  ix δ∆ <  for all i   
then (i) implies that  i iM m β− ≤       ,      ( 1,2,...., )i n=  

( ) ( ), , , , i i i iU P f L P f M mα α α α⇒ − = ∆ − ∆∑ ∑  

   ( )i i iM m α= − ∆∑  

   [ ]( ) ( )i b aβ α β α α ε≤ ∆ = − <∑  
( )f α⇒ ∈R    by Cauchy Criterion.              ¤ 

 
Ø Theorem 
   If  f  is monotonic on  [ , ]a b , and if  α  is continuous on  [ , ]a b , then  ( )f α∈R . 
                                           ( Monotonicity of α  still assumed. )  
Proof 
   Let  0ε >   be a given positive number. 
   For any positive integer  n , choose a partition  { }0 1, ,....., nP x x x=  of  [ , ]a b   
such that 

( ) ( )
i

b a
n

α α
α

−
∆ =      ,      1,2,....,i n=  

   This is possible because  α  is continuous and monotonic increasing on the closed 
interval  [ , ]a b  and thus assumes every value between its bounds,  ( )aα  and  ( )bα . 
   Let  f  be monotonic increasing on  [ , ]a b , so that its lower and upper bounds 

,i im M   in  [ ]1,i ix x−   are given by  

1( )i im f x −=     ,     ( )i iM f x=     ,  1,2,....,i n=  

   ( ) ( ) ( )
1

, , , ,
n

i i i
i

U P f L P f M mα α α
=

∴ − = − ∆∑  

     [ ]1
1

( ) ( ) ( ) ( )
n

i i
i

b a f x f x
n

α α
−

=

−
= −∑  

     [ ]( ) ( ) ( ) ( )b a f b f a
n

α α−
= −    

     ε<    if n  is taken large enough. 
   ( )f R α⇒ ∈   on  [ , ]a b .                 

       ¤ 
 

Note:   ( )f α∈R  when either 
i)  f   is continuous and  α  is monotonic, or 
ii) f   is monotonic and  α  is continuous, of course  α  is still monotonic. 
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Ø Properties of Integral 
i)  If  ( )f α∈R   on  [ , ]a b , then  ( )cf α∈R  for every constant  c  and  

                                         
b b

a a

cf d c f dα α=∫ ∫ . 

Proof 
   ( )f α∈∵ R  
   ∴ ∃  a partition  P  such that  

( ) ( ), , , ,U P f L P fα α ε− <    ,   where ε  is an arbitrary +ive number. 

   Now      ( )
1 1

, ,
n n

i i i i
i i

U P cf cM c Mα α α
= =

= ∆ = ∆∑ ∑  

&   ( )
1 1

, ,
n n

i i i i
i i

L P cf cm c mα α α
= =

= ∆ = ∆∑ ∑  

   ( ) ( ), , , , i i i iU P f L P f c M mα α α α ⇒ − = ∆ − ∆ ∑ ∑  

      ( ) ( ), , , ,c U P f L P fα α= −    
      1cε ε< =  

   ( )cf α⇒ ∈R  
   ( ) ( ), , , ,U P cf c U P fα α=   ∵      &      ( ) ( ), , , ,L P cf c L P fα α=     

   ( ) ( )inf , , inf , ,U P cf c U P fα α∴ =      &   ( ) ( )sup , , sup , ,L P cf c L P fα α=     
   where infimum and supremum are taken over all  P  on [ , ]a b . 

   
b b

a a

cf d c f dα α⇒ =∫ ∫      &      
b b

a a

cf d c f dα α=∫ ∫  

   
b b

a a

cf d cf dα α=∫ ∫∵       and     
b b

a a

f d f dα α=∫ ∫  

                
b b

a a

cf d c f dα α∴ =∫ ∫               ¤ 

 
ii)  If  1 ( )f α∈R   and  2 ( )f α∈R  on  [ , ]a b , then  1 2 ( )f f α+ ∈R   and  

                               ( )1 2 1 2

b b b

a a a

f f d f d f dα α α+ = +∫ ∫ ∫ . 

Proof 
If  1 2f f f= +   and P  is any partition of  [ , ]a b , we have  
    i i i i i im m m M M M′ ′′ ′ ′′+ ≤ ≤ ≤ +   

   where  , , ,i i i iM m M m′ ′ ′′ ′′  and ,i iM m  are the bounds of 1 2,f f  and f  respectively in 
[ ]1,i ix x− . 
   Multiplying throughout by  iα∆   and adding the inequalities for  1,2,....,i n= , 
 we get 
  ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2, , , , , , , , , , , ,L P f L P f L P f U P f U P f U P fα α α α α α+ ≤ ≤ ≤ +  ….....(i) 
   Since  1 ( )f α∈R  and  2 ( )f α∈R  on  [ , ]a b  therefore  ∃   0ε >   and there are 
partitions  1P   and  2P   such that 

( ) ( )
( ) ( )

1 1 1 1

2 2 2 2

, , , ,
and  , , , ,

U P f L P f
U P f L P f

α α ε
α α ε

− < 
− < 

 ………….. (ii) 

   These inequalities hold if 1P  and 2P  are replaced by their common refinement P . 
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       (ii)  ( ) ( ) ( ) ( )1 2 1 2, , , , , , , , 2U P f U P f L P f L P fα α α α ε⇒ + − + <        
   Using (i) we have 

( )( , , ) , , 2U P f L P fα α ε− <  
   which proves that  ( )f α∈R  on  [ , ]a b  
   With the same partition  P , we have 

( )1 1, ,
b

a

U P f f dα α ε< +∫  

and  ( )2 2, ,
b

a

U P f f dα α ε< +∫  

   Hence (i) implies that 

       ( ) 1 2, , 2
b b b

a a a

f d U P f f d f dα α α α ε≤ < + +∫ ∫ ∫  

   ε∵   is arbitrary, we conclude that 

1 2

b b b

a a a

f d f d f dα α α≤ +∫ ∫ ∫  

   Similarly if we consider the lower sums we arrive at  

1 2

b b b

a a a

f d f d f dα α α≥ +∫ ∫ ∫  

   Combining the above two results, we have 

1 2

b b b

a a a

f d f d f dα α α= +∫ ∫ ∫              ¤ 

 
iii)  If  1 2( ) ( )f x f x≤   on  [ , ]a b , then 

                                                     1 2

b b

a a

f d f dα α≤∫ ∫  

Proof 
   Let  ( ) 0f x ≥ ,  then  0iM ≥     ( ), , 0U P f α⇒ ≥  

   and   0
b

a

f dα∴ ≥∫  

            1 2f f≤∵       2 1 0f f∴ − ≥  

    ( )2 1 0
b

a

f f dα⇒ − ≥∫   2 1 0
b b

a a

f d f dα α⇒ − ≥∫ ∫  

1 2

b b

a a

f d f dα α⇒ ≤∫ ∫                ¤ 

 
Ø Note 

(i)     ( )( ) ( ) ( ) sup supf g x f x g x f g+ = + ≤ +  
       sup( ) sup supf g f g⇒ + ≤ +  
 

(ii)    ( )( ) ( ) ( ) inf inff g x f x g x f g+ = + ≥ +  
  inf ( ) inf inff g f g⇒ + ≥ +  
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iv)  If  ( )f α∈R  on  [ , ]a b  and if  a c b< < , then  ( )f α∈R  on  [ , ]a c  and on  [ , ]c b  
and   

                               
b c b

a a c

f d f d f dα α α= +∫ ∫ ∫  

Proof 
   Since  ( )f α∈R  on  [ , ]a b , therefore for  0ε > ,  ∃ a partition  P  such that 

( ) ( ), , , ,U P f L P fα α ε− <  
   Let  P∗   be the refinement of  P  such that   { }P P c∗ = ∪  

         ( ) ( ) ( ) ( ), , , , , , , ,L P f L P f U P f U P fα α α α∗ ∗∴ ≤ ≤ ≤  ….…...... (i) 

       ( ) ( ) ( ) ( ), , , , , , , ,U P f L P f U P f L P fα α α α ε∗ ∗⇒ − ≤ − <  ……….(ii) 

   Let  1 2,P P   denote the sets of points of  P∗  between  [ , ] , [ , ]a c c b   respectively.     
   Clearly  1 2,P P  are partitions of   [ , ] , [ , ]a c c b   respectively and   1 2P P P∗ = ∪ . 
   Also  ( ) ( ) ( )1 2, , , , , ,U P f U P f U P fα α α∗ = +  ……….. (iii) 

   and   ( ) ( ) ( )1 2, , , , , ,L P f L P f L P fα α α∗ = +  ………… (iv) 

    ( ) ( ){ } ( ) ( ){ }1 1 2 2, , , , , , , ,U P f L P f U P f L P fα α α α∴ − + −  

( ) ( ), , , ,U P f L P fα α∗ ∗= − ε<  
   Since each bracket on the left is non-negative, it follows that  

( ) ( )1 1, , , ,U P f L P fα α ε− <  
and  ( ) ( )2 2, , , ,U P f L P fα α ε− <  

( )f α⇒ ∈R   on  [ , ]a c   and on  [ , ]c b . 
   We know that for any functions  1f   and  2f , if  1 2f f f= + , then 

 1 2inf inf inff f f≥ +  
and  1 2sup sup supf f f≤ +  

   Now for any partitions  1 2,P P  of  [ , ] , [ , ]a c c b  respectively, if  1 2P P P∗ = ∪ , then 

( ) ( ) ( )1 2, , , , , ,U P f U P f U P fα α α∗ = +  
   Hence on taking the infimum for all partitions, we get  

cb b

a a c

f d f d f dα α α≥ +∫ ∫ ∫  

   But since  ( )f α∈R   on  [ , ] , [ , ] , [ , ]a c c b a b  
b c b

a a c

f d f d f dα α α∴ ≥ +∫ ∫ ∫  …………. (v) 

   Again  ( ) ( ) ( )1 2, , , , , ,L P f L P f L P fα α α∗ = +  
   and on taking the supremum for all partitions, we get 

    
b c b

a a c

f d f d f dα α α≤ +∫ ∫ ∫  

   But since  ( )f α∈R   on  [ , ] , [ , ] , [ , ]a c c b a b  
b c b

a a c

f d f d f dα α α∴ ≤ +∫ ∫ ∫  ……………(vi) 

   (v) and (vi) imply that  
b c b

a a c

f d f d f dα α α= +∫ ∫ ∫           ¤ 
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v)  If   ( )f α∈R   on  [ , ]a b   and   ( )f x M≤   on  [ , ]a b , then 

                                         [ ]( ) ( )
b

a

f d M b aα α α≤ −∫  

Proof 
   We know that  

( ), ,
b

a

f d U P fα α≤∫  

                    i i iM Mα α= ∆ ≤ ∆∑ ∑  
   But   

( ) ( )i b aα α α∆ = −∑  

  [ ]( ) ( )
b

a

f d M b aα α α⇒ ≤ −∫             ¤ 

 
vi)  If  1( )f α∈R   and  2( )f α∈R ,  then  1 2( )f α α∈ +R   and   

                                         1 2 1 2( )
b b b

a a a

f d f d f dα α α α+ = +∫ ∫ ∫  

and if  ( )f α∈R  and  c  is a positive constant, then  ( )f cα∈R  and 

                                         ( )
b b

a a

f d c c f dα α=∫ ∫  

Proof 
   Since  1( )f α∈R   and  2( )f α∈R , therefore for  0ε > , there exists partitions 

1 2,P P  of  [ , ]a b  such that 

( ) ( )1 1 1 1, , , ,
2

U P f L P f ε
α α− <  

and  ( ) ( )2 2 2 2, , , ,
2

U P f L P f ε
α α− <  

   Let 1 2P P P= ∪  

( ) ( )

( ) ( )

1 1

2 2

, , , ,
2

& , , , ,
2

U P f L P f

U P f L P f

ε
α α

εα α

∴ − < 

− <


 ………….. (i) 

   Let  im  , iM  be bounds of  f   in  [ ]1,i ix x−  
   Take   1 2α α α= +  
        1 2i i iα α α⇒ ∆ = ∆ + ∆  

  ( ), , i iU P f Mα α∴ = ∆∑  

    ( )1 2i i iM α α= ∆ + ∆∑  

    ( ) ( )1 2, , , ,U P f U P fα α= +  
   Similarly 

       ( ) ( ) ( )1 2, , , , , ,L P f L P f L P fα α α= +  
  ( ) ( ), , , ,U P f L P fα α∴ − ( ) ( ) ( ) ( )1 1 2 2, , , , , , , ,U P f L P f U P f L P fα α α α= − + −  

    
2 2
ε ε

ε< + =     by (i) 

   ( )f α⇒ ∈R    where   1 2α α α= +  
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   To prove the second part, we notice that  

( )inf , ,
b

a

f d U P fα α=∫  

   ( ) ( ){ }1 2inf , , , ,U P f U P fα α= +  
   ( ) ( )1 2inf , , inf , ,U P f U P fα α≥ +  

   1 2

b b

a a

f d f dα α= +∫ ∫  ………….... (ii) 

   Similarly by taking the supremum of lower sum of partition we arrive that 

1 2

b b b

a a a

f d f d f dα α α≤ +∫ ∫ ∫  ……...…….. (iii) 

   From (ii) and (iii) 

1 2

b b b

a a a

f d f d f dα α α= +∫ ∫ ∫   

i.e.  1 2 1 2( )
b b b

a a a

f d f d f dα α α α+ = +∫ ∫ ∫   1 2α α α= +∵  

   Now  ( )f α∈∵ R     ∴  for  0ε > , ∃ a partition  P  of  [ , ]a b  such that 
( ) ( ), , , ,U P f L P fα α ε− <  …………. (iv) 

   Let  cα α′ =    then   ( )i icα α′∆ = ∆ ic α= ∆  
   ( ), , i iU P f Mα α′ ′⇒ = ∆∑  

       ( )i iM c α= ∆∑  

       i ic M α= ∆∑  
       ( ), ,c U P f α=  

   Similarly,           ( ) ( ), , , ,L P f c L P fα α′ =   

( ) ( ) ( ) ( ){ }, , , , , , , ,U P f L P f c U P f L P fα α α α′ ′⇒ − = −  cε<         by (iv) 
( )f α ′⇒ ∈R     where  cα α′ =  

   Also  ( )inf , ,
b

a

f d U P fα α′ ′=∫  

  ( )inf , ,c U P f α=  
  ( )inf , ,c U P f α=  

  
b

a

c f dα= ∫  

   and  

( )sup , ,
b

a

f d L P fα α′ ′=∫  

  ( )sup , ,cU P f α=  
  ( )sup , ,c U P f α=  

  
b

a

c f dα= ∫  

   Hence     

                    
b b

a a

f d c f dα α′ =∫ ∫    where  cα α′ =             ¤ 
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Ø Lemma 
   If  M   &  m  are the supremum and infimum of  f  and  M ′ , m′  are the 
supremum & infimum of  f  on  [ , ]a b  then  M m M m′ ′− ≤ − . 
Proof 
   Let  1 2, [ , ]x x a b∈ , then 

1 2 1 2( ) ( ) ( ) ( )f x f x f x f x− ≤ −  ………………(A) 
       M∵   and  m  denote the supremum and infimum of  ( )f x  on  [ , ]a b  
       ( )f x M∴ ≤    &   ( )f x m≥        [ , ]x a b∀ ∈  
       1 2, [ , ]x x a b∈∵  
       1( )f x M∴ ≤     and     2( )f x m≥   
       1( )f x M⇒ ≤    and  2( )f x m− ≤ −  
       1 2( ) ( )f x f x M m⇒ − ≤ −  ……………... (i) 
   Interchanging  1x   &  2x , we get 

[ ]1 2( ) ( )f x f x M m− − ≤ −  ………….. (ii) 
   (i) & (ii)  1 2( ) ( )f x f x M m⇒ − ≤ −  

        1 2( ) ( )f x f x M m⇒ − ≤ −      by eq. (A) …….…..(I) 
   M ′∵   and  m′  denote the supremum and infimum of  ( )f x   on  [ , ]a b  
   ( )f x M ′∴ ≤   and  ( )f x m′≥      [ , ]x a b∀ ∈  
   0ε⇒ ∃ >  such that 

  1( )f x M ε′> −  ………….. (iii) 
  and    2( )f x m ε′< +     2( )f x mε ′⇒ − + > −  ………….. (iv) 

   From (iii) and (iv), we get 
  1 2( ) ( )f x f x M mε ε′ ′− + > − −  

      1 22 ( ) ( )f x f x M mε ′ ′⇒ + − > −  
   ε∵   is arbitrary   ∴  1 2( ) ( )M m f x f x′ ′− ≤ −  …….…..…. (v) 
   Interchanging  1x   &  2x , we get 

     ( )1 2( ) ( )M m f x f x′ ′− ≤ − −  …………… (vi) 
   Combining (v) and (vi), we get 

   1 2( ) ( )M m f x f x′ ′− ≤ −  ……………. (II) 
   From (I) and (II), we have the require result 

M m M m′ ′− ≤ −             ¤ 
 

Ø Theorem 

   If  ( )f α∈R   on  [ , ]a b , then  ( )f α∈R  on  [ , ]a b  and  
b b

a a

f d f dα α≤∫ ∫ . 

Proof 
   ( )f α∈∵ R  
   ∴  given 0ε >   ∃ a partition P  of  [ , ]a b  such that  

( ) ( ), , , ,U P f L P fα α ε− <  
     i.e.     ( )i i i i i i iM m M mα α α ε∆ − ∆ = − ∆ <∑ ∑ ∑  
   Where iM  and im  are supremum and infimum of f  on [ ]1,i ix x−  
   Now if iM ′  and im′  are supremum and infimum of  f  on  [ ]1,i ix x−  then 

i i i iM m M m′ ′− ≤ −  
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( ) ( )i i i i i iM m M mα α′ ′⇒ − ∆ ≤ − ∆∑ ∑  

( ) ( ) ( ) ( ), , , , , , , ,U P f L P f U P f L P fα α α α ε⇒ − ≤ − <  
( )f α⇒ ∈R . 

   Take  1c = +   or  1−   to make  0c f dα ≥∫  

   Then   
b b

a a

f d c f dα α=∫ ∫  …….……… (i) 

   Also     ( ) ( )c f x f x≤      [ , ]x a b∀ ∈  
b b

a a

c f d f dα α⇒ ≤∫ ∫   
b b

a a

c f d f dα α⇒ ≤∫ ∫  ………. (ii) 

   From (i) and (ii), we have 

     
b b

a a

f d f dα α≤∫ ∫                ¤ 

 

Ø Theorem 
   If  ( )f α∈R   on  [ , ]a b , then  2 ( )f α∈R  on  [ , ]a b . 
Proof 
     ∵  ( )f α∈R     ( )f α⇒ ∈R  
    ( )f x M⇒ <        [ , ]x a b∀ ∈  
     ( )f α∈∵ R    ∴ given  0ε > , ∃ a partition P  of  [ , ]a b  such that 

( ) ( ), , , , 2U P f L P f M
εα α− <  ………… (i) 

   If  iM  &  im  denote the sup. & inf. of  f  on [ ]1,i ix x−  then  2
iM   &  2

im   are the 
sup. & inf. of  2f  on [ ]1,i ix x− . 
     ( ) ( ) ( )2 2 2 2, , , , i i iU P f L P f M mα α α⇒ − = − ∆∑  

  ( )( )i i i i iM m M m α= + − ∆∑  
   ( ) ( )f x f x M≤ ≤∵         [ , ]x a b∀ ∈  

   and   22f f=  
   iM M∴ ≤   &  im M≤  
    ( ) ( ) ( )( )2 2, , , , i i iU P f L P f M M M mα α α⇒ − ≤ + − ∆∑  

 ( )2 i i iM M m α= − ∆∑  

 ( ) ( )2 , , , ,M U P f L P fα α= −    2
2

M
M
ε

ε< ⋅ =  

    2 ( )f α⇒ ∈R                  ¤ 
 

Ø Corollary 
   If  ( )f α∈R   &  ( )g α∈R   on  [ , ]a b  then  ( )fg α∈R   on  [ , ]a b . 
Proof 
   ( )f α∈∵ R  ,   ( )g α∈R  
  ( )f g α∴ + ∈R  ,  ( )f g α− ∈R  
  2( ) ( )f g α⇒ + ∈R   ,  2( ) ( )f g α− ∈R  
  2 2( ) ( ) ( )f g f g α⇒ + − − ∈R   4 ( )fg α⇒ ∈R  
and ultimately  

( )fg α∈R   on  [ , ]a b               ¤ 
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Ø Theorem 
   Assume  α  increases monotonically and  α′∈R  on  [ , ]a b . Let  f   be bounded 
real function on  [ , ]a b . Then  ( )f α∈R   iff   f α ′∈R . In that case 

                                                    ( ) ( )
b b

a a

f d f x x dxα α ′= ⋅∫ ∫  

Proof 
   α ′∈∵ R   on  [ , ]a b  
   ∴  given  0ε >   ∃  a partition P  of  [ , ]a b  such that  

( ) ( ), ,U P L Pα α ε′ ′− <  ….……..…. (i) 
   The Mean-value theorem furnishes point  [ ]1,i i it x x−∈   such that 

1( ) ( )i i ix xα α α −∆ = −  
        ( )i it xα ′= ∆     for  1,2,....,i n=     …………. (ii)      

   If   [ ]1,i i is x x−∈ , then form (i) we have 

( ) ( )i i i is x t xα α ε′ ′∆ − ∆ <∑ ∑      | Previously proved at page 6 

      ( ) ( )i i is t xα α ε′ ′⇒ − ∆ <∑  …………… (iii) 
   Put  sup ( )M f x=   and consider 

( ) ( ) ( )i i i i if s f s s xα α ′∆ − ∆∑ ∑  …………….. (A) 

       ( ) ( ) ( ) ( )i i i i i if s t x f s s xα α′ ′= ∆ − ∆∑ ∑       by (ii) 

           ( )( ) ( ) ( )i i i if s t s xα α′ ′= − ∆∑  

       ( )( ) ( )i i iM t s xα α′ ′≤ − ∆∑    
       Mε≤                  …………..…….. (iv)      by (iii) 

       ( ) ( ) ( )i i i i if s f s s x Mα α ε′⇒ ∆ ≤ ∆ +∑ ∑      for all choices of  [ ]1,i i is x x−∈  
       ( ) ( ), , ,U P f U P f Mα α ε′⇒ ≤ +  
   The same arguments leads from (A) to  

    ( ) ( ), , ,U P f U P f Mα α ε′ ≤ +  
   Thus  ( ) ( ), , ,U P f U P f Mα α ε′− ≤  ………..…. (v) 
   ∵  (i)  remains true if  P  is replaced by any refinement 
   ∴  (v) also remains true 

( ) ( )
b b

a a

f d f x x dx Mα α ε′⇒ − ≤∫ ∫  

   ε∵  was arbitrary  

   ( ) ( )
b b

a a

f d f x x dxα α ′∴ =∫ ∫      for any bounded f . 

   Using the same argument, we can prove from ( )iv  by considering the infimum of 
( )f x  that  

     ( ) ( )
b b

a a

f d f x x dxα α ′=∫ ∫  

   Hence     

     
b b

a a

f d f dα α=∫ ∫     ⇔     ( ) ( ) ( ) ( )
b b

a a

f x x dx f x x dxα α′ ′=∫ ∫  

   Equivalently   ( )f α∈R    ⇔    ( )f α α′∈R .            ¤ 
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Ø Theorem (Change of Variable) 
   Suppose ϕ  is a strictly increasing continuous function that maps an interval 
[ ],A B  onto  [ , ]a b . Suppose α  is monotonically increasing on  [ , ]a b  and ( )f α∈R  
on  [ , ]a b . Define  β  and  g  on  [ , ]A B  by 
                               ( )( ) ( )y yβ α ϕ=     ,    ( )( ) ( )g y f yϕ=  

   then  ( )g β∈R   and   
B b

A a

g d f dβ α=∫ ∫ . 

Proof 

[A,B] [a,b]

β 

g 

y 

φ 

α 

f 

R 

φ(y) x =  f(φ(y)) =  g(y) 

α(φ(y)) =  β(y) 

 
    To each partition  { }0 ,....., nP x x=   of  [ , ]a b   corresponds a partition 

{ }0 ,....., nQ y y=   of  [ ],A B   because  ϕ   maps  [ ],A B   onto  [ , ]a b . 
( )i ix yϕ⇒ =  

   All partitions of  [ ],A B   are obtained in this way. 
   ∵ The value taken by  f  on  [ ]1,i ix x−  are exactly the same as those taken by  g  
on  [ ]1,i iy y− , we see that  

 ( ) ( ), , , ,U Q g U P fβ α=     
  and    ( ) ( ), , , ,L Q g L P fβ α=  

   ( )f R α∈∵   on  [ , ]a b  
   ∴  given  0ε > ,  we have 

( ) ( ), , , ,U P f L P fα α ε− <  
    ( ) ( ), , , ,U Q g L Q gβ β ε⇒ − <  

   ( )g β⇒ ∈R   and   
B b

A a

g d f dβ α=∫ ∫               ¤ 

 
 

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Riemann-Stieltjes Integral 17 

INTEGRATION AND DIFFERENTIATION 
 

Ø Theorem (Ist Fundamental Theorem of Calculus) 

   Let  f ∈R  on  [ , ]a b . For  a x b≤ ≤ , put  ( ) ( )
x

a

F x f t dt= ∫ , then  F  is continuous 

on  [ , ]a b ; furthermore, if  f  is continuous at point  0x  of  [ , ]a b , then  F  is 
differentiable at  0x , and  0 0( ) ( )F x f x′ = . 
Proof 
   f ∈∵ R  
   f∴   is bounded. 
   Let  ( )f t M≤   for  [ , ]t a b∈  
   If   a x y b≤ < ≤ ,  then 

( ) ( ) ( ) ( )
y x

a a

F y F x f t dt f t dt− = −∫ ∫  

  ( ) ( ) ( )
yx x

a x a

f t dt f t dt f t dt= + −∫ ∫ ∫  

  ( )
y

x

f t dt= ∫   ( )
y

x

f t dt≤ ∫   
y

x

M dt≤ ∫   ( )M y x= −  

       

          ( ) ( )F y F x ε⇒ − <    for  0ε >   provided  M y x ε− <  

       i.e.    ( ) ( )F y F x ε− <    whenever   y x
M
ε

− <  

   This proves the continuity (and, in fact, uniform continuity) of  F  on  [ , ]a b . 
   Next, we have to prove that if  f  is continuous at  0 [ , ]x a b∈   then  F  is 
differentiable at  0x   and  0 0( ) ( )F x f x′ =  

            i.e.   
0

0
0

0

( ) ( )lim ( )
t x

F t F x f x
t x→

−
=

−
 

   Suppose  f   is continuous at  0x . Given  0ε > , ∃  0δ >   such that  

0( ) ( )f t f x ε− <    if   0t x δ− <     where  [ , ]t a b∈  
     0 0( ) ( ) ( )f x f t f xε ε⇒ − < < +     if    0 0x t xδ δ− < < +   

          ( ) ( )
0 0 0

0 0( ) ( ) ( )
t t t

x x x

f x dt f t dt f x dtε ε⇒ − < < +∫ ∫ ∫   

     ( ) ( )
0 0 0

0 0( ) ( ) ( )
t t t

x x x

f x dt f t dt f x dtε ε⇒ − < < +∫ ∫ ∫  

     ( ) ( )0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( )f x t x F t F x f x t xε ε⇒ − − < − < + −  

     0
0 0

0

( ) ( )( ) ( )F t F xf x f x
t x

ε ε
−

⇒ − < < +
−

 

     0
0

0

( ) ( ) ( )F t F x f x
t x

ε−
⇒ − <

−
 

     
0

0
0

0

( ) ( )lim ( )
t x

F t F x f x
t x→

−
⇒ =

−
 

      0 0( ) ( )F x f x′⇒ =                ¤ 
 

� --------------------------------- � 

a y b x 

a 
t 

x0 x0 +  δ x0 –  δ 
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Ø Theorem (IInd Fundamental Theorem of Calculus) 
   If  f ∈R  on  [ , ]a b   and if there is a differentiable function  F  on  [ , ]a b  such that  
F f′ = ,  then 

                                 ( ) ( ) ( )
b

a

f x dx F b F a= −∫  

Proof 
   f ∈∵ R   on  [ , ]a b  
   ∴  given  0ε > ,  ∃  a partition  P  of  [ , ]a b   such that 

( ) ( ), ,U P f L P f ε− <  
   F∵   is differentiable on  [ , ]a b  
   [ ]1,i i it x x−∴ ∃ ∈   such  that   

1( ) ( ) ( )i i i iF x F x F t x− ′− = ∆  
         1( ) ( ) ( )i i i iF x F x f t x−⇒ − = ∆       for  1,2,....,i n=      F f′ =∵  

        
1

( ) ( ) ( )
n

i i
i

f t x F b F a
=

⇒ ∆ = −∑  

   ( ) ( ) ( )
b

a

F b F a f x dx ε⇒ − − <∫   

   ε∵  is arbitrary 

   ( ) ( ) ( )
b

a

f x dx F b F a∴ = −∫                ¤ 

 

Ø Theorem (Integration by Parts) 
   Suppose  F   and  G   are differentiable function on  [ , ]a b ,  F f′ = ∈R   and 
G g′ = ∈R   then 

                        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b

a a

F x g x dx F b G b F a G a f x G x dx= − −∫ ∫  

Proof 
   Put ( ) ( ) ( )H x F x G x=  
   ( ) ( ) ( ) ( )H F x G x F x G x h′ ′ ′⇒ = + =  
   Now  H ∈∵ R   and  h∈R  on  [ , ]a b  
   ∴ By applying the fundamental theorem of calculus to H  and its derivative h , 
we have 

 ( ) ( )
b

a

hdx H b H a= −∫  

    [ ]( ) ( ) ( ) ( ) ( ) ( )
b

a

F x G x F x G x dx H b H a′ ′⇒ + = −∫  

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b

a a

f x G x dx F x g x dx F b G b F a G a⇒ + = −∫ ∫  

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b

a a

F x g x dx F b G b F a G a f x G x dx⇒ = − −∫ ∫          ¤ 
 

� ---------------------------------- � 
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∵    if  ( )f α∈R  then 

( )
b

i i a
f t f dα α ε∆ − <∑ ∫
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Ø Question 
   Show that the function  f  defined on [ ]0,1  by 

                                          
1 ; is rational  

( )
0 ; is irrational

x
f x

x


= 


 

   is not integrable on [ ]0,1  
Solution 
   For any partition P  of  [ ]0,1 ,  0km =  ,  1kM =  

( )
1 1

, 1 0 1
n n

k k k
k k

S P f M x x
= =

⇒ = ∆ = ∆ = − =∑ ∑  

   and        ( )
1

, 0
n

k k
k

L P f m x
=

= ∆ =∑  

   so that       
1

0

1f dx =∫        ,       
1

0

0f dx =∫  

   i.e.   
1 1

0 0

f dx f dx≠∫ ∫   f⇒  is not integrable on  [ ]0,1 .         ¤ 

 

Ø Question 

   Show that  ( ) sinf x x=   is Riemann integrable over  0,
2
π 

  
. 

Solution 

   Take  30, , , ,.....,
2 2 2

nP
n n n n

π π π π =  
 

  by dividing  0,
2
π 

  
 into  n  equal parts. 

   Then  sin
2k
kM

n
π

=  ,  ( 1)sin
2k

km
n

π−
=  

( ) ( ) ( 1), , sin sin
2 2 2
k kS P f L P f

n n n
π π π− ⇒ − = − 

 
∑  

     
2n
π

≤   ε<   for  0 2
n n π

ε
> =  

f⇒   is Riemann integrable over  0,
2
π 

  
.         ¤ 

 

Ø Question 

   Show that  
1 ; is rational , 0 1

( )
; is irrational              0

x xxf x
x

 < ≤= 


  

   is integrable on [ ]0,1 . 
Solution 
   f   is continuous at each irrational. And rational numbers are dense in [ ]0,1 . 

   Also  ( ), 0L P f =   for any partition  P  of  [ ]0,1  so that   
1

0

0f dx =∫  

   0f ≥∵       ( ), 0S P f∴ ≥   
1

0

0f dα⇒ ≥∫  ……..…. (i) 
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   ∵ There are only finite number of points p
q

 (rationals) for which 
2

p qf
q p

ε 
= ≥ 

 
 

   ∴  Suppose  ( )
2

f x ε
≥   for  k  values of  x  in  [ ]0,1  

   Take  1P   such that  1 2
P

k
ε

< .  

   Consider  ( ) ( )1 1
1

,
n

i i i
i

S P f M x x −
=

= −∑   

   There are at most  k  values for which  1
2 iMε

≤ ≤ . For all other values  
2iM ε

> . 

    ( )1 1 1
values values

, ( ) ( )i i i i i i
k other

S P f M x x M x x− −⇒ = − + −∑ ∑  

    1( )
2 2 2 2i ik x x

k
ε ε ε ε

ε−≤ ⋅ + − < + =∑  

   ε∵  is arbitrary 

   ( )1, 0S P f∴ ≤     and    
1

0

0f dx ≤∫  ………… (ii) 

   By (i) and (ii), we have  
1

0

0f dx =∫  

   Hence   
1

0

0f dx =∫                 ¤ 

 

Ø Note 
   If  f  is integrable then  f   is also integrable but the converse is false.  
For example, let  f   be a function defined on  [ , ]a b   by 

1 ; [ , ]
( )

1 ; otherwise      
x a b

f x
∈ ∩

= −

¤
 

   Then  f   is Riemann-integrable but  f   is not. 
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We shall now discuss the concept of functions of bounded variation which is 
closely associated to the concept of monotonic functions and has wide application in 
mathematics. These functions are used in Riemann-Stieltjes integrals and Fourier 
series. 
   Let a function  f  be defined on an interval [ , ]a b  and { }0 1, ,........, nP a x x x b= = =  

be a partition of [ , ]a b . Consider the sum  1
1

( ) ( )
n

i i
i

f x f x −
=

−∑ . The set of these sums 

is infinite. It changes when we make a refinement in a partition. If this set of sums is 
bounded above then the function  f  is said to be a bounded variation and the 
supremum of the set is called the total variation of the function  f  on  [ , ]a b , and is 
denoted by  ( ); ,V f a b   or  ( ),fV a b  and it is also affiliated as ( )V f   or  fV . 
   Thus 

                      ( ) 1
1

; , sup ( ) ( )
n

i i
i

V f a b f x f x −
=

= −∑  

   The supremum being taken over all the partition of  [ , ]a b . 
   Hence the function  f  is said to be of bounded variation on  [ , ]a b   if, and only, if 
its total variation is finite  i.e. ( ); ,V f a b < ∞ . 
 

Ð Note 
Since for  x c y≤ ≤ , we have  

( ) ( ) ( ) ( ) ( ) ( )f y f x f y f c f c f x− ≤ − + −  
   Therefore the sum  1( ) ( )i if x f x −−∑   can not be decrease (it can, in fact only 
increase) by the refinement of the partition. 
 

Ð Theorem 
A bounded monotonic function is a function of bounded variation. 

Proof 
   Suppose a function  f  is monotonically increasing on [ , ]a b  and  P is any partition 
of  [ , ]a b  then 

    1
1

( ) ( )
n

i i
i

f x f x −
=

−∑   ( )1
1

( ) ( )
n

i i
i

f x f x −
=

= −∑   ( ) ( )f b f a= −  

           ( ) 1; , sup ( ) ( )i iV f a b f x f x −∴ = −∑  ( ) ( )f b f a= −   (finite) 
   Hence the function  f  is of bounded variation on  [ , ]a b .  
   Similarly a monotonically decreasing bounded function is of bounded variation 
with total variation ( ) ( )f a f b= − .  
   Thus for a bounded monotonic function  f  

   ( ) ( ) ( )V f f b f a= −               q          
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Ð Example 
A continuous function may not be a function of bounded variation. 

   e.g.  Consider a function  f , where 

; when  0 1sin
( )

; when    00

xx
f x x

x

π < ≤
 =

 

   It is  clear that  f  is continuous on  [0,1] . 

   Let us choose the partition  2 2 2 20, , ,........, , ,1
2 1 2 1 5 3

P
n n

 =  
+ − 

 

   Then           

     1( ) ( )i if x f x −−∑ ( )2 2 2 2
3 3 5 2 1

(1) ....... 0
n

f f f f f f
+

       = − + − + + −       
       

  

     2 3 2 3 2 5sin sin sin sin ..........
3 2 3 2 5 2

π π ππ      = − + − +     
     

 

             2 (2 1)..... sin 0
2 1 2

n
n

π+ + − +  
 

             2 2 2 2 2 2 2 2............
3 3 5 5 7 2 1 2 1 2 1n n n

     = + + + + + + + +     − + +     
 

                        2 2 2 22 2 2 ............. 2
3 5 7 2 1n

        = + + + +        +        
 

                        1 1 1 14 .............
3 5 7 2 1n

 = + + + + + 
 

   Since the infinite series  1 1 1 ...........
3 5 7

+ + +   is divergent, therefore its partial sums 

sequence { }nS , where 1 1 1 1........
3 5 7 2 1nS

n
= + + + +

+
,  is not bounded above. 

   Thus  1( ) ( )i if x f x −−∑   can be made arbitrarily large by taking n  sufficiently 
large.    
   ( );0,1V f⇒ → ∞    and so  f  is not of bounded variation.             q 
 

Ð Remarks 
A function of bounded variation is not necessarily continuous. 

   e.g.  the step-function  ( ) [ ]f x x= , where [ ]x  denotes the greatest integer not 
greater than x, is a function of  bounded variation on  [0,2] but is  not continuous. 
 

Ð Theorem 
If the derivative of the function  f  exists and is bounded on [ , ]a b , then  f  is of 

bounded variation on [ , ]a b . 
Proof 

∵   f ′   is bounded on [ , ]a b  
k∴ ∃   such that  ( )f x k′ ≤    [ , ]x a b∀ ∈ . 

   Let P  be any partition of the interval  [ , ]a b   then 

1 1( ) ( ) ( )i i i if x f x x x f c− − ′− = −∑ ∑   ,     [ , ]c a b∈      (by M.V.T) 
k b a≤ −  

     ( ); ,V f a b⇒   is finite.   f⇒   is of bounded variation.                              q 
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Note 
Boundedness of  f ′  is a sufficient condition for ( )V f  to be finite and is not 

necessary. 
 

Ð Theorem 
A function of bounded variation is necessarily bounded. 

Proof 
   Suppose f   is of bounded variation on  [ , ]a b . 
   For any  [ , ]x a b∈ , consider the partition  { }, ,a x b , consisting of just three points 
then 

( ) ( ) ( ) ( ) ( ; , )f x f a f b f x V f a b− + − ≤  
              ( ) ( ) ( ; , )f x f a V f a b⇒ − ≤  
   Again               

          ( ) ( ) ( ) ( )f x f a f x f a= + −  
                               ( ) ( ) ( )f a f x f a≤ + −  
                               ( )( ) ; ,f a V f a b≤ + < ∞  
                  f⇒   is bounded on [ , ]a b .               q 
 

Ð Properties of functions of bounded variation 
   1)  The sum (difference) of two functions of bounded variation is also of bounded 
variation. 
Proof 
   Let f  and g  be two functions of bounded variation on [ , ]a b . Then for any 
partition P  of  [ , ]a b  we have 
         ( ) ( ) 1( ) ( )i if g x f g x −+ − +∑ { } { }1 1( ) ( ) ( ) ( )i i i if x g x f x g x− −= + − +∑  

                  1 1( ) ( ) ( ) ( )i i i if x f x g x g x− −= − + −∑  

        1 1( ) ( ) ( ) ( )i i i if x f x g x g x− −≤ − + −∑ ∑  
        ( ; , ) ( ; , )V f a b V g a b≤ +  

                            ( ); , ( ; , ) ( ; , )V f g a b V f a b V g a b⇒ + ≤ +  
   This show that the function  f g+   is of bounded variation. 
   Similarly it can be shown that  f g−   is also of bounded variation. 
   i.e.    ( ) ( ) ( )V f g V f V g− ≤ +                 q 
 

Note 
   (i) If f  and g  are monotonic increasing on [ , ]a b  then ( )f g−  is of bounded  
        variation on [ , ]a b . 
   (ii) If c  is constant, the sums 1( ) ( )i if x f x −−∑  and therefore the total variation  
        function, ( )V f  is same for f  and f c− .  
 
   2)  The product of two functions of bounded variation is also of bounded 
variation. 
Proof 
   Let f  and g  be two functions of bounded variation on  [ , ]a b . 
   f⇒  and g  are bounded and  ∃  a number  k   such that  

( )f x k≤    &   ( )g x k≤      [ , ]x a b∀ ∈ . 
   For any partition  P  of  [ , ]a b   we have 
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( ) ( ) 1( ) ( )i ifg x fg x −−∑  

       1 1( ) ( ) ( ) ( )i i i if x g x f x g x− −= −∑  

                 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i i i i i i i if x g x f x g x f x g x f x g x− − − −= − + −∑  

                 { } { }1 1 1( ) ( ) ( ) ( ) ( ) ( )i i i i i if x g x g x g x f x f x− − −= − + −∑  

       1 1 1( ) ( ) ( ) ( ) ( ) ( )i i i i i if x g x g x g x f x f x− − −≤ − + −∑ ∑  

       1 1( ) ( ) ( ) ( )i i i ik g x g x k f x f x− −≤ − + −∑ ∑  
       ( ) ( )k V g k V f≤ +  

   fg⇒  is of bounded variation on  [ , ]a b .               q 
 
Ð Note 
   Theorems like the above, could not be applied to quotients of functions because the 
reciprocal of a function of bounded variation need not be of bounded variation. 

e.g. if  ( ) 0f x →   as  0x x→ , then  1
( )f x

  will not be bounded and therefore can not 

be of bounded variation on any interval which contains 0x . 
   Therefore to consider quotient, we avoid functions whose values becomes 
arbitrarily close to zero. 
 

  3)  If  f  is a function of bounded variation on  [ , ]a b  and if ∃ a positive number k  

such that  ( )f x k≥    [ , ]x a b∀ ∈   then  1
f

  is also of bounded variation on [ , ]a b . 

Proof 
   For any partition  P   of  [ , ]a b , we have 

1
1 1( ) ( )i ix x
f f −−∑   

1

1 1
( ) ( )i if x f x −

= −∑  

    1

1

( ) ( )
( ) ( )

i i

i i

f x f x
f x f x

−

−

−
= ∑  

    12

1 ( ) ( )i if x f x
k −≤ −∑    ( )2

1 ; ,V f a b
k

≤  

   1
f

⇒   is of bounded variation on  [ , ]a b .               q 

 
4)  If  f   is of bounded variation on  [ , ]a b , then it is also of bounded variation on 
[ , ]a c   and  [ , ]c b ,  where c  is a point of  [ , ]a b , and conversely. Also 
                                          ( ; , ) ( ; , ) ( ; , )V f a b V f a c V f c b= + . 
Proof 
  a)   Let, first,  f   be of bounded variation on [ , ]a b . 
   Take  { }1 0 1, ,....., mP a x x x c= = =    &   { }2 0 1, ,....., nP c y y y b= = =    any two 
partitions of  [ , ]a c   and  [ , ]c b   respectively. 
   Evidently,  { }1 2 0 0,...., , ,....,m nP P P a x x y y b= ∪ = = =   is a partition of  [ , ]a b . 
   We have 

( )1 1
1 1

( ) ( ) ( ) ( ) ; ,
m n

i i i i
i i

f x f x f y f y V f a b− −
= =

 
− + − ≤ 

 
∑ ∑  
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( )1
1

( ) ( ) ; ,
m

i i
i

f x f x V f a b−
=

⇒ − ≤∑  

    and       ( )1
1

( ) ( ) ; ,
n

i i
i

f y f y V f a b−
=

− ≤∑  

    f⇒   is of bounded variation on  [ , ]a c   and  [ , ]c b   both.  
 b)  Let, now, f  be of bounded variation on  [ , ]a c   and  [ , ]c b   both.  
   Let  { }0 1, ,....., nP a z z z b= = =   be a partition of  [ , ]a b . 
   If it does not contain the point c , let us consider the partition  * { }P P c= ∪  
   Let [ ]1,r rc z z−∈    i.e.  1r rz c z− ≤ ≤ ,     r n<  
   Then  

    1
1

( ) ( )
n

i i
i

f z f z −
=

−∑   
1

1 1 1
1 1

( ) ( ) ( ) ( ) ( ) ( )
r n

i i r r i i
i i r

f z f z f z f z f z f z
−

− − −
= = +

= − + − + −∑ ∑  

      
1

1 1
1

( ) ( ) ( ) ( )
r

i i r
i

f z f z f c f z
−

− −
=

≤ − + −∑  

   1
1

( ) ( ) ( ) ( )
n

r i i
i r

f z f c f z f z −
= +

+ − + −∑  

                ( ) ( ); , ; ,V f a c V f c b≤ +  
   f⇒  is of bounded variation on [ , ]a b  if it is of bounded variation on  [ ],a c   &  
[ , ]c b  both, then 

( ) ( ) ( ); , ; , ; ,V f a b V f a c V f c b≤ +  …………. (i) 
   Now let  0ε >   be any arbitrary number. 
   Since  ( ); ,V f a c   and  ( ); ,V f c b   are the total variation of  f  on  [ ],a c   &  [ , ]c b   
respectively therefore  ∃  partition  { }1 0 1 2, , ,....., mP a x x x x c= = =  and 

{ }2 0 1 3, , ,......, nP c y y y y b= = =   of  [ ],a c   &  [ , ]c b  respectively such that 

( )1
1

( ) ( ) ; ,
2

m

i i
i

f x f x V f a c ε
−

=

− > −∑  ……………. (ii) 

         & ( )1
1

( ) ( ) ; ,
2

n

i i
i

f y f y V f c b ε
−

=

− > −∑  …………… (iii) 

Adding (ii) and (iii) we get 

     ( ) ( )1 1
1 1

( ) ( ) ( ) ( ) ; , ; ,
m n

i i i i
i i

f x f x f y f y V f a c V f c b ε− −
= =

− + − > + −∑ ∑  

         ( ) ( ) ( ); , ; , ; ,V f a b V f a c V f c b ε⇒ > + −  
   But ε  is arbitrary positive number therefore we get 

( ) ( ) ( ); , ; , ; ,V f a b V f a c V f c b≥ +  …………….. (iv) 
   From (i) and (iv), we get 

( ) ( ) ( ); , ; , ; ,V f a b V f a c V f c b= +               q 
 

|||||||||||||||||||||||||||| 
 
 
 
 
 
 
 

a 
c 

zr – 1 zr z1 
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Ð Variation Function 
     Let  f  be a function of bounded variation on  [ , ]a b  and x is a point of  [ , ]a b . 
Then the total variation of  f  is  ( ); ,V f a x  on [ , ]a x , which is clearly a function of  x, 
is called the total variation function or simply the variation function of  f   and is 
denoted by ( )fV x , and when there is no scope for confusion, it is simply written as 

( )V x . 
   Thus   ( )( ) ; , ; ( )fV x V f a x a x b= ≤ ≤  
   If  1 2,x x  are two points of the interval  [ , ]a b  such that  2 1x x> , then 
                       ( )2 1 1 20 ( ) ( ) ; ,f x f x V f x x≤ − ≤   
                                                      ( ) ( )1 2; , ; ,V f a x V f a x= −  

                                            2 1( ) ( )f fV x V x= −  
            2 1( ) ( )f fV x V x⇒ ≥  
   implies that the variation function is monotonically increasing function on [ , ]a b . 
 
CHARACTERIZATION OF FUNCTIONS OF BOUNDED VARIATION 
 
Ð Theorem 

A function of bounded variation is expressible as the difference of two 
monotonically increasing function. 
Proof 
   We have  

    ( ) ( )1 1( ) ( ) ( ) ( ) ( )
2 2

f x V x f x V x f x= + − −  

( ) ( )G x H x= −   (say) 
   We shall prove that these two functions  ( )G x   and  ( )H x   are monotonically 
increasing on  [ , ]a b . 
   Now, if  2 1x x> ,  we have 

[ ]2 1 2 1 2 1
1( ) ( ) ( ) ( ) ( ) ( )
2

G x G x V x V x f x f x− = − + −  

  ( )1 2 1 2
1 ( ; , ) ( ) ( )
2

V f x x f x f x= − −    

   Since   1 2 1 2( ; , ) ( ) ( )V f x x f x f x≥ −  
    2 1( ) ( ) 0G x G x⇒ − ≥       i.e.   2 1( ) ( )G x G x≥  

   so that the function ( )G x  is monotonically increasing on [ , ]a b . 
   Again, we have 

( ) ( )2 1 2 1 2 1
1( ) ( ) ( ) ( ) ( ) ( )
2

H x H x V x V x f x f x− = − − −    

   ( )1 2 2 1
1 ( ; , ) ( ) ( )
2

V f x x f x f x= − −    

   so that as before  
2 1( ) ( ) 0H x H x− ≥     i.e. 2 1( ) ( )H x H x≥ .  

   i.e. ( )H x  is also monotonically increasing function. 
   Hence the result.                   q 
 
Ð Note 

A function ( )f x  is of bounded variation over the interval [ , ]a b  iff it can be 
expressed as the difference of two monotonically functions.  
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Ð Theorem 
   Let  f   be of bounded variation on  [ , ]a b . Let  V  be defined on  [ , ]a b  as follows: 
                      ( )( ) ( ) ; , )fV x V x V f a x= =      if     a x b< ≤  ,  ( ) 0V a = . 
Then 

i)   V   is an increasing function on  [ , ]a b . 
ii)  ( )V f−   is an increasing function on  [ , ]a b . 

Proof 
    If  a x y b< < ≤  , we can write 

( ; , ) ( ; , ) ( ; , )V f a y V f a x V f x y= −  
    ( ) ( ) ( ; , )V y V x V f x y⇒ − =  

               ( ; , ) 0V f x y ≥∵  
               ( ) ( ) 0V y V x∴ − ≥      ( ) ( )V x V y⇒ ≤    and (i) holds. 
   To prove (ii), let  ( ) ( ) ( )D x V x f x= −    if    [ , ]x a b∈ . 
   Then, if   a x y b≤ < ≤ , we have 

[ ] [ ]( ) ( ) ( ) ( ) ( ) ( )D y D x V y V x f y f x− = − − −  
[ ]( ; , ) ( ) ( )V f x y f y f x= − −  

   But from the definition of  ( ; , )V f x y , it follows that  
( ) ( ) ( ; , )f y f x V f x y− ≤  

   This means that   ( ) ( ) 0D y D x− ≥    and (ii) holds.              q 
 

Ð Theorem 
If  c  be any point of  [ , ]a b , then  ( )V x  is continuous at  c   if and only if  

( )f x   is continuous at  c . 
   i.e. A point of continuity of  ( )f x   is also a point of continuity of  ( )V x   and 
conversely. 
Proof 

Firstly suppose that  ( )V x  is continuous at  c . 
   Let 0ε >  be given, then  ∃   0δ >  such that 

( ) ( )V x V c ε− <       for    x c δ− <    ………… (i) 
   Also, we have  

( ) ( ) ( ) ( )f x f c V x V c− ≤ −        if     x c>   …………… (ii) 
   And  

( ) ( ) ( ) ( )f x f c V c V x− ≤ −    if      x c<   …………… (iii) 
   From (i), (ii) and (iii), we deduce that  

( ) ( ) ( ) ( )f x f c V x V c ε− ≤ − <      for   x c δ− <  
   Which shows that  ( )f x   is continuous at  c . 
   Now suppose that  c   is a point of continuity of  ( )f x   and let  0ε >   be given,  
then  0δ∃ >   such that  

( ) ( )
2

f x f c ε
− <      for    x c δ− <  

   Also ∃  a partition  { }0 1 1, ,....., , ,.....,q q nP c y y y y y b−= = =   of  [ , ]c b  such that  

1
1

1( ) ( ) ( ; , )
2

n

q q
q

f y f y V f c b ε−
=

− > −∑    …………… (iv) 

   Since as a result of introducing addition points to the partition  P , the 
corresponding sum of the moduli of the differences of the function values at end 
points will not be decreased, therefore we may assume that  

a b y x 
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10 y c δ< − <    

   so that     1( ) ( )
2

f y f c ε
− <  ……………. (v) 

   Thus (iv) becomes 

1 1
2

1 1 1( ; , ) ( ) ( ) ( ; , )
2 2 2

n

q q
q

V f c b f y f y V f y bε ε ε−
=

− < + − < +∑  

1( ; , ) ( ; , )V f c b V f y b ε⇒ − <  
1( ) ( )V y V c ε⇒ − <  

   Thus for  10 y c δ< − < ,  we have  10 ( ) ( )V y V c ε< − <  
          

0
lim ( ) ( )

x c
V x V c

→ +
∴ =  

   Similarly, we can have 
               

0
lim ( ) ( )

x c
V x V c

→ −
=   

   Which shows that  ( )V x  is continuous at  c .              q 
 

Ð Note 
( )V x  is continuous in  [ , ]a b   iff  ( )f x   is continuous in  [ , ]a b . 

 

Ð Corollary 
   A function  f   is of bounded variation on  [ , ]a b   iff there is a bounded increasing 
function  g  on  [ , ]a b   such that for any two points  x′   and  x′′   in  [ , ]a b ,  x x′ ′′< , 
we have   
             ( ) ( ) ( ) ( )f x f x g x g x′′ ′ ′′ ′− ≤ −  
   Moreover, if  g   is continuous at  x′ , so is  f . 
Proof 

Take  
,

( )
,0

x
a a x bV

g x
x a

< ≤
=  =

 

   Then  g   is increasing and bounded on  [ , ]a b . 
   Also,  ( ) ( ) ( ) ( ) ( )x

xf x f x V f g x g x′′
′′ ′′ ′′ ′− ≤ = −  

   Which also yields that if  g   is continuous at  x′ , so is  f .            q 
 
Ð Question 
    Show that the function f  defined by 

                                   
2 1 ; 0sin

( )
; 00

xx
f x x

x

 ≠=  =

 

   is of bounded variation on  [ ]0,1 . 
Solution 

   f   is differentiable on  [ ]0,1  and  1( ) 2 sin sinf x x x
x

′ = −  for  0 1x≤ ≤ . 

   Also   

  1( ) 2 sin sin 2 1 3f x x x
x

′ ≤ + ≤ + =  

   i.e.   ( )f x′   is bounded on  [ ]0,1  
   Hence  f   is of bounded variation on  [ ]0,1 .              q 
 
 



  Chap 7 – Functions of bounded variation. 9 

Ð Question 

Show that     
, 0 1cos

( ) 2
, 00

x xx
g x

x

π < ≤=  =

    is not of bounded variation on  [ ]0,1  

Solution 

   Let  1 1 1 10, , ,....., , ,1
2 2 1 3 2

P
n n

 =  
− 

  be a partition of  [ ]0,1 .  

Then 
        1( ) ( )i if x f x −−∑  

     1 1 1 1 1(1)
2 2 3 3 4

f f f f f f         = − + − + − +         
         

( )1...... 0
2

f f
n

 + − 
 

 

     1 1 1 1 1cos cos cos cos cos cos .....
2 2 4 2 4 3 6 3 6 4 8
π π π π π π

= − + − + − +
1 cos 0
2 4n n

π
+ −  

     1 1 1 12 cos 2 cos 2 cos ..... 2 cos
2 4 3 6 4 8 2 4n n

π π π π       = + + + +       
       

 

     1 1 1 12 cos cos cos ...... cos
2 4 3 6 4 8 2 4n n

π π π π = + + + + 
 

 

   which is not bounded. 
   Hence  ( )f x   is not of bounded variation on  [ ]0,1 .               q 
 

Alternative 
  We have 

  1 1( ) ( ) ( ) ( )k k k kg x g x g x g x+ −− + −  

                    1 ( 1) 1 1 1 ( 1)cos cos cos cos
1 2 2 2 1 2

k k k k
k k k k

π π π π+ −
= − + −

+ −
 

          

2 ; if is even

1 1
; if    is odd

1 1

k
k

k
k k


= 
 +
 + −

 

      
1 1

1 1( )
n

b
a

k k
V g

k k

∞

= =

⇒ ≤ ≤∑ ∑  

      
1

1
k k

∞

=
∑∵   is divergent  ( )b

aV g∴   is not finite. 

   Hence g  is not of bounded variation.                q 
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    We discussed Riemann-Stieltjes’s integrals of the form 
b

a
f dα∫  under the 

restrictions that both f  and α  are defined and bounded on a finite interval [ , ]a b . 
To extend the concept, we shall relax these restrictions on f  and α . 
 

Ø Definition 

    The integral 
b

a
f dα∫  is called an improper integral of first kind if  a = −∞   or  

b = +∞   or  both  i.e. one or both integration limits is infinite. 
 

Ø Definition  

    The integral  
b

a
f dα∫   is called an improper integral of second kind if ( )f x  is 

unbounded at one or more points of a x b≤ ≤ . Such points are called singularities 
of ( )f x . 
 

Ø Notations 
    We shall denote the set of all functions  f  such that  ( )f α∈R   on  [ , ]a b   by  

( ; , )a bαR . When ( )x xα = , we shall simply write ( , )a bR  for this set. The notation 
α ↑  on  [ , )a ∞  will mean that α  is monotonically increasing on  [ , )a ∞ . 
 

Ø Definition 
    Assume that  ( ; , )f a bα∈R  for every  b a≥ . Keep ,a α  and f  fixed and define 
a function I  on [ , )a ∞  as follows: 

                                 ( ) ( ) ( )
b

a

I b f x d xα= ∫    if   b a≥  ………… (i) 

   The function I  so defined is called an infinite ( or an improper ) integral of first 
kind and is denoted by the symbol ( ) ( )

a
f x d xα

∞

∫  or by 
a

f dα
∞

∫ . 

   The integral  
a

f dα
∞

∫  is said to converge if the limit  

                                       lim ( )
b

I b
→∞

 ………… (ii) 

exists (finite). Otherwise,  
a

f dα
∞

∫  is said to diverge. 

   If the limit in (ii) exists and equals A , the number A  is called the value of the 
integral and we write 

a
f d Aα

∞
=∫  

 

Ø Example 

      Consider   
1

b px dx−∫ . 

    
( )1

1

1
1

pb
p b

x dx
p

−
−

−
=

−∫    if 1p ≠ ,  the integral  
1

px dx
∞

−∫  diverges if  1p < . When 

1p > , it converges and has the value 1
1p −

. 

      If  1p = , we get  1

1
log

b
x dx b− = → ∞∫    as   b → ∞ .     1

1
x dx

∞ −⇒ ∫  diverges. 
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Ø Example 

     Consider  
0

sin 2
b

xdxπ∫   

0

(1 cos 2 )sin 2
2

b bxdx ππ
π

−
= → ∞∫∵    as  b → ∞ . 

∴ the integral 
0

sin 2 xdxπ
∞

∫   diverges. 

 

Ø Note 

    If  
a

f dα
−∞
∫   and  

a

f dα
∞

∫  are both convergent for some value of a , we say that  

the integral  f dα
∞

−∞
∫  is convergent  and its value is defined to be the sum  

a

a

f d f d f dα α α
∞ ∞

−∞ −∞

= +∫ ∫ ∫  

   The choice of the point a  is clearly immaterial. 

   If the integral f dα
∞

−∞
∫  converges, its value is equal to the limit:   lim

b

b
b

f dα
→+ ∞

−
∫ . 

 
Ø Theorem 
   Assume that α ↑  on [ , )a +∞   and suppose that ( ; , )f a bα∈R  for every b a≥ . 

Assume that ( ) 0f x ≥  for each  x a≥ . Then  
a

f dα
∞

∫  converges if, and only if, 

there exists a constant 0M >  such that  

     
b

a

f d Mα ≤∫   for every  b a≥ . 

Proof 

   We have   ( ) ( ) ( )
b

a

I b f x d xα= ∫ ,    b a≥  

I⇒ ↑   on  [ , )a +∞  
   Then { }lim ( ) sup ( ) | 0

b
I b I b b a M

→+∞
= ≥ = >  and the theorem follows 

   
b

a

f d Mα⇒ ≤∫  for every  b a≥  whenever the integral converges. 

 
 

]]]]]]]]]]]]]]]] 
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Ø Theorem: (Comparison Test) 
    Assume that α ↑  on [ , )a +∞ . If ( ; , )f a bα∈R  for every  b a≥ , if 

0 ( ) ( )f x g x≤ ≤  for every x a≥ , and if  
a

g dα
∞

∫  converges, then  
a

f dα
∞

∫  converges 

and we have  

                         
a a

f d g dα α
∞ ∞

≤∫ ∫  

Proof 

    Let   1( )
b

a

I b f dα= ∫      and     2 ( )
b

a

I b g dα= ∫        ,    b a≥  

0 ( ) ( )f x g x≤ ≤∵    for every   x a≥  
1 2( ) ( )I b I b∴ ≤  …………………. (i) 

  
a

g dα
∞

∫∵   converges   ∴ ∃  a constant  0M >   such that 

     
a

g d Mα
∞

≤∫   ,    b a≥  …………………(ii) 

   From (i) and (ii) we have   1( )I b M≤  ,   b a≥ . 
   1lim ( )

b
I b

→∞
⇒    exists and is finite. 

   
a

f dα
∞

⇒ ∫   converges. 

   Also    1 2lim ( ) lim ( )
b b

I b I b M
→∞ →∞

≤ ≤  

  
a a

f d g dα α
∞ ∞

⇒ ≤∫ ∫ . 

 
Ø Theorem (Limit Comparison Test) 
    Assume that  α ↑  on  [ , )a +∞ . Suppose that  ( ; , )f a bα∈R   and that 

( ; , )g a bα∈R   for every  b a≥ , where  ( ) 0f x ≥   and  ( ) 0g x ≥   if  x a≥ . If  

                                             ( )lim 1
( )x

f x
g x→∞

=  

   then  
a

f dα
∞

∫   and  
a

g dα
∞

∫  both converge or both diverge. 

Proof 
    For all  b a≥ , we can find some  0N >   such that 

( ) 1
( )

f x
g x

ε− <   x N∀ ≥    for every   0ε > . 

          ( )1 1
( )

f x
g x

ε ε⇒ − < < +  

   Let  1
2

ε = ,  then we have 

     1 ( ) 3
2 ( ) 2

f x
g x

< <  

   ( ) 2 ( )g x f x⇒ <  …..…..(i)       and       2 ( ) 3 ( )f x g x<  ……....(ii) 
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    From (i)   2
a a

g d f dα α
∞ ∞

<∫ ∫    

   
a

g dα
∞

⇒ ∫   converges if 
a

f dα
∞

∫  converges and  
a

f dα
∞

∫  diverges if  
a

f dα
∞

∫   

diverges. 

   From (ii)   2 3
a a

f d g dα α
∞ ∞

<∫ ∫      

   
a

f dα
∞

⇒ ∫   converges if  
a

g dα
∞

∫   converges and  
a

g dα
∞

∫  diverges if 
a

f dα
∞

∫  

diverges. 

   ⇒  The integrals  
a

f dα
∞

∫   and  
a

g dα
∞

∫   converge or diverge together. 
 

Ø Note 

    The above theorem also holds if  ( )lim
( )x

f x c
g x→∞

= ,  provided that  0c ≠ . If 0c = , 

we can only conclude that convergence of  
a

g dα
∞

∫  implies convergence of 
a

f dα
∞

∫ . 

 

Ø Example 

    For every real p , the integral  
1

x pe x dx
∞

−∫  converges. 

   This can be seen by comparison of this integral with 2
1

1 dx
x

∞

∫ .  

   Since   
2

( )lim lim 1( )

x p

x x

f x e x
g x

x

−

→∞ →∞
=   where  ( ) x pf x e x−=   and  2

1( )g x
x

= . 

        
2

2( )lim lim lim 0
( )

p
x p

xx x x

f x xe x
g x e

+
− +

→∞ →∞ →∞
⇒ = = =  

   and  2
1

1 dx
x

∞

∫∵   is convergent  

           ∴ the given integral  
1

x pe x dx
∞

−∫   is also convergent. 

 
Ø Theorem 

    Assume  α ↑  on [ , )a +∞ . If ( ; , )f a bα∈R  for every b a≥  and if 
a

f dα
∞

∫  

converges, then 
a

f dα
∞

∫  also converges. 

   Or:  An absolutely convergent integral is convergent. 
Proof 
    If  x a≥  ,   ( ) ( )f x f x± ≤  
     ( ) ( ) 0f x f x⇒ − ≥  
     0 ( ) ( ) 2 ( )f x f x f x⇒ ≤ − ≤  
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    ( )
a

f f dα
∞

⇒ −∫  converges. 

   Subtracting from  
a

f dα
∞

∫   we find that  
a

f dα
∞

∫  converges. 

 ( ∵ Difference of two convergent integrals is convergent ) 
 
Ø Note 

    
a

f dα
∞

∫  is said to converge absolutely if  
a

f dα
∞

∫  converges. It is said to be 

convergent conditionally if 
a

f dα
∞

∫  converges but 
a

f dα
∞

∫  diverges. 

Ø Remark 
    Every absolutely convergent integral is convergent. 
 

Ø Theorem 
     Let f  be a positive decreasing function defined on [ , )a +∞  such that 

( ) 0f x →   as  x → +∞ . Let α  be bounded on [ , )a +∞  and assume that 

( ; , )f a bα∈R  for every  b a≥ . Then the integral 
a

f dα
∞

∫  is convergent. 

Proof 
    Integration by parts gives 

( ) ( ) ( )
b b

b

a
a a

f d f x x x dfα α α= ⋅ −∫ ∫  

 ( ) ( ) ( ) ( ) ( )
b

a

f b b f a a d fα α α= ⋅ − ⋅ + −∫  

   It is obvious that ( ) ( ) 0f b bα →   as  b → +∞   
( α∵   is bounded and ( ) 0f x →  as x → +∞ ) 

and  ( ) ( )f a aα  is finite. 

   ∴ the convergence of 
b

a

f dα∫  depends upon the convergence of ( )
b

a

d fα −∫ . 

   Actually, this integral converges absolutely. To see this, suppose ( )x Mα ≤  for 
all x a≥   ( ( )xα∵  is given to be bounded ) 

    ( ) ( ) ( )
b b

a a

x d f M d fα⇒ − ≤ −∫ ∫   

   But ( ) ( ) ( ) ( )
b

b

a
a

M d f M f M f a M f b M f a− = − = − →∫  as b → ∞ . 

   ( )
a

M d f
∞

⇒ −∫  is convergent. 

   ∵  f−   is an increasing function. 

   ∴  ( )
a

d fα
∞

−∫   is convergent.    (Comparison Test) 

   
a

f dα
∞

⇒ ∫  is convergent. 

]]]]]]]]]]]]]]]] 
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Ø Theorem (Cauchy condition for infinite integrals) 

    Assume that ( ; , )f a bα∈R  for every b a≥ . Then the integral 
a

f dα
∞

∫  converges 

if, and only if, for every 0ε >  there exists a 0B >  such that c b B> >  implies 

     ( ) ( )
c

b

f x d xα ε<∫  

Proof 

   Let  
a

f dα
∞

∫  be convergent. Then  ∃  0B >  such that  

2

b

a a

f d f d ε
α α

∞

− <∫ ∫   for every  b B≥  ………..(i) 

   Also for  c b B> > , 

2

c

a a

f d f d ε
α α

∞

− <∫ ∫  …………….. (ii) 

   Consider 

    
c c b

b a a

f d f d f dα α α= −∫ ∫ ∫  

       
c b

a a a a

f d f d f d f dα α α α
∞ ∞

= − + −∫ ∫ ∫ ∫  

       
2 2

c b

a a a a

f d f d f d f d ε ε
α α α α ε

∞ ∞

≤ − + − < + =∫ ∫ ∫ ∫  

       
c

b

f dα ε⇒ <∫    when  c b B> > . 

   Conversely, assume that the Cauchy condition holds. 

   Define  
a n

n
a

a f dα
+

= ∫    if   1,2,......n =  

   The sequence { }na  is a Cauchy sequence  ⇒  it converges. 
   Let    lim nn

a A
→∞

=  

   Given  0ε > , choose B  so that  
2

c

b

f d ε
α <∫     if   c b B> > . 

   and also that  
2na A ε

− <   whenever  a n B+ ≥ . 

   Choose an integer N  such that  a N B+ >   i.e.  N B a> −  
   Then, if  b a N> + , we have 

b a N b

a a a N

f d A f d A f dα α α
+

+

− = − +∫ ∫ ∫  

         
2 2

b

N
a N

a A f d ε ε
α ε

+

≤ − + < + =∫  

   
a

f d Aα
∞

⇒ =∫  

   This completes the proof.  

B b c 

a B c b 
a+N
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Ø Remarks 

   It follows from the above theorem that convergence of  
a

f dα
∞

∫  implies 

lim 0
b

bb
f d

ε
α

+

→∞
=∫  for every fixed 0ε > .  

   However, this does not imply that ( ) 0f x →  as x → ∞ . 
 

Ø Theorem 

   Every convergent infinite integral ( ) ( )
a

f x d xα
∞

∫  can be written as a convergent 
infinite series. In fact, we have 

                   
1

( ) ( ) k
ka

f x d x aα
∞ ∞

=

= ∑∫   where  
1

( ) ( )
a k

k
a k

a f x d xα
+

+ −

= ∫  ……….. (1) 

Proof 

   
a

f dα
∞

∫∵  converges, the sequence  { }a n

a
f dα

+

∫  also converges. 

   But  
1

a n n

k
ka

f d aα
+

=

= ∑∫ . Hence the series 
1

k
k

a
∞

=
∑  converges and equals 

a

f dα
∞

∫ . 

 
Ø Remarks 
   It is to be noted that the convergence of the series in (1) does not always imply 

convergence of the integral. For example, suppose  
1

sin 2
k

k
k

a xdxπ
−

= ∫ . Then each 

0ka =  and ka∑  converges. 

   However, the integral  
0 0

sin 2 lim sin 2
b

b
xdx xdxπ π

∞

→∞
=∫ ∫

1 cos2lim
2b

bπ
π→∞

−
=   diverges. 

 
 IMPROPER INTEGRAL OF THE SECOND KIND 
 

Ø Definition 
   Let f  be defined on the half open interval ( ],a b  and assume that ( ; , )f x bα∈R  
for every ( ],x a b∈ . Define a function I  on ( ],a b  as follows: 

                                             ( )
b

x

I x f dα= ∫     if  ( ],x a b∈  ……….. (i) 

   The function I  so defined is called an improper integral of the second kind and 

is denoted by the symbol  ( ) ( )
b

a

f t d tα
+
∫   or  

b

a

f dα
+
∫ . 

   The integral 
b

a

f dα
+
∫  is said to converge if the limit   

  lim ( )
x a

I x
→ +

 ……...(ii)   exists (finite). 

Otherwise, 
b

a

f dα
+
∫  is said to diverge. If the limit in (ii) exists and equals A , the 

number A  is called the value of the integral and we write  
b

a

f d Aα
+

=∫ . 
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   Similarly, if f  is defined on [ , )a b  and ( ; , )f a xα∈R   [ , )x a b∀ ∈  then 

( )
x

a

I x f dα= ∫   if  [ , )x a b∈  is also an improper integral of the second kind and is 

denoted as  
b

a

f dα
−

∫   and is convergent if  lim ( )
x b

I x
→ −

 exists (finite). 

 

Ø Example 
     ( ) pf x x−=  is defined on (0, ]b  and ( , )f x b∈R  for every (0, ]x b∈ . 

( )
b

p

x

I x x dx−= ∫       if   (0, ]x b∈  

        
0

b
px dx−

+

= ∫  
0

0

lim
b

px dx
ε

ε

−

→
+

= ∫  

        
1

0
lim

1

bpx
pε

ε

−

→
=

−
  

1 1

0
lim

1

p pb
pε

ε− −

→

−
=

−
      ,     ( 1)p ≠  

                             
, 1
, 1

finite p
infinite p

<
=  >

 

      When 1p = , we get  1 log log
b

dx b
xε

ε= − → ∞∫    as  0ε → . 

       1

0

b

x dx−

+

⇒ ∫   also diverges. 

     Hence the integral converges when  1p <  and diverges when  1p ≥ . 
 

Ø Note 

   If the two integrals 
c

a

f dα
+
∫  and 

b

c

f dα
−

∫  both converge, we write 

                                              
b bc

a a c

f d f d f dα α α
− −

+ +

= +∫ ∫ ∫  

   The definition can be extended to cover the case of any finite number of sums. 
We can also consider mixed combinations such as 

                              
b

a b

f d f dα α
∞

+

+∫ ∫   which can be written as  
a

f dα
∞

+
∫ . 

 

Ø Example 

   Consider   1

0

x pe x dx
∞

− −

+
∫       ,    ( 0)p >  

   This integral must be interpreted as a sum as 

                                    
1

1 1 1

0 0 1

x p x p x pe x dx e x dx e x dx
∞ ∞

− − − − − −

+ +

= +∫ ∫ ∫  

                                                        1 2I I= +  ………..….…… (i) 
   2I , the second integral, converges for every real  p  as proved earlier. 

   To test 1I , put 1t
x

=      2
1dx dt
t

⇒ = −    
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1

1
1 0

lim x pI e x dx
ε

ε

− −

→
⇒ = ∫   

11
1

20
1

1lim pte t dt
tε

ε

− −

→

 = − 
 ∫   

1
1

1

0
1

lim pte t dt
ε

ε

− − −

→
= ∫  

   Take  
1

1( ) ptf t e t
− − −=    and   1( ) pg t t− −=  

   Then  
1

1

1
( )lim lim 1
( )

p

pt t

tf t e t
g t t

− − −

− −→∞ →∞

⋅
= =   and since  1

1

pt dt
∞

− −∫   converges when  0p >   

   
1

1

1

pte t dt
∞

− − −∴ ∫   converges when  0p >  

   Thus  1

0

x pe x dx
∞

− −

+
∫   converges when  0p > . 

   When 0p > , the value of the sum in (i) is denoted by ( )pΓ . The function so 
defined is called the Gamma function. 
 
Ø Note 
   The tests developed to check the behaviour of the improper integrals of Ist kind 
are applicable to improper integrals of IInd kind after making necessary 
modifications. 
 
Ø A Useful Comparison Integral 

( )

b

a
n

dx
x a−∫  

   We have, if 1n ≠ , 

                         
( ) 1

1
(1 )( )

bb

n
a a

n
dx

n x ax aε ε
−

+ +

=
− −−∫  

                                            1 1
1 1 1

(1 ) ( )n nn b a ε− −

 
= − − − 

 

   Which tends to 1
1

(1 )( )nn b a −− −
  or +∞   according as 1n <  or  1n > , as  0ε → . 

   Again, if  1n = , 

                       log( ) log
b

a

dx b a
x aε

ε
+

= − − → +∞
−∫    as   0ε → . 

   Hence the improper integral  
( )

b

a
n

dx
x a−∫  converges iff  1n < . 

 

 
 

]]]]]]]]]]]]]]]] 
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Ø Question 
   Examine the convergence of  

    (i)    
( )

1

1 230 1

dx

x x+
∫             (ii)    

1

2 2
0 (1 )

dx
x x+∫      (iii)    

( )

1

1 1
2 30 1

dx

x x−
∫  

 Solution 

(i)     
( )

1

1 230 1

dx

x x+
∫  

    Here ‘0’ is the only point of infinite discontinuity of the integrand. 
    We have 

( )1 23

1( )
1

f x
x x

=
+

 

   Take   1
3

1( )g x
x

=  

   Then   20 0

( ) 1lim lim 1
( ) 1x x

f x
g x x→ →

= =
+

 

        
1

0
( )f x dx⇒ ∫   and  

1

0
( )g x dx∫   have identical behaviours. 

        
1

1
30

dx

x
∫∵   converges    

( )
1

1 230 1

dx

x x
∴

+
∫  also converges. 

 

(ii)    
1

2 2
0 (1 )

dx
x x+∫  

   Here ‘0’ is the only point of infinite discontinuity of the given integrand. 
   We have 

                  2 2
1( )

(1 )
f x

x x
=

+
 

   Take  2
1( )g x
x

=  

   Then   
( )20 0

( ) 1lim lim 1
( ) 1x x

f x
g x x→ →

= =
+

 

   
1

0
( )f x dx⇒ ∫   and  

1

0
( )g x dx∫   behave alike. 

   But 2n =  being greater than 1, the integral 
1

0
( )g x dx∫  does not converge. Hence 

the given integral also does not converge. 
 

(iii)     
( )

1

1 1
2 30 1

dx

x x−
∫  

   Here ‘0’ and ‘1’ are the two points of infinite discontinuity of the integrand. 
   We have 

                 
( )

1 1
2 3

1( )
1

f x
x x

=
−

 

   We take any number between 0 and 1, say 1
2 , and examine the convergence of  
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the improper integrals  
1

2

0

( )f x dx∫   and  
1

1
2

( )f x dx∫ . 

   To examine the convergence of  
1

2

11
320

1

(1 )
dx

x x−
∫ , we take 1

2

1( )g x
x

=  

   Then 

10 0 3

( ) 1lim lim 1
( ) (1 )x x

f x
g x x→ →

= =
−

 

   
1

2

1
20

1 dx
x

∫∵   converges    
1

2

11
320

1

(1 )
dx

x x
∴

−
∫  is convergent. 

   To examine the convergence of  
1

11
321

2

1

(1 )
dx

x x−
∫ , we take  1

3

1( )
(1 )

g x
x

=
−

 

   Then 

            11 1 2

( ) 1lim lim 1
( )x x

f x
g x x→ →

= =  

   
1

1
31

2

1

(1 )
dx

x−
∫∵   converges     

1

11
321

2

1

(1 )
dx

x x−
∫∵   is convergent. 

   Hence 
1

0
( )f x dx∫  converges. 

 
Ø Question 

   Show that  ( )
1

11

0

1 nmx x dx−− −∫  exists iff  ,m n  are both positive. 

Solution 
   The integral is proper if  1m ≥   and  1n ≥ . 
   The number ‘0’ is a point of infinite discontinuity if  1m <  and the number ‘1’ is 
a point of infinite discontinuity if  1n < . 
   Let  1m <   and  1n < . 
   We take any number, say 1

2 , between 0 & 1 and examine the convergence of 

the improper integrals  ( )
1

2
11

0

1 nmx x dx−− −∫   and  ( )
1

11

1
2

1 nmx x dx−− −∫   at ‘0’ and ‘1’ 

respectively.  
Convergence at 0: 
   We write  

                  
1

1 1
1

(1 )( ) (1 )
n

m n
m

xf x x x
x

−
− −

−

−
= − =    and take  1

1( ) mg x
x −=  

   Then  ( ) 1
( )

f x
g x

→   as  0x →  

   As  
1

2

1
0

1
m dx

x −∫   is convergent at 0  iff   1 1m− <   i.e. 0m >  

  We deduce that the integral  ( )
1

2
11

0

1 nmx x dx−− −∫   is convergent at 0, iff  m  is +ive. 
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Convergence at 1: 

   We write  
1

1 1
1( ) (1 )

(1 )

m
m n

n
xf x x x

x

−
− −

−= − =
−

   and take  1
1( )

(1 ) ng x
x −=

−
 

   Then  ( ) 1
( )

f x
g x

→   as  1x →  

   As  
1

1
1

2

1
(1 ) n dx

x −−∫   is convergent, iff   1 1n− <    i.e. 0n > . 

   We deduce that the integral  ( )
1

11

1
2

1 nmx x dx−− −∫  converges iff  0n > . 

   Thus  ( )
1

11

0

1 nmx x dx−− −∫  exists for positive values of ,m n  only.  

   It is a function which depends upon m  & n  and is defined for all positive values 
of m  & n . It is called Beta function. 
 

Ø Question  
   Show that the following improper integrals are convergent. 

   (i)  2

1

1sin dx
x

∞

∫     (ii)  
2

2
1

sin x dx
x

∞

∫     (iii)  
1

2
0

log
(1 )
x x dx

x+∫     (iv)  
1

0

log log(1 )x x dx⋅ +∫  

Solution 

(i)   Let  2 1( ) sinf x
x

=    and   2
1( )g x
x

=   

   then    
2

0
2

21

1
sin( ) sinlim lim lim 1

( )x x y
x

x

f x y
g x y→∞ →∞ →

 
= = = 

 
 

    
1

( )f x dx
∞

⇒ ∫   and  2
1

1 dx
x

∞

∫   behave alike. 

    2
1

1 dx
x

∞

∫∵   is convergent   2

1

1sin dx
x

∞

∴ ∫  is also convergent. 

 

(ii)   
2

2
1

sin x dx
x

∞

∫  

   Take  
2

2
sin( ) xf x

x
=   and  1( )g x

x2=  

   2sin 1x ≤     
2

2 2
sin 1x

x x
⇒ ≤    ( )1,x∀ ∈ ∞  

   and   
1

1 dx
x

∞

2∫   converges    
2

2
1

sin x dx
x

∞

∴ ∫   converges. 

 

Ø Note 

   
1 2

2
0

sin x dx
x∫   is a proper integral because  

2

20

sinlim 1
x

x
x→

=   so that ‘0’ is not a point 

of infinite discontinuity. Therefore  
2

2
0

sin x dx
x

∞

∫  is convergent. 
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(iii)    
1

2
0

log
(1 )
x x dx

x+∫  

       log x x<∵  ,     (0,1)x∈      
     2logx x x∴ <  

             
( ) ( )

2

2 2
log

1 1
x x x

x x
⇒ <

+ +
 

   Now  
( )

1 2

2
0 1

x dx
x+∫   is a proper integral. 

        
( )

1

2
0

log
1
x x dx

x
∴

+∫   is convergent. 

 

(iv)   
1

0

log log(1 )x x dx⋅ +∫  

log x x<∵       log( 1) 1x x∴ + < +  
          log log(1 ) ( 1)x x x x⇒ ⋅ + < +  

          
1

0

( 1)x x dx+∫∵   is a proper integral    
1

0

log log(1 )x x dx∴ ⋅ +∫   is convergent. 

 
Ø Note 

    (i)   
0

1a

p dx
x∫   diverges when 1p ≥  and converges when 1p < . 

    (ii)  1
p

a

dx
x

∞

∫   converges iff  1p > . 

 
UNIFORM CONVERGENCE OF IMPROPER INTEGRALS 
 

Ø Definition 
   Let f  be a real valued function of two variables x  & y , [ , )x a∈ +∞ , y ∈S  

where ⊂ ¡S . Suppose further that, for each y  in S , the integral ( , ) ( )
a

f x y d xα
∞

∫  
is convergent. If F  denotes the function defined by the equation 

                                     ( ) ( , ) ( )
a

F y f x y d xα
∞

= ∫      if    y ∈S  

the integral is said to converge pointwise to F  on S  
 
Ø Definiton 

   Assume that the integral ( , ) ( )
a

f x y d xα
∞

∫  converges pointwise  to F  on S . The 
integral is said to converge Uniformly on S  if, for every 0ε >  there exists a 0B >  
(depending only on ε ) such that b B>  implies 

                                       ( ) ( , ) ( )
b

a

F y f x y d xα ε− <∫      y∀ ∈S . 

( Pointwise convergence means convergence when y  is fixed but uniform 
convergence is  for every y ∈S  ). 
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Ø Theorem (Cauchy condition for uniform convergence.) 

   The integral ( , ) ( )
a

f x y d xα
∞

∫  converges uniformly on S , iff, for every 0ε >  
there exists a  0B >  (depending on ε ) such that  c b B> >   implies  

                         ( , ) ( )
c

b

f x y d xα ε<∫      y∀ ∈S . 

Proof 

   Proceed as in the proof for Cauchy condition for infinite integral  
a

f dα
∞

∫ . 
 
Ø Theorem (Weierstrass M-test) 

   Assume that α ↑  on [ , )a +∞  and suppose that the integral ( , ) ( )
b

a
f x y d xα∫  

exists for every b a≥  and for every y  in S . If there is a positive function M  

defined on [ , )a +∞  such that the integral ( ) ( )
a

M x d xα
∞

∫  converges and 

( , ) ( )f x y M x≤  for each x a≥  and every y  in S , then the integral 

( , ) ( )
a

f x y d xα
∞

∫  converges uniformly on S . 

Proof 
   ( , ) ( )f x y M x≤∵  for each x a≥  and every y  in S . 
   ∴ For every c b≥ , we have 

                    ( , ) ( ) ( , ) ( )
c c c

b b b

f x y d x f x y d x M dα α α≤ ≤∫ ∫ ∫  ………… (i) 

    
a

I M dα
∞

= ∫∵  is convergent 

    ∴  given 0ε > , 0B∃ >   such that b B>  implies 

                         2

b

a

M d I εα − <∫  …………… (ii) 

   Also if  c b B> > , then 

                         2

c

a

M d I εα − <∫  …………… (iii) 

   Then  
c c b

b a a

M d M d M dα α α= −∫ ∫ ∫  

                            
c b

a a

M d I I M dα α= − + −∫ ∫  

                            
c b

a a

M d I M d Iα α≤ − + −∫ ∫  2 2
ε ε ε< + =      (By ii & iii) 

      ( , ) ( )
c

b

f x y d xα ε⇒ <∫  ,    c b B> >  & for each y ∈S  

   Cauchy condition for convergence (uniform) being satisfied. 
   Therefore the integral ( , ) ( )

a
f x y d xα

∞

∫  converges uniformly on S .  
 
 

]]]]]]]]]]]]]]]] 
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Ø Example 

    Consider   
0

sinxye x dx
∞

−∫  

                sinxy xy xye x e e− − −≤ =    ( )sin 1x ≤∵  

   and                 xy xce e− −≤                if     c y≤  
   Now take      ( ) cxM x e−=  

   The integral   
0 0

( ) cxM x dx e dx
∞ ∞

−=∫ ∫   is convergent & converging to  1
c

. 

   ∴  The conditions of M-test are satisfied and  
0

sinxye x dx
∞

−∫  converges 

uniformly on  [ , )c +∞  for every  0c > . 
 
Ø Theorem (Dirichlet’s test for uniform convergence) 

   Assume that α  is bounded on [ , )a +∞  and suppose the integral ( , ) ( )
b

a

f x y d xα∫  

exists for every b a≥  and for every y  in S . For each fixed y  in S , assume that 
( , ) ( , )f x y f x y′≤   if  a x x′≤ < < +∞ . Furthermore, suppose there exists a positive 

function g , defined on [ , )a +∞ , such that ( ) 0g x →  as x → +∞  and such that 
x a≥  implies  

              ( , ) ( )f x y g x≤    for every y  in S .  

   Then the integral ( , ) ( )
a

f x y d xα
∞

∫  converges uniformly on S . 

Proof 
   Let  0M >   be an upper bound for α   on  [ ),a +∞ .  
   Given  0ε > , choose B a>  such that x B≥  implies  

       ( )
4

g x
M
ε

<    

( ( )g x∵  is +ive and 0→  as x → ∞  
4

( ) 0
M

g x ε
∴ − <  for x B≥ ) 

   If  c b> , integration by parts yields 

( , ) ( )
c c

c
b

b b

f d f x y x dfα α α= ⋅ −∫ ∫   

 ( , ) ( ) ( , ) ( ) ( )
c

b

f c y c f b y b d fα α α= − + −∫  ………… (i) 

   But, since f−  is increasing (for each fixed y ), we have 

                   ( ) ( )
c c

b b

d f M d fα − ≤ −∫ ∫    ( ∵ upper bound of α  is M ) 

        ( , ) ( , )M f b y M f c y= −  …………… (ii) 
   Now if  c b B> > , we have from (i) and (ii) 

 ( , ) ( ) ( , ) ( ) ( )
c c

b b

f d f c y c f b y b d fα α α α≤ − + −∫ ∫  

     ( ) ( , ) ( , ) ( ) ( , ) ( , )c f c y f b y b M f b y f c yα α≤ + + −  
     ( ) ( , ) ( ) ( , ) ( , ) ( , )c f c y b f b y M f b y M f c yα α≤ + + +  
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     ( ) ( ) ( ) ( )M g c M g b M g b M g c≤ + + +  
     [ ]2 ( ) ( )M g b g c= +  

     2
4 4

M
M M
ε ε ε < + =  

 

       
c

b

f dα ε⇒ <∫     for every y  in S . 

   Therefore the Cauchy condition is satisfied and ( , ) ( )
a

f x y d xα
∞

∫  converges 

uniformly on S . 
 
Ø Example 

   Consider   
0

sin
xye xdx

x

∞ −

∫  

   Take  ( ) cosx xα =    and   ( , )
xyef x y

x

−

=    if  0x > , 0y ≥ . 

   If   [ )0,= +∞S   and  1( )g x
x

=   on  [ ),ε +∞   for every  0ε >   then 

i)    ( , ) ( , )f x y f x y′≤     if  x x′ ≤  and ( )xα  is bounded on [ ),ε +∞ . 
ii)   ( ) 0g x →   as  x → +∞  

iii)  1( , ) ( )
xyef x y g x

x x

−

= ≤ =      y∀ ∈S . 

   So that the conditions of Dirichlet’s theorem are satisfied. 
   Hence    

        sin ( cos )
xy xye ex dx d x

x xε ε

∞ ∞− −

= + −∫ ∫   converges uniformly on  [ ),ε +∞  if 0ε > . 

   
0

sinlim 1
x

x
x→

=∵        
0

sinxy xe dx
x

ε
−∴ ∫   converges being a proper integral. 

   
0

sinxy xe dx
x

∞
−⇒ ∫   also converges uniformly on [ )0,+∞ . 

 

Ø Remarks 
   Dirichlet’s test can be applied to test the convergence of the integral of a 
product. For this purpose the test can be modified and restated as follows: 
    Let  ( )xφ  be bounded and monotonic in [ ),a +∞  and let ( ) 0xφ → , when 

x → ∞ . Also let ( )
X

a

f x dx∫  be bounded when X a≥ . 

   Then  ( ) ( )
a

f x x dxφ
∞

∫   is convergent. 

 
Ø Example 

   Consider  
0

sin x dx
x

∞

∫  

sin 1x
x

→∵    as   0x → . 
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0∴  is not a point of infinite discontinuity. 

   Now consider the improper integral  
1

sin x dx
x

∞

∫ . 

   The factor  1
x

 of the integrand is monotonic and 0→  as x → ∞ . 

   Also 
1

sin cos cos(1) cos cos(1) 2
X

xdx X X= − + ≤ + <∫  

   So that  
1

sin
X

x dx∫   is bounded above for every 1X ≥ . 

   
1

sin x dx
x

∞

⇒ ∫   is convergent. Now since  
1

0

sin x dx
x∫  is a proper integral, we see 

that  
0

sin x dx
x

∞

∫  is convergent. 

 

Ø Example 

    Consider   2

0

sin x dx
∞

∫ . 

   We write   2 21sin 2 sin
2

x x x
x

= ⋅ ⋅  

   Now   2 2

1 1

1sin 2 sin
2

x dx x x dx
x

∞ ∞

= ⋅ ⋅∫ ∫  

   1
2x

  is monotonic and 0→   as  x → ∞  . 

   Also   2 2

1

2 sin cos cos(1) 2
X

x x dx X= − + <∫  

   So that  2

1

2 sin
X

x x dx∫   is bounded for 1X ≥ . 

   Hence  2

1

1 2 sin
2

x x dx
x

∞

⋅ ⋅∫    i.e.   2

1

sin x dx
∞

∫  is convergent. 

   Since  
1

2

0

sin x dx∫  is only a proper integral, we see that the given integral is 

convergent. 
 

Ø Example 

Consider 
0

sina x xe dx
x

∞
−∫   ,  0a >  

   Here  a xe−  is monotonic and bounded and  
0

sin x dx
x

∞

∫  is convergent. 

   Hence  
0

sina x xe dx
x

∞
−∫   is convergent. 

 
]]]]]]]]]]]]]]]] 
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Ø Example 

   Show that 
0

sin x dx
x

∞

∫  is not absolutely convergent. 

Solution    

   Consider the proper integral  
0

sinn x
dx

x

π

∫  

   where n  is a positive integer. We have 

10 ( 1)

sin sinn rn

r r

x x
dx dx

x x

π π

π= −

= ∑∫ ∫  

   Put  ( 1)x r yπ= − +   so that  y  varies in  [ ]0,π . 
   We have  1sin[( 1) ] ( 1) sin sinrr y y yπ −− + = − =  

   
( 1) 0

sin sin
( 1)

r

r

x ydx dy
x r y

π π

π π−

∴ =
− +∫ ∫  

   rπ∵  is the max. value of  [( 1) ]r yπ− +   in  [ ]0,π  

   
0 0

sin 1 2sin
( 1)

y dy ydy
r y r r

π π

π π π
∴ ≥ =

− +∫ ∫            Division by max. value
will lessen the value



∵  

   
1 10

sin 2 2 1n n nx
dx

x r r

π

π π
⇒ ≥ =∑ ∑∫  

   
1

1n

r
→ ∞∑∵   as  n → ∞ ,  we see that  

      
0

sinn x
dx

x

π

→ ∞∫    as  n → ∞ . 

   Let, now, X  be any real number. 
   There exists a  +tive integer n  such that   ( 1)n X nπ π≤ < + . 

   We have   
0 0

sin sinX nx x
dx dx

x x

π

≥∫ ∫   

   Let  X → ∞   so that  n  also → ∞ . Then we see that  
0

sinX x
dx

x
→ ∞∫  

   So that  
0

sin x
dx

x

∞

∫   does not converge. 

 
Ø Questions 

Examine the convergence of  

(i)   3
1 (1 )

x dx
x

∞

+∫       (ii)   
1

1
(1 )

dx
x x

∞

+∫      (iii)   
( )

1 1
3 21 1

dx

x x

∞

+
∫  

Solution 

(i)   Let  3( )
(1 )

xf x
x

=
+

 and take 3 2
1( ) xg x

x x
= =  

   As   
3

3
( )lim lim 1
( ) (1 )x x

f x x
g x x→∞ →∞

= =
+

 

We need not 
take x  
because  0x ≥ . 
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   Therefore the two integrals  3
1 (1 )

x dx
x

∞

+∫   and  2
1

1 dx
x

∞

∫   have identical behaviour 

for convergence at  ∞ . 

   2
1

1 dx
x

∞

∫∵   is convergent     3
1 (1 )

x dx
x

∞

∴
+∫   is convergent. 

 

(ii)  Let  1( )
(1 )

f x
x x

=
+

   and take   3
2

1 1( )g x
x x x

= =  

   We have  ( )lim lim 1
( ) 1x x

f x x
g x x→∞ →∞

= =
+

 

   and   3
21

1 dx
x

∞

∫  is convergent. Thus  
1

1
(1 )

dx
x x

∞

+∫   is convergent. 

(iii)   Let  
( )

1 1
3 2

1( )
1

f x
x x

=
+

 

   we take  1 51
3 2 6

1 1( )g x
x x x

= =
⋅

 

   We have  ( )lim 1
( )x

f x
g x→∞

=  and  5
61

1 dx
x

∞

∫  is convergent   
1

( )f x dx
∞

∴ ∫  is convergent. 

 
Ø Question  

   Show that  2
1

1
dx

x

∞

−∞ +∫   is convergent. 

Solution 
   We have  

         
0

2 2 2
0

1 1 1lim
1 1 1

a

a
a

dx dx dx
x x x

∞

→∞
−∞ −

 
= + 

+ + +  
∫ ∫ ∫  

       2 2
0 0

1 1lim
1 1

a a

a
dx dx

x x→∞

 
= + + + 

∫ ∫  2
0

12 lim
1

a

a
dx

x→∞

 
=  + 

∫  

       1
0

2 lim tan
a

a
x−

→∞
=  2

2
π π = = 

 
 

   therefore the integral is convergent. 
 
Ø Question 

   Show that  
1

2
0

tan
1

x dx
x

∞ −

+∫   is  convergent. 

Solution 

   
1

2 1
2

tan(1 ) tan
(1 ) 2

xx x
x

π−
−+ ⋅ = →

+
∵     as   x → ∞  

   
1

2
0

tan
1

x dx
x

∞ −

+∫     &    2
0

1
1

dx
x

∞

+∫   behave alike. 

   2
0

1
1

dx
x

∞

+∫∵   is convergent   ∴  A given integral is convergent. 

 

Here 
1

2

tan
( )

1
x

f x
x

−

=
+

 

and   2( ) 1g x x= +  
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Ø Question 

   Show that  
0

sin
(1 )

x dx
x α

∞

+∫  converges for 0α > . 

Solution 

   
0

sin xdx
∞

∫   is bounded because  
0

sin 2
X

xdx ≤∫     0x∀ > . 

   Furthermore the function  1
(1 )x α+

,  0α >  is monotonic on  [ )0,+∞ . 

   ⇒   the integral  
0

sin
(1 )

x dx
x α

∞

+∫  is convergent. 
 

Ø Question 

   Show that  
0

cosxe xdx
∞

−∫  is absolutely convergent. 

Solution 

   cosx xe x e− −<∵    and   
0

1xe dx
∞

− =∫  

   ∴  the given integral is absolutely convergent. (comparison test) 
 
Ø Question 

   Show that   
1

4
0 1

xe dx
x

−

−
∫   is convergent. 

Solution 
   1xe− <∵   and  21 1x+ >  

   
4 2 2 2

1 1
1 (1 )(1 ) 1

xe
x x x x

−

∴ < <
− − + −

 

   Also   
1 1

2 20
0 0

1 1lim
1 1

dx dx
x x

ε

ε

−

→
=

− −
∫ ∫  

             1

0
lim sin (1 )

2ε

π
ε−

→
= − =  

   
1

4
0 1

xe dx
x

−

⇒
−

∫  is convergent. (by comparison test) 

 
 

References:  (1)  Lectures (Year 2003-04) 
      Prof. Syyed Gul Shah  

                             Chairman, Department of Mathematics. 
                            University of Sargodha, Sargodha.  
   (2) Book 

     Mathematical Analysis 
                Tom M. Apostol (John Wiley & Sons, Inc.) 

 

 Made by: Atiq ur Rehman (atiq@mathcity.org) 
 Available online at http://www.mathcity.org in PDF Format. 
 Page Setup: Legal ( 1

28 14′′ ′′× ) 
Printed: 15 April 2004  (Revised: March 19, 2006.) 
Submit error or mistake at http://www.mathcity.org/error 


