Multiple Choice Questions For BSc / BS / PPSC

Chapters:

- 1. Complex Numbers
- 2. Groups
- 3. Matrices
- 4. System of Linear Equations
- 5. Determinants
- 6. Metric Spaces
- 7. Number Theory
- 8. Ordinary Differential Equations
- 9. Infinite Series

These notes are originally prepared by

Akhtar Abbas

Lecturer at University of Jhang Contact: 0310-8385667 (Whatsapp) Email: <u>akhtarabbas@math.gau.edu.pk</u>

For detailed solutions of these, visit

YouTube Channel: Suppose Math https://www.youtube.com/supposemath

Available at www.MathCity.org

Multiple Choice Questions For BA, BSc (Mathematics)

at UOJ

Complex Numbers

An effort by: Akhtar Abbas

- 1. If z is any complex number, then $\overline{z} z$ equals:
 - A. 2 $\operatorname{Im}(z)$
 - B. $-2 \operatorname{Im}(z)$
 - C. 2 Im(z)i
 - D. -2 $\operatorname{Im}(z)$ i

2. Complex numbers with 0 as real part are called:

- A. imaginary numbers
- B. pure non real numbers
- C. pure imaginary numbers

- complex number z, then:
- b. pure complex numbers
 3. The argument of which of the following number is not defined?
 A. 0
 B. 1
 C. 1/0
 D. i
 4. If θ is the principal argument Arg(z) of a complex number z, the A. 0 ≤ θ ≤ 2π
 B. -π ≤ θ ≤ π
 C. -π ≤ θ ≤ π
 D. -π < θ < π D. $-\pi < \theta' \leq \pi$
 - 5. For $k \in \mathbb{Z}$, the relationship between $\arg(z)$ and $\operatorname{Arg}(z)$ is:
 - A. $\arg(z) = \operatorname{Arg}(z) + 2k\pi$
 - B. $\operatorname{Arg}(z) = \operatorname{arg}(z) + 2k\pi$
 - C. $\arg(z) = \operatorname{Arg}(z) 2k\pi$
 - D. All of these

- 6. Which of the following is unique?
 - A. $\operatorname{Arg}(z)$
 - B. $\arg(z)$
 - C. Both A and B
 - D. None of these
- 7. We can write $r(\cos \theta + i \sin \theta)$ as:
 - A. $rsic\theta$
 - B. $rcsi\theta$
 - C. $rcis\theta$
 - D. $r\cos\theta$

- $J_{i} is: In the second seco$
 - A. 0°
 - B. −90°
 - C. 180°
 - D. 270°

- 12. The value of Arg(-5i) is:
 - A. 0°
 - B. 90°
 - C. 180°
 - D. 270°

13. The value of Arg(-5) is:

- A. 0°
- B. 90°
- C. 180°
- D. 270°

- 14. The equation of a circle with center at origin and radius 2 is: A. |z| = 2B. |z| = 4C. $|z| = \sqrt{2}$ D. None of these 15. Which of the following is not true? A. $\arg(z_1z_2) = \arg(z_1) + \arg(z_2)$ B. $\operatorname{Arg}(z_1z_2) = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)$ C. $z\overline{z} = |z|^2$ D. $\arg(\frac{z_1}{z_2}) = \arg(z_1) \arg(z_2)$ 16. The least value of $|z_1 + |z_2|$ is: A. $||z_1| + |z_2|$ B. $||z_1||z_2|$ C. $||z_1|/|z_2||$
 - D. $||z_1| |z_2||$

17. The inequality $||z_1| - |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2|$ is called:

- A. Triangle Inequality
- B. Minkowski Inequality
- C. Cauchy-Schwarz Inequality
- D. Holder's Inequality

18. The principal argument of any complex number can not be:

A. $\frac{7\pi}{8}$ B. $\frac{7\pi}{6}$ C. $\frac{\pi}{2}$ D. $-\frac{\pi}{2}$ 19. If |z| = 2i(1-i)(2-4i)(3+i), then |z| equals: A. 20 B. -20 C. 40 D. -40 z = -z z = -z $z = z^{-1}$ $z = z^{-1}$ C. 2 D. -1 23. Locus of the points satisfying $\operatorname{Re}(i\overline{z}) = 3$ is: A. a line parallel to x-axis B. a line parallel to y-axis

C. a circle

D. a parabola

For answers with detailed explanation, visit YouTube Channel ${\bf Suppose \ Math}$

24. For all integers n, we have:

A. $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$ B. $(\cos \theta + i \sin \theta)^n = \cos n\theta - i \sin n\theta$ C. $(\cos \theta - i \sin \theta)^n = \cos n\theta + i \sin n\theta$ D. $(\cos \theta + i \sin \theta)^{-n} = \cos n\theta + i \sin n\theta$ 25. The value of $\left(\frac{\sqrt{3}-i}{\sqrt{3}+i}\right)^6$ is: A. 0 B. $\frac{1}{2}$ C. 1 $f_{1} = \frac{1}{2} \int_{1}^{2} \frac{$ D. -1 29. If $x = \cos \theta + i \sin \theta$, then the value of $x^n + \frac{1}{x^n} =$ A. $2i\sin n\theta$ B. $2i\cos n\theta$ C. $2\cos n\theta$

30. If $x = \cos \theta + i \sin \theta$, then the value of $x^n - \frac{1}{x^n} =$

- A. $2i\sin nx$
- B. $2i\cos nx$
- C. $2\cos nx$
- D. $2\sin nx$

31. If |z| = r and $\arg(z) = \theta$, then all the *n*th roots of z are:

A. $r^{\frac{1}{n}} cis(\frac{2k\pi+\theta}{n})$ B. $r^{\frac{1}{n}} cis(\frac{2\pi+\theta}{kn})$ C. $r^{\frac{1}{n}}cis(\frac{2\pi+k\theta}{n})$ D. $r^{\frac{1}{n}}cis(\frac{2k\pi+\theta}{kn})$

c. 2i D. None of these 33. If z is a root of w, then which of following is also a root of w? A. 1 B. -zC. \overline{z} D. z^{-1} 34. Three cube roots of 87 are: A. $2, 2\omega, 2\omega^{2}$ B. $2i, 2i\omega, 2i\omega^{2}$ C. $-2, -2\omega, -2^{\omega^{2}}$ D. $-2^{\omega^{2}}$

35. Sum of four fourth roots of unity is:

A. 0 B. 1 C. iD. -1

 $\frac{(\cos\theta + i\sin\theta)^n}{(\cos\phi + i\sin\phi)^m}$ equals: 36. A. $\cos(m\theta + n\phi) + i\sin(m\theta + n\phi)$ B. $\cos(n\theta + m\phi) + i\sin(n\theta + m\phi)$ C. $\cos(m\theta - n\phi) + i\sin(m\theta - n\phi)$ D. $\cos(n\theta - m\phi) + i\sin(n\theta - m\phi)$ 37. $\frac{(\cos \alpha - i \sin \alpha)^{11}}{(\cos \beta + i \sin \beta)^9}$ equals: A. $\cos(11\alpha + 9\beta) + i\sin(11\alpha + 9\beta)$ B. $\cos(11\alpha - 9\beta) + i\sin(11\alpha - 9\beta)$ C. $\cos(-11\alpha + 9\beta) + i\sin(-11\alpha + 9\beta)$ $= \underbrace{Lectureer}_{ture} \underbrace{$ 38. For a complex number z, $\frac{e^{iz} - e^{-iz}}{i(e^{iz} + e^{-iz})} =$ 39. $\sin^2 z + \cos^2 z =$ 40. $\sin iz =$ D. $i \sinh z$ 41. $\cos i z =$ A. $\cosh z$ B. $\cosh iz$ C. $i \cos z$ D. $i \cosh z$

42. $\tan iz =$ A. $\tanh z$ B. $\tanh iz$ C. $i \tan z$ D. $i \tanh z$ 43. $\sinh iz =$ A. $\sin z$ B. $i \sin z$ C. $\sinh z$ D. $i \sinh z$ Abbas asupposematin Abbas asupposematin Tisube 44. $\cosh iz =$ A. $\cos z$ B. $i \cos z$ C. $\cosh z$ D. $i \cosh z$ 45. $\tanh iz =$ A. tan z B. $i \tan z$ C. $\tanh z$ D. $i \tanh z$ Important Points (i). e^z is never zero. (ii). For z = x + iy, $|e^z| = e^x$. (iii). $|e^{i\theta}| = 1$, where $\theta \in \mathbb{R}$. (iv). $e^z = 1$ if and only if $z = 2k\pi i$, where $k \in \mathbb{Z}$. (v). $e^{z_1} = e^{z_2}$ if and only if $z_1 - z_2 = 2k\pi i$, where $k \in \mathbb{Z}$. 46. Multiplication of a vector z by ... rotates the vector z counterclockwise through an angle of measure α .

A. e^{α} B. $e^{-\alpha}$ C. $e^{i\alpha}$ D. $e^{-i\alpha}$ 47. -3 - 4i =A. $5e^{i\tan^{-1}\frac{4}{3}}$ B. $5e^{i(-\tan^{-1}\frac{4}{3})}$ C. $5e^{i(\pi-\tan^{-1}\frac{4}{3})}$ $\begin{array}{c} \cdot \operatorname{arg} |z| \\ c. \ln |z| + i \operatorname{arg} |z| \\ D. All of these \\ \end{array}$ $\begin{array}{c} \text{Omega} \\ \text{Omeg} \\ \text{Omega} \\ \text{Omega} \\ \text{Omega} \\ \text{Omega} \\$ D. $5e^{i(\pi + \tan^{-1}\frac{4}{3})}$ A. $\ln |z| + i \operatorname{Arg} z$ B. $\ln z + i$ Arg |z|C. $\ln |z| + i \operatorname{Arg} |z|$ D. All of these 51. The value of Log(-i) is: A. $\frac{\pi}{2}i$ B. $\frac{3\pi}{2}i$ C. $-\frac{\pi}{2}i$

D.
$$-\frac{3\pi}{2}i$$

52. If x is any negative real number, then Log x is:

A. $\ln x + i\pi$ B. $\ln x - i\pi$ C. $\ln(-x) + i\pi$ D. $\ln(-x) - i\pi$ 53. $\log(e^z) =$ A. z B. $z + 2n\pi$ C. $z + 2n\pi i$ D. e^z $(z + \sqrt{z^{2} + 1})$ $(z + \sqrt{z^{2} + 1})$ $(z + \sqrt{z^{2} + 1})$ $(z + \sqrt{z^{2} - 1})$ $(z + \sqrt{z^{2} + 1})$ $(z + \sqrt{z^{2} + 1})$ $(z + \sqrt{z^{2} + 1})$ $(z + \sqrt{z^{2} - 1})$ 54. If z is a positive real number, then 55. $\sinh^{-1} z =$ 56. $\cosh^{-1} z =$ 57. $\sin^{-1} z =$ A. $i \log(iz + \sqrt{1+z^2})$ B. $-i \log(iz - \sqrt{1 - z^2})$ C. $-i \log(iz + \sqrt{1+z^2})$ D. $-i \log(iz + \sqrt{1-z^2})$

58. If z and w are complex numbers, then $z^w =$

A. $\exp(z \log w)$ B. $z \exp(\log w)$ C. $\exp(w \log z)$ D. $w \exp(\log z)$

59. If z and w are complex numbers, then the principal value of z^w is:

- A. $\exp(z \log w)$
- B. $z \exp(\text{Log}w)$
- C. $\exp(w \log z)$
- D. $w \exp(\text{Log}z)$

60. The principal value of i^i is:

A.
$$e^{\frac{\pi}{2}}$$

B. $-e^{\frac{\pi}{2}}$
C. $e^{-\frac{\pi}{2}}$
D. $-e^{-\frac{\pi}{2}}$

61. The principal value of $(-1)^i$ is:

 $t_{-i)-i}$ A. e^{π} B. $e^{-\pi}$ C. $-e^{\pi}$ D. $-e^{-\pi}$ 62. The principal value of A. $e^{\frac{\pi}{2}}$ B. $-e^{\frac{\pi}{2}}$ C. $e^{-\frac{\pi}{2}}$ D. $-e^{-\frac{\pi}{2}}$

63. If a is a positive real number, then the principal value of a^i is:

A. $\cos(\ln a) + i\sin(\ln a)$ B. $\cos(a) + i\sin(a)$ C. $\sin(a) + i\cos(a)$ D. $\sin(\ln a) + i\cos(\ln a)$ 64. Log(1-i) =A. $\frac{1}{2} \ln 2 + \frac{\pi i}{4}$ B. $\frac{1}{2} \ln 2 - \frac{\pi i}{4}$ C. $\frac{1}{2} \ln 2 + \frac{3\pi i}{4}$ D. $\frac{1}{2} \ln 2 - \frac{3\pi i}{4}$ 65. $(-1+i)^{i+\sqrt{3}} =$ A. $\exp[(i - \sqrt{3})\log(-1 - i)]$ B. $\exp[(-1+i)\log(i+\sqrt{3})]$ Attached and a suppose of the sector of the C. $\exp[(i + \sqrt{3})\log(-1 + i)]$ D. $\exp[(i + \sqrt{3})\log(-1 - i)]$

Multiple Choice Questions For BA, BSc (Mathematics)

Groups	An effort by: Akhtar Abbas
1. Which of the following is not a binary operation on \mathbb{R}^2	?
A. +	
В. —	
C. ×	
D. ÷	
2. An element $b \in G$ is inverse of $a \in G$ if:	
A. $ab = ba$	
B. $ab = ab^2$	()
C. $ba = a^2 b$	
D. $ab = ba = e$	
3. An element x of a group G is said to be if $x^2 \neq x$.	ANN .
A. Nilpotent	MO.
B. Involutory	
C. Idempotent	
D. Square	
C. $ba = a^2b$ D. $ab = ba = e$ 3. An element x of a group G is said to be if $x^2 \neq x$. A. Nilpotent B. Involutory C. Idempotent D. Square 4. The only idempotent element in a group is: A. Inverse	
4. The only idempotent element in a group is:A. InverseB. Identity	
B. Identity	
C. Both A and \mathbf{B}_{1}	
D. None of these	
5. Which of the following is a group under multiplication	?
A. \mathbb{Z}	
B. Q	
C. \mathbb{R}	
D. $Q - \{0\}$	

- 6. A group is abelian if its Cayley's table is ... about its main diagonal.
 - A. Symmetric
 - B. Skew symmetric
 - C. Hermitian
 - D. Skew Hermitian

7. The set of all the nth roots of unity, $C_n = \{e^{\frac{2k\pi i}{n}}, k = 0, 1, ..., n-1\}$ is a group under:

- A. Addition
- **B.** Subtraction
- C. Multiplication
- D. Division

8. In the group of Quaternions $\{\pm I, \pm i, \pm j, \pm k\}$, which of the following is not true?

- - A. ab
 - B. $a^{-1}b^{-1}$
 - C. $b^{-1}a^{-1}$
 - D. ba

- 12. The number of elements in a group is called its:
 - A. degree
 - B. order
 - C. power
 - D. None of these

13. The least positive integer n, such that $a^n = \dots$ is called order of a.

- A. e
- B. *a*
- C. a^{-1}
- D. None of these
- 14. Let $a \in G$ has order n. Then, for any integer k, $a^k = e$ if and only if ..., where q is an integer.
 - A. q = nk
 - B. n = qk
 - C. k = nq
 - D. None of these
- 15. If |a| = 5, then for what value of n, a_{\perp}^n
 - A. 10
 - B. 15
 - C. 20
 - D. All of these
- 16. The set $\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ is a
 - A. Addition
 - **B.** Multiplication
 - C. Addition modulo 8
 - D. Multiplication modulo 8

17. The set $\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ is a group under Multiplication modulo 8. The inverse of $\overline{5}$ is:

- A. $\overline{1}$
- B. $\overline{3}$
- C. $\overline{5}$
- D. $\overline{7}$

18. The set $\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ is a group under Multiplication modulo 8. The order of $\overline{5}$ is:

- A. 1 B. 2
- C. 3
- D. 4

19. Let G be a group and $a, b \in G$, which of the following is true?

- A. $|a| = |a^{-1}|$
- B. |ab| = |ba|
- C. $|a| = |bab^{-1}|$
- D. All of these

20. Every group of ... order contains at least one element of order 2.

- A. Prime

- A. Prime
 B. Even
 C. Odd
 D. Composite
 21. Let G be a group and the order of x ∈ G is odd. Then there exists an element y ∈ G such that:
 A. y = x
 B. y² = x
 C. y = x²
 D. y = x³
 22. Which of the following are not groups? (*Free to choose more than one options*).
 A. The set of positive rational numbers under multiplication
- - A. The set of positive rational numbers under multiplication
 - B. The set of complex numbers z such that |z| = 1, under multiplication
 - C. The set \mathbb{Z} of all integers under the binary operation \star defined by

$$a \star b = a - b, \quad \forall \ a, b \in \mathbb{Z}$$

- D. The set \mathbb{Q}' of all irrational numbers under multiplication
- E. $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$ under multiplication
- F. $\mathbb{R}^- = \{x \in \mathbb{R} : x < 0\}$ under multiplication
- G. $E = \{e^x : x \in \mathbb{R}\}$ under multiplication

23. Let G be a group and $x^2 = e$, for all $x \in G$, then G is:

- A. Abelian
- B. Non Abelian
- C. Commutative
- D. Both A and C

24. Which of the following is false? (Free to choose more than one options).

- A. A group can have more than one identity element.
- B. The null set can be considered to be a group.
- C. There may be groups in which the cancellation law fails.
- D. Every set of numbers which is group under addition is also a group under multiplication and vice versa.
- E. The set \mathbb{R} of real numbers is a group under subtraction.
- F. The set of all nonzero integers is a group under division.
- G. To each element of a group, there corresponds only one inverse element.

- 25. Let G be a group. Which of the following is not unique in G?

 A. identity
 B. inverse of an element
 C. idempotent
 D. None of these

 26. The set GL₂(ℝ) is the collection of all 2 2 matrices with real entries whose determinant is:

 A. Zero
 B. Nonzero
 B. Nonzero
 C. Unit

 - C. Unit
 - D. 1

27. $(\mathbb{Z}, +)$ is a subgroup of:

- A. $(\mathbb{Z}, +)$
- B. $(\mathbb{R}, +)$
- C. $(\mathbb{C}, +)$
- D. All of these

28. Every group has at least ... subgroups.

A. 1 B. 2 C. 3

- D. 4
- 29. A non empty subset of a group G is a subgroup of G if and only if for $a, b \in H$, we have:
 - A. $ba^{-1} \in H$
 - B. $ab^{-1} \in H$
 - C. $ab \in H$
- $\begin{array}{c} \text{. Difference} \\ \text{D. Symmetric difference} \\ \text{31. If every element of a group G is a power of one anothe same element, then G is called: \\ \text{A. Infinite} \\ \text{B. Finite} \\ \text{C. Cyclic} \\ \text{D. Symmetric} \\ \text{D. Symmetric} \\ \text{Every subgroup of accelic group is: } \\ \text{A. Abelian} \\ \text{Hormal} \\ \text{C. C^{-1}} \\ \end{array}$

 - - C. Cyclic
 - D. Trivial
 - 33. Let G be a group of order 18, then G must have a unique subgroup of order:
 - A. 5
 - B. 6
 - C. 7
 - D. 8

- 34. Every cyclic group is:
 - A. Abelian
 - B. Normal
 - C. Finite
 - D. Infinite

35. Every cyclic group of even order has a unique subgroup of order:

- A. 2
- B. 3
- C. 4
- D. 5

12 is:
D. 6
37. Group of order ... has not a proper non-trivial subgroup?
A. 46
B. 47
C. 48
D. 50
38. An infinite cyclic group has exactly ... generators.
A. 1
B. 2
C. 3
D. 1 36. The number of subgroups of a cyclic group of order 12 is:

- D. 4

39. The order of $\overline{3}$ in the group $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$ is:

- A. 1
- B. 2
- C. 3
- D. 4

40. Let G be a group, H be a subgroup of G and $a \in G$, then which of the following is a subgroup of G?

> A. aHB. Ha C. Ha^{-1} D. aHa^{-1}

- 41. If H and K are subgroups of a group G, then which of the following need not to be a subgroup of G?
 - A. $H \cup K$
 - B. $H \cap K$
 - C. He
 - D. eK

44. Let G be an infinite group generated by $a \in G$. Then $a^i = a^j$ if and only if:

- A. n|(i-j)
- B. n|(i+j)|
- C. i = j
- D. None of these

45. Let G be a cyclic group of order 18. How many subgroups of G are of order 6?

- A. 1
- B. 2
- C. 3
- D. None of these

46. A partition of a set A is the collection of subsets $\{A_i : i \in I\}$ of A such that

- A. $A = \bigcup \{A_i : i \in I\}$ and $A_i \cap A_j = \phi$, where $i, j \in I$ and $i \neq j$.
- B. $A = \bigcup \{A_i : i \in I\}$ and $A_i \cap A_j = \phi$, where $i, j \in I$ and i = j.
- C. $A = \bigcup \{A_i : i \in I\}$ and $A_i \cap A_j \neq \phi$, where $i, j \in I$ and $i \neq j$.
- D. $A = \cap \{A_i : i \in I\}$ and $A_i \cap A_j = \phi$, where $i, j \in I$ and $i \neq j$.
- 47. Let H be a subgroup of G. Then the set of all left cosets of H in G defines a ... on G.
 - A. Equivalence relation
 - **B.** Partition
 - C. Transitive relation
 - D. All of these
- 48. The number of distinct left cosets of a subgroup H of a group G is called the ... of H

- $\begin{array}{c} & \text{group} \\ & \text{J} \\ &$

 - 51. "Both the order and index of a subgroup of a finite group divides the order of the group" is the statement of:
 - A. Division Algorithm
 - B. Lagrange Theorem
 - C. Euclid Theorem
 - D. Cayley Theorem

- 52. The order of an element of a finite group divides:
 - A. the order of group
 - B. the order of subgroup
 - C. the index of every subgroup
 - D. None of these

53. A group of order ... is always cyclic.

- A. 7
- B. 8
- C. 9
- D. 10

B. Even C. Odd D. Composite 55. Which of the following abelian group is not cyclic? A. $(\mathbb{Z}, +)$ B. $(\mathbb{Q}, +)$ C. $(\mathbb{R}, +)$ D. Both B and C 56. Let *G* be a group of order 90. G can have a subgroup of order: A. 30 B. 40 C. 50

- D. 60

57. Let G be a cyclic group of order n generated by a. Then for any $1 \le k < n$, the order of a^k is:

A.
$$\frac{k}{gcd(n,k)}$$

B. $\frac{n}{lcm(n,k)}$
C. $\frac{n}{gcd(n,k)}$
D. $\frac{k}{lcm(n,k)}$

58. Let G be a cyclic group of order 24 generated by a. Then the order of a^{10} is:

- A. 6
- B. 14
- C. 18
- D. 24
- 59. Let H and K be two finite subgroups of a group G whose orders are relatively prime, then $H \cap K$ equals:
 - A. $\{e, a\}$
 - B. $H \cup K$
 - C. HK
 - D. $\{e\}$

60. Let X be a nonempty set. A bijective function $f: X \to X$ is called a ... on X.

- A. Homomorphism B. Isomorphism C. Endomorphism D. Permutation 61. The set of all permutations on a set X is denoted by: A. SXB. XSC. S_X D. X_S 62. The set S_n is a group under the operation of ... of permutations. A. Addition
 - A. Addition
 - B. Subtraction
 - C. Multiplication
 - D. Composition
- 63. The order of symmetric group of degree n is:
 - A. n
 - B. n!
 - C. $\frac{n!}{2}$
 - D. $(\frac{n}{2})!$

- 64. Composition of permutations is not:
- A. Associative B. Closed C. Commutative D. All of these 65. If $f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ and $f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$, then $f_1 \circ f_2$ equals: A. $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ B. $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ C. $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ D. $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ 66. A permutation of the form $\begin{pmatrix} a_1 & a_2 & \dots \\ a_2 & a_3 & \dots \end{pmatrix}$ A. Permutation B. Cycle C. Transposition D. Matrix 67. If two cycles act on mutually disjoint sets, then they: A. can commute B. must commute C. don't commute D. None of these 68. If $\alpha = (1 \ 2 \ 3)$ and $\beta = (5 \ 7 \ 8)$, then: A. $\alpha\beta = I$ B. $\beta \alpha = I$ C. $\alpha\beta = \beta\alpha$ D. $\alpha\beta \neq \beta\alpha$

- 69. Every permutation of degree n can be written as a ... of cyclic permutations acting on mutually disjoint sets.
 - A. Sum
 - B. Difference
 - C. Product
 - D. Quotient
- 70. A cycle of length 2 is called a :
 - A. Permutation
 - B. Transposition
 - C. Cycle
 - D. Matrix

- Locuet D. Quotient 22. A permutation α in S_n is said to be ... permutation if it can be written as a product of an even number of transposition. A. Even B. Odd C. Composite D. Cyclic thut thus A. Every transposition is an ... with A. Every

 - - B. Odd
 - C. Composite
 - D. Cyclic
- 74. A cycle of even length is an ... permutation.
 - A. Even
 - B. Odd
 - C. Composite
 - D. Cyclic

75. The product of two even permutations is ... permutation.

- A. Even
- B. Odd
- C. Composite
- D. Cyclic

76. The product of two odd permutations is ... permutation.

- A. Even
- B. Odd
- C. Composite
- D. Cyclic

77. The product of an even and an odd permutations is ... permutation.

- A. Even

- A. Even B. Odd C. Composite D. Cyclic 78. If α is an odd permutation and τ is a transposition, then $\alpha \tau$ is ... permutation. A. Even B. Odd C. Both A and B D. None of these 79. For $n \geq 2$, the number of even permutations in S_n is ... the number of odd permutations in S_n is ... the number of odd permutations in S_n .
 - A. Equal to
 - B. Not equal to
 - C. Greater than
 - D. Lesser than

80. The set of even permutations in S_n is denoted by:

A. A_n

- B. E_n
- C. $S_{\frac{n}{2}}$
- D. None of these

81. The number of elements in alternating group A_n is:

А.	n
В.	$\frac{n}{2}$
С.	
D.	$\frac{n!}{2}$

82. The order of a cyclic permutation of length m is:

A. mB. $\frac{m}{2}$ C. m!D. $\frac{m!}{2}$ 83. The order of $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 3 & 4 & 1 & 7 & 9 & 6 & 5 & 8 & 10 \end{pmatrix}$ is: A. 10 B. 12 C. 15 D. 20 84. Inverse of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 4 & 1 & 7 & 2 & 6 \end{pmatrix}$ is: A. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{pmatrix}$ is: A. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 2 & 7 & 1 & 4 & 5 & 3 \end{pmatrix}$ in the set of the

85. A ring R is an abelian group under:

- A. Addition
- B. Subtraction
- C. Multiplication
- D. Division

86. Which of the following is a ring under usual addition and multiplication?

- A. \mathbb{Z}
- В.
- C. \mathbb{R}
- D. All of these

87. If $(R, +, \cdot)$ is a ring with additive identity 0, then for all $a, b \in R$, we have:

- A. a0 = 0a = 0
- B. a(-b) = (-a)b = -ab
- C. (-a)(-b) = ab
- D. All of these

88. The multiplicative identity (if it exists) is called:

88. The multiplicative identity (if it exists) is called:

A. Unit
B. Unity
C. Identity
D. None of these

89. An element of a ring whose multiplicative inverse exists, is called:

A. Unit
B. Unity
C. Identity
D. None of these

90. Let *R* be a ring with unity. If every nonzero element of *R* is unit, then *R* is called:

A. Division ring

- A. Division ring B. Skew field
- C. Integral domain
- D. Both A and B
- 91. A commutative division ring is called:
 - A. Integral Domain
 - B. Skew field
 - C. Field
 - D. Commutative ring

- 92. Which of the following is(are) field(s)?
 - A. Q
 - B. \mathbb{R}
 - C. \mathbb{C}
 - D. All of these

93. \mathbb{Z}_n is a field if and only if *n* is:

- A. Prime
- B. Composite
- C. Even
- D. Odd

94. Which of the following are true? (Free to choose more than one option).

- A. Every field is a ring.
- B. Every ring has a multiplicative identity.
- C. Multiplication in a field is commutative.
- D. The nonzero elements of a field form a group under multiplication.
- E. Addition in every ring is commutative
- C. \mathbb{Z}_{13} D. None of these of the other oth F. Every element in a ring has an additive inverse.
- 95. Which of the following is a field?

Akhtar Abbas Lecturer in Mathematics University of Jhang 0332-6297570

Available at www.MathCity.org

Multiple Choice Questions For BA, BSc (Mathematics)

Matrices	An effort by: Akhtar Abbas
1. If a matrix has 3 columns and 6 rows then the order of matrix is:	
A. 3×6	
B. 18	
C. 6×3	
D. 3×3	
2. If order of a matrix A is 3×6 , then each row of A co	nsists elements.
A. 3	
B. 6	())
C. 18	NV NV
D. None of these	N .
3. A matrix $A = [a_{ij}]_{m \times n}$ is square if:	W
A. $m = n$	Mo
B. $m \neq n$	
C. $m < n$	
D. $m > n$	
4. A matrix that is not square is γ	
A. Rectangular	
B. Identity	
C. Diagonal	
D. Scalar	
B. 6 C. 18 D. None of these 3. A matrix $A = [a_{ij}]_{m \times n}$ is square if: A. $m = n$ B. $m \neq n$ C. $m < n$ D. $m > n$ 4. A matrix that is not square is the distribution of the second states of the second sta	
A. $n = 1$	
B. $n \neq 1$	
C. $m = 1$	
D. $m \neq 1$	

6. In a square matrix $A = [a_{ij}]_{n \times n}$, the elements $a_{11}, a_{22}, \dots a_{nn}$ are called \dots elements.

- A. Diagonal
- B. Scalar
- C. Identity
- D. Unit

7. A square matrix $A = [a_{ij}]_{n \times n}$ is called upper triangular if $a_{ij} = 0$ for all:

- A. i > jB. i < j
- C. $i \geq j$
- D. $i \leq j$
- 8. A matrix, all of whose elements are zero except those in the main diagonal, is called a
- . one matrix D. Diagonal 9. Which of the following is a diagonal matrix? A. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 6 \\ 0 & 8 & 0 \end{bmatrix}$ B. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 6 \\ 0 & 8 & 0 \end{bmatrix}$ B. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 6 & 8 & 0 \end{bmatrix}$ C. $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ D. Now
 - D. None of these
- 10. Every scalar matrix is a ... matrix.
 - A. Unit
 - B. Identity
 - C. Diagonal
 - D. All of these

11. If $A^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ Then which of the following is true for A? A. $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ B. $A = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$ C. $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ D. None of these

- 12. If A and B are matrices of orders $m \times n$ and $p \times q$ respectively, then the product AB is possible if:
 - A. n = pB. n = qC. m = qD. m = p and n = q

atuoj

14. Let
$$A = [a_{ij}]_{m \times n}$$
 and $B = [b_{ij}]_{n \times p}$, then (i, j) th element of AB is:

- 13. If A and B are matrices of orders 4×5 and 5×7 respectively, then the order of AB is: A. 5×5 B. 4×7 C. 5×4 D. 7×5 14. Let $A = [a_{ij}]_{m \times n}$ and $B = [b_{ij}]_{n \times p}$, then (i, j)th element of AB is: A. $\sum_{k=1}^{n} a_{ik}b_{kj}$ B. $\sum_{k=1}^{n} a_{ki}b_{kj}$ C. $\sum_{k=1}^{n} a_{ki}b_{kj}$ D. $\sum_{k=1}^{n} a_{ki}b_{kj}$ D. $\sum_{k=1}^{n} a_{ki} b_{jk}$
- 15. If A and B are two nonzero matrices. Is it possible to have AB = 0?
 - A. Yes
 - B. No
- 16. Which law does not hold in matrices?
 - A. Associative law of multiplication
 - B. Distributive law of multiplication over addition
 - C. Cancellation law
 - D. Both A and B

- 17. If the matrices A, B and C are conformable for the sums and multiplications, then which of the following is correct?
 - A. A(BC) = (AB)CB. A(B+C) = AB + ACC. k(AB) = (kA)B
 - D. All of these

18. If order of A is 8×7 , then the order of AA^t is:

- A. 7×8 B. 7×7
- C. 8×8
- D. Product is not possible

19. If the matrices A and B are conformable for the sum and the product, then:

- A. $(AB)^t = B^t A^t$
- B. $(A^t)^t = A$
- C. $(kA)^t = kA^t$
- D. All of these
- or which $A^{k+1} = AC(k \text{ being a positive integer})$, is called a ... Abbut K = AC(k being a positive integer), is called a ... 20. A square matrix A for which A^{k+1} matrix.
 - A. Nilpotent
 - B. Periodic
 - C. Involutory
 - D. Idempotent
- 21. If $A^6 = A$, then the period of
 - A. 5
 - B. 6
 - C. 7
 - D. Not period
- 22. A matrix of period 1 is:
 - A. Nilpotent
 - B. Involutory
 - C. Idempotent
 - D. Involutory

23. A square matrix A for which $A^p = 0$ (p being a positive integer), is called ...

- A. Nilpotent
- B. Involutory
- C. Idempotent
- D. Involutory

24. A square matrix A such that ... is called an involutory matrix.

- A. $A^2 = A$
- B. $A^2 = I$
- C. $A^2 = -A$
- D. $A^2 = -I$

25. For any square real matrix A, the matrix $A - A^t$ is:

Intermitian D. None of these 26. For a complex square matrix A, the matrix $A + (\overline{A})^{t} (A)^{t} (A)^{t$ 27. If A is a square matrix over \mathbb{C} and $A(\overline{A})^t = 0$, then which of the following is true?

- B. $A^t = 0$
- C. $\overline{A} = 0$
- D. All of these

28. If A is a square matrix and B is left inverse of A, then:

- A. B can be right inverse of A
- B. B must be right inverse of A
- C. B must not be right inverse of A
- D. There is no relation between A and B

29. A square matrix, whose inverse exists, is called:

- A. Singular
- B. Nonsingular
- C. Invertible
- D. Both B and C

30. If A and B are nonsingular matrices of the same order, then $(AB)^{-1}$ equals:

- A. AB
- B. $A^{-1}B^{-1}$
- C. BA
- D. $B^{-1}A^{-1}$

31. A matrix obtained by applying an elementary row operation on V_n is called:

- $\begin{array}{c} & & & \\ & &$ C. A^2 D. −A
 - 34. If an $m \times n$ matrix B is obtained from an $m \times n$ matrix A by a finite number of elementary row and column operations, then B is said to be ... to A.
 - A. Equal
 - B. Equivalent
 - C. Similar
 - D. Not equal

35. Every nonzero $m \times n$ matrix is equivalent to an $m \times n$ matrix $D = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$. Then D is called \dots form of A. A. Normal B. Canonical C. Both A and B D. None of these 36. The rank of matrix $A \begin{bmatrix} 4 & 1 & 8 \\ 0 & 7 & 7 \\ 0 & 0 & 3 \\ 0 & 0 & 1 \end{bmatrix}$ is: $\begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix}$ is: $\begin{bmatrix} -2 & -1 \\ -2 & -1 \\ -2 & -1 \end{bmatrix}$ is: $\begin{bmatrix} -2 & -1 \\ -2 & -1 \\ -2 & -1 \end{bmatrix}$ is: $\begin{bmatrix} -2 & -1 \\ -2 & -1 \\ -2 & -1 \\ -2 & -1 \end{bmatrix}$ is: $\begin{bmatrix} -2 & -1 \\$ A. 1 A. Symmetric B. Hermitian C. Skew Symmetric

D. All of these

40.	If $A = \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix}$,	then A^{50}	equals:
	А.	$\begin{bmatrix} 50\\ \frac{1}{2} \end{bmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix}$	
	В.	$\begin{bmatrix} 1\\ 25 \end{bmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix}$	
	С.	$\begin{bmatrix} 25\\ \frac{1}{2} \end{bmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix}$	
	D.	$\begin{bmatrix} 25\\ 50 \end{bmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix}$	

41. If a matrix A is symmetric as well as skew symmetric, then A is:

- A. Identity

- D. NIII C. Idempotent D. Diagonal 42. If $A^2 A I = 0$, then the inverse of A is: A. A + IB. A IC. I AD. -A I43. If A and B are square matrices of same order and $A^2 B^2 = (A + B)(A B)$, then which of the following must be true? A. A = B

 - A. A = BB. AB = BX
 - C. Either A or B is a zero matrix
 - D. Either A or B is an identity matrix

Akhtar Abbas Lecturer in Mathematics University of Jhang 0332-6297570

Multiple Choice Questions For BA, BSc (Mathematics)

System of Linear Equations

An effort by: Akhtar Abbas

- 1. A system of linear equations Ax = b is called non homogeneous if:
 - A. b = 0
 - B. $b \neq 0$
 - C. A = 0
 - D. $A \neq 0$

2. If $\operatorname{rank}(A) = \operatorname{rank}(A_b)$, then the system Ax = b:

- A. is consistent
- B. can have unique solution
- C. can have infinite solutions
- D. All of these
- 3. Let Ax = b be a system of 3 linear equations in 7 variables, then which of the following can be the maximum value of rank (A_b) ?
 - A. 3 B. 4
 - C. 6
 - D. 7
- 4. Let A be a matrix of order 4×5 and $\operatorname{rank}(A) = \operatorname{rank}(A_b) = 3$, then the system Ax = b has:
 - A. unique solution
 - B. no solution
 - C. infinitely many solutions
 - D. None of these

5. The system
$$\begin{bmatrix} -3 & 3\\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$
 has:

- A. unique solution
- B. no solution
- C. infinitely many solutions
- D. None of these

1

 $2 \ 1 \ 0$

1 1

BSc

- 6. If the augmented matrix of a system is , then the system has: $1 \ 1 \ 0 \ 2$ 0 1
 - A. unique solution
 - B. no solution
 - C. infinitely many solutions
 - D. None of these

7. Let A be a 4×4 matrix and the system Ax = b has infinitely many solutions, then:

- A. $\operatorname{rank}(A) = 4$
- B. rank $(A) \neq 4$
- C. $\operatorname{rank}(A) < 4$
- D. $\operatorname{rank}(A) > 4$

Join A and B D. None of these 9. Every homogeneous system of linear equations: provention A. is consistent B. is inconsistent C. has only trivial solution D. has infinitely many For what ye 8. If Ax = b does not have any solution, then the system is called:

- 10. For what value of

$$(1 - \lambda)x_1 - x_2 = 0$$
$$x_1 + (1 - \lambda) = 0$$

has non trivial solution?

- A. 0
- B. 2
- C. 3
- D. 4

- 11. In Gauss Elimination method, we need to reduce the augmented matrix into:
 - A. Echelon form
 - B. Reduced echelon form
 - C. Both A and B
 - D. None of these
- 12. A system Ax = 0 of n equations and n unknowns has a unique solution if A is:
 - A. singular
 - B. non singular
 - C. non invertible
 - D. None of these

- $\begin{array}{c} ... > \\ D. < \\ 14. The system <math>Ax = b$ of m equations and nunknowns has no solution (is inconsistent) if rank(A) ... rank(A_b). \\ A. = \\ B. \neq \\ C. > \\ D. < \\ H. HUMORIAN CONTRACT (IS CONTRACT) (IS INCONSISTENT) (IS INTONSISTENT) (IS INTONSISTENT) (IS INTONSISTENT) (IS INTONS

$$2x_1 + x_2 = 2$$

has a solution:

- A. (1,1)
- B. (1,2)
- C. (2,1)
- D. (1,0)

- A. Echelon form
- B. Reduced echelon form
- C. Both A and B
- D. None of these

17. If a system of 2 equations and 2 unknowns has no solution, then the graph look like:

- A. Intersecting lines
- B. Non intersecting lines
- C. Same lines
- D. None of these

18. Which of the following is a linear equation in the variables x, y, z?

- $a + \cos y + \tan z = 0$ D. None of these
 19. Which one of the following is a linear equation?
 A. $xy = e^{\pi}$ B. $x + y = e^{\pi}$ C. $y = \sqrt{3x}$ D. $x = \sqrt{3y}$ A. If applying row operations to a mathematical data in the mathe 20. If applying row operations to a matrix A of order $n \times n$ results in a row of zeros, then
 - A. No solutions
 - B. Unique solution
 - C. Infinitely many solutions
 - D. More information is needed
- 21. A system of m homogeneous linear equations in n unknowns has a nontrivial solution if:
 - A. m = nB. $m \neq n$ C. m < nD. m > n

22. A system of m homogeneous linear equations Ax = 0 in n unknowns has a nontrivial solution if and only if rank(A):

> A. = nB. $\neq n$ C. = mD. $\neq m$

23. For any matrix A, the collection $\{x : Ax = 0\}$ is called ... of A.

- A. Rank
- B. Solution space
- C. Both A and B
- D. None of these
- Has a the conversion of the co 24. A system of m linear equations Ax = b in n unknowns has a unique solution if and only if $rank(A) = rank(B) \dots$

B. = nC. $\neq m$

A. = m

D. $\neq n$

Akhtar Abbas Lecturer in Mathematics University of Jhang 0332-6297570

Multiple Choice Questions For BA, BSc (Mathematics)

- C. Determinant of A
- D. None of these

5. Let M_{ij} be the *ij*th minor of a square matrix A of order n. Then *ij*th cofactor of A is:

A. $|M_{ij}|$ B. $-|M_{ii}|$ C. $\pm |M_{ij}|$ D. $(-1)^{i+j} |M_{ij}|$

6. Let $A = \begin{bmatrix} 3 & 2 & 1 & -1 \\ 4 & 5 & 1 & 2 \\ -2 & 3 & 0 & 1 \\ 2 & 1 & 3 & 5 \end{bmatrix}$, then 33th cofactor of A is: A. 43 B. 34 C. 56 D. -56 $7. \begin{vmatrix} 1 & 0 & 5 & 6 \\ 0 & 5 & 0 & 8 \\ 0 & 0 & -1 & 8 \\ 0 & 0 & 0 \end{vmatrix} =$ D. -67 B. Let $A = [a_{ij}]$ be an $n \times n$ triangular matrix, then |A| equals: A. $a_{11}a_{22}...a_{nn}$ B. $a_{11} + a_{22} + ... + a_{nn}$ C. $-a_{11} - a_{22} - ... - a_{nn}$ D. There is no formula 9. Let A be a square matrix of order $4 \ll 4$, then |A| =A. -|A|B. $|A^t|$ C. $-|A^t|$ D. 0A. 3 10. Row expansion of |A| ... column expansion of |A|.

A. =

- B. \neq
- C. There is no comparison
- D. None of these

11. For any $n \times n$ matrices A and B, we have:

A. |AB| = |BA|B. $|AB| \neq |BA|$ C. |AB| < |BA|D. |AB| > |BA|

12. Let A, B be matrices of order 6 such that $|AB^2| = 144$ and $|A^2B^2| = 72$, then |A| =

A. 2 B. $\frac{1}{2}$ C. -2 D. $-\frac{1}{2}$

13. For an invertible matrix
$$A$$
, $|A^{-1}|$ equals:
A. $|A|$
B. $-|A|$
C. $|A|^{-1}$
D. $-|A|^{-1}$
14. For 2 × 2 matrices A and B , which of the following equations hold? (Can choose more than one options)
A. $|A + B| = |A| + |B|$
B. $|A + B|^2 = |(A + B)^2|$
C. $|A + B|^2 = |A|^2 + |B|$
D. $|(A + B)^2| = |A|^2 + |B|$
15. $\begin{vmatrix} 0 & a & -b \\ -a & 0 & c \\ b & -c & 0 \end{vmatrix} = A^2 + 2AB + B^2|$
15. $\begin{vmatrix} 0 & a & -b \\ -a & 0 & c \\ b & -c & 0 \end{vmatrix} = A^2 + 2AB + B^2|$
A. 0
B. 1
C. -1
D. abc

16. If A is an $n \times n$ skew symmetric matrix and n is odd, then |A| =

A. 0 B. 1 C. -1 D. ±1

17. If a, b, c are different numbers. For what value of x, the matrix $\begin{bmatrix} 0 & x+b & x^2+c \\ x-b & 0 & x^2-a \\ x^3-c & x+a & 0 \end{bmatrix}$ is singular? A. 0 B. a C. b D. c 18. If A is a square matrix of odd order, then |-A| =A. |A|B. -|A|Solution for the set of unity is a root of unity if β is a root of unity $C. \alpha\beta$ is a root of unity $D. \frac{\alpha}{\beta}$ is a root of unity $D. \frac{\alpha}{\beta}$ is a root of unity $C. \alpha\beta$ is a roo C. 0 B. 4 C. 16 D. $\frac{1}{4}$ Akhtar Abbas

Akntar Abbas Lecturer in Mathematics University of Jhang 0332-6297570

Multiple Choice Questions For BA, BSc (Mathematics)

6. Let (X, d) be a metric space. Which of the following is not a metric on X?

A. $d_1(x, y) = kd(x, y)$, where k is a positive number B. $d_2(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ C. $d_3(x, y) = \frac{kd(x, y)}{1+kd(x, y)}$ D. $d_4(x,y) = \frac{1-d(x,y)}{1+d(x,y)}$

7. Let (X, d) be a metric space and $x_1, x_2, ..., x_n$ be points of X, then the property

$$d(x_1, x_n) \le d(x_1, x_2) + d(x_2, x_3) + \dots + d(x_{n-1}, x_n)$$

is called:

- A. Generalized Triangle Inequality
- B. Generalized Non negativity

- D. Generalized Reflexive 8. The usual (or Euclidean) metric on \mathbb{R} is defined as: A. d(x, y) = |x + y|B. d(x, y) = |z y|C. d(x, y) = |x| + |y|D. d(x, y) = ||x| |y||The usual (or Euclidean) metric on \mathbb{R}^{2} is defined $y = (y_{1}, y_{2})$. A $-^{3/}$ 9. The usual (or Euclidean) metric on \mathbb{R}^2 is defined as ..., where $x = (x_1, x_2)$ and $y = (y_1, y_2)$.

A.
$$d(x, y) = \sqrt{(x_1 + y_1)^2 + (x_2 - y_2)^2}$$

B. $d(x, y) = |x_1 - y_1| + |x_2 - y_2|$
C. $d(x, y) = max\{|x_1 - y_1|, |x_2 - y_2|\}$
D. None of these

10. The taxi-cab metric on \mathbb{R}^2 is defined as ..., where $x = (x_1, x_2)$ and $y = (y_1, y_2)$.

- A. $d(x, y) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2}$ B. $d(x, y) = |x_1 - y_1| + |x_2 - y_2|$ C. $d(x, y) = max\{|x_1 - y_1|, |x_2 - y_2|\}$
- D. None of these

11. The discrete metric on a non empty set X is defined as:

A.
$$d(x, y) = \begin{cases} 0 & if \ x = y \\ 1 & if \ x \neq y \end{cases}$$

B.
$$d(x, y) = \begin{cases} 0 & if \ x \neq y \\ 1 & if \ x = y \end{cases}$$

C.
$$d(x, y) = \begin{cases} 0 & if \ x = y \\ -1 & if \ x \neq y \end{cases}$$

D.
$$d(x, y) = \begin{cases} -1 & if \ x = y \\ 0 & if \ x \neq y \end{cases}$$

12. Let $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n)$ be any two points of \mathbb{R}^n . Then

$$\sum_{k=1}^{n} |x_k y_k| \le (\sum_{k=1}^{n} |x_k|^2)^{\frac{1}{2}} (\sum_{k=1}^{n} |y_k|^2)^{\frac{1}{2}}.$$

This inequality is called:

- A. Cauchy Inequality
- B. Cauchy-Schwarz Inequality
- C. Minkowski's Inequality
- D. Holder's Inequality

This inequality is called:

- A. Cauchy Inequality
- B. Cauchy-Schwarz Inequality
- C. Minkowski's Inequality
- D. Holder's Inequality

- 15. The collection of all continuous real-valued functions defined on a closed interval [a, b]is denoted as:
 - A. C[a,b]B. L[a, b]C. D[a, b]D. l^{∞}

16. Let (X, d) be a metric space and $x, y, z \in X$. Then which of the following is true?

- A. $|d(x, z) d(y, z)| \le d(x, y)$
- B. $|d(x, y) d(x, z)| \le d(y, z)$
- C. $|d(x, y) d(y, z)| \le d(x, z)$
- D. All of these

17. The distance between a point x and subset A of a metric space (X, d) is defined as:

A. $d(x, A) = inf\{d(x, a) : a \in A)\}$ B. $d(x, A) = sup\{d(x, a) : a \in A)\}$ C. $d(x, A) = inf\{d(x, y) : x, y \in A)\}$ D. $d(x, A) = inf\{|x - 1| : a \in A)\}$ 18. The distance between two subsets A, B of a metric space (X, d) is defines as: A. $d(A, B) = inf\{d(x, a) : a \in A\}$

- A. $d(A, B) = inf\{d(x, a) : a \in A\}\}$
- B. $d(A, B) = inf\{d(x, b) : b \in B\}$ C. $d(A, B) = inf\{d(a, b) : a \in A, b \in B\}$ D. All of these
- 19. Let A and B be overlapping subsets of a metric space (X, d), then distance between A and B is:
 - A. Not defined
 - B. Zero
 - C. Infinity
 - D. None of these
- 20. The distance between $A = \{(x, y) \in \mathbb{R}^2 : y = \frac{1}{x}, x \neq 0\}$ and $B = \{(x, y) \in \mathbb{R}^2 : y = 0\}$ is:
 - A. Not defined
 - B. Zero
 - C. Infinity
 - D. None of these

21. If A is a subset of a metric space (X, d) such that $\delta(A) < \infty$, then A is called:

- A. Finite
- B. Bounded
- C. Open
- D. Closed

22. Let (X, d) be a metric space and $\delta(X) < \infty$, then d is called ... metric.

- A. Finite
- B. Bounded
- C. Open
- D. Closed

- Lon empty set Lon R Lon R Lon R Lon OR D. None of these 24. Intersection of many many bounded sets is a thread of the A. Bounded B. Unbounded C. Empty D. Open 25. Union of finitely many bounded sets is: A. Bounded B. Not necessarily bounded sets is: A. Bounded B. Not necessarily bounded sets is: C. Unbo

 - - D. Open

26. Let (X, d) be a metric space. If $a \in X$ and r > 0, then the open ball centered at a and with radius r is:

> A. $B(a; r) = \{x \in X : d(a, x) < r\}$ B. $B(a; r) = \{x \in X : d(a, x) < r\}$ C. $\overline{B}(a;r) = \{x \in X : d(a,x) < r\}$ D. $\overline{B}(a; r) = \{x \in X : d(a, x) < r\}$

27. A point $y \in B(a, r)$ if and only if:

A. d(a, y) > rB. d(a, y) > rC. d(a, y) < rD. d(a, y) < r

28. An open ball in (\mathbb{R}, d) (usual metric) with center a and radius r is:

A. (a - r, a + r)

 $(x, y) \in \mathbb{R}^{2} : x^{2} + y^{2} < 1$ B. $\{(x, y) \in \mathbb{R}^{2} : x^{2} + y^{2} < 1\}$ C. $\{(x, u) \in \mathbb{R}^{2} : x^{2} + y^{2} < 1\}$ A. $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ B. $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 > 1\}$ C. $\{(x, y) \in \mathbb{R}^2 : |x| + |y| < 1\}$ D. $\{(x, y) \in \mathbb{R}^2 : |x| + |y| > 1\}$

30. The unit open ball in (\mathbb{R}^2, d') (Taxi-cab metric) at the origin is:

A. $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ B. $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 > 1\}$ C. $\{(x, y) \in \mathbb{R}^2 : |x| + |y| < 1\}$ D. $\{(x, y) \in \mathbb{R}^2 : |x| + |y| > 1\}$

31. Let (X, d_0) be a discrete metric space, $a \in X$ and r > 1, then B(a, r) =

Α. φ B. $\{a\}$ C. XD. $X - \{a\}$ 32. Let (X, d_0) be a discrete metric space, $a \in X$ and $0 < r \le 1$, then B(a, r) =

- A. ϕ B. $\{a\}$ C. XD. $X - \{a\}$
- 33. Let (X, d) be a metric space. A subset $O \subset X$ is called ... if for each $x \in O$, there exists r > 0 such that $B(x; r) \subset O$.
 - A. Open
 - B. Closed
 - C. Bounded
- - - C. Both A and B
 - D. None of these
 - 37. The arbitrary ... of open sets is an open set.
 - A. Union
 - **B.** Intersection
 - C. Complement
 - D. Symmetric Difference

38. The finite ... of open sets is an open set.

- A. Union
- **B.** Intersection
- C. Complement
- D. Symmetric Difference

39. The arbitrary intersection of open sets in a metric space:

- A. Is open
- B. Is not necessarily open
- C. Is closed
- D. Is not necessarily closed

13
D. (0,1)
41. Every subset of a discrete metric space is: church with the subset of a discrete metric space is: church of the subset of a metric on the subset of a metric 40. Let $I_n = \{(-\frac{1}{n}, \frac{1}{n}) : n \in \mathbb{N}\}$, then $\bigcap_{n=1}^{\infty} I_n$ equals:

- - B. Closed
 - C. Open as well as closed
 - D. Not open, nor closed
- 43. Let (X, d) be a metric space and let a be any point of X. A subset N of X is called ... if there exists an open ball B(a; r) such that $B(a; r) \subseteq N$.
 - A. Open set
 - B. Closed set
 - C. Neighborhood of a
 - D. None of these

44. If a subset N of a metric space (X, d) is neighborhood of each of its points, then N is:

- A. Open
- B. Closed
- C. Bounded
- D. Compact

45. If N is a neighborhood of a and $N \subset M$, then M is:

- A. Neighborhood of a
- B. Open
- C. Closed
- D. Bounded

46. If N is a neighborhood of a point a, then a is called ... of N.

- $\begin{array}{c} \text{A. Open}\\ \text{B. Not necessarily open}\\ \text{C. Closed}\\ \text{D. Not necessarily closed}\\ \text{S. For any subset } A \text{ of a metric of } \\ \text{A. } A \subset A^c \end{array}$ 48. For any subset A of a metric space (X, d), which of the following is true?
 - A. $A \subseteq A$ B. $A^o \subseteq A$
 - C. $A = A^o$

D.
$$A \neq A^o$$

49. A subset A of a metric space (X, d) is open if and only if:

- A. $A = A^o$
- B. A is neighborhood of each of its points
- C. Both A and B are true
- D. None of these

50. Let A = [a, b] be any subset of \mathbb{R} with usual metric. Then A^o equals:

- A. [a, b]
- B. [a, b)
- C. (a, b]
- D. (a, b)

51. Let A = [a, b] be any subset of \mathbb{R} with discrete metric. Then A^o equals:

- A. [a, b]
- B. [a, b)
- C. (a, b]
- D. (a, b)

52. For any subset A of a metric space (X, d), ... is the largest open subset of A^c .

- A. Interior of A

- A. Interior of A
 B. Exterior of A
 C. Closure of A
 D. Boundary of A
 53. For any subset A of a metric space (X, d), interior of A is the ... of all open subsets of A.
 A. Union
 B. Intersection
 C. Symmetric difference
 D. All of these
 54. For any subsets A, Bool a metric space (X, d), which of the following is false?
- - A. $(A^o)^o$
 - B. $A \subseteq B$ implies $\hat{A}^o \subseteq B^o$
 - C. $(A \cap B)^o = A^o \cap B^o$
 - D. $(A \cup B)^o = A^o \cup B^o$

55. Consider \mathbb{Q} as a subset of \mathbb{R} with usual metric, then Q^o equals:

- A. ϕ
- B. ℚ
- C. \mathbb{O}'
- D. \mathbb{R}

56. For any two subsets A and B of a metric space (X, d), $(A \cup B)^o \dots A^o \cup B^o$.

A. \subset B. ⊇ C. = D. None of these

57. If $A = \phi$ and $B = \mathbb{R}$, then $A^o \cup B^o =$:

- A. ϕ
- B. \mathbb{R}
- C. (a, b)
- D. [a, b]

58. Let A be any subset of a metric space (X, d). A point $x \in X$ is called a limit point of A, II for every open ball B(x; r), we have: A. $B(x; r) \cap (A - \{x\}) \neq \phi$ B. $(B(x; r) \cap A) - \{x\} \neq \phi$ C. $(B(x; r) - \{x\}) \cap A \neq \phi$ D. All of these 59. The set of all limit points of A, denoted as A^d is called ... of A. A. Interior B. Derived set C. Boundary D. Closure 60. Consider Z as a subset of \mathbb{R} with usual metric, then $\mathbb{Z}^d =:$ A. ϕ A, if for every open ball B(x; r), we have:

- Α. φ
- B. Z
- C. \mathbb{Q}
- D. \mathbb{R}
- 61. A subset K of a metric space (X, d) isif K^c is open.
 - A. Closed
 - B. Interior of K
 - C. Closure of K
 - D. Boundary of K

Available at www.MathCity.org

62. A set K is closed if and only if

A. $K^d \subseteq K$ B. $K \subseteq K^d$ C. K = KD. Any of A, B or C

63. Consider $A = \{1, \frac{1}{2}, \frac{1}{3}...\}$ as a subset of Euclidean metric space (\mathbb{R}, d) , then $A^d = ...$

- A. $\{0\}$
- B. {1}
- C. A
- D. R

 $\begin{array}{c} \underbrace{ [a,b] \\ b. \{a,b\} \\ \hline \\ \end{array} \\ \begin{array}{c} b. \{a,b\} \\ \hline \\ \end{array} \\ \begin{array}{c} a,b \\ \hline \\ \end{array} \\ \end{array} \\ \begin{array}{c} b. \{a,b\} \\ \hline \\ \end{array} \\ \begin{array}{c} c. \{a,b\} \\ \end{array} \\ \begin{array}{c} c. \{a,b\} \\ \hline \\ \end{array} \\ \begin{array}{c} c. \{a,b\} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c. \{a,b\} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c. \{a,b\} \\ \end{array} \\ \end{array}$ \\ \begin{array}{c} c. \{a,b\} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c. \{a,b\} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c. \{a,b\} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c. \{a,b\} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c. \{a,b\} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c. \{a,b\} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c. \{a,b\} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c. (a,b) \\ \end{array} \\ \bigg \\ \end{array} \\ \end{array} \\ \bigg \\ \bigg \\ \end{array} \\ \bigg \\ \bigg

- - D. Compact

67. $\mathbb{O}^d = ?$

- A. ϕ
- В. **Q**
- C. \mathbb{Q}'
- D. \mathbb{R}

- 68. $(\mathbb{Q}')^d = ?$
 - Α. φ В. C. \mathbb{O}'

 - D. \mathbb{R}
- 69. Let (X, d) be a metric space and $a \in X$. For a positive real number r, the closed ball with center at x and radius r is
 - A. $B(a; r) = \{x \in X : d(a, x) < r\}$ B. $B(a; r) = \{x \in X : d(a, x) < r\}$

 - C. $\overline{B}(a;r) = \{x \in X : d(a,x) \le r\}$

D.
$$B(a;r) = \{x \in X : d(a,x) < r\}$$

- 70. A closed ball in a metric space is
 - A. A closed set.
 - B. Not necessarily a closed set
 - C. An open set
 - D. Not an open set
- 71. Arbitrary intersection of closed sets is
 - A. A closed set.
 - B. Not necessarily a closed setC. An open set

 - D. Not an open set

used set Osupposentities of the pint 72. A point $x \in (X, d)$ is called a point if for every r>0 , $B(x;r)\cap A\neq\phi$

- A. Limit point
- B. Adherent point
- C. Isolated point
- D. Interior point
- 73. Let (X, d) be a metric space and $A \subseteq X$. A point $x \in A$ is called ... point of A if x is not a limit point of A.
 - A. Limit point
 - B. Adherent point
 - C. Isolated point
 - D. Interior point

74. A set is called ... if it is closed and has no isolated point

A. Perfect

- B. Closed
- C. Compact
- D. Dense

75. The collection of all adherent points of a set A is called ... of A.

- A. Interior
- B. Exterior
- C. Closure
- D. Boundary

76. If A = (0, 1), then $\overline{A} =$

- A. (0, 1)B. [0,1)
- C. (0, 1]
- D. [0, 1]
- Khtor Abbas Osupposemath Khtor Abbas Osupposemath 77. If $A = \{\frac{1}{n} : n \in \mathbb{N}\}$, then $\overline{A} =$ A. A

B. $A \cup \{0\}$ C. $A - \{0\}$

- D. φ 78. $A \cup A^d =$ A. A^o
 - B. $(A')^{o}$ C. \overline{A}
 - D. Fr(A)

79. \overline{A} is ...

- A. Open
- B. Closed
- C. Compact
- D. Bounded

80. Which of the following is true?

A. $A \subseteq \overline{A}$ B. $\overline{A} \subset A$ C. $A \subseteq A^o$ D. $(A')^o = A$

81. The smallest closed superset of A is

A. A^o B. ext(A)C. A^d D. \overline{A}

82. For any subset A of a metric space (X, d), we have $\overline{\overline{A}} =$

- A. AB. \overline{A}
- C. A^c
- D. A^o

83. Which of the following is false?

 $\begin{array}{c} \mathbf{B}^{i} \mathbf{A} \mathbf{B}^{i} \mathbf{B}^{i} \mathbf{A} \mathbf{B}^{i} \mathbf{B}^{i} \mathbf{A} \mathbf{B}^{i} \mathbf{B}^{i} \mathbf{B}^{i} \mathbf{A} \mathbf{B}^{i} \mathbf{B}^{i}$ A. $\overline{\phi} = \phi, \overline{X} = X$ B. $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$ C. $(\overline{A \cup B}) = \overline{A} \cup \overline{B}$ D. $\overline{A \cap B} = \overline{A} \cap \overline{B}$ 84. $\overline{A} \cap \overline{A^c} = ?$ A. \overline{A} B. A^d C. Fr(A)D. A^o

85. Which of the following is true

A.
$$Fr(A) = \overline{A} - A^{o}$$

B. $\overline{A} = A^{o} \sqcup Fr(A)$

$$D. A = A O P (A)$$

- C. $Fr(A) \cap A^o = \phi$
- D. All of these

86. A is called if and only if

A. $Fr(A) \subseteq A$ B. $Fr(A) \supset A$ C. $Fr(A) \subset A^c$ D. $Fr(A) \supset A^c$

87. A is open if ...

A. $Fr(A) \subseteq A$ B. $Fr(A) \supseteq A$ C. $Fr(A) \subset A^c$ D. $Fr(A) \supset A^c$

 $\int_{-1} ext(B)$ $\int_{-1} ext(A) \cap ext(B)$ $\int_{-1} ext(ext(A)) \supseteq A^{o}$ D. $A \cap ext(A) = \phi$ 89. A subset A of a metric space (X, d) is closed if and only if: A. $A = \overline{A}$ B. $A = A^{o}$ C. $A \neq \overline{A}$ D. $A \neq A^{o}$ 90. A subset A of a metric space (X, d) is open if and only if: A. $A = \overline{A}$ B. $A = A^{o}$ C. $A \neq \overline{A}$ D. $A \neq A^{o}$ 10. $A = \overline{A}$ D. $A \neq A^{o}$ 10. $A \neq$

Akhtar Abbas Lecturer in Mathematics University of Jhang 0332-6297570

Multiple Choice Questions For BA, BSc (Mathematics)

Number Theory

An effort by: Akhtar Abbas

- 1. For any positive integers a and b, there exists a positive integer n such that na > b is called:
 - A. Archimedean Property
 - B. Division Algorithm
 - C. Density Theorem
 - D. Fundamental Theorem of Arithmetic
- 2. Let $S \subseteq \mathbb{N}$ having the properties:
 - (i) $1 \in S$ and
 - (ii) Whenever $k \in S$, then $k + 1 \in S$, then
 - A. $S = \mathbb{N}$
 - B. $S \subset \mathbb{N}$
 - C. $S \supset \mathbb{N}$
 - D. $S \neq \mathbb{N}$
- 3. $2[1+2+3+\ldots+n] =$
 - A. $\frac{n(n+1)}{2}$ B. $\frac{n(n-1)}{2}$ C. n(n+1)D. n(n-1)
- tor Abbas Osupposement with $a \neq 0, -\frac{1}{r}$ 4. Given integers a and b with $b \neq 0$, there exist unique integers q and r satisfying A. a = bq + r, 0 < r < |b|
 - B. $a = bq + r, 0 \le q \le |b|$ C. a = bq + r, 0 < r < |a|D. $a = bq + r, 0 \le q \le |a|$
- 5. Which of the following is false?
 - A. a|aB. If a|b and b|c, then a|cC. If a|b and b|a, then a = b
 - D. If a|b then a|bc

6. If a|b and a|c, then for any $x, y \in \mathbb{Z}$, we have

A. a|(bx+cy)B. a|(bx - cy)C. a|bcD. All of these 7. If a|(b+c) and a|b, then A. a|cB. $a \nmid c$ C. a|(b-c)|D. $a \nmid (b-c)$ $\begin{array}{c} .=5\\ 4,r=-5\\ .q=-4,r=-5\\ \end{array} \\ \begin{array}{c} \text{House} \\ \text{$ 8. If a = 73 and b = 8, then 9. If a = -23 and b = 7, then 10. We read a|b as 11. Let $a, b \in \mathbb{Z}$ with $a \neq 0$. Then $a \mid b$ if for some $c \in \mathbb{Z}$, A. a = bcB. b = acC. c = a + b

D. c = ab

12. Any integer can be expressed in the form

A. 2n or 2n+1B. 3n, 3n+1 or 3n+2C. 4n, 4n + 1, 4n + 2 or 4n + 3D. All of these

13. For any $n \in \mathbb{Z}$, $2 \cdot 7^n + 3 \cdot 5^n - 5$ is divisible by

- A. 24
- B. 23
- C. 9
- D. 13

D. 7 D. 7 15. Let a, b be nonzero integers. Then a positive integer a is called ... of a and b if (i) d|a and d|b(ii) If c|a and c|b, then $c \le d$. A. G. C. D B. L. C. M C. H. C. F D. Both A and the full the construction of a and b if [We denote G. C. D. of $a|a^{n}|^{1/2}$.

- 16. Let a, b be nonzero integers and (a, b) = 1, then a, b are called
 - A. Prime to each other
 - B. Coprime
 - C. Relatively prime
 - D. All of these

17. The G.C.D of two non zero integers a and b:

A. Is always unique B. Is not necessarily unique C. Always exists D. Both A and C 18. If a|b, then (a, b) =A. aB. *b* C. |a|D. |b|D. -2 D. -2 20. If d = (a, b), then there exist $x, y \in \mathbb{Z}$ such that: A. d = ax + byB. d = ax - byC. d = ay + bxD. All of these 21. Let $k \in \mathbb{Z}$ and $a, b \in \mathbb{Z}$ $\bigcirc \{0\}$ A. k(a, b)B. |k|(a, b)|C. Both A and B D. N^c 22. If d = (a, b), then A. $\left(\frac{a}{d}, \frac{b}{d}\right) = 1$ B. $\left(\frac{a}{d}, \frac{b}{d}\right) = d$ C. $\left(\frac{a}{b}, \frac{b}{a}\right) = d$ D. $\left(\frac{a}{b}, \frac{b}{a}\right) = 1$

26.

23. If a|bc and (a,b) = 1, then

A. a|cB. b|cC. $a \nmid c$

D. a|(b+c)

24. Let $a, b \in \mathbb{Z} - \{0\}$. Then a positive integer m is called ... of a and b if (i) a|m and b|m

- (ii) If a|n and b|n then $m \leq n$.
 - A. G. C. D
 - B. L. C. M
 - C. H. C. F
 - D. Both B and C

25. For any non zero integers a, b we have

D. Both B and C
[We denote L. C. M of a and b as
$$\langle a, b \rangle$$
, $[a, b]$ or $lcm(a, b)$.]
For any non zero integers a, b we have
A. $\langle a, b \rangle = ab(a, b)$
B. $(a, b) = ab \langle a, b \rangle$
C. $a(a, b) = b \langle a, b \rangle$
D. $\langle a, b \rangle = (a, b) = ab$
If $a = bq + r$, then which of the following is true?
A. $(a, b) = (b, r)$
B. $(a, r) = (b, r)$
C. $\langle a, b \rangle = \langle b, r \rangle$
D. $\langle a, r \rangle = \langle b, r \rangle$
D. $\langle a, r \rangle = \langle b, r \rangle$

27. For any two non zero integers a, b, we have (a, (a, b)) =

- A. *b*
- B. a
- C. ab
- D. a+b

- 28. Let a, b be non zero integers and $c \in \mathbb{Z}$, the equation ax + by = c is called ... in two variables.
 - A. Polynomial
 - **B.** Linear Diophantine
 - C. Linear Equation
 - D. Quadratic
- 29. Let d = (a, b). The Linear Diophantine equation ax + by = c has a solution if and only if:
 - A. d|c
 - B. c|d
 - C. (c, d) = 1
 - D. c|(a+b)|
- $z \in \mathbb{Z} \}$ $a^{\downarrow}, y_{o} \frac{a}{d}t) : t \in \mathbb{Z} \}$ $\therefore \{(x_{o} \frac{b}{d}t, y_{o} + \frac{a}{d}t) : t \in \mathbb{Z} \}$ D. $\{(x_{o} \frac{b}{d}t, y_{o} \frac{a}{d}t) : t \in \mathbb{Z} \}$ D. $\{(x_{o}, y_{o}) \text{ with integral coordinates is called:}$ A. Common point
 B. Lattice point
 C. Integral point
 D. None of these 30. If (x_o, y_o) is a solution of Linear Diophantine equation ax + by = c, then the solution

32. A number n whose only positive divisors are 1 and n, is called:

A. Prime

- B. Coprime
- C. Relatively prime
- D. All of these

33. The smallest prime number is:

- A. 1
- B. 2
- C. 3
- D. 5

 $A = a = a = a = d p | b \\ A = p | a = a = d p | b \\ B = p | a = a = d p | b \\ B = p | a = a = d p | b \\ B = p | a = a = d p | b \\ C = p | a = a = d p | b \\ C = p | a = a = d p | b \\ C = p | a = a = d p | b \\ C = p | a = a = d p | b \\ C = p | a = a = d p | b \\ C = p | a = a = d p | b \\ C = p | a = a = d p | b \\ C = p | a = a = d p | b \\ C = p | a = a = d p | b \\ C = p | a = a = d p | b \\ C = p | b \\ C = p | a = d p | b \\ C = p | b \\ C = p | b \\ C = p | b \\$

- A. Finite
- B. Infinite
- C. Countable
- D. None of these

Available at www.MathCity.org

38. Let n > 1 be a composite number, then there exists a prime p such that p|n and

A. $p \leq \sqrt{n}$ B. $p \ge \sqrt{n}$ C. $p < \sqrt{n}$ D. $p > \sqrt{n}$

39. Every integer n > 1 can be represented uniquely as a product of:

- A. Prime numbers
- B. Composite numbers
- C. Even numbers
- D. Odd numbers

40. For n > 0, the numbers of the form $2^{2^n} + 1$ are called ... numbers

- A. Fermat

- A. Fermat B. Mersenne C. Perfect D. None of these 41. Any two Fermat numbers are: A. Prime B. Coprime C. Composite D. None of these 42. For n > 0, the numbers of the form $M_n = 2^n 1$ are called: A. Fermat's the form $M_n = 2^n 1$ are called:
 - A. Fermat's
 - B. Mersenne
 - C. Perfect
 - D. None of these
 - 43. If M_n is prime, then n is:
 - A. Prime
 - B. Composite
 - C. Not necessarily prime
 - D. Not necessarily composite

- 44. Given a positive integer n, $\tau(n)$ or d(n) denotes the:
 - A. Sum of positive divisors of n
 - B. Number of positive divisors of n
 - C. Number of coprime numbers of n
 - D. None of these

45. Given a positive integer $n, \sigma(n)$ denotes the:

- A. Sum of positive divisors of n
- B. Number of positive divisors of n

C. Number of coprime numbers of n

D. None of these

46. $\tau(n) =$

Atter Abbas asunposematic A. $\sum_{d|n} 1$ B. $\sum_{d|n} d$ C. Both of these D. None of these 47. $\sigma(n) =$ A. $\sum_{d|n} 1$ B. $\sum_{d|n} d$ C. Both of these D. None of these 48. $\tau(10) =$ A. 3 B. 4 C. 5 D. 6 49. $\sigma(10) =$ A. 5 B. 9 C. 10 D. 18

BSc

50. If $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$, then $\tau(n) =$ A. $(k_1 + 1)(k_2 + 1)...(k_r + 1)$ B. $k_1 k_2 ... k_r$ C. $k_1(k_2+1)...(k_r+1)$ D. $n(k_1+1)(k_2+1)...(k_r+1)$ 51. $\tau(180) =$

- A. 18
- B. 9
- C. 180
- D. 90

- LertectD. None of these $33. \text{ Let } m \text{ be a fixed positive integer. Then an integer } a is congruent to an integer b modulo m, written as <math>a \equiv b(mod m)$ if:
 A. a|(m + b)B. m|(a b)C. m|(b a)D. Both B and C.
 4. Equivalence
 B. Partial α^{n-3}

 - - C. Anti symmetric
 - D. Anti reflexive
 - 55. Let $a, b \in \mathbb{Z}$. Then $a \equiv b \pmod{m}$ if and only if a, b have the same ... after division by m.
 - A. Quotient
 - B. Remainder
 - C. Both A and B
 - D. None of these

56. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then which of the following is false?

A. $a + c \equiv b + d \pmod{m}$

- B. $ac \equiv bd \pmod{m}$
- C. $na \equiv nb \pmod{m}$, where $n \in \mathbb{Z}$
- D. None of these
- 57. Which of the following is true?
 - A. If $a \equiv b \pmod{m}$, then $a^n \equiv b^n \pmod{m}$
 - B. If $na \equiv nb \pmod{m}$ and (m, n) = d, then $a \equiv b \pmod{\frac{m}{d}}$
 - C. If $na \equiv nb \pmod{m}$ and (m, n) = 1, then $a \equiv b \pmod{m}$
 - D. All of these

58.
$$\phi(n) = n - 1$$
 if and only if n is:

59. $(p-1)! \equiv -1 \pmod{p}$ if and only if

60. For
$$a, m \in \mathbb{Z}$$
, $a^{\phi(m)} \equiv 1 \pmod{m}$ if
A. $(a, m) \neq 1$

f dinteger e of these $u \in \mathbb{Z}, a^{\phi(m)} \equiv 1 \pmod{m} \text{ if } 0$ $A = (a, m) \neq 1$ B = (a, m) = 1 $C = (a, m) \neq 1$ D = (a, m) = 1 f =

- 61. Which of the following is true?

 - B. If $m = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$, then $\phi(m) = m(1 \frac{1}{p_1})(1 \frac{1}{p_2})\dots(1 \frac{1}{p_r})$

C.
$$\phi(372) = 120$$

D. All of these

Akhtar Abbas Lecturer in Mathematics University of Jhang 0332-6297570

Multiple Choice Questions For BA, BSc (Mathematics)

Differential Equations of First Order

An effort by: Akhtar Abbas

- 1. An ordinary differential equation is a differential equation containing one or more dependent variables of ... independent variable(s).
 - A. One
 - B. Two
 - C. More than one
 - D. More than two
- 2. Number of independent variables in partial differential equation are

 $\int_{a} \int_{a} \int_{a$ 5. The order of the differential equation $\left(\frac{d^4y}{dx^4}\right)^{\frac{2}{5}} + 5\frac{d^3y}{dx^3} + 5\frac{dy}{dx} - 6 = 0$ is:

- A. 1
- B. 2
- C. 3
- D. 4

6. The degree of the differential equation $\left(\frac{d^4y}{dx^4}\right)^{\frac{2}{5}} + 5\frac{d^3y}{dx^3} + 5\frac{dy}{dx} - 6 = 0$ is: A. 1 B. 2 C. 3 D. 4 7. The order of differential equation $x = \frac{dy}{dx} + (\frac{dy}{dx})^2 + (\frac{dy}{dx})^3 + \dots$ is: A. 1 B. 2 C. 3 D. 4 8. The degree of differential equation $x = \frac{dy}{dx} + (\frac{dy}{dx})^2 + (\frac{dy}{dx})^3 + \cdots$ is: A. 1 B. 2 C. 3 D. 4 9. An ordinary differential equation of order x, $F(x,y,\frac{dy}{dx},\cdot,\cdot,\frac{d^ny}{dx^n}) = 0$ is said to be ... if F is a linear function of the variables $y, \frac{dy}{dx}, ..., \frac{d^n y}{dx^n}$. A. Linear B. Non Linear C. Quadratic B. Non LinearC. Quadratic D. None of these 10. Which of the following equations is linear? A. $\frac{d^3y}{dx^3} + x^2\frac{dy}{dx} - y = 0$ B. $\frac{d^3y}{dx^3} + x^2 \frac{dy}{dx} - \sin y = 0$ C. $\frac{d^3y}{dx^3} + x^2y\frac{dy}{dx} - y = 0$

D. $\frac{d^3y}{dx^3} + x^2(\frac{dy}{dx})^2 - y = 0$

- 11. The graph of a particular solution (integral) is called ... of the differential equation.
 - A. Locus
 - B. Differential curve
 - C. Integral curve
 - D. All of these

12. A solution of the differential equation $(\frac{dy}{dx})^2 - x\frac{dy}{dx} + y = 0$ is:

A. y = 2B. y = 2xC. y = 2x - 4D. y = 2x + 4

13. Solution of the differential equation $\frac{dy}{dx} = 2x$ subject to the condition y(1) = 4 is:

- A. $y = x^2$

A. $y = x^2$ B. y = x + 3C. $y = x^2 + 3$ D. $y = 2x^3$ 14. If $y = A \sin x + B \cos x$, then what is y(0) control of the product of the

- A. 1 B. 2
- C. 3
- D. 4
- 16. A differential equation F(x)G(y)dx + f(x)g(y)dy = 0 is called ... if it can be written as $\frac{F(x)}{f(x)}dy + \frac{g(y)}{G(y)}dx = 0.$
 - A. Separable
 - B. Exact
 - C. Homogeneous
 - D. Linear

17. $\frac{dy}{dx} = \frac{x^2}{y}$ has solution. A. $y^2 + x^2 = c$ B. $3y = 2x^2 + c$ C. $3y^2 = 2x^3 + c$ D. $3y^2 = x + c$ 18. $\frac{dy}{dx} = \frac{1}{x \tan y}$ has solution A. $x \cos y = e^c$ B. $x \sin y = e^c$ = c $y + \sin x = c$ C. $\frac{1}{y} + \cos x = c$ D. $\frac{1}{y} + \sin x = c$ 20. The differential equation $(1 + x)dy \leq ydx = what the general solution$ A. y = c(1 - x)B. y = c + xC. y = cxD. y = c + dyD. y = dyD. C. $x \sin y = c$

21. The differential equation with solution $y = A \sin x + B \cos x$ is:

A. $\frac{dy}{dx} + y = 0$ B. $\frac{dy}{dx} - y = 0$ C. $\frac{d^2y}{dx^2} + y = 0$ D. $\frac{d^2y}{dx^2} - y = 0$

22. The differential equation of all parabolas whose axis is parallel to the y-axis is:

A. $\frac{dy}{dx} = x^2 + b$ B. $\frac{d^2y}{dx^2} = 2x$ C. $\frac{d^3y}{dr^3} = 0$ D. All of these

$$f(tx, ty) = t^n f(x, y)$$

.. if $(x, ty) = t^n f(x, y)$ th .. number. C. Homogeneous D. Separable 24. Which of the following is homogeneous? A. \sqrt{xy} B. $\cos(\frac{y}{x})$ C. $ln(e^{xy})$ D. All of these The degree home

- A. 7
- B. 9
- C. 8
- D. 2

26. A homogeneous equation $\frac{dy}{dx} = g(\frac{y}{x})$ can be transformed into a separable equation by substitution.

> A. $y = vx^2$ B. y = vxC. $y = x^2$ D. u = x

27. $\frac{dy}{dx} = g(\frac{y}{x})$ is homogeneous, its separable form is A. [v - g(v)]dx + dv = 0

- B. [v q(v)]dx + xdv = 0
- C. [x q(x)]dx + dv = 0
- D. [x q(x)]dx + vdv = 0

28. The differential equation $(a_1x + b_1y + c_1)dx + (a_2x + c_2)dx + ($

- A. Exact
- B. Not exact
- C. Homogeneous
- D. Non linear
- $2x + b_2y + c_2) = 0$ is: $b_2x + b_2y + c_2 = 0$ 29. By substitution ... differential equation $(a_1x + b_1y + c_1)dx + (a_2x + b_2y + c_2) = 0$ will be reduced to homogeneous equation.

A.
$$x = X + h$$
, $y = Y + k$
B. $x = X - h$, $y = Y - k$
C. $z = a_1x + b_1y$
D. None of these

30. The differential equation $(a_1x + b_1y + c_1)dx + (a_2x + b_2y + c_2) = 0$ is not exact, but if $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$, then the substitution ... will work to reduce it to homogeneous form?

A.
$$x = X + h, y = Y + k$$

B.
$$x = X - h, y = Y - k$$

C.
$$z = a_1 x + b_1 y$$

D. None of these

31. The differential equation $(a_1x + b_1y + c_1)dx + (a_2x + b_2y + c_2) = 0$ is not exact, but if $\frac{a_1}{a_2} = \frac{b_1}{b_2}$, then the substitution ... will work to reduce it to homogeneous form? A. x = X + h, y = Y + kB. x = X - h, y = Y - kC. $z = a_1 x + b_1 y$ D. None of these 32. (2x + y + 1)dx + (4x + 2y - 1)dy = 0 has solution. A. $-x - 2y - ln \mid 2x + y - 1 \mid = c$ B. -x - 2y = ln | 2x + y - 1 | +cC. x + 2y + ln | 2x - y - 1 | = c

- 35. An expression M(x,y)dx + N(x,y)dy is called a (an) ... if there exists a function f(x,y)
 - A. Exact differential
 - B. Non exact differential
 - C. Homogeneous differential
 - D. Linear differential

Available at www.MathCity.org

36. The differential equation M(x,y)dx + N(x,y)dy = 0 is an exact differential equation if and only if:

> A. $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$ B. $\frac{\partial M}{\partial x} = -\frac{\partial N}{\partial y}$ C. $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ D. $\frac{\partial M}{\partial u} = -\frac{\partial N}{\partial r}$

- 37. If the differential equation M(x, y)dx + N(x, y)dy = 0 is not exact but $\mu(x, y)M(x, y)dx +$ $\mu(x,y)N(x,y)dy = 0$ is exact, then $\mu(x,y)$ is called ... of the differential equation.
 - A. Differential factor
 - B. Integrating multiple

- C. $xy^2 2y^2 = cx$
 - D. $x^2y 2y = cx$

41. The integrating factor of the differential equation $dx + (\frac{x}{y} - \sin y)dy = 0$ is:

- A. xB. y
- C. $\frac{1}{x}$
- D. $\frac{1}{u}$

42. A first order differential equation of the form $\frac{dy}{dx} + P(x)y = Q(x)$ is called:

- A. Linear
- B. Quadratic
- C. Exact
- D. Homogeneous

43. Integrating factor of the differential equation $\frac{dy}{dx} + P(x)y = Q(x)$ is: A. $\exp[\int P(x)dx]$ B. $\exp[\int Q(x)dx]$ C. $-\exp[\int P(x)dx]$ D. $-\exp[\int Q(x)dx]$ 44. Integrating factor of the differential equation $(x - 1)^3 \frac{dy}{dx} + 4(x - 1)^2 y = x + 1$ is: A. $(x - 1)^2$ B. $(x - 1)^4$ C. x + 1D. $\frac{1}{x+1}$ 45. An equation of the form $\frac{dy}{dx} + P(x)y = Q(x)y^n$ is called:

45. An equation of the form $\frac{dy}{dx} + V$ $f(x)y = Q(x)y^n$ is called:

- A. Bernoulli equation
- B. Ricatti equation
- C. Bessel equation
- D. None of these
- 46. The two curves are said to be ... of their tangents at the point of intersection are perpendicular to each other.
 - A. Perpendicular
 - B. Orthogonal
 - C. Parallel
 - D. Both A and B

47. The orhogonal trajectories of the family of circles $x^2 + y^2 = c^2$ are:

- A. y = k + xB. y = kxC. x = k + y
- D. None of these

48. The orhogonal trajectories of the family of of curves $y = ce^{-\frac{x}{4}}$ are:

- A. $y^2 = 8x + k$ B. $y = 8x^2 + k$ C. $y^2 = 8x^2 + k$ D. All of these
- 49. A family of curves whose family of orthogonal trajectories is the same as the given family
- ...es is the ...et and ...es is the ...es

Akhtar Abbas Lecturer in Mathematics University of Jhang 0332-6297570

Multiple Choice Questions For BA, BSc (Mathematics)

Infinite Series

An effort by: Akhtar Abbas

- 1. An infinite sequence in a non empty set X is a function:
 - A. $f: X \to \mathbb{N}$
 - B. $f : \mathbb{N} \to X$
 - C. Both A and B
 - D. None of these

2. A sequence $\{a_n\}$ is said to ... if given every $\epsilon > 0$, there exists $n_o \in \mathbb{N}$ such that

- 3. The sequence $\{\frac{1}{n}\}$:

so n_{c} n_{o} the second secon 4. For $\epsilon = 0.01$, we have smallest $n_o = \dots$ such that $\{\frac{1}{n}\}$ converges to 0.

- C. 1000
- D. 1001
- 5. A sequence $\{a_n\}$ of real numbers is said to be ... if there is a positive number M such that $|a_n| \geq M, \forall n$.
 - A. Convergent
 - B. Divergent
 - C. Bounded
 - D. Unbounded

- 6. A convergent sequence is:
 - A. Bounded
 - B. Not necessarily bounded
 - C. Unbounded
 - D. Can be unbounded
- 7. A bounded sequence is:
 - A. Convergent
 - B. Not necessarily convergent
 - C. Divergent
 - D. Always divergent
- 8. An unbounded sequence:
 - A. Is convergent
 - B. Is divergent
 - C. May converge
 - D. None of these
- 9. A divergent sequence:
 - A. Is bounded
 - B. Is unbounded
 - C. Is not necessarily bounded
- as asupposematic D. Is not necessarily unbounded
- 10. If $\lim_{n\to\infty} a_n \neq 0$, then the sequence $\{a_n\}$:
 - A. Converges
 - B. Diverges
 - C. Diverges absolutely
 - D. None of these

11. A sequence $\{a_n\}$ is said to be non-decreasing if, $\forall n$,

- A. $a_n \leq a_{n+1}$ B. $a_n \ge a_{n+1}$ C. $a_n < a_{n+1}$ D. $a_n > a_{n+1}$

12. A bounded and monotonic sequence:

- A. Converges
- B. Diverges
- C. May converge
- D. May diverge

BSc

- 18. The sequence $\{\tan^{-1}n\}$:
 - A. Converges to $\frac{\pi}{2}$
 - B. Diverges
 - C. Is unbounded
 - D. Is bounded but diverges
- 19. The sum of the series

$$\sum_{n=1}^{\infty} a_n = \frac{3}{10} + \frac{3}{100} + \frac{3}{1000} + \dots$$

is:

 $ar^{n} \text{ is convergent if:}$ c < r < 1 C |r| < 1 $D |r| \le 1$ 21. The series $\sum_{1}^{\infty} \frac{1}{n^{2}}$ is named as: the distribution of these to the series to the ser A. $\frac{1}{3}$

- B. Convergent
- C. Monotonically increasing
- D. All of these

BSc

- 23. The harmonic series $\sum_{1}^{\infty} \frac{1}{n}$ is:
 - A. Convergent
 - B. Divergent
 - C. Absolutely convergent
 - D. Conditionally convergent
- 24. If $\sum_{1}^{\infty} a_n$ converges, then
 - A. $\lim_{n\to\infty} a_n = 0$
 - B. $\{a_n\}$ converges
 - C. $\{a_n\}$ diverges
 - D. Both A and B

25. If $\sum_{1}^{\infty} a_n$ diverges, then

26. If
$$\lim_{n\to\infty} a_n = 0$$
, then $\sum_{1}^{\infty} a_n$

- J, then $\sum_{1}^{\infty} a_n$ Converges B. Diverges C. Not necessarily converges D. None of these $\infty a_n \neq 0$, then $\sum_{1}^{\infty} a_n$ Diverges joiverges of nece

27. If $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n\to\infty} a_n \neq 0$

- C. Not necessarily converges
- D. None of these

28. Sum of two convergent series:

- A. Converges
- B. Diverges
- C. Not necessarily converges
- D. None of these

29. If $\sum_{1}^{\infty} a_n$ converges and $\sum_{1}^{\infty} b_n$ diverges, then $\sum_{1}^{\infty} (a_n + b_n)$

- A. Converges
- B. Diverges
- C. Not necessarily converges
- D. Not necessarily diverges

30. $\sum_{1}^{\infty} (\frac{1}{n^2} + \frac{1}{n})$ is

- A. Convergent
- B. Divergent
- C. Harmonic series
- D. None of these

31. If $\sum_{1}^{\infty} a_n$ and $\sum_{1}^{\infty} b_n$ diverges, then $\sum_{1}^{\infty} (a_n + b_n)$ A. Converges B. Diverges C. May converge D. None of these 32. The sum of the series $\sum_{1}^{\infty} \frac{1}{n(n+1)}$ is: A. 0 B. 1 C. ∞ D. The series diverges 33. Let $\sum_{1}^{\infty} a_n$, $\sum_{1}^{\infty} b_n$ be series of positive terms with $a_n \leq b_n$, $\forall n > n_o$ for some integer n_o . If $\sum_{1}^{\infty} b_n$ converges, then $\sum a_n$: A. Converges

- A. Converges
- B. Diverges
- C. Can converge
- D. Can diverge

34. Let $\sum_{1}^{\infty} a_n$, $\sum_{1}^{\infty} b_n$ be series of positive terms with $a_n \leq b_n$, $\forall n > n_o$ for some integer n_o . If $\sum_{1}^{\infty} a_n$ diverges, then $\sum b_n$:

- A. Converges
- B. Diverges
- C. Can converge
- D. Can diverge

- 35. Let $\sum_{1}^{\infty} a_n$, $\sum_{1}^{\infty} b_n$ be series of positive terms with $a_n \leq b_n$, $\forall n > n_o$ for some integer n_o . If $\sum_{1}^{\infty} b_n$ diverges, then $\sum a_n$:
 - A. Converges
 - B. Diverges
 - C. Always diverge
 - D. None of these
- 36. Let $\sum_{1}^{\infty} a_n$, $\sum_{1}^{\infty} b_n$ be series of positive terms with $a_n \leq b_n$, $\forall n > n_o$ for some integer n_o . If $\sum_{1}^{\infty} a_n$ converges, then $\sum b_n$:
 - A. Converges
 - B. Diverges

...se $\int_{1} \frac{2}{1+n^{2}}$: ...Converges B. Diverges C. Is bounded D. Both A and C ries $\sum_{1}^{\infty} \frac{n+16}{n^{2}+3}$: ...Converges Diverges biverges $\int_{1}^{\infty} \frac{n+16}{n^{2}+3}$: ...Converges $\int_{1}^{\infty} \frac{n+16}{n^{2}+3}$: ...Converges $\int_{1}^{\infty} \frac{n+16}{n^{2}+3}$: ...Converges Diverges $\int_{1}^{\infty} \frac{n+16}{n^{2}+3}$: ...Converges Diverges $\int_{1}^{\infty} \frac{n+16}{n^{2}+3}$: ...Converges Diverges $\int_{1}^{\infty} \frac{n+16}{n^{2}+3}$: ...Converges Diverges 37. The series $\sum_{1}^{\infty} \frac{1}{1+n^2}$:

- 38. The series $\sum_{1}^{\infty} \frac{2}{1+n^2}$:
- 39. The series $\sum_{1}^{\infty} \frac{n+16}{n^2+3}$

 - C. Is bounded
 - D. Both A and C

- 40. Let $\sum_{1}^{\infty} a_n$ and $\sum_{1}^{\infty} b_n$ be series of positive terms. If $\lim_{n\to\infty} \frac{b_n}{a_n}$ is a nonzero finite number and $\sum_{1}^{\infty} b_n$ diverges, then $\sum_{1}^{\infty} a_n$
 - A. Converges
 - B. Diverges
 - C. More information is needed
 - D. None of these
- 41. The series $\sum_{1}^{\infty} \frac{2n+1}{3n^2+2}$
 - A. Converges
 - B. Diverges
 - C. Converges but unbounded
 - D. None of these
- 42. Let $\sum_{1}^{\infty} a_n$ be a positive term series. If f is continuous and non increasing function on $[1, \infty)$ such that $f(n) = a_n$ for all positive integers n, then $\sum_{1}^{\infty} a_n$ and $\int_{1}^{\infty} f(x)dx$ behave similarly. This is called: A. Limit Comparison Test B. Root Test C. Ratio Test D. Integral Test 43. The *p*-series (or Hyperharmonic series) $\int_{10}^{10} \frac{1}{n^p}$ converges if: A. p > 1B. $p \ge 1$ C. p < 1D. $p \le 1$ D. $p \le 1$
- 44. The series $\sum_{1}^{\infty} k^{-\frac{1}{6}}$:
 - A. Converges
 - B. Diverges
 - C. Diverges and bounded
 - D. None of these

Available at www.MathCity.org

- 45. Let $\sum_{1}^{\infty} a_n$ be a series of positive terms and suppose that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$. If $0 \le L < 1$, then the series $\sum_{1}^{\infty} a_n$
 - A. Converges
 - B. Diverges
 - C. Test fails
 - D. None of these

46. Let \sum_{1}^{∞} be a series of positive terms and suppose that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$. If L > 1, then the series $\sum_{1}^{\infty} a_n$

- A. Converges
- B. Diverges
- C. Test fails
- D. None of these

47. Let \sum_{1}^{∞} be a series of positive terms and suppose that $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L$. If the series $\sum_{1}^{\infty} a_n$ A. Converges B. Diverges C. Test fails D. None of these 48. The series $\sum_{1}^{\infty} \frac{n!}{n^2}$ A. Converges B. Diverges C. The behavior of this series can not be determined by Ratio Test D. None of these $\frac{a_{n+1}}{a_n} = L$. If L = 1, then

- - D. None of these
- 49. The series $\sum_{1}^{\infty} \frac{n^2}{n!}$
 - A. Converges
 - B. Diverges
 - C. The behavior of this series can not be determined by Ratio Test
 - D. None of these

- 50. Let \sum_{1}^{∞} be a series of positive terms and suppose that $\lim_{n\to\infty} (a_n)^{\frac{1}{n}} = L$. If $0 \le L < 1$, then the series $\sum_{1}^{\infty} a_n$
 - A. Converges
 - B. Diverges
 - C. Test fails
 - D. None of these
- 51. Let \sum_{1}^{∞} be a series of positive terms and suppose that $\lim_{n\to\infty} (a_n)^{\frac{1}{n}} = L$. If L > 1, then the series $\sum_{1}^{\infty} a_n$
 - A. Converges
 - B. Diverges
 - C. Test fails
 - D. None of these
- 52. Let \sum_{1}^{∞} be a series of positive terms and suppose that $\lim_{n\to\infty}(a_n)^{\frac{1}{n}} = L$. If L = 1, then the series $\sum_{1}^{\infty} a_n$ A. Converges B. Diverges C. Test fails D. None of these 53. Which of the following series diverges? (DSUM) B. $\sum_{1}^{\infty}(\frac{n}{2n+1})^n$ B. $\sum_{1}^{\infty}(n)^n$ C. $\sum_{1}^{\infty}\frac{n^2_n}{n^n}$ (DSUM) D. $\sum_{1}^{\infty}\frac{1}{n^n}$ (DSUM) 54. An infinite series having both performed by the product of the series beth performed by the product of the series by the series of the s
- 54. An infinite series having both positive and negative terms is called:
 - A. Alternating series
 - B. Convergent series
 - C. Mixed series
 - D. Divergent series

55. If $a_n > 0$ for all n, then the series $\sum_{1}^{\infty} (-1)^n a_n$ is called:

- A. Alternating series
- B. Harmonic series
- C. Telescopic sum
- D. Euler's series
- 56. The alternating series $\sum_{1}^{\infty} a_n$ converges if:
 - A. $\{a_n\}$ is a non increasing sequence
 - B. $\lim_{n\to\infty} a_n = 0$
 - C. Both A and B must be satisfied
 - D. None of these

57. The alternating series $\sum_{1}^{\infty} (-1)^{n+1} \frac{1}{n}$ is: A. Convergent B. Divergent C. Oscillating D. None of these 58. The alternating series $\sum_{1}^{\infty} (-1)^{n} \frac{n+3}{2n-3}$ is: A. Convergent B. Divergent C. Oscillating D. None of these 59. A series $\sum_{1}^{\infty} a_{n}$ is said to converge ... if the series $\sum_{1}^{\infty} |a_{n}|$ converges. A. Absolutely

- B. Conditionally
- C. Only
- D. None of these

60. If $\sum_{1}^{\infty} |a_n|$ converges, then

- A. $\sum_{1}^{\infty} a_n$ also converge
- B. $\sum_{1}^{\infty} a_n$ not necessarily converge
- C. $\sum_{1}^{\infty} a_n$ diverge
- D. $\sum_{1}^{\infty} a_n$ can diverge

61. If $\sum_{1}^{\infty} a_n$ converges, then $\sum_{1}^{\infty} |a_n|$:

- A. Converge
- B. Diverge
- C. Not necessarily converge
- D. None of these

62. A series $\sum_{1}^{\infty} a_n$ is said to converge conditionally if:

- A. $\sum_{1}^{\infty} a_n$ and $\sum_{1}^{\infty} |a_n|$ both converge
- B. $\sum_{1}^{\infty} a_n$ and $\sum_{1}^{\infty} |a_n|$ both diverge
- C. $\sum_{1}^{\infty} a_n$ converges but $\sum_{1}^{\infty} |a_n|$ diverges

- $\begin{array}{c} \text{. can converge} \\ \text{D. Can diverge} \\ \text{64. An infinite series of the form } \sum_{n=0}^{\infty} c_n (x + a)^n \text{ is called a ... series in } x a, \text{ where } a \text{ is a constant, called center of this series.} \\ \text{A. Taylor} \\ \text{B. Power} \\ \text{C. Alternating} \\ \text{D. Maclaurin} \\ \text{The values of } x \text{ for which the power} \\ \text{A. } (-1, 1) \\ \text{B. } \\ \end{array}$

- B. \mathbb{R}
- C. $\left(-\frac{3}{2},1\right)$
- D. None of these
- 66. If a power series $\sum_{1}^{\infty} c_n x^n$ converges for $x = x_1$, then it converges absolutely for all x such that
 - A. $|x| < |x_1|$ B. $|x| \leq |x_1|$ C. $|x| > |x_1|$ D. $|x| \ge |x_1|$

- 67. The set I of all numbers x for which a power series $\sum_{1}^{\infty} c_n (x-a)^n$ converges, is called:
 - A. Radius of convergence
 - B. Interval of convergence
 - C. Diameter of convergence
 - D. All of these

68. If (a - R, a + R) is the interval of convergence of a power series $\sum_{1}^{\infty} c_n (x - a)^n$, then R is called

- A. Diameter of convergence
- B. Radius of convergence
- C. Length of convergence
- D. None of these

Radius of Convergence of a Power Series Let $\sum_{1}^{\infty} c_n (x-a)^n$ be a power series with radius of convergence R. Suppose that $\lim_{n\to\infty} \left|\frac{c_{n+1}}{c_n}\right| = L$, where L is either a nonzero number or $+\infty$ (i). If L is a positive real number, then $R = \frac{1}{2}$ (ii). If L = 0, then $R = +\infty$. (iii). If $L = +\infty$, then R = 069. The radius of convergence of power series $\sum_{n=1}^{\infty} \frac{1}{n}$ is: A. 0 B. 1 C. 5 D. ∞ 70. The radius of convergence of power series $\sum_{1}^{\infty} \frac{(x+3)^n}{3^n}$ is: A. 0 B. 1 C. 2 D. 3 71. The radius of convergence of power series $\sum_{1}^{\infty} (-1)^n \frac{(x-17)^n}{n!}$ is:

- A. 0
- B. 1
- C. 4
- D. ∞

Available at www.MathCity.org

72. The radius of convergence of power series $\sum_{1}^{\infty} (nx)^n$ is:

A. 0 B. 1 C. 2 D. ∞ Differentiation and Integration of a Power Series 1. Suppose that $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$, where the power series has radius of convergence R. Then (i). For |x-a| < R, $f'(x) = \sum_{1}^{\infty} nc_n(x-a)^{n-1}$, (ii). For |x-a| < R, $\int f(x)dx = \sum_{0}^{\infty} \frac{c_n}{n+1}(x-a)^{k+1} + C$. **2.** The three power series $\sum_{0}^{\infty} c_n(x-a)^n$, $\sum_{1}^{\infty} nc_n(x-a)^{n-1}$, $\sum_{0}^{\infty} \frac{c_n}{n+1}(x-a)^{k+1} + C$ all have the same radius of convergence. A. $1 + x - x^{2} + ...$ B. $1 - x + x^{2} - ...$ C. $1 + x + x^{2} + ...$ D. $1 + x + \frac{x^{2}}{2!} + ...$ 74. The power series representation of e^{x} is: A. $1 + x - x^{2} + ...$ B. $1 - x + x^{2} - ...$ C. $1 + x + x^{2} + ...$ D. $1 + x + \frac{x^{2}}{2!} + ...$ 75. For $|x| \leq 1$, the series $\tan^{-1} x = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + ...$ is called: A. Maclaurin Series B. Taylor Neries 73. The power series representation of $\frac{1}{1-x}$ is: B. Taylor Series C. Gregory's Series D. All of these 76. $\int_0^1 e^{x^2} dx$ equals: A. e - 1B. $1 + \frac{1}{3} + \frac{1}{5.2!} + \frac{1}{7.3!} + \dots$ C. $1 - \frac{1}{3} + \frac{1}{5.2!} - \frac{1}{7.3!} + \dots$ D. Can not be evaluated

> Akhtar Abbas Lecturer in Mathematics University of Jhang 0332-6297570

For answers with detailed explanation, visit YouTube Channel Suppose Math

Test	Series	Convergence or Divergence	Comments
Divergence	$\sum_{n=1}^{\infty} a_n$	Diverges if $\lim_{n \to \infty} a_n \neq 0$	Inconclusive if $\lim_{n \to \infty} a_n = 0$
Geometric series	$\sum_{n=0}^{\infty} ar^n$	(1) Converges to $S = \frac{a}{1-r}$ if $ r < 1$; (2) Diverges if $ r \ge 1$	Useful for comparison tests if the n^{th} -term a_n of a series is similar to ar^n .
<i>p</i> -series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	(1) Converges if $p > 1$; (2) Diverges if $p \leq 1$	Useful for comparison tests if the n^{th} -term a_n of a series is similar to $\frac{1}{n^p}$.
Integral	$\sum_{\substack{n=1\\a_n=f(n)}}^{\infty} a_n$	(1) Converges if $\int_{1}^{\infty} f(x) dx$ converges; (2) Diverges if $\int_{1}^{\infty} f(x) dx$ diverges	The function f obtained from $a_n = f(n)$ must be continuous, positive, decreasing, and readily integrable.
Comparison	$\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$ $a_n > 0, \ b_n > 0$	(1) If $\sum_{n=1}^{\infty} b_n$ converges and $a_n \leq b_n$ for every n , then $\sum_{n=1}^{\infty} a_n$ converges; (2) If $\sum_{n=1}^{\infty} b_n$ diverges and $a_n \geq b_n$ for every n , then $\sum_{n=1}^{\infty} a_n$ diverges; (3) If $\lim_{n \to \infty} \frac{a_n}{b_n} > 0$ (not ∞), then both series converge or both diverge.	The comparison series $\sum_{n=1}^{\infty} b_n \text{ is often a geometric}$ series or a <i>p</i> -series. To find b_n in (3), consider only the terms of a_n that have the greatest effect on the magnitude.
Ratio	$\sum_{n=1}^{\infty} a_n$	If $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L$ (or ∞), the series (1) converges (absolutely) if $L < 1$; (2) diverges if $L > 1$ (or ∞)	Inconclusive if $L = 1$. Useful if a_n involves factorials or n^{th} powers. If $a_n > 0$ for every n , the absolute value sign may be disregarded.
Root	$\sum_{n=1}^{\infty} a_n$	If $\lim_{n \to \infty} \sqrt[n]{ a_n } = L$ (or ∞), the series (1) converges (absolutely) if $L < 1$; (2) diverges if $L > 1$ (or ∞)	Inconclusive if $L = 1$. Useful if a_n involves n^{th} powers. If $a_n > 0$ for every n , the absolute value sign may be disregarded.
Alternating Series	$\sum_{\substack{n=1\\a_n>0}}^{\infty} (-1)^n a_n$	Converges if $a_k \ge a_{k+1}$ for every k and $\lim_{n \to \infty} a_n = 0$.	Applicable only to an alternating series.

Summary of Convergence and Divergence Tests for Series