Multiple Choice
 Questions For BSc / BS / PPSC

Chapters:

1. Complex Numbers
2. Groups
3. Matrices
4. System of Linear Equations
5. Determinants
6. Metric Spaces
7. Number Theory
8. Ordinary Differential Equations
9. Infinite Series

These notes are originally prepared by

Akhtar Abbas
Lecturer at University of Jhang
Contact: 0310-8385667 (Whatsapp)
Email: akhtarabbas@math.qau.edu.pk

For detailed solutions of these, visit

YouTube Channel: Suppose Math https://www.youtube.com/supposemath

Multiple Choice Questions
 For BA, BSc (Mathematics)

1. If z is any complex number, then $\bar{z}-z$ equals:
A. $2 \operatorname{Im}(z)$
B. $-2 \operatorname{Im}(z)$
C. $2 \operatorname{Im}(z) \mathrm{i}$
D. $-2 \operatorname{Im}(z) \mathrm{i}$
2. Complex numbers with 0 as real part are called:
A. imaginary numbers
B. pure non real numbers
C. pure imaginary numbers
D. pure complex numbers
3. The argument of which of the following number is hot defined?
A. 0
B. 1
C. $1 / 0$
D. i
4. If θ is the principal argument $\operatorname{Arg}(z)$ of a complex number z, then:
A. $0 \leq \theta \leq 2 \pi$
B. $-\pi \leq \theta \leq \pi$
C. $-\pi \leq \theta-\pi$
D. $-\pi<\theta \leq \pi$
5. For $k \in \mathbb{Z}$, the relationship between $\arg (z)$ and $\operatorname{Arg}(z)$ is:
A. $\arg (z)=\operatorname{Arg}(z)+2 k \pi$
B. $\operatorname{Arg}(z)=\arg (z)+2 k \pi$
C. $\arg (z)=\operatorname{Arg}(z)-2 k \pi$
D. All of these
6. Which of the following is unique?
A. $\operatorname{Arg}(z)$
B. $\arg (z)$
C. Both A and B
D. None of these
7. We can write $r(\cos \theta+i \sin \theta)$ as:
A. $r \operatorname{sic} \theta$
B. $r \operatorname{csi} \theta$
C. $r \operatorname{cis} \theta$
D. $r \cos \theta$
8. The value of $\arg (5)$ is:
A. 0°
B. 90°
C. 180°
D. 270°
9. The value of $\arg (-5)$ is:
A. 0°
B. 90°
C. 180°
D. 270°
10. The value of $\arg (5 i)$ is;
A. 0°
B. 90°
C. 180°
D. 270°
11. The value of $\arg (-5 i)$ is:
A. 0°
B. -90°
C. 180°
D. 270°
12. The value of $\operatorname{Arg}(-5 i)$ is:
A. 0°
B. 90°
C. 180°
D. 270°
13. The value of $\operatorname{Arg}(-5)$ is:
A. 0°
B. 90°
C. 180°
D. 270°
14. The equation of a circle with center at origin and radius 2 is:
A. $|z|=2$
B. $|z|=4$
C. $|z|=\sqrt{2}$
D. None of these
15. Which of the following is not true?
A. $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$
B. $\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)$
C. $z \bar{z}=|z|^{2}$
D. $\arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right) \varrho$
16. The least value of $\mid z_{1}+\left(z_{2} \mid\right.$ is:
A. $\left|\left|z_{1}\right|+\left|z_{2}+\right|\right.$
B. $\left\|z_{1}\right\| z_{2} \|$
C. $\left|\left|z_{1}\right| /\left|z_{2}\right|\right|$
D. $\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$
17. The inequality $\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ is called:
A. Triangle Inequality
B. Minkowski Inequality
C. Cauchy-Schwarz Inequality
D. Holder's Inequality
18. The principal argument of any complex number can not be:
A. $\frac{7 \pi}{8}$
B. $\frac{7 \pi}{6}$
C. $\frac{\pi}{2}$
D. $-\frac{\pi}{2}$
19. If $|z|=2 i(1-i)(2-4 i)(3+i)$, then $|z|$ equals:
A. 20
B. -20
C. 40
D. -40
20. $z=a+i b$ is pure imaginary if and only if:
A. $z=-\bar{z}$
B. $z=\bar{z}$
C. $z=-z$
D. $z=z^{-1}$
21. If $z_{1}=24+7 i$ and $\left|z_{2}\right|=6$, then the least value of $|x-2|+z_{2} \mid$ is:
A. 31
B. 19
C. -19
D. -13
$22 \frac{\mid a z+b}{\mid a z+a}=1$, for $\left.\alpha(x)=x+x\right)$
A. 1
B. 0
C. 2
D. -1
22. Locus of the points satisfying $\operatorname{Re}(i \bar{z})=3$ is:
A. a line parallel to x -axis
B. a line parallel to y-axis
C. a circle
D. a parabola
23. For all integers n, we have:
A. $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$
B. $(\cos \theta+i \sin \theta)^{n}=\cos n \theta-i \sin n \theta$
C. $(\cos \theta-i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$
D. $(\cos \theta+i \sin \theta)^{-n}=\cos n \theta+i \sin n \theta$
24. The value of $\left(\frac{\sqrt{3}-i}{\sqrt{3}+i}\right)^{6}$ is:
A. 0
B. $\frac{1}{2}$
C. 1
D. -1
25. For any integers n, we have $(\sin x+i \cos x)^{n}=$
A. $\sin n\left(\frac{\pi}{2}-x\right)+i \cos n\left(\frac{\pi}{2}-x\right)$
B. $\cos n\left(\frac{\pi}{2}-x\right)+i \sin n\left(\frac{\pi}{2}-x\right)$
C. $\sin n\left(\frac{\pi}{2}+x\right)+i \cos n\left(\frac{\pi}{2}+x\right)$
D. $\sin n\left(\frac{\pi}{2}+x\right)+i \cos n\left(\frac{\pi}{2}+x\right)$
26. If $x=\cos \theta+i \sin \theta$, then the value of $\frac{1}{x} \frac{0}{5}$
A. $\cos \theta+i \sin \theta$
B. $\sin \theta+i \cos \theta$
C. $\cos \theta-i \sin \theta$
D. $\sin \theta-i \cos \theta$
27. If $x=\cos \theta+i \sin \theta$ then the value of $\frac{1}{x^{n}}=$
A. $\cos n \theta+i \sin n \theta$
B. $\sin n \theta+i \cos n \theta$
C. $\cos n \theta-i \sin n \theta$
D. $\sin n \theta-i \cos n \theta$
28. If $x=\cos \theta+i \sin \theta$, then the value of $x^{n}+\frac{1}{x^{n}}=$
A. $2 i \sin n \theta$
B. $2 i \cos n \theta$
C. $2 \cos n \theta$
D. $2 \sin n \theta$
29. If $x=\cos \theta+i \sin \theta$, then the value of $x^{n}-\frac{1}{x^{n}}=$
A. $2 i \sin n x$
B. $2 i \cos n x$
C. $2 \cos n x$
D. $2 \sin n x$
30. If $|z|=r$ and $\arg (z)=\theta$, then all the nth roots of z are:
A. $r^{\frac{1}{n}} \operatorname{cis}\left(\frac{2 k \pi+\theta}{n}\right)$
B. $r^{\frac{1}{n}} \operatorname{cis}\left(\frac{2 \pi+\theta}{k n}\right)$
C. $r^{\frac{1}{n}} \operatorname{cis}\left(\frac{2 \pi+k \theta}{n}\right)$
D. $r^{\frac{1}{n}} \operatorname{cis}\left(\frac{2 k \pi+\theta}{k n}\right)$
31. $1, \omega, \omega^{2}, \ldots, \omega^{n-1}$ are nth roots of:
A. zero
B. unity
C. 2 i
D. None of these
32. If z is a root of w, then which of following is also toot of w ?
A. 1
B. $-z$
C. \bar{z}
D. z^{-1}
33. Three cube roots of so are:
A. $2,2 \omega, 2 \omega^{2}$
B. $2 i, 2 i \omega, 2 i \omega^{2}$
C. $-2,-2 \omega,-2 \omega^{2}$
D. $-2 i,-2 i \omega,-2 i \omega^{2}$
34. Sum of four fourth roots of unity is:
A. 0
B. 1
C. i
D. -1
35. $\frac{(\cos \theta+i \sin \theta)^{n}}{(\cos \phi+i \sin \phi)^{m}}$ equals:
A. $\cos (m \theta+n \phi)+i \sin (m \theta+n \phi)$
B. $\cos (n \theta+m \phi)+i \sin (n \theta+m \phi)$
C. $\cos (m \theta-n \phi)+i \sin (m \theta-n \phi)$
D. $\cos (n \theta-m \phi)+i \sin (n \theta-m \phi)$
36. $\frac{(\cos \alpha-i \sin \alpha)^{11}}{(\cos \beta+i \sin \beta)^{9}}$ equals:
A. $\cos (11 \alpha+9 \beta)+i \sin (11 \alpha+9 \beta)$
B. $\cos (11 \alpha-9 \beta)+i \sin (11 \alpha-9 \beta)$
C. $\cos (-11 \alpha+9 \beta)+i \sin (-11 \alpha+9 \beta)$
D. $\cos (-11 \alpha-9 \beta)+i \sin (-11 \alpha-9 \beta)$
37. For a complex number $z, \frac{e^{i z}-e^{-i z}}{i\left(e^{i z}+e^{-i z}\right)}=$
A. $\cot z$
B. $\tan z$
C. $\operatorname{coth} z$
D. $\tanh z$
38. $\sin ^{2} z+\cos ^{2} z=$
A. 1
B. -1
C. 0
D. $2 \sin z \cos z$
39. $\sin i z=$
A. $\sinh z$
B. $\sinh i z$
C. $i \sin z$
D. $i \sinh z$
40. $\cos i z=$
A. $\cosh z$
B. $\cosh i z$
C. $i \cos z$
D. $i \cosh z$
41. $\tan i z=$
A. $\tanh z$
B. $\tanh i z$
C. $i \tan z$
D. $i \tanh z$
42. $\sinh i z=$
A. $\sin z$
B. $i \sin z$
C. $\sinh z$
D. $i \sinh z$
43. $\cosh i z=$
A. $\cos z$
B. $i \cos z$
C. $\cosh z$
D. $i \cosh z$
44. $\tanh i z=$
A. $\tan z$
B. $i \tan z$
C. $\tanh z$
D. $i \tanh z$

Important Points

(i). e^{z} is never zero.
(ii). For $z=x+i y,\left|e^{z}\right|=e^{x}$.
(iii). $\left|e^{i \theta}\right|=1$, where $\theta \in \mathbb{R}$.
(iv). $e^{z}=1$ if and only if $z=2 k \pi i$, where $k \in \mathbb{Z}$.
(v). $e^{z_{1}}=e^{z_{2}}$ if and only if $z_{1}-z_{2}=2 k \pi i$, where $k \in \mathbb{Z}$.
46. Multiplication of a vector z by ... rotates the vector z counterclockwise through an angle of measure α.
A. e^{α}
B. $e^{-\alpha}$
C. $e^{i \alpha}$
D. $e^{-i \alpha}$
47. $-3-4 i=$
A. $5 e^{i \tan ^{-1} \frac{4}{3}}$
B. $5 e^{i\left(-\tan ^{-1} \frac{4}{3}\right)}$
C. $5 e^{i\left(\pi-\tan ^{-1} \frac{4}{3}\right)}$
D. $5 e^{i\left(\pi+\tan ^{-1} \frac{4}{3}\right)}$
48. For any complex number $z, \log z=$
A. $\ln |z|+i \arg z$
B. $\ln z+i \arg |z|$
C. $\ln |z|+i \arg |z|$
D. All of these
49. Which number(s) has(have) no complex logarithon?
A. 0
B. Negative real numbers
C. Non positive real numbêrs
D. None of these
50. For any complex number $z \subset \operatorname{Cog} z=$
A. $\ln |z|+i \operatorname{Arg} z$
B. $\ln z+i \operatorname{Arg}|z|$
C. $\ln |z|+i \operatorname{Arg}|z|$
D. All of these
51. The value of $\log (-i)$ is:
A. $\frac{\pi}{2} i$
B. $\frac{3 \pi}{2} i$
C. $-\frac{\pi}{2} i$
D. $-\frac{3 \pi}{2} i$
52. If x is any negative real number, then $\log x$ is:
A. $\ln x+i \pi$
B. $\ln x-i \pi$
C. $\ln (-x)+i \pi$
D. $\ln (-x)-i \pi$
53. $\log \left(e^{z}\right)=$
A. z
B. $z+2 n \pi$
C. $z+2 n \pi i$
D. e^{z}
54. If z is a positive real number, then
A. $\log (z)=\log (z)$
B. $\log (z)=\log (z)+2 n \pi$
C. $\log (z)=\log (z)+2 n \pi$
D. None of these
55. $\sinh ^{-1} z=$
A. $\log \left(z+\sqrt{z^{2}+1}\right)$
B. $\log \left(z-\sqrt{z^{2}+1}\right)$
C. $\log \left(z+\sqrt{z^{2}-1}\right)$
D. $\log \left(z-\sqrt{z^{2}-1}\right)$
56. $\cosh ^{-1} z=$
A. $\log \left(z+\sqrt{z^{2}+1}\right)$
B. $\log \left(z-\sqrt{z^{2}+1}\right)$
C. $\log \left(z+\sqrt{z^{2}-1}\right)$
D. $\log \left(z-\sqrt{z^{2}-1}\right)$
57. $\sin ^{-1} z=$
A. $i \log \left(i z+\sqrt{1+z^{2}}\right)$
B. $-i \log \left(i z-\sqrt{1-z^{2}}\right)$
C. $-i \log \left(i z+\sqrt{1+z^{2}}\right)$
D. $-i \log \left(i z+\sqrt{1-z^{2}}\right)$
58. If z and w are complex numbers, then $z^{w}=$
A. $\exp (z \log w)$
B. $z \exp (\log w)$
C. $\exp (w \log z)$
D. $w \exp (\log z)$
59. If z and w are complex numbers, then the principal value of z^{w} is:
A. $\exp (z \log w)$
B. $z \exp (\log w)$
C. $\exp (w \log z)$
D. $w \exp (\log z)$
60. The principal value of i^{i} is:
A. $e^{\frac{\pi}{2}}$
B. $-e^{\frac{\pi}{2}}$
C. $e^{-\frac{\pi}{2}}$
D. $-e^{-\frac{\pi}{2}}$
61. The principal value of $(-1)^{i}$ is:
A. e^{π}
B. $e^{-\pi}$
C. $-e^{\pi}$
D. $-e^{-\pi}$
62. The principal value of $(-i)^{-i}$ is:
A. $e^{\frac{\pi}{2}}$
B. $-e^{\frac{\pi}{2}}$
C. $e^{-\frac{\pi}{2}}$
D. $-e^{-\frac{\pi}{2}}$
63. If a is a positive real number, then the principal value of a^{i} is:
A. $\cos (\ln a)+i \sin (\ln a)$
B. $\cos (a)+i \sin (a)$
C. $\sin (a)+i \cos (a)$
D. $\sin (\ln a)+i \cos (\ln a)$
64. $\log (1-i)=$
A. $\frac{1}{2} \ln 2+\frac{\pi i}{4}$
B. $\frac{1}{2} \ln 2-\frac{\pi i}{4}$
C. $\frac{1}{2} \ln 2+\frac{3 \pi i}{4}$
D. $\frac{1}{2} \ln 2-\frac{3 \pi i}{4}$
65. $(-1+i)^{i+\sqrt{3}}=$
A. $\exp [(i-\sqrt{3}) \log (-1-i)]$
B. $\exp [(-1+i) \log (i+\sqrt{3})]$
C. $\exp [(i+\sqrt{3}) \log (-1+i)]$
D. $\exp [(i+\sqrt{3}) \log (-1-i)]$

Multiple Choice Questions
 For BA, BSc (Mathematics)

1. Which of the following is not a binary operation on \mathbb{R} ?
A. +
B. -
C. \times
D. \div
2. An element $b \in G$ is inverse of $a \in G$ if:
A. $a b=b a$
B. $a b=a b^{2}$
C. $b a=a^{2} b$
D. $a b=b a=e$
3. An element x of a group G is said to be \ldots if $x^{2} \mathcal{E}$.
A. Nilpotent
B. Involutory
C. Idempotent
D. Square
4. The only idempotent element in a group is:
A. Inverse
B. Identity
C. Both A and B
D. None of these
5. Which of the following is a group under multiplication?
A. \mathbb{Z}
B. \mathbb{Q}
C. \mathbb{R}
D. $\mathbb{Q}-\{0\}$
6. A group is abelian if its Cayley's table is ... about its main diagonal.
A. Symmetric
B. Skew symmetric
C. Hermitian
D. Skew Hermitian
7. The set of all the nth roots of unity, $C_{n}=\left\{e^{\frac{2 k \pi i}{n}}, k=0,1, \ldots, n-1\right\}$ is a group under:
A. Addition
B. Subtraction
C. Multiplication
D. Division
8. In the group of Quaternions $\{ \pm I, \pm i, \pm j, \pm k\}$, which of the following is not true?
A. $j k=i$
B. $i k=-j$
C. $j^{2}=-I$
D. None of these
9. In the group \mathbb{Z}_{5}, the inverse of $\overline{3}$ is:
A. $\overline{1}$
B. $\overline{2}$
C. $\overline{3}$
D. $\overline{4}$
10. Which of the following holds in a group.
A. Cancellation
B. Associative
C. Both A and B
D. None of these
11. For $a, b \in G$, we have $(a b)^{-1}=$
A. $a b$
B. $a^{-1} b^{-1}$
C. $b^{-1} a^{-1}$
D. $b a$
12. The number of elements in a group is called its:
A. degree
B. order
C. power
D. None of these
13. The least positive integer n, such that $a^{n}=\ldots$ is called order of a.
A. e
B. a
C. a^{-1}
D. None of these
14. Let $a \in G$ has order n. Then, for any integer $k, a^{k}=e$ if and only if \ldots, where q is an integer.
A. $q=n k$
B. $n=q k$
C. $k=n q$
D. None of these
15. If $|a|=5$, then for what value of $n, a^{n}=e$
A. 10
B. 15
C. 20
D. All of these
16. The set $\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ is a group under:
A. Addition
B. Multiplication
C. Addition modulo 8
D. Multiplication modulo 8
17. The set $\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ is a group under Multiplication modulo 8 . The inverse of $\overline{5}$ is:
A. $\overline{1}$
B. $\overline{3}$
C. $\overline{5}$
D. $\overline{7}$
18. The set $\{\overline{1}, \overline{3}, \overline{5}, \overline{7}\}$ is a group under Multiplication modulo 8 . The order of $\overline{5}$ is:
A. 1
B. 2
C. 3
D. 4
19. Let G be a group and $a, b \in G$, which of the following is true?
A. $|a|=\left|a^{-1}\right|$
B. $|a b|=|b a|$
C. $|a|=\left|b a b^{-1}\right|$
D. All of these
20. Every group of \ldots order contains at least one element of order 2.
A. Prime
B. Even
C. Odd
D. Composite
21. Let G be a group and the order of $x \in G$ is odd. Then there exists an element $y \in G$ such that:
A. $y=x$
B. $y^{2}=x$
C. $y=x^{2}$
D. $y=x^{3}$
22. Which of the following are not groups? (Free to choose more than one options).
A. The set of positive rational numbers under multiplication
B. The set of complex numbers z such that $|z|=1$, under multiplication
C. The set \mathbb{Z} of all integers under the binary operation \star defined by

$$
a \star b=a-b, \quad \forall a, b \in \mathbb{Z}
$$

D. The set \mathbb{Q}^{\prime} of all irrational numbers under multiplication
E. $\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}$ under multiplication
F. $\mathbb{R}^{-}=\{x \in \mathbb{R}: x<0\}$ under multiplication
G. $E=\left\{e^{x}: x \in \mathbb{R}\right\}$ under multiplication
23. Let G be a group and $x^{2}=e$, for all $x \in G$, then G is:
A. Abelian
B. Non Abelian
C. Commutative
D. Both A and C
24. Which of the following is false? (Free to choose more than one options).
A. A group can have more than one identity element.
B. The null set can be considered to be a group.
C. There may be groups in which the cancellation law fails.
D. Every set of numbers which is group under addition is also a group under multiplication and vice versa.
E. The set \mathbb{R} of real numbers is a group under subtraction.
F. The set of all nonzero integers is a group under division.
G. To each element of a group, there corresponds only one inverse element.
25. Let G be a group. Which of the following is not anique in G ?
A. identity
B. inverse of an element
C. idempotent
D. None of these
26. The set $G L_{2}(\mathbb{R})$ is the collection of all 2×2 matrices with real entries whose determinant is:
A. Zero
B. Nonzero
C. Unit
D. 1
27. $(\mathbb{Z},+)$ is a subgroup of:
A. $(\mathbb{Z},+)$
B. $(\mathbb{R},+)$
C. $(\mathbb{C},+)$
D. All of these
28. Every group has at least ... subgroups.
A. 1
B. 2
C. 3
D. 4
29. A non empty subset of a group G is a subgroup of G if and only if for $a, b \in H$, we have:
A. $b a^{-1} \in H$
B. $a b^{-1} \in H$
C. $a b \in H$
D. Both A and B
30. The ... of subgroups is a subgroup.
A. Intersection
B. Union
C. Difference
D. Symmetric difference
31. If every element of a group G is a power of one and the same element, then G is called:
A. Infinite
B. Finite
C. Cyclic
D. Symmetric
32. Every subgroup of a ayclic group is:
A. Abelian
B. Normal
C. Cyclic
D. Trivial
33. Let G be a group of order 18 , then G must have a unique subgroup of order:
A. 5
B. 6
C. 7
D. 8
34. Every cyclic group is:
A. Abelian
B. Normal
C. Finite
D. Infinite
35. Every cyclic group of even order has a unique subgroup of order:
A. 2
B. 3
C. 4
D. 5
36. The number of subgroups of a cyclic group of order 12 is:
A. 3
B. 4
C. 5
D. 6
37. Group of order ... has not a proper non-trixial subgroup?
A. 46
B. 47
C. 48
D. 50
38. An infinite cyclic grouphas exactly ... generators.
A. 1
B. 2
C. 3
D. 4
39. The order of $\overline{3}$ in the group $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$ is:
A. 1
B. 2
C. 3
D. 4
40. Let G be a group, H be a subgroup of G and $a \in G$, then which of the following is a subgroup of G ?
A. $a H$
B. $H a$
C. $H a^{-1}$
D. $a H a^{-1}$
41. If H and K are subgroups of a group G, then which of the following need not to be a subgroup of G ?
A. $H \cup K$
B. $H \cap K$
C. He
D. $e K$
42. Let G be a group and $G=\langle a\rangle$, for some $a \in G$, then q is called ... of G.
A. Involutory
B. Idempotent
C. Generator
D. None of these
43. Let G be a finite group of order n generated $\operatorname{by}\left(a \in G\right.$. Then $a^{i}=a^{j}$ if and only if:
A. $n \mid(i-j)$
B. $n \mid(i+j)$
C. $i=j$
D. None of these
44. Let G be an infinite group generated by $a \in G$. Then $a^{i}=a^{j}$ if and only if:
A. $n \mid(i-j)$
B. $n \mid(i+j)$
C. $i=j$
D. None of these
45. Let G be a cyclic group of order 18 . How many subgroups of G are of order 6 ?
A. 1
B. 2
C. 3
D. None of these
46. A partition of a set A is the collection of subsets $\left\{A_{i}: i \in I\right\}$ of A such that
A. $A=\cup\left\{A_{i}: i \in I\right\}$ and $A_{i} \cap A_{j}=\phi$, where $i, j \in I$ and $i \neq j$.
B. $A=\cup\left\{A_{i}: i \in I\right\}$ and $A_{i} \cap A_{j}=\phi$, where $i, j \in I$ and $i=j$.
C. $A=\cup\left\{A_{i}: i \in I\right\}$ and $A_{i} \cap A_{j} \neq \phi$, where $i, j \in I$ and $i \neq j$.
D. $A=\cap\left\{A_{i}: i \in I\right\}$ and $A_{i} \cap A_{j}=\phi$, where $i, j \in I$ and $i \neq j$.
47. Let H be a subgroup of G. Then the set of all left cosets of H in G defines a ...on G.
A. Equivalence relation
B. Partition
C. Transitive relation
D. All of these
48. The number of distinct left cosets of a subgroup H of a group G is called the ... of H in G, and it is denoted by $[G: H]$.
A. Index
B. Cardinality
C. Order
D. Partition
49. The index of $\{\overline{0}, \overline{2}, \overline{4}\}$ in $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ is \mathcal{L}
A. 1
B. 2
C. 3
D. 4
50. The index of $\{0, \pm 2,44, \ldots\}$ in the group $(\mathbb{Z},+)$ is:
A. 0
B. 1
C. 2
D. ∞
51. "Both the order and index of a subgroup of a finite group divides the order of the group" is the statement of:
A. Division Algorithm
B. Lagrange Theorem
C. Euclid Theorem
D. Cayley Theorem
52. The order of an element of a finite group divides:
A. the order of group
B. the order of subgroup
C. the index of every subgroup
D. None of these
53. A group of order ... is always cyclic.
A. 7
B. 8
C. 9
D. 10
54. A finite group of ... order is necessarily cyclic.
A. Prime
B. Even
C. Odd
D. Composite
55. Which of the following abelian group is notodyclic?
A. $(\mathbb{Z},+)$
B. $(\mathbb{Q},+)$
C. $(\mathbb{R},+)$
D. Both B and C
56. Let G be a group of order 90 . G dan have a subgroup of order:
A. 30
B. 40
C. 50
D. 60
57. Let G be a cyclic group of order n generated by a. Then for any $1 \leq k<n$, the order of a^{k} is:
A. $\frac{k}{g c d(n, k)}$
B. $\frac{n}{l c m(n, k)}$
C. $\frac{n}{\operatorname{gcd}(n, k)}$
D. $\frac{k}{l c m(n, k)}$
58. Let G be a cyclic group of order 24 generated by a. Then the order of a^{10} is:
A. 6
B. 14
C. 18
D. 24
59. Let H and K be two finite subgroups of a group G whose orders are relatively prime, then $H \cap K$ equals:
A. $\{e, a\}$
B. $H \cup K$
C. $H K$
D. $\{e\}$
60. Let X be a nonempty set. A bijective function $f: X \rightarrow X$ (is adled a \ldots on X.
A. Homomorphism
B. Isomorphism
C. Endomorphism
D. Permutation
61. The set of all permutations on a set X is denotedoy:
A. $S X$
B. $X S$
C. S_{X}
D. X_{S}
62. The set S_{n} is a group under the operation of ... of permutations.
A. Addition
B. Subtraction
C. Multiplication
D. Composition
63. The order of symmetric group of degree n is:
A. n
B. n !
C. $\frac{n!}{2}$
D. $\left(\frac{n}{2}\right)!$
64. Composition of permutations is not:
A. Associative
B. Closed
C. Commutative
D. All of these
65. If $f_{1}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)$ and $f_{2}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$, then $f_{1} \circ f_{2}$ equals:
A. $\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)$
B. $\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)$
C. $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)$
D. $\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)$
66. A permutation of the form $\left(\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{k} \\ a_{2} & a_{3} & \ldots & a_{1}\end{array}\right)$ is cadled a. of length k.
A. Permutation
B. Cycle
C. Transposition
D. Matrix
67. If two cycles act on mutually disjointsets, then they:
A. can commute
B. must commute
C. don't commute
D. None of these
68. If $\alpha=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $\beta=\left(\begin{array}{ll}5 & 7\end{array}\right)$, then:
A. $\alpha \beta=I$
B. $\beta \alpha=I$
C. $\alpha \beta=\beta \alpha$
D. $\alpha \beta \neq \beta \alpha$
69. Every permutation of degree n can be written as a \ldots. of cyclic permutations acting on mutually disjoint sets.
A. Sum
B. Difference
C. Product
D. Quotient
70. A cycle of length 2 is called a :
A. Permutation
B. Transposition
C. Cycle
D. Matrix
71. Every cyclic permutation can be expressed as a ... of trans 欠osition.
A. Sum
B. Difference
C. Product
D. Quotient
72. A permutation α in S_{n} is said to be ...permutationf it can be written as a product of an even number of transposition.
A. Even
B. Odd
C. Composite
D. Cyclic
73. Every transposition is anf.Opermutation.
A. Even
B. Odd
C. Composite
D. Cyclic
74. A cycle of even length is an ... permutation.
A. Even
B. Odd
C. Composite
D. Cyclic
75. The product of two even permutations is \qquad permutation.
A. Even
B. Odd
C. Composite
D. Cyclic
76. The product of two odd permutations is ... permutation.
A. Even
B. Odd
C. Composite
D. Cyclic
77. The product of an even and an odd permutations is ... permutation.
A. Even
B. Odd
C. Composite
D. Cyclic
78. If α is an odd permutation and τ is a transposition, ©hen $\alpha \tau$ is ... permutation.
A. Even
B. Odd
C. Both A and B
D. None of these
79. For $n \geq 2$, the number offeven permutations in S_{n} is \ldots the number of odd permutations in S_{n}.
A. Equal
B. Not equal to
C. Greater than
D. Lesser than
80. The set of even permutations in S_{n} is denoted by:
A. A_{n}
B. E_{n}
C. $S_{\frac{n}{2}}$
D. None of these
81. The number of elements in alternating group A_{n} is:
A. n
B. $\frac{n}{2}$
C. n !
D. $\frac{n!}{2}$
82. The order of a cyclic permutation of length m is:
A. m
B. $\frac{m}{2}$
C. m !
D. $\frac{m!}{2}$
83. The order of $\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 3 & 4 & 1 & 7 & 9 & 6 & 5 & 8 & 10\end{array}\right)$ is:
A. 10
B. 12
C. 15
D. 20
84. Inverse of the permutation $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 4 & 1 & 7 & 2 & 6\end{array}\right)$ is:
A. $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}\right)$
B. $\left.\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 2 & 7 & 1 & 4 & 7 \\ 5 & 3\end{array}\right)\right)^{\ell}$
C. $\left(\begin{array}{lll|llll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 1 & 3 & 2 & 7 & 5\end{array}\right)$
D. All of these
85. A ring R is an abelian group under:
A. Addition
B. Subtraction
C. Multiplication
D. Division
86. Which of the following is a ring under usual addition and multiplication?
A. \mathbb{Z}
B. \mathbb{Q}
C. \mathbb{R}
D. All of these
87. If $(R,+, \cdot)$ is a ring with additive identity 0 , then for all $a, b \in R$, we have:
A. $a 0=0 a=0$
B. $a(-b)=(-a) b=-a b$
C. $(-a)(-b)=a b$
D. All of these
88. The multiplicative identity (if it exists) is called:
A. Unit
B. Unity
C. Identity
D. None of these
89. An element of a ring whose multiplicative inverse exists, is called:
A. Unit
B. Unity
C. Identity
D. None of these
90. Let R be a ring with unity. If every nonzero element of R is unit, then R is called:
A. Divisiomring
B. Skew field
C. Integral domain
D. Both A and B
91. A commutative division ring is called:
A. Integral Domain
B. Skew field
C. Field
D. Commutative ring
92. Which of the following is(are) field(s)?
A. \mathbb{Q}
B. \mathbb{R}
C. \mathbb{C}
D. All of these
93. \mathbb{Z}_{n} is a field if and only if n is:
A. Prime
B. Composite
C. Even
D. Odd
94. Which of the following are true? (Free to choose more than one option).
A. Every field is a ring.
B. Every ring has a multiplicative identity.
C. Multiplication in a field is commutative.
D. The nonzero elements of a field form a group under multiplication.
E. Addition in every ring is commutative.
F. Every element in a ring has an Qdditive inverse.
95. Which of the following is a field?
A. \mathbb{Z}
B. \mathbb{Z}_{8}
C. \mathbb{Z}_{13}
D. None of these

Available at www.MathCity.org

Multiple Choice Questions
 For BA, BSc (Mathematics)

1. If a matrix has 3 columns and 6 rows then the order of matrix is:
A. 3×6
B. 18
C. 6×3
D. 3×3
2. If order of a matrix A is 3×6, then each row of A consists ... elements.
A. 3
B. 6
C. 18
D. None of these
3. A matrix $A=\left[a_{i j}\right]_{m \times n}$ is square if:
A. $m=n$
B. $m \neq n$
C. $m<n$
D. $m>n$
4. A matrix that is not square is:
A. Rectangular
B. Identity
C. Diagonal
D. Scalar
5. A matrix $A=\left[a_{i j}\right]_{m \times n}$ is row matrix if:
A. $n=1$
B. $n \neq 1$
C. $m=1$
D. $m \neq 1$
6. In a square matrix $A=\left[a_{i j}\right]_{n \times n}$, the elements $a_{11}, a_{22}, \ldots a_{n n}$ are called \ldots elements.
A. Diagonal
B. Scalar
C. Identity
D. Unit
7. A square matrix $A=\left[a_{i j}\right]_{n \times n}$ is called upper triangular if $a_{i j}=0$ for all:
A. $i>j$
B. $i<j$
C. $i \geq j$
D. $i \leq j$
8. A matrix, all of whose elements are zero except those in the main diagonal, is called a ... matrix.
A. Unit
B. Identity
C. Scalar
D. Diagonal
9. Which of the following is a diagonal matrix?
A. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 6 \\ 0 & 8 & 0\end{array}\right]$
B. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 6 & 8 & 0\end{array}\right]$
C.
$\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
D. None of these
10. Every scalar matrix is a ... matrix.
A. Unit
B. Identity
C. Diagonal
D. All of these
11. If $A^{2}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ Then which of the following is true for A ?
A. $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
B. $A=\left[\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right]$
C. $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
D. None of these
12. If A and B are matrices of orders $m \times n$ and $p \times q$ respectively, then the product $A B$ is possible if:
A. $n=p$
B. $n=q$
C. $m=q$
D. $m=p$ and $n=q$
13. If A and B are matrices of orders 4×5 and 5×7 netspectively, then the order of $A B$ is:
A. 5×5
B. 4×7
C. 5×4
D. 7×5
14. Let $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{\Omega x p}$, then $q_{j} j$ th element of $A B$ is:
A. $\sum_{k=1}^{n} a_{i k} b_{k j}$
B. $\sum_{k=1}^{n} a_{k i} b_{k j}$
C. $\sum_{k=1}^{n} a_{i k} b_{j k}$
D. $\sum_{k=1}^{n} a_{k i} b_{j k}$
15. If A and B are two nonzero matrices. Is it possible to have $A B=0$?
A. Yes
B. No
16. Which law does not hold in matrices?
A. Associative law of multiplication
B. Distributive law of multiplication over addition
C. Cancellation law
D. Both A and B
17. If the matrices A, B and C are conformable for the sums and multiplications, then which of the following is correct?
A. $A(B C)=(A B) C$
B. $A(B+C)=A B+A C$
C. $k(A B)=(k A) B$
D. All of these
18. If order of A is 8×7, then the order of $A A^{t}$ is:
A. 7×8
B. 7×7
C. 8×8
D. Product is not possible
19. If the matrices A and B are conformable for the sum and the product, then:
A. $(A B)^{t}=B^{t} A^{t}$
B. $\left(A^{t}\right)^{t}=A$
C. $(k A)^{t}=k A^{t}$
D. All of these
20. A square matrix A for which $A^{k+1}=A \cdot(\mathrm{k}$ being a positive integer), is called a ... matrix.
A. Nilpotent
B. Periodic
C. Involutory
D. Idempotent
21. If $A^{6}=A$, then thetperiod of A is:
A. 5
B. 6
C. 7
D. Not period
22. A matrix of period 1 is:
A. Nilpotent
B. Involutory
C. Idempotent
D. Involutory
23. A square matrix A for which $A^{p}=0$ (p being a positive integer), is called ...
A. Nilpotent
B. Involutory
C. Idempotent
D. Involutory
24. A square matrix A such that \ldots is called an involutory matrix.
A. $A^{2}=A$
B. $A^{2}=I$
C. $A^{2}=-A$
D. $A^{2}=-I$
25. For any square real matrix A, the matrix $A-A^{t}$ is:
A. Symmetric
B. Skew Symmetric
C. Hermitian
D. None of these
26. For a complex square matrix A, the matrix $A+(\bar{A})^{t}$ is:
A. Symmetric
B. Skew symmetric
C. Hermitian
D. Skew Hermitian
27. If A is a square matrix over \mathbb{C} and $A(\bar{A})^{t}=0$, then which of the following is true?
A. $A=0$
B. $A^{t}=0$
C. $\bar{A}=0$
D. All of these
28. If A is a square matrix and B is left inverse of A, then:
A. B can be right inverse of A
B. B must be right inverse of A
C. B must not be right inverse of A
D. There is no relation between A and B
29. A square matrix, whose inverse exists, is called:
A. Singular
B. Nonsingular
C. Invertible
D. Both B and C
30. If A and B are nonsingular matrices of the same order, then $(A B)^{-1}$ equals:
A. $A B$
B. $A^{-1} B^{-1}$
C. $B A$
D. $B^{-1} A^{-1}$
31. A matrix obtained by applying an elementary row operation on I_{n} is called:
A. Invertible
B. Non Invertible
C. Elementary
D. Secondary
32. Every elementary matrix E is:
A. Singular
B. Nonsingular
C. Non invertible
D. Symmetric
33. A square matrix A of order n is nonsingular if and only if A is row equivalent to:
A. I_{n}
B. $-I_{n}$
C. A^{2}
D. $-A$
34. If an $m \times n$ matrix B is obtained from an $m \times n$ matrix A by a finite number of elementary row and column operations, then B is said to be ... to A.
A. Equal
B. Equivalent
C. Similar
D. Not equal
35. Every nonzero $m \times n$ matrix is equivalent to an $m \times n$ matrix $D=\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$. Then D is called ... form of A.
A. Normal
B. Canonical
C. Both A and B
D. None of these
36. The rank of matrix $A\left[\begin{array}{lll}4 & 1 & 8 \\ 0 & 7 & 7 \\ 0 & 0 & 3 \\ 0 & 0 & 1\end{array}\right]$ is:
A. 1
B. 2
C. 3
D. 4
37. The rank of matrix $A\left[\begin{array}{cc}1 & 3 \\ 0 & -2 \\ 5 & -1 \\ -2 & 3\end{array}\right]$ is:
A. 1
B. 2
C. 3
D. 4
38. If A is invertible and $A B=0$, then:
A. $A=0$
B. $B=0$
C. $B \neq 0$
D. B is nonsingular
39. If A and B are square matrices of order n, then $A B-B A$ is:
A. Symmetric
B. Hermitian
C. Skew Symmetric
D. All of these
40. If $A=\left[\begin{array}{ll}1 & 0 \\ \frac{1}{2} & 1\end{array}\right]$, then A^{50} equals:
A. $\left[\begin{array}{cc}50 & 0 \\ \frac{1}{2} & 1\end{array}\right]$
B. $\left[\begin{array}{cc}1 & 0 \\ 25 & 1\end{array}\right]$
C. $\left[\begin{array}{cc}25 & 0 \\ \frac{1}{2} & 1\end{array}\right]$
D. $\left[\begin{array}{ll}25 & 0 \\ 50 & 1\end{array}\right]$
41. If a matrix A is symmetric as well as skew symmetric, then A is:
A. Identity
B. Nill
C. Idempotent
D. Diagonal
42. If $A^{2}-A-I=0$, then the inverse of A is:
A. $A+I$
B. $A-I$
C. $I-A$
D. $-A-I$
43. If A and B are square matrices of same order and $A^{2}-B^{2}=(A+B)(A-B)$, then which of the following must be trgeal
A. $A=B$
B. $A B=B 4$
C. Either A or B is a zero matrix
D. Either A or B is an identity matrix

Akhtar Abbas
Lecturer in Mathematics
University of Jhang
0332-6297570

Multiple Choice Questions
 For BA, BSc (Mathematics)

An effort by: Akhtar Abbas

1. A system of linear equations $A x=b$ is called non homogeneous if:
A. $b=0$
B. $b \neq 0$
C. $A=0$
D. $A \neq 0$
2. If $\operatorname{rank}(A)=\operatorname{rank}\left(A_{b}\right)$, then the system $A x=b$:
A. is consistent
B. can have unique solution
C. can have infinite solutions
D. All of these
3. Let $A x=b$ be a system of 3 linear equations in 7 variables, then which of the following can be the maximum value of $\operatorname{rank}\left(A_{b}\right)$?
A. 3
B. 4
C. 6
D. 7
4. Let A be a matrix of order 4×5 and $\operatorname{rank}(A)=\operatorname{rank}\left(A_{b}\right)=3$, then the system $A x=b$ has:
A. unique solution
B. no solution
C. infinitely many solutions
D. None of these
5. The system $\left[\begin{array}{cc}-3 & 3 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ has:
A. unique solution
B. no solution
C. infinitely many solutions
D. None of these
6. If the augmented matrix of a system is $\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1\end{array}\right]$, then the system has:
A. unique solution
B. no solution
C. infinitely many solutions
D. None of these
7. Let A be a 4×4 matrix and the system $A x=b$ has infinitely many solutions, then:
A. $\operatorname{rank}(A)=4$
B. $\operatorname{rank}(A) \neq 4$
C. $\operatorname{rank}(A)<4$
D. $\operatorname{rank}(A)>4$
8. If $A x=b$ does not have any solution, then the system is called:
A. consistent
B. inconsistent
C. Both A and B
D. None of these
9. Every homogeneous system of linear equations:
A. is consistent
B. is inconsistent
C. has only trivial solution ℓ
D. has infinitely many solytions
10. For what value of the system

$$
\begin{aligned}
(1-\lambda) x_{1}-x_{2} & =0 \\
x_{1}+(1-\lambda) & =0
\end{aligned}
$$

has non trivial solution?
A. 0
B. 2
C. 3
D. 4
11. In Gauss Elimination method, we need to reduce the augmented matrix into:
A. Echelon form
B. Reduced echelon form
C. Both A and B
D. None of these
12. A system $A x=0$ of n equations and n unknowns has a unique solution if A is:
A. singular
B. non singular
C. non invertible
D. None of these
13. The system $A x=b$ of m equations and n unknowns has solytion (is consistent) if $\operatorname{rank}(A) \ldots \operatorname{rank}\left(A_{b}\right)$.
A. $=$
B. \neq
C. $>$
D. $<$
14. The system $A x=b$ of m equations and nunknown has no solution (is inconsistent) if $\operatorname{rank}(A) \ldots \operatorname{rank}\left(A_{b}\right)$.
A. $=$
B. \neq
C. $>$
D. $<$
15. The system

$$
\begin{aligned}
& x_{1}+2 x_{2}=1 \\
& 2 x_{1}+x_{2}=2
\end{aligned}
$$

has a solution:
A. $(1,1)$
B. $(1,2)$
C. $(2,1)$
D. $(1,0)$
16. In Gauss-Jordan elimination method, we reduce the augmented matrix into:
A. Echelon form
B. Reduced echelon form
C. Both A and B
D. None of these
17. If a system of 2 equations and 2 unknowns has no solution, then the graph look like:
A. Intersecting lines
B. Non intersecting lines
C. Same lines
D. None of these
18. Which of the following is a linear equation in the variables x, y, y ?
A. $x-2 y=0$
B. $x+\cos y=z$
C. $\sin x+\cos y+\tan z=0$
D. None of these
19. Which one of the following is a linear equation?
A. $x y=e^{\pi}$
B. $x+y=e^{\pi}$
C. $y=\sqrt{3 x}$
D. $x=\sqrt{3 y}$
20. If applying row operations to matrix A of order $n \times n$ results in a row of zeros, then how many solutions does the system $A x+b=0$ have?
A. No solutions
B. Unique solution
C. Infinitely many solutions
D. More information is needed
21. A system of m homogeneous linear equations in n unknowns has a nontrivial solution if:
A. $m=n$
B. $m \neq n$
C. $m<n$
D. $m>n$
22. A system of m homogeneous linear equations $A x=0$ in n unknowns has a nontrivial solution if and only if $\operatorname{rank}(A)$:
A. $=n$
B. $\neq n$
C. $=m$
D. $\neq m$
23. For any matrix A, the collection $\{x: A x=0\}$ is called \ldots of A.
A. Rank
B. Solution space
C. Both A and B
D. None of these
24. A system of m linear equations $A x=b$ in n unknowns has unique solution if and only if $\operatorname{rank}(A)=\operatorname{rank}(B) \ldots$
A. $=m$
B. $=n$
C. $\neq m$
D. $\neq n$

Akhtar Abbas
Lecturer in Mathematics
University of Shang
0332-6297570

Multiple Choice Questions
 For BA, BSc (Mathematics)

1. If A is any matrix of order $n \times n$ and k is a non zero real number, then:
A. $|k A|=k|A|$
B. $|k A|=|k||A|$
C. $|k A|=k^{2}|A|$
D. $|k A|=k^{n}|A|$
2. The determinant of a unit matrix is:
A. 0
B. 1
C. -1
D. ± 1
3. $\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|+\left|\begin{array}{ll}a_{11} & b_{12} \\ a_{21} & b_{22}\end{array}\right|=$
A. $\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & b_{22}\end{array}\right|$
B. $\left|\begin{array}{ll}a_{11} & a_{12}+b_{12} \\ a_{21} & a_{22}+b_{22}\end{array}\right|$
C. 0
D. Addition is not possible
4. Let A be a square matrix of order n. A matrix obtained from A by deleting its i th row and j th column is dgain a matrix of order $n-1$ which is called:
A. $i j$ th minor of A
B. $i j$ th cofactor of A
C. Determinant of A
D. None of these
5. Let $M_{i j}$ be the $i j$ th minor of a square matrix A of order n. Then $i j$ th cofactor of A is:
A. $\left|M_{i j}\right|$
B. $-\left|M_{i j}\right|$
C. $\pm\left|M_{i j}\right|$
D. $(-1)^{i+j}\left|M_{i j}\right|$
6. Let $A=\left[\begin{array}{cccc}3 & 2 & 1 & -1 \\ 4 & 5 & 1 & 2 \\ -2 & 3 & 0 & 1 \\ 2 & 1 & 3 & 5\end{array}\right]$, then 33 th cofactor of A is:
A. 43
B. 34
C. 56
D. -56
7. $\left|\begin{array}{cccc}1 & 0 & 5 & 6 \\ 0 & 5 & 0 & 8 \\ 0 & 0 & -1 & 8 \\ 0 & 0 & 0 & 3\end{array}\right|=$
A. 3
B. -15
C. 28
D. -67
8. Let $A=\left[a_{i j}\right]$ be an $n \times n$ triangular matrix, then $\psi A \mid$ equals
A. $a_{11} a_{22} \ldots a_{n n}$
B. $a_{11}+a_{22}+\ldots+a_{n n}$
C. $-a_{11}-a_{22}-\ldots-a_{n n}$
D. There is no formula
9. Let A be a square matrix of order $4 * 4$, then $|A|=$
A. $-|A|$
B. $\left|A^{t}\right|$
C. $-\left|A^{t}\right|$
D. 0
10. Row expansion of $|A| \ldots$ column expansion of $|A|$.
A. $=$
B. \neq
C. There is no comparison
D. None of these
11. For any $n \times n$ matrices A and B, we have:
A. $|A B|=|B A|$
B. $|A B| \neq|B A|$
C. $|A B|<|B A|$
D. $|A B|>|B A|$
12. Let A, B be matrices of order 6 such that $\left|A B^{2}\right|=144$ and $\left|A^{2} B^{2}\right|=72$, then $|A|=$
A. 2
B. $\frac{1}{2}$
C. -2
D. $-\frac{1}{2}$
13. For an invertible matrix $A,\left|A^{-1}\right|$ equals:
A. $|A|$
B. $-|A|$
C. $|A|^{-1}$
D. $-|A|^{-1}$
14. For 2×2 matrices A and B, which of the following equations hold? (Can choose more than one options)
A. $|A+B|=|A|+|B|$
B. $|A+B|^{2}=\left|(A+B)^{2}\right|$
C. $|A+B|^{2}=|A|^{2}+|B|^{2}$
D. $\left|(A+B)^{2}\right|=\left|A^{2}+2 A B+B B^{2}\right|$
15. $\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & c \\ b & -c & 0\end{array}\right|=$
A. 0
B. 1
C. -1
D. $a b c$
16. If A is an $n \times n$ skew symmetric matrix and n is odd, then $|A|=$
A. 0
B. 1
C. -1
D. ± 1
17. If a, b, c are different numbers. For what value of x, the matrix $\left[\begin{array}{ccc}0 & x+b & x^{2}+c \\ x-b & 0 & x^{2}-a \\ x^{3}-c & x+a & 0\end{array}\right]$ is singular?
A. 0
B. a
C. b
D. c
18. If A is a square matrix of odd order, then $|-A|=$
A. $|A|$
B. $-|A|$
C. 0
D. 1
19. If $\left|\begin{array}{ccc}a & -b & 0 \\ 0 & a & b \\ b & 0 & a\end{array}\right|=0$, then:
A. α is a root of unity
B. β is a root of unity
C. $\alpha \beta$ is a root of unity
D. $\frac{\alpha}{\beta}$ is a root of unity
20. If A is an $n \times n$ non singular matrix then which of the following is true?
A. $|\operatorname{adj}(A)|=|A|$
B. $|\operatorname{adj}(A)|=1$
C. $\left.|\operatorname{adj}(A)|=\left.|A|\right|^{n}\right\rangle$
D. $|\operatorname{adj}(A)|=|A|^{+n-1}$
21. Let $A=\left[\begin{array}{ccc}k & 4 k & 4 \\ 0 & 4 & 4 k \\ 0 & 0 & 4\end{array}\right]$. If $\left|A^{2}\right|=16$, then the value of k is:
A. 1
B. 4
C. 16
D. $\frac{1}{4}$

Akhtar Abbas

Lecturer in Mathematics
University of Jhang
0332-6297570

Multiple Choice Questions
 For BA, BSc (Mathematics)

1. The property $d(x, y)=d(y, x)$ is named as:
A. Non negativity
B. Reflexive
C. Symmetry
D. Triangle inequality
2. The property $d(x, y) \leq d(x, z)+d(z, y)$ is named as:
A. Non negativity
B. Reflexive
C. Symmetry
D. Triangle inequality
3. If (X, d) is a metric space then d is called a \ldots om X.
A. Function
B. Relation
C. Metric
D. Metric space
4. If (X, d) is a metric space then X is called.
A. Metric
B. Ground Set
C. Underlyjing set
D. Both B and C
5. Which of the following is not a metric on \mathbb{R} ?
A. $d(x, y)=|x|+|y|$
B. $d(x, y)=\max \{|x|,|y|\}$
C. Both A and B
D. None of these
6. Let (X, d) be a metric space. Which of the following is not a metric on X ?
A. $d_{1}(x, y)=k d(x, y)$, where k is a positive number
B. $d_{2}(x, y)=\frac{d(x, y)}{1+d(x, y)}$
C. $d_{3}(x, y)=\frac{k d(x, y)}{1+k d(x, y)}$
D. $d_{4}(x, y)=\frac{1-d(x, y)}{1+d(x, y)}$
7. Let (X, d) be a metric space and $x_{1}, x_{2}, \ldots, x_{n}$ be points of X, then the property

$$
d\left(x_{1}, x_{n}\right) \leq d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{3}\right)+\ldots+d\left(x_{n-1}, x_{n}\right)
$$

is called:
A. Generalized Triangle Inequality
B. Generalized Non negativity
C. Generalized Symmetry
D. Generalized Reflexive
8. The usual (or Euclidean) metric on \mathbb{R} is defined ase
A. $d(x, y)=|x+y|$
B. $d(x, y)=|z-y|$
C. $d(x, y)=|x|+|y|$
D. $d(x, y)=||x|-|y||$
9. The usual (or Euclidean) metric on R^{2} is defined as ... , where $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$.
A. $d(x, y)=\sqrt{\left(x_{0} d^{-}-y_{1}\right)^{2}+\sqrt{\left(x_{2}-y_{2}\right)^{2}}}$
B. $d(x, y)=|x|-y_{1}\left|+\sqrt{x_{2}}-y_{2}\right|$
C. $d(x, y)=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right\}$
D. None of these
10. The taxi-cab metric on \mathbb{R}^{2} is defined as \ldots, where $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$.
A. $d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$
B. $d(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|$
C. $d(x, y)=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right\}$
D. None of these
11. The discrete metric on a non empty set X is defined as:
A. $d(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{cases}$
B. $d(x, y)= \begin{cases}0 & \text { if } x \neq y \\ 1 & \text { if } x=y\end{cases}$
C. $d(x, y)= \begin{cases}0 & \text { if } x=y \\ -1 & \text { if } x \neq y\end{cases}$
D. $d(x, y)= \begin{cases}-1 & \text { if } x=y \\ 0 & \text { if } x \neq y\end{cases}$
12. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be any two points of \mathbb{R}^{n}. Then

$$
\sum_{k=1}^{n}\left|x_{k} y_{k}\right| \leq\left(\sum_{k=1}^{n}\left|x_{k}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{k=1}^{n}\left|y_{k}\right|^{2}\right)^{\frac{1}{2}}
$$

This inequality is called:
A. Cauchy Inequality
B. Cauchy-Schwarz Inequality
C. Minkowski's Inequality
D. Holder's Inequality
13. If $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers, then $\left(\left|x_{1}\right|+\left|x_{2} \uparrow+\ldots+\left|x_{n}\right|\right)^{\frac{1}{2}} \ldots\right.$
A. $\leq\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\ldots+\left|x_{1}\right|^{2}$
B. $\leq n\left(\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\cdots+\left|x_{n}\right|^{2} \mid\right.$
C. $\geq n\left(\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\ldots+\left|x_{n}\right|{ }_{2}\right)$
D. None of these
14. Let $\left.x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=y_{1}, y_{2}, \ldots, y_{n}\right)$ be any two points of \mathbb{R}^{n}. Then

$$
\left(\sum_{k=1}^{n}\left|x_{k}+y_{k}\right|\right)^{\frac{1}{2}} \leq\left(\sum_{k=1}^{n}\left|x_{k}\right|^{2}\right)^{\frac{1}{2}}+\left(\sum_{k=1}^{n}\left|y_{k}\right|^{2}\right)^{\frac{1}{2}}
$$

This inequality is called:
A. Cauchy Inequality
B. Cauchy-Schwarz Inequality
C. Minkowski's Inequality
D. Holder's Inequality
15. The collection of all continuous real-valued functions defined on a closed interval $[a, b]$ is denoted as:
A. $C[a, b]$
B. $L[a, b]$
C. $D[a, b]$
D. l^{∞}
16. Let (X, d) be a metric space and $x, y, z \in X$. Then which of the following is true?
A. $|d(x, z)-d(y, z)| \leq d(x, y)$
B. $|d(x, y)-d(x, z)| \leq d(y, z)$
C. $|d(x, y)-d(y, z)| \leq d(x, z)$
D. All of these
17. The distance between a point x and subset A of a metric space (X, d) is defined as:
A. $d(x, A)=\inf \{d(x, a): a \in A)\}$
B. $d(x, A)=\sup \{d(x, a): a \in A)\}$
C. $d(x, A)=\inf \{d(x, y): x, y \in A)\}$
D. $d(x, A)=\inf \{|x-1|: a \in A)\}$
18. The distance between two subsets A, B of $\{$ metric space (X, d) is defines as:
A. $d(A, B)=\inf \{d(x, a): a \in A)\}$
B. $d(A, B)=\inf \{d(x, b): b\} B)\}$
C. $d(A, B)=\inf \{d(a, b) \cdot a \in A, b \in B)\}$
D. All of these
19. Let A and B be overlapping subsets of a metric space (X, d), then distance between A and B is:
A. Not defined
B. Zero
C. Infinity
D. None of these
20. The distance between $A=\left\{(x, y) \in \mathbb{R}^{2}: y=\frac{1}{x}, x \neq 0\right\}$ and $B=\left\{(x, y) \in \mathbb{R}^{2}: y=0\right\}$ is:
A. Not defined
B. Zero
C. Infinity
D. None of these
21. If A is a subset of a metric space (X, d) such that $\delta(A)<\infty$, then A is called:
A. Finite
B. Bounded
C. Open
D. Closed
22. Let (X, d) be a metric space and $\delta(X)<\infty$, then d is called ... metric.
A. Finite
B. Bounded
C. Open
D. Closed
23. An example of a bounded metric is:
A. Discrete metric on any non empty set
B. Usual metric on \mathbb{R}
C. Usual metric on \mathbb{R}^{2}
D. None of these
24. Intersection of many many bounded sets is?
A. Bounded
B. Unbounded
C. Empty
D. Open
25. Union of finitely many bounded seds is:
A. Bounded
B. Not necessarily bounded
C. Unbounded
D. Open
26. Let (X, d) be a metric space. If $a \in X$ and $r>0$, then the open ball centered at a and with radius r is:
A. $B(a ; r)=\{x \in X: d(a, x) \leq r\}$
B. $B(a ; r)=\{x \in X: d(a, x)<r\}$
C. $\bar{B}(a ; r)=\{x \in X: d(a, x) \leq r\}$
D. $\bar{B}(a ; r)=\{x \in X: d(a, x)<r\}$
27. A point $y \in B(a, r)$ if and only if:
A. $d(a, y)>r$
B. $d(a, y) \geq r$
C. $d(a, y)<r$
D. $d(a, y) \leq r$
28. An open ball in (\mathbb{R}, d) (usual metric) with center a and radiuser is:
A. $(a-r, a+r)$
B. $[a-r, a+r]$
C. $(r-a, r+a)$
D. $[r-a, r+a]$
29. The unit open ball in $\left(\mathbb{R}^{2}, d\right)$ (usual metric) at theorigin is:
A. $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$
B. $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}>\right.$ (1) $\}$
C. $\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y|<1\right\}$
D. $\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y|>\operatorname{D}\right\}$
30. The unit open ball $\mathrm{im}\left(\mathbb{R}^{2}, d^{\prime}\right)$ (Taxi-cab metric) at the origin is:
A. $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}-\left(y^{2}<1\right\}\right.$
B. $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}>1\right\}$
C. $\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y|<1\right\}$
D. $\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y|>1\right\}$
31. Let $\left(X, d_{0}\right)$ be a discrete metric space, $a \in X$ and $r>1$, then $B(a, r)=$
A. ϕ
B. $\{a\}$
C. X
D. $X-\{a\}$
32. Let $\left(X, d_{0}\right)$ be a discrete metric space, $a \in X$ and $0<r \leq 1$, then $B(a, r)=$
A. ϕ
B. $\{a\}$
C. X
D. $X-\{a\}$
33. Let (X, d) be a metric space. A subset $O \subset X$ is called \ldots if for each $x \in O$, there exists $r>0$ such that $B(x ; r) \subset O$.
A. Open
B. Closed
C. Bounded
D. Unbounded
34. Any open ball in a metric space is:
A. Open set
B. Closed set
C. Bounded set
D. Not necessarily a closed set
35. A subset O of a metric space (X, d) is open if andonly if O is the \ldots of open balls.
A. Union
B. Intersection
C. Complement
D. Any of A, B or C
36. Let (X, d) be a metriâspace. Then ϕ and X are:
A. Open
B. Closed
C. Both A and B
D. None of these
37. The arbitrary \ldots of open sets is an open set.
A. Union
B. Intersection
C. Complement
D. Symmetric Difference
38. The finite \ldots of open sets is an open set.
A. Union
B. Intersection
C. Complement
D. Symmetric Difference
39. The arbitrary intersection of open sets in a metric space:
A. Is open
B. Is not necessarily open
C. Is closed
D. Is not necessarily closed
40. Let $I_{n}=\left\{\left(-\frac{1}{n}, \frac{1}{n}\right): n \in \mathbb{N}\right\}$, then $\cap_{n=1}^{\infty} I_{n}$ equals:
A. $\}$
B. $\{0\}$
C. $\{1\}$
D. $(0,1)$
41. Every subset of a discrete metric space is:
A. Open
B. Closed
C. Open as well as closed
D. Not open, nor closed
42. Every finite subset of a metricspace is:
A. Open
B. Closed
C. Open as well as closed
D. Not open, nor closed
43. Let (X, d) be a metric space and let a be any point of X. A subset N of X is called \ldots if there exists an open ball $B(a ; r)$ such that $B(a ; r) \subseteq N$.
A. Open set
B. Closed set
C. Neighborhood of a
D. None of these
44. If a subset N of a metric space (X, d) is neighborhood of each of its points, then N is:
A. Open
B. Closed
C. Bounded
D. Compact
45. If N is a neighborhood of a and $N \subset M$, then M is:
A. Neighborhood of a
B. Open
C. Closed
D. Bounded
46. If N is a neighborhood of a point a, then a is called \ldots of N.
A. Interior point
B. Exterior point
C. Limit point
D. Boundary point
47. For any subset A of a metric space (X, d), interior of $\mathcal{A} A$ is:
A. Open
B. Not necessarily open
C. Closed
D. Not necessarily closed
48. For any subset A of a netric space (X, d), which of the following is true?
A. $A \subseteq A^{o}$
B. $A^{o} \subseteq A$
C. $A=A^{o}$
D. $A \neq A^{o}$
49. A subset A of a metric space (X, d) is open if and only if:
A. $A=A^{o}$
B. A is neighborhood of each of its points
C. Both A and B are true
D. None of these
50. Let $A=[a, b]$ be any subset of \mathbb{R} with usual metric. Then A^{o} equals:
A. $[a, b]$
B. $[a, b)$
C. $(a, b]$
D. (a, b)
51. Let $A=[a, b]$ be any subset of \mathbb{R} with discrete metric. Then A^{o} equals:
A. $[a, b]$
B. $[a, b)$
C. $(a, b]$
D. (a, b)
52. For any subset A of a metric space $(X, d), \ldots$ is the largest open subset of A^{c}.
A. Interior of A
B. Exterior of A
C. Closure of A
D. Boundary of A
53. For any subset A of a metric space (X, d), interior of A is the \ldots of all open subsets of A.
A. Union
B. Intersection
C. Symmetric difference
D. All of these
54. For any subsets A B B a metric space (X, d), which of the following is false?
A. $\left(A^{o}\right)^{o}=A^{\circ}$
B. $A \subseteq B$ implies $A^{o} \subseteq B^{o}$
C. $(A \cap B)^{o}=A^{o} \cap B^{o}$
D. $(A \cup B)^{o}=A^{o} \cup B^{o}$
55. Consider \mathbb{Q} as a subset of \mathbb{R} with usual metric, then Q° equals:
A. ϕ
B. \mathbb{Q}
C. \mathbb{Q}^{\prime}
D. \mathbb{R}
56. For any two subsets A and B of a metric space $(X, d),(A \cup B)^{o} \ldots A^{o} \cup B^{o}$.
A. \subseteq
B. \supseteq
C. $=$
D. None of these
57. If $A=\phi$ and $B=\mathbb{R}$, then $A^{o} \cup B^{o}=$:
A. ϕ
B. \mathbb{R}
C. (a, b)
D. $[a, b]$
58. Let A be any subset of a metric space (X, d). A point $x \in X$ is called a limit point of A, if for every open ball $B(x ; r)$, we have:
A. $B(x ; r) \cap(A-\{x\}) \neq \phi$
B. $(B(x ; r) \cap A)-\{x\} \neq \phi$
C. $(B(x ; r)-\{x\}) \cap A \neq \phi$
D. All of these
59. The set of all limit points of A, denoted ass A^{d} is caled \ldots of A.
A. Interior
B. Derived set
C. Boundary
D. Closure
60. Consider \mathbb{Z} as a subset of \mathbb{R} with usual metric, then $\mathbb{Z}^{d}=$:
A. ϕ
B. \mathbb{Z}
C. \mathbb{Q}
D. \mathbb{R}
61. A subset K of a metric space (X, d) isif K^{c} is open.
A. Closed
B. Interior of K
C. Closure of K
D. Boundary of K

Available at www.MathCity.org

62. A set K is closed if and only if
A. $K^{d} \subseteq K$
B. $K \subseteq K^{d}$
C. $K=K$
D. Any of A, B or C
63. Consider $A=\left\{1, \frac{1}{2}, \frac{1}{3} \ldots\right\}$ as a subset of Euclidean metric space (\mathbb{R}, d), then $A^{d}=$.
A. $\{0\}$
B. $\{1\}$
C. A
D. R
64. Consider $A=[a . b]$ as a subset of Euclidean metric space (\mathbb{R}, d), then A^{d}.
A. ϕ
B. (a, b)
C. $[a, b]$
D. $\{a, b\}$
65. If x is a limit point of A, then every neighbornood of x contains ... number of points.
A. Finite
B. Infinite
C. Finite or Infinite
D. None of these
66. \mathbb{Z} is ... subset of \mathbb{R} withousual metric.
A. Open
B. Bounded
C. Closed
D. Compact
67. $\mathbb{Q}^{d}=$?
A. ϕ
B. \mathbb{Q}
C. \mathbb{Q}^{\prime}
D. \mathbb{R}
68. $\left(\mathbb{Q}^{\prime}\right)^{d}=$?
A. ϕ
B. \mathbb{Q}
C. \mathbb{Q}^{\prime}
D. \mathbb{R}
69. Let (X, d) be a metric space and $a \in X$. For a positive real number r, the closed ball with center at x and radius r is
A. $B(a ; r)=\{x \in X: d(a, x) \leq r\}$
B. $B(a ; r)=\{x \in X: d(a, x)<r\}$
C. $\bar{B}(a ; r)=\{x \in X: d(a, x) \leq r\}$
D. $\bar{B}(a ; r)=\{x \in X: d(a, x)<r\}$
70. A closed ball in a metric space is
A. A closed set.
B. Not necessarily a closed set
C. An open set
D. Not an open set
71. Arbitrary intersection of closed sets is
A. A closed set.
B. Not necessarily a closedset
C. An open set
D. Not an open set
72. A point $x \in(X, d)$ iscalled a point if for every $r>0, B(x ; r) \cap A \neq \phi$
A. Limit point
B. Adherent point
C. Isolated point
D. Interior point
73. Let (X, d) be a metric space and $A \subseteq X$. A point $x \in A$ is called ... point of A if x is not a limit point of A.
A. Limit point
B. Adherent point
C. Isolated point
D. Interior point
74. A set is called ... if it is closed and has no isolated point
A. Perfect
B. Closed
C. Compact
D. Dense
75. The collection of all adherent points of a set A is called \ldots of A.
A. Interior
B. Exterior
C. Closure
D. Boundary
76. If $A=(0,1)$, then $\bar{A}=$
A. $(0,1)$
B. $[0,1)$
C. $(0,1]$
D. $[0,1]$
77. If $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$, then $\bar{A}=$
A. A
B. $A \cup\{0\}$
C. $A-\{0\}$
D. ϕ
78. $A \cup A^{d}=$
A. A^{o}
B. $\left(A^{\prime}\right)^{o}$
C. \bar{A}
D. $\operatorname{Fr}(A)$
79. \bar{A} is ...
A. Open
B. Closed
C. Compact
D. Bounded
80. Which of the follwing is true?
A. $A \subseteq \bar{A}$
B. $\bar{A} \subseteq A$
C. $A \subseteq A^{o}$
D. $\left(A^{\prime}\right)^{o}=A$
81. The smallest closed superset of A is
A. A^{o}
B. $\operatorname{ext}(A)$
C. A^{d}
D. \bar{A}
82. For any subset A of a metric space (X, d), we have $\overline{\bar{A}}=$
A. A
B. \bar{A}
C. A^{c}
D. A^{o}
83. Which of the following is false?
A. $\bar{\phi}=\phi, \bar{X}=X$
B. $A \subseteq B \Rightarrow \bar{A} \subseteq \bar{B}$
C. $(\overline{A \cup B})=\bar{A} \cup \bar{B}$
D. $\overline{A \cap B}=\bar{A} \cap \bar{B}$
84. $\bar{A} \cap \overline{A^{c}}=$?
A. \bar{A}
B. A^{d}
C. $\operatorname{Fr}(A)$
D. A^{o}
85. Which of the following is true
A. $\operatorname{Fr}(A)=\bar{A}-A^{o}$
B. $\bar{A}=A^{o} \cup \operatorname{Fr}(A)$
C. $\operatorname{Fr}(A) \cap A^{o}=\phi$
D. All of these
86. A is called if and only if
A. $\operatorname{Fr}(A) \subseteq A$
B. $\operatorname{Fr}(A) \supseteq A$
C. $\operatorname{Fr}(A) \subseteq A^{c}$
D. $\operatorname{Fr}(A) \supseteq A^{c}$
87. A is open if ...
A. $\operatorname{Fr}(A) \subseteq A$
B. $\operatorname{Fr}(A) \supseteq A$
C. $\operatorname{Fr}(A) \subseteq A^{c}$
D. $\operatorname{Fr}(A) \supseteq A^{c}$
88. Which of the following is false?
A. $\operatorname{ext}(A \cup B)=\operatorname{ext}(A) \cup \operatorname{ext}(B)$
B. $\operatorname{ext}(A \cap B)=\operatorname{ext}(A) \cap \operatorname{ext}(B)$
C. $\operatorname{ext}(\operatorname{ext}(A)) \supseteq A^{o}$
D. $A \cap \operatorname{ext}(A)=\phi$
89. A subset A of a metric space (X, d) is closed if and only if:
A. $A=\bar{A}$
B. $A=A^{o}$
C. $A \neq \bar{A}$
D. $A \neq A^{o}$
90. A subset A of a metric space (X, d) is open if and only if:
A. $A=\bar{A}$
B. $A=A^{o}$
C. $A \neq \bar{A}$
D. $A \neq A^{o}$

Akhtar Abbas
Lecturer in Mathematics
University of Jhang
0332-6297570

Multiple Choice Questions
 For BA, BSc (Mathematics)

An effort by: Akhtar Abbas

1. For any positive integers a and b, there exists a positive integer n such that $n a>b$ is called:
A. Archimedean Property
B. Division Algorithm
C. Density Theorem
D. Fundamental Theorem of Arithmetic
2. Let $S \subseteq \mathbb{N}$ having the properties:
(i) $1 \in S$ and
(ii) Whenever $k \in S$, then $k+1 \in S$, then
A. $S=\mathbb{N}$
B. $S \subseteq \mathbb{N}$
C. $S \supseteq \mathbb{N}$
D. $S \neq \mathbb{N}$
3. $2[1+2+3+\ldots .+n]=$
A. $\frac{n(n+1)}{2}$
B. $\frac{n(n-1)}{2}$
C. $n(n+1)$
D. $n(n-1)$
4. Given integers a and b with $b \neq 0$, there exist unique integers q and r satisfying
A. $a=b q+r, 0 \leq r<|b|$
B. $a=b q+r, 0 \leq q<|b|$
C. $a=b q+r, 0 \leq r<|a|$
D. $a=b q+r, 0 \leq q<|a|$
5. Which of the following is false?
A. $a \mid a$
B. If $a \mid b$ and $b \mid c$, then $a \mid c$
C. If $a \mid b$ and $b \mid a$, then $a=b$
D. If $a \mid b$ then $a \mid b c$
6. If $a \mid b$ and $a \mid c$, then for any $x, y \in \mathbb{Z}$, we have
A. $a \mid(b x+c y)$
B. $a \mid(b x-c y)$
C. $a \mid b c$
D. All of these
7. If $a \mid(b+c)$ and $a \mid b$, then
A. $a \mid c$
B. $a \nmid c$
C. $a \mid(b-c)$
D. $a \nmid(b-c)$
8. If $a=73$ and $b=8$, then
A. $q=9, r=-1$
B. $q=9, r=1$
C. $q=-9, r=1$
D. $q=-9, r=-1$
9. If $a=-23$ and $b=7$, then
A. $q=4, r=5$
B. $q=-4, r=5$
C. $q=4, r=-5$
D. $q=-4, r=-5$
10. We read $a \mid b$ as
A. a divides b
B. b is divisible by a
C. b is multiple of a
D. All of these
11. Let $a, b \in \mathbb{Z}$ with $a \neq 0$. Then $a \mid b$ if for some $c \in \mathbb{Z}$,
A. $a=b c$
B. $b=a c$
C. $c=a+b$
D. $c=a b$
12. Any integer can be expressed in the form
A. $2 n$ or $2 n+1$
B. $3 n, 3 n+1$ or $3 n+2$
C. $4 n, 4 n+1,4 n+2$ or $4 n+3$
D. All of these
13. For any $n \in \mathbb{Z}, 2.7^{n}+3.5^{n}-5$ is divisible by
A. 24
B. 23
C. 9
D. 13
14. The product of any three consecutive integers is divisible by
A. 4
B. 5
C. 6
D. 7
15. Let a, b be nonzero integers. Then a positive integer d is called \ldots of a and b if
(i) $d \mid a$ and $d \mid b$
(ii) If $c \mid a$ and $c \mid b$, then $c \leq d$.
A. G. C. D
B. L. C. M
C. H. C. F
D. Both A anddC
[We denote G. C.D. of áand b as (a, b) or $\operatorname{gcd}(a, b)$.]
16. Let a, b be nonzero integers and $(a, b)=1$, then a, b are called
A. Prime to each other
B. Coprime
C. Relatively prime
D. All of these
17. The G.C.D of two non zero integers a and b :
A. Is always unique
B. Is not necessarily unique
C. Always exists
D. Both A and C
18. If $a \mid b$, then $(a, b)=$
A. a
B. b
C. $|a|$
D. $|b|$
19. $(8,-40)=$
A. 8
B. -8
C. 2
D. -2
20. If $d=(a, b)$, then there exist $x, y \in \mathbb{Z}$ such that:
A. $d=a x+b y$
B. $d=a x-b y$
C. $d=a y+b x$
D. All of these
21. Let $k \in \mathbb{Z}$ and $a, b \in \mathbb{Z},\{0\}$
A. $k(a, b)$
B. $|k|(a, b) \mid$
C. Both A and B
D. None of these
22. If $d=(a, b)$, then
A. $\left(\frac{a}{d}, \frac{b}{d}\right)=1$
B. $\left(\frac{a}{d}, \frac{b}{d}\right)=d$
C. $\left(\frac{a}{b}, \frac{b}{a}\right)=d$
D. $\left(\frac{a}{b}, \frac{b}{a}\right)=1$
23. If $a \mid b c$ and $(a, b)=1$, then
A. $a \mid c$
B. $b \mid c$
C. $a \nmid c$
D. $a \mid(b+c)$
24. Let $a, b \in \mathbb{Z}-\{0\}$. Then a positive integer m is called \ldots of a and b if
(i) $a \mid m$ and $b \mid m$
(ii) If $a \mid n$ and $b \mid n$ then $m \leq n$.
A. G. C. D
B. L. C. M
C. H. C. F
D. Both B and C
[We denote L. C. M of a and b as $\langle a, b\rangle,[a, b]$ or $l c m(a, b)$.]
25. For any non zero integers a, b we have
A. $\langle a, b\rangle=a b(a, b)$
B. $(a, b)=a b<a, b>$
C. $a(a, b)=b<a, b>$
D. $\langle a, b\rangle(a, b)=a b$
26. If $a=b q+r$, then which of the following is true?
A. $(a, b)=(b, r)$
B. $(a, r)=(b, r)$
C. $\langle a, b\rangle=$ b, $r\rangle$
D. $<a, r \gg b, \ll$
27. For any two non zero integers a, b, we have $(a,(a, b))=$
A. b
B. a
C. $a b$
D. $a+b$
28. Let a, b be non zero integers and $c \in \mathbb{Z}$, the equation $a x+b y=c$ is called \ldots in two variables.
A. Polynomial
B. Linear Diophantine
C. Linear Equation
D. Quadratic
29. Let $d=(a, b)$. The Linear Diophantine equation $a x+b y=c$ has a solution if and only if:
A. $d \mid c$
B. $c \mid d$
C. $(c, d)=1$
D. $c \mid(a+b)$
30. If $\left(x_{o}, y_{o}\right)$ is a solution of Linear Diophantine equation $a x+b y=c$, then the solution set of equation is:
A. $\left\{\left(x_{o}+\frac{b}{d} t, y_{o}+\frac{a}{d} t\right): t \in \mathbb{Z}\right\}$
B. $\left\{\left(x_{o}+\frac{b}{d} t, y_{o}-\frac{a}{d} t\right): t \in \mathbb{Z}\right\}$
C. $\left\{\left(x_{o}-\frac{b}{d} t, y_{o}+\frac{a}{d} t\right): t \in \mathbb{Z}\right\}$
D. $\left\{\left(x_{o}-\frac{b}{d} t, y_{o}-\frac{a}{d} t\right): t \in \mathbb{Z}\right\}$
31. A point $\left(x_{o}, y_{o}\right)$ with integral coordinates is dated:
A. Common point
B. Lattice point

C. Integral point
D. None of these
32. A number n whose only positive divisors are 1 and n, is called:
A. Prime
B. Coprime
C. Relatively prime
D. All of these
33. The smallest prime number is:
A. 1
B. 2
C. 3
D. 5
34. An integer which is not a prime, nor composite is:
A. 1
B. 2
C. 3
D. 4
35. Every integer $n>1$ has a:
A. Prime divisor
B. Composite divisor
C. Common multiple
D. Both A and C
36. If p is a prime and $p \mid a b$, then
A. $p \mid a$ or $p \mid b<$
B. $p \mid a$ and $p \mid b$
C. $p \nmid a$ and $p \nmid b$
D. $p \mid a$ but $p \nmid b$
37. There are ... number of primes. (Euclid's theorem)
A. Finite
B. Infinite
C. Countable
D. None of these

Available at www.MathCity.org

38. Let $n>1$ be a composite number, then there exists a prime p such that $p \mid n$ and
A. $p \leq \sqrt{n}$
B. $p \geq \sqrt{n}$
C. $p<\sqrt{n}$
D. $p>\sqrt{n}$
39. Every integer $n>1$ can be represented uniquely as a product of:
A. Prime numbers
B. Composite numbers
C. Even numbers
D. Odd numbers
40. For $n>0$, the numbers of the form $2^{2^{n}}+1$ are called \ldots numbers.
A. Fermat
B. Mersenne
C. Perfect
D. None of these
41. Any two Fermat numbers are:
A. Prime
B. Coprime
C. Composite
D. None of these
42. For $n>0$, the numbers of the form $M_{n}=2^{n}-1$ are called:
A. Fermat's
B. Mersenne
C. Perfect
D. None of these
43. If M_{n} is prime, then n is:
A. Prime
B. Composite
C. Not necessarily prime
D. Not necessarily composite
44. Given a positive integer $n, \tau(n)$ or $d(n)$ denotes the:
A. Sum of positive divisors of n
B. Number of positive divisors of n
C. Number of coprime numbers of n
D. None of these
45. Given a positive integer $n, \sigma(n)$ denotes the:
A. Sum of positive divisors of n
B. Number of positive divisors of n
C. Number of coprime numbers of n
D. None of these
46. $\tau(n)=$
A. $\sum_{d \mid n} 1$
B. $\sum_{d \mid n} d$
C. Both of these
D. None of these
47. $\sigma(n)=$
A. $\sum_{d \mid n} 1$
B. $\sum_{d \mid n} d$
C. Both of these
D. None of these
48. $\tau(10)=$
A. 3
B. 4
C. 5
D. 6
49. $\sigma(10)=$
A. 5
B. 9
C. 10
D. 18
50. If $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$, then $\tau(n)=$
A. $\left(k_{1}+1\right)\left(k_{2}+1\right) \ldots\left(k_{r}+1\right)$
B. $k_{1} k_{2} \ldots k_{r}$
C. $k_{1}\left(k_{2}+1\right) \ldots\left(k_{r}+1\right)$
D. $n\left(k_{1}+1\right)\left(k_{2}+1\right) \ldots\left(k_{r}+1\right)$
51. $\tau(180)=$
A. 18
B. 9
C. 180
D. 90
52. If n is a positive integer such that $\sigma(n)=2 n$, then n is called a .. number.
A. Mersenne
B. Fermat
C. Perfect
D. None of these
53. Let m be a fixed positive integer. Then an integer a iscongruent to an integer b modulo m , written as $a \equiv b(\bmod m)$ if:
A. $a \mid(m+b)$
B. $m \mid(a-b)$
C. $m \mid(b-a)$
D. Both B and C
54. Congruence is relation on \mathbb{Z}.
A. Equivalence
B. Partial order
C. Anti symmetric
D. Anti reflexive
55. Let $a, b \in \mathbb{Z}$. Then $a \equiv b(\bmod m)$ if and only if a, b have the same \ldots after division by m.
A. Quotient
B. Remainder
C. Both A and B
D. None of these
56. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then which of the following is false?
A. $a+c \equiv b+d(\bmod m)$
B. $a c \equiv b d(\bmod m)$
C. $n a \equiv n b(\bmod m)$, where $n \in \mathbb{Z}$
D. None of these
57. Which of the following is true?
A. If $a \equiv b(\bmod m)$, then $a^{n} \equiv b^{n}(\bmod m)$
B. If $n a \equiv n b(\bmod m)$ and $(m, n)=d$, then $a \equiv b\left(\bmod \frac{m}{d}\right)$
C. If $n a \equiv n b(\bmod m)$ and $(m, n)=1$, then $a \equiv b(\bmod m)$
D. All of these
58. $\phi(n)=n-1$ if and only if n is:
A. Prime
B. Odd prime
C. Odd
D. Even
59. $(p-1)!\equiv-1(\bmod p)$ if and only if
A. p is a prime
B. p is an odd prime
C. p is an odd integer
D. None of these
60. For $a, m \in \mathbb{Z}, a^{\phi(m)} \equiv 1(\bmod m)$ if
A. $(a, m) \neq 1$
B. $(a, m)=1$
C. $<a, m>=1$
D. $\langle a, m\rangle=1$
61. Which of the following is true?
A. If $(m, n=1)$, then $\phi(m n)=\phi(m) \phi(n)$
B. If $m=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$, then $\phi(m)=m\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{r}}\right)$
C. $\phi(372)=120$
D. All of these

Akhtar Abbas
Lecturer in Mathematics
University of Jhang
0332-6297570

Multiple Choice Questions
 For BA, BSc (Mathematics)

Differential Equations of First Order

An effort by: Akhtar Abbas

1. An ordinary differential equation is a differential equation containing one or more dependent variables of ... independent variable(s).
A. One
B. Two
C. More than one
D. More than two
2. Number of independent variables in partial differential equation are
A. Two
B. Three
C. More then two
D. More then one
3. The order of $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}=\frac{d^{2} y}{d x^{2}}$ is:
A. 1
B. 2
C. 3
D. None of these
4. The degree of $\left.\left[1+\left(\frac{d y}{d x}\right)^{2}\right]\right]^{\hat{1}}=\frac{d^{2} y}{d x}$ is:
A. 1
B. 2
C. 3
D. None of these
5. The order of the differential equation $\left(\frac{d^{4} y}{d x^{4}}\right)^{\frac{2}{5}}+5 \frac{d^{3} y}{d x^{3}}+5 \frac{d y}{d x}-6=0$ is:
A. 1
B. 2
C. 3
D. 4
6. The degree of the differential equation $\left(\frac{d^{4} y}{d x^{4}}\right)^{\frac{2}{5}}+5 \frac{d^{3} y}{d x^{3}}+5 \frac{d y}{d x}-6=0$ is:
A. 1
B. 2
C. 3
D. 4
7. The order of differential equation $x=\frac{d y}{d x}+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)^{3}+\ldots$ is:
A. 1
B. 2
C. 3
D. 4
8. The degree of differential equation $x=\frac{d y}{d x}+\left(\frac{d y}{d x}\right)^{2}+\left(\frac{d y}{d x}\right)^{3}+\cdots$ ds:
A. 1
B. 2
C. 3
D. 4
9. An ordinary differential equation of orderm,

is said to be \ldots if F is a linear function of the variables $y, \frac{d y}{d x}, \ldots, \frac{d^{n} y}{d x^{n}}$.
A. Linear
B. Non Lineâ
C. Quadratic
D. None of these
10. Which of the following equations is linear?
A. $\frac{d^{3} y}{d x^{3}}+x^{2} \frac{d y}{d x}-y=0$
B. $\frac{d^{3} y}{d x^{3}}+x^{2} \frac{d y}{d x}-\sin y=0$
C. $\frac{d^{3} y}{d x^{3}}+x^{2} y \frac{d y}{d x}-y=0$
D. $\frac{d^{3} y}{d x^{3}}+x^{2}\left(\frac{d y}{d x}\right)^{2}-y=0$
11. The graph of a particular solution (integral) is called ... of the differential equation.
A. Locus
B. Differential curve
C. Integral curve
D. All of these
12. A solution of the differential equation $\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0$ is:
A. $y=2$
B. $y=2 x$
C. $y=2 x-4$
D. $y=2 x+4$
13. Solution of the differential equation $\frac{d y}{d x}=2 x$ subject to the condition $y(1)=4$ is:
A. $y=x^{2}$
B. $y=x+3$
C. $y=x^{2}+3$
D. $y=2 x^{3}$
14. If $y=A \sin x+B \cos x$, then what is $y(0)$
A. 0
B. 1
C. A
D. B
15. The differential equatrion $x^{2} d y+y^{2} d x=0$ has order
A. 1
B. 2
C. 3
D. 4
16. A differential equation $F(x) G(y) d x+f(x) g(y) d y=0$ is called ... if it can be written as $\frac{F(x)}{f(x)} d y+\frac{g(y)}{G(y)} d x=0$.
A. Separable
B. Exact
C. Homogeneous
D. Linear
17. $\frac{d y}{d x}=\frac{x^{2}}{y}$ has solution.
A. $y^{2}+x^{2}=c$
B. $3 y=2 x^{2}+c$
C. $3 y^{2}=2 x^{3}+c$
D. $3 y^{2}=x+c$
18. $\frac{d y}{d x}=\frac{1}{x \tan y}$ has solution
A. $x \cos y=e^{c}$
B. $x \sin y=e^{c}$
C. $x \sin y=c$
D. None of these
19. $\frac{d y}{d x}=-y^{2} \sin x$ has solution
A. $y+\cos x=c$
B. $y+\sin x=c$
C. $\frac{1}{y}+\cos x=c$
D. $\frac{1}{y}+\sin x=c$
20. The differential equation $(1+x) d y S y d x=0$ has the general solution
A. $y=c(1-x)$
B. $y=c+x$
C. $y=c x$
D. $y=c+\hat{o} k$
21. The differential equation with solution $y=A \sin x+B \cos x$ is:
A. $\frac{d y}{d x}+y=0$
B. $\frac{d y}{d x}-y=0$
C. $\frac{d^{2} y}{d x^{2}}+y=0$
D. $\frac{d^{2} y}{d x^{2}}-y=0$
22. The differential equation of all parabolas whose axis is parallel to the y-axis is:
A. $\frac{d y}{d x}=x^{2}+b$
B. $\frac{d^{2} y}{d x^{2}}=2 x$
C. $\frac{d^{3} y}{d x^{3}}=0$
D. All of these
23. A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is called \ldots of degree n if

$$
f(t x, t y)=t^{n} f(x, y) t
$$

where t is a nonzero real number.
A. Linear
B. Exact
C. Homogeneous
D. Separable
24. Which of the following is homogenegus?
A. $\sqrt{x y}$
B. $\cos \left(\frac{y}{x}\right)$
C. $\ln \left(e^{x y}\right)$
D. All of these
25. The degree homogeneous function $\frac{x^{10}+y^{10}}{x^{2}+y^{2}}$ is
A. 7
B. 9
C. 8
D. 2
26. A homogeneous equation $\frac{d y}{d x}=g\left(\frac{y}{x}\right)$ can be transformed into a separable equation by substitution.
A. $y=v x^{2}$
B. $y=v x$
C. $y=x^{2}$
D. $y=x$
27. $\frac{d y}{d x}=g\left(\frac{y}{x}\right)$ is homogeneous, its separable form is
A. $[v-g(v)] d x+d v=0$
B. $[v-g(v)] d x+x d v=0$
C. $[x-g(x)] d x+d v=0$
D. $[x-g(x)] d x+v d v=0$
28. The differential equation $\left(a_{1} x+b_{1} y+c_{1}\right) d x+\left(a_{2} x+b_{2} y+c_{2}\right)=0$ is:
A. Exact
B. Not exact
C. Homogeneous
D. Non linear
29. By substitution ... differential equation $\left(a_{1} x+b_{1} y+c_{1}\right) d x+\left(a_{2} x+b_{2} y+c_{2}\right)=0$ will be reduced to homogeneous equation.
A. $x=X+h, y=Y * *$
B. $x=X-h, y+Y^{\prime}-k$
C. $z=a_{1} x+b_{1} y$
D. None of these
30. The differential equation $\left(a_{1} x+b_{1} y+c_{1}\right) d x+\left(a_{2} x+b_{2} y+c_{2}\right)=0$ is not exact, but if $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$, then the substitution ... will work to reduce it to homogeneous form?
A. $x=X+h, y=Y+k$
B. $x=X-h, y=Y-k$
C. $z=a_{1} x+b_{1} y$
D. None of these
31. The differential equation $\left(a_{1} x+b_{1} y+c_{1}\right) d x+\left(a_{2} x+b_{2} y+c_{2}\right)=0$ is not exact, but if $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}$, then the substitution ... will work to reduce it to homogeneous form?
A. $x=X+h, y=Y+k$
B. $x=X-h, y=Y-k$
C. $z=a_{1} x+b_{1} y$
D. None of these
32. $(2 x+y+1) d x+(4 x+2 y-1) d y=0$ has solution.
A. $-x-2 y-\ln |2 x+y-1|=c$
B. $-x-2 y=\ln |2 x+y-1|+c$
C. $x+2 y+\ln |2 x-y-1|=c$
D. $x-2 y=\ln |2 x+y+1|+c$
33. $\left(y^{2}+2 x y\right) d x+x^{2} d y=0$ has solution
A. $|y x|=c|y+x|$
B. $\left|y x^{3}\right|=c\left|y+3 x^{3}\right|$
C. $\left|y x^{3}\right|=c\left|y+3 x^{3}\right|$
D. $\left|y x^{3}\right|=c|y+3 x|$
34. $\left(x^{2}-3 y^{2}\right) d x+2 x y d y=0$ has solution
A. $\left|\sin \left(\frac{y}{x}\right)\right|=c x$
B. $\left|\sin \left(\frac{y}{x}\right)\right|^{3}=c x^{3}$
C. $\left|\sin \left(\frac{y}{x}\right)\right|^{3}=d x$
D. $\left\lvert\, \sin \left(\left.\frac{x}{y}| |=c x^{2} \right\rvert\,\right.\right.$
35. An expression $M(x, y) d x+N(x, y) d y$ is called a (an) ... if there exista a function $f(x, y)$ such that $d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y$.
A. Exact differential
B. Non exact differential
C. Homogeneous differential
D. Linear differential
36. The differential equation $M(x, y) d x+N(x, y) d y=0$ is an exact differential equation if and only if:
A. $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial y}$
B. $\frac{\partial M}{\partial x}=-\frac{\partial N}{\partial y}$
C. $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
D. $\frac{\partial M}{\partial y}=-\frac{\partial N}{\partial x}$
37. If the differential equation $M(x, y) d x+N(x, y) d y=0$ is not exact but $\mu(x, y) M(x, y) d x+$ $\mu(x, y) N(x, y) d y=0$ is exact, then $\mu(x, y)$ is called \ldots of the differential equation.
A. Differential factor
B. Integrating multiple
C. Integrating factor
D. Differential operator
38. $\frac{x d y-y d x}{x^{2}}=$
A. $d\left(\frac{x}{y}\right)$
B. $d\left(\frac{y}{x}\right)$
C. $d\left(\ln \frac{y}{x}\right)$
D. $d\left(\ln \frac{x}{y}\right)$
39. $\frac{y d x-x d y}{x^{2}+y^{2}}=$
A. $d\left(\frac{x}{y}\right)$
B. $d\left(\frac{y}{x}\right)$
C. $d\left(\ln \frac{y}{x}\right)$
D. $d\left(\arctan \frac{3}{x}\right)$
40. Solution of the differential equation $y d x+\left(x^{2} y-x\right) d y=0$ is:
A. $x y^{2}-2 y=c x$
B. $x y^{2}-2 y=c$
C. $x y^{2}-2 y^{2}=c x$
D. $x^{2} y-2 y=c x$
41. The integrating factor of the differential equation $d x+\left(\frac{x}{y}-\sin y\right) d y=0$ is:
A. x
B. y
C. $\frac{1}{x}$
D. $\frac{1}{y}$
42. A first order differential equation of the form $\frac{d y}{d x}+P(x) y=Q(x)$ is called:
A. Linear
B. Quadratic
C. Exact
D. Homogeneous
43. Integrating factor of the differential equation $\frac{d y}{d x}+P(x) y=Q(x)$ is:
A. $\exp \left[\int P(x) d x\right]$
B. $\exp \left[\int Q(x) d x\right]$
C. $-\exp \left[\int P(x) d x\right]$
D. $-\exp \left[\int Q(x) d x\right]$
44. Integrating factor of the differential equafion $(x-1)^{3} \frac{d y}{d x}+4(x-1)^{2} y=x+1$ is:
A. $(x-1)^{2}$
B. $(x-1)^{4}$
C. $x+1$
D. $\frac{1}{x+1}$
45. An equation of the form $\frac{d y}{d x}+P(x) y=Q(x) y^{n}$ is called:
A. Bernoully equation
B. Ricatti equation
C. Bessel equation
D. None of these
46. The two curves are said to be ... of their tangents at the point of intersection are perpendicular to each other.
A. Perpendicular
B. Orthogonal
C. Parallel
D. Both A and B
47. The orhogonal trajectories of the family of circles $x^{2}+y^{2}=c^{2}$ are:
A. $y=k+x$
B. $y=k x$
C. $x=k+y$
D. None of these
48. The orhogonal trajectories of the family of of curves $y=c e^{-\frac{x}{4}}$ are:
A. $y^{2}=8 x+k$
B. $y=8 x^{2}+k$
C. $y^{2}=8 x^{2}+k$
D. All of these
49. A family of curves whose family of orthogonal trajectories is thesame as the given family is called:
A. Self orthogonal
B. Orthogonal
C. Perpendicular
D. None of these
50. Which of the following is (are) self orthogonal?
A. $y^{2}=4 c x+4 c^{2}$
B. $\frac{x^{2}}{c^{2}}+\frac{y^{2}}{c^{2}-1}=1$
C. Both A and B
D. None of these

Akhtar Abbas

Lecturer in Mathematics University of Jhang 0332-6297570

Multiple Choice Questions For BA, BSc (Mathematics)

Infinite Series
An effort by: Akhtar Abbas

1. An infinite sequence in a non empty set X is a function:
A. $f: X \rightarrow \mathbb{N}$
B. $f: \mathbb{N} \rightarrow X$
C. Both A and B
D. None of these
2. A sequence $\left\{a_{n}\right\}$ is said to \ldots if given every $\epsilon>0$, there exists $n_{o} \in \mathbb{N}$ such that

$$
\left|a_{n}-l\right|<\epsilon, \quad \forall n \geq n_{o}
$$

A. Converge
B. Diverge
C. Converge absolutely
D. Converge conditionally
3. The sequence $\left\{\frac{1}{n}\right\}$:
A. Converges to 0
B. Diverges to 0
C. Converges to 1 N
D. Diverges to 1
4. For $\epsilon=0.01$, we have snáallest $n_{o}=\ldots$ such that $\left\{\frac{1}{n}\right\}$ converges to 0 .
A. 100
B. 101
C. 1000
D. 1001
5. A sequence $\left\{a_{n}\right\}$ of real numbers is said to be ... if there is a positive number M such that $\left|a_{n}\right| \geq M, \forall n$.
A. Convergent
B. Divergent
C. Bounded
D. Unbounded
6. A convergent sequence is:
A. Bounded
B. Not necessarily bounded
C. Unbounded
D. Can be unbounded
7. A bounded sequence is:
A. Convergent
B. Not necessarily convergent
C. Divergent
D. Always divergent
8. An unbounded sequence:
A. Is convergent
B. Is divergent
C. May converge
D. None of these
9. A divergent sequence:
A. Is bounded
B. Is unbounded
C. Is not necessarily bounded
D. Is not necessarily unbounded
10. If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the sequence $\left\{a_{n}\right\}$:
A. Converges
B. Diverges
C. Diverges absolutely
D. None of these
11. A sequence $\left\{a_{n}\right\}$ is said to be non-decreasing if, $\forall n$,
A. $a_{n} \leq a_{n+1}$
B. $a_{n} \geq a_{n+1}$
C. $a_{n}<a_{n+1}$
D. $a_{n}>a_{n+1}$
12. A bounded and monotonic sequence:
A. Converges
B. Diverges
C. May converge
D. May diverge
13. $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=$
A. 0
B. 1
C. -1
D. ∞
14. $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=$
A. 0
B. 1
C. -1
D. ∞
15. For $x>0, \lim _{n \rightarrow \infty} x^{\frac{1}{n}}=$
A. 0
B. 1
C. -1
D. ∞
16. For $|x|<1, \lim _{n \rightarrow \infty}, x$
A. 0
B. 1
C. -1
D. ∞
17. For all real $x, \lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=$
A. 0
B. 1
C. -1
D. ∞
18. The sequence $\left\{\tan ^{-1} n\right\}$:
A. Converges to $\frac{\pi}{2}$
B. Diverges
C. Is unbounded
D. Is bounded but diverges
19. The sum of the series

$$
\sum_{n=1}^{\infty} a_{n}=\frac{3}{10}+\frac{3}{100}+\frac{3}{1000}+\ldots
$$

is:
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{1}{9}$
D. ∞
20. The geometric series $\sum_{1}^{\infty} a r^{n}$ is convergent if:
A. $r<1$
B. $0<r<1$
C. $|r|<1$
D. $|r| \leq 1$
21. The series $\sum_{1}^{\infty} \frac{1}{n^{2}}$ is named as:
A. Geometric series
B. Harmonic series
C. Euler series
D. None of these
22. $\sum_{1}^{\infty} \frac{1}{n^{2}}$ is:
A. Bounded
B. Convergent
C. Monotonically increasing
D. All of these
23. The harmonic series $\sum_{1}^{\infty} \frac{1}{n}$ is:
A. Convergent
B. Divergent
C. Absolutely convergent
D. Conditionally convergent
24. If $\sum_{1}^{\infty} a_{n}$ converges, then
A. $\lim _{n \rightarrow \infty} a_{n}=0$
B. $\left\{a_{n}\right\}$ converges
C. $\left\{a_{n}\right\}$ diverges
D. Both A and B
25. If $\sum_{1}^{\infty} a_{n}$ diverges, then
A. $\lim _{n \rightarrow \infty} a_{n}=0$
B. $\left\{a_{n}\right\}$ converges
C. $\left\{a_{n}\right\}$ diverges
D. Both A and B
26. If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{1}^{\infty} a_{n}$
A. Converges
B. Diverges
C. Not necessarily converges
D. None of these
27. If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{1}^{\infty} a_{n}$
A. Converges
B. Diverges
C. Not necessarily converges
D. None of these
28. Sum of two convergent series:
A. Converges
B. Diverges
C. Not necessarily converges
D. None of these
29. If $\sum_{1}^{\infty} a_{n}$ converges and $\sum_{1}^{\infty} b_{n}$ diverges, then $\sum_{1}^{\infty}\left(a_{n}+b_{n}\right)$
A. Converges
B. Diverges
C. Not necessarily converges
D. Not necessarily diverges
30. $\sum_{1}^{\infty}\left(\frac{1}{n^{2}}+\frac{1}{n}\right)$ is
A. Convergent
B. Divergent
C. Harmonic series
D. None of these
31. If $\sum_{1}^{\infty} a_{n}$ and $\sum_{1}^{\infty} b_{n}$ diverges, then $\sum_{1}^{\infty}\left(a_{n}+b_{n}\right)$
A. Converges
B. Diverges
C. May converge
D. None of these
32. The sum of the series $\sum_{1}^{\infty} \frac{1}{n(n+1)}$ is:
A. 0
B. 1
C. ∞
D. The series diverges
33. Let $\sum_{1}^{\infty} a_{n}, \sum_{1}^{\infty} b_{n}$ be series of positive terms with $a_{n} \leq b_{n}, \forall n>n_{o}$ for some integer n_{o}. If $\sum_{1}^{\infty} b_{n}$ converges, then $\sum a_{n}$:
A. Converges
B. Diverges
C. Can converge
D. Can diverge
34. Let $\sum_{1}^{\infty} a_{n}, \sum_{1}^{\infty} b_{n}$ be series of positive terms with $a_{n} \leq b_{n}, \forall n>n_{o}$ for some integer n_{o}. If $\sum_{1}^{\infty} a_{n}$ diverges, then $\sum b_{n}$:
A. Converges
B. Diverges
C. Can converge
D. Can diverge
35. Let $\sum_{1}^{\infty} a_{n}, \sum_{1}^{\infty} b_{n}$ be series of positive terms with $a_{n} \leq b_{n}, \forall n>n_{o}$ for some integer n_{o}. If $\sum_{1}^{\infty} b_{n}$ diverges, then $\sum a_{n}$:
A. Converges
B. Diverges
C. Always diverge
D. None of these
36. Let $\sum_{1}^{\infty} a_{n}, \sum_{1}^{\infty} b_{n}$ be series of positive terms with $a_{n} \leq b_{n}, \forall n>n_{o}$ for some integer n_{o}. If $\sum_{1}^{\infty} a_{n}$ converges, then $\sum b_{n}$:
A. Converges
B. Diverges
C. Always converge
D. None of these
37. The series $\sum_{1}^{\infty} \frac{1}{1+n^{2}}$:
A. Converges
B. Diverges
C. Is unbounded
D. None of these
38. The series $\sum_{1}^{\infty} \frac{2}{1+n^{2}}$:
A. Converges
B. Diverges
C. Is bounded
D. Both A and C
39. The series $\sum_{1}^{\infty} \frac{n+16}{n^{2}+3}$:
A. Converges
B. Diverges
C. Is bounded
D. Both A and C
40. Let $\sum_{1}^{\infty} a_{n}$ and $\sum_{1}^{\infty} b_{n}$ be series of positive terms. If $\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}$ is a nonzero finite number and $\sum_{1}^{\infty} b_{n}$ diverges, then $\sum_{1}^{\infty} a_{n}$
A. Converges
B. Diverges
C. More information is needed
D. None of these
41. The series $\sum_{1}^{\infty} \frac{2 n+1}{3 n^{2}+2}$
A. Converges
B. Diverges
C. Converges but unbounded
D. None of these
42. Let $\sum_{1}^{\infty} a_{n}$ be a positive term series. If f is continuous and non increasing function on $[1, \infty)$ such that $f(n)=a_{n}$ for all positive integers n, then $\sum_{1}^{\infty} a_{n}$ and $\int_{1}^{\infty} f(x) d x$ behave similarly. This is called:
A. Limit Comparison Test
B. Root Test
C. Ratio Test
D. Integral Test
43. The p-series (or Hyperharmoniô series) $\frac{1}{n^{p}}$ converges if:
A. $p>1$
B. $p \geq 1$
C. $p<1$
D. $p \leq 1$
44. The series $\sum_{1}^{\infty} k^{-\frac{1}{6}}$:
A. Converges
B. Diverges
C. Diverges and bounded
D. None of these

Available at www.MathCity.org

45. Let $\sum_{1}^{\infty} a_{n}$ be a series of positive terms and suppose that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=L$. If $0 \leq L<1$, then the series $\sum_{1}^{\infty} a_{n}$
A. Converges
B. Diverges
C. Test fails
D. None of these
46. Let \sum_{1}^{∞} be a series of positive terms and suppose that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=L$. If $L>1$, then the series $\sum_{1}^{\infty} a_{n}$
A. Converges
B. Diverges
C. Test fails
D. None of these
47. Let \sum_{1}^{∞} be a series of positive terms and suppose that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=L$. If $L=1$, then the series $\sum_{1}^{\infty} a_{n}$
A. Converges
B. Diverges
C. Test fails
D. None of these
48. The series $\sum_{1}^{\infty} \frac{n!}{n^{2}}$
A. Converges
B. Diverges
C. The behantion of this series can not be determined by Ratio Test
D. None ofthese
49. The series $\sum_{1}^{\infty} \frac{n^{2}}{n!}$
A. Converges
B. Diverges
C. The behavior of this series can not be determined by Ratio Test
D. None of these
50. Let \sum_{1}^{∞} be a series of positive terms and suppose that $\lim _{n \rightarrow \infty}\left(a_{n}\right)^{\frac{1}{n}}=L$. If $0 \leq L<1$, then the series $\sum_{1}^{\infty} a_{n}$
A. Converges
B. Diverges
C. Test fails
D. None of these
51. Let \sum_{1}^{∞} be a series of positive terms and suppose that $\lim _{n \rightarrow \infty}\left(a_{n}\right)^{\frac{1}{n}}=L$. If $L>1$, then the series $\sum_{1}^{\infty} a_{n}$
A. Converges
B. Diverges
C. Test fails
D. None of these
52. Let \sum_{1}^{∞} be a series of positive terms and suppose that $\lim _{n \rightarrow \infty}\left(a_{n}\right)^{\frac{1}{n}}=L$. If $L=1$, then the series $\sum_{1}^{\infty} a_{n}$
A. Converges
B. Diverges
C. Test fails
D. None of these
53. Which of the following series ditverges?
A. $\sum_{1}^{\infty}\left(\frac{n}{2 n+1}\right)^{n}$
B. $\sum_{1}^{\infty}(n)^{n}$
C. $\sum_{1}^{\infty} \frac{n^{3}}{2^{n}}$
D. $\sum_{1}^{\infty} \frac{1}{n^{n}}$
54. An infinite series having both positive and negative terms is called:
A. Alternating series
B. Convergent series
C. Mixed series
D. Divergent series
55. If $a_{n}>0$ for all n, then the series $\sum_{1}^{\infty}(-1)^{n} a_{n}$ is called:
A. Alternating series
B. Harmonic series
C. Telescopic sum
D. Euler's series
56. The alternating series $\sum_{1}^{\infty} a_{n}$ converges if:
A. $\left\{a_{n}\right\}$ is a non increasing sequence
B. $\lim _{n \rightarrow \infty} a_{n}=0$
C. Both A and B must be satisfied
D. None of these
57. The alternating series $\sum_{1}^{\infty}(-1)^{n+1} \frac{1}{n}$ is:
A. Convergent
B. Divergent
C. Oscillating
D. None of these
58. The alternating series $\sum_{1}^{\infty}(-1)^{n} \frac{n+3}{2 n-3}$ is:
A. Convergent
B. Divergent
C. Oscillating
D. None of these
59. A series $\sum_{1}^{\infty} a_{n}$ is sadid to converge ... if the series $\sum_{1}^{\infty}\left|a_{n}\right|$ converges.
A. Absolutely
B. Conditionally
C. Only
D. None of these
60. If $\sum_{1}^{\infty}\left|a_{n}\right|$ converges, then
A. $\sum_{1}^{\infty} a_{n}$ also converge
B. $\sum_{1}^{\infty} a_{n}$ not necessarily converge
C. $\sum_{1}^{\infty} a_{n}$ diverge
D. $\sum_{1}^{\infty} a_{n}$ can diverge
61. If $\sum_{1}^{\infty} a_{n}$ converges, then $\sum_{1}^{\infty}\left|a_{n}\right|$:
A. Converge
B. Diverge
C. Not necessarily converge
D. None of these
62. A series $\sum_{1}^{\infty} a_{n}$ is said to converge conditionally if:
A. $\sum_{1}^{\infty} a_{n}$ and $\sum_{1}^{\infty}\left|a_{n}\right|$ both converge
B. $\sum_{1}^{\infty} a_{n}$ and $\sum_{1}^{\infty}\left|a_{n}\right|$ both diverge
C. $\sum_{1}^{\infty} a_{n}$ converges but $\sum_{1}^{\infty}\left|a_{n}\right|$ diverges
D. $\sum_{1}^{\infty}\left|a_{n}\right|$ converges but $\sum_{1}^{\infty} a_{n}$ diverges
63. If a series converges absolutely then series itself
A. Converges
B. Diverges
C. Can converge
D. Can diverge
64. An infinite series of the form $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ is called a \ldots series in $x-a$, where a is a constant, called center of this series.
A. Taylor
B. Power
C. Alternating
D. Maclaurin
65. The values of x for which the power series $\sum_{1}^{\infty} \frac{x^{n}}{(2 n)!}$ converges are
A. $(-1,1)$
B. \mathbb{R}
C. $\left(-\frac{3}{2}, 1\right)$
D. None of these
66. If a power series $\sum_{1}^{\infty} c_{n} x^{n}$ converges for $x=x_{1}$, then it converges absolutely for all x such that
A. $|x|<\left|x_{1}\right|$
B. $|x| \leq\left|x_{1}\right|$
C. $|x|>\left|x_{1}\right|$
D. $|x| \geq\left|x_{1}\right|$
67. The set I of all numbers x for which a power series $\sum_{1}^{\infty} c_{n}(x-a)^{n}$ converges, is called:
A. Radius of convergence
B. Interval of convergence
C. Diameter of convergence
D. All of these
68. If $(a-R, a+R)$ is the interval of convergence of a power series $\sum_{1}^{\infty} c_{n}(x-a)^{n}$, then R is called
A. Diameter of convergence
B. Radius of convergence
C. Length of convergence
D. None of these

Radius of Convergence of a Power Series
Let $\sum_{1}^{\infty} c_{n}(x-a)^{n}$ be a power series with radius of convergence R. Suppose that $\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|=L$, where $L_{\text {p }}$ iscithet a nonzero number or $+\infty$
(i). If L is a positive real number, then $R=$
(ii). If $L=0$, then $R=+\infty$.
(iii). If $L=+\infty$, then $R=0$
69. The radius of convergence of power Series $\sum \frac{x^{n}}{n}$ is:
A. 0
B. 1
C. 5
D. ∞
70. The radius of convergence of power series $\sum_{1}^{\infty} \frac{(x+3)^{n}}{3^{n}}$ is:
A. 0
B. 1
C. 2
D. 3
71. The radius of convergence of power series $\sum_{1}^{\infty}(-1)^{n} \frac{(x-17)^{n}}{n!}$ is:
A. 0
B. 1
C. 4
D. ∞

Available at www.MathCity.org

72. The radius of convergence of power series $\sum_{1}^{\infty}(n x)^{n}$ is:
A. 0
B. 1
C. 2
D. ∞

Differentiation and Integration of a Power Series

1. Suppose that $f(x)=\sum_{0}^{\infty} c_{n}(x-a)^{n}$,
where the power series has radius of convergence R. Then
(i). For $|x-a|<R, f^{\prime}(x)=\sum_{1}^{\infty} n c_{n}(x-a)^{n-1}$,
(ii). For $|x-a|<R, \int f(x) d x=\sum_{0}^{\infty} \frac{c_{n}}{n+1}(x-a)^{k+1}+C$.
2. The three power series $\sum_{0}^{\infty} c_{n}(x-a)^{n}, \sum_{1}^{\infty} n c_{n}(x-a)^{n-1}$, $\sum_{0}^{\infty} \frac{c_{n}}{n+1}(x-a)^{k+1}+C$ all have the same radius of convergence.
3. The power series representation of $\frac{1}{1-x}$ is:
A. $1+x-x^{2}+\ldots$
B. $1-x+x^{2}-\ldots$
C. $1+x+x^{2}+\ldots$
D. $1+x+\frac{x^{2}}{2!}+\ldots$
4. The power series representation of e^{x} is:
A. $1+x-x^{2}+\ldots$
B. $1-x+x^{2}-\ldots$
C. $1+x+x^{2}+\ldots$
D. $1+x+\frac{x^{2}}{2!}+\ldots$
5. For $|x| \leq 1$, the series $\tan ^{-1} x=x \frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$ is called:
A. Maclaurin Series
B. Taylor Series
C. Gregory's Series
D. All of these
6. $\int_{0}^{1} e^{x^{2}} d x$ equals:
A. $e-1$
B. $1+\frac{1}{3}+\frac{1}{5.2!}+\frac{1}{7.3!}+\ldots$
C. $1-\frac{1}{3}+\frac{1}{5.2!}-\frac{1}{7.3!}+\ldots$
D. Can not be evaluated

Akhtar Abbas
Lecturer in Mathematics
University of Jhang
0332-6297570

Summary of Convergence and Divergence Tests for Series

Test	Series	Convergence or Divergence	Comments
Divergence	$\sum_{n=1}^{\infty} a_{n}$	Diverges if $\lim _{n \rightarrow \infty} a_{n} \neq 0$	Inconclusive if $\lim _{n \rightarrow \infty} a_{n}=0$
Geometric series	$\sum_{n=0}^{\infty} a r^{n}$	(1) Converges to $S=\frac{a}{1-r}$ if $\|r\|<1$; (2) Diverges if $\|r\| \geqslant 1$	Useful for comparison tests if the $n^{\text {th }}$-term a_{n} of a series is similar to $a r^{n}$.
p-series	$\sum_{n=1}^{\infty} \frac{1}{n^{p}}$	(1) Converges if $p>1$; (2) Diverges if $p \leqslant 1$	Useful for comparison tests if the $n^{\text {th }}$-term a_{n} of a series is similar to $\frac{1}{n^{p}}$.
Integral	$\begin{aligned} & \sum_{n=1}^{\infty} a_{n} \\ & a_{n}=f(n) \end{aligned}$	(1) Converges if $\int_{1}^{\infty} f(x) d x$ converges (2) Diverges if $\int_{1}^{\infty} f(x) d x$ diverges	The function f obtained from $a_{n}=f(n)$ must be continuous, positive, decreasing, and readily integrable.
Comparison	$\begin{aligned} & \sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n} \\ & a_{n}>0, b_{n}>0 \end{aligned}$	(1) If $\sum_{n=1}^{\infty} b_{n}$ converges and $a_{n} \leqslant b_{n}$ for every n, then $\sum_{n=1}^{\infty} a_{n}$ converges; (2) If $\sum_{n=1}^{\infty} b_{n}$ diverges and $a_{n} \geqslant b_{n}$ for eteryon, then $\sum_{n}^{\infty} a_{n}$ diverges; (3) If $\lim _{n \rightarrow \infty} \frac{a_{n}}{\partial_{n}}>0$ (not ∞), then both series converge or both diverge.	The comparison series $\sum_{n=1}^{\infty} b_{n}$ is often a geometric series or a p-series. To find b_{n} in (3), consider only the terms of a_{n} that have the greatest effect on the magnitude.
Ratio	$\sum_{n=1}^{\infty} a_{n}$	If $\lim _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\|=L$ (or ∞), the series (1) converges (absolutely) if $L<1$; (2) diverges if $L>1$ (or ∞)	Inconclusive if $L=1$. Useful if a_{n} involves factorials or $n^{\text {th }}$ powers. If $a_{n}>0$ for every n, the absolute value sign may be disregarded.
Root	$\sum_{n=1}^{\infty} a_{n}$	If $\lim _{n \rightarrow \infty} \sqrt[n]{\left\|a_{n}\right\|}=L$ (or ∞), the series (1) converges (absolutely) if $L<1$; (2) diverges if $L>1$ (or ∞)	Inconclusive if $L=1$. Useful if a_{n} involves $n^{\text {th }}$ powers. If $a_{n}>0$ for every n, the absolute value sign may be disregarded.
Alternating Series	$\begin{aligned} & \sum_{n=1}^{\infty}(-1)^{n} a_{n} \\ & a_{n}>0 \end{aligned}$	Converges if $a_{k} \geqslant a_{k+1}$ for every k and $\lim _{n \rightarrow \infty} a_{n}=0$.	Applicable only to an alternating series.

