METHODS OF MATHEMATICAL
PHYSICS (MMP)

MUHAMMAD USMAN HAMID

The course provides a foundation to solve PDE’s, ODE’s,
IE’s with special emphasis on wave, heat and Laplace
equations, formulation and some theory of these equations
are also intended.

RECOMMENDED BOOK:

Problems and Methods in Physics and Applied Mathematics
by Khalid Latif Mir

MMP by Lal Din Baig
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INTRODUCTION TO DIFFERENTIAL EQUATION

DIFFERENCE EQUATION:

An equation involving differences (derivatives) is called difference equation.

DIFFERENTIAL EQUATION
An equation that relate a function to its derivative in such a way that the
function itself can be determined.
OR an equation containing the derivatives of one dependent variable with
respect to one or more independent variables is said to be a differential
equation. It has two types:

I.  Ordinary differential equation (ODE)

Ii.  Partial differential equation (PDE)

ORDINARY DIFFERENTIAL EQUATION

A differential equation that contains only one independent variable is called
ODE.

EXAMPLES:

y.+txy =x%, y'(x)—y'(x)+6y=0 Andingeneral y= f(x)

PARTIAL DIFFERENTIAL EQUATION
A differential equation that contains, in addition to the dependent variable
and the independent variables, one or more partial derivatives of the

dependent variable is called a partial differential equation.
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In general, it may be written in the form
f (x,y,...,u,ux,uy,...,uxx,uxy,...) =0
involving several independent variables X,y, an unknown function ‘u’ of these
variables, and the partial derivatives u,, uy, ..., Uyy, Uyy, ..., O the function.

Subscripts on dependent variables denote differentiations, e.g.,

du

_ Ou d _
u, =5 and u, ==

P Uy — Uy, = 0, are partial differential equations

In general u = u (x,y)

HOMOGENEOUS DIFFERENTIAL EQUATION

An equation which always posseses that trivial solution i.e. u = 0 is called
Homogeneous DE.

Or DE for which u = 0 is a solution is called a Homogeneous DE.
EXAMPLES: wuu,y, +u,, =0, u, +u,, =0,

Uy, + 2yu,, +3xu,, =0, (u,)* + (u,)*=0

NON - HOMOGENEOUS DIFFERENTIAL EQUATION

An equation which always posseses that non - trivial solutioni.e. u # 0 is
called non -Homogeneous DE.

EXAMPLES: u,, +u,, = f(x,y) , uu,, +2yu,, +3xu,, = 4sinx,
(u)? +w)* =1,

THE ORDER OF A PARTIAL DIFFERENTIAL EQUATION

The order of a partial differential equation is the order of the highest ordered
partial derivative appearing in the equation.

For example uy +2Xuyy, + Uy, = €’ is a second-order partial differential
equation,

And uyy + Xuyy +8u = 7y is a third-order partial differential equation.
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THE DEGREE OF A PARTIAL DIFFERENTIAL EQUATION
The degree of PDE is the highest power of variable appear in PDE. For

)2 is of degree

example uy +u, = u + Xy is of degree one. And (U ) = (1+uy
two.

LINEAR PARTIAL DIFFERENTIAL EQUATION

A differential equation is said to be linear if it is linear in the unknown
function (dependent variable) and all its derivatives with coefficients
depending only on the independent variables.

For example, the equation

YUxx +2XyUyy + U = 1 and u,, + u,, = u are linear differential equations

NON LINEAR PARTIAL DIFFERENTIAL EQUATION
A differential equation is said to be nonlinear if the unknown function
(dependent variable) and all its derivatives with coefficients depending only

on the independent variables do not occur linearly.

— dy ' )
For example, uy +uuy =1, —>+ Jy=x

INITIAL CONDITIONS:

If all conditions are given at the same value of the independent variable, then
they are called initial conditions.

For example for a differential equation of order one

alx,y)u, = f(x,y) > u, = g(x,y)

Then u, = g(x,y) with u(a) = uy, u'(a) = u, then x = a is an initial

condition.
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INITIAL VALUE PROBLEM (1VP):
A DE along with initial conditions defines an IVP.
For example, the partial differential equation (PDE)

U— Uy =0,0<x<I,t>0, with.u(x,0)=sinx,0<x<I,t>0, islIVP

BOUNDRY CONDITIONS:

If the conditions are given at the end points of the intervals of definition (i.e.
for different value of the independent variables) are at the boundary of the
domain of definition then they are called boundary conditions.

For example u" + 2u’ + 3u = 0 with u(0) = 0,u(2) = 1isa BVP

BOUNDRY VALUE PROBLEM (BVP):

A DE along with boundary conditions defines an I\VP.

For example, the partial differential equation (PDE)

Ut — Uyy = 0, O<x<I|,t>0,

with  B.C. u@1t=0,t>0, and B.C. u(l,t)=0,t>0,

PRINCIPLE OF SUPERPOSITION:

According to this principle, if we know ‘n’ solutions “uq,u,,us, ........u,;,” we
can construct other as linear combination.

Statement: if uq, uy, us, ... ..... u, are solutions of a linear, homogeneous PDE
then W = cquq + cau, + -+ + c,u, where ¢4, ¢y, ....., ¢, are constant is
also a solution of the equation.

EXISTENCE THEOREM:

An ODE of order ‘n’ i.e.

an(OY" + ap_ 1 (Y"1 + -+ ay ()Y + ap(x)y = f(x)

Has exactly ‘n’ liear indedpedently solutions.
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THEOREM:
Let ay(x),a;(x), ... ... , @, (x) and g(x) be continuous on an interval I: [a, b]
and let a,,(x) # 0 for every ‘x’ in this interval. If x = x, is any point in this
interval then a unique solution y(x) of IVP
a,y* + a,_1y* 1 + -+ a;y! + ayy = g(x) with initial conditions exists on
this interval.
THEOREM:
Let y1,¥2,:0e00eees Y be ‘0’ solutions of the linear (Homogeneous or Non
Homogeneous) ODE on an interval “I” then the set of solutions is linearly
independent on “I” if and only if W(y4,¥3, ... ....., Yn)(x) # 0 for every ‘x’ in
the interval. Where W is called Wronskian function.
NOTE:

. WW1,¥Y2, oo, Yn)(x) # 0 is a Wronskian of ‘n’ functions of

independent varaiable ‘x’

ii.  Wronskian of two functions y,(x) = y; and y,(x) = y, can be defined

as W(yy,y2)(x) = ;11 ;,'22
ii.  Wronskian of three functions y;(x) = y4, y2(x) = y, and y3(x) = y;
Y1 Y2 Y3
can be definedas W(y, y.,¥3)(x) = |Y1 Y2 V'3
y'e ¥ ¥'s

Iv.  Wronskian of ‘n’ functions y;(x) = y1, y2(x) = y,, y3(x) = y;3

............... y.(x) =y, can be defined as

Y1 Y2 ' ¥n
¥ Y2 o Y
WLy oY )@ =Yy ¥'2 - ¥
)’1’.1_1 y21.1—1 . y n-1
n
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SOLUTION OF DIFFERENTIAL EQUATION

(DIFFERENTIAL FUNCTION):

A function in ‘x’ (for an ODE) or functions of more than one variables (for
PDE), such that when it is substituted in the given DE, it is satisfied i.e. the
DE takes the form 0 = 0 for all values of the independent variable(s) in the

specified domain. It is the relation between the variables not involving

differential coefficents.

FUNDAMENTAL SET OF SOLUTIONS:
The set of linearly independent solutions y; ;i =1,2,3 ........of the
homogeneous or non - homogeneous DE’s is called Fundamental set of

solutiosn on the interval ‘I’

EIGENVALUE PROBLEMS:
If an IVP or BVP contains a parameter A in the DE and non — trivial
solution(s) corresponding to certain values of A can be found then the problem

is called Eigenvalue Problem, and the corresponding values of 4 are called

Eigenvalues of the problem.
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EXAMPLE: (U0S,2018 -1, I1)

2
Solve the problem ZTZ + Au = 0 where 4 is parameter and the boundry
conditions are u(0) = 0 and u(a) =0
Solution: if u = 0 then A has trivial solutions.

Now for non — trivial solutions we will discuss three cases;
CASEIl: when42 =0

—+/1u O:—+(0)u 0=>——0=>u(x)—c1x+c2 .......... (>i)
Now using BC’s u(0)=0=>c¢, =0 andu(a)=0=¢, =0
(i) = u(x) = 0 which is trivial solution. So 4 = 0 is not an eigenvalue.

CASE II: when A < 0 then we may take A = —m?

Then—+Au 0 =>—+( mHu=0=>D?*-mHu=0=>D=+m
Then general solution becomes u(x) = c;e™* + c,e ™™ .......... (ii)

Now using BC’s u(0) =0 andu(a) =0=>c¢;=0,c, =0

(ii) = u(x) = 0 which is trivial solution. So 4 < 0 is not an eigenvalue.

CASE I11: when 4 > 0 then we may take A = m?

Then—+lu 0 =>—+ mMHu=0= D*+m>)u=0=>D = +im
Then general solution becomes u(x) = ¢;Cosmx + c,Sinmx .......... (ii)
Now using BC’s u(0)=0=>¢; =0

andu(a):O=>c2iOthenSinm(a)=0=>m=%Emn

2.2
— are the eigenvalues for the non — trivial solution

then 1, =m,? =

u,(x) = ¢,Sin/2,x corresponding to 4,,
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GENERAL FORMS OF FIRST-ORDER LINEAR EQUATIONS IN TWO
VARIABLES

For the general first-order linear partial differential equation

aX,y)uxtb (X, y)uy+c(x,y)u=d(x,y)

SECOND-ORDER EQUATIONS IN ONE INDEPENDENT VARIABLE

The general linear second-order partial differential equation in one dependent
variable u may be written as

2ij=1Aijly; + Xisa Bity, + Fu =G

in which we assume A;; = A;i and Ajj, B, F, and G are real-valued functions

defined in some region of the space (X1,Xz, . . . ,Xn)

SECOND-ORDER EQUATIONS IN TWO INDEPENDENT VARIABLES
Second-order equations in the dependent variable u and the independent
variables x, y can be put in the form Au,, + Bu,y + Cuyy + Duy + Eu, + Fu=G
where the coefficients are functions of ‘x’ and ‘y’ and do not vanish
simultaneously. We shall assume that the function ‘u’ and the coefficients are

twice continuously differentiable in some domain in R

CLASSIFICATION OF SECOND-ORDER LINEAR EQUATIONS

The classification of partial differential equations is suggested by the
classification of the quadratic equation of conic sections in analytic geometry.
The equation  Ax®+ Bxy + Cy* + Dx + Ey + F = 0, represents

hyperbola if B?—4AC is positive i.e. B>—4AC >0

parabola if B>—4AC is zero i.e. B>—4AC =0

or ellipse if B> —4AC is negative  i.e. B°—=4AC <0
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10

for example:

(i)  The heat equation %ut = u,, Is parabolic.
(i)  The wave equation Cizutt = u,, IS hyperbolic.

(iii) The potential (Laplace) equation VZu = u,, + u,, = 0 is elliptic.
yy

METHOD OF SEPARATION OF VARIABLES
During the last two centuries several methods have been developed for solving
partial differential equations. Among these, a technique known as the method
of separation of variables is perhaps the oldest systematic method for solving
partial differential equations.
= |ts essential feature is to transform the partial differential equations by
a set of ordinary differential equations.
= The required solution of the partial differential equations is then
exposed as a product u (x,y) =X (X) Y (y) #0
orasasumu (x,y) =X (X)+Y (y)

where X (x) and Y (y) are functions of x and y, respectively.

IMPORTANCE: Many significant problems in partial differential equations
can be solved by the method of separation of variables. This method has been
considerably refined and generalized over the last two centuries and is one of
the classical techniques of applied mathematics, mathematical physics and
engineering science. Usually, the first-order partial differential equation can
be solved by separation of variables without the need for Fourier series.This

method is used to convert PDE into ODE.
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Example:

Solve by method of separation of variables

a2 d .

ﬁ—a—r=0:)uxx—ut=0, where ‘x’isrealanda < x<b, t>0
. . 92 ]

Solution: giventhat ———= =0

let u=u (X, )=XX)T(t) = XT

> Zan-2@D=0> X' OT@® - X®T @) = 0

xX'r XT'

Dividing XT on both sides = - = =0
XT XT
i X// _ T_/ _ 0 i X// _ T_/
X T X T

Since L.H.S of this equation is a function of x only and the R.H.S is a function

of ‘t’ only
XII TI XII TI . .
> =7 = A= L A and FIT A where 4 is separation constant.

Consequently, gives two ordinary differential equations

!

e — T — T, — —
X"()-3X(x)=0and — =1=[—dt=A[dt=>T=ae"
These equations have solutions given, respectively, by
X(x)= Ae"™ + BeV™ and  T(¢) = ae™
where A and B are arbitrary integrating constants.

Consequently, the general solution is given by

u(xt) = X (N)T(t) = [Aeﬁx + Be—ﬁx] [aett] = [a A4eV7* 4 qBe—VAx ] ot

u(x,t) = [Ceﬁx + De VA ] et where C = aA,D = aB
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Example: (UoS,2015 - 11, 2018 — 1)
Solve by method of separation of variables

*u 1 d%u

—_ 1 —_ [
oz 2 —O:uxx—c—zutt—o, where ‘x’isrealanda < x<b, t>0

L %u  10%°u _
Solution: given that Z 2 T 0
let u=u (X, )=XX)T(t) = XT
S XT) - L2 XT) =02 X" () T(t) -1 X(x) T () =0
P S37 (XT) = () T(t) - XO) T (1) =
Dividing XT on both sides = ~ T—iz X —o
XT ¢ XT
XII 1 TII XII 1 TII
= —_—_—— = O = = —_— —
X ¢ T X ¢ T

Since L.H.S of this equation is a function of x only and the R.H.S is a function

of ‘t’ only
X// 1 T// X// 1 T// . ]
= === =1> = Aand - — = A where A is separation constant.
X 2T X 2T

Consequently, gives two ordinary differential equations
X"(x) — AX(x) = 0 and T" (t) — Ac*T(t) = 0

These equations have solutions given, respectively, by

X (x) = AeV*™* 4+ Be™V* and T(t) = CeVAct 4 pe~Vict
where A, B,C and D are arbitrary integrating constants.

Consequently, the general solution is given by

u(xt) = X ()T(t) = [Aeﬁx + Be‘ﬁx] [ CeVact 4 De“ﬁ‘-‘t]
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Example: (UoS,2017 — 11, 2018 — 11,2019 -1) Solve by method of

i . ?u  9*u 1 0%u 1 _
separation of variables iz + a2 @ 0 = Uy + Uy — = U = 0, where

x€labl,y€|cd],t=0

2
Solution: giventhat ——+-———=-5 =0

let u=u (X, y,t)=X(X)Y(y) T(t) = XYT

> 2 (XYT) + ooz (XYT) = 520 (XYT) = 0 =X YT + XY T— 5 XY T =0
Dividing XYT on both sides = X)’(’YYTT+ X;,TT—C%X;YTT” =0

R LR s

=>X; + Y7”=C%T?”=A=>X; + YTH = Aand ClZTT”=A

Now solving for clzTT = AwegetT (t) = c eV?t + ¢ e Vact

. XII YII XII YII
And solving + —=41= =A——
X Y X Y
XII YII .
> =P and = 1 — ~ =P wher p is another constant.

Consequently, gives two ordinary differential equations

X'"(x) —pX(x) = 0and Y'(y)+ (£q®)Y(y) = 0 where+g> =1—1p
These equations have solutions given, respectively, by

X(x) = cgeﬁx + c4e‘\/5x

and Y(y) = cge™ + cqe™1 for (+q)

or Y(y) = czCosqy + c¢Sinqy for (—q)

Consequently, the general solution is given by

uxyt)=X@YOr@®) =

[c3 eVPx 4 c4e‘\/5"] [c5e%9 + ce™ ] [cle‘/'_“t + ¢y e Vict ]
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Example:
Solve by method of separation of variables 3712‘ + % =0
= Uy + Uy, = 0, Where x € [a, b,y € [c,d]
L %u | u
Solution: given that P 2 - 0
let u=u(x,y)=XXY(y) = XY

> 2 XY) +-5 (XY) = 02 X(X) Y(y) + X() Y'(y) =0

y2
Dividing XY on both sides
XII Y XY” XII YII XII yll
+ =0= +—=—=0= =— —
XY XY X Y X Y

Since the L.H.S of this equation is a function of x only and the R.H.Sis a
function of t only

XII YII XII Y” . 3
=" =Adand — -3 Ki A where 4 is separation constant.

Consequently, gives two ordinary differential equations
X'(x) —2X(x) = 0and Y'(y)+ A¥Y(y) = 0

These equations have solutions given, respectively, by

X(x)= Ae"™ +BeV™ and  Y(y) = CSinvAy + DCosVay
where A, B,C and D are arbitrary integrating constants.

Consequently, the general solution is given by

ulxy =XxYWy) = [Aeﬁx + Be‘ﬁx] [CSin\/iy + DCosx/iy]
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STURM LIOUVILLE SYSTEM (SL — SYSTEM)

The functions discussed in this chapter arise as solution of second order DE’s
which appear in special, rather than in general physical problems. So, these
functions are usually known as “The Special Functions of Mathematical
Physics”
SELF ADJOINT OPERATOR:
An operatior ‘A’ defined over a linear space of functions is called Self Adjoint
if (u,Av) = (v, Au) which is equivalent to
f: u(x)[Av(x)]dx = f:[Au(x)]v(x)dx where the functions ‘u’ and ‘v’ are
supposed to be real. In case of complex functions a slight modification is
necessary.
EXAMPLES (JUST READ):

= Sturm liouville Differential operator is Self Adjoint.

= The Hormonic oscillator equation is Self Adjoint.

= Legendre’s equation is Self Adjoint.

= Laguerre’s equation and Hermite equation are not Self adjoint but

could be made using few conditions.
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STURM LIOUVILLE EQUATION (SL - EQUATION):

The SL equation is named after the German Mathematician John Sturm
(1803 — 1855) and the French Mathematician Joseph Liouville (1809 - 1887),
who did pioneering work on this DE and related problems.

Defination: The Second order Ordinary Linear Homogeneous DE of the form
%{p(x) j—:} +gx)u+Ar(x)u=20

S>pu’ +p'(0)u' +gx)u+Ar(x)u=20 is called a Sturm Liouville
equation OR briefly an SL equation. If p(x),p'(x),q(x),r(x) are real and

continuous over an interval [a,b].

STURM LIOUVILLE (SL) DIFFERENTIAL OPERATOR:
A self adjoint operator of the form L = %{p(x) %} + q(x) iscalled SL

differential operator. This operator is a second order linear differential
operator because it operate on everything to the right, not just by ordinary

multiplication but also by the operation of differentiation.

REMARK (JUST READ):
= SL differential operator L=%{p(x)%}+q(x) is called normal

operator if p(x) # 0 in the range x € (—oo, )
= |In terms of SL differential operator SL equation can also be written as
Lw+Ar(x)u=20
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LINEAR SECOND ORDER DE’s AND SL EQUATION

There are may second order linear ODE’s which appear in physical and
engineering problems. Some of these are as follows;
EQUATION OF SIMPLE HARMONIC MOTION:

2
An equation of the form % + u?x = 0 = x,, + u%x = 0 with condition on x(t)

of the form x(t = 0) = x,, xX(t=0)=0
In this equation p(x) =1,q(x) =0, r(x) =1

LEGENDRE’S DIFFERENTIAL EQUATION:

An equation of the form

i{(1 — xz)d—u} +nn+Du=0=>1-x>u" —2xu'+n(n+1Du=20

dx dx

with condition on u(x) of the form u(+1) are finite. In this equation ‘x = +1°

are singular points.

In this equation p(x) = (1 — x2),q(x) =0, r(x) = 1

BESSELE’S DIFFERENTIAL EQUATION:

An equation of the form

d*u du
X!+ x——+ (K2x* —vHu =0 = x*u" +xu’ + k*x*u — v’u =0 where

the solution of this DE are called Bessele’s Functions.

In this equation p(x) = x? ,q(x) = k*x* , r(x) = -1

THE HERMITE EQUATION:

An equation of the form

2
d—Z—Zxﬂ+/1u=0=>u”—2xu’+Au=0;0Sx<oo
dx dx

In thisequationp(x) =1 ,q(x) =0 , r(x)=1
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THE LAGUERRE EQUATION:

An equation of the form
d*u du " ’
xm+(1—x)a+lu=0=>xu +A-x)u'+Au=0;x>0

with x = 0 a singular point. In this equationp(x) = x ,q(x) =0 , r(x) =1
THE CHEBYSHEV EQUATION:

An equation of the form

(1—x2)°ﬂ7u—x‘;—:+a2u= 0=>(1—x>u"—xu'+a’u=0; x>0 with
—1<x<liexe(-1L,Dwithpx)=1-x2) ,qx)=0 ,r(x)=1
AIRY’S EQUATION:

An equation of the form Z%‘+xu =0=>u"+xu=0;x€eR

In this equationp(x) =1 ,q(x) =x , r(x) =0

POSSIBLE QUESTION: Describe about introduction to SL System of
equations.

SINGULAR POINTS: For SL equation %{p(x) Z—:} +qg@u+Ar(x)u=0

the points at which p(x) and r(x) vanishes (i.e. become zero) over any

interval [a,b] are called singular points.
REGULAR POINTS: For SL equation %{p(x) %} +qu+Ar(xu=0

the points at which p(x) and r(x) do not vanishes (i.e. become zero) over any

interval [a,b] are called regular points.

MUHAMMAD USMAN HAMID (0323 - 6032785)



19

WEIGHT FUNCTION: In SL equation %{p(x) %} +q)u+Ar(xu=0
the continuous, non negative, real function (x) on any interval ‘I’ is called
Weight Function.

SINGULAR SL EQUATION:

The SL equation %{p(x) Z—:} +g(x)u+ Ar(x)u =0 is called Singular SL

equation in the interval [a,b] if the points p(x) and r(x) vanishes
(i.e. become zero) at any point the interval [a,b].
EXAMPLES:

= Legendre’s DE %{(1 — x?) Z—Z} +n(n + 1)u = 0 with

p(x) = (1 —x2),q(x) =0, r(x) = 1issingular at x = +1.

= Bessele’s DE is singular after few arrangements. At x = 0

SINGULAR SL SYSTEM: A singular SL equation together with suitable
linear homogeneous conditions on u(x) leads to a singular SL system.
REGULAR SL EQUATION:
The SL equation %{p(x) Z—:} +qg(x)u+Ar(x)u=0 is called regular SL
equation in the interval [a,b] if the points p(x) and r(x) do not vanishes (i.e.
become zero) at any point the interval [a,b].
EXAMPLES:
» u'(xX)+Au(x)=0 with p(x)=1>0,q(x)=0,r(x)=1>0 is
regular SL equation in every interval.
= Legendre’s DE %{(1 —x%) %} +nn+1Du=0 with
p(x) = (1—2x2),q(x) =0, r(x) =1 is singular or is not regular at
x ==+1.

= Bessele’s DE is singular or is not regular. Atx = 0
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REGULAR SL SYSTEM: A Regular SL equation together with suitable end
ponint conditions leads to a regular SL system.

Conditions are au(a) + a'u’(a) = 0 and pu(b) + B'u’'(b) =0

PERIODIC SL EQUATION:

The SL equation %{p(x) Z—:} +qg(x)u+ Ar(x)u =0 is called periodic SL

equation in the interval [a,b] if the points p(x), q(x) and r(x) are periodic
funcitons of period b — a .
EXAMPLES:
» u" 4+ Au =0 with u(—mn) = u(+n) and u'(—n) = u'(+m) is periodic
SL equation.
= With period 2 ir, The Mathieu DE u"' + Au + 16dCos2xu = 0

with u(—m) = u(+m) and u'(—m) = u'(+m) is periodic SL equation.

PERIODIC SL SYSTEM: A Periodic SL equation together with suitable end
ponint conditions leads to a Periodic SL system.
Conditions are u(a) = u(b) and u'(a) = u'(b)
BOUNDRY CONDITIONS ASSOUCIATED WITH SL. SYSTEM
» The boundry conditions au(a) + a'u’'(a) =0 and
Bu(b) + B'u'(b) = 0 are called Separated Boundry Conditions are
Unmixed Boundry Conditions.
= |f the Separated Boundry conditions are of the form
u(a) = ¢; and u(b) = c, then they are called Drichlet BC’s
= If the Separated Boundry conditions are of the form
u'(a) = ¢’y and u'(b) = ¢', then they are called Neumann BC’s
= |If the Separated Boundry conditions are of the form u(a) = u(b) and
u'(a) = u'(b) then they are called Periodic BC’s
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EIGENVALUE PROBLEMS:

A non - zero solution of an SL sytem (Regular or Periodic) is said to be an
eigensolution or eigenfunction corresponding to a value of the parameter A in
SL equation. The value of 4 then called sn eigenvalue of the DE.

OR Ifan IVP or BVP contains a parameter 4 in the DE and non - trivial
solution(s) corresponding to certain values of A can be found then the problem

is called Eigenvalue Problem, and the corresponding values of A are called

Eigenvalues of the problem.

EXAMPLE:

Find the eigenvalue and eigenfunctions (solutions) fo the regular SL system
u'' + Au = 0 where A is parameter and the boundry conditions are u(0) = 0
and u(m) =0

Solution: (the end point conditions shows that the system is regular but not
periodic) witha =0,b =m,p(x) =1,q(x) =0,r(x) =1

Now u” +Au=0= D = +iVa

Then general solution becomes u(x) = ACosVAx + BSinvAix 0<x<mn
Now using BC’s u(0)=0=>4=0 = u(x) = BSinV/Ax

u(m) = 0 = BSinVAm = 0 = B # 0(gives trivial solution) SinvAr = 0

>Vit=nn=Vl=n ;n=+142,....... ommiting ,0, because gives trivial
solution.
Hence A=2,=n?%;n=+1,+2,....... are the eigenvalues for the non —

trivial solution where the eigenfunctions are
u,(x) = b,Sinnx ;n==+1,%2,...... whrer the constants b,, are in general

different for each solution.
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EXAMPLE: (UoS,2015 -1, 2018 - I) Show that if u(x) and v(x)
are periodic solutions of the Mathieu equation with period m having the
distinct eigenvalues then [ u(x)v(x)dx = 0

Solution:

we know that the Mathieu DE with period m is 4"’ + Au + 16dCos2xu = 0
with end point conditions u(0) = u(mw) and u'(0) = u'(m)

now if ‘u’ and ‘v’ are solutions of given equation corresponding to A = 4; and
A = A, respectively then

u'’ + Aju+16dCos2xu=0 ...........(ij with end point conditions
u(0) = u(m) and u'(0) = u'(m)

Similarly for ‘v’ we have

v+ 2,v+16dCos2xv =0 ............(I1) with end point conditions
v(0) = v() and v'(0) = v' (i)

Multiplying (i) with ‘v’ and (ii) with ‘u’ and subtracting we obtain

(A —A)uv =v"'u—u'v.............(iii)

> [y (A1 — A)uvdx = [ v"'u—u'vdx

= (A — 1) fonu(x)v(x)dx = f:% (W'u—-u'v)dx

= (A — 1) fonu(x)v(x)dx = |[v'u—u'v|§

= (A1 — 42) [ u()v(®)dx = u(mv' () — u' (@Wv(r) — u(0)v'(0) + u'(0)v(0)

Now using end conditions.

= (A1 — 4) [y u(@)v(@)dx = u(mv' (1) — ' (W)v(r) — u(@v' (T) + u' (Wv(r)

= (A —4y) fonu(x)v(x)dx =0=>A;—2,)#0> f:u(x)v(x)dx =0

as required.

MUHAMMAD USMAN HAMID (0323 - 6032785)



23

EXAMPLE: (U0S,2014 — 1)

Determine eigenvalue of the system u’’ + Au = 0 with boundry conditions are
u(0) = u(m) and u'(0) = 2u'(m)

Solution: Sincewe haveu” + Au =0

Then u” +Au=0=D = +iVi

Then general solution becomes u(x) = ACosvVAx + BSin\Ax

Then u'(x) = —AASinVix + VABCosVAx

Now using BC’s
u(0) = u(w) = ACosVA(0) + BSinVA(0) = ACosVA(r) + BSinVA(r)
= (CosVA(m) — 1)A + BSinVA(r) = 0 ............. (i)

Similarly using BC’s u'(0) = 2u'(m)

= —V2A4SinV(0) + VABCos(0) = —2v2ASinVA(r) + 2/ ABCosVA(m)
= 24SinV7 + (1 - 2605\/7(1:)) B=0 ... (i)

Being homogeneous both equations have trivial solution. i.e. A=0, B =0.
For non — trivial solution we must have

CosVA(m) — 1 SinVA(m)
2ASinvA 1 —2CosVA(m)

Corresponding eigne functions are u,, = A,Cos2nx + B,Sin2nx

=0= CosVA(m) =1 =1 =14, = 4n?

ORTHOGONAL FUNCTIONS: Functions u(x) and v(x) defined over [a,b]

are said to be orthogonal w.rto a weight function w(x) if

b
jw(x)u(x)v(x)dx =0
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SQUARE INTEGRABLE FUNCTION: A function f(x) is said to be square integrable

with respect to a weight function w(x)>0 over an interval [ab] if
[T w@)If(0)]?dx < o
If w(x) = 1 then f:lf(x)lzdx < oo in this case f(x) is simply called square integrable.
EXAMPLES:

* Legendre’s DE — {(1 xz) }+ n(n + 1)u = 0 is square integrable.

= Bessele’s DE is square integrable.

LAGRANGE’S IDENTITY: (UoS,2013 - 11, 2017 -1, II)

Suppose u(x) and v(x) are two solutions of an SL equation, then the

following identity must hold

d / /
uL(v) - vL(w) = = {p(0) (u@v'(x) - w ()v()))
Which is called Differential form of Langrange’s idenetity. While the integral

form is given as follows
[PTuL(@) - vL)]dx = [p() (u@v'(®) - u' (vD)|.
PROOF: Since L = - {p(x) -} + q(x) therefore

ul(v) —vL(w) = ug {p(@) o} + 400 v P 5} - a()

uL(v) — vL(u) = up(x)v" + up' (x)v' — vp(x)u’’ — vp'(x)u'’
uL(v) — vL(u) = p(x)(uv” —u''v) + p'(x)(uv’' — u'v)

uL(v) — vL(w) =+ {p(0) (u(x)v'(x) - w' (@)v(x))}

= uL(v) — vL(w) = - {(p()W(w,v)(x)} , W is called Wronskian of ‘w v’
Taking integral from ‘a’ to ‘b’

[PuL@) - vLw)]dx = [} = {p(0) (u()v'(x) — v (X)v(x))}dx

[Tl (@) - vLwldx = |p() (@)Y (x) — w' (@ )|"

MUHAMMAD USMAN HAMID (0323 - 6032785)



25

IMPORTANCE: By using Lagrange’s identity, we may prove reality,
orthogonality and simplicity of eigenvalues of an SL system (regular or
periodic)
REALITY OF EIGENVALUES
THEOREM - I : (U0S,2015 — 11, 2017 —1) - dbd sz gei™ &1 Uint L3 e Ut il it
The eigenvalues of an SL system (regular) are real.
PROOF: Let ‘u’ be eigenfunction corresponding to eigenvalue ‘A’ then
u(x) # 0 ;vxe(a,b)
NowasL(u) + Ar(x)u=0=>L(u) = —A7(X)U cceeverereeennnn. (i)
If possible let ‘A’ be complex then L(u) = -2 r(x)u
Now ‘p’,’q’,’r’ are real, therefore L is real hence
SLU) = =27(X)U eveneeneennnnn. (ii)
Now from Lagrange’s identity
[PuL(@) - vL)]dx = [p@) (u@v'(x) - u' (v)|.
Taking v = u then
ff[uL(ﬁ) —uL(w)]dx = |p(x)(u(x)u' (x) — u’(x)ﬁ(x))|l; ................ (A)
Now for a regular SL system au(a) + a'u’(a) = 0 and Bu(b) + B'u’'(b) =0
Similarly au(a) + a'u’(a) = 0 and Bu(b) + B'u'(b) =0
If we substitute the values of u(a), u(b), u’'(a),uw'(b) in R.H.S of (A) we find it

will be zero. Hence f:[uL(ﬁ) —uLl(w)]dx =0

Using (i) and (ii) f:[u(—/_l r(x)u) —u(-Ar(u)|dx =0

> [P[-Arusi + Aruii]dx = 0= [J(A— A)rusdx = 0 = [ (A— D)rlul?dx =0
Now as r(x) > 0 also |u|? > 0 therefore f:rlulzdx >0

Then (A—2) =0=2=2 = Aisreal as required.
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THEOREM - I1 : (U0S,2015 — 11, 2017 —I1) —cdedz g & Iduintet ibdie il

The eigenvalues of an SL system (periodic) are real.

PROOF: Let ‘u’ be eigenfunction corresponding to eigenvalue ‘A’ then
u(x) # 0 ;vxe(a,b)
NowasL(u) + Ar(x)u=0=>L(u) = —27r(X)U cceeeeevneennnnn. i)
If possible let ‘A’ be complex then L(u) = —Ar(x)u
Now ‘p’,’q’,’r’ are real, therefore L is real hence
SLU = =27(X)U ceenennenennnnn. (ii)
Now from Lagrange’s identity
b , , b
J,, [uL() = vL(w)]dx = |p(x)(u(x)v'(x) —u (x)v(x))|a
Taking v = u then
b — — —7 / — b
J,, [uL(@) — uL(w)]dx = |p(x)(u(x)u'(x) —u (x)u(x))|a .......... (A)
Now for a periodic SL system u(a) = u(b),u’'(a) = u’'(b),p(a) = p(b) and if
B.C’s are singular then p(a) = p(b) = 0 and R.H.S of (A) will be zero.
Hence [ [uL(@) — GL(w)]dx = 0
Using (i) and (ii) ff[u(—/_l r(u) —u(—Ar()u)|dx =0
= f:[—/_l rusl + Aruti]dx = 0 = f:(l — A)ruudx =0
= f:(/l —A)rlulfdx=0
Now as r(x) > 0 also |u|? > 0 therefore f:rlulzdx >0

Then (A—2) =0=2=2 = Aisreal as required.
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ORTHOGONALITY OF EIGENVALUES
THEOREM: (U0S,2011, 2013)
Eigenfunctions of a regular or periodic SL system corresponding to distinct
eigenvalues are orthogonal w.r.to weight function r(x).
PROOF:
Let ‘4,,,” and ‘A,,” be eigenvalues of an SL system with eigenfunctions wu,, (x)
and u, (x) respectively then using Lagrange’s identity
L(u,,) = -4, r(x)u,, and L(u,) = —4,, r(x)u,, with boundry conditions of
the regular or periodic type.

Again using Lagrange’s identity for u,,(x) and u, (x)

[P L (1) = L () it = [ () (1t (010 (%) = ()11, ()
For a regular or periodic SL system, RH.S=0

Hence f:[umL(un) —u,L(u,,)]dx=0

Using (i) and (ii) f:[um(—ln r(x)u,) — u,(—4,, r(x)u,,)]dx =0

= f:[—ln ru,,u, + 4, ru,u,]dx = 0= f:(/lm — A )ru,u,dx =0
=>Ayp—4,) #0= f: u,,u,rdx =0

This shows that eigenvalues are orthogonal w.r.to weight function r(x).

EXAMPLE: Determine eigenvalues and eigenfuctions of the problem
u’ + 2%u = 0; 0 < x < m with the boundry conditions u’'(0) + 2u'(x) = 0
andu(m) =0

Solution: Givenu” + 22u=0= D = il

Then general solution becomes u(x) = ¢;CosAx + c,SinAx

= u'(x) = —Ac,Sindx + Ac,CosAx

Now using BC’s u(mw) = 0 = ¢;CosAw + ¢c,SinAr =0 ............ ]
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Now using BC’s u'(0) + 2u'(m) =0
—Ac1SinA0 + Ac,CosA0 + 2[—Ac SinAmw + Ac,CosAnt] = 0
= Acy; — 2Ac SinAm + 2Ac,CosAt = 0
= Acy,CosA — Ac,2SinAnCosAm + 2Ac,Cos* A = 0
= —Ac1Sin2Anw + Ac,CosAnt(1 + 2CosAn) = 0
= €185in2Aw — c,CosAn(1 + 2CosAm) =0 ............ (i)
Substituiting ¢, from (i) into (ii) we get
c1(2+ CosAint) =0=cy +# 0> 2+ CosAmt = 0 = CosAm = —2 which
cannot be satisfied for any real value of A. Therefore the problem has only

complex eigenvalues and complex eigenfunctions.

EXAMPLE:

Solve BVP defined by u” + 22u = 0 withu(0) = 0,u(1) =1;0<x< 1
Solution:  Givenu” + A2u=0>= D = +il

Then general solution becomes u(x) = ¢;CosAx + c,SinAx

Now using BC’s u(0)=0=c¢, =0

then given solution reduces to u(x) = ¢,SinAx

1
Sini

Now using BC’s u(1) =1=c¢, =

Sinix
Sina

Hence the solution can be written as u;(x) =
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EXAMPLE: (U0S,2019 — 1)

1 0<x

IA
= N =

Express the function f(x) = defined in the interval [0,1] in

IA

x <

)

NI-H o

terms of eigenfunctions of the SL problem y"’ + 22y = 0 with the BC’s
5y(1))+y'(1)=0and y(0) =0where0 <x <1

OR

Determine eigenvalues and eigenfuctions of the problem

u’ + 2%u = 0;0 < x < 1 with the boundry conditions 5u(1) + u'(1) = 0
andu(0) =0

Solution: Givenu' + 22u=0= D = +il

Then general solution becomes u(x) = c;CosAx + c,SinAx

Now using BC’s u(0)=0=c¢; =0

Then u(x) = ¢,Sindx and u'(x) = Ac,CosAx

Now using BC’s 5u(1)+u'(1) =0

5[c,SinA] + Ac,CosA = 0 = ¢,[5Sind + ACosA] = 0

= ¢, # 0 > [5Sind + ACosA] =0

Given problem has infinite numbers of eigenvalues which satisfy the equation
tani, = — %" where corresponding eigenfunctions are

u, =c,Sinl,x n=123,.........
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SIMPLICITY OF EIGENVALUES
“The eigenvalues of a regular SL system are simple”. i.e. to each eigenvalue
there corresponds only one linearly independent eigenfunction.

In other words, if u(x) and v(x) are eigenfunctions corresponding to
the same eigenvalue, then they must differ by a multiplicative constant.
PROOF: If possible let u(x) and v(x) be two linearly independent solutions
corresponding to the same eigenvalue A then using Lagrange’s identity
L(u)=—-2A2r(x)u and L(v) = —Ar(x)v
ThenuL(v) —vL(u) = -Ar(x)uv+ Ar(x)uv =0 .............. @)

But from Lagrange’s identity, we have
uL(v) — vL(w) =+ {pOW (1, v)(x)}
Thus using (i) ~ P(OW(u,v)(x)} =0 ;Vxela, b]

Sincein[a,b], 2> px) #0=>W@v)(x) =0
It follows that u(x) and v(x) be linearly dependent solutions. i.e. to each

eigenvalue there corresponds only one linearly independent eigenfunction.

ABEL'S FORMUIA
If u(x) and v(x) are any two solutions of a regular or periodic SL equation,
then p(x)W(u,v)(x) = constant ;Vxe[a,b]
PROOF:
Since for a regular or periodic SL equation uL(v) — vL(u) = 0 for any pair
of solutions. Hence from Lagrange’s identity
ZPEOW@v)(x)} =0 ;Vxela,b]

= p(x)W(u,v)(x) = constant ;Vxe[a,b]
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THEOREM: Any eigenvalue ‘A’ can be related to its eigenfunction u(x)

I—pu@uw )5+ [ pur (x)dx

f: r(x)u?dx

by Rayleigh quotient A =

This result cannot be used to determine eigenvalues, however, interesting and
important results can be obtained from it.

EXAMPLE: Using Rayleigh quotient, discuss the signe of eigenvalue(s)
of the SL system

u' + Au=0 with u(0) =0,u(l) =0,p(x) =1,q(x) =0,r(x) =1
Solution: here a=0,b=Lp(x)=1,q9q(x)=0,r(x) =1

-pu@w () [5+ [ pu(Wdx _ fyw(xdx

f: r(x)u?dx 3 f(: udx

Therefore using formula A =

This result cannot be used to determine eigenvalues, however, interesting and

important results about the eigenvalues can be obtained from it.
COMPILETENESS OF EIGENVALUES (just read)

“The eigenvalues of an SL system are complete”

OR* the set of eigenfunctions of an SL system are complete”

OR “ Every function u(x) ; xe[a, b] can be represented in terms of these

eigenfunctions as u(x) = ;-1 cau,(x) ; xe€la, b]

OR “ A set of functions is said to be complete, if any function can be written

as a linear combination of the function in the set, with constant coefficients.”

This is the generalization of the concept of the Fourier Series.

REMARKS:

* Legendre’s polynomials are a complete seton I = [—1,1]

= Laguere polynomials are a complete set on I = [0, )

= Hermite polynomials are a complete set on I = (—o0, )

= The eigenvalues of a Regular SL system are simple.i.e. Regular SL system have
multiplicity 1.

= The eigenvalues of a Periodic SL system have multiplicity 2.
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SL OPERATOR IS SELF ADJOINT

For self adjointness (u, Lv) = (v, Lu) = (u,Lv) — (v,Lu) = 0
Or f:[uL(v) —vL(uw)]dx =0

From Lagrange’s identity we have; f:[uL(v) —vL(uw)]dx = |[p(uwv’ —u'v)|}
But for periodic and regular SL system R.HS=0
Thus f:[uL(v) —vL(uw)]dx =0
This means that SL operator ‘L’ is self adjoint for regular or periodic SL
system.
EXAMPLE: For the SL eigenvalue problem u” + Au = 0 with
u’'(0) = 0,u’'(l) = 0 verify the following general results

I.  There are an infinite number of eigenvalues with a smallest but no

largest.

ii.  The nth eigenfunction has exactly ‘n-1’ zeros.

iii.  The eigenfunctions are orthogonal and form a complete set.

Solution:

Then general solution becomes u(x) = ¢;CosvVAx + c,SinVax

= u'(x) = —VAc SinVAx + VAc,CosvVax

Now using BC’s u'(0) = 0 = ¢, = 0 then given solution reduces to

u'(x) = —VAc SinVax

Now using BC’s u'(l) = 0 = —/2¢;SinVAl=0= —/A# 0, ¢;SinVAl=0
S>VAl=nm ;n = 0,+1,+2,..............

n2

> A=

12
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nmx
l

It is clear that 4, = 0 is the smallest eigenvalue. The others eigenvalues
ared,for n = 0,+1,+2,.............. obviously there are no other
largest eigenvalue.

The eigenfunction corresponding to the nth eigenvalues is

(n-1)nx

= U,_1 = Cp_1C0s n=>1

Oor u,= chosn—11mc n 0,+1,+2,..............

Now we will prove that u,,(x) has exactly ‘n-1° zeros. When ‘n’ takes
the largest values, ie.n = 0,1,2,.............. n-1
When n =0 then uy = ¢ has no zero as expected.

Whenn=1thenu,; = cﬁos? then a zero of this function occur when

"Tx = ’21 le.atx = %which lies in the interval (0, 1) and there is no other

zero in this interval. Therefore , the eigenfunction has exactly ‘one’ zero

in the interval [0, 1] the next zero occur at x = 3 ¢ (0,D
2

Similarly, When n = 2 then u, = c,Cos ;0 < x < lthen a zero of

3
l
; . 2nx W l .
this function occur when —- =5 leatx = and the second zero is

. 2 3 . 31 . . . 2 5
given by % = 7” i.e. at x, = - also the third zero is given by % = 7”

ie.atxy; =2 ¢ (0,0)

The eigenfunctions ‘u,,’ are said to be orthogonal. From the theory of
Fourier series we know that they form a complete set for the half
interval [0, I]. Every function defined in this interval and satisfying

some conditions can be written as

O =) anun)
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EXAMPLE: Show that the following boundry conditions yield self
adjoint problems.
. u(0)=0ul)=0 . W 0)=0u)=0

iii. wu(a) =u(b) and p(a)u'(a) = p(b)u’'(b)
Solution:  Givenu” + Au=0= D = +iVA
For self adjointness we have f:[uL(v) —vL(uw)]dx = |[p(uwv’' —u'v)|2 =0
. Here we have a =0,b = Lu(0) =0,u(l) =0,v(0) =0,v() =0
therefore fol[uL(v) —vL(w)]dx = [p(uv’' —u'v)|{, =0
fyuL(®) — vL)ldx = p(D)(w®v' D) — v’ OvD) - p(0)(w(0)¥'(0) — u'(0)v(0)) = 0
fol[uL(v) —vL(u)]dx = 0 i.e. condition satisfied for self adjointness.
ii. Herewe have a=0,b =L u'(0) = 0,u(l)) =0,v'(0) =0,v(l) =0
therefore f:[uL(v) —vL(w)]dx = [p(uv' —u'v)|2 =0
[y[uL@) — vLw)]dx = p(D) (w®v' (D) — w OvD) — p(0)(u(0)v'(0) — u'(0)v(0)) = 0
fol[uL(v) —vL(u)]ldx = 0 i.e. condition satisfied for self adjointness.
iii. Herewe have u(a) = u(b) and p(a)u’(a) = p(b)u'(b)
also v(a) = v(b) and p(a)v'(a) = p(b)v'(b)

therefore f:[uL(v) —vL(w)]dx = [p(uv' —u'v)|E =0
f:[uL(v) — vL(w)]dx = p(b)(u(b)v'(b) — u'(b)v(b)) — p(a)(u(a)v'(a) — u'(a)v(a)) = 0

f:[uL(v) —vL(u)]dx =0 i.e. condition satisfied for self adjointness.
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BOUNDRY CONDITIONS OF I- D HEAT EQUATION
THE DRICHLET BC’s or BC’s OF 1 KIND:
Booundry conditions of the form w(0,t) = uy(t)
and u(l,t) = u,(t) ;t > 0 are called Drichlet boundry conditions.
Physical Meaning: This condition tells that the temperature at the
boundry of a body may be controlled in some way without being held
constant.
THE NEUMANN BC’s or BC’s OF 2" KIND:
Booundry conditions of the form u,(0,t) = y(t) and u, (L, t) = 8(t)
are called Neumann boundry conditions. Where y and é are functions
of time. And in particular, y and é§ may be zero. If y = 0 then there is
no flow at x =0
Physical Meaning: This condition tells that the rate of flow of heat

Is specified at one or more boundry.

THE ROBBIN BC’s or  BC’s OF 3™ KIND:

Booundry conditions of the form oc; u(0,t) +x, u,(0,t) = constant
and Biu(l, t) + Bou,(l,t) = constant are called Robbin boundry
conditions.

Physical Meaning: This condition tells about the proportionality
between the rate of transfer of heat to the difference of temperature
between the two bodies. i.e. both will be Proportional.

MIXED BC’s or  BC’s OF 4" KIND:
If more than one boundry points involved the BC’s are called Mixed
BC’s. these are of the form u(x,,t) = u(xq,t)

and u, (xg, t) = u, (x4, t)
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MATHEMATICAL MODELS

Usually, in almost all physical phenomena (or physical processes), the
dependent variable u=u(xY, z t)is a function of three space variables,
X, Y, Z and time variable t.

The three basic types of second-order partial differential equations are:
(a) The wave equation Uy — C° (Uxx + Uy + Uz) =0 = uy — ¢2V2u =0
(b) The heat equation Uy — K (Uxx + Uy + U;)) =0 = u, — kVZu =0
(c) The Laplace equation U+ Uy + U, =0 = VZu=0

WAVE: A wave is a disturbance that carries energy from one place to

another. For example, wave produced on the string.

There are two types of waves.
MECHANICAL WAVE: Waves which required any medium for their
propogation.

e.g. (i) Sound waves (if) water waves.
ELECTROMEGNATIC WAVE: Waves which do not required any medium

for their propogation.

e.g. (i) Radio waves (if) X - Rays.
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Mechanical waves have two types

TRANSVERSE WAVES:
In the case of transverse waves, the motion of particles of the medium is
perpendicular to the motion of waves.

e.g. Waves produced on water surface

LONGITUDINAL WAVES:
In the case of longitudinal waves, the particles of the medium move back and
forth along the direction of propogation of wave.

e.g. Waves produced in an elastic spring.

GENERAL FORM OF WAVE EQUATION
In general, the wave equation may be written as  uy = c*V2u

where the Laplace operator may be one, two, or three dimensional.

The importance of the wave equation stems from the facts that this type
of equation arises in many physical problems; for example, sound waves in
space, electrical vibration in a conductor, torsional oscillation of a rod,
shallow water waves, linearized supersonic flow in a gas, waves in an electric
transmission line, waves in magnetohydrodynamics, and longitudinal

vibrations of a bar.
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ONE DIMENSIONAL WAVE EQUATION (UoS; 2017 -1, 11)

. T . . .
An equation of the form uy = c?u,, where ¢? = p is called the one-dimensional

wave equation. Where u (x,t) is a function of displacement at position x in time

‘t’ and ‘c’ denotes the velocity of wave equation.

PROOF : Let us consider a stretched string of length I fixed at the end points.

The

problem here is to determine the equation of motion which characterizes

the position u (x,t) of the string at time t after an initial disturbance is given.
In order to obtain a simple equation, we make the following

assumptions:

1. The string is flexible and elastic, that is the string cannot resist bending

moment and thus the tension in the string is always in the direction of the

tangent to the existing profile of the string.

2. There is no elongation of a single segment of the string and hence, by

Hooke’s law, the tension is constant.

3. The weight of the string is small compared with the tension in the string.

4. The deflection is small compared with the length of the string.

5. The slope of the displaced string at any point is small compared with unity.

6

. There is only pure transverse vibration.

I 4
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We consider a differential element of the string. Let T be the tension at the
end points as shown in Figure. The forces acting on the element of the string
In the vertical directionare T sinf — T sin a

By Newton’s second law of motion, the resultant force is equal to the

mass times the acceleration. Hence,

Tsin—Tsina=psUg ..cvvvvnrennnn. (i) L p=m/bs

where p is the line density and os is the smaller arc length of the string.
Since the slope of the displaced string is small, we have  8s = 8x

Since the angles a and  are small sin a = tan o, sin =~ tan §§

Thus, equation (i) becomes tan p — tan a = gﬁx Uit eeeerrrnnneens (i)

But, from calculus we know that tan a and tan B are the slopes of the string
at x and x + ox:
tan a = u, (X,t) and tan p = uy (x + dx, t) at time t.

Then Equation (ii) may thus be written as

1

x [(ux)x+6x - (ux)x] = % Utt

1

5z [Ux (X + 8%, ) = Uy (X, )] = T Ug

limg, 6_1x [u (x + Ox, t) — Uy (X, T)] = g Uyt ~limit have no effect on R.H.S
Ut = C2Uxx  eevenevenncenes (i)

T .. . . .
where ¢* = ’ This is called the one-dimensional wave equation.
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D’ALEMBERT’S SOLUTION OF WAVE EQUATION

This is the general method for the solution of the wave equation ‘;27'2‘ = Ciz‘;’:T'z‘

Letw = x — ct and z = x + ct, so that the function u(x, t) is now a function of
the new variables ‘w’ and ¢z’

Using the rules for partial differentiation we have

du _ du dw odu oz
ax  aw ax dz dx

ou ou d u du du ad a a
—=—(x-ct) +——(x+ct) @ —=—+—2>—=—+—........ (i)
ox ow dx ow 0z dax ow 0z
Similarly 2 = 229w | Judz
Yor Towar Tazo
du du 0 du 0 du du du i) i) a ..
> —=——(x-ct)+——(x+ct) > —=—c—+c—>—=—c—+ c—......(iI)
at aw dt dz ot at iw 0z at aw dz
?u 9 (au) ( b a) (au au) Pu  d*u ?u  Pu
(=Y =(= = | = —) D5 —= = — T esecssses
Hence ax2 ax \ox ow t az/) \ow T az ax2 ow? +2 owaz T 22 (iii)
.. %u *u a*u a*u .
Similarly Hence > — =c?— —2c* +c— . (iv)
at? aw? dwoz dz2

Thus putting all values in Qu_ 1 2% we get the form
ax2 ¢ a2

%u %u %u 1 %u %u %u %u
=>—+2 — == ¢ — —2c° +f—| = =0
aw? owadz dz> c aw? owaoz dz> owadz
d du du .
S ——=0>—= s(z) = u = [ s(z)dz + a function of w
w 0z z

=>ulx,t) =2 +¥Pw)
=>ulx,t) =@l -—ct) + P(x +ct)

This solution is called D’ Alembert’s Solution of the wave equation.
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EXAMPLE:

Sove the problemu;; = U, + h ;0<x <1 .ccevvvrnnene )

with conditions u(x,0) = x(1 —x) and u,(x,0) =0 .............. (ii)
u(0,t) =0 =u(1,t) ccuven..nn... (iii) where ‘h’ is constant.
Solution:

We suppose that u(x, t) = v(x,t) + w(x) is the solution of PDE (i) then on
substituiting in (i), (ii), (i) we get

Vig— (W +W')=h;0<x<1 ...cunnneee (iv)
v(x,0)+wx) =x(1 —X) cieeveneeennn v) v(x,0) =0........... (vi)
v(0,t) +w(0) =0 ...... (vi) v(1,t) + w(1) = 0.......(viii)

The DE (iv) together with the BC’s and IC’s (vi) to (viii) are equivalent to the
following two IVP/BVP

—-w'=h; w0)=0; w(1)=0 .............. (ix)

and vy =V =0 cieinninannnn x) v(x,0)=x(1—x) —W(X) cceeerernenn (xi)
v,(x,0) =0 ........... (xii)

v(0,t) = 0........ (xiii)

v(1,t) =0 ........... (xiv)

General solution of ODE in (ix) is given by
w(x) = —%hx2 +cix+ ¢y
On applying the BC’s we get ¢4 = 2 ; € = 0 we get
w(x) = —~hx® +~hx = 2x(1 — x)
2 2 2
TRANSIENT TEMPERATURE DISTRIBUTION: for wave equation we
consider u(x, t) = v(x, t) + w(x), in this phenomenon u(x, t) is called

transient solution, v(x, t) is non steady state solution and w(x) is steady state

solution.
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EXAMPLE: (UoS; 2017)

Sove the problem u,, = c®u,, + 22 ;0<x <1 ..cuueen.e.. (i)
with conditions u(x, 0) = u,(x,0) =0 .............. (ii);
u(0,t) =0 =u(L,t) ceeeeereennnn. (iii)

Solution: We suppose that u(x,t) = v(x,t) + w(x) is the solution of PDE (i)
then on substituiting in (i), (ii), (iii) we get

Ve — (W +W) =22 ;0<x<1 cvennnnnnen. (iv)

v(x,0)+wx) =0 .eeevnnennnn. V) v,(x,0)=0........... (vi)

v(0,t) + w(0) =0 ......(vii) v(1,t) +w(1) =0 .......(viii)

The DE (iv) together with the BC’s and IC’s (vi) to (viii) are equivalent to the
following two IVP/BVP

—c*w"’" =x%; w(0) =0;w(1) =0........... (ix) and v, — c?v,, = 0 ........ (x)

v(x,0) =—wlkx) , v,(x,0)=0, v(0,t)=0,v(1,t) =0 ...........(x])

1
12¢2

General solution of ODE in (ix) is givenby  w(x) = ——=x* + c;x + ¢

On applying the BC’s we get ¢4 = ¢, = 0 we get

12¢2 '’

1 4. 1 1 4
X X=—7=X—X

12¢2 12¢2 1202( )

Solving (x) by separating variables

w(x) =—

v(x, t) =), Sinnnx(a,Cosnnct + b,Sinnnct) ................ (xii)

Now initial conditions (xi) give respectively

1
12¢2

¥, a,Sinnmx = (x*—x) and Y,b,Sinnmtx =0;n=12,3,.............

1

o (x* — x)Sinnmxdx ;vn

From these equations we obtained; b,, = 0,a, = 2 f01
(xii) = v(x, t) = ), a,SinnnxCosnnct

Then the complete solution is

1

122 (x —x%)

u(x, t) =Y, a,SinntxCosnnct +
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HEAT: Heat is a form of energy that transferred from hot body to the
cold body, by means of thermal contact. It is denoted by ‘q’

CONDUCTION OF HEAT: In this mode heat is transmitted through actual
contact between particles (molecules) of the medium.

CONVECTION OF HEAT: In this mode heat is transmitted through gases
or liquids by actual motion of particles (molecules) of the medium.
RADIATION OF HEAT: In this mode heat is transmitted through
electromagnetic waves. Or by means of heat waves or thermal radiations.
Medium is not essential for it. i.e. heat can take places in vaccume also.
SPECIFIC HEAT OF SUBSTANCE (MATERIAL) : The quantity of heat
required to raise the temperature of 1g of material by 1€° and it is denoted by
C and mathematically could be written as Aq = CmAu

HEAT FLUX (THERMAL FLUX) : Is the rate of heat energy transfer
through a given surface per unit surface area. Its unit is watt or Js™
THERMAL CONDUCTIVITY: The quantity of heat flowing per second
across a plate (of the material) of unit area and unit thickness, when the
temperature difference between opposite sides is 1C°

It determines how good a conductor the material is . It is large for good

conductors and small for bad conductors.

SOME FACTORS ON WHICH RATE OF FLOW OF HEAT DEPENDS
= Areaas q(x,t) < A

» Lengthas q(x,t) oc%

= Change in temperature as q(x,t) < Au
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ONE DIMENSIONAL HEAT EQUATION

2
An equation of the form 2712‘ = %Z—’: is called heat equation. Where U= U(x,t) is a

temperature of a body at ‘x’ position in time ‘t’ and ‘K’ is called diffusivity or thermal
conductivity of the material.

PROOF:
U = U(x,t
A (x,t)

AX

X - axis
X X + Ax

Let us consider the flow of heat through a uniform rod of length ‘I’ and cross sectional area
‘A’ then

Density of rod = p = mass/volume = m/AAxi.em = p AAx

We choose the x — axis along the length of the rod with origin at one end of the rod. Then
temperature at point ‘x’ from origin at time ‘t’ will be U = U(x,t)

Let flow of heat = g (X,t)

(quantity of heat entering per second through unit area perpendicular to the direction of
flow)

Also Heat generation =y and heat stored per second = cm Z—t = cpAAX Z—;‘

Now using law of conservation of heat energy
(Quantity of heat which entered) + (heat generated inside the rod)
= (Quantity of heat which leave) + (quantity of heat stored)

q(x,t)A+ yAAx = q(x + Ax,t) A + cpAAxZ—':
dividing both sides by ‘A’ we get q (x,t) + yAx = q (x + Ax,t) + cpAx 3—1:
dividing both sides by Ax we get A—lx [q(x,t) —q(x + Ax,t)] + Yy = cp 3—1:

Applying Ax = 0 - %+y= cp‘;—lt‘
Now by using Fourier law of heat conductivity which is q = - KAu
2

Then (i) becomes - :—x (—xAu)+y = cp ‘;—Lt‘ then we get « ‘;TZ +y=cp %
For standard form we suppose y = 0 and cp =1 (i.e. no heat generation)
Then k2= 2

Ko~ &

?u _ 10u e . Lo . .
Or Z " ko which is required heat equation in one dimension
In general ur=kV?u or Viu = % U
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EXAMPLE:
Show that solution of heat flowing problem is unique.
Solution:
. %u 10u .
Consider ST T kg e () x € (x1,x) ;t>t,

With BC’s u(x;,t) =0 and u(x,,t) =0
with original temperature distribution u(x,ty,) = 0
for unique solution of (i) we suppose on contrary that equation (i) has two
solutions ‘u’ and ‘v’ then by principle of superposition w = u —visalso a
solution of (i) and satirsfy equation (i)
2

SE=220 WithBC’s w(x;,t) =0 =w(x,t) and w(ax,tg) = 0
= kw,, = w;
Now we will prove w(x,t) = 0

Define I(¢) = f;‘f W2(x, £)dx ...un..... (i) clearly I(t) > 0and I(t,) =0
Diff. (i) w.r.to t’ = I'(t) = f;‘f 2ww,dx

=sI'(t) = fxxf 2w(kw,,)dx = 2k f:lz ww,, dx = 2k [|WWx|§i — fxxlz wxwxdx]
> TI'(t)=0-2k f;‘: w,2dx since w(xy, t) = 0 = w(xy, t)

= I'(t) = 2kfx"12 wl2dx<0=>I'(H)<0=>I'(t)<0orI'(t) =0
If I'(t) < 0 then I(t) is decreasing function.
If I'(t) = 0 then I(t) is constant function.
This result together with the fact that I(t) = 0 ;Vt > toand I(ty) = 0
=>I(t) =0 ;Vt=>t,
(ii) >w(x,t) =0=>u—v=0=u=v (contradiction)
Hence solution is unique.
MAXIMUM PRINCIPLE FOR THE HEAT EQUATION:
Let u(x, t) be a continuous differentiable function that satisfy the heat

2
equation 37;‘ = %Z—l: ;x €(0,1) ;t > 0with BC’s u(0,t) =0 =u(lt) then
u(x, t) attains its maximum value at t = 0 for some x € [0, ]
In other words Max >0 u(x,t) = max (=9 u(x,0)

O<xsl 0<xsl

This principle is called Maximum Principle.
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LAPLACE TRANSFORMATION WITH APPLICATIONS

Because of their simplicity, Laplace transforms are frequently used to solve a
wide class of partial differential equations. Like other transforms, Laplace
transforms are used to determine particular solutions. In solving partial
differential equations, the general solutions are difficult, if not impossible, to
obtain. The transform technique sometimes offers a useful tool for finding
particular solutions. The Laplace transform is closely related to the complex
Fourier transform, so the Fourier integral formula can be used to define the

Laplace transform and its inverse.

INTEGRAL TRANSFORMATION
Consider aset K(x,y) = {f(x); f is function of x over [a, b]} then integral

transformation is defined as

T{f(x)} = F(y) = f:f(x)K(x, y)dx where K(x,y) is kernel of T.

LAPLACE TRANSFORMATION
If £(t) is defined for all values of ¢t > 0, then the Laplace transform of f(t) is
denoted by F(s) or L{f(t)} and is defined by the integral

0o T

LF©) = F) = [ e f@de = Jim [ e (e
0

0
If F(s) is laplace transform of f(t) then f(¢) is called the INVERSE

LAPLACE TRANSFORM of F(s)ie. L 1{F(s)}= f(t)
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QUESTION: Show that £L{c} = gwhere ‘¢’ is constant.

SOLUTION: Since L{f(1)} = [, e™* f(t)dt

—st | c

Then Li{c} = [ et cdt =c [ et dt =c |— 0 =

QUESTION: Show that L{e?'} = ﬁ where ‘a’ is constant.

SOLUTION: Since L{f(1)} = [, e™* f(t)dt

e—(s—a)t ©

Then L{eat} — J'OOO e—st eat dt — J‘OOO e—(s—a)t dt — |_ %

(s—a) 0 s—a
QUESTION: Show that £{t"} = -
SOLUTION: Since L{f(1)} = [, ™" f(t)dt
Then for n =1;

— [® ,-st _ _te_St ® o e~ _ _ﬂoo 1o st _1
Lity=], e tdt_| 0+f0 sdt—| S|O+sf0e dt = -
In above te™' - 0 ast - o
forn=2;

2p-s 2 o-s
L2y = [ e‘SttZdt—|—t : +f : t0+

2(Pe-st gt =2
~f, etdt=

5 Inthispart t?e™", te™" > 0 ast - o

And in general

—st

Ly = [ e‘“t“dt—|— +f 1 dt

n ,—st
L{tn} = |_ t C; + J‘ —st yn-1 g4 — gﬁ{tn_l} —
nn-_ n-z 2 1r040
i ...........S.SL{t }
L{t"} = (n—1)(n—1)(n;1) ........... 3.21 £{1) = irlll
s s s
Hence L{t" } = 71 Where ‘n > 0
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QUESTION: Show that £L{Sinat} =

SOLUTION: Since L{f (1)} = [, e~ f(t)dt

Then L{Sinat} = foo e st Sinatdt

f e® Sinbtdt = aSinbt — bCosbt] therefore

2b2[

—st

[-sSinat — aC t]|°°—[0— ° (- )| ===
az | sSinat — aCosat|| = 22TV =
. _ S
QUESTION: Show that L{Cosat} = S
. . _ © st
SOLUTION: Since L{f(£)} = [, e™* f(t)dt

Then L{Cosat} = foo e s Cosatdt

w [, e Cosbtdt = oo b2 [aCosbt + bSinbt] therefore
e st , @ e? s
(V7 B [—SCOSClt =i aSlnat]|0 = [0 W m(—S)] = Z21aZ

QUESTION: Show that L{Sinhat} = 5"

SOLUTION: Since L{f(£)} = [, e~ f()dt

et _p—at

Then L{Sinhat} = fooo e st ( )dt = %U et eqtdt — f et e~atd]

L{Sinhat} = %[ [ et dg — [ g=(s+at gy]

e—(s—a)t e—(s+a)t © a

L{Sinhat} = %

—(s—a) - (s+a) g T s2-q2

MUHAMMAD USMAN HAMID (0323 - 6032785)



49

)
s2—q2

SOLUTION: Since L{f(1)} = [, e™* f(t)dt
Then

QUESTION: Show that L{Coshat} =

eat+e—at) dt = %[fooo e—st eatdt + fooo e—St e—atdt]

L{Coshat} = fooo e st ( s

L{Sinhat} = %[ [ et dg 4 [ e=(s+at gy]

e—(s—a)t e—(s+a)t © s

o  s2-a?

L{Sinhat} = >

~(s—a) ' (s+a)
FUNCTION OF EXPONENTIAL ORDER: A function f (t) is said to be of
exponential order ast — oo if there exist real constants M and c such that
If ()] < Me for0 < t < oo.

FUNCTION OF CLASS “A’: A function f (t) which is peicewise continuous

and is of exponential order is said to be function of class A.

EXISTENCE THEOREM OF LAPLACE TRANSFORMATION:

(UoS; 2013,2015)

Let f be piecewise continuous in the interval [0, T] for every positive T, and let
f be of exponential order, thatis, f (t) = 0 (e**)ast —» o for somea > 0.
Then, the Laplace transform of f (t) exists for Res > a.

OR sufficient condition for the existence of Laplace transformation is that it
should be a function of class A.

Proof: Since f is piecewise continuous and of exponential order, we have
L@} = |, e fDdt] < [ et |f(D)ldt < [, e Metdt =M [ e"~Dt dt

|IL{f(D)}] < % Thus the Laplace transform of f (t) exists for Res > a.
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Remark: F(s) = s?is not L.T. of any piecewise continuous function of
exponential order, because s? does not approaches to zero as s — oo i.e.

L~1{s?} does not exists.

I‘(a+1)

QUESTION: Show that £{t*} = where a is any real.

SOLUTION: Since L{f(£)} = [, e~ f()dt

L{t*} = fooo e St t*dt = fooo e (g)a %du = s“1+1 [ e u® du ......... (i)

Since by definition of Gamma function we have
Ia) = fooo e'"u*ldu=T(a+1) = f e "u*du (i)=L{t"}= %
USEFUL RESULTS:

al'(a)
Sa+1

* T(a+1) = al'(a) then L{t*} =

= L{t*} ==L

QUESTION: Find £{t/?}and {t~1/2}

INa+1)
sat+l

SOLUTION: Since L{t*} =

1 1 F(l"' ) arl(a)
Puta =2 Then L{tZ} = ;1 now using L{t"} = —

)

we have £ {tz } i

5.52

=S

Then £{t1/2} = LY a5t G) v thuscfe2)=L [

V”
i)

s1/2

[y
~—

1
Puta = ——Then L{t™1/2} = i +1 now we have L{t"1/2} =

s 2

Then L{e™1/2 } = % asT G) =Vn thus L{t"1/2} = \/%
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QUESTION: Find L{tk/z } where ‘K’ is an odd positive integer. L{ts/z } =?
SOLUTION: Suppose k=m + 1 where ‘m’ is any positive integer.
Then using £{t*} = %L{t"“1 }

B e e Rt G

S S

k 1
L{ti} 2m+1.2m 1 2m- 3 i 1 L{ }:(2m+1).(2m+1).(2m+1)...........3.1\/:

A

2s 2s  2s "2s°2s (2s)m+1 s

)  @2m+1).2m+1-2).2m+1-4).......... 31 [m (K).(k=2).(k=4)........ 31 [ n
Litz ¢ = Zs)m+1 P K+l Sk+2

(2) 2
Whereweuse2m+1=k=>m=(k—1)/2

531 T
If k=5 then L = /
(2)5;1 s5+2 (2)3

PROPERTIES OF LAPLACE TRANSFORMS

LINEARITY PROPERTY: THE LAPLACE TRANSFORMATION £ IS
LINEAR.
Proof. Letu (t) = af(t) + bg(t) where a and b are constants.

We have, by definition

L{u®}= [ et fOdt= e [af(t) + bg(D)]dt
L{u@®}=af e f(tdt+b [ e g(t)dt = aL {f(D)} + bL{g (D)}
L {af(t)+bg(t)} =aL{f(t)}+bL{g(t)} hence proved.

1 SHIFTING PROPERTY (1St TRANSLATION THEOREM):
If F(s) is the laplace transformation of f(t) Then £L{e*'f(t)} = F(s — a)

Proof. By definition, we have
L{efD} = [, et e f(Ddt = [ e D f(D)dt = F(s — a)

This result also known as 1% shifting theorem or 1% translation theorem.
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EXAMPLES:
i IFL{t?)} = then L{t? '} = 1)3
.. at - %
ii. If L{Sinwt} = —; then L‘{e Sinwt} =
at —_sa
iii.  1f L{Coswt} = 5— then L{e™ Coswt} = P
. n — at n!
iv. IfL{t"}= = oo

Question: Find £~ {2.,_23}

Answer: in this question we will use the first shifting theorem according to
which L{e*' f(t)} = F(s —a) = e®' f(t) = e®* L7Y{F(s)} = L Y{F(s — a)}

Thus £~ { - Zs} =1 {m} =e 'L { — 12} = e 'Cosht

Question: Find L‘l{ 3 }

s2+2s
Answer: in this question we will use the first shifting theorem according to
which L{e*' f(t)} = F(s —a) = e f(t) = e®* L7Y{F(s)} = LY{F(s — a)}

Thus £ = £ ) = et £ {1 = et Sinht

s242s (s+1)2-12

. e -1 s+4
Question: Find £ {sz+3s+2}
Answer: in this question we will use the first shifting theorem according to

which L{e® f(D)} = F(s — @) > e™ f(t) = e L} {F(s)} = L {F(s — @)}
Ths £ 2] = £ (- ) = 0 () - 0 () )
et ) et - et )

L—l{ st } = 3e~t —2e 2t since £1 {%} =1

s243s+2

MUHAMMAD USMAN HAMID (0323 - 6032785)



53

SCALING PROPERTY: If F(s) is the laplace transformation of (t) , then
L[f (ad)] = i F() witha>0

Proof. By definition we have

L{f@) = [ e flande =2 [2e @ ferar =1 F )

putting at = t' This result also known as Rule of Scale.

EXAMPLES:

i. IfL{Cost} =

> then L{Coswt} = — = 1| s ]
+1

s2 s2+w2  wl(s/w)2+1

1

(2—1)]

i 1f L{e'} = — then L{e™} = — = i[

DIFFERENTIATION PROPERTY: (UoS; 2011,2014)
Let f be continuous and f' piecewise continuous,in0 < t < TforallT > 0.
Let f also be of exponential order as t — o Then, the Laplace transform of
f' (t) exists and is given by
LIf' (] = sLIf(®)] —f(0) = sF(s) —f(0)

Proof. If f(t) is continuous and f'(t) is sectionally continuous on the interval
[0, 00) and both are of exponential order then
L©}= [ e frodt = e f(DIF — (—s) [, e f(t)dt
L ®}=1[0-f(0)]+sL{f(D)}
LIf' ] = sLf®] —f(0) = sF(s) —f(0)
If f/and f"' satisfy the same conditions imposed on f and f' respectively,
then, the Laplace transform of f"' (t) can be obtained immediately by
applying the preceding theorem; that is

LIf"®] = sLIf(®] - f'(0) = s*F(s) — sf(0) — f' (0)
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Proof. If f(t), f'(t) are continuous and f''(t) is sectionally continuous on the

interval [0, o) and all are of exponential order then
LY'®)= [y e frDdt = e f(OIF — (=) [y e f(Ddt
L'} =[0—-f (O] +sL{f'(®)}=—f'(0) +s[sF(s) — f(0)]
LIf"®] = sLIf(®] - f'(0) = s*F(s) — sf(0) — f' (0)

Clearly, the Laplace transform of f™(t) can be obtained in a similar

manner by successive application.The result may be written as

LM ()] = s"LIFO] = s"7Hf(0) — -+ ... = sf72(0) — f771(0)

INTEGRATION PROPERTY :
If F(s) is the Laplace transform of f(t), then

F(s)
[ j () dr ] -
PROOF:

Consider g(2) = [, f() dr = g'(2) = f(8) = L[g' (D)] = LIf(D)]
= 56(s) — g(0) = LIF®] = sLlg®] - 0 = LIF(®)]

F (s) F(s)

t
Llg@] =72 = L|f f@dt| =2
Question: Solve the initial value problem u' —2u = 0 withu(0) =1
Answer: Givenu' —2u =0

=>L{u'}-2L{u}=0=sU(s)—u(0)—2U(s) =0
1
s—2

=L YHU(s)} =L {S 2} = u(t) = e** required answer.

Usingu(0) =1 =sU(s)—1-2U(s) =0=>U(s) =
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Question:

Solve the initial value problem u"" + 4u’ + 3u = 0 withu(0) = 1,u'(0) = 0
Answer: Givenu"” +4u' +3u=0

>L{u"'}+4L{u}+3L{u}=0

= s2U(s) — su(0) — u'(0) + 4sU(s) —4u(0) + 3U(s) = 0

= s2U(s) —s+4sU(s) —4+3U(s) =0 since u(0) = 1,u'(0) =0
s+4 _ _ s+4
= U(S) - s2+4s+2 = £ I{U(S)} =L {sz+4s+2}
_ -1 st _ -1 (3/2 1/2) _ -1 (3/2) _ p-1(1/2
= u(t) =L {sz+4s+2} =L {s+1 s+3} =L {s+1} L {s+3}

su(t)=etL! {ﬂ} _e3tr-1 {lsﬁ}

s

L‘l{ ik } =3¢t %e‘“ since £71 {%} =1

s24+3s5+2

UNIT STEP FUNCTION: A real valued function H: R — R is defined as

H(t—§ ={; ‘; ii? When§=0 ; H(t)={3 ’; tti((’)

CONVOLUTION FUNCTION / FAULTUNG FUNCTION OF LAPLACE
TRANSFORMATION.

The function (f * g) (t) = f(ff (t — & g (&) dé& is called the convolution of
the functions f and g regarding laplace transformation.

THE CONVOLUTION SATISFIES THE FOLLOWING PROPERTIES:

1.f x g = g * f(commutative).

2.f = (g * h) = (f » g) = h(associative).

3.f * (ag + Bh) = a (f * g)+ B (f * h) (distributive),

where a and B are constants.

USEFUL RESULT:

F*®=[f—-Hg®di= [JHE-Hf (t — § g d§
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CONVOLUTION/FAULTUNG THEOREM OF LAPLACE
TRANSFORMATION (UoS; 2015)

If F(s) and G(s)are the Laplace transforms of f(t) and g(t) respectively,
then the Laplace transform of the convolution (f * g) (t) is the product
F(s)G(s)

OR L HF(s)G(s)}=f = g = L{f x g} = F(s)G(s)
PROOF: By definition, we have

Lifx g} = [, et (f+ g)dt

Lif gy = [ e [{f(t — g d§ dt

Lif+ g} = [ e [ f@g & - §di dt since f « g = g * f
Lif« g} = [ e [[ HE-f(©gt — §) dE] dt

By reversing the order of integration, we have

Lif = gy = fy [fy e H(t =gt — & dt|f(§)ds

If we introduce the new variable n = (t — §) in the inner integral, we obtain
Lif + gy = [} f §) g |[5 e D H ()g(n) dn]

Lifx g} =

Iy £ (© g [[° e EH () g(n) dn + [ e H (g (n) dn]

Lif « g} = [} £©) dE[[°, e 0. g(p) dp + [} €755+, 1. g (1) dn]| by step function
Lif + g} = fy f(§) dg[f;" e g(x) dn]

Lif = g} = [, e f()dE [ e™g () dn

L{f x g} = F(s)G(s)
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PROBLEM: Use covolution theorem to find £~1 { 3 }

s2(s2+49)

Solution: Here we have H(s) = F(s)G(s)

then taking F(s) = 12 = L7 YF(s)} = L1 {12} =S fE) =t

— -1 — r—1
6(5) = Gy = LTHES)) = L7
Now using Convolution theorem

ht)=f+g=[f(t— g @®dE= [t — & Sin3() d&

2+9)} = g(t) = Sin3t

; t
h(t) = [, t Sin3(§) d§ — [ & Sin3(§)dE = |_ tCossss N gc,,;gf  sin3g
O =~ ¢ E e sinan) = £ 2]

PROBLEM: Use covolution theorem to find £~1 { - }

(s249)2

Solution: Here we have H(s) = F(s)G(s)
> LYF(s)} = £

then taking F(s) = } = f(t) = Cos3t

(29) (s249)

G(s) =

= L7HG(s)} =3 £ { }: g(t) = Sin3t

(s2+ 9) s2+9)

Now using Convolution theorem

h(®)=f g=[,f(t — g (&d =1, Cos3(t — §) Sin3(¢) d§
h(t) = 3 J,(Cos3tCos3 § + Sin3tSin3 §) Sin3(§) d§

h(t) = % f, Cos3tCos3ESin3¢ + Sin3tSin?3¢ d§

h(t) = < Cos3t [) 2Cos3§Sin3§dE + 3 Sin3t [, Sin?3 d§

h(t) = %CosStf Sin6&dé + - Sm3tf (1 6036‘() dé
h(t) = £ Cos3t |- COS6€| +=Sin3t ¢ - S‘Lﬂ

6 0 6

1 1. Sin6t
h(t) = §COS3t(1 — Cosb6t) + gSm3t (t - )
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h(t) = = Cos3t — — Cos3tCos6t + > tSin3t — — Sin3tSin6t
36 36 6 36
h(t) = — % [Cos3tCos6t + Sin3tSin6t] + %tSinSt + % Cos3t

h(t) = — % [Cos(6t — 31)] + %tSinBt + % Cos3t

__1 Lisin3t + L = —=tSin3t = £~
h(t) = — 5 Cos3t + ¢ tSin3t + o Cos3t = —~tsin3t = £ { =]

PROBLEM: (UoS; Past Paper)

Use covolution theorem to find £-1 {s2+6ls+13}

1 1
s24+6s+13  (s+3+2i)(s+3-2i)

Solution: Here we have H(s) = F(s)G(s) =

= v —c1{_1 _ o—(3+20)t
F(S) - s+3+2i Y L {F(S)} ) L {S+3+2i} = f(t) =e L
1 - _ 1 =

G(s) = ——=>LYG(s)} = L} {s+3—2i} = g(t) = e~3-20

Now using Convolution theorem

h(®) =f* g= [, f ©)g(t— dE = [[e"(+20% e=G-200=Dgg
t
h(t) = e—(3—2i)tfe—(3+2i)$ e(3—2i)$d§-

0
t

h(t) — e—(3—2i)tje—4if df

0
it o Can
(o) = 20 [ - e ::’)t jetit g0 =& :m et _ 1
e—3t e—Zit _ eZit e—3t eZit _ e—Zit
h(t) = 2[ —2i ]: 2 [ 2i ]
-3t
h(t) = ——Sin2t
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PROBLEM:

Use covolution theorem to calculate laplace transform of

f© = [t — B)3efsinpdp

Solution:
Let f(t) = g+ h = [[(t — B)’ePSinBdp .............. @)
Comparing with g * h = f(fg (t — ph(B)dp .............. (ii) we get

gt—RB=>t—-P3=>g@)=1t3 and h(B) = efSinB = h (t) = e'Sint

Now L{f(t)} = L{g * h} = F(s)G(s) = L{g(1)}. L{h(1)} = L{t*}. L{e'Sint}

3! 1 6
L{f(t)} - §3+1° (s—1)2+12 i st(s2-2s+1)

THE GAUSSIAN INTEGRAL (UoS; 2015-1)

I3

Show that [* e™ dx =+/m or Iy e dx = 2”

Solution: consider I = [~ e dx andI= [~ e™ dy
then multiplying both 12 = [~ [~ e > dxdy
Now using polar coordinates
2 co  _ 2 1 o _
= ["["e ™ rdrd@ = J " de (_E) Jy, e P (—2r)dr=m=>I=n

= [© e dx:\/E=>2f0°°e—x2 dxzﬁ:fome—xz dx=g

— 00
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LAPLACE TRANSFORM OF STEP FUNCTION:

The Heaviside unit step function is defined by

H(t — a) ={(1) tt:: wherea>0

Now, we will find its Laplace transform.
L{H(t — a)} = fooo e S'H(t — a)dt
LH({t-a)}=[eH(t - adt+[ e H(t - a)dt
LHE —a)}= ["est.0dt+ [ e . 1dt

e—St e—llS

a S

L{H(t — a)} = faoo e Stdt = ; §>0

-S

THEOREM: (UoS; 2014 , 2015)

If £(¢) is a function of exponential order ‘c’ then
LEf(O) = (V" 1ZF(s) is>a

PROOF: Consider F(s) = L{f()} = [,” e™* f(Ddt
Differentiating w.r.to ‘s’

= 5 F() = (-1 [ e tf(©dt = (~DLEF(O} > (~1) 47 F(s) = LEF(©)

Again differentiating w.r.to ‘s’
= ;—:2 F(s) = (-D(-1) fooo e (=) tf(t)dt = (-1)° fooo e 2 f(dt = (1) L{t*f (D)}

2
> (1225 F(s) = (-D2L{Ef (1))
Continuing this process, we get the required

LEf(O} = (CV"SF(s) is>a s (-t = (D)7

REMARK: L{t™"f()} = < F(s)
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LAPLACE TRANSFORMATION OF LOGRITHMIC FUNCTION:
(UoS; 2015 — 1)

Show that £{Int} == (I'(1) — Ins)

SOLUTION: by using definition

L{lnt} = fooo e St Intdt = fooo e "lIn (g) ds—u by putting st = u
L{lnt} = %fooo e lnudu - %fooo eV Insdu = %(I) — %lns Jy e du
L{lnt} = %(1) - %lns(l) = %(1) - %lns .............. ()

Now consider I = [~ e™ Inudu

Since[(a) = ["eMu* du=T(a+1) = e u*du=>TI'(1) = [ e u*lnudu
Puta=0=T'(1) = fooo e "Ilnudu=1

Thus £{Int} = < (I'(1) — Ins)

whereI''(1) = 0.57721 is called Euler’s constant.

THE GAMMA FUNCTION:

Gamma function can be defined as follows I'(a) = f0°° e "u*ldu

USEFUL RESULTS:
" T(a+1) =al(a)
Proof: since I'(a) = fooo e'"uldu=T(a+1)= fooo e "u* du
fo

>T(a+1)=0+ (xfooo e "u*! du = al'(a)

e U
-1

0]

>T(a+1) = fooo e "u® du = |u°‘ %| au*1! du

0
= I'(1) = 1wecanproveitusing I'(a) = fooo e "u*!du witha=1
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" T(a+1) =al

Proof: sinceI'(ax + 1) = al'(a)
put a=1=>T2)=1T1)=1.1=1!
put a=2=>TI3)=2T2)=2.1=2!
put a =3=>T4) =3.T(3)=3.2.1=3!

ThenT(a) = a—-1'=T(a+1) =a!
SECOND SHIFTING (TRANSLATION) THEOREM:
If F(s) and G(s) are the Laplace transforms of f(t) and g(t) respectively,
then
LIHE - a)f(t — a)] = e F(s) = e L{f (1)}
OrLYe *F(s)}=H(t — a)f(t — a)
Proof: By definition
LH(-a)f(t—a}= [eH@ - a)f - a)dt
LHE-a)ft-a)}= [[e*H{Et —a)f t — a)dt+ [ e H( — a)f (t — a)dt
LHE-a)f(t-a}= ["esf(t— a)dt
Introducing the new variable § = t — a, we obtain
LHE-a)f(t-a}= [[e &P f@di=e["e® f(5)dE
LH({M —a)f(t —a)}= e “L{f(t)}=e “F(s)

REMARK:

1% Shifting theorem enables us to calculate Laplace transform of the function
of the form e*t f(t) where the 2" Shifting theorem in similar way enables us

to calculate inverse Laplace transform of the function of the form e~ *SF(s)
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COROLLARY: Prove that L{p(t)f(t)} = P(—D)F(s) where p(t) isa
polynomial in ‘¢’.

SOLUTION:

Since p(t) = ay + a t + ayt? +.............. +a,t" =Y",a;tt Then

Lip®Of O} = LEL ait (O} = T a LIEf(O)} = Tiy ai (- 1)‘—F(S)

LpOF ()} = Ty a; (~1)'D'F(s) = ¥y a; (~D)'F(s) = P(~D)F(s)
LAPLACE TRANSFORMATION OF BESSEL’S FUNCTION

EXAMPLE: (UoS; 2014,2019 1)

Find Laplace Tranformation of J(t) = if: Cos(tSin0)dao also find L{J,(at)}

Solution: By definition
LT} = [T et o) dt = [ e E I cOs(tSine)de] dt

LYo} =~ [T, e Cos(tSin®) dt]d6 =~ [F1dB .................. i)
_[° st . _ . _ s
Now I = [~ e **Cos(Sin0)t dt = L{Cos(SinB)t} = FrGime)?
= LYo O} = [y s @0 = 2 [ o=nde « [Ff(dx =2 [ f(x)dx
/2
= LYo} =~ [ o) 20 <y F0dx = [y f(a - x)dx
_ 2 ,m/2 s _ 2 ,m/2 sSec?0 m/2 sSec?0
= LYo (D)} = ;f0 s2+Cos%0 do = 1_rf0 Sec20(52+Cos20) _f s2Sec20+1 e
_ E /2 sSec%0 _ E /2 sSec%0
= LUO(t)} - n.f() s2(1+Tan20)+1 de = nfo (s2+1)+(s2Tan20) do
/2 sSec?0 2 ,m/2 Sec?0
= Lo} =2 (" dg =2 ["* 50 _gg
o) =l S ] % "o 5t
= L{J, (D)} == 000% by putting x = Tan8 = dx = Sec’>6d0
_2 qx[®_2(m\_1_1 s 1 .o s*41
:LUO(t)}_n’sLTan alg s(Za)_as_s'm_m Lan= s2

= LUo(D} = ==

= Tofind £{J,(at)} see last portion of next example.
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EXAMPLE: Given the Bessel’s functions of the first kind and positive integral order satisfy
the recurrence relations J1 = —J'y, Jpy1 =Jn-1—2J', ;m =1

()’

with J(0) =1,J,(0) = 0;n > 0 thenshow that L{J,(t)} = —
S

also find £{J,,(at)} ;a>0

Solution: We will prove the result by mathematical induction.

Using first recurrence relation:
1

LJ1(®} = LT o0} = —L{' (O} = ~[sLUs (O} —Jo(0)] = —==+1

1
_ (\/sz+1—s) . _
L{J, ()} = T result is true forn=0

Forn = 1:

J2=Jo=2J'y = LU0} = LUo®)} - 2£0'1 ()} = ==~ 2[sLY1 (0} ~ J1(0)]

> LU, (D) = 1 (\/52+1—s)1 ol = 1 25(\/sz+1—s) _ (\/s2+1—s)Z
2 =T 41T T T It et
2
O -
= L{J,(t)} = Vi result is true forn=1
k
. B _ (Vs?+1-5)
Suppose that result is true for n = k. = L (B} = T
Now we will check the result For m = k+1:
(Vszri-s)

Jierr = Jiea = 23 = Lk} = L1} = 2L} = — 55— = 2[sLUw(®)} = J1(0)]

YN (s o) M N 2 O Bz o MY (e et
k1 Js2+1 © s Js2+1 241
= Lk} = (—“”“[1 2s(VsZ+1—5)] = _Vl (TFT-s)
(m_s)k+1 . )
= L1} = o result is true for n = k+1
. . ) ] _ (\/sz+1—s)n
So induction complete and result is proved.i.e. L{J,(t)} = T

Now to find L{Jo(at)} ;a > 0 we will use rule of scale. i.e £ [f (at)] = i F (z)

Then £ [J,,(at)] =

0 ()- ( DRC) pp—

a (5 21 a™y/s%+a?
(fsZraz-s) 4
Thenforn=0 £L{Jo(at)] === ===
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EXAMPLE: (UoS; 2018 — 1 )

1-Cosax 1 a?
Show that L{ . } = Eloge {1 +—2}
f(x) .
Solution: We will use the result L{ } J, F(shds' ............. (i)

provided lim,,_,, {f (x )} exists

now lim,_, {f( )} = lim,_, {1_Cosax} = lim,_, {aSinax} =0

ax

F(s) = L{f(x)} = L{1 — Cosax} = L{1} — L{Cosax} = %— s>a

s2+4a?

Hence

(D)=L {’%} = [P F(sds' (D) => £ {1“"’5“"} - [ (l _ 512+a2) ds'

ax S/

e —0— \/ — In Jsz+a2

Thus £{=2%) = 2 {1 + :—2} =log. {1+ “—2}

1-Cosax

:,'L{ }= |lns’—%ln(s’2+a

|ln

Vsi2+a?|g

ax

EXAMPLE: Find L{w} and deduce L{S’" t} =In (32”) is>1

s2

Solution: We will use the result L{f(t)} J, Fwdu ............. (i)

provided lim,_, {f ¥ )} exists

f® . at_cosht . at 4 pSinbt

now llmHO{ } = lim,_, {i} = lim,_, {%} =a
F(s) = L{f(t)} = L{e™ — Cosbt} = L{e"} — L{Cosbt} = — —

1 u
Fw = —-=F

. f®) _ oo e?—Cosbt) (o 1 u
Hence (i) = £{E2} = (7 Fandu = £{=—} = [ (= - 2 ) du

e —Cosbt) _ 1 2 o _ 1_%

zL{ . }— |ln(u a) Zln(u |ln\/m lnu 1+(g)2
N L{e“t—Cosbt} 0 — In _ Vs2+b2

t s2+b2 s—a
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s—a

Thus L{e“t—fosbt} — In v s2+b?

—Cos2t Vs2422 1-Cos2t VsZ+4
- }—ln :>L{ - }zln

Now puttinga =0, b =2 we get 1:{ 0

HenceL{Si’Zzt} —l (S +4) ;s> 1

S

NULL FUNCTION: A function N(x) is called Null Function if f0°° N(x)dx =0
HEAVISIDE EXPANSION THEOREMS

THEOREM -1 :

If M(s) and N(s) are polynomials of degree ‘m’ and ‘n’ respectively with

m < n and N(s) has ‘n’ distinct zeros a,; ;i =1,2,3....... none of which is

zero of M(s) then
M(s)
{N(S)} 4N’ (

Proof: Given M(s) and N(s) are polynomials of degree ‘m’ and ‘n’

respectively

Let N(s) = ag + a;s + a;s* +.......... +a,s"=(s—a)(s—ay) ......(s—ap)
Then consider = = L 4 €2 4. 42 =yn G (i)
N(s) s—a; s—az s—ap s—a
M(s) _ i _ 1
=L {N( )} £ 1{ 1‘1=1s a,-} - Z?:1 CI,L ' {s—a,-}
M(s) . .
= L {N(S)} Y cedt ... (i)

. . M(s)
(D) = ¢g=Ilimg,, [(s — a;) N(s)] =

limy_ . [M(s)] lim,_, [S2] = M(a)).lim,_, [~

N(s) N(s)
; _ M(a)
M(S) n M(ai) a;t
(i) = L7 {N(s)} i=1 7,z €
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THEOREM - 11 :

If M(s)and N(s) are polynomials of degree ‘m’ and ‘n’ respectively with

m<nand if N(s) has a repeated root a; of multiplicity ‘r’ while othere roots
i, a; are not repeated then

_ e N M(a, part & M(s)
L YF(s)} =1 {N( )} Z +Z(11'){d11( )N( )}e

i=2

s=ay
Proof: Since N(s) has a repeated root a; of multiplicity ‘r’ while othere roots

a,,as,....a, are not repeated it means

N(s)=(s—ap)'"(s—ay)......(s—a,)
M(s) M(s)
N(s)  (s—ap'(s—ap).....(s—ay)

Then in terms of Partial fraction we will be as follows

M(s) _ d, dr_q dr_ dr_| 1
N(s) (s—apr (s—apr=!  (s—ap™2 7 (s—apr! T (s—ap!
dq C2 c3 Cn
+ + e R T LT T T s A
(s—apl = (s-ap (s-ayp) (s—ap) (A)
Multiplying (s — a;)" on both sides
(s—ap" 1:((:)) =d,+d,_1(s—ap)+ .. tdi(s—a) " 1 +32,¢ ((ss—_a;i))r ............ (B)

Now taking lim on both sides we get

s—ay
d, = lim,_,, (s — 2" 55

d,_y = lim,._,,+|(s — 2))" ’;E:))] diff.w.to ‘s’

d._, = %limsﬁa 1;—322 [(s —a))" 113((:)) again diff.w.to ‘s’

d,_; = %lims_)a , (%)l [(s —ay)" Z((:)) again diff.w.to s’ [ - time
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Now by second translation theorem
LYe ™ F(s)}=H({t —a)f(t —a)
orLH(t —a)f(t — a)] = e F(s) = e L{f ()}

=L {(s—;)r} = et {slr} - eajt(ir—__:)!

M(S)_ r d; + n G
N(s)  “1=1(s—a))! =2 (s-a)

Now by ‘A’ we have

Then taking laplace inverse on both sides

£ {%} - L_l{ 7=1(s—d;1)l} + L_l{ i=2 (sf;,-)} =X L7 {(s aJ)l} Li= {(s_a,)}

M(s) S AN o L VMO aye AN (O]
:>L {N(S)} 21:1(1_1)!11ms—>a1 (ds) [(S a]) N(S) 1 +2 =2 llms—>a,(s al) N(S)

M(s) M(a;) 1 a1 M(s)
= LTHF(s)} = L {N(S)} 2 €t LG { s —aY N(s)}eajt

s=ay

EXAMPLE: (UoS; 2018 - 1)

Using Heaviside Expansion theorem evaluate £-1 { (s_s:)zzsg}

Solution: Given that F(s) = has a pole at s = 1 of order<2’ and at s = 0 of order ‘3’

1)2 3

Then in terms of Partial fraction we will be as follows

F(S)—(S 1)2+(s 1)+ + +

Now using Heaviside formula

. . 2 . 2
d, = lim,_, ,[(s — D2F(s)] = lim,_,, [(s — 1)? (s_s:)zss] = lim, [%] _3
. d . d[
dz = limg_ ;- [(s — D?*F(s)] = lim,_, ;- [(s — 1)?

s+2
(s—1)2s3

= time 222 = -

3 Ss+2
(s—1)2s3]
dJ 3 s+2 ]

1. i 3 T a o oTe
cy = hms"”ds [s°F(s)] = llms_,gds 5" Gonzs

= lim,_,[ 2] = 2

¢y = lim,_, o [s°F(s)] = lim,_,[s ="

. d|[ s+2
= llmsﬁga m] =5

c3 = %lims_,(;;—:z [s3F(s)] = llims_,a;—:2 [53 ﬁ] = Elims_,(,% %] =8
= LHF()} = f(1) =diL™ {< 1)2} +d L {(sil)} +e L™ {s%} + L7 {siz} +es L7 {%}

2
= L YF(s)} = f(t) = 3te' — 8e' + 2% +5t+8=(3t—8)e' + (t? + 5t + 8)
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EXAMPLE: Using Heaviside Expansion theorem evaluate L‘l{ ! }

s2(s2+2as+b2)
1 _ 1
s2(s2+2as+b%)  s2(s—s1)(s—s3)

Solution: Given that F(s) = has simple poles at

S = §51,5 = S, and a pole of order ‘2’ ats=0
Then in terms of Partial fraction we will be as follows

_ 1 _ 1 _dy  dy 1 2
F(S) T s2(s2+2as+b2)  s2(s—sp)(s—sp)  s2 T s t+ (s—s1) t (s—s2)

Where we take s; = —a — if8 , s, = —a + iff then s;s, = a? + f? = b?

Now using Heaviside formula

1

s2(s—s1)(s—s2)

ool =7

d, = lim,_,[s*F(s)] = limg_,, [sz ] = lim,_,,

T i 2 _1s i 2 1 T i 1
dz - llms_’ods [S F(S)] ) | llmsﬁods [S sz(s—sl)(s—sz)] ¥ llrns_wds [(s—sl)(s—sz)]
d [ 1 ] — lim -(25+2a) _ -2«

d, =lim,_,,— |-—— _E ST N W
z 520 gs [s2+2as+b2 s_)o(s2+2as+b2)2 b*

. . 1 . 1
C1 = lll'lls_,s1 [(S 3 SI)F(S)] = lll‘l'ls_)s1 [(S = Sl) m] = llrl'ls_,s1 [m]

1

c{=—————
17 512(s1-s2)

. . 1 . 1
cz =limg_;, [(s — 52)F(s)] = limg_s, [(S —52) m] = limg_,, [m]

c, = 1
27 532(sy-51)

Now as s; = —a — iff = /a2 + f2e™ % = 5,2 = (a? + B?)e 2 = p%e2i0
S, = —a+if = a? + p2e'f = 5,2 = (a?® + f?)e?? = b?e?® then

S1— S = —2ip
1 210 1 e2i0
Then (e s12(s1-57) = — 2ib28 and Cy = $22(sp2—51) - 2ib2pB
-1 _ _ -1f1 -1(1 -1 1 -1 !
= LHFE) = (0 = dit™ {5} + do L {+ et {75} + el )

— t 2a t 2a e2if e~2i0
> L 1{F(S)} = f(t) = b_2 - F + c1eslt + cZeSZt = ﬁ - F - Zibzﬁ' s1t + mesﬁ
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EXAMPLE: (UoS; 2015 —11)

Find the general solution of the differential equation evaluate

y'(@®) + Ky = f(©)
Solution: Given that y"(t) + kK2y(t) = f(t)

= L{y" (D)} + K2 L{y()} = L{f(D)}
= s2Y(s) — sy(0) — y'(0) + k*Y(s) = F(s) = s*Y(s) + k*Y(s) = F(s) + sy(0) + y'(0)

c1+cas+F(s)
s2+k2

= Y(s) = where we use y'(0) = ¢4, y(0) = c,

Now = £71{¥(s)} = y(8) = £ {2} + £ {2} + 0 (5}

s24+k2 sZ4 k2 sZ4+k2

_ _ k _ —1 { F(s)
= L) =y® = L g+ e w0 )
= LYY (s)}=y(t) = C—kl.S'inkt + c,Coskt + %Sinkt * f(t)

= y(t) = L Sinkt + c,Coskt + [, et Sink(t — )f (§) d§

EXAMPLE: (UoS; 2017 -1, 11)
Slove the IVP  y"(t) +ty'(t) —y(t) =0 with y(0) = 0,y'(0) =1
Solution: Given that y'®)+ty'(t)—yt)=0

= L{y" ()} + L{ty (D} ~ Ly(D)} = 0
= s2¥(s) - sy(0) —¥'(0) + (— 1) LY (D} — ¥(s) = 0

= s2Y(s) — 1 — (di) {sY(s) —y(0)} —Y(s) =0

where we use y(0) = 0,y'(0) =1

= s?Y(s)—1—sY'(s) = Y(s) = Y(s) =0 where we use y(0) = 0,y'(0) = 1
_e2 s2
> V'(s) + == ¥(s) = — ¢ this will have in I F = s%e” 7
1 s? 1
Thus:>Y(s)=s—2+ce7:>Y(s)=S—2 whens - co thenc =0

Now = LYY (s)} = y(t) = £ {lz} > y(t) =t
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EXAMPLE:

Slove the IVP  u"' — au = f(t) with u(0) = uy, u'(0) = u4
Solution: Given that u' —au = f(t)

= L{u"} — aLl{u} = L{f ()}

= s2U(s) — su(0) — u'(0) — aU(s) = F(s)

= s2U(s) — suy —uy —al(s) = F(s) where we use u(0) = ug, u'(0) = u,
= (s?2 —a)U(s) = F(s) + sug + u,

F(s) 1

=>U()— _ U

"s2-a

N0W=>L‘1{U(s)}=u(t)= {F“)}+ uoL |-

—a} + ulL_l {szl—a}

= LHU() = u(®) = L) sy ok o} + oL 1 z_(sﬁ)Z}Jf%L_l{sz_&f}

= u(t) = \/%L‘l{f(t) * Sinhv/at} + ugCoshat + %Sinhx/at
1t ot e .
= u(t) = ﬁf;e st Sinha(t — &)f (§) d§ + uyCosh/at + %Slnhx/at

MELLIN INTEGRAL TRANSFORMATION:

For a well behaved function ‘f’ Mellin Integral Transformation is defined as

M{f(0):s} = f*(s) = [, f(Odt

INVERSE MELLIN INTEGRAL TRANSFORMATION:
For a well behaved function ‘f’ Inverse Mellin Integral Transformation is

defined as

M Yf*(s):t} = — r+‘°°f (s)t~5ds ;t> 0;1 = R(s)

r—ioo
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THE LAPLACE INVERSION INTEGRAL
or THE FOURIER MELLIN INTEGRAL
or DERIVATION OF INVERSION INTEGRAL

STATEMENT :
If £(t) is inverse Laplace Transformation of F(s) and all singularties of F(s)

in the complex plane ‘S’ lie to the left of the line x = y then
ft) = zim limg_, f;’:‘; eStF(s)ds
Proof:
Draw the line x = y in the ‘S’ plane and mark the points A = (y, R) and
B = (y,—R) on this line and draw a semicircle S of radius R to the right of the
line x = y. Let C = AB U S be the closed contour consisting of the line

segment AB and S.

Ty-lms

(¥R
A

? x=Res

5 (%R

Let the function F(z) = fooo e 2 f(t)dt is an analytic function on and within

- -

the contour C. if ‘s’ is any point inside C then by Cauchy Integral Theorem
F(s) = 5= “2dz > F(s) = ;- § = [, e f(t)dt dz

= F(s) = 2_11'if0 f [gﬁ Z—_se‘”dz] dt interchanging the order of integration.

1 o) —zt Be %t 1 foe) B e %t .
> F(s)=o—J, f(® [f—siTst-l_fA ZTst] dt=—[ f®J, szdZdt by Jordan’s
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-zt y+iRe % y+ico e™%t
Alsof —dz =limp_o, [,_;p — oo 75 42
S F(s) == [ f® [0 dzde = = 7 f(0) [0 dzde
= F(s) = %f;’tf[fw e 7t f(t)dt] ;dz again changing the order of integration.
Y+ioco F(z)
= F(S) = ﬁfy—ioo Edz
_ y+ico _ y+ioo
> LYF($)} = f(O) = - [ F@)L {Zhdz = — [ e F(z)dz
= L7YF(s)} = £(©) ——f}ii;’f’ et F(s)ds = o —limp_, [/ eF(s)ds

SPECIAL CASE:
Now suppose F(s) has poles only to the left of the line x = ReS = y then we

can enclose all those poles in a contour C on the left of x = y then
1 1 .
= f(t) = ﬁfﬁce“F(s)ds = %Zj(Zij) =YiR;

where R; = residue of e*'F(s) at the poles s = s

EXAMPLE:
Use Laplace Inversion Intgral (or Rasidue method) evaluate £7* {53”52”}
g J s2(s2+1)
Solution:
3 2 3 2
Given F(s) = 2241 - 291 s simple poles at s = +i and a pole of

s2(s2+1)  s2(s+i)(s—i)
order 2’ats =0

1 dn—l

Now using R(f, a) = llmsﬁamm [(s — a)"estF(s)]

d d 3+252+1
R(f, 0) - 0 - llms—>0d [S eStF(S)] - llms—>0d [SZeSt'SSZ(SZS_l_l) =

s3+2s52+1
s2(s+i)(s—i)

R(f,i) = Ry = lim,_;[(s — i)e’tF(s)] = lim,_, [(s — et

R(f,i) =R, = oy Lol pit
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st s3+2s52+1
s2(s+i)(s—i)

R(f,—i) = Ry = limy_,_;[(s + De*F(s)] = lim,_,_; | (s + De

1+i —it

R(f —l)—Rz—Z—e
_ _ -0 g I+ g
ﬁf(t)—ZjRj—t‘l‘Zie te

= f() =R =t + % (Cost + iSint) + % (Cost — iSint)

= f(t) =XjRj =1t + Cost + Sint after solving.
EXAMPLE:

. > -1 2s+1
Use Laplace Inversion Intgral (or Rasidue method) evaluate £ {S (s2+1)}

2s+1 9 2s+1
s(s241)  s(s+i)(s—i)

Solution: Given F(s) = has simple polesat s = 0, +i

n—1
Now using R(f,@) = lim,_, 11), (s — @)"etF(s)]
. . 2s+1
R(f,0) = Ry = lim,_[se’ F(s)] = limg_,, [se“.s(:zﬂ) =1
2s+1

R(f,D) = Ry = lim,_[(s — DeStF(s)] = lim,_q (s - Dest

1+2i
elt
-2i

s(s+i)(s—i)

R(f,i) = R, =

2s5+1
s(s+i)(s—i)

R(f,—i) = Ry = lim,__;[(s + De*F(s)] = lim,_,_; (s + De

=-2i _
R(f,—i) =R, = e

1+Zl lt 1—Zi _it

= f() =2jRj=1-——e" ———e
=>f()=XjRj=t- 2 iSint)
= f(t) = X;R; = 1+ 2Sint — Cost after solving.

74
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EXAMPLE:

Use Laplace Inversion Intgral (or Rasidue method) evaluate £71 {sz (; 1)}

Solution: Given F(s) = ﬁ has simple pole at s = —1 and a pole of order ‘2’ at s = 0

1 dn—l

s—a Gropy asni LS — @)"e*F(s)]

Now using R(f,a) = lim

. d . d 1
R(f,0) = Ro = lim_o 5 [s2e"F(s)] = lim, o 5[ s%e*. 5| = £~ 1

= - 1 1 B
R(f,—1) = Ry = lim,__4[(s — De*F(s)] = lim,_; (s + D). e 5| = e™*

Now = f(t) = YjRj = Ry + R4

In order to find a solution of linear partial differential equations, the following
formulas and results are useful.
If Llu(x,t)] = U(x,s) then

L{Z—':} =sU(x,s)—u(x0)

L{az—u} = 5% U(x,s) — su(x,0) — u,(x,0)

at?

L{%} =s"U(x,s) —s" tu(x,0) — - .......—su,_,(x,0) —u, _ (x,0)
Similarly, it is easy to show that

u 2u 2 1Y) n
L{g—x}=% Ulx,s), L{%}z%U(x,s), ................. " L{Z?}za%U(x,s)
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EXAMPLE:

Use Laplace Transformation method to solve BVP

?u du

ﬁ—5,0<x<a, 0<t<ow

u@0,t)=1, u@,t)=1 ;t>0 ,u(x,0) =1+ Sinnx
Solution:

2 2 2
Given a—u=a—u=>12{a u} =£{a—u} :%U(x,s) =sU(x,s)—u(x,0)

ox2 at dx2 at

2
= ;?U(x,s) =sU(x,s)— (1+ Sinnx)

:%U(x,s)—sU(x,s) =—1-Sintx ....cee...e. @)
Which is non — homogeneous 2" order DE with solution

Ulx,s) =U.(x,8) +U,(x,s)  .ceeennnnn. (i)

For Chractristic (auxiliary) solution

()= D?*-s5U(x,s) =—1—-Sinnx=>D?*—-s=0=>D = +/s
Then U.(x,s) = cle\/gx + cze“/gx

For Particular solution

. —-1-Sinmx _ —e%* . em™ -1 Sintx _ 1 Sinmx

Consider Up(x' s) = D2—s  D?-s tmg D2—s  0%-s (im)?-s s -m’-s
1  Sinnx
Then U, (x,s) = St
(i) > U(x,s) = U (x,s) + Uy(x,s) = cle\/;x + cze“/gx + % + ‘:?f:
_ Vsx —/sx 1 Sinmtx
= U(x,s) = c,eV* + c,e Tt e (iii)
Now using BC’s
w(0,t) =1 L{u(0,6)} = L{1 = t°} = U(0,s) = 1
u(L,)=1>Lu1,)}=L{1=t)=U(s) = 1
1 1 Sin(0) 11

(i) =>U0s)=-=cie®+ e’ +-+ "=+t = =>c=—0
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=1_ ¢ e ~Vs(1) 4 1 Sinm Vs ~vs 4 1_1_
(ul)=>U(1,s)—s—c1e + c,e tot o> e’ + e + o S—O

= cle\/g + cze‘“/E =0= —cze‘/g + cze“/g =0 5 Cp = —Cy
= cle™VS—e’|=0>¢,=0, [eV*—e| %0

$C2=O$C1=O S Cp = —Cy

Sinnx

(iii):U(x,s)=%+ "1 =¢6=0

l+s

= L YHU(x,s)}=L1 E} + L1 {Sinnx} =L£1 E} + SinmxL™1 { ! }

m2+s s—(-m?)

s>u(xt) =1+ Sinmxe ™t required solution.

EXAMPLE: (UoS; 2017 — I1)

Use Laplace Transformation method to solve BVP

u, (x,t) = a®u,, (x,£);t>0,x>0

u(x0)=u;,(x,0)=0, u(0,t) = f(t) ,lim,_,,u(xt)=0
Solution:

Given u, (x,t) = a’u,, (x,t) = L{u,} = a*L{u,,}

2
= s?U(x,s) — su(x,0) —u,(x,0) = azaa?U(x, s)

aZ
ax2

aZ

= s2U(x,s) — (0) — (0) = a® o2

U(x,s) = s?U(x,s) = a*—=U(x,s)

a? 52
= SU(xs)—5 Uxs)=0
This is Homogeneous DE of 2" order therefore
SZ

2
> (D?-5)U(xs)=0>D* -5 =0=D =1

Then U(x,s) = cleix + cze_ix ............ ()
Now using BC’s
u(0,t) =f(t) > L{u(0,0)} = L{f(t)} = U(0,s) = F(s)

lim,,,u(x,t) =0= L{lim,_,,u(x,t)} =0=lim,_,U(x,s) =0
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(i)=U(0,s) =F(s) = clei(o) + cze_i(o) = c;+c, =F(s)

() =lim,_, U (x,s) =0 = lim [clezx + cze_zx] =c,e° + ce”®
=>c; =0 then c, =F(s) ~ €1+ cy =F(s)

Thus (i) = U(x,s) = F( s)e‘ix

> L {U(x,5)} = £ {F( s)e‘i"}

a

cueo=n(eDr(e)  ween(e-Yr(eD=[0, L

EXAMPLE:

Use Laplace Transformation method to solve BVP

U (x,t) = a’u,, (x,t) — g

ux0) =u,(x,00=0, u(0,t) =0 ,lim,_,,u, (x,t) =0

Solution: Given u,, (x,t) = a’®u,, (x,t) — g = L{u,} = a*L{u,,} — gL{1}

2

= s? U(x,s) — su(x,0) —u,(x,0) = aZ%U(x, s) —%

2 _ _ _ 29 _9
=>s“Ulx,s)—(0)—-(0) =«a o2 U(x,s) -

2 _ 29 _g
=sU(xs) =a o U(x,s) |

9% s? _ 9 .
:JU(x,s)—; U(x,s)—azs ............ (i)
Which is non — homogeneous 2" order DE with solution
Ulx,s) =U.(x,s) +U,(x,s)  .ceernnnnn. (i)

For Chractristic (auxiliary) solution

S2 S

2
> (D?-5)U(xs)=0>D* -5 =0=D =1

s s
Then U.(x,s) = c,ea" + cye "
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For Particular solution

|

H —_ azs — m — llz
Consider U,(x,s) = inier- e
(lz llz (lz

N[«
I

79

(ii) = U(x, S) = Uc(x, S) + Up(x, S) = cleEx + cze_Ex — ;%

9

s
x—_

S
= U(x,s) = c,ea” + c,e’a 3

Now using BC’s

u0,t)=0=L{u(0,t)}=0=>U0(0,s)=0

lim,,,u, (x,t) = 0= L{lim,_, u, (x,t)} =0 = lim,_,, % U(x,s) =0

(iii) = U(0,s) = 0 = c,e° + c,e™° —;% =>c1+cy =

. i) . s 5 s ¥ S s s _
(iii) = lim,_, —U (x,s) = 0 = lim [cl—eax —=cye ax] =c,-e* +cy-e
ax X—00 a a a a

s3

[ee)

=>c1§e°°=0=>c1=05ince§e°°¢0, then C2=3 ~CFTC=3
Thus (iii) = U(x s)=£e_§x—£
) S3 S3
1 _ 91,05 2 _ 9 ,p-1( 20
> L {U(X,S)}—Z!L {e 's2+1} 2![’ {SZ+1}
2
g X X 9 42
:u(x,t)—EH(t—;)(t—;) _E(t)
_g x x 2
:u(x,t)——[H(t—;)(t——) —(t )]
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EXAMPLE: (UoS; 2017)

Use Laplace Transformation method to solve BVP

U () =u,; (X, 6);t>0,0<x<1

u0,t)=0=u(1,t), u(x,0) =Sinnx ,u; (x,0) = —Sinnx
Solution:

Given u,, (x,t) = u; (x,t) = L{u,,} = L{uy}

2

> 2 U(xs) = s U(x,s) — su(x,0) — u,(x,0)
2

= :711(76 s) = s> U(x,s) — sSinmtx + Sinmx

= % U(x,s) — s> U(x,s) = —sSinmx + Sinmtx ............ (i)
Which is non — homogeneous 2" order DE with solution
Ulx,s) =U.(x,s) +U,(x,s)  .ceereenn. (i)

For Chractristic (auxiliary) solution

= (D2 -s)HU(x,s) =0=>D?—-s2=0=>D = +s

Then U.(x,s) = c,e* + c,e™%*

For Particular solution

Consider
(1-s)Sinmtx _ elmx _ _ Sinmx . Sinnx
(x s) = a2 = =(1- s)lmg i =(1 )(m)2 — =(1-y5) —
_ (s—-1)Sinnx
p(x S) o nl+s
(i) > U(x,s) = U (x,s) + Uy(x,5) = c1€°* + c,e™* + %
= U(x,s) = c,e** + c,e™* + (s~ 1)Sinmx (iiii)
f 1 2 w2ts | ctceeseeeces
Now using BC’s u (0,t) = 0= L{u (0,t)}=0=>U(0,s) =0
u(1,t)=0=>L{u(1,)}=0=>U1,s)=0
P _0 , (s—D)Sinm(0) _ _
(ilii) > U0,s) =0=c1e’+ e’ +———=>c1+c,=0=>¢cy = —;

ml4s
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(s—1)Sinm
n2+s

S

(iii) > U(1,s) =0 =c,e° + c,e7 5 + >ce+ce*=0=>ce’—cie*=0

>ci(eS—e ) =0>c;=0as(eS—e ) #0=>¢c, =0

Thus (iii) = U(x,s) = (s=1)Sinmx

w2+s

=>L-1{U(x,s)}=5innx1;—1{ s }—Si"”"L—l{ il }

s24m2 8 s24m2

Sinntx

Sinntt = Sinntx [C osttt — Sinnx]

= u(x,t) = SinmxCosmt —

EXAMPLE: (UoS; 2019 1)

A uniform bar of length ‘U’ is fixed at one end. Let the force

f(t) = {0 Y P be suddenly applied at the end = [, if the bar is
fo t>0

initially at rest, find the longitudinal displacement for t > 0 using Laplace
Transformation the motion of bar is govern by the differential system

u,; = a’u,,;t>0,0<x<1anda is constant.

u(x,0) =u(0,t) =u,(x,0) =0, u,(lt)= % where E is constant.
Solution:

Given u, (x,t) = a?u,, (x,t) = L{u,} = a?L{u,,}

2
= s? U(x,s) — su(x,0) —u,(x,0) = aZ%U(x, s)
2 2
= s2U(x,s) — (0)—(0) = azaa?U(x,s) = s?U(x,s) = a2;7U(x,s)

9?2 52
= SU(xs) -5 Uxs)=0
This is Homogeneous DE of 2" order therefore
SZ

2
=>(DZ—%)U(x,s)=O=>DZ———O=>D=i§

a’

Then U(x,s) = ciea” + c,e”a ... ()
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Now using BC’s
u0,t)=0=L{u(0,t)}=0=>U0(0,s)=0

_fo _ rffo ad _Fo
w, (L) =L (0} = L{F} > U (Ls) =2
(i) =>U0,s) =F(s)=cie®+ce%=>¢c,+c; =0 ¢ = —¢4
Then U(x,s) = cied” — c,e”a" ............ (i)

a _ s Ex s —Ex

= aU(x,s) =ci-es +ci-e

. d _Fo
Then using aU (I,s) = — We get

Fo

i) F() ) i_x ) —ix
=>£U(x,s)=F=c1;ea tei-ed =c =
.. F s _s
Hence (ii) > U(x,s) = ————. (eax —e ax) —
E(zea +—e5>

Taking Laplace inverse on both sides

R
Fo (ea e )

u(x,t) = L‘l{

which is required longitudinal displacement for t > 0
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THEOREM: Let f (t) be a piecewise continuous function for t > 0
and of exponential order. If f (t) is periodic with period T then show
that

1

LUf ()} =—=, e f (t) dt
PROOF: By definition, we have
L{f ()} = [, e f(t)dt

LU ()} = [y e f(e)de+ e f(t)dt
In the 2" integral on the right put t =u + T = dt = du

LF@N=[, et f@E)dt+ [ e T fu+T)du

LFN =/, et fi)dt+eT ["e™ f(u+T)du

Since given functionis periodic with period T therefore f (u+T ) = f (w)
LUf ()} = fy et f(t)dt+e™T ["et f(u)du

Lf (O} =[] e f(t)dt+e T L{f (u))

LF (O} =[] et f(t)dt+e T L{f ()}

1 —e"NL{f ()} = [, e f(t)dt

L{f (t)} = 1_2_sT fOT e St f (t) dt As required the result.

THEOREM: If L{f (t)} = F(s) then £{L2} = [ F(s) ds

PROOF: By definition, we have

LIf (&} =F(s)= [, e f(t)dt

[ F(s)ds = ["[f, et f(t)dt]ds integrating.
JF(s)ds=[f@®[f e tds|dt  changing the order of integration.
[T F(s)ds = ["f (t) e_—tt|:° dt = [/ 1O estar = £{ L9}

Hence L { Ltt) } = ["F(s)ds
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FOURIER TRANSFORMATION AND INTEGRALS

WITH APPLICATIONS

FOURIER TRANSFORMATION: If £ (x) is a continuous, piecewise
smooth, and absolutely integrable function, then the Fourier transform of
f (x)with respect to x € R is denoted by F (k)and is defined by

Fif )= Fk)= X (x) dx

1 (0]
— | e
V2T _L
where K is called the Fourier transform variable and exp (—ikx) is called the
kernel of the transform.

Then, for all x € R, the INVERSE FOURIER TRANSFORM of F (k) is

defined by

FUFUW}=f(x)= T F (k) dk

1
=
CONDITION FOR EXISTENCE OF FOURIER TRANSFORMATION
Fourier Transforamtion and Inverse Fourier Transformation exist if

(i)  The function f(x) or F(k) is continuous or piecewise continuous over
(—o0, o0) and bounded.

(i)  The function f(x) or F(k) are absolutely integrable i.e.
IZ If()ldxor [ |F(k)|dk this condition is sufficient for

existence of Fourier Transforamtion and Inverse Fourier

Transformation.
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Example: (UoS; 2014 — 11, 2015 1)

K2
Show that for a Guassian Function F {Ne "} = \%e(_a) ;a>0,Nis

constant.

Solution. We have, by definition

FUf (0= =/ ™ f (dx = = [ e e dx

ikn2 Kk 2

ik
FIf () = A2 etoaet ax = 2 ool v | g

Consider ikx — ax?

K2 a2
"4a ,o0 — _k ikx
Ff 0} =22 7 e 0 ax ae )
Puta(x—%f:PZ:\/E(x—z—) P=>\/_dx—dP:¢dx—d\/—I_J =‘a+(€2_|;)_2?()2_k)2]
K2 o2 K2 K\2 k2
Ne 4a [ee] —a X—% _ I\Ie_E oo _PZ d_P :_a[(x_i) +m]
=>F{f O} =—"7 —J_ . € (v2) dx = mf_w 7

SFf@}="—vr «[%ePdP=Vm

S F{f () = F Ve ) = Lol

Example: Find the Fourier transform of a box function

oo ={y
Solution. Let we have, by definition

Ff (0} = %f_"; el f (x)dx

Ff 0 == [[T2e™ f()dx+ [° e f (x)dx + [, e f (x)dx]

F{f ()} = E [ oe™ 0dx+ [ e’ 1dx+ [~ e** . 0dx]

x| <aor —a<x<a
, |X| > a

_ 1 ra i _ 2 (eka_e7tkaN (2 (Sinak
FUf () = 5= /%o dx = = () = ()

i
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Example: (UoS; 2013, 2014)

a

Find the Fourier transform of g(x) = —

Solution. Let we have, by definition

1 (° ikx — 1 (™ ikx _3
T{g(x)} - mf_oo e g(x)dx - mf_oo x24q2 dx
a el . ‘v? with ¢7°
Fl{g(2)} = Efﬁcm replacing ‘x’ with ‘z

elkZ — elk(x+ly) — elkx.el ky _ elkx.e—ky >0 as y - 0= elkZ >0:k>0

Similarly e** - 0 ;k <0 when y » —

'kz

Let g(z) = 5—5 = z = +ai are the simple poles of g(z)
- 1 ar! _ \npst
Now using R(f, a) = llmsﬁa( S [(s — a)"e*' F(s)]
N Ny | elkZ . eikz _ eik(ai) _ e—ak
R(g' ai) = Ry = lim,_4(z — ai) (z-ai)(z+ai) ;E{zll (z+ai)  2ai  2ai
Similarly
N 1. ] eikz . eikz _ eik(—ai) _ eak
R(g —ai) =R, =lim,,_,(z + al)m - ;LT: (z-ai)  -2ai  -2ai
Now = F {g(x)} = — gﬁﬂd = ——.2miY;R; = —.2mi[R; + R;]
g\x ¢ a2 Z—m. M j ]—m TR 2

Now we use 2mi for the contour as a semi circle in upper half plane and —2mi

for the contour as a semi circle in lower half plane

> F{gx)} = F [(2mi)R, + (2Wi)R,] = \/2_. 2mi[R; — R, ]
> F (g} = = 2mi| S+ S| = \[ ek 4 gak]
=>7-'{9(36)}—}[ alkl + galkl ] ~k>0k<0=|K =

= F {g(0) = [3.26°K = VZmeeH
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PROPERTIES OF FOURIER TRANSFORMS

LINEARITY PROPERTY: THE FOURIER TRANSFORMATION F IS
LINEAR.

Proof. Let u (x) = af (x) + bg(x) where a and b are constants.

We have, by definition
Flu (@} ==/ e u(xdx = rf e [af(x) + bg(x)]dx

Flu@} ==/, "™ fOdx+ ﬁ I e g(x)dx
Flu®)}=aF{f(x)}+bF {g(x)}
F{af(x) + bg(x)} =aF {f(x)} + bF {g(x)} hence proved.

LINEARITY PROPERTY: THE INVERSE FOURIER TRANSFORMATION F-1 IS
LINEAR.

Proof. LetU (k) = aF(k) + bG(k) where a and b are constants.
We have, by definition

FLU (0} = 5= e ™ Ulodk = = [ e [aF(k) + b6 (K)]dk
FHU (0} = 2= [, e ™ Fllodk + == [ e G(k)dk

F-1{aF(k) + bG(k)} = aF 1 {F(k)}+ bF 1 {G(k)} hence proved.

SHIFTING PROPERTY: Let F {f (x)} be a Fourier transform of f(x). Then
(i) FI[f(x - a)]=e*F(k) where‘a’isa real constant.

Proof. From the definition, we have, for a> 0,

FIf (x — @)] = =%, ™ f (x — a)dx

Putx —a=x" =>dx =dx' alsoas x - +oo then x’' » 4+
! / / 1 ®© ikx/ i ! /
FIf (x — @)] = =[5, e &0 f ()dx' = =7 e e f (x)dx

Flfx —a)] =€ -Ff_oo e f (x)dx' = " F {f (1)} = e™ F(k)
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(i) F[e™f(x)]=F(k+a) where‘a’is areal constant.
Proof. From the definition, we have, for a > 0,
Fle™ f (0)] = 5= [, e e f (x) dx = 5= [ el0+@x f (x) dx = F(k + @)
SCALING PROPERTY: If F is the Fourier transform of f, then

Flf (cx)] = ( ) F (—) where c is a real nonzero constant.

Proof. Forc # 0 we have F[f (cx)] = e®™ f (cx)dx

L% e
Flf (0] = =" e M) p eyt ot Lo o) fnaw =1k

Sincec # 0theneitherc< Oorc> 0

1
c’

-
A

lfc> 0then F[f (cx)]=—F () Ifc< Othen F [f (cx)] = —F ()

Hence ¥ [f (ex)] = G ) ()

CONJUGATION PROPERTY: Let fisreal then F (k) = F (k)
Proof. Since f is real therefore f (x) = f (x) then by defination

F(k)=F[f(x)] = mf— e f (x)dx

FIO) =F[f®)] = =/, e F@dx === W% f (x)dx = F (—k)
Hence F (—k) = F (k)

ATTENUATION PROPERTY: (UoS; 2015 - 11,2018 - 1)

For a function f (x) the resultwillbe, F [e**f (x)] = F (k — ai)

Proof. By definition F (k) = F [f(x)] = e™ f (x)dx

e

Then F [e®f (x)] = X @aX f (x)dx = kx g-i*axf (x)dx

ﬁffooo
F [e™f (x)] v— [ eltemadx £ ()dx .......... ()

Also F (k—ai) =F[f(x)] =

lk
e

1 O ik—ai)x .
\/T—ﬂf_ooe (k=abx £ (x)dxX .......... (ii)

Thus from (i) and (ii) F [e**f (x)] = F (k — ai)
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MODULATION PROPERTY(i): F [Cosaxf (x)] =[F (k+a)+F (k- )]

Proof. By definition F [Cosaxf (x)] = F [( — e ) f (0]
F [Cosaxf (x)] = [ F (e f ()} + F {e™* f (0)}] = ; [F (k+a) +F (k- a)]

MODULATION PROPERTY (ii):  [Sinaxf (x)] = %[F (k +a) — F (k- )]

Proof. By definition F [Sinaxf (x)] = T[(e —- mx)f(x)]

F [Cosaxf (0)] = [ F (e f (1)} - F {7 f ()] = = [F (k + @) - F (k — a)]

ROPERTY: if f (x) isreal and even then F (k) is real.
Proof. Since f is real therefore f (x) = f (x) ...()and f (—x) = f (x) ...... (i)
then by defination

F (k) =F[f@)] = = [ " f ()dx =2 [ e f (~x)dx
F (k) — %fm e—lkXI f (xr)(_dx/) — \/T—T[f_oo e—lkXI f (xr)dx/

Hence F (k) = F (k) then F (k) is real.

ROPERTY: if f (x) isreal and odd then F (k) is pure imaginary.
Proof. Since f is real therefore f (x) = f (x) ........... (1)
andisodd f (—x) = —f (x) ......... (ii) then by defination

F (k) =F [f)] = o= e™ f ()dx = == [ e (—f (~x))dx
F (k) =F[f(0)] = =" €™ f (-x)dx
Fk)=—[ "™ f(x)(~dx') = =" e ™ f (x)dx’

Hence F (k) = —F (k) or F (k) = —F (k) then F (k) is pure imaginary.
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ROPERTY: if f (x)is complex then F [f(—x)| = F (k)
Proof. by definition

FF0)] = =7 e F=x)dx = = [ 7 &) @) (—dx")
F (] = 22 [ e Fadx' = = [, e Fa’
Flf(—x)] = if_oo e & f(x)dx replacing x’ with x

FF0] = =[5, e** f(x)dx =F (k)
Flf(—x)| =F (k) as required.

DIFFERENTIATION PROPERTY (higher derivative theorem):
Let f be continuous and piecewise smooth in (—oo, ). Let f(x) approach

zero as |[x| - oo. If fand f' are absolutely integrable, then

FIf 0] = iOF[f (0] = (—ik)F (k)

Proof.
Flff 0] = mf_oo e'™ f' (x)dx
FIF @] = o=l f @7, e (ik) f (x)dx|

FIF 0] == [0+ (—ik) [, e f(x)dx]
FIf )] = (—lk)T [f )] = (=ik)F (k)

Forn=2
Flf' ()] = J% [ e 7 (x)dx
FIf'(x)] = [|e'kx Fool” el (ik) f’ (x)dx]

Flff(]= [0 + (—ik) [~ e™ f' (x)dx]
Flff(]= (—lk)T [f' ()] = (—ik)(—ik)F (k) = (—ik)* F (k)
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This result can be easily extended. If f and its first (n — 1) derivatives are
continuous, and if its nth derivative is piecewise continuous, then
Flf"(x)] = (ik)"F[f (x)] = (mik)"F(k) n= 0,1,2,............

provided f and its derivatives are absolutely integrable. In addition, we

assume that f and its first (n — 1) derivatives tend to zero as |X| tends to

Infinity.

CONVOLUTION FUNCTION / FAULTUNG FUNCTION

The function (f * g) (x) = =J"0 f (x — & g (§) d§

is called the convolution of the functions f and g over the interval (—oo,o0)

NOTE: The convolution satisfies the following properties:
1.f g = g * f (commutative)

2.f x (g x h) = (f » g) * h(associative)

3. * (ag + bh) = a(f * g)+ b (f » h), (distributive)

where a and b are constants.

PROPERTY:f +g =g * f

PROOF: since by definition (f * g) (x) = \/%_nf_oooof (x — &g (&dé¢

Putx — {=x >d¢=—-dxalsoé=x—x and if §{ - Foo then «x— +oo

then
f* 9@ = =["F()gx—)(-dx)= g * f
f*9@==[79x—00f () de)=g * f

Hence f x g = g *x f
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CONVOLUTION/FAULTUNG THEOREM (UoS; 2013 -1)

If F(k) and G (k) are the Fourier transforms of f(x) and g(x) respectively,
then the Fourier transform of the convolution (f * g) is the product

F (k)G(k). That is,

F{f )« g ()} = F (K)G(k)

Or, equivalently, F 1{F (k)G(k)} = f (x) * g (x)

Or

FHF (0G0} = 7= [, e ™ F (l)6()dk = (f * g) (¥) = 7=/ f (x—§) g (§) d§

PROOF: By definition, we have

FHF (KGR} = 7= [, e ™ F (k)G(k)dk

FHF (WG6(K)} = = [ e F(k) { =" el g (x')dx'} dk
By changing the order of integration

FUF (060} = 5= [, | = [, ™) F(lodk| g (x)dx’
FHF (060} = 7= [ f (x —x)g (x)dx’

FUF (OG0} = =0, f k- 9§ d§ = (f  9) (%)

Where we replace & with x’

Hence F~1 {F (k)G(k)} = f (%) * g (x)

Or F{f(x)* g(x)}= F(k)G(k)
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PARSEVAL’S FORMULA OF 1°" AND 2"° KIND (UoS; 2019 — 1, 2018 — 1)
Theorem given by Marc Anotoine des Chenes Parseval (1755 — 1836)

15T KIND: According to this formula [~ |f(x)[?dx = [ |F(k)|? dk

PROOF: The convolution formula gives

=" e F ()6(kydk = —= [ f (g (x— §)d§
Lof©gx—9ds=[" e ™ F (k)G(k)dk

which is, by puttingx = 0 5 F(®g (—§dé = ["_F (k)G(k)dk
[2.F (09 (=x) dx = [*_ F (k)G(k)dk

Putting g (—x) = f(x) theng (x) = f(—x) = F{g )} =F{f (-x)}
= G(k) =F (k) ~ F{f (—x)} = F (k) for complex f.

2o f (O () dx = [ F (IOF (k)dk
where the bar denotes the complex conjugate.

> [T IfeRdx = [ [F(W)|? dk

In terms of the notation of the norm, thisis ||f|| = ||F]||

2P KIND: According to this formula

L. F 06U dk = [ f (wg (—u)du
PROOF: The convolution formula gives

=" e F (k)6(kydk = — [ f (u)g (x — w)du

by puttingx = Oweget [ F(k)G(k)dk= ["._f (w)g (—w)du
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BOUNDEDNESS AND CONTINUITY OF FOURIER TRANSFORMATION
If f(x) is piecewise smooth and absolutely integrable function on the interval
(—o0, o) then its fourier transformation F (k) is bounded and continuous.

PROOF: given that f(x) is piecewise smooth and absolutely integrable
functioni.e. J = f_oooolf(x)ldx

now by definition F (k) = F [f(x)] = e™ f (x)dx

=J"e
For boundedness taking mod on both sides

= |F (k)| = |%—f_°; el f (x)dx| < = ™| If (x)|dx

= |F (k)| < —=— f If (x)| dx since |e*™| =1
= |F (k)| < J_ J sinceJ = [__ |f(x)]dx
= |F(k)|<A wherel=\/%_n.]eR

= F (k) is bounded.

Now for continuity of F (k) we have

F(k+h) —F (k) = = [ % f (x)dx — == [ el f (x)dx

F(k+h) —F (k) = 5= [ " (e —1) f(x)dx = I(k,h) = say
limh_)o [F (k + h) —F (k)] = limh_m I(k, h) ........... (i)

Now limy,_,, I(k, h) exists if 1(k, h) is uniformly convergent.

For this consider

= |I(k, h)| = | eikx (gihx — 1) f(x)dx|

L=
= [I(k, h)| < ﬁf_ e | |ei"™ —1]||f (x)|dx

1 00 g
= |[I(k,h)| < \/T_nf—oo (1) |Coshx + iSinhx — 1||f (x)|dx

1 00 .
= |[I(k,h)| < \/T_nf_ool(COth — 1) + iSinhx||f (x)| dx
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= |I(k, h)| < %.\/Ef_""mxh ~Coshx|f (x)| dx
= |I(k, h)| < \/iﬁf_oooo\/I — Coshx|f (x)| dx

. 1 oo ..
< — —
= }gr(}ll(k, h)| < \/Ef_oo }11_1)1(}\/1 Coshx|f (x)|dx -0
. < . _
= }gr(}ll(k, h|<0= %1_1)131(k, h)=0

(i) = limy,_o[F (k+ h)—F (k)] =0

= lim;,_y F (k+ h) = F (k) = F (k) is continuous.

Hence If f(x) is piecewise smooth and absolutely integrable function on the
interval (—oo, c0) then its fourier transformation F(k) is bounded and
continuous.

RIEMANN LEBESQUE THEOREM

If f(x) is piecewise smooth and absolutely integrable function then
lim ., F (k) =0

PROOF: given that f(x) is piecewise smooth and absolutely integrable
functioni.e. J = f |f (x)|dx

now by definition F (k) = F [f(x)] = e™ f (x)dx

Ly e
Fio = =[ros] - 105 rway

skl = | &S] -1 —f(x)dx“
= IF (0l = | %o )—| e
= IFol< = |If@Il + |- 17 S r@ay

= IF ()] < 4= limm%—limxﬁ_w ol 4 7 I @lax

Q‘

= |F (k)] < — limx_m%—limx_)_w |f|§cx|)| o LIF@IAX ...l

Q‘
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Since f(x) is absolutely integrable function then lim,_ . |f(x)| =0
(i) = |F (k)| < \/_ IkI If (|dx  ....... (i)
Since f(x) is piecewise smooth then f'(x) will be piecewise continuous and

therefore f If'(x)|dx =1

(ii) = llm |F (k)| < I=0=> llm |F (k)| =0

v: T
FOURIER TRANSFORM OF THE FUNCTION OF THE FORM [x"f(x)]

Let f be piecewise continuous on the interval [—, I] for every positive ‘I’ and

7 1x™f (x)| converges then
F [x"f(x)] =i1nF"(k) = i "F(k) n= 01,2, ..

Proof. By definition F [f (x)] = F(k) = \/_f

= F'(k) = e™ (ix)f(x)dx diff. w.r.to ‘K’

=le
= i"'F'(k) = ﬁf_w e () f(x)dx = F [xf(x)] = i"'F' (k)

= F'"(k) = e'®™ (ix)?f(x)dx  again diff. w.r.to ‘K’

Li%e
ﬁf_w e (x®) f(x)dx = F [x*f(x)] = i 2F*(k)

Continuing in this mannar we can get the required result as follows;

= i2F"(k) =

F [x*f(x)] = i "F(k) =%F”(k) = 0,12, ..
Ff(x)] = (- l)"WF(k) = 0,1,2, .

Where we use the result i™ = (—_)n = (— X )n = (i)n = (=D)"
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FOURIER TRANSFORM OF AN INTEGRAL

Let f be piecewise continuous on the interval (—oo, 00) and that

JZ If(x)] < oo also F(0) = 0 with F [f (x)] = F(k) then

FUTL f@)dx) = 2 F(k) = (F(R)

Proof. Let g(x) = [© f(xX)AX cevovervuernnes (i)

Given that F [f (x)] = F(k) = % [2 e flx)dx

= F(0) = \/%f_moo f(x)dx putting k =0 also e® = 1
= \/%ffooo f(x)dx =0 since F(0) = 0

= [° f(x)dx=0= lim 2 f(xHdx' =0= limg(x) = 0
Now from (i) we get by using Leibniz Rule

9 X)) =fx)=>F{g )} =F{f(x)} = (-ikF {g(x)} = F(k)
> F {g(x)} = —F(k)

> F g} = F {7, F&) dx} = = F(k) = - F(k)

FOURIER INTEGRAL THEOREM

(UoS; 2019 -1, 2014 —11,2015-1)

If f (x) is real valued function over (—oo, 4+00) and the integral ffooo f(x)dxis
absolutely convergent then f (x) = % Jy dk [ Cosk(x — x')f(x")dx'
PROOF: Since f_°°oo f(x) dx is absolutely convergent then F.T and I.F.T of

function exists.

f (%) = \/%_n [2 e ™ F(k)dk since F~1{F (k)} = f (%)
f(x) = J% [ [0 e ™ Fldk + [7 e F(k)dk] ............. )
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Putin 1term —k = k' = dk = —dk' also if k - —,0 then k' - o, 0
: 1 [0 ik'x ' ' © i
®) = f () = 5= [ €% F(=k)(~dk") + [, e™* F(k)dK|
1 0 i/ I} ’ 0o _:
= f() = —=f; "> F(~k)dk' + [;" e F(k)dK]

= f(x) = J% [J,” €™ F(-k)dk + [,” e™™ F(k)dk| replacing k' with k

= f(x) = 7= [; [e"F(k) + e ™ F(k)] dk ..oovvevnnn Gi) -~ F(-k) =F(k)
Consider F(k) = \/%_nf_moo e f(x")dx’

= F(k) = % [ e ' Fx")dx' taking conjugate

Then e ™ F(k) = = [ e k¢=*) f(x)dx

Also e™ F(k) = \/% [ ek Fiydx’
Since f(x) is real therefore f(x") = f(x")

Now e** F(k) + e ** F(k) = \/%_ﬂ f_oooo[eik(x—x') + e—ik(x—x')] f(x)dx’
X F(k) + e ®* F(k) = \/%_ﬂfj"oo% [eik(x—x’) + e—ik(x—x’)] f(x)dx’
e F(k) + e ™ F(k) = \/%ffooo Cosk(x — x') f(x")dx’'

(i) = f(x) = J% Iy % [ Cosk(x — x') f(x")dx’ dk

f )= [ dk [ Cosk(x — x)f(x)dx’

f(x) = % fy dk [" Cosk(x —x')f(x")dx’ as required.
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THE FOURIER TRANSFORMS OF STEP AND IMPULSE FUNCTIONS

The Heaviside unit step function is defined by

0 x<a
1 X= a

The Fourier transform of the Heaviside unit step function can be easily

H(x — a) ={ wherea>0

determined. We consider first

F[H(x — a)] = \/%ffoooeik" H (x — a)dx
1 a ; 1 o
F[H(x — a)] = \/T_nf_ooe‘k"H(x — a)dx+\/7_ﬂfa e™ H (x — a)dx
1 a ; 1 o 1 o
T[H (x — a)] = \/ﬁf—oo e‘kx 'de+\/ﬁfa e‘kx .1dx =ﬁfa e‘kx dx

This integral does not exist. However, we can prove the existence of this
integral by defining a new function

0 x<a

Hx - aje™ ={ o, *=2

This is evidently the unit step function as @ — 0. Thus, we find the Fourier
transform of the unit step function as
F[H((x — a)] =lim,_oF[H (x — a)e™*]

F[H(x — a)] = limaao\/%—nfjooo e™ H (x — a)e ™ dx

FIH(x — a)] = 1im0H0%_1T [ e e~ dx = lima_ﬂ,\/%_n [ efleax dx

1 o s ika 1
F[H(x — a)] =\/T_nfa elkx dx=\;"2_nik Fora=0= F [H (x)] = ik

An impulse function is defined by

(x)={h a—&g<x<a-+e¢e
p 0 x< a-—¢€orx=>a-+ ¢

where his large and positive, a > 0, and & is a small positive constant, This
type of function appears in practical applications; for instance, a force of large

magnitude may act over a very short period of time.
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The Fourier transform of the impulse function is

Flp ()] = 7= /7, €™ p (x)dx

Flp(x)] = =0, e p (x)dx+ =" Te* p (x)dx + =] €™ p (x)dx

Flp(x)] = - [ hetx gy = L |22
P V2nla-e 2| ik 14—
Flp ()] = \/%.i(eik(a+s) _eik(a—s))
_ h eika ik _ik _ 2he ik eiks_e—iks _ 2he ik Sinke
Flp ()] = gz G (e —ene) = Gt (=) = ret (557)

Now if we choose the value of h = (le) then the impulse defined by

at+e 1l

I(e)= [ p)dx=[" —dx=1

which is a constant independent of €. In the limitas € — 0, this particular
function p, (x ) with h = (1/2¢) satisfies lim, _, g p (x) =0 ;x # 0
andlim,_ 4,1 (e) =1

Thus, we arrive at the result § (x —a) =0, x # a,and ffooo 6(x—a)dx=1
This is the Dirac delta function

We now define the Fourier transform of §(x) as the limit of the transform of

pe (x ). We then consider

elka (Sinks) _ eika

T[(s(x — a) ] = lims%OT[ps (X) ] =lims—>0ﬁ ke V2n

in which we note that, by L’Hospital’s rule, lim, _, , (Si;::s) =1

When a = 0, we obtain Flo6(x) ] =

-
L]
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FOURIER COSINE TRANSFORMATION AND INVERSE
Let f (x) be defined for 0 < x < oo, and extended as an even function in
(—o0, ) satisfying the conditions of Fourier Integral formula. Then, at the

points of continuity, the Fourier cosine transform of f(x) and its inverse

transform are defined by

Folf () = Fe () = (217" (0) Coskudx

FlefFc(D}=f ) = \/%fooo F. (k) Coskxdk

FOURIER SINE TRANSFORMATION AND INVERSE
Let f (x) be defined for 0 < x < oo, and extended as an odd function in
(—o0, ) satisfying the conditions of Fourier Integral formula. Then, at the

points of continuity, the Fourier sine transform of f(x) and its inverse

transform are defined by

FoAf GO} = F, () = [2f7 f (o) Sinkxdx

T_ls {Fs(B)}=f(x) = \/%fooo F¢ (k) Sinkxdk
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Example: (Just read)

Show that F. {e"**} = I a2+k2 ;a>0

Solution: We have, by definition

Folf () = Fe () = (217" (0) Coskudx
0 ikx —ikx © . .
{e—aX} — \/%fo e ax (6’ +2e )dx — %\/%fo [e—(a—lk)x + e—(a+lk)x] dx
—axy 1 |2[ 1 1
Fe {e ¢ } T2 \/; [a—ik + a+ik] dx

_ 2
Fole ™) = [2(z5) 1a>0

Example: (Just read)

Show that 7, (e = [2(245) s a> o0

Solution: We have, by definition

FoAf )} = Fy () = J% f0°° f () Sinkxdx

R E N e P R e P P
Fole ™=, \F[allk—a:lk] dx
Fole = [2(g) a0

Example: (Just read)

Show that F,? {k ‘S"} \/%tan‘1 (;—‘)

Solution: To prove this we use the standard definite integral

T -1 _ 2 po0 _ . X
\ETS {e Sk}:\f;fo e~k Sinkxdk = 5 —

MUHAMMAD USMAN HAMID (0323 - 6032785)




103

Integrating both sides w.r.to ‘s’ from ‘s’ to ‘oo’

=Z—tan™! (f)
S

fooo%Sinkxdk = fooLds = |tan‘1 (f) L =3

s sZ+x?

Consequently

-1 (1,- k _S Ztan1 (X
F s \f Jy =—Sinkxdk = \/; tan (s)
Example: (UoS; Past papers)

2 a’-k?

@itz @ >0

Show that F, {xe **} =

Solution: We have, by definition
Fcelf X))} = F. (k) = \/:Etfooof (x) Coskxdx
Fc{xe ™} = \/% I} 000 xe X Coskxdx

Fc{xe ™} = \/% [|x(f e~ Coskxdx)|§ — fooo(f e *Coskxdx) dx| ........ (i)

ax

Now using formula [ e™Cosbxdx = ae+ [aCosbx + bSinbx] one becomes

Fe{xe ™} =

—ax

\/% [lxaez_w [-aCoskx + kSinkx] |0 | f0°° (ﬁ [—aCoskx + kSinkx]) dx]
Felxe ™} = [2[(0-0) + =2 [ e~*Coskxd £ [® e Sinkxd
c{xe™™} = [=1(0- )+mf0e osxx—mfoe inkxdx

\f [a2+k2
o tre ) = Eltefo- (520} - i fo - (29

e—ax |°0 k e—ax

2 [—aCoskx + kSinkx] oy T

o) [—aSinkx — kCoskx] |0 ]

—axy |2 a? k2
Fcixe ™} = /n (@2 +k2)2 + (a2+k2)2]

—ax1 _ /3' a?—k? .
Fe{xe ™} = @y kz)z] as required.
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Example: (UoS; Past papers)

Show that F, {xe %} = \ﬁ 2ak

w (a2 +k?%)2 ;a>0

Solution: We have, by definition

Fsif )= Fs (k) = \/% Jy f (x) Sinkxdx
— 2 poo - .

F, {xe ¥} = \E J, xe"™Sinkxdx

F, {xe ™} = \/%[lx(f e~ *Sinkxdx)|y — fooo(f e~ *Sinkxdx) dx| ........(J)

eax

Now using formula [ e®™*Sinbxdx = — 5z laSinbx — bCosbx] one becomes

Fs {xe™ ™} =
e—ax
a?+k? [

—aSinkx — kC oskx]) dx]

T "a?2+k2

2{|x. 5 [~asinkx - kCoskx]|:o ~ 55 (
F {xe~ ™} = \/% |(0-0) + = [ e"“*Sinkxdx + —— [, e~*Coskxdx|
7otxe ) = im0~ (o)l + 2o - GGl
O

F, {xe ™} = \/Ei ;a>0 as required.

i[—aSinkx—kCoskx]| ALE

£ e—ax
a2 +k2 0 a2+ k2

a2 +k2

[-aCoskx + kSinkx] |:]

7 (a2 +k2)2
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Example: (UoS; 2013 - 1)
Calculate Fourier Sine Transform of the function f (x) = e *Cosx

Solution: We have, by definition
F{f @)} = Fg (k) = \/% Jy f (x) Sinkxdx

F,{e *Cosx} = \Efooo e XCosx Sinkxdx = %\/%fooo e X (2SinkxCosx)dx

F{xe %%} = rf e X[Sin(kx + x) + Sin(kx — x)]dx

— — . 1 o _ .
F, {xe %} = Ff e XSin(k + 1)xdx + Efo e *Sin(k — 1)xdx
Folxe ™ =—li+=l e (i)

Now using formula [ e**Sinbxdx = [aSmbx bCosbx]

2b2

Iy = [ e Sin(k + Dxdx = |m [(~D)SinCk + Dx - (k + 1)Cos(k + Dx]|

_ _ _ (k+1)
I = [O 1+(k+1)2{ 0 (k T 1)(1)}] 1+k2+2k+1 (k T 1) k242k+2
Similarly
f e *Sin(k— 1)xdx = |m [(=DSin(k - 1)x — (k—1)Cos(k — 1)x] .
_ _ I 2 _ (k-1)
I; = [O 1+(k— 1)2{ 0— (k- 1)(1)}] 1+k2—2k+1 (k—-1) = k2—2k+2

1 [ (k+1) (k-1)
V2m Lk242k+2  k2-2k+2

(D) = Fs (xe™ ™} =

= Fs {(xe™™} = \/_[k4+4]

= Fs {xe™™} = \E [k‘li—c}]
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Example: (UoS; 2015 -1)

Calculate Fourier Sine Transform of the function f (x) = {

0<x<m
X>T

Sinx
0

Solution: We have, by definition

FoAf ()= Fy () = 2[5 f () Simbxdx

Fo {f 0} = \Efo”

F {f 0} = ﬁfo”
FoAf 0} ==/
FAf O} =]y

Sinx Sinkxdx + \ﬁ [ 0.Sinkxdx
v

Sinx Sinkxdx = J:(— —) f (—2SinxSinkx) dx
Cos(kx + x) — Cos(kx — x)] dx

Cos(k+ 1Dxdx + if” Cos(k — 1xdx

- Sin(k+1)x|™ Sin(k— 1)x
?S{f(x)}_m e m| 0
Sin(kx—x) Sm(kx+x) Sm(kn 1T) Sln(kn+1t)
Fs if 0} = \/ﬁ k-1 k+1 g m ( k+1 )_O]
SinkmCosm — CosknSint SinkmCosm + CosknSinm
?S{f(x)}:\/—[ k-1 B K+ 1
2T
F {f )} = \/—n[ imfn S:jrkl”] since Cosm = —1
Sinkn [ 1 1
Fs {f (0} =" n_k+1_k—1]
Sinkm [ k—1-k—-1
Fs Uf 0} =—% DD
Sinkn [ -2
FAf (0} == [ ]
2 [Sink
Fy {f (1)) = —ﬁ ey
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Example: Evaluate F,{x*"1} and F{x*"1}

Solution:

: S
E.od  {Woe)

T

We have by definition

F (x>} = F, (k) = \/%fooo x* 1 Coskxdx ..ccuuene...... Ip)

F,{(x* 1} = F (k) = \Efooo x*1Sinkxdx  ........n...... 5)

Firstly we calculate I, I, for this we consider the complex valued function
f(2)=z"1e ™ ; 0<x<1

Which is analytic in the closed contour I, then by Cauchy Theorem

$ f(2)dz =0

fABf(z)dz+ J. f(2)dz + f:f(z)dz+ . f(@dz=0

If € - 0, R — Othen by Jordan theorem fclf(z)dz =0, fCZf(z)dz =0
fABf(z)dz + f;f(z)dz =0

fGR x*lekxdx + f;(iy)“‘le‘k("y)(idy) =0

fooo X le=kx gy — — fog(i)oc—l(y)oc—le—k(iy)(idy)

f0°° xoc—le—kxdx — fooo(i)oc(y)oc—le—k(iy)dy

(i)—oc f0°° < lo=kx gy = foo"(y)oc—le—k(iy)dy

L ()T = Cosg + iSin ;—r)_oc = (e"g)_oc — e7iz%

e—igoc fooox “1o—kxgy = fooo(y)“_le_k(iy)dy

(60s§ x —iSing oc) J, xte**dx = [ "(y)*"!(Cosky — iSinky)dy
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Comparing real and imaginary parts
(Cosg oc) Jy 2 e~ dx = [“(y)*"(Cosky)dy

(Sing oc) fooo x*te™dx = fooo(y)“_l(Sinky)dy
Put x =y in both above
(i) = fooo x*"1(Coskx)dx = (Cosg oc) f0°° x<1e=kx gy

(i) = [, x*"1(Sinkx)dx = (Sin% oc) Jy x e **dx

Multiplying \/% on both sides of (iii)

= \/%fooo x*"1(Coskx)dx = \/% (Cosg oc) fooo x* e kxdx

= F {x*1} = ﬁ(Cosg oc) fooo x* e kxdx
14 _ |2 n w \*1 _,dt

= F {x* }_\/;(COSEOC)IO (E) e’ —
- 1 |2 o) 1. -

= F,{x* 1} =F\/;(Cos;—toc) fo ()% le tdt
-1y _ (2 4 I'(x)

=>Tc{x°< }_\/;(COSEOC)k_“

Multiplying \/% on both sides of (iv)

:\/%fooox“‘l(Sinkx)dxz\E(Singoc) Jy x e **dx
x—-17 — 2 . T © «—1,—kx

= Fs {x*71} = |Z(Sin; «) [ x* e dx
4y 1 2, m w (%1

S F, (1 }_Eﬁ(slngoc)fo ©)
- 1 |2 , o0 -1 -

= F, {(x*1} =k—o(\[;(5m12—roc) J, ®* e tdt

= F, (x> 1} = \/% (Sing oc) ri:)

s kx =

t,x

& e

etdt ~kx=tx= i

108
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Theorem : Let f (X) and its first derivative vanish as x — . If F, (k) is the

Fourier cosine transform, then F {f" (x)} = —k*F, (k) — \/%f’ (0)

PROOF: Consider f (x) is real and lim, _, .| f (x)| = 0 then

Fc{f' 0} = \/%fooo f" (x) Coskxdx

Fc{f' ()} = \E [ICoskxf’ (x)|§ — fooo f' (x) (—kSinkx)dx]|

Fe{f" (0)}) = \/% [lim, _, o Coskxf' (x)| — limy _, o|Coskxf' ()| + k [, f' (x) Sinkxdx]
Felf' (0)} = \/% [0— £ (0)+ Kk [, f' (x) Sinkxdx]

Folf" (0) = H%f’ 0)+k {J? sinkeef GOl ~ (157 F G0 (kCoskx)dx}]

Fcl{f' 0)}= l—\/%f’ (0) + k{\/% |Sinkxf (x)|g — k\/%fooof (x) (Coskx)dx}

Felf' (0} = [—ﬁf’ 0 +k {ﬁ (limy_, oo [Sinkxf ()] — lim, _, o|Sinkxf (x)]) — kF, <k>}]

Folf () = k2P )~ [2F ©)

In a similar manner, the Fourier cosine transforms of higher-order

derivatives of f (x) can be obtained.
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Theorem : Let f (X) and its first derivative vanish as x — . If F (k) is the

Fourier cosine transform, then  F {f" (x)} = \/%kf (0) — k?F, (k)

PROOF: Consider f (x) is real and lim, _, .| f (x)| = 0 then

F A" (x)} = \/%fooo f" (x) Sinkxdx

Fo A" () = [2[ISinkxf’ (15 ~ [y (0 (kCosx)dx]

FAf" (0)} = \E [lim, _, o, [Sinkxf’ (x)| — lim, _, o|Sinkxf'(x)| — kfooo f' (x) Coskxdx]

F A (0)} = \/% [0—0- kfooo f' (x) Coskxdx]|

F A" (0)}=—-k [\E |Coskxf (x)|§ — \Efooof (x) (—kSinkx)dx
F{f" 0} =

f : . JE o _
—k[ ;(llmx_,mlCoskxf (x)| —limy _, g|Coskxf (x)|) + k ;fo f (x) (Slnkx)dxl

F A" 0} =—-k l\/% (limy _, |Coskxf (x)| — lim, _, ¢|Coskxf (x)|) + kF (k)l

F A ()= [FKF©0) = K2F, (10

In a similar manner, the Fourier sine transforms of higher-order

derivatives of f (x) can be obtained.
REMARK:
> FIf"®)] = (mik)"F[f (x)] = (—ik)"F (k) n= 0,1,2,.........
> If Flu}=F{u )= o F (u(x0} = (—ik) F {u (x,t)} when ‘X’ varies not ‘t’
» When range of spatial variable is infinite then Fourier transform is used rather than
the sine or cosine.
» If boundry conditions are of the form u(0, t) = value then use Sine transform,

while conditions are of the form u,(0,t) = value then use Cosine transform,
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EXAMPLE: Solve the potential equation for the potential u(x, y) in the semi
infinite strip 0 < x < ¢; y > 0 that satisfies the following conditions;
u0,y)=0; u,(x,0)=0; u,(c,y) =f(»)

Solution: the potential equation is givenas u,, +u,, =0 ; 0<x<¢c; y>0
Since the BC’s are in the form u,(x, 0) = constant therefor we use fourier

cosine transform w.r.to ‘y’

dZ
TC {uxx} +~‘PC {uyy} =0= @TC {u(x'y)} + TC {u}’y} =0
d? 2 2 _
= ——Uc (x, k) +|-K*U, (x, k) — |-u,(x,0)| =0

dZ
== Uc(x k) - k*U,. (x, k) =0

Then general solution will be U,(x, k) = c;e** + c,e™* ............. (i)
Now using BC’s u (0,y) =0=> F A{u(0,y)}=0=>U.(0,k) =0

(i) =>U.(0,k)=0=cqe’+ce’ = ¢c; = —c,

Now %UC (x, k) = c ke** — c,ke™* ............. (i)

using BC’s w,(c,y) = f(¥) = Fclte(c, )} = () = -Uelc, k) = F(k)

o d _
(i) = —U.(c,k) = F (k) = c1ke* — c,ke~*¢

= %UC(C, k) = F.(k) = —c ke¥¢ — c,ke "¢ since ¢; = —c,
= F.(k) = _Czk(ekc + e—kc) =>cp=— Sfc(ﬁ-kc _ __F®

Zk(T) 2kCoshkc
ﬁczz_#ﬁke:’ 1:% since ¢; = —¢,
Then (i) = U.(x, k) = #(Skzkcekx _ Zki:(:(zkc e—kx

kx_ ,—kx
U.(x, k) = Fe(k) (e ° )— Fe®)_ Sinhkx

kCoshkc 2 " kCoshkc
-1 _ 1 Fc(k) -
> F: {U.(x,k)} = F {kCoshkc S mhkx}
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|2 poo F¢(k) oo SinhkxCoskx
= u(x,y) = f —<—Sinhkx Coskxdk = f Jo e F.(k)dk

o SinhkxCosk o ) L
= u(x, J’)_\ff S";CO’:,CLZSCQC[\/%]O f(y)Coskydy]dk

co SinhkxCoskxCosky’
2w =gy T e Oy dke

EXAMPLE: Solve the problem using Fourier Transformation method
U, = U, with u(0,t) =uy; ulx,0)=0;x>0,t>0,u,>0
Solution: BC’s suggest that we should use fourier sine transform w.r.to ‘x’

ad
Fs {ut} =Fy {uxx} = ETS {u(x, t)} =F; {uxx}
=2 U, (k,t) = \Eku(o, t) — K2U, (k t) = \/%kuo — K2U, (k,t)
= %Us (k,t) + K2U, (k,t) = \Ekuo ................ @)

This is 1% order, linear, non — homogeneous ODE
Therefore IF. = e/ k'dt = gk’t

(i) = ekzt%Us (k,t) + k2U, (k, t)e*"t = \/%kuoe"zt

= f L Kty dt = f\/%kuoe"ztdt + Cosntant

2 2 K2 2 52 .
= ek tUsz\/;kuoek—z+c:>Us(k,t)= ;%+ce LN (i)
Now using IC’s u(x,0) = 0= F,{u (x,0)} =0=>U,k,0)=0
(ii) > U,(k,0) = 0 = ——+ce >c=-— 1211:’

Thus (i) = Uy(k,t) = \[5”0 \[5”0 K= 1220(1 - emKY)
-1 _q -1) [2U0 g K%t
= FHU(k, )} = F { (1-e )}

= u(x,t) = \ff 2u° 1 - e ) Sinkxdk = %2 Zf (1 —e™*t) Sinkxdk
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EXAMPLE: Solve the problem using Fourier Transformation method
U; = U, Withu, (0,8) =0, u(x,0) = f(x); 0<x <o ,t>0

Solution: BC’s suggest that we should use fourier cosine transform w.r.to ‘x’

Fe ) = F (i} = L Fo (u(xy)} = Fe ()

> 2 Uc (k1) = [—szc (k,t) — \/%ux(o, )| = —k2U, (k,t) — 0
N %UC (kt) + K2U, (K, £) = 0 oo @)

This is 1% order, linear, homogeneous ODE

Then general solution will be U.(k,t) = de ¥t ............. (ii)

Now using IC’s

u(x,0) = f(x) = Ffu (x,0)} = FAf(x)} = U.(k,0) = F (k)
Thus (i) = U.(k,0) = F.(k) = Ae® = A = F.(k)

(i) = U.(k,t) = F (ke

= Fe HU(k, 0)} = Fc {F (ke ™)

> u(x,t) = \/%fooo Fc(k)e‘kzt Coskxdk

= u(x, t) = \/%fooo [\/1% fooo f(x") Coskx'dx' et Coskxdk

= u(x,t) = %fooo[fooo f(x" Coskx’dx’]e‘kzt Coskxdk
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Example: (UoS; 2017) : Solve the problem using Fourier
Transformation method u,, =u;; 0 <x <o ,t=>0

withu(x,0) = e —ax’ ;u(x),u'(x) >0 as x -

Solution: since x — oo therefore we should use fourier transform w.r.to ‘x’
Flunt = Flul

= (—ik)?F {u(x, )} = F (u(x, )} = —k2U(k,t) = L U(k,t)

1dU dau
= —=—k¥=[=-k?[dt=InU=-kt+A4

> Uk t) = e ¥t s Uk t) =ce ™ nnnnnnnnnnn. (i) where ed = ¢

Now using IC’s
u(x,0) = e = F{u (x,0)} = T{e‘“"z}

= U(k,0) = == e e dx = — [ ekx-dx
= U(k’ 0) = \/L_f_oooo _a[(X 2a 4a ] dx
Consider ikx — ax?
a ik o
= U(k,0) == i f e z) dx =-a(x*-77)
(=52 ]
ik dap =-a ) .,
Puta(x—z) —Pzﬁx/_(x—z—) P=>\/_dx—dP=>dx—ﬁ +(;_1;) _(;_1;)
_ e 4a X—l g _e 4—a —p2 dP =—a[(x—;—t)2+ﬁz]
= U(k,0) = f ( ) dx = NeT f_ ‘Ja
K2
= U(k,0) = j% Vi . [2 e P dP=+n
K2
= U(k,0) = \/%_ae< 50 e (i)

kZ
(D)= Uk,0) = ce® = ¢ = v%_e(—a)

kZ
Thus = U(k,t) = \/%_ae(_a) ek = J%_ae—kz(ﬁﬁ)
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= F YUk, t)} = :r—l{

1 e—kz(t+$) }

V2a

A 1
= u(x,t) = \/%\Ef_oom e tkx e_kz(“’a) dk

- (t + i) {kz + (t%;)} Ak eoeeeenennn, (iii)

2 2
Since k2 + = k2+2k< >+< = —( ""1>
nee Ko+ oD O\een) H oen) ~ e

2
k% — _kx — <k + L) + L
() 2(trg))  a(ed)”

1 [e'e)
= u(x,t) = \/ﬁf_m Exp

(iii) = u(x, t) = Ff Exp|—

e<4<t+ﬁ>2> o

= u(x,t) = N f_ooExp <k+2( L)
4

Now put (t+ﬁ)<k+ oD =m2=> (t+i)<k+2(:i)>=m

N /(t+i) dk = dm = dk = (tii)dm
< (t:i>2>

iv) > ulxt) = M dm = AT
( ) ( ) Vaar. ’ t+ 4an.\/%_a\/4at+1

_ 1 (4‘;111)
= uxt) = e
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Example: (UoS; 2017 - 11) : Solve the problem using Fourier
Transformation method wu,(x,t) =x? u,,(x,t); —c0o <x <o ,t>0

with u,(x,0) = f(x); |u(x,0)| <

Solution: since x — +oo therefore we should use fourier transform w.r.to ‘x’
F {u,} = F {u,,}

N %:7-" (u(x, t)} =2 (—ik)?F {u(x, t)} = %U(k, t) = —«2 K2U(k, t)

22 = o2 k= [T = —o? k2 [dt = InU = —o? kPt + A
= Uk, t) = e Kt 5 y(k, t) = ce™F ... (i) where e4 = ¢

Now using IC’s

u,(x,0) = f(x) and |u(x,0)| < 0o = u(x,0) = f(x)
= Flu(x,0)} = F{f(x)} =>U(k,0)=F(k)

(i) > U(k,0) = ce® = ¢ = F(k)

Thus (i) = U(k,t) = F(k)e * k't

= FHUk )} = FYF(k)e =¥}

> u(xt) == e F(kje*Ktdk
= u(x t) = ifoo e_ikx [Lfoo eikx’ f(xl)dxl] e—oczkztdk
’ V2m 7= V2 /-
> u(xt) = [7 [ e "R p] f(x)dx' vnreneen. (i)
Now consider I = f_°°oo e~ ik(x—x") -2kt g1 Consider k? +%u
© i — i+ 2k () + ()
I=[_, e~ku-Bk gk putx —x' =uand o t = B + ((i_“?f(
28
_ (% —B(kz+%) o
I= f_ooe 8 dk :<k+ﬁ> y
o bl e
=L ek (it
u? iu 2
1=ew (" P ap ... (iv)
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2 )
W\ _ p2 i) B _ap
Put B (k +52) = v = B (k+5;) =P = JBdk=ap = ak = 7
u? u N
@ =1=e [ et Gepe Lo dp=pe iV
u2
(iii) = u(x, t) = _f OO\/E ﬁf(xr)dxr
2
o0 \/_ (x—xz) , ,
= u(x,t) = 2\/_\/_f e 20 f(x")dx
g -("("z’)f
= 44t ! !
= u(x, t) e f_oo e f(x )dx
Example:

Solve the problem using Fourier Transformation method u,,,, = —Uu

with u(x,0) = f(x); u,(x,0) = ag'(x) and g, u, Uy, Uyy, Uy = 0 @S X > +0

Solution: since x » +oo therefore we should use fourier transform w.r.to ‘x’
1
F {uxxxx} = 22 F {utt}
. 1 d? d?
= (—ik)*F {u(x, t)} = S Fux o} = a’k*U(k,t) = = UK D)
>Ly_aktu=0
dt2 a o
= U(k,t) = Ae™’t + Be=®*t ... i)
= %U(k, t) = Aak?e™’t — Bak?e=%"t . ............ (i)

Now using IC’s u(x,0) = f(x) = F{u (x,0)} = F{f(x)} = U(k,0) = F(k)
Then (i) 2 U(k,0) = Ae® + Be® 2 A+ B = F(K) «ccovuvuuenen. (iii)

Also u,(x,0) = ag'(x) = F{u, (x,0)} = F{ag'(x)}

N %U(k, 0) = a(—ik)'F {g'(x)} > % U(k,0) = —iakG(k)

Then (ii) = % U(k,0) = Aak?e® — Bak?e® = —iakG(k) = Aak? — Bak?

= —iG(k)=(A—-Bk=>A—-B = —i'(;(k) ............... (iv)
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Adding (iii) and (iv) A=2|Fl) -Gk |

Subtracting (iii) and (iv) B=>|F(k)+6(K)]

Then (i) becomes

> U(k,t) = 3 |[F(k) — < G(k) | e®*t + 2| F(k) + £ G(K) | e=o¥*t

= Uk, t) = F(K) [—kzt”_ " ] - —G(k)[ e ]

= U(k,t) = F(k)Coshak?*t — E G(k)S mhak2

= F-YU(k,t)} = F-1{F(k)Coshak*t} — F~1 {; G(k)Sinhakzt}

> u(x,t) = | [ e~ F(k)Coshak?*tdk — [ ™+ G(k)Sinhak®tdk|
= u(x,t) = \/%ffooo e y(k, t)dk is our required solution.

Example: (UoS; 2017 -1, 1) : Solve the problem using Fourier
Transformation method u,, = clzutt

with u(x,0) = p(x); u,(x,0) = q(x) andu,u, - 0as x » t
Solution: since x —» +oo therefore we should use fourier transform w.r.to ‘x’
1
F {uxx} = 2 F {utt}
S (—ik)2F u(x, 0} = L L Fu(x, D)} > ~R2UKE) = L Uk, D)
! CZ dtz ’ 4 dtz 4
2
= %U + c?k?U = 0= U(k,t) = c,Cosxkt + c,Sinckt
ickt, ,—ickt ickt__ ,—ickt
= U(k,t) = ¢4 (—e +2e ) + ¢y (—e Ze )

= U(kt) = (cl-l-—cl) elckt (ﬂ) e ickt

2 2
= U(k,t) = Ae’kt + Be~ickt . ......... )
= %U(k, t) = Aice“*t — Bice ikt ............. (i)

Now using IC’s u(x,0) = p(x) > F{u (x,0)} = F{p(x)} = U(k,0) = P(k)
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Then (i) = U(k,0) = Ae® + Be* = A+ B = P(k) ............... (iii)
Also u,(x,0) = q(x) = F{u, (x,0)} = F{q(x)} = %U(k, 0) =Q(k)
Then (ii) = < U(k, 0) = Aicke® — Bicke®

> Q(k) = ick(A—B)k > A—B = —Q(K) eevvrurens (iv)

Adding (iii) and (iv) A=2|P(k)+—Qk) |

Subtracting (iii) and (iv) B =2|P(k)-—Q(kK |

Then (i) becomes

= U(k,t) = 5 |[P(k) + —Q(k) | ekt + 2 [p(k) — = Q(k) | e~tekt

119

> U(k,t) = P(k) [_] 1 g [ wkt]
= F YUk t)} =
- [T 1{P(k)ewkt} +F 1{P(k)e—wkt}] 4= I{Q(k) (elckt ickt)} lA)

T_l{P(k)eith} n_ \/T_T[f—oo e—ikx P(k)eicktdk —_

mf—m e—i(x—ct)k P(k)dk

FYP(k)e'*t} = P(x — ct)
Similarly ~ F-1{P(k)e i} = P(x + ct)
And consider  q(x) = FH{QK)} = == e"** Q(k)dk

f:fc";tq(x)dx == fxx+;t [Z e i Q(k)dkdx

(2 a@dx = = [ [T e M dx'Qkydk = [, ' zi: Q(k)dk
f::rct (xX)dx = Ffwm lk[ e—ik(x+et) _ —lk(x—ct)] Q(k)dk
f:—-'-c‘;t (xX)dx = \/:fwoo ;[ —ik(x—ct) _ —ik(x+ct)] Q(k)dk
xx+cctt (x)dx chx/z_f— e ikx[glckt _ e—ickt]%dk
zlc xxjcctt q(x)dx = —_T‘l {(eic’“ — e~ickt) Mdk}
(4) > u(x,t) =5 [P(x + ct) + P(x — ct)] +5- [ q(a)dx’
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THE DOUBLE FOURIER TRANSFORM AND ITS INVERSE
Let f(x4,x2) be a function defined over the whole plane i.e. —c0 < x4,x, < ©©

then its fourier transform and inverse are defined as follows;

F{f(xy,x2)} = F(ky, ky) = —

(Vzm)
FUYF(ky,kp)} = f(x,x3) =

2 fjooo fjooo f(xq, xp)etlrxathkex2) dy. dx,

1
(Vzm)

5 7 Fky, ky)emiUasitlox) g, dk,

THREE DIMENSIONAL FOURIER TRANSFORM AND ITS INVERSE
Let f(x4,x2, x3) be a function defined over the whole plane i.e.

—o0 < X1, X9, X3 < oo then its fourier transform and inverse are defined as
follows;

F{f (x1,x2,x3)} = F(kq, k3, k3) =

(\/21_'")3 f_oooo f—oooo f—oooo f(xll xz; x3)ei(k1x1+k2x2+k3xg) dxldxz dx3

FYF(ky, ky, k3)} = f(xq,x2,x3) =

(\/21—1'[)3 f_oooo f—oooo f—oooo F(kll kZ; k3)e_i(k1x1+k2xz+k3x3) dkldkzdk3

n - DIMENSIONAL FOURIER TRANSFORM AND ITS INVERSE
1
F{fQitax)} = FQiz ki) = (vzn)" Jatt space

FUHFQL 1 kDY = Q1 x) =
FQOML ke iCiikixd gy k,

fQq xi)ei(z€l=1 ki) gy x;

—
(\/Z_n)n all space
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FOURIER SERIES

A trigonometric series with any piecewise continuous periodic function

f (x) of period 2m and of the form f (x) ~ =X + X (a cos kx + by sin kx)
Is called the Fourier Series of a real valued function f(x) where the symbol ~
indicates an association of ag, ax, and by to f in some unique manner.

Where

ap = }Tf_”nf(x)dx , Ay = Tlrf_nnf(x)COSkxdx , by, = %f_nnf(x)Sinkxdx
And are called Fourier Coefficiets.

We may also write f (x) = 2! + X1 (ay cos kx + by, sin kx)

COMPLEX FORM OF FOURIER SERIES

Fourier Series expansion for in complex form is given as follows

f(x) =5 _o et M <x<mW Where

Cp = i _nnf(x)e‘”‘xdx

Jkmrx

OR f)=Yp_wce't  Where ¢ =Zil _llf(y)e_i?dy
Example (just read) :Find the Fourier series expansion for the function

fX)=x+x5, —m<x<m

. 1 2 2
Solultion: Here aq = ;ffnf(x)dx — %
a, == " f(x)Coskxdx = = Coskm = = (—-1)* ; k=1,23, ...

b, = %f_nnf(x)Sinkxdx = —%Coskn = —%(—1)"  k=1,23, ...
Therefore, the Fourier series expansion for f is

f(x) = % + Y r=1(ay cos kx + by sin kx)
f (0 =+ FiyGy (~DF cos kx —2(~ ¥ sin k)

2
f (x) =%— 4 cos x + 2sinx + cos2x — sin2x —....
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Example (just read): Find the Fourier series expansion for the function

- < x <0
f(x)_{x 0<x<T

Solultion: Here

ap =2 (" fdx =" f@dx+ [} f(x)dx| = -2

ay =~ [" f(x)Coskxdx = }r[ [° f(x)Coskxdx + [ f(x) (:oskxdx]

a, = #(Coskn— 1) = #[(—1)" ~1]; k=1,23,.....

b == " f(x)Sinkxdx = %[ [0 f(0)Sinkxdx + [ f(x)Sinkxdx]
1

by =+ (1 — 2Coskm) = %[1 —2(-D4]; k=1,2,3,....

Therefore, the Fourier series expansion for f is

f(x)= % + Y r=1(ay cos kx + by sin kx)

f@)=-%+37, [ [(-1* — 1] cos kx + 1 [1 - 2(~1)¥] sin kx)]
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FOURIER INVERSION FORMULA:

The proper inversion formula is given as

f(x) = -ikx F(k) dk

1 (0]
pp— e
V2T _L
The formula nearly states that f is the fourier transform of F(k)
where F(k) = F {f(x)}

PROOF:

by Fourier integral theorem f (x) = %fooo dk [~ Cosk(x — x")f(x))dx'

> f () == f dk [* Cosk(x — x)f(x')dx’

> f () =—[7 f(x)dx' [;” Cosk(x — x")dk changing the order

> f ) =" f)dx Nimy, o f; Cosk(x — x)dk ......... (i)

Since S Cosk(x'—x)dk =2 [ Cosk(x — x)dk ......... (ii)

Also S Sink(x' —x)dk=0=i[" Sink(x—-x)dk=0 ......... (iii)

On subtraction from (ii) and (iii) we have

/7 [Cosk(x — x') — iSink(x — x')|dk = 2 [ Cosk(x — x")dk
= [0 e" k=g = 2 [ Cosk(x — x')dk

= [ Cosk(x — x)dk =3 [ e Gk ........ (iv)

Hence from (i) and (iv)

> f @) =7 fO)dx Nimy, ., [T e KO- dk

> f () =57 fx)dx' [ e dk

1 [o'e] s 1 oo ikxr / /
= f(x) = \/T_n-f—ooe thex dk'\/T_nf—oo e f(x"dx

=f(x)= \/%f_c’ooo e % F(k) dk as required.
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GREEN’S FUNCTION AND ASSOCIATED BVP’s

THE KRONECKER DELTA FUNCTION:
It is denoted by &;; and can be defined as follows;
5. — {1 ifi=j
U0 ifi#j
DIRAC DELTA FUNCTION
The dirac delta function is defined as follows;

o ifx=0
0 ifx+0

o ifx=t

6(x) =lim6.(x) = { 0 ifx+t

or &(x—t) = {
PROPERTIES:
i [ 8(x)dx=1
ii.  For any continuous function f(x); [ f(x)8(x)dx = £(0)
iii. &6(x) =8(—x)
iv. é6(ax) = %5(::) ;a>0
v. SHIFTING PROPERTY: For any continuous function f(x);
[Z f@)8(x — a)dx = f(a)
vi. If 8(x) is continuous differentiable. Then [~ f(x)8'(x)dx = —f'(0)
REMARK:
. Dirac delta function can be regarded as the generalization of
Kronecker delta function. It strictly speaking a “generalized
function” or “distribution function” or *“ a unit impulse function”

ii. In kronecker delta function §;; the indecis i,j, are integral variables,

whereas in passing to direc delta function they become real

continuous variables.

MUHAMMAD USMAN HAMID (0323 - 6032785)



125

1 SHIFTING PROPERTY OF DIRAC DELTA FUNCTION:

For any continuous function f(x); f_oooo f(x)6(x)dx = f(0)

Where f(x) is analytic (regualar or continuous function) at x =0
Proof: Since §(x) has singularity at x = 0, the limits —oo and oo of the

integration may be changed to (or replace by) 0 — e and 0 + € where e is a

small positive number.

since [ f(x)8(x)dx = lim._g [, "~ f(x)6(x)dx

Moreover, since f(x) is continuous at x = 0. We obtain in lel_)r{)l follow;
f0-e) =f(0+e) = f(0)

Therefore [* f(x)8(x)dx = f(0)lim o [, f(x)8(x)dx

since 8(x) has singularity at x = 0. Therefore

[Z F(x)8(x)dx = £(0).1 = £(0)

2" SHIFTING PROPERTY OF DIRAC DELTA FUNCTION:
(UoS, Past Paper)

For any continuous function f(x); ffooo f(x)6(x —a)dx = f(a)
Where f(x) is analytic (regualar or continuous function) at x = a
Proof: Consider [ f(x)8(x — a)dx
Setx —a=tandwrite f(t+a)=g(t) = f(a) = g(0)

[T f08(x — a)dx = [7 f(t + @)5(®)dt = [~ g(D)5(t)dt
IZ F(x)8(x — a)dx = g(0) by 1* shifting property

I= F(x)8(x — a)dx = f(a) by hypothesis
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GREEN’s FUNCTION
Green’s Function is the impulse response of non — homogeneous differential
equation with specified initial and boundry conditions.

IMPORTANCE: it provides an important tool in the study of BVP’s. it
also have an intrinsic value for mathematicians. Such function is the response
corresponding to the source unit.

PROPERTIES OF GREEN’s FUNCTION: (UoS; S.Q)
I.  Green’s Function is denoted by G(x, x")
ii.  G(x,x") issymmetrici.e. G(x,x") = G(x', x)
iii.  G(x,x") asa function of ‘x’ satisfies the D Equation ;—;G(x, x)=0in
each of theinterval 0 < x < x'and x' <x <1
iv. G(0,x") =0andG(l,x") = 0 which are the same BC’s as those satisfied
by u
V. G(x,x') is continuous function of ‘x’ in the interval [0, ]

(in constructing the Green’s function, we will make use of its continuity

at x = x' and this can be seen from the following

lim, . G(x,x") =1lim,_ G(x,x')
lim, . xT,(x -0 =1lim,_,/ % Cay))
tw-D=2@-D

vi. Ifwe calculate G'(x, x") = % G(x, x") we find that

,_
xt 0<x<x
G'(x,x") = x,l and G’ (x, x") will be
Il x'<x <l
discontinuous at x = x’

(UoS = 201.3) define Green’s function and write its properties.
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AN IMPORTANT RESULT: [ [ @(x;) dx;dx, = [y | I dx;| @(xy)dx
EXAMPLE: Solve the problem ZZTZ =f(x)withu(0)=0=u(l) ;0<x<1
SOLUTION: This a Singular SL system with p(x) = 1

Ch=f0) > u' () = f) = [ u"(dx = [} f(0dx

> W @IE = [ FDdx = u'(x) - w'(0) = [ fx)dx’

= [XTw' (x) — W/ ()] dx = [ () dx] dx

> [Fu'@)dx— [fu'@dx = [F[F f(x)dx dx”

= w5 — w 0)xlf = [;[[; dx"] fx)dx’

= [u(x) —u(0)] — w'(0)[x — 0] = [|x"|} f(x)dx’

=>ulx) —xA = fo (x—x") f(x)dx'" whereu'(0) =A4 (say)and u(0) =0
su@) = [[(x—x)f(x)dx' + x4 . (i)

Putx = I = u() = [,(1—x) f(x)dx' + 14

= [[(1—x) f(x)dx' +1A=0 since u(l) = 0
SA=—2[(I=x)fdx e, (i) use it in (i)

> u(x) = [ —x) fadx' =2 [ (1 - x) fx)dx’

s u(x) = [{(x—x) f@)dx' +3 [ =D fNdY . (iif)

This is the solution of given problem.

Now we can costruct a Green’s Function by solving (iii)

= u(x) = [0 — &) fFdx + 5[5 = D fxdx + [[(¢ = D f(x)dx'|
> u(x) = [f [x— 2 +3(¢ - D| F)dx’ +3 [[(x' = D f(x)dx’

s ule) = [ [x -2 + 2 x| fxdx’ + 2 {1 = D) fx)dx
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= u(x) = xT’f:(x - f(x)dx' + %fxl(x’ - D f(x)dx'

= u(x) = f;G(x, x") f(x)dx'

x—’(x—l) ;0<x' <«x

Where G'(x,x)=1,"
(' =D x<x <1

is called Green’s function of given problem.
EXAMPLE: Solve and obtained the associated Green’s Function

T 4 K2y = f) with y(0) = 0= y(1) ;0 < x <1

SOLUTION: This a linear non — homogeneous DE of order 2 with constant
coefficients. Its general solution is as follows;

Y=YctYp

For Charactristic Solution:

2
%+k2y= 0=>D*+k*=0=D=+ik =1y,=c,Coskx+ c,Sinkx
For Charactristic Solution:

For this we will use Wronskian method (Variation of Parameters)

Let = y, = u Coskx + u,Sinkx

Where u, = — f;:, s—i"k;f @ dx and u, = fx’; —COS’:jf @) dx

Coskx Sinkx |
—kSinkx kCoskx

Thenu, = — f;: S—inkxkf @) dx’ and u, = fx’; —COSk:Vf @) dx’

= Wronskian =W =

S. k / ! , C k ! ! , .
>y, = —f;%ﬂx)dx Coskx + f;%mdx Sinkx
>y, = % f):) [SinkxCoskx' — CoskxSinkx'|f(x")dx'

1 . / / ! 1 = ! ! !/
>y, = Ef;, Sin(kx — kx)f(x)dx' =y, = ;f,:, Sink(x — x'")f(x")dx

> yp =1 Jy Sink(x — x)f (x')dx’ with x, = 0 a fixed point
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Thus fory =y, + y, we have

y(x) = c;Coskx + c,Sinkx + %f: Sink(x — x")f(x")dx" .............. i)
= y(0) = ¢;C0s(0) + c,Sin(0) + %foo Sink(0 — x)f(x")dx’

=>c; =0 sincey(0)=0

= y(I) = c;Coskl + ¢ Sinkl + - [ Sink(l - x)f(x')dx' putx = I

= 0 =0+ c,Sinkl + f, Sink(l — x')f (x')dx’

=cy = f Sink(l — x')f(x)dx'

kS nkl
Using ¢4, ¢5 in (i)

Sink l .. / / / 1 . / / /
y(x) = = [ Sink(l - x')f (x)dx' + - fy Sink(x — x)f(x)dx

ya) = -2 [ [F Sink(l - x")f(x)dx' + [ Sink(l— x")f(x')dx' +

= Jo Sink(x — x)f(x')dx'|
Sinkx Sinkx

l ) !/ ! !/
i klf Sink(l - x"f(x)dx

2 Sink(l— ')]f(x')d -

y(x) = f [Smk(x x) -3

Sinkx Sinkl Sinkx

o sink(l - x')| 50 f()dx' — 22 [Sink(l - 1) f (x')dx’

= —f [Smk(x x') —
y(x) =
% fox [(SinkxCoskx' — CoskxSinkx")Sinkl —

Sinkx

Sinkx(SinklCoskx' — CosklSinkx')] % dx' — Sinl

J. Sink(l— x')f(x")dx’

y(x) = % f: [SinklSinkxCoskx' — SinklCoskxSinkx' — SinklSinkxCoskx' +

SinkxCosklSinkx'] L () gt — Simkx

l 7 ! 14 !
Sinkl Ty fx Sink(l — x")f(x)dx

y(x) = %f: [-SinklCoskxSinkx' + SinkxCosklSinkx'] Sf—i(;;)l dx' —

Sinkx

l - ! ! !
kSinklf Sink(l — x")f(x)dx

y= %f [-Sinkx'(SinklCoskx + SinkxCoskl)] /) dx' — Sk fxl Sink(l - x")f(x")dx'

Sinkl kSinkl
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y= f [Sinkx'(SinkxCoskl — SinklCoskx)] g( k)l dx' — %f; Sink(l — x")f(x")dx'

_1 . fx" y _ Sinkx
= f [Sinkx'Sink(x l)]s kl Skl

f Sink(l — x")f(x")dx'

Sinkx'Sink(x-1) / l SinkxSink(x'-1) ’ ’
y<x)=f<f L e [COL

y(x) = [ G(x,x)f(x)dx’

Sinkx'Sink(x-1)

kSinkl 0= <x
! J—
Where G(x,x'") = SinkxSink(x' 1) d
_ x<x <l
kSinkl

is called Green’s function of given problem.
Note: Sinkl # 0 i.e. ‘k’ is not eigenvalue of associated homogeneous problem.
PROPERTIES OF PREVIOUS GREEN’s FUNCTION

I.  G(x,x") issymmetrici.e. G(x,x") = G(x', x)
2
ii. G(x,x") as a function of ‘x’ satisfies the D Equation % G(x,x)=0in

each of theinterval 0 < x < x'and x' < x <1

iii. G(0,x")=0andG(l,x") = 0 are the same BC’s as those satisfied by the
given Green’s function.

iv. G(x,x') is continuous function of ‘x’ in the interval [0, ] and

!

particularly atx = x
v. G'(x,x") = %G(x, x') exists as

Sinkx'Cosk(x-1)

kSinkl 0=x <x
! N ! ! H
G'(x,x") = CosknSink(x'—D , and G’ (x, x") will be
- x<x <l
kSinkl

discontinuous at x = x’
REMEMBER: The Greenn’s Function technique is used to solve DE of the
form (L,u)(x) = f(x) + BC's where L, is a linear operator with specified
BC’s.
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EXITENCE OF GREEN’s FUNCTION:

If the homogeneous problem associated with SL system
% {p(x) j—:} + g(x)u + A r(x)u = 0 with usual BC’s has trivial solution then

Green’s Function exists.
In other words, if 2 = 0 is not an eigenvalue for L(u) + A r(x)u = 0 with

usual BC’s then Green’s Function exists.

GREEN’s FUNCTION ASSOCIATED WITH REGULAR SL SYSTEM:
Let L(u) + A r(x)u = 0 be the SL equation with the endpoint conditions
o u(a) +<, u'(a) = 0 and B,u(b) + B,u’'(b) = 0 which may also be

written as By (u) =x; +o<, % =0 and B;(u) = B4 + B> :—x = 0where B isa
BC’s operatior define regular SL system and gives a trivial solution. Then the
Green’s Function associated with regular SL system has the following
properties;
i.  G(x,t) considered as the function of ‘x’ satisfies the DE L{G(x,t)} =0
ineach of theintervala < x <tandt<x<b
ii. B41(G)=0and B,(G) = 0 are the same BC’s as those satisfied by the

given Green’s function.

lii. G(x,t) is continuous function of ‘x’ in the interval [a , b ]

. d . . .
iv. G'(xt)= aG(x, t) will be discontinuous as x — t and moreover

3 ! - I} 1
lim,_,+ G'(x,t) — lim,_,- G'(x,t) = 5

but lim,_+ G'(x,t) # lim,_.- G'(x,t)
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EXAMPLE: Solve the problem associated with non — homogeneous DE

L(u)+ Ar(x)u = f(x) whereL = %{p(x) %} + q(x)

SOLUTION: The solution of this non — homogeneous DE subject to BC’s is
closely related to the existence of Green’s function associated with
homogeneous equation L(u) + Ar(x)u =0

If the function G (x, t, 4) which does not depends on the source function f(x)
exists, then solution of given equation can be written as

u(x) = f: G(x, t,)f(t)dt where G(x,t,A) is called Green’s function and
satisfies the equation L(G) + Ar(x)G = 8§(x — t)

EXAMPLE: (UoS,2013, 2014, 2015, 2019 - 1)
Construct Green’s function associated with the problem u” + Au = 0 with
the boundry conditions u(0) = 0 and u(1) =0
Solution:  herep(x) =1 = p(t)

. Put 4 = 0 in given equation
%+Au=0:%+(0)u=0:%=0:u(x)=Ax+B .......... (i)

Now using BC’s u(0) =0 andu(1) = 0wehaveA=0,B=0

(i) = u(x) = 0 which is trivial solution. So 4 = 0 is not an eigenvalue.
2
ii. G(x,t) as a function of ‘x’ satisfies the D Equation % G(x,t) =0 in

each of theinterval 0 < x < tand t < x < 1 therefore we have

Ax + B 0<x<t
G(x't)_{A’x+B’ t<x<1

iii.  G(x,t) is continuous function of ‘x’ in the interval [0, 1] and
particularly atx = t therefore

lim,_;- G(x,t) = lim,_+ G(x,t)
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lim,_;-(Ax + B) = lim,_,+(A'x+ B")
At+B=At+B =>B =(A-A)t+B

Ax+ B 0<x<t
Ax+(A-A)t+B t<x<1

G(0,t) = 0and G(1,t) = 0 are the same BC’s as those satisfied by

Hence G(x, t) = {

the given Green’s function.i.e.

G0,6)=0=>A(0)+B=0=>B=0

G(LH)=0>A1)+(A-A)N+B=0=>4=2CD withp=0
%_Ux+0 0<x<t
Then G(x,t) = o
A’x+(A(t 1)—A’)t+0 t<x<1
A'(t-1)
0 <
HenceG(x,t)={ t = oY
Ax—A t<x<1

d . . . . .
G'(x,t) = aG(x, t) exists and will be discontinuous as x — t i.e.

lim,_+ G'(x,t) # lim,_,- G'(x,t)
1

But lim,_ .+ G'(x,t) —lim,_,- G'(x,t) = s

. d TN _iA'(t—l) _1
llmx_)t+a(Ax A —lim,_, dx( - x)—1

nmﬁﬁmq—nmﬁr@ﬁ*§=1

_ A(t-1)
— =

A 1

A’G)=1=>A’=t

t(t-1) .
Then G(x,t)={ t o=x<t
tx —t t<x<1
t—1)x 0=x<t
Hence G(x, t) :{((x—l))t t<x<1

This is our required Green’s Function.
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EXAMPLE: (UoS,2013, 2014, 2015)
Construct Green’s function associated with the problem xu'’ + u' + Aru =0
with the boundry conditions u(0) is finite and u(1) =0
Solution:  here p(x) = x then p(t) =t
. Put A = 0 in given equation
xu’" +u' +Aru=0=>xu"+u' =0 :%(xu’)
=>u(x) =Alnx+ B .......... i)
Now using BC’s u(0) = finite andu(1) =0wehaveA=0,B=0
(i) = u(x) = 0 which is trivial solution. So 4 = 0 is not an eigenvalue.
ii. G(x, t) as a function of ‘x’ satisfies the D Equation xG'' + G' = 0 in

each of theinterval 0 < x < tand t < x < 1 therefore we have

G(xt)—{Alnx-l_B 0<x<t
7 A'lnx + B’ t<x<1

iii.  G(x,t)is continuous function of ‘x’ in the interval [0, 1] and
particularly at x = t therefore
lim,_ ;- G(x,t) =lim,_+ G(x,t)
lim,_;-(Alnx + B) = lim,_+(A'Inx + B")
Alnt +B=A'lnt+B > B = (A—A)Int+ B

Alnx + B 0<x<t
Alnx+ (A—A)Int + B t<x<1

iv. G(0,t) = finite and G(1,t) = 0 are the same BC’s as those satisfied

Hence G(x, t) = {

by the given Green’s function.i.e.

G(0,t) = finite = Aln(0) + B = finite = A =0
G1L,t)=0=>A'ln1)+(A-A)Int+ B=0=B=A'Ilnt
= A' =z% with 4 = 0,In(1) = 0

A'lnt 0<x<t

Then G(x,t) = {A’lnx t<x<1
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d . . . . .
V. G'(x,t) = EG(x, t) exists and will be discontinuous as x — t i.e.

lim,_,+ G'(x,t) # lim,_,- G'(x,t)
1

But lim, .+ G'(x,t) —lim,_ .- G'(x,t) = e

. ) (1 . 1
lim,_,+ A (;) —lim,_-(0) = -

ORSEE

Int ;0<x<t . . , .
Then G(x,t) = { Inx t<x<1 is our required Green’s Function.
EXAMPLE: (UoS,2018 - 11) Construct Green’s function associated

2
with the problem xu"” + u’' — "Tu + Aru = 0 with the boundry conditions

u(0) is finite and u(1) =0

n2

Solution:here p(x) = x then p(t) =t thisis regular system with q(x) = -

. Put 4 = 0 in given equation

2 2
xu”+u’—"7u+(0)ru=0=>xu”+u’—n7u=0

= (xD2 +D—n72)u= 0

= (x?D?*+xD —n*)u=20........... (i) this is Cauchy Euler equation
Putx=e!=>Ilnx=t=>xD=A andx?D? =A(A—1) = A%> - A
(D)= LA?>-A+A—nPHDu=0= (A%>-nPH)u=0=A=+n

= u(x) = Ae™ + Be™ = A(e")" + B(eH)) ™

=>u(x) =Ax"+Bx™ .......... (i)

Now using BC’s u(0) = finite and u(1) =0wehaveA=0,B =0

(ii) = u(x) = 0 which is trivial solution. So 4 = 0 is not an eigenvalue.
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G(x,t) as a function of ‘x’ satisfies the Differential Equation
x%G" + xG' —n*G = 0 ineach of the interval 0 < x < t and
t < x < 1 therefore we have
6O = (i g rexet
G(x,t) is continuous function of ‘x’ in the interval [0, 1] and
particularly atx = t therefore
lim,_ ;- G(x,t) =lim,_+ G(x,t)
lim,_;-(Ax™ + Bx™) = lim,_,+(A'x™ + B'x™)
At"+Bt " =At"+B't"=>B =(A4-A)t*"+B
Ax"™ + Bx™" ;0<x<t
Ax"+(A—-A)t*""x ™ + Bx™ t<x<1

G(0,t) = 0and G(1,t) = 0 are the same BC’s as those satisfied by

Hence G(x, t) = {

the given Green’s function.i.e.

G(0,t) = finite = A(0)"+ B(0)™ = finite=B =0
GL)=0=>A1D)"+A-A)t*"(1)™+ (0)(1)™
A=A1-t2") withB=0

Then
A'(1—t72Mx" + (0)x ™" 0=x<t
feo= {A’x" +H{(aa-em) ) @x se<xsa
A’(l _ t—Zn)xn 0<x<t
G(x,t ={ '
( ) Ax"+ A'x™™ t<x<1
A’(l _ t—Zn)xn ;0 <x<t

Hence G(x, t ={
(x,0) A'(x™—x™) it<x<1

G'(x,t) = %G(x, t) exists and will be discontinuous as x — t i.e.

lim,_ .+ G'(x,t) # lim,_,- G'(x,t)

1
p(t)
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lim, .+ A'(nx™! —nx™ 1) —lim,_,- n4'(0 — ¢t 2")x"1 ==

tn

Amt* 1 —nt™ ) —nAd'(-t 21 = % =4 = after solving

n(2+t2n)
——— (1 —t2)x" ;0<x<t
(D 412m)
Then G(x,t) = n(2+t,t1 )
n_ .—n .
n(2+t2")(x x™™) t<x<1
is our required Green’s Function.
EXAMPLE: (UoS, 2009, 2011) Construct Green’s function

associated with the problem %{(1 — x>’
boundry conditions u(+1) are finite
Solution:here p(x) = 1 — x% then p(t) = 1 — t? this is singular system

. Put A = 0 in given equation

=@ =xu

=0=>(1—-x>u" —2xu’' — fx u=20
=1 -x*)%*u"-2x(1—x>)u'—h*u=0 .......... )

1+x

Putt =1In (—x)zln(1+x)—ln(1—x):%

rodu _dudt | 2 g2 [dz—” + xd—u] after solvin
T dx  dtdx  1-x% dt T (1-x2)2 | de? dt 9
. 232 4 [dz_u ] 2 du 2
(H=>1A-x%) eE prout e 2x(1—x ) = hu=0
2 2
4—+4 ——4x——h2u 0=>d——h—u 0=>D= +—

h
= u(x) = Aeit + Be 2! = A(et)h/Z + B(et)—h/z

> u(x) = A (g)h/2 +B (1—:’9_'1/2 .......... (ii)

Now using BC’s u(+1) = finite wehave A=0,B =0

(ii) = u(x) = 0 which is trivial solution. So 4 = 0 is not an eigenvalue.
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G(x,t) as a function of ‘x’ satisfies the Differential Equation
41— 226
™ {(1-x%)G

t < x < 1 therefore we have

G(x,t) = ! (g)h/j e (g)_h/z ;—1<x<t
A (it) +B’ (g)_h/z t<x<1

G(x,t) is continuous function of ‘x’ in the interval [0, 1] and
particularly atx = t therefore
lim,_ ;- G(x,t) =lim,_,+ G(x,t)

lim,.- (A (g)h/z i (g)_h/z) = lim,_ .+ <A’ (g)g +B' (%)_h/ 2)
h

A (E)h/z ' B (E)_h/z _ (E)E g (E)—h/z

B =(4-A4" (”t)h +B

then
h/2 —h/2
A(2)" 0
Glx0) = 14x l; 1+t 1+x —h/2
m ) [m AU - +B] t<x<1
1+x\N/2 1+x\ /2
) Aﬁj) +B(12) —l<x<t
Gxt) = 1+x 1+t 1+x ~h/2
A [m AU - +B] t<x<1

G(+,t) = finite are the BC’s satisfied by the Green’s function.

o\ h/2 o —h/2
G(—1,t) = finite = 4 (”( 1)) +B (1“ ”) = finite > B = 0

1-(=1 1-(-1)

1+(1)
(1)

1+(1)

G(1,t) = finite = A’ (1)

[(A a) fi +B] = finite

A4 =0

MUHAMMAD USMAN HAMID (0323 - 6032785)




139

A (i) 1<x<t
Then  G(x,t) = et ey -h2
/1(1:?) (I:;) t<x<1

V. G'(x,t) = %G(x, t) exists and will be discontinuous as x — t i.e.
lim,_+ G'(x,t) # lim,_,- G'(x,t)

But lim,_ .+ G'(x,t) —lim,_,- G'(x,t) = %

h g kg
ims (A3 G G2) ] ) - tme (43627 ) = o5
_h_ h_
(“3(%921h34—Aﬂ”?’ler-

1 (1-t\/2 ]
= __h(ﬁ) after solving
h 2 h/2
S it (5 —1<x<t
Then G(x,t) = +1t - Pl _h)2
It g
1+t 1-t 1—x

is our required Green’s Function.

EXAMPLE: (UaS, 2017, 2018 - 1)
Construct Green’s function associated with the problem u” + Au = 0 with
the boundry conditions u(0) + u’'(1) = 0 and u(1) + 2u'(0) =0
Solution:  herep(x) =1 =p(t)

. Put 4 = 0 in given equation
—+Au 0=>—+(O)u 0=>——0:>u(x) Ax+B .......... (>i)
Now using BC’s
u(0)+u'(1) =0 and u(1) + 2u’(0) = 0wehaveA=0,B=0

(i) = u(x) = 0 which is trivial solution. So 4 = 0 is not an eigenvalue.
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2
G(x,t) as a function of ‘x’ satisfies the D Equation % G(x,t) =0 in

each of theinterval 0 < x < tand t < x < 1 therefore we have

Ax + B 0<x<t
G(x’t)_{A’x+B’ t<x<1

G(x,t) is continuous function of ‘x’ in the interval [0, 1] and
particularly at x = t therefore

lim,_ ;- G(x,t) =lim,_+ G(x,t)

lim,_;-(Ax + B) = lim,_,+(A'x+ B")

At+B=At+B =B =(A-A)t+B

Ax+ B 0<x<t
Ax+(A—-A)t+B t<x<1

G(x, t) satisfies the BC’s
G0,)+G6G'(1L,Lt)=0=>4(00+B+A'=0=>B=-4'
G(1,t)+26'(0,t) =0=>4A1)+(A-ANt+B+24=0

Hence G(x, t) = {

A=A (L) with B = —A'

t+2
A’(HLZ)x—A’ 0<x<t
Then G(x,t) = .
A’x+(A’(t+—2)—A’)t—A’ t<x<1
A’(éx—l) 0<x<t
Hence G(x, t) = .
A’[x+(§—1)t—1] t<x<1

G'(x,t) = %G(x, t) exists and will be discontinuous as x — t i.e.

lim,_+ G'(x,t) # lim,_,- G'(x,t)
1

But lim,_ .+ G'(x,t) —lim,_ .- G'(x,t) = e

lim,_,+ (4") - lim,_- 4’ () =

A'—A'(L)=1 =4 =22

t+2
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%(ﬁx—l) ;05 x<t
Then G(x,t) =1 ., .
—[x+(——1)t—1] t<x<1
2 t+2
%x — % ;05 x<t
= G(x; t) = 2
2yl M2 _ 2 t<x<1
2 2 2 2
tx_zt_z 0 x<t
Hence = G(x,t) = Cmr required Green’s Function.
(t+2)x—3t-2 t<x<1

2
EXAMPLE: (UoS, 2017 — I1)
Construct Green’s function associated with the problem u'’ + Au = 0 with
the boundry conditions u’(0) =0 and u(1) =0
Solution:  herep(x) =1 = p(t)

. Put A = 0 in given equation
d*u d*u d*u .
m+lu—0=>@+(0)u—0=>ﬁ—0=>u(x)—Ax+B .......... (>i)

Now using BC’s u'(0) =0 and u(1) = 0wehaveA=0,B =0

(i) = u(x) = 0 which is trivial solution. So 4 = 0 is not an eigenvalue.
2
ii. G(x,t) as a function of ‘x’ satisfies the D Equation % G(x,t) =0 In

each of theinterval 0 < x < tand t < x < 1 therefore we have

Ax+B 0<x<t
G(x’t)_{A’x+B’ t<x<1

li.  G(x,t) is continuous function of ‘x’ in the interval [0, 1] and
particularly at x = t therefore
lim,_ ;- G(x,t) =lim,_+ G(x,t)
lim,_,-(Ax + B) = lim,_,+(A'x + B")
At+B=A't+B =>B =(A—A)t+B

Ax+ B ;0<x<t

HenceG(x,t)={A,x+(A_Ar)t+B t<x<1
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iv. G(0,t) =0andG(1,t) = 0 are the same BC’s as those satisfied by
the given Green’s function.i.e.
G'0,)=0=>4=0
G(L,)=0=>B=A(t—1) withd=0

Al(t_l) ;05 x<t
Th ) ={ ! !
en G(x,t) Ax+ (0= AN+ A (E—1) t<x<1
Hence G(x't)_{A’(x—l) t<x<1

d . . . . .
V. G'(x,t) = aG(x, t) exists and will be discontinuous as x — t i.e.

lim,_,+ G'(x,t) # lim,_,- G'(x,t)
But lim,_ .+ G'(x,t) —lim,_ - G'(x,t) = %
limx_)t+(,4’) — limx_)t_(O) = % =4 =1

(t—1) ;0<x<t
(x—1) t<x<1

EXAMPLE: (UoS, 2015 -1)

Construct Green’s function associated with the problem u” + Au = 0 with

Hence G(x, t) = { required Green’s Function.

the boundry conditions u’'(0) = 0 and u(2) =0
Solution:  herep(x) =1 = p(¢t)

. Put 4 = 0 in given equation
d?u _ d?u _ d?u _ _ .
@+Au—0:ﬁ+(0)u—0=>w—0=>u(x)—Ax+B .......... (>i)
Now using BC’s u'(0) =0 and u(2) = 0wehaveA=0,B =0
(i) = u(x) = 0 which is trivial solution. So 4 = 0 is not an eigenvalue.

2
ii. G(x,t) as a function of ‘x’ satisfies the D Equation % G(x,t) =0 in

each of theinterval 0 < x < tand t < x < 1 therefore we have

Ax + B 0<x<t
G(x’t)_{A’x+B’ t<x<?2
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G(x,t) is continuous function of ‘x’ in the interval [0, 2] and
particularly at x = t therefore

lim,_ ;- G(x,t) =lim,_+ G(x,t)

lim,_,-(Ax + B) = lim,_+(A'x + B")

At+B=At+B =B =(A-A)t+B

Ax+ B 0<x<t
Ax+(A-A)t+B t<x<2

G(0,t) = 0 and G(2,t) = 0 are the same BC’s as those satisfied by

Hence G(x, t) = {

the given Green’s function.i.e.

G'0,t)=0=>A4=0
G2,t))=0=>A4A2)+(0-A)t+B=0=>A2-t)+B=0
=>B=A'(t-2) withA =10

~ A/(t_z) 0<x<t

ThenG(x,t)—{A,x+(0_Ar)t+A'(t_z) t<x<1
_(A(t-2) ;0<x<t

Hence G(x, t) _{A’(x—Z) t<x<1

G'(x,t) = %G(x, t) exists and will be discontinuous as x — t i.e.
lim,_+ G'(x,t) # lim,_,- G'(x,t)

But lim,_ .+ G'(x,t) — lim,,- G'(x,t) = %

lim,_+(4") — lim,_,-(0) = % >4 =1

(t—2) 0<x<t

HenceG(x,t)={(x_2) t<x<1

required Green’s Function.
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MODIFIED GREEN’s FUNCTION

When A = 0 is an eigenvalue of the SL system defined by L(u) + Aru =0
with g1 (u) = 0, B, (1) = 0 then the associated Green’s function is called
modified green’s function. And is denoted by G, (x, t)

PROPERTIES OF MODIFIED GREEN’s FUNCTION: (UoS; S.Q)

Let uy(x) be the normalized eigenfunction corresponding to 4 = 0 this means
that (ugy(x), ug(x)) = f: uy(x). up(x)dx = 1 then Gy (x, t) will have the
following properties;
I.  Gy(x,t) satisfies the D Equation L[Gy(x,t)] = ue(t).ue(t) ineach of
theintervala<x <tandt<x<b
ii. B1lGy(x,t)] = 0 and B,[Gy(x,t)] = 0 which are the same BC’s as
those satisfied by Gy (x, t)
iii. Gu(x,t) is continuous function of ‘x’ in the interval [a, b | and
particularly at x = t
iv. G'ylxt)= %GM(x, t) exists and will be discontinuous as x — t i.e.
lim,_+ G'y(x,t) # lim,_ G'y(x,t)
But lim,_ .+ G y(x,t) —lim,_ - G'y(x,t) = %
v. The modified Green’s function G, (x, t) satisfies the orthogonality

condition f: Gy(x,t). ug(x)dx =0
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EXAMPLE:Construct Green’s function associated with the problem
u'' + Aru = 0 with the boundry conditions u’(0) =0 and u'(1) =0
Solution:  herep(x) =1 = p(t)

. Put 4 = 0 in given equation

d?u d?u d?u
E+/1u—0:@+(0)u—0=>ﬁ—0=>u(x)—Ax+B

Now using BC’s u'(0) =0 and u’'(1) = 0wehaveA=0,B + 0
(i) = u(x) = B which is non - trivial solution. So 4 = 0 is an eigenvalue.

Therefore we take uy(x) = 1 as a normalized function.i.e.
(g (1), g (1) = J; o (x). ug (¥)dx = [ 1dx = 1
ii.  Gy(x, t) as a function of ‘x’ satisfies the D Equation
:—;GM(x, t) = upg(x)uy(t) =1 ineach of the interval 0 < x < t and
t < x < 1 thereforewe have G y(x,t) =1=> G y(x,t) =x+ A

2
:GMu¢y=%+Ax+B

2
%+Ax+B 0<x<t

ﬁGM(x,t)z xz
?+A%+B’ t<x<1

iii.  Gy(x,t) satisfies the BC’si.e. = G'(0,t) =0=>A4=0 and
>6y(1,t)=0>4"=-1

2
%+B 0<x<t
thus = Gy (x, t) = 2

?—X+B’ ;t<XS1

Iv.  Gy(x,t) is continuous function of ‘x’ in the interval [0, 1 ] and
particularly atx =ti.e.

lim,_ .+ Gy(x,t) = lim,_,- Gy (x,t)
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l- xz

t2

;—t+B’——+B=>B’=B+t

—x+ B’) =lim,_ ;- G'y (J;—Z + B)

2
%+B 0 x<t
thus = Gy (x, t) = 2
?—x+B+t it<x<1

d . . . . .
G'y(x,t) = ;GM(x, t) exists and will be discontinuous as x — t i.e.
lim,_ .+ G'y(x,t) # lim,_- G'y(x,t)

But lim,_ .+ G'y(x,t) —lim,_ - G'y(x,t) = L

p(t)
i (2 - 1) ~tim,.,-(2) =

t—-1-t=1=>-1+1
Thus the discontinuity condition does not help to determining the

unknown constant B. so we will use orthogonality condition.
Using orthogonality condition fol Gy(x,t). upg(x)dx =0

ftGM(x, t). ug(x)dx + fl Gy(x,t).ug(x)dx =0

N ( +B)dx+f (——x+B+t)dx— 0=0 withu,(x) =1
B = ﬁ —t + — after solving

Hence our required Green’s function is as follows;

—+f—t+— ;0<x<t
= Gyx,t) = 2 tZ
7—x+——t+ +t t<x<1
£+ﬁ—t+— ;0<x<t
>6ux)=1% *
ST —xt +— t<x<1
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EXAMPLE:Construct Green’s function associated with the problem
u'' + Au = 0 with the boundry conditions u(0) = u(1) and u'(0) = u'(1)
Solution:  herep(x) =1 = p(t)

. Put 4 = 0 in given equation

d?u d?u d?u
E+/1u—0:@+(0)u—0=>ﬁ—0=>u(x)—Ax+B

Now using BC’s u(0) = u(1) and u’'(0) = u'(1)wehaveA =0,B # 0
(i) = u(x) = B which is non - trivial solution. So 4 = 0 is an eigenvalue.

Therefore we take uy(x) = 1 as a normalized function.i.e.
(g (1), g (1) = J; o (x). ug (¥)dx = [ 1dx = 1
ii.  Gy(x, t) as a function of ‘x’ satisfies the D Equation
:—;GM(x, t) = upg(x)uy(t) =1 ineach of the interval 0 < x < t and
t < x < 1 thereforewe have G y(x,t) =1=> G y(x,t) =x+ A

2
:GMu¢y=%+Ax+B

2
%+Ax+B 0<x<t

ﬁGM(x,t)z xz
?+A%+B’ t<x<1

iii.  Gpy(x,t) satisfies the BC’si.e. = Gy(0,t) =Gy(1,t) >4 ' =4-1

and = G'y(0,t) =6'y(1,t) > B'=B -4 +%

2
%+Ax+B 0<x<t
thus = Gy (x,t) =4 ,

X

Z+(A-Dx+B-A+; t<x<1

Iv.  Gy(x,t) is continuous function of ‘x’ in the interval [0, 1 ] and
particularly atx =ti.e.

lim, .+ Gy(x,t) =lim,_,- Gy(x,t)
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2 2
lim,_+ (3 + (A—Dx+B—A+5) =lim, 6'y (5 +Ax + B)

1

2 2
SHA-Dt+B-A+ ="+At+B=>A=—t

thus

x2 1

?+(E—t)x+B ;0<x<t
x2 1 1 1
S+(G-t-1)x+B-(5-t)+, t<x<1

2
x?+(%—t)x+B 0<x<t
ﬁGM(x,t): 2

x?—(%+t)x+t+B t<x<1

d ] . | . .
G'y(x,t) = EGM(x, t) exists and will be discontinuous as x — t i.e.

lim,_+ G'y(x,t) # lim,_ G y(x,t)

But limx—nﬁ G,M(x' t) - limx—>t‘ G,M(xr t) = %

i (3 -0) -t (£ 00) =

t+o—t—t+ +t=1=1=1
Thus the discontinuity condition does not help to determining the

unknown constant B. so we will use orthogonality condition.
Using orthogonality condition fol Gy(x,t). usg(x)dx=0

fot Gy(x, t). up(x)dx + ftl Gy(x,t).ug(x)dx =0=20

f(f("z—z+(%—t)x+3)dx+ft1("2—z—(%+t)x+t+B)dx=O with

uy(x) =1

1
+

B= —
12

2 i
375 after solving

Hence our required Green’s function is as follows;
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x2 2t
S+(G-t)x+S-2+ 0<x<t
_ 2 2 2 ' 12
= Gy(x 1) = x2 1 22 ¢t 1
*_ (2 g1 : <
-Gt xS+ t<x<1
x2 1 t2 t 1
Z+(G-t)x+T-s+5 0<x<t
)2 2 2 2 ' 12
= Gy(x 1) = x2 1 22 ¢t 1
A2 — - . <
g (2+t)x+2+2+12 t<x<1

EXAMPLE: (UoS, 2018 I, I1)

Construct Green’s function associated with the problem

u'’ + Au = 0 with the boundry conditions u(—1) = u(1) and u'(—-1) = u'(1)
Solution:  herep(x) =1 = p(t)

I. Put 4 = 0 in given equation

d?u d?u d%u
E+/1u—0=>@+(0)u—0=>ﬁ—0:>u(x)—Ax+B

Now using BC’s u(—1) =u(1) andu'(—1) = u'(1) wehave A = 0,B # 0
(i) = u(x) = B which is non - trivial solution. So 4 = 0 is an eigenvalue.
1

> as a hormalized function.i.e.

Therefore we take uy(x) = i

(o (), g (1)) = [ (). up(W)dx = [1, = = dx =1

I. Gy (x,t) as a function of ‘x’ satisfies the D Equation
2
%GM(x, £) = uy(x)uo(t) = in each of the interval -1 < x < ¢t

and t < x < 1 therefore we have ¢" y(x, t) = % = G yxt) = %x + A

2
= Gy(x,t) =%+Ax+B
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li.  Gu(x,t) satisfies the BC’s i.e.
= Gy(-1,8) =Gy(1L,) >B' =1+ B —2A

and = G’ y(-1,8) =6 y(1L,H) 24 =A4-1

2

XI+Ax+B —1<x<t

thus = Gy (x, t) = 2
~+(A-1Dx+1+B-24 t<x<1

Iv.  Gy(x,t) is continuous function of ‘x’ in the interval [—1,1 ] and
particularly atx =ti.e.

lim,_+ Gy(x,t) =lim,_,- Gy(x,t)
2 2
lim,_ ("Z +(A-Dx+1+B-24) =lim,_ 6y (5 +Ax+ B)

t? t? 1-t
Z+(A—1)t+1+B—2A=Z+At+B=>A=T

2_2-'_(%)""'3 —1<x<t
= GM(x, t) = 2 - )
Z+(T—1)x+1+B—2(T) rex<1
x2 1—t N
= Gy(x,t) = €2+(22x+3 —1<x<t
I_(T)x"'t‘“? t<x<1

d . . . L
V. G y(x,t) = = Gy (x, t) exists and will be discontinuous as x — t and

gives no information about unknown. So we will use orthogonality
condition.
vi.  Using orthogonality condition f_ll Gy(x,t).uy(x)dx=0
f_tl Gy (x,t). ug(x)dx + ftl Gy(x,t). usg(x)dx=0=0
f_tl(’;—z+ (?)x+3)dx+ft1(’;—2— (5%)x+t+B)dx=0 with
uy(x) = \/—15 =0

+ % after solving
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Hence our required Green’s function is as follows;

2
I+(12t)x+%—§+% —1<x<t
= Gy(x 1) = X2 [(1+t 2t 1
I—(T)x+t+z—z+g t<x<1
2 _ 2
S+ (S)x+T-3+3 —1<x<t
= Gy(x 1) = X2 [(1+t 2t 1
T (F)a+gegs sr<axsi
EXAMPLE: (UoS, 2013,2014,2015,2017 -1, 1)
Solve the problem — = f(x) withu(0) =, u(l) = B

SOLUTION: Let G (x, x') be a Green’s function for the associated

homogeneous equation or BVP. Then it satisfies the equation

2
e K CTE ) P (i) with G(0,x") = 0 = G(L x') therefore
—Z1-x) ;0<x<x
I} l
= G6(x,x") = Y

—T(l—x) x <x<l
Since from Lagrange’s identity

! !/ b .o
ff[uL(v) —vL(w)]dx = |p(x)(u(x)v'(x) —u (x)v(x))|a ............ (i)
By comparing given equation with SL equation w get

p(x) =1,q(x) =0 and from BC’s a =0,b =1

And L =%{p(x)%}+q(x) =ix{1 }+ 0= :Zz

Then (ii) = | [u—— d—“] dx = |1(u()v'(x) —u (x)v(x))|
Take v(x) = G(x,x")

= fy [u5 gl ]dx = | ()6 (x, %) — ' (16 (x,x))]

Since from (i) 2 = 8(x — ') and also given 75 = f(x) therefore
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= fol[uS(x —x") = Gf()]dx = |(u(x)G' (x,x") — u' (x)G'(x, x’))|i)
= (w6’ x) —u' (D61 x)) — (u(0)6'(0,x) —u'(0)6'(0,x)) ......... (iii)

—’l—c(l—x’) ;0<x <X

Now using G(x,x") = { and u(0) =, u(l) = g

—XT(l—x) X' <x<l

= [\ [ud(x — x) — Gf(x)]dx

- (sC)-# (0]~ (< (D (Da-0)
> [olud(x —x) — Gf(Oldx = B (3) + S x)
= fol[ué'(x —x) - Gf(x)]dx = (ﬁ—oc)xT,+oc ......... (iv)

Now using property of dirac delta
[8(x —x"f(x)dx = f(x') = [ 8(x — xHu(x)dx = u(x")

(iv) = folu(x)8(x —x")dx — fol G(x,x")f(x)dx = (B—x) xT, +
= u(x’) — fol Gx, x")f(x)dx = (ﬁ—oc)xT,+oc
=>u(x) = fol G(x, x")f(x)dx + (ﬁ—oc)xT,+oc

= u(x) = fol G(x", x)f(x'")dx" + (B—x) % +

Where we replace x’, with x and x with x"”
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EXAMPLE: (UoS, 2019 - 1) Determines the Green’s function for the
exterior dirichlet problem for a unitcircle VZu =0,r > L,u=f,r=1

Solution: Consider Green’s function assume the form

GEmxy)=fEmxy)+g9&nxy)

where f(&,1; x, y) known as free space Green’s function satisfies

V2f = §(§ — x,;m — y) in domain D and g(&,7; x, y) satisfies V2g = 0

so that by superposition G = f + g satisfies the equation

V2G = 8§(§ — x, — y) in domain D

Also G = 0 on boundries requires that g = —f on boundries.

Now for Laplace operator f must satisfies V2f = §(§ — x,n — y) in domain D then for

r = 1 we have

2p 10 (LOF) _ o, |
Vof =-— (rar) = 0 and solution will be f = ¢q + c;logr

Now applying the condition lim,_, fcf‘;—flds = 1 where n is outward normal to the circle

andC. = (§—x)2+(m—y)* =€*Weget f = ilogr

Now if we introduce the polar coordinates p, 8, o, B by means of the equations
x = pCosO,y = pSinb,§ = ocCosP,x = aSinf

We get g(o,B) = % + Y1 0™(a,Cosnpf + b,Sinnf)

Where g = ilog (1 + p? —2pCos(B — 0)) on boundry

p"Cosn(B—0)
n

Now by using the relation log (1 + p? —2pCos(B — 9)) =24 and equating

__p"Cosnd

the coefficients of Cosnf, Sinnp to determine a,, b,, we find a,, = v ,b, =

plSinn6

2nn

It therefor follows that g(p, 0,0, B) = izfﬂ (po)"Cosn(B—0)

9(p.0,0,8) = -log (1+ (po)* ~ 2paCos(B - 6))

Hence the required Green’s function is as follows;

G(p, 6;0,pB) = ﬁlog (p2 + 0% — 2paCos(B — 9)) _

ﬁlog (1 + (po)? — 2paCos(B — 0))
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VARIATIONAL METHODS

The subject of calculus of variation or variational method is similar to but
more general than the subject of maxima and minima in Calculus.
FUNCTIONAL.:

Let M be the set of functions defined over the interval [a,b]

i.e. M ={f | f:[a, b] » R} such that each function is integrable then a rule of
function I: M — R defined by I[f(x)] = JeR is called functional.
STATIONARY VALUE:

The maximum or minimum value of the function or functional is called
stationay value OR the point at which the 1% derivative of a function or
functional become zero is called Stationary value.

EXTERMAL.:

The curve y = f(x) along which the functional ‘I’ takes the stationary values

is called extermal. i.e. if SI[f(x)] = 0 then y = f(x) is extermal curve.

SOME EXAMPLES OF VARIATIONAL PROBLEMS:
Here we discuss some important problems whose attempted solutions have led
to the development of the subject of Calculus of Variation.
Historically there are three such problems;
I.  The problems of geodesics: i.e. to find the cuve of minimum length
joining two points on given surface.

ii.  The brachistochrone problems: i.e. to find the path of quickest
descent, joining two points in spacew, for a particle moving under
gravity.

iii. Dido’s problems: i.e. the problem of findind curve of given length

which encloses maximum area by itself or with a given straight line.
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GEOSDESICS PROBLEM:

Find the curve whose distance between two points is minimum.
EXPLANATION: Let y = y(x) be a curve C on the surface S which is
represented by z = z(x, y). Then suppose that A and B be the two points on

the curve C. then distance (length) between two points A and B is given by

I A L (i)

In the case of any surface ds = \/ (dx)? + (dy)? + (dz)?

Since curve lies in xy — plane therefore z = 0 then we get

ds = /(dx)2 + (dy)?2 = |1+ (%)2 dx = /1+ (y")2dx

(H)=>1= ff ds = fAB 1+ (y)2dx this is our required length.
BRACHISTOCHRONE PROBLEM: (UoS, S.Q)

A particle falls under gravity from A to B. determine the curve along which
the time taken by the particle will be minimum.

EXPLANATION: Consider a particle falls under gravity from A to B . then

instantaneous velocity is given by V = % and time taken between A and B is

B dt B 1 B1 .
fA Eds= AEdszfA -ds .......... (i)

dt

given by total time = f: dt =

Now using 3" equation of motion under gravity we get V = ./2gy

(i) = total time = J%—gf:%;\/ 1+ (y)%dx = J;—gff /1+(;')2 dx required.
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DIDO’s PROBLEM: (UoS, S.Q)
Find the closed curve of given length which enclosed maximum area.
EXPLANATION:

Suppose that y = y(x) is the curve which meet the x — axis at points x; and x,

and enclosed maximum area A = fxxlz ydx and and the length of the same

curvegivenas L= [ *ds = [ *y/1+ (y)2dx then the problem reduces to

that of maximizing the area in equation 4 = fxxlz ydx subject to the condition

giveninl = fxxlz ds = fxxf 1+ (y)%dx

(PU 1997,2000,2001)
Discuss 3 well known problmes, viz., geodesic, brachistochrone and dido’ and

formulate them as variational problems.

FUNDAMENTAL THEOREM ON VARIATIONAL CALCULUS:
(PU, 2002, 2010, 2011)
If £(x) is continuous function in the interval (x4, x,) and the integral

f:lzf(x)g(x)dx is identically zero. i.e. f;zf(x)g(x)dx = 0 where g(x)

satisfies the following conditions;

I. Itis an arbitrary function with continuous derivatives in the interval

(%1, x2)
. g(x) =g(x) =0
Then f(x) = 0 for all xe[x4, x5 ]

PROOF: We prove by contradiction. If possible let f(x) # 0 in (x4, x3). Then
there is at least one point xq in (x4, x;) such that f(x,) # 0. Then because of
continuity of f(x) in (x4, x,) there must exists an interval (xy — 8, x¢ + &)

where & > 0 surrounding x, such that f(x) > 0 for all xe[xy, — &, x¢ + J]
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Since g(x) is arbitrary, it can be taken as

g(x) = {(x —x0+ 8 (x—x9—6) if xe[xg— 6,x¢ + 8]
0 otherwise

It is clear that g(x) = 0 at the endpoints of the interval (xo, — 8, x¢ + 8) and
has continuous derivative inside the interval. Then integral f;lz f(x)g(x)dx
becomes fx’;"__aaf(x)(x —x0+8)*(x—x9—8)*dx >0

This is contradiction, as fxxlzf(x)g(x)dx =0

Hence f(x) = 0 for all xe[x{, x;]

EULER LAGRANGE’s EQUATION: (UoS, 2013, 2014, 2015)
Let] = fxxlz F(x,y,y")dx where y = y(x) is a continuous function having

continuous 1% and 2" order derivatives satisfying the following endpoint
condtions y; = y(x4) and y, = y(x3), also if F is supposed to be have
continuous 1% and 2" order derivatives w.r.to its arguments, then the function

y = y(x) will extremise the given integral if it satisfies the following DE
oF d (0F
3~z (5y) = O
PROOF: given that I = fxxlz F(x,y,y)dx
/ oF oF ’
81 = f:z 8F(x,y,y)dx = fxx: (a—6y + ;8}1 ) dx

51—]"2”5 dx + [ F(Syd f"za Sydx + [*=" 8 () dx

ay/ dx
61_f"2"F5 dx+ 72 2 (8y)dx
51—]"2”8 dx +[ —f"z(a (aF)dx]
yl
51 = aFSydx [(5y) (;’yF) x since 8y(x,) = 0 = 8y(xy)
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For extermal curve 81 = 0 then f 22 6ydx f “(8y) - ( )dx—
Sl -5 (55) ] evax =0

dy
daF d (O0F . ;
- E(a_y') =0 8y # 0,dx # 0 being orbitrary values.

SPECIAL CASES: (UoS, 2019-1)
I. When F is independent of ‘y"’

Then :—; = 0 then EL equation becomes as follows;

g—i = 0 this is an algebraic equation in ‘x’ and °y’. the solution may

not satisfy the given boundry conditions.

ii.  When F is independent of ‘y’

a 4
Then £ = 0 then EL equation becomes as follows;
d (0F JoF
™ (0—}’,) =0 a_y' = Constant

iii.  When F is independent of ‘x’

Then = = 0 then EL equation becomes as follows;
2~ iz ay)) = 0

=5 T ula) P n " n ) e 2 " a e
N (Z—D dy =d ((,‘;’TF) Y e, ()

Since F = F(y,y') = dF = . dy + - dy’

> dF =d (a—) y + ;dy' by (i)
>dF =d(y y)=>d(F y' ) 0

oF
>F—-y a constant
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iv.  Suppose ‘F’ is linear function in y'

ie. F(x,y,y)=M(x,y)+ N(x,y)y  ......... (i)

() = 2 = (x| My | (x| AN dy)
ay ax dy dy dy dxdy dydy
doF oM oN\ , .s
5 —=\— — Y ceececens
ay (ay) + (ay) y (ll)
. . dF
Again (i) = P N(x,y)
aN dx aN dy 6N oN ,
> — | — = -_— —_- —_— T Y eccccccee
(ay,) (N( )) ox dx 6y dx ~ ox + ay y (lll)
nOW&Sa—F—i(a—F) =0
dx \ay')
oM ON\ , ON 0N ,
= | — S _——— vy =
(6y) T (6y)y dax ayy 0
oM ON oM  oN
—_— > — = —
dy Ox dy ax

= M, (x,y) = Ny(x,y) thisis not a DE which may not satisfy the given

boundry conditions.

EULER’s LAGRANGE EQUATION IS SECOND ORDER DE
d (0F .
As we know that —y —— (—) =U 1.1 >i)

dx \ay’
. aF :

Since F = F(x,y,y") then 2 5 and 3y are also functions of x, y and y'
Then by using chain rule
OF _ A (OF)_ 9 ()dx 0 (OFydy, O (OF)dy
ay dx \ay' dx \dy'/ dx ay\ay'/dx ~ ayr \ay'/ dx

dF _ @ (oF a (dF\ , @ (ap) "
=> _— — —_— —

dy  ox (ay’) + ay (ay’) y+ ay’ \ay' y

= F, =F,,,+F,,y +F,,y" whichis2" oder Differential equation.
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EXTENSION OF EULER LAGRANGE’s EQUATION WITH ONE
INDEPENDENT VARIABLE AND MANY DEPENDENT VARIABLES:

Let] = f:lz F(x,y,,yi)dx; k=1,2,3,......nwith the stationary condtions

vy, (x1) = constant and yk(xz) = constant, then Euler’s Lagrange’s

d ( OF
eguation can be written as a_yk —-— (ayk') =0

PROOF: giventhat I = fx F(x,y1, yi)dx

/ oF
ol = f:z (S'F(x,yk,yk )dx = fxl ( Syk + _ayk ) dx

Yk
Sl_fxz 0F6 dx _|_fx2 oF Syk'd = 6ykd +fxzaai/ (L:i};ck) dx
oF oF d
81 = [ 2 8y,dx +f"2 ,dx( 8yi)dx
JaF
ol = fxz 6ykdx+ |_(6 - fxz( k)a(ay ’)

X2 dF

81=[* 2 Sydx — [[*(8y k)a( =) dx since 8y, (x1) = 0 = 8y, (xz)

Ay’

For extermal curve 61 = 0 then fxxz L7 8ykdx f 2(8y k)E(_) dx =0

S o~ G oy =0

oF d (BF

Ay’

—— ) 0: k=1,23,.

6y, # 0,dx # 0 being orbitrary values.
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EXAMPLE: Let I = fxxlz F(x, @, @', ") dx with the stationary condtions
6p(xy) =0¢p(x,) = 0and 6y (x;) = Y (x,) = 0 then

o ag) =0l H-(p) =0

PROOF: given that I = fx"f F(x, @, ¥, ¢ P)dx

81=[26F(x, 09,9 W)dx = [* (380 + 2o 8% + 5 8¢ + - 69') dx
1 ! Y
61—fx26F8(pd +fzaF6<pd +f2 "~ Spdx +f"2”61pdx

Sl—fxz an(pd +fx2 oF (d(p)d +fxzap81[)d +fx2 JoF (—)dx

X2 oF X2 aF d

ald

X2 aF d

61—f 1 Oy dx

5, Spdx +f"2 , Swdx + [(220 e (S)dx + [ 2 2n o (8 dx

6I=fxzap&pd +f2—6¢d +[| (6(p)| - [2(8¢ )—(—)dx]

[Ia,,,, ~ [ & () x]
81 = f"z o Spdx + [ 50 swdx — [2(69) 1 (5) dx — [7(6) 1 (5-) @
since 6@ (x1) = 8p(xy) = 0and dY(xy) = 6Y(xy) =0

81 = [ (g—(‘; - % (aw)) Spdx + [ <"_F _ 4 (a:p:)) Spdx

For extermal curve 61 = 0 then

(2 £ (2))spax + 2 (% - £ (22)) swax =

g <§_: -4 (a¢,)> Spdx =0 and [ (— 4 (aw )) Spdx =

e e agr) =0 3055~ 52 () = ©

6@ + 0,dx + 0,5y # 0 being orbitrary values.
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EXTENSION OF EULER LAGRANGE’s EQUATION WITH ONE
INDEPENDENT VARIABLE AND ONE DEPENDENT VARIABLE WITH
ITS HIGHER ORDER DERIVATIVES:

(UoS, 2017, 2018 — 1)

Let] = f:lz F(x,y,y,y",y", .....y™)dx with the stationary condtions
yx) =y (x) =y"(x1) = e seeevn...= y™(xy) = constant and
y(x) =y (x) = y"'(x3) = ... ....= Y™ (x,) = constant, then Euler’s

Lagrange’s equation can be written as

o+ (—1)%(—) (-1 )dez( y”) bt + <_1)n;_;(agg)) =0

PROOF: given that I = fxlz F(x,,¥,9",9", ...y™)dx

81 = f:z SF(x,y,¥,y",y", ... y™)dx

81 = [ ( 6y+—6y +a,8y”+ ..+az(Fn)6y("))dx

51 = [ ‘”5 dx+ " 8y dx+ [ oF o 8y dx ot [ aif;) Sy™dx
............... )

Consider f;‘“—‘”lsy'dx = fx"lzj—:ls(%) dx = [[* 2 - (8y)dx

N gj by'd — /. x2(5y)— (5) dx

f;zg—jay’dx = —f (8y) (::,) X since 8y(x,) = 0 = &6y(x,)

[ byas =t an £(2)e

Also f:m&r”dx _ x"f%a(%) dx = [ a"yF - (8y)dx

J 5 8" - [0y (55 dx

f:lz%Sy”dx = — fx’iz(Sy’)%(aiIF”) dx since 8y(x,) = 0 = &y(x,)
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AICHIN

X1

S o ®dx = =5

+ (-1 fxz( )dxz (ay”) dx

ayll

fxz 7 8y"dx = (—1)* fxz( y) dxzz (ay'f) dx

X1 aylr

oF
Similarly  [72-"5 §y®™dx = (-1)" [[*(8 )@(ay(n)) dx

Then equation (i) becomes

2 8ydx + (D! [y 5 (5) dx + (12 [[2(69) 13 (a ~) dx +

X2 dF

51 = [22

e () [2(EY) (5 (n)) dx

For extermal curve 61 = 0 then

[ 8 sydx + (—D' [22(09) = () dx + (-1 [22(69) = () dx +
o () [22(EY) (5 (n))dx—
2+ D (5) + (-1 2L () ++ + D" 2 (55) | Sydx = 0

T+ (D1 (5) + (1 2L (3) e + (—1)nd—;(ay(n)) =0
6y + 0,dx # 0 being orbitrary values.
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EULER LAGRANGE’s EQUATION WITH TWO INDEPENDENT
VARIABLES: (UoS, 2011 )

LetI= [ rF (x, Y, U, Uy, uy)dxdy then Euler’s Lagrange’s equation can be

written as a—F—i(a—F) _9(E)_p
du  0x \Odu, dy \du, a

PROOF: giventhat I = [f F(x,y,u,u,,u,)dxdy
8l = [[ . 6F(x,y,u,u,, uy)dxdy

ol = [f (a +—6 + 6u )dxdy ........... )
Consider ai(ats ) aax(aux)a +a—Fi(6 )
"—Fi(s )——(;—LSu)—:—x(;—L)tﬁu

6ux 6 aa (:jx 6“) | ;_x (:_zi) A

Similarly a—a g ("F )——(a—F)

ay du,
(i):81=ffR(a u+ :—x(:—lié'u)—— aux ai a—F ) ( )6u)dxdy
=681 = [[ <—u—%(;i)—;y( ))dudxdy+ < aux 6u>>dxdy
=é6l=1,+1, ... (ii)

. d ( OF d ( OF
Consider Iz = ffR <a (a_ux Su) + @ <a_uy 6“)) dXdy
dF dF JoF JoF
Iz = ¢c — <a_uy 6udx> + (a_ux Sudy) = ic (a—ux dy — de) ou by Green’s theorem

Since u is prescribed on the boundry therefore due to the closed curve du
must be zero.i.e. I, =0

(i) > 61 = [[, <£ - a((,;"j) a"y (a )) dudxdy

oF d ( oF d ( OF
= ff, (E — o (aux) % (a )) dudxdy = 0 for extermal curve 61 =

oF 0 ( dF 0 ( OF ;
=>£_£(a_ux)_5(a)_0 since du # 0,dx # 0,dy + 0

Hence required.
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EULER LAGRANGE’s EQUATION WITH THREE INDEPENDENT
VARIABLES:

Let] =[] f F (x Y, Z, U, Uy, Uy, uz)dxdydz then Euler’s Lagrange’s equation
aF d (dF a (oF a (dF

can be written as 5u  an (a_ux) ~ 3 (a_uy) — (a_uz) =0

PROOF:

given that I = [ff F(x,y,z,u,u,, uy,u,)dxdydz
o8I = [[f ,6F(x,y,z,u,u,,uy,u,)dxdydz

s1=JIf, ("_F B + Bty + Bty + o 8uz> dxdydz oo @)
Consider ai(:TFSu) = ;—x(;:) ou + a—Fi ~(6u)
a

TG >——(§%6u)—a(§—i)6u
. Ot = 5 (G- 0u) = 52 () 6w
= f%@w)ﬂ@“
And - Smou, =2 (e ou) - 5 (5 ) u
@ =61=[ff, ( (ané‘u)—%(;—L)au+%(:—jydu>—%(:—jy)6u+
%(:jz 8u)—i(auz) 6u) dxdydz
=61 = 1, (2~ 2(25) - 2 () - 2 (22) ) auaxay + 11, (2 ou) +
%(auya ) +- (:uF 8u)) dxdydz
S8=11+1, = e (ii)
Consider I, = [ff, < (:Lsu)+ai(:—jysu)+ai(:‘” 6u)>dxdydz
L= I, i+ 5i+ oK) (3 k) dv
I, = [[f,V.Gdv

= I, = p G.7ids by divergence theorem.

Since u is prescribed on the boundry therefore due to the closed curve du must be zero. i.e.
12 =0

)= 81 = 1, (35~ 2 (50) - 3 (32) - 2 (35) ) duaxay

= [If, <———(0F) _2 (aF) 0 (aF)> dudxdy = 0 for extermal curve 8I = 0

Slmllarly IF su

du ou, dy \ou, 0z \du,

oF @ (dF a (aF a (dF .
i ax(aux) ay(ﬁ>_£(auz)_0 sincedu # 0,dx # 0,dy # 0,dz # 0

Hence required.
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PLATEAU’S PROBLEM: (Problem of minimal surface)

In this problem we will find the surface of minimal area which is bounded by
a given closed curve.

EXPLANATION:

Consider a surface z = z(x,y) where x = x(u,v) and y = y(u,v) then 1%
fundamental form of given surface is

(ds)? = E(du)? + 2Fdudv + G(dv)?

Where = #,.7, = |¥,|?> , F =7,.7,, G = 7,.7, = |¥,|? are fundamental
quantities of the surface. If we take parameters (x,y) and putu =x,v=1y
then

=|1—;x|2 0xA_|_a_yA_|_ k| _|11—|—0]+Z k| (\/1+zx2'|)2
E=1+2z>

2
G=|?y|2 a’“+a—yA+ k| = |0i + 1j + z, k| ( |1+zy2|>
G=1+2z>°

= ay . ox ., 0y,  0z3\ A = A T
F=7.7,= ( i+-j+— k) (— P+ +5k) = (1i + z,k) (1 + z,k)
F=2zz,
Putv = constant then (ds{)? = E(du)? = ds = VEdu
Put u = constant then (ds,)? = G(dv)? = ds = VGdv

Thends = |ds; X ds,| = |ds||ds,|Sin6

ds = VEdu/GdvSin® = ds = VEGdudvSiné ......... (i)
. _F_ P — > _ VEG-F?
if CosO = N and Sin0@ = V1 — Cos?0 = Y

(i) > ds =VEG — F?2dxdy
= s = [[[ VEG — F2dxdy
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=5 = I J(+2)(1+ 2,7) — (2,2,) dxdy

== fff\/1+z,,c2 + z,2dxdy

Now let F = F(x,y,z 2,,2,) = \/1 +2,% + 2,2

Then by using EL equation for two independent variables
aF d (9F a (oF
5__((32,{) 5(@) =0
2 2_0 (9 2 9 2
J1+z +z, ax(azx\/1+z +z, ) Oy(azy\/l-l_z +z, ) 0

i} Zy i} zy

ox /1+zx2+zy2 dy ’1+zx2 +2zy2

=>0-— =0

a Zy a Zy

ox\ [, 2.2 o\ T,
1+2z,2+2,2 Y\ [1+2,2+42,2
ZyZ
( ’1+zx2+zy2)zxx—%zx ( ’1+zx2+zy )zyy —X X 4,
/1+zxz+zyZ 1+zx2+zy
3 +
( /1+zx2+zy2) ( /1+zx2+zy )

N <(1+zx2+zy2)zxx—zxzzxx> n <(1+zx2+zy2)zyy—zyzzyy> —0

(1+zxz+zy2)3/2 (1+zxz+z},2)3/2

= =0

= (1+ 2,2+ 2)%)zy, — 2,°2,, + (1 + 2,2 + 2,%)z,, — 2,%2,, = 0

= (1+2,%)2z,, + (1 + 2,%)z,,, = 0 this is our required.
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CONSTRAIN EXTREMA OR PROBLEMS WITH CONSTRAINTS OR
VARIATIONAL PROBLEMS WITH SIDE CONDITIONS OR
ISOPERIMETRIC PROBLEMS:

To find the stationary value of a functional I = fxxlz F(x,y,,y'1)dx where the

argument of F are subjected to constraints or additional conditions such as
I. G(x,y,) = constant
ii.  G(x,y,Y'x) = constant

iii. fxxlz G(x, ¥, y'1)dx = constant

Then we construct a new function involving parameter Ai.e. H = F + AG

EULER LAGRANGE EQUATION FOR CONSTRAIN EXTREMA

The extermal curves y, = yr(x) ;k =1,2,3,...........,n of the functional

I= fxxle(x, v, ¥'1)dx with constraints

Gi(x,yx) = constant ;j=1,2,..,n ............. @)
Then J = [ F(x, ¥y i0dx + I 4 f, Gi(x, y)dx
J = [ (FGyey') + T4 Gi(x,y))) dx = [ Hdx

With F(x, y,, y'1) + X1 4; G;(x,y,) = H where 4; = 4;(x) are suitably

choosen multiplier. It is clear that the Euler Lagrange’s equation in this case

: OH d ( oH ..
willbe 24— E(ay,k) 0 k=123, e )Tl e (ii)
Then the curves y, = y(x); k=1,2,3, ... ... .....,nn can be obtained from

both equations.i.e. (i) and (ii)
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GEODESIC:

A geodesic is the curve of shortest length joining two points in space.
EXAMPLE: (UoS, 2017 )

Prove that a straight line is the shortest distance between two points in the
plane.

PROOF: Since this is the geodesic problem therefore we use the functional
. b AV H . ! _ N2

I=[ {1+ ¥)%dx with F=F(x,y,y) =1+ ()

Since F is not depend on ‘y’ therefore we use following EL equation;

oF d (dF

3y~ (3yr) = 0

oF d (0F
=>—=0and—(—) =0
ay dx \dy'

F
= 9F _ Constant = C
ay!

ia—(m)
W_C:y —C\/1+(y)2

= () =1+ )% =C*+ Ay
>N -C0O)=C>1-C)y) =

2 CZ . CZ
=) T 1-c2 =y = 1-C2

Cc2
1-C?

>y =—==a (say) where a =

zf%dxzfadx

=y =ax+c  which is straight line.

MUHAMMAD USMAN HAMID (0323 - 6032785)



170

The applications of the Calculus of Variations in Mechanics are based on
employing Principle of Least Action and Hamilton’s Principle;

stated as below;

PRINCIPLE OF LEAST ACTION

According to this principle:

Let a particle move in an external field of force which is conservative. If the

motion takes place in the interval of the time from t, to t, where t, > t; then
the actual path traced by the particle is the one along which I = fttlz Ldt is

minimum. Where L is the Lagrangian and for a conservative system

L =T -V = kinetic energy — potential energy

HAMILTON’s PRINCIPLE: (UoS, S.Q)

According to this principle:

The path of motion of a rigid body in the time interval t, — t; is such that the
integral 4 = fttlz Ldt has a stationary value, where L is the Lagrangian.
EXAMPLE: (UoS, 2015 1)

Find the equation of the path in space down which a particle will fall from one
point to another in shortest possible time.

Solution:

This is the Brachistochrone problem, therefore we use the following functional

b 1 b 1+( /)Z . , 1 1+( ,)2
szadt=>1=\/7—gfa /Tydt with F=F(x,y,y):\/7_g ;’

Since F is not depend on ‘x’ therefore we use following EL equation;

y(OF\
F—y (a_y,) = constant

N 1 1+(}”)2 I 1
Jzg\ ¥ Y 29

ai (w/ 1+ (y’)z) = constant

ﬁ|~
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1 [ [on? yLe =\
:J@_ ” \/’a (w/1+(y) )] = constant

= 1 - o0t Ly = constant
J29 \] y y Sy 1+ o2

1+n2  (n?

[y

= = constant
V2g [N v Yy 1+(1)?
! 2 "2
= (Lo ) = ,/2g(constant) = a(say)

y \/y(1+(y )?)

2
- ’1+(y')2 _ O — a2
y Vy(1+(y"H?)

,2 \4 12 N2
G CICOLINNC) _2< o002 o) >= 2

y y(1+("?) y@+(H?)
1+(yn)? o)H* 2(y")? 2
= — =
y  Tyarom Ty @
(1+(y')2) +)*-20")?(1+()?) 1 2 :
> ——— = fter solvin
YA+ =@t = om = @ aftersolving
Y 1 ! ] 1 1-a?
:»1=a2y(1+(y>2):a7=<1+(y)2):»(y>2 T

1ay

e f\/ﬁdy fdx=x+c

Put a?y = Sin*0 = a*dy = 2S5in0Cos0d0 > dy = %SinHCosedO

f\% ;SmBCosedH =x+c=> %f “ZZZ.SinGCosGdO =x+c
znginZBdB=x+c=>%f1_coszod9=%f1—60520d0=x+c
= x = i(ze —Sin20)+b ......... i)
and y= i (2Sin%0) > y = ﬁ (1— Cos20) ......... (i)

(i) and (ii) are parametric equations of cycloid, where ‘a’ ,’b’ are constants.

Thus the curve downwhich the particle takes the minimum time is cycloid.
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DIDO’s PROBLEM: (UoS, 2018 —1)
Find the closed curve of given length which enclosed maximum area.
EXPLANATION:

Y

D.x

172

Suppose that y = y(x) is the curve which meet the x — axis at points A(x4,0)

and B(x,,0) and encloses maximum area. Since area enclosed A = f;f ydx

therefore we have to extremized the functional [ = f;lz ds = fxxlz 1+ (y)%dx

Here F = y,G = /1 + (y')? and therefore we construct a new function

H=F+AG6=y+AJ1+ (y")?

Since there is no explicit dependence on ‘x’ so we use the special case of EL

equation.i.e. H —y’ g_:’ = cosntant

! ! a !
=>y+AJ1+ )2y F(y+)“/1+(y)2)=c1
>y+Ay1+ ()2 - L c1

e

1+(y')%- (y)2> ( )_ _
:”1( J1+(")2 —y=4 Jronz) ATy

c1—-y 1 (c1-y)* 1 N2 A2
= = = = =
1 V1+(y")? A2 1+(y")? =1+0) (c1-y)?

! ! )‘2_ -y)? ! d A2— -y)?
=>(y)2= _1:(),)2: (c1-y) =>y=_y=\/ (c1—-y)

(c1—-y)? (c1—-y)? dx c1-y

c1—Yy _ z
M= A
=>Ef(/12 —z2)"V2 (=22)dz = x + c,

dz=[dx putc,—y=z
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>-L7) x4 -2) V2 =x+c, 22222 = (x+¢y)?

SA=(x+6) 2 +22=22%=(x+c)*+(y—c1)?

This is an equation of circular arc where the constants c4, ¢, can be
determined by using the given conditions y(x;) = 0 = y(x3)
INVERSE OF DIDO’s PROBLEM:

It can be stated as;

The extermal curves of the functional I[y(x)] = fxxlz F(x,y,y")dx with the

endpoint conditions y(x;) = y41,y(x3) = y, and subject to the constraint

Jlyl = fxxlz G(x,y,y)dx = constant are the same as the extermals of

funtioan J with the same endpoint conditions and subject to the constraint
J[y] = constant
PROOF:

Consider F = F(t,x,y,x,y) =+/x* +y?2and G = G(t,x,y,x,y) = %(xy — Xy)

Therefore H = F + AG = /&2 + 32 + 2 (xy — i)

: 0H d (dH dH d (9H
As the EL equations are Ll e (E) = 0 and LG (a_y) =0

In this problem these equations reduce to

. d x _ ._i x . _
Ay—a(m—ly>—0 and Ax dt(m Ax)—O

Which on simplification and integration yield

21y NE C, and 2Ax Foee C1
2
On eliminating x, y we obtain (x—cD?*+(y—cp)? = (%1)

r_a ’:C—Z
Where €1 =15, and c, )
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EXAMPLE:

Find the curve joining the points A(x4, y1) and B(x5,y,) which give the
minimum area of the surface of revolution around y — axis.

Solution:

This is a Dido Problem in xy — plane. We want to find a curve which gives the
minimum area of surface of revolution generated around y — axis.

Since curve revolve around y — axis therefore

Area = fAB 2nxds = 21 ff xJ1+ (y)2dx with F(x,y,y") = x/1 + (y')?

Since F is not depend on ‘y’ therefore we use following EL equation;
OF d (dF
3 s () = ©

aF aF

=>£=0and%(a—yl)=0:>

aF
— = Constant
ayr

= % (xx/ 1+ (y’)z) = a(say) = J%y)z =a after solving
= xy' = a1+ ()% = () = a*(1+ (")) = 2 - a®)(Y)? = @
Sl =r sy == % o lay=["_4dx

x2-a? dx | [x2_q2 [x2—a2
= y = aCosh™! (f) +c required.
a
EXAMPLE:

Find the curve joining the points A(x4, y1) and B(x5,y,) which give the
minimum area of the surface of revolution around x — axis.

Solution:

This is a Dido Problem in xy — plane. We want to find a curve which gives the
minimum area of surface of revolution generated around x — axis.

Since curve revolve around x — axis therefore

Area = fAB 2myds = anAB yJ1+ (y)%2dx with F(x,y,y") = yJ/1 + ()2

Since F is not depend on °x’ therefore we use following EL equation;
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 (OFY _
F—-y (a_y,) = Constant
nNZ _ 2\ | =
yJ1+ @)% —y <ay/ (y 1+ () )) = Constant
= yJ1+ ()2 - ﬁy() T = a(say)

1 N2)— )2 ] ! !
_ X +(3;i(3”)3;(y) —a=y(1+ )% - (")) = a1+ ()2

>y=ay1+ () =>y*=a’(1+ ()% = a® +a*(y)’
>y - a? = a}(y')?

n2 _ yi-a? y _dy _ Jy*—a? _
=>(}’)2—7=>)’—;— - =>f/—2 asz’—fdx
_ -1 (¥ :
= x = aCosh (a) +c required.
EXAMPLE:

On what curves can the functional I = [2((y")* — y*)dx with condition
y(0) =0,y (g) = 1 be extremized.

Solution:

I=[2/(y)?—y2dx with F(x,y,y") = (y)? — y*

Since F is not depend on ‘y’ therefore we use following EL equation;
oF d (9F
3y~ (3yr) = 0
O (w2 42y _ 4 2 _ 2y —
> (O = yD) dx<ay,<(y> )) =0

= —Zy—d%(zy’) =0=>-2(y+y")=0=>y"+y=0
Then general solution will be y = Acosx + Bsinx
>y(0)=0=>A4=0 and =>y(§)=1=>3=1

Hence The general solution will be y = sinx
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EXAMPLE: (UoS, 2013 -1, 2015 11)

Find the extermal for I = f(;it((y’)2 + (2')? + 2yz)dx with condition
y(0)=0,y (g) =1;z(0) = O,Z(g) = —1 be extremized.

Solution:

We have I = f(?((y’)2 + (2)? + 2yz)dx with F = (y)? + (2))* + 2yz

since there are two unknown functions °y’, ‘z’ (extermal curves) there will be

a pair of EL equations;
Since F is not depend on °y’ therefore we use following EL equation;

() =0 @ and > —=—(52)=0...... (i)

(D = 5 (O + @) +2y2) — - (% (O +(2)* + 2yz)> =0

27—+ (2y)=02(z-y")=0>y" =z .......... (iii)

(i) = 2 () + (2)? +2y2) — 1= (= (0)? + (202 + 2y2)) = 0
=>2y—£(22’)=0:2(y—z”):0:>z”=y .......... (iv)

Using (iii) in (iv) we get = y" —y =0 .......... (V)

Then general solution of (v) willbe y = Ae* + Be™™ + Ccosx + Esinx
Andy"’ =z = Ae*+ Be™* — Ccosx — Esinx

>9(0)=0>A+B+E=0ecu... (vi)

And =y (5)=1=4e:+Bez+E=1.... (vii)
Similarly=z(0)=0=>A4A+B—-C=0.......... (viii)

And =>z(§)=—1:>Aeg+Be_g—E=—1 .......... (ix)

Adding (v) and (vii) B = —A also subtraction from (v) and (vii) € = 0

Adding (vi) and (viii) Aez + Be z = 0 also subtraction from (vi) and (viii)
E = 1 then using the relation B = —AwegetA=0,B =0
Putting all values we get y = sinx,z = —sinx

MUHAMMAD USMAN HAMID (0323 - 6032785)



177

EXAMPLE:

Find the extermal for I = f(;it((y”)2 — y% + x?)dx with condition
y(0) = 1,y(§) =0;y'(0)=0,y (g) = 1 be extremized.
Solution:

We have I = f(?((y”)2 — y% + x®)dx

with F = F(X,y, yr,yu) — (yII)Z _ yZ + xZ
therefore the extermal curve y = y(x) is obtained by the solving EL equation

S+ D () + (D2 5 ( ) = 0 s @)
(l) = —-2y+0 +E(Zy”) =0=-2y+2y"=0

Then general solution of (v) will be y = Ae* + Be™™ + Ccosx + Esinx
And y’ = Ae* — Be ™™ + Ccosx — Esinx

>y(0)=1=>A+B+C=1......... (iii)

And =y(5)=0=Ae:+Be 2 +E=0........ (iv)
Similarly=y'(0)=0>A—-B+E=0.......... v)

And =y’ (g) =1 :Aeg—Be_g—Cz —1.ieinees (vi)

Subtracting and simlifying (iv) and (v) (e§ ~1)A+ (e‘§ +1)B=0

Adding and simlifying (iii) and (vi) (e§ + 1)A 1 (e‘z 4 1) B-2=0

N A _ B _ 1
2 (e_%+1) -2 (e%—1> - <eg—1>(e_%—1>—<eg+1><e_%+1>
N A _ B _ 1
2 (e_%+1) -2 eg—l)
:Azzl(e_g+1) and :Bz—l(eg—l)
(lu)=>21(e§+ )——(e2—1)+C—1=>C——(e2—e 2)

1
(v)=>l(e_2+1)+21(e2—1)+E=1:,~E=—21(e2+e 2)

= zl(e_f + 1) eX —— (ef — 1) e *+ Zl(ef — e_f) COSX — 21 (eE + e_E) sinx
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EXAMPLE:

Show that the EL equation for the functional I = f: F(x,y,2z,y',z)dx =0

admit the following 1% integrals;

oF

i. 3y = C if F does not contains ‘y’

. aF oF . .
ii. F—y — —2z'— = constant if F does not contains ‘x’
ay' 0z’

Solution: The corresponding EL equations are

() =0 and T (D) = 0 (i)

I. When F is independent of ‘y’

Then 3—5 = 0 then EL equation becomes as follows;

d [ dF aF
—(—) =0>=>— = Constant
dx (6y’) ay’

ii.  When F is independent of ‘x’
SinceF =F(x,y,2,y',2")

aF aF oF , , OF .,
: = — - - — WL 0 ecececcee
dF P dy + 3 dz + 3y dy’ + £ dz (iii)
. .. aF d (0F aF d (OF
From (i) and (ii) 3 ic (6_yl) and Wl (5)
dF d (0F\d dF d (0F\ d
B-s@)E we E-LE)
ady dy \dy' 0z dz \dz'/ dx
aF d (BF) / and aF d (aF) 7'
ay dy \adyr y az " dz \dzs
dF JdF

oy = d( S)y'and > dz=d(5.)7
(iii):>dF=d(a—y,)y+d( ")z +—dy+ " dz

:dp:d(;y')m(gzr):d(F_y'a_;,_zfg)=o
,aF 5 OF

= F — You—Z 5= constant
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EXAMPLE: (BRACHISTOCHRONE PROBLEM):

A uniform cable is fixed at its ends at the same level in space and is allowed to
hang under gravity. Find the final shape of the cable.
SOLUTION:

(0,0) (a,0) X

ds

G(x

y
The final shape of the cable wil correspond to the state of a stable equilibrium

or minimum P.E. we choose the coordinate axis as shown in the figure. Let
(0,0) and (a,0) be the position of the end points of the cable. The P.E. of the
cable is given by V = mgy where y is the y — coordinate of centroid of the
cable. The minimum value of V corresponds to the minimum value of y
Now y — coordinate of centroid of the curve y = y(x) is given by

vV _mgy my _ f:Pde . f(;lyds

__ vV my 1a -
Y= ing = ‘g m_f(fpds_f(;‘ds_zfoy 1+ (y)dx

Where ‘I * is the length of the curveiie I = ["ds = ['/1 + (y)?dx
Andweusep=?=>m=pl=pf0ads

Here F = y /1 + (¥)2,G = \/T(y’)z and therefore we construct a new
function H=F+ 1G = y\/T(y')2 + A\/T(y’)z

= H = (y+ D1+ ()2

Since there is no explicit dependence on ‘x’ so we use the special case of EL

. aH
equation. i.e. H —y' 3y cosntant

=>@+DV1+ )2 -y % (0 +DV1T+00) =
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=(y+z>\/1+<y>2 200" _

NEerena
:J%y’)zzycjl (;C+1/)1;:1+(y’)2 =1+ ()= (fch)g
ﬁfﬁdy=fdx=>—f\/#ﬁdz=fdx puty+A=z

= ¢;Cosh™! (Czl) =x+c, = Cosh™1 (Z) =% %2 _ cosh (x“Z)

€1 1 1 Cc1

+4 x+c
=L = Cosh( 2

1 1

) =y = ¢;Cosh (x:”) — A e @)

1

= y(0) =0 and y(a) =0 = - c,Cosh (0_2) and £ = ¢,Cosh (a+cz)
1 c1

C]_ C1

= c,Cosh (Z—i) = c,Cosh (— a::z) = z—i = — “:2 =, = _g
Usingc, = — - and A= clcosh( > ) then using in (i) we get
1

=>y= chosh( __) —c1Cosh (%)
1

Cc1
=>y=cC [osh (xcj) — Cosh (%)] This curve is called Catenary.
1 1

EXAMPLE:

Show that a solid of revolution which for a given surface area has maximum
volume is a sphere.

OR find the curve which generates a surface of revolution of a given area
which enclosed the maximum volume.

SOLUTION:

Let a curve y = y(x) with y(0) = 0 = y(a) be rotated about x — axis so as to
generate a surface of revolution. An element of the surface is . therefore total

area will be A=2m [ 'yds=2m [ y/1+(y)?dx  and the volume
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element or solid of revolution is wy*dx therefore total volume will be
V=m/ yldx

Here F = y2,G = y,/1 + (y)? and therefore we construct a new function
H=F+ G =y?+y/1+ (¥)?

Since there is no explicit dependence on ‘x’ so we use the special case of EL.

equation. i.e. H — y’% = cosntant
= y2 + yJ1+ ()2 - ( +Ay\/1+(y)2)—c
A /
= y? + A1+ ()2 - 22 —c=>y2+ly[\/1+(y)2 hf()y,)z =

J1+(yn?
1 N2 —(ynr)? I; o
:Ay[% =c—y232y=(— Y1+ ()2 weveeen.. (i)
Usingy(0)=0=>c¢c=0,{/1+(y)2+#0

(D)=2y=—y*J1+ ()i’ =>A1= —y\/ 14+ ()2 = 2% =y*[1+ (¥)?]

02 2002 2 _ A2-y? _dy
Sy =y 0 =2 ) == Y sy = > =i

Yy _ _ 2 _ v2 — 2 _ N2 — 2
:fmdy—fdx: JA2—y2=x+a=>2*-y*=(x+a)

181

s> (x+a)?+(y—0)?2=2% this is an equation of circle centered

at (a, 0) having radius 4 and hence the surface of revolution is sphere.

EXAMPLE: Find eigenvalue and eigen function of the functional

— fos[(Zx +3)2(y")?% — y?ldx subjected to the endpoin conditions

¥(0) = 0 = y(3) and side condition [’ y*dx

SOLUTION:
Here F = (2x + 3)?(y")? — y?, G = y? and therefore we construct a new

function H = F + A6 = (2x + 3)%2(y")? — y? + Ay?
H=2x+3)20)%+ A —-1)y*
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: : O0H d (dH
Using EL equation i E(a_y') =0

ad ’ d i} /

5y (2x+3)°(y)* + (A - 1)y*) - ;(a—y, (2x+3)2°(¥)* + (A - 1)y2)> =0
> (A—1)2y — % ((2x +3)%2y") = 0

> 2| (@x+3)%y) - (A-Dy| =0 = (2x+3)%y) - (A- 1)y =0
= 2x+3)?%y"+2R2x+3)2y —-(A-1)y=0

=>4(x+;)2y”+8(x+%)y’+(1—A)y=0

Put 2x+3=e'=>nRx+3)=t

3\ o 32 5 - 3
And (x+E)D—A=>(x+E) D2=AA—-1)=A2—A
(i) >[40 —4A+8A+(1—D)]y=0
= 4A2 —4A+8A+(1—-2) =0 sincey # 0
=407 + 40+ (1- D) =0 A= —>+-V]

if A =0 and A > 0 We obtain trivial solution for the given problem

if A < 0 We obtain non — trivial solution for the given problem

if A = —u? then A= —%+ %ni
1
and general solution will be ~ y(x) = e [clcos%ut + cZSin%ut]

1
y(x) = (et)™2 [clcosgln(Zx +3)+ CZSingln(Zx + 3)]

1
yx)=2x+3) 2 [C1Cos§ln(2x +3)+ cZSingln(Zx + 3)] ceeeenneenn(ii)
Using y(0) = 0
clcosgln(B) + cZSingln(S) =0 ..oonennnn(iii)
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Also Using y(3) =0

clcosgln(9) + cZSin'Z—lln(9) =0

= c,Cosuln(3) + ¢, Sinuln(3) =0 veeeneennnn(iV)
For non — trivial solution

Cosgln(S) Singln(B) _

Cosuln(3) Sinuln(3)

= (Cos%ln(B)) (Sinuin(3)) — (Cosuin(3)) (Singln(S)) =

> Sin (uln(B) - gzn(s)) = 0= pin@3) - £1n(3) = Sin"(0)

= ;_‘zn(g) =nm N=1,23,.cccceerennes

2nm 2nm

“Hh= 0 T M T e

(iv) = clcosﬁln(B) + CZSln (3) “Ini3)=0

= c;Cos2nm + ¢c,Sin2nt =0=¢4;(1) +¢c;,(0)=0=>¢; =0

But c, # 0 we take ¢, = ¢, then eigen solution will be as follows;

ya(x) = \/_Sm G "_In(2x + 3)

GEODESIC:

A geodesic is the curve of shortest length joining two points in space.
EXAMPLE:

Find the curve of shortest length between the given points in a plane using

polar coordinates.

Solution:
Since we know that I = fAB ds e (i)
Also ds = /(dx)2 + (dY)? ceevrrrrrrnn (i)

Now usig x = rCos0,y = rSin@
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(dx)? = (dr)*Cos?*0 + r?’Sin?6(d0)? — 2rdrCos0Sind
(dy)? = (dr)?Sin?0 + r*Cos*0(d0)? + 2rdrCos6Siné

(ii) = ds = \/(dx)? + (dy)? = /(dr)? + r2(dB)? = /rz + (2—;)2 do

=>ds =12+ (r')%deo
i)=>1= f:lzw/r2 + (r)2d0 subjected to r(8;) = ¢; and r(8,) = ¢,

Here F = /1% + (r")? Since there is no explicit dependence on ‘0’ so we use

the special case of EL equation. i.e. F —r % = cosntant

= Jr2 + (r')? - r’% [\/r2 + (r’)z] =
2 2 2
= /12 N2 g T e TN T =
re+ (T') r \/m €1 J1r2+(rn)? ¢ Jr2+(rr)? ‘1

4

\/r2+(rr)2 2 T N2 r 2
=>w/r2+(r)2——=>r + (") =3 ) ==-r
r’(rf-a®) = ryri—c,?

C12 d0 C1

4_. 2
= (rI)Z — % = (rI)Z —

dr—fd9:>cl—5ec‘1( ) 0+ c, :Sec‘1(1)=9+cz

(&1

zclfrm
=>01=Sec(9+cz)=>
1

1

Sec(0+cz) =c1=>cy =1rCos(0 + ;)

= ¢; = r(CosBCosc, — Sin6Sinc,)

= ¢; = (rCos6.Cosc, — rSind.Sinc,)
= ¢ = (xCoscy — ySinc,)

= —xCosc, + ySinc, +¢4 =0

> -—xXx+By+y=0

Which represent the straight line.
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EXAMPLE: (UoS, 2015 - 11)
Find the curve of shortest length on the surface of sphere.
Solution:

Let A and Bbe the two points on the sphere S. here the problem is to minimize

Since we know that I = fAB ds = fAB\/(dx)2 + (dy)? + (dz)? ......... (i)
Now usig x = rSinfCos¢,y = rSinfSing,z = rCos0

dx =r[Cos@dOCosep — Sin6Sinpdy]

dy = r[Cos0dOSing + SinBCospdp]

dz = —rSin6do

= ds = /(dx)? + (dy)? + (dz)? = Jrz [1 + Slnze ]d@

= ds = /1 + Sin20(¢')2d0

D=>l=r f:f\/ 1+ Sin20(¢)2d@ subjected to 1(8,) = ¢; and 7(6,) = ¢,

Here F = /1 + Sin20(¢")? then corresponding EL equation will be
oF d ([ 0F
2~ 16 (og7) = 0

~0-£(2)<0-3

ai' (J 1+5in%6(¢)?) =

- Sin%0¢’

J1+8in%20(¢p1)?
= Sin*0(¢")? = C*(1 + Sin?0(¢")?) = Sin*0(¢')? = C* + CZSinZB((p’)2
= Sin*0(¢')? — C*Sin*0(¢")? = C* = Sin*0(Sin*0 — C*)(¢')? =

2

= C = Sin*0¢’ = C\/1 + Sin20(¢p')?

2 ’ do c
= = = —=
((p ) "~ Sin20(Sin%20-C2) P dé  sin@+/Sin20-c?

, dp C _ C.Cosec?0 _ C.Cosec?0 _ C.Cosec?0

= = —= = = =
¢ do Sin20J1— cz J1-C2Cosec?9  J1-C2(1+Cot20)  \/1-C2—C2Cot%0
SinZ0
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C.Cosec?0

= [do = f\/l—CZ—CzCotZG w=e=] J( N
C

L gt with Y=<

aZ_tZ C

=a: CotO =t : —Cosec*0dO = dt

s¢=/

= ¢ = Cos™1 (2) +x= ¢ = Cos™! (?) +x= @—ox= Cos™! (Cow)

a

Coto . . 1 Cos6
= Cos(@p—x) = — Cos@pCos X +SinpSin x= —Sing

= raSinfCospCos X +raSinfSingpSin x=rCos0O

= a(rSinf@Cosp)Cos < +a(rSinfSing)Sin x= rCosO

s> aCosxx+aSinxy=z=>Ax+By=2z

This is an equation of the plane through center of sphere. Hence the curve of

shortest length joining A and B is the arc of great circle through A and B.

EXAMPLE: (UoS, 2017 - 11,2019 - 1)
Find the geodesic curve for the cylinder x? + y* = a?

Solution:

We have to minimize [ = fAB ds = fAB\/(dx)2 + (dy)? + (dz)?2 ......... i)
Now usig x = rCosO,y =rSin0,z =z for cylindrical coordinates
dx = —rSin0d0,dy = rCos0d0,dz = dz

= ds = /(d0)? + (dy)? + (d2)? = |r? + ((‘j—@)2 do

(i)=1= f:fvrz + (2')2dO subjectedto r(04) = c¢; and r(0,) = ¢,

Here F = /1% + (z")? then corresponding EL equation will be
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:0—%(6—F,) =0:%=Constant:%(\/m) =C

= ' — 2 Y N2 _ (2 (42 N2
:Jm C>1z C\Jr*+ (z)? = (Z) C:(r? + (2)?)
2..2
= () -C*(Z) =C*r*=>(1-C*(Z)*=C*1r*> (z)* = (f—zz)
r . Cr E_ _ . o iy
:z—m:de_oc(say):z—oce+c = 7—C =xTan (x)

_C[
= Tan (Z ) =2
< X

The intersection of this surface with given cylinder gives required extreme
curve.

EXAMPLE:

Find the shortest distance between the points A(1,—1,0) and B(2,1,—1) in
the plane 15x -7y +z—-22=0

Solution:

We have to minimize L = [, ds = [, \/(dx)? + (dy)? + (dz)?

l=ff\/1+(%)z+(%)2dx=f:\/1+(y')2+(z’)2dx

= 1= [2J1+ ()% + (2)2dx

subjected to constraint 15x — 7y + z — 22

Here F =1+ ()2 + (2)2,6=15x— 7y + z — 22

and therefore we construct a new function

H=F+16 =1+ )2+ (2)2+2(15x — 7y + z — 22)

: : O0H d (0H
Using EL equation o E(a_y') =0
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;_y(‘/l + O+ (@) + 4152 — Ty + 2 - 22)) -

%(61)7’ (\/1 + )2+ (2)2+A(15x - Ty +z - 22))> =0

72 Y _ :
= —72 dx( 1+(y,)2+(z,)2) 0 e (i)
Also Using EL equation:—z — %(%) =0

%(\/1 + ()2 +(Z)2+A(A5x—Ty+z— 22)) —

d (0 7 ;
E(ﬁ(‘/l F (V)2 + (Z)2+A(15x — Ty + z — 22))) =0
:A—i( % )—0 (i)
dx \/W T U  eeeeccccccccee
Multiplying (ii) with 7 then adding in (i)
A Yode ) g PO g i
=\ oo Tooreenicand r

Since 15x —7y+z—-22=0
The endpoint conditions satisfied by the functions y = y(x) and z = z(x) are
y(1) =-1,y(2) =1,2(1) = 0,2(2) = -1
=>15-7y'+z2 =0=2 =7y —15  diff. w.r.to ‘x’
y'+7(7y'-15) .
(tit) = JIFONZ+(7y-15)2 ¢

=y +49y — 105 = C/1+ (y)2 +49(y')% + 225 — 210y’

= 50y’ — 105 = €/50(y')%2 — 210y’ + 226

= [5(10y' — 21)]% = [cx/so(y')2 —210y + 226]2

= 25(10y' — 21)% = C2(50(y")? — 210y’ + 226)

= 25(100(y')? — 420y’ + 441) = C*(50(y')? — 210y’ + 226)

= (2500 — 50C?)(y')? + (210C? — 11000)y’ + (11025 —226C*) =0

This is the quadratic equation in y’
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Since C was arbitray, we can always choose it , so that the equation has real
roots. Let « be one such root then y’ =x= dy/dx

>y=xx+pf

Now using y(1) = —-1,y(2) =1,z(1) =0,z(2) = -1
XxX+p=-12x+=1 then x=2,,=-3

Then we get S>y=2x—-3=>y =2

Also for z’ wehave =2z =7y —15=-1

Then required least distance is = 1 = flz\/l + (y)?% + (2')2%dx

= 1= [VI+4+1dx =6|x|} =6

= I =+/6 isrequired least distance.

EXAMPLE:

Find the shortest distance between the points A(1,0,—1) and B(0,—1,1) in
theplane x+y+2z=0

Solution:

We have to minimize L = [, ds = [, /(dx)? + (dy)? + (dz)?

l=ff\/1+(%)2+(%)2dx=ff\/1+(y')2+(z’)2dx

= 1= [T+ 07+ @)%dx

subjected to constraint x +y + z

Here F=1+(y)2+(2)2,G6=x+y+z

and therefore we construct a new function

H=F+16=J1+®)?+ ()2 +Ax+y+2)

: : O0H d (0H
Using EL equation o E(a_y') =0
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aa—y(\/1+(yr)z+(z’)z+A(x+y+z=0))—%(6%,(\/1+(y1)2+(z')z+

/1(x+y+z=0))>=0

_4 Y _ :
=1 dx( 1+(y’)2+(z’)2> 0 cvevninennnn (i)
. . OH d (0H

Also Using EL equation— — E(ﬁ) =0

2 (VTF O+ @ +a@+y+2) - (e (VI+ 02 + @) +

A(x+y+z))>=0

d z' L.
:A—;(W>—O .............. (i)
Subtracting (i) and (ii) we get

i( yor >=0=> Y2 € e (i)
Since x+y+z=0

The endpoint condition satisfied by the functions y = y(x) is
y(1) =0,y(0) = -1

>1+y +z2Z =0=>2=-1-y' diff. w.r.to ‘x’

y' +1+y’ .
V142 +(-1-y")?

(iii) =

=2y +1= C\/1+(y’)2+(y’)2+1+2y’

2
> [2y' + 112 = [¢2+20/)7 + 2y
= 1+4(y)%+4y =C*22 +2(y)?% +2y")
= 4-2C)@H)?+A@-2c)y+(1-2c)=0

This is the quadratic equation in y’
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Since C was arbitray, we can always choose it , so that the equation has real
roots. Let « be one such root then y’ =x= dy/dx

>y=xx+pf

Now using y(1) = 0,y(0) = —1

x+f=-1,x0)+p=-1 then x=1,,=-1

Then we get >y=x—-1=>y' =1

Also for z’ wehave =2z'=-1-y =-2

Then required least distance is = 1 = fOIJl + (y")?% + (2')2%dx

= 1= [[VI+1+4dx=6lx|}=6

= 1 =+/6 isrequired least distance.
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INTEGRAL EQUATIONS (IE’s)

Integral equations are an important tool in solving problems of Applied
mathematics and mathematical physics.

A special advantage of using integral equations in dealing with IVP’s or
BVP’s is that the IC’s or BC’s are automatically incorporated in the resulting
integral equation.

INTEGRAL EQUATION: An equation which involves the unknown variable
under the integral sigh is called Integral Equation.
EXAMPLES:
3 f: au(x)dx =1, f: K(x, x"u(x")dx' = f(x) are non — homogeneous
IE’s
. f: K(x, x)u(x")dx' — u?(x) = 0 is homogeneous IE where u(x") is the
unknown function and K(x, x") is called Kernal.

LINEAR INTEGRAL EQUATION: An equation in which unknown function
appears linearly is called Linear Integral Equation.
EXAMPLES:

f:xu(x)dx =1 and f: K(x, y)u(y)dy = f(x)

NON — LINEAR INTEGRAL EQUATION: An equation in which unknown
function does not appears linearly is called non — Linear Integral Equation.
EXAMPLE: ff K(x, y)u(y)dy = u?(x)

HOMOGENEOUS INTEGRAL EQUATION: An Integral Equation in which

unknown function vanishes i.e. u(y) = 0 then both sides of equation are
equal, such type of equation is called H.1.EQ.

EXAMPLE:  [”K(x,y)u(y)dy — u?(x) = 0

Non - HOMOGENEOUS INTEGRAL EQUATION: An Integral Equation in
which unknown function does not vanishes i.e. u(y) # 0, such type of
equation is called non — H.1.EQ.

EXAMPLE: [’ K(x,y)u(y)dy = f(x)
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FREDHOLM INTEGRAL EQUATION OF 15T KIND:
An Integral Equation of the form f(x) = f: K(x,y)u(y)dy where f(x) and

K(x,y) are known functions is called F.I1.Eq. of 1¥ kind. And K (x, y) is called
Kernal of the IE.

FREDHOLM INTEGRAL EQUATION OF 2" KIND:
The non — Homogeneous linear Integral Equation of the form

ulx) = f(x) + Af: K(x,y)u(y)dy where f(x) and K(x, y) are known
functions is called F.1.Eq. of 2™ kind. And K(x, y) is called Kernal of the IE.

HOMOGENEOUS AND NON - HOMOGENEOUS F.I.LEQUATION:S.
The linear IE u(x) = Af: K(x,y)u(y)dy is called homogeneous FI Eq. it can

be written as an operator equation in the form u = AKu = Ku = %u

A F.1E which is not homogeneus is called non — homogeneous or
inhomogeneous.

VOLTERA INTEGRAL EQUATION OF 1°" KIND:
If K(x,y) = 0 when y>x then Fredholm integral equation of 1° kind assume

the form f(x) = [ K(x,y)u(y)dy and is called Voltera IE of the 1* kind.

VOLTERA INTEGRAL EQUATION OF 2" KIND:
If K(x,y) = 0 when y > x then Fredholm integral equation of 2" kind assume

the form u(x) = f(x) + 4 [, K(x, y)u(y)dy and is called Voltera IE of the 2™
kind.

REMEMBER: Voltera IE of 1 kind f(x) = f: K(x,y)u(y)dy can be
convertd into Voltera IE of 2" kind by differentiating 1% kind w.r.to ‘x’ and

using Leibniz ruleie. f'(x) = f;:—xK(x, yu(y)dy + K(x, x)u(x)

SINGULAR INTEGRAL EQUATION:

An IE in which either one or both limits of integration are infinite or the
integrand become infinite anywhere in the range of integration is called
Singular IE.

EXAMPLE: f_z L dx in this integrand i becomes infinite in 0e[—1, 2]

1x
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TYPES OF KERNELS
HERMITIAN KERNELS:

If K(x,y) = K(y, x) wher bar denots the complex conjugate, then K(x,y) is
called Hermitian kernel.

SYMMETRIC KERNELS:
If K(x,y) = K(y,x), then K(x,y) is called “real symmetric kernel” or

“merely symmetric kernel”.

It is clear that every symmetric kernel is also Hermitian.

CONVOLUTION TYPE KERNELS:
If K(x,y) = K(x — y), then K(x, y) is called convolution type kernel and the

corresponding IE is called Convoluton type IE.

SQUARE INTEGRABLE KERNEL:
A kernel K(x,y) defined over a < x,y < b i.e. over the square [a, b] X [a, b]

is called square integrable if f: fflK(x, y)|2dxdy < o

ie. [ [ 1K (x,) |2 dxdy is finite.

SEPARABLE OR DEGENERATE KERNEL.:
If a kernel is of the form K(x,y) = ),; g:(x)h;(y) i.e. it can be expressed as

sum of products of functions of x only and y only, then it is called Separable or
degenerate kernel.

EXAMPLE:
e Sin(x +7y),e*, xy? + x*y are separable.
e Sin(xy), e, In(x + y) are not separable.
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STEPS TO FIND SOLUTION OF AN INTEGRAL EQUATION FOR A
SEPARABLE KERNEL
(UoS, 2013 -1, 2014 - 11,2019 -1)

e Start with Fredholm integral equation of 2" kind in the notation

u(x) = f(x) + A f; K(x,y)u(y)dy
with the separable kernel K(x,y) = ),; A;(x)B;(y) where 4;(x) ,B;(y) are

linearly independent sets of functions.

e Susbstitute value of K(x,y)
> u(x) = £(X) + A% 4% [2 Bi()u)dy
> u) = f(0) + AL CGA)  with ¢; = [ Bi(y)u(y)dy
> ux) =f(x) + 1Y, CrAi(x) rewriting

* Nowfor ;= [} B{(»)u(»)dy
> € = [ BOIFO) + A3, C1A()]dy

= € = [} B )y + A5k Ci [, Bi(Y)Ar(y)dy
=>C=fi+ A% Cray=Ci— AN, Cray = f

= Xk Cibi — A2k Cray = f; since Y 8 Cy = C;
o Yk Bk = AQ) Ci = fi wevrerererens (A)

0 i+k
1 i=k

set of n — algebraic equations in ‘n’ unknown constants C4, C,, C3,..... C,

e Nowsince & = { then previous equation is equivalent to a

and written in full form as follows;

(1 - /1a11)C1 - Aalzcz i e —Aalncn = fl
—Aa2161 + (1 - /1a22)C2 ks —Aazncn = fz ............. (B) for all
—lanlCl - Aanzcz e +(1 — lann)Cn = fn
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Then system of equations (A) and (B) will have a unique solution if the
matrix of coefficients is non — singular
i.e.if D(A) = |6, —Aaj | #0

o LetAy, 4, 45,..... 4, be the roots of the equation D(4) = 0 then the
system will have a unique solution if A # 4; (an eigenvalue)

e After solving the system )., (6;, — Aa;;) C,, = f; we substitute for C; in
u(x) = f(x) +1),;C;A;(x) and obtaing the solution of given IE.

RESOLVENT KERNEL:

If the solution of the IE u(x) = f(x) + 4 f: K(x, y)u(y)dy iswritten as

ulx)=fx)+ Af: I'(x,y; Hu(y)dy then I'(x, y; 4) is called Resolvent Kernel

EXAMPLE: (UoS, 2014 — 11 )
Solve Fredholm IE of 2" kind given by u(x) = x + )Lfol(xy2 + x2y)u(y)dy
Solution:  here K(x,y) = xy* + x%y is Separable Kernel.
e Givenu(x) = x + )Lfol(xy2 +x2Y)u(y)dy e (i)
> u(x) =x+ Afol xy*u(y)dy + Afol x2yu(y)dy
= u(x) = x + Ax f01 y*u(y)dy + Ax? fol yu(y)dy
= u(x) = x + AxC; + Ax*C, ........... (i)
with €; = [ y*u(y)dyand C; = [; yu(y)dy
= u(y) = y + A1yC, + Ay*C, rewriting

e Now for C; = [ B,(y)u(y)dy

> C; = [ B{IFO) + 13k C1A(y)]dy
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1
= Cy = [, ¥’y + AyCy + Ay*C,]dy

1 1 AC AC

=€ = [ [¥’ + y*C1 + Ay*Coldy = S + 2+ 2
y! AC 1
:(Z_l)cl-l_TZ:_Z ........... (lll)

Also = C, = foly[y + AyC, + Ay?*C,]dy

= C, = fol[yZ +Ay*Cy + 2y3Cyldy = §+ '13& + %
A A 1 .
520 +(3-1)C=-7 e (iv)
Now (iii) = (54 — 20)C; + 4AC, = —5 x ng with 20
And (iv) = 44C;, + (34— 12)C, = —4 x ng with 12

As above system of two equations is in two unknowns. It will have a
unique solution if

54-20 42
42 34—-12

= (54 —20)(31—12) —164%2 # 0
=22+ 1201 —-240 # 0

Now from above system of two equations is in two unknowns.

+0

Ci v C; , | 1

16A-151+60  20A-201+80  A2+1201—240
C. = A+60 . 80

=01 = 22012907 Y2 T 2211201240

Thus our required system is from (ii)

A+60 2 ( 80 )
= = _— _
u(x) X+ Ax (/12+120/1—240) +Ax A241201-240
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EXAMPLE: (UoS, 2013 1)
Solve Fredholm IE of 2" kind given by u(x) = f(x) + Afol(x + y)u(y)dy

also obtain its Resolven Kernel.

Solution: here K(x,y) = x +y is Separable Kernel.
e Givenu(x) = f(x) + Afol(x + yYu(y)dy ........... (i)
= u(x) = f(x) + A [, xu(y)dy + A f, yu(y)dy

= u(x) = f(x) + Ax [, u()dy + A f, yu(y)dy
S u(x) = f(X) +AxC, +AC, e, (ii)

with €1 = [fu()dy and C; = [} yu(y)dy
=>u(y) = f(y) + AyC; + AC, rewriting

e Now for C; = f: B,(y)u(y)dy
> € = [ B{O)IFO) + 134 C1A()]dy
= €1 = [y u@)dy = [, [f(¥) + AyC; + AC;]dy
= Cy = f01 fy)dy + A€, fol ydy + AC, fol dy

=>C1—f1+l1€1

+ AC,

N (1 - —) Ci—AC3 =f1  eeverernnn (iii)

Also = C; = f yu(y)dy = f [f(y) + AyCy + AC,]dy
=Cy =) yf(y)dy +Cy [, y2dy + AC, [ ydy

/161

=>Cz—f2+ +

:>—§cl+(1—§)cz=f2 ........... (iv)
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Now=>(1—§)cl—/1cz=f1

And = -3¢y +(1-3)C, = f,
As above system of two equations is in two unknowns. It will have a
unique solution if
1-2 -2
2
-2 1-=-=Z

Cy N Cy 1
(1) (1) (122
Sc = Af2+(1-9)f1 S1+(1-3)f2

Thus our required system is from (ii)

> u(x) = f(x) + Ax (%) 42 (%) ........... ™)
(1-3) -5 (1-3) -5

FOR RESOLVENT KERNEL:

Rearranging (v)

= u(x) = f(x) + (ﬁ) [xfa+x(1-3) f1+3f1+(1-3) f2

(1-2) -3
Now substituting f, = folf(y)dy and f, = folyf(y)dy

> u(x) = f(x) + (ﬁ) |[2x f; yfdy +x(1-3) f; fFO)dy +

2l fdy + (1-2) f, yf()dy|
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=>u(x)—f(x)+< )f [Axy+x(1——)+ +(1——)y]f(y)dy

(-3 %

1 [aeyex(1-2) 424 (1-2)y
(-3 &

= u(x) = f(x) + A [, T(x, ;1) f()dy

aeyrx(1-2)+24(1-2)y

(1) %

=u(x) =f)+1[; fy)dy

Where'(x,y; 4) = [ is the Resolvent Kernel.

EXAMPLE:
Solve Fredholm IE of 2™ kind given by

ux)=fx)+41 foz "(SinxSiny)u(y)dy also obtain its Resolven Kernel.
Solution: here K(x,y) = SinxSiny is Separable Kernel.
e Givenu(x) = f(x)+ 4 fozn(SinxSiny)u(y)dy ........... (i)
= u(x) = f(x) + ASinx fozn(Siny)u(y)dy
> ulx) = f(x) + ASinxC  ........... (ii)
with € = fﬂzn(Siny)u(y)dy
=>u(y) = f(y) + ASinyC  rewriting
* Now for ¢; = [} B;(y)u(y)dy

> ¢ = [ B + AT, CAr]dy
> € = [,"(Siny)u(y)dy = [,"(Siny)[f () + ASinyC]dy

= € = [} (Siny) f(y)dy + 2 ;" Sin?ydy
=>C=fo+ACm

. _ _ Jo
= (1 ln’)C—fO:C—l_An
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Thus our required system is from (ii)

= u(x) = f(x) + ASlnx( f; ) ........... (iii)

FOR RESOLVENT KERNEL:

Rearranging (iii)
= u(x) = f(x) + —— Sinx(f,)

Now substituting fo = [~ (Siny)f(y)dy

= u(x) = f(x) + —f SinxSinyf(y)dy
> u) = £ + [, 5] Fody

= u(x) = f(x) + /1f I'(x,y; Df(y)dy

SmxSmy]

Where'(x,y; 4) = [ is the Resolvent Kernel.

EXAMPLE: (UoS, 2018 - 1)
Solve Fredholm IE of 2™ kind given by

gx) =f(x) + Af_ll(xt + x%t?)g(t)dt also obtain its Resolven Kernel.
Solution: here K(x,t) = xt + x*t* is Separable Kernel.
o Given g(x) = f(x) + A [, (xt + X*D)gD)dt  ........... (i)
= g(x) = f(x) + x [ tg(O)dt + +x* [ 2g(D)dt
= g(x) = f(x) + AxC, + Ax*C,  ........... (i)
with €; = [ tg(H)dt and C, = [, 2g(D)dt
= g(t) = f(t) + AtC, + At%*C, rewriting

e Now for C; = ff B;(H)u(t)dt

> € = [V BOIf(©) + 134 CA (D)]dt
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=€y = [ tg(®dt = [1 tIf(D) + A€, + At2C,]dt
=€y = [L tf(®)dt + AC, [ t?dt + AC, [*, t3dt
= Cl == fl + %/16'1

2 3 eos
>(1-22)c=fi>0 =L a2 (iii)

(1-51)
Also = €, = [ 2g(t)dt = [ 2[f(t) + AtCy + At2C,]dt
=€, = [1 2f®)dt +AC, [, 3dt + AC, [ t*dt
= Cz = fz + %ACZ
2 _ R ) E A
N (1 —EA) Cy=fy=Cy= =k A#£2 (iv)

Thus our required system is from (ii)

= g(x) = f(x) + Ax ((1]:13/1)) + Ax? <( E )> ........... (V)

3 5

FOR RESOLVENT KERNEL:
As = g(x) = f(x) + AxCq + Ax%C,  ........... (i)
Substituting f; = [, tf(®)dt and f, = [, t*f(O)dtin (i)

= g(x) = f(x) + (ﬁ) [ tf(®dt + (ﬁ) [} 2f@®at

5

x%t

- )] f(t)dt

1-22

=g(x) =f(x)+ Af_ll [(:;1) + (

= g(x) = f() + A [, [T(x, £ D] f()dt

xt x% 2

OMCED

Where'(x,t; A) = [ ] is the Resolvent Kernel.
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EXAMPLE:

Find the eigenvalue and eigensolution of the IE

u(x) = Afon(CosszOSZy + Cos3yCos3x)u(y)dy

Solution:  Given (x) = Af:(CosszOSZy + Cos3yCos3x)u(y)dy .....(i)
= ux) = Afon Cos?’xCos2yu(y)dy + Af: Cos3yCos3xu(y)dy
= u(x) = ACoszxf: Cos2yu(y)dy + ACos3x fon Cos3yu(y)dy
= u(x) = ACos*xC, + ACos3xC;, ........... (i)

with €; = f: Cos2yu(y)dy and C, = fon Cos3yu(y)dy

= u(y) = ACos?yC, + ACos3yC, rewriting

Now

=C, = f: Cos2yu(y)dy = f: Cos2y[ACos*yC, + ACos3yC,]dy
= C, = /1]0” Cos2yCos*yC,dy + Afon Cos2yCos3yC,dy

= Cy = CAly + Cydly oo, (iii)

Now I, = f: Cos2yCos?*ydy = f” Cos2y (1+C;)sZy) dy

= —f [Cos2y + Cos?2y]dy =

Sm2y| f (1+Cos4-y)

Also I, = f: Cos2yCos3ydy = lf"ZCOSZyCOSBydy

= —f (Cos5y + Cosy)dy = |Sm5y

+ Smy| =>1,=0
Y w T

(i) = C, =c1/11=>(1—/1z)c1 —0>C,=0

Or (1 - AE) C,+0C=0  eevenn. (iv)

Now as C, = f: Cos3yu(y)dy

= C, = f(;tCos3y[ACOSZyCl + ACos3yC,]dy
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= C, = AC4 fon Cos3yCos*ydy + AC, f: Cos3yCos3ydy
= CZ = AC113 +AC214
Now I; = f:Cos?’yCosZydy: f:Cossydy

Putz=y->=dz=dyalsoasy - 0,mthen z > —~, + respectively

I3 = [%Cos® (z + g) dz = — [%Cos®zdz = 0 because integral is odd.
2 2

Now I, = f: Cos3yCos3ydy = fon Cos3y(—3Cosy + 4Cos3y)dy

1, = f:(—3COS4y + 4Cos®y)dy

Putz=1y— g = dz =dyalsoasy — 0,7 then z - —g, +§ respectively

I = [% (—3Cos4' (z+7%) +4Cos® (2 + g)) dz = [%,(—3Sin*z + 4Sinz)dz
2 2

I, = [2(—6Sin*z + 8Sin°®z)dz

Now using the recursion formulae

S i _135.(n-1) = o
J¢Sin"zdz = ————X - when ‘n’is even
13 = 135 =« (4
I, = —6xﬂx5+8xmxg_§
= C, = 1C1(0) + AC, (g) :>ocl+(1—/1§) Cy =0 weveeren, )

From (iv) and (v) we can write

(1-2%)ci+0c, =0 = 0¢; +(1-25)c, =0

_ 1-27 0
For eigenvalues 1_)% =0
> (1-25)(1-25)=0>(1-25)=0,(1-2%) =0
SA=d=2, A=l =2
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ForA=4, = %equation (iv) becomes (1 - Ag) C;+0C,=0
:(1—%.g)cl+ocz —020=0
And Ford =21, = %equation (v) becomes 0C, + (1 - Ag) c,=0
=0C;+(1-2.2)C, = 0= ¢, = 0 and C; arbitrary
(ii) = u(x) = ACos*xC,
Therefore eigenfunction for A = 2, = % isul(x) = %Clcoszx
= ul(x) = Cosntant x Cos*x
FordA=21, = %equation (iv) becomes (1 - Ag) C;+0C;=0
= (1 — %E) C,+0C,=0=C, =0 and C, arbitrary
(ii) = u(x) = AC,Cos*3x
Therefore eigenfunction for 2 = 2, = % isu?(x) = %CZCOSZBX

= u?(x) = Cosntant x Cos*3x
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THE NEUMANN SERIES FOR THE SOLUTION OF THE FREDHOLM
NON - HOMOGENEOUS |.E. OF THE SECOND KIND WITH
SEPARABLE KERNEL OR MAY NOT BE A SEPARABLE.

OR METHOD OF SUCCESSIVE APPROXIMATION (UoS, 2018 - 1)

e Start with Fredholm integral equation of 2" kind in the notation

u(x) = f(x) + 1 [, K(x,y)u(y)dy

Where f(x) and K(x, y) are square integrable functions.

ie. [[If0)Pdx<o and [ [7IK(x,y)|* dxdy < o

and the kernel may not be separable.

We want to find condition under which solution converges.

e First consider the zeroth order approximation and take uy(x) = f(x)
= uy(y) = f(y) for the solution of IE of 2™ kind.

e To obtain first order approximation,
since u(x) = f(x) + 4 [, K(x,y)u(y)dy
= uy (1) = () + 2 [ K(x, y)ug(y)dy

= u,(X) = f(x) + 1 [ K, y)f () dy’

Similarly for second approximation;

= Uy (X) = £(x) + A [ K(x, y)us (y)dy

And in general we have;

b
= Upy1(x) = f(x) + 4 [, K(x, y)un(y)dy
Here u,(x) - u(x) as n — oo then the approximation is said to

converge to u(x).
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Now we find convergence of solutio;
Asuy () = f(x) + A [ K, y)f(y)dy’
e Then u,(x) = f(x) + [, K(x,y)u;(»)dy
= up(0) = f00) + A [ K y) [f0) + 2 [, K y)f &)dy'| dy
= uy (%) =
fOO) + 4 [, K@) f3)dy + 42 [ | [ K(x y)K(x,y)dy| f(y)dy’
= Uy (X) = f(0) + A [ Ky (x )y + 22 [V Ky (x,) f(y)dy
Where Kq(x,) = K(x,y) and K,(x,y) = [, K(x, »)K(x,y")dy
o Similarly
us(0) = f(0) + A [ K1 (x F Oy + 42 [ K, (x,y) fF()dy +

b
23 [ K3(x,y) f(y)dy

e And in general;

b
u,(x) = f(x) + 221=1)'m fa K,(x,y) f(y)dy
And u,(x) » u(x) as n — o then the approximation is said to
converge to u(x). And the general series is called Neumann Series with
b b

Km(x, y) = fa Kl(xi t)Km—l(tJ y)dt = fa Km—l(xi t)Kl(tr y)dt
Where K,(x,y) = K(x,y)
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CONDITION FOR CONVERGENCE OF NEUMANN SERIES
Consider a general term of Neumann series and apply the schwarz inequality
to it.

[P KW FONY| < [PFOE dy [ 1K 91 dy

Now let [”|f ()12 dy = D? and sup {J 1K (x, 1)1 dy} = 2,

= |f: K..(x,y) f(y)dy|Z < D%, ... ()

To obtain the formula for €2, apply Schwarz inequality to it.

KGO )12 = |2 Kot (6,8 K (8, 9)lt]|

K (6, )% < [ 1K1 (x, O dt [ 1K1 (¢, )17 dt

> MK 92 dy < [PKpm_q (6,012 dt [ [P1K1(t,y)I? dt dy

= C%, < C2,_,B* with B2 = [7 [?|K,(t,y)|? dt dy

Repeating the procedure we obtain

c?, =C%_,B*= (%_, = C%_,B*.B* = C%_,(B?*)?

= €2, < c3(B>)™1 general

@ = |2 Kn(x,y) fO)y| < D2CE (B2

And= C% <C?_,B*<C%_,(B»)?<.-<Cci(B>H™1

= |f; Km(x,y) f3)dy| < DC,B™

= |Am f: K,(x,y) f(y)dy| < |A™|bc,B™1 =X |A™] on B.Sides
This show that the absolute value of general term in Neumann series is less
than or equal to the general term of geometric series DCy Y,,|A| B™~ 1 with

common ratio B|A|. This geometric series will be convergent if B|A| < 1 or if

|A] < B~1. This is the condition for convergence of geometric series.

MUHAMMAD USMAN HAMID (0323 - 6032785)



209

UNIQUENESS SOLUTION OF THE FREDHOLM I.E. OF THE 2"° KIND

Since u(x) = f(x) + 2 [ K(x, y)u(»)dy

To prove its uniqueness consider if possible, there exists two solutions, then
b
ul(x) = f(x) + A [, K(x,y)u (y)dy

w2(x) = f(X) + A [, K(x,y)u?(y)dy
Subtracting both

ul () — u(x) = f(x) + 4 [ K, y)u )dy — £(x) — 4 [2 K(x, y)u?(y)dy
@) = [T K(x, y)[u' () — u2(»)]dy

() = 1 [ KX, Y)9(AY ......... i)

[l dx = |/1f: [ K, y)qo(y)aly|2

[Pl dx < 412 7 [P1K(x, )12 dy [ 1902 dy

[Pl dx < 1412B2 [l dy

[2lo()1? dx < |212B? [ |@(x)|* dx replacing ‘x’ with ‘y’
[Plle@)I? - 142B?|p(x)|*] dx < 0

[Plp(0)I?[1~ |42B?] dx < 0

For a convergent Neumann Series |A|B < 1 therefore f;’lrp(x)l2 dx =0

=>¢x)=0 hence the solution must be unieque.
s b
(D= =0=2], K(xy)e®»dy
b b
= A Kx,y)u'dy —1[ K(x,y)u*(y)dy =0

= () + [, K y)ul(y)dy = f(x) + 1 [, K(x, »)u?(y)dy

= ul(x) = u?(x) = u(x)
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RESOLVENT KERNEL FOR NEUMANN SERIES

Since Neumann series solution is as
U, (%) = u(X) = f(X) + Xy A [2 Ko (x,9) )y
> u®) = f@) +A [, (Zhoa A" Kn(x,9)) fO)dy X ing,+ ing A

= u(x) = f(x) + [, T(x,y; 1) f(¥)dy

WithI'(x,y; 1) = Y _, A™ 1 K, (x,y) called Resolvent Kernel

AlsoT(x,y;A) = K,(x,y) + AK,(x,y) + 22K5(x,y) + --- will be convergent if
|A|B < 1 where K,,,(x,y) is mth iterated kernel.

ERROR:

DCq|a™ !
1-|A|B

EXAMPLE:

Solve the IE by the method of successive approximation

u(x) = f(x) + A f, e u(y)dy

Solution: By the method of successive approximation solution is
= u@®) = () + [, TE ;D FOIAY evnencei. ()
WithI'(x,y; 1) = Y _, A™ 1 K, (x,y) called Resolvent Kernel
AlsoT(x,y;4) = K, (x,y) + AK,(x,y) + A2K5(x,y) + -

Here K;(x,y) = e

|R,,| < is the error when term after nth term in Neumann’s left out.

Now since K (%, %) = [, K1 (X, )Kp_q (t,y)dt

= K,(x,y) = f01 K,(x,)K(t, y)dt = fol e*tet~Vdt = fol e* Vdt
= K,(x,y) =e*7Y after solving

Similarly = K;(x,y) = fol K,(x,)K,(t, y)dt = fol e*tet vdt

> K3(x,y) = [j e¥7dt = K3(x,y) = e
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Slm'lary K4, == K5 == K6 — e = Kn == K1 = K
HenceI'(x,y; ) =K+ AK + A’K+ 23K+ =K1 +A+ 2>+ 23 + )
F'(x,y;A) =e*Y(1-2)"1= %

y)

) = u(x) = f() + = [ &7 f(y)dy

For convergence |A|B < 1 where B? = fol follKl(x, y)|? dxdy
EXAMPLE:

Solve the IE also find the resolvent kernel by the method of successive
approximation u(x) =1+ Afol(l — 3xy)u(y)dy

Solution:

F(x,y;4) = Zne1 A" K (%, y) = Ky (x,y) + 4K (0, y) + A2K3(x,y) + -+
Here K;(x,y) =1 — 3xy

Now since K (%, %) = [, K1(x, )Kp_1(t,y)dt

= K,(x,y) = [, K1(x, DK, (t,y)dt = [, (1 - 3xt)(1 — 3ty)dt

= K,(x,y) = f01(1 — 3ty — 3xt + 9xt’y)dt =1 — 32_y — 32_x + 3xy

> Kz(x,y) = —> (¥ + %) + (1 + 3xy)

Similarly = K;(x,y) = fol K,(x,t)K,(t,y)dt

= K3(x,y) = [}(1 - 3xt) (—%(y +O+(+ 3ty)) dt

= K3;(x,y) = i(l + 3xy) after solving

Similarly = K, (x,y) = [, K1(x, )K3(t,y)dt

= K,(x,y) = ifol(l —3xt)(1 + 3ty)dt = i(l — 37" — % + 3xy)

1
= K,(x,y) = ZKz(xJ’)
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Similarly Kz(x,y) = %Kl(x,y) and Kq(x,y) = 1—16K2(x,y)

Since

T(x,y;4) = Y51 A" Kin(x,y) = K1 (x,y) + AK,(x,y) + K3 (x, ) + -+
I(x,y;2) = (K1 + A2K3 + 2*K5 + ) + (AK, + 23K, + 2°Kg + )

F'(x,y;4) = (K1+%2K1+£K1+"')+(AK2+%3K2+§Kz+'“)
[(x,y; ) =K1(1+§+f—2+---)+AK2(1+§+g+---)

F(x,y;4) = (1+§+j—z+---)(K1+AK2)

F(x,y;4) = (1+§+j—2+---)[(1—3xy) +A(—%(y+x) +(1+3xy))]

I'(x,y;A) = (1 + g)_l [(1 —3xy)+ 4 (—;(y +x)+(1+ 3xy))]

1£ [(1 —3xy)+4 (—%(y +x)+(1+ 3xy))]

1+4

I'x,y; 1) =

So the solution is
u(x) = 1+ 25 ) [(1-3xy) + 2 (-3 +0+a+3x0)| Dy

ulx)=1+ %
1+

3 A .
(1 —Sx+ Z) after solving

EXAMPLE:

Solve the IE also find the resolvent kernel and condition of convergence by the
method of successive approximation u(x) =1 + AfO"Sin(x + y)u(y)dy
Solution: By the method of successive approximation the solution is

u(x) = f(x) + A [, T(x,y; Df )dy where f(x) = 1 and

Ty ) = Xn-1 A" Kn(x,y) = K1(x,y) + 4K (x,y) + 2°K3(x, y) + -
Here K,(x,y) = K(x,¥) = Sin(x + y)

K{(x,y) = SinxCosy + CosxSiny
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Now since K,,,(x,y) = f: K,(x,t)K,,_,(t,y)dt

= K, (x,y) = [y K1(x, K4 (t,y)dt = [ Sin(x + t)Sin(t + y)dt

=> K,(x,y) = f:(SinxCOSt + CosxSint)(SintCosy + CostSiny)dt
= K,(x,y) =

fon(S inxCosyCostSint + SinxSinyCos*t + CosxCosySin®t +
CosxSinyCostSint)dt

= Ky(x,y) =

(SinxCosy + CosxSiny) f: CostSintdt + SinxSiny fon Cos’tdt +
CosxCosy [ Sin’tdt

= Ky(x,y) =

1+Cos2t

Sin(x + y) |C%| + SmxSmyf ( )dt + Costosyf (1 COSZt) dt

Sin2t

= Ky,(x,y) = Sin(x +y)(0) + = SmxSmy |t+ | + - Costosy|t—

Sin2t|”
2 o

Sin2t Sin2t

=>K2(x,y)=%SinxSiny |t+ I =+ ¥ Costosy|t—

,

= K,(x,y) = ESinxSiny + gCOSXCOS:y =3 2 (SinxSiny + CosxCosy)
=> K,(x,y) = gCos(x -y)

Similarly = K3(x,y) = [ K1(x, )K,(t,y)dt

= K3;(x,y) = f:(SinxCost + CosxSint) (g Cos(t — y)) dt

= K3(x,y) = gf:(SinxCost + CosxSint)(SintSiny + CostCosy)dt
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= K3 (x, y) =

g f: (SinxSinyCostSint + SinxCosyCos*t + CosxSinySin*t +
CosxCosyCostSint)dt

= K3 (x, y) =

g[(SinxSiny + CosxCosy) f: CostSintdt + SinxCosy fon Cos’tdt +
CosxSiny [ Sin’tdt]

Cos? t 1+Cos2t

+Smeosyf ( )dt+

= K3;(x,y) = [Cos(x y)

CosxSiny [ (1 COSZt) dt]

Sin2t

= K3(x, y)—g[Cos(x y)(0) + - .S'meosy|t+ | += CosxSmy|t+

Sin2t|”]
2 o

2
= K3;(x,y) = EE SinxCosy + ECOSxSiny] = HT (SinxCosy + CosxSiny)
Tl'2 . TEZ
= K3(x,y) = -Sin(x +y) = -K(x,y)
. 11.3 11'2
Similarly K,(x,y) = ?Cos(x —y) = TKZ(x, y)

nt .. nt
And Ks(x,y) = -Sin(x +y) = —K;(x,y)

Since
F(x,y; A) = &=1Am_1 Km(x y) = K1 + AKZ + AZK3 + 13K4 + .-

13 2 )_4-4

I'(x,y;4) = K, +

K1+

AZ 2 144

T AZZ 1411.4
+2 5+ )+/1K2(1+ )

I'x,y; 1) = K, (1 +

)_4-4-

=+ )_(K1+/1K2)(1+’12 2) B

M,y 4) = (K1 + AKy) (

T'(x,y;2) = [Sin(x +y) + %" Cos(x — y)] (1 + '124—”2)_1
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So the solution is given by u(x) = 1+ 4 [) T(x,y; ) f(y)dy
ulx) =1+ ﬁf: [Sin(x +y)+ %nCos(x — y)] f(y)dy
T4

EXAMPLE:

Prove that the m th iterate kernel A’ (z, y) satisfies the relation

b
Km(z, ) =] Ko (z, t) Km—o(t, y)dt, 1<7<m

Solution

By definition .

b
Kuo(z, y) = ] Ki(zy 11) Km—1(t1, y)diy
a

and B v
b

Km-1(t1, ¥) = j Kqi(ty, t2) Kyi_2(ta, y)dts,

» - u -
fore on substitution

b
]b Kl(a:, t1)./ Kl(th tz) K
a u dt
jb {jb Ii'l(a:, tl) Kl(tl,'tz) dtl] Km-2(t21 y) 2

b
/ I\"Q(:E, tz) -Km-2(t21 y) dtz

There
_a(t2, y)dtadty

Kz, Y) =

D

Rl

where

b ' -
.Kz(x'_, tg) = / I(l(it, t1) Kl(tl, tg) dtl

‘Repeating the above process r times, we obtain

Km(zr y) = ]: K,-(I, t) Km—r(ts y) dt
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EXAMPLE:

Solve the integral equation by the method of successive approximations
to the third order. :

T ————,

1
w(z) =22+ [ (z+y)u(v)dy
o]
Solution

For the zeroth order approximation, we have uo(z) = 2zx. Therefore first
order approximate solution is

. ’ 1 ’ -
wm(r) = 2= +.r\/0 (z + v) (2y) dy

1 A 4
2z 4 A f (2zy + 2y%) dy = 2z + A(=z + 2/3)
. [0 .

Again
1 . .
uz(x) = 2z +4 A'/(; (37 -+ y) ul(y) dy
. 1
= 2z + A/o (£+ ¥)(2y + Ay + 2A/3) dy
t 2 BN 1
= 2z 4+ A /0 (lry + Azy + EAI 4 2y? 4 Ay? z)-y) dy

A 2A 2 2
= 2I+;\(:r+— _ el
2z+1z+3+3

= 2::+A(::+Z_i+f 2A
3 3
and similarly iy
1
wn(z) = 2+ r\-/o (z + v)uzy)dy e —
1 v
= 2z 4 A f (z +v) [2z 4+ A{(1 +72/6)x + -2—(1 + A)}] dy
°l = e
= 2z+)\f [2x2+A(1+——-—) z? 4+ = A\(1+:\)x+2:l:y ﬁ&‘-_
o BN Tietm
2 -
+ A(1+%)xy+?+(1+«\)y]dy S
A\ a2 . 2 - s
= 22+A[232+4\(1+?)3 +'§p\(1+,\)z Ca

4 = A2+ TA/E)z 4 O+ A)] ‘

TAZY . 2 2., 1 7 .2
- 22+,\[(2+1\+-§'—)z +_(§4\+-§a\ +1+§A+EJ\)I

+ §,\(1+a‘~)]

= 2z + A [(—A’+A+2)z“+ (-A’+ A+l)z+'%A(1.+,\)]
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VOLTERA IE AND THE METHOD OF SUCCESSIVE APOROXIMATION

. This method can be applied to Volterra LE. of the second type, viz.

|

I; I &
(s) = J@)+ ) [ K(a, v)un)dy

s solution can in this case be written as

Zx"/ Ku(z, ¥)

m=1

The Neumann serie

and the resolvent kerne} can be wrxtten as

zy, ZAle a:y

m=1

where K, is the m th iterate kernel. Note that in this case

DR ¥ o I
Kz(f,y)=] Ki(z, t) Kq(t, y) dt, Ky(z, y)=] Ki(z, t) K(t, y) di, et
Jy |

y
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EXAMPLE:
Find the Newnann series solution of the LE. __;:\ ‘ o
i [N
wey=1+zer [E-pu@d o e
, 0 2 =
e =
Solution o 2
Here K(z,¥) = Ki(z, ¥) = — 1 and ’ N %
I\'-Q(J:, y) = / If_‘l(:ﬂ', t) K'I.(t: ‘y) dt 1_
' v
= fr(“'—i)(t—y)dt
v
= ] (zt — £ — zy + ty) dt
v .
= (e/2- /3 — ayt + yi?/2)]]
= - (m3 - ys + 3...":3;2 - 3yw2)
= = — 3 _, (I — y)3 .
Similarly _ -
j (x—t)(t—y) dt
ety L ramwty,
-3 4 3' 4
) N P
= 0+ = '
43! 5 y 5!
Similarly
' 2m-—1
. z - y)° o _(z—1y)
Ka(z, )= S Kale v = Sy

The Neumann series for the solution of the equa,tion is

u(z) = f(a:)—!—Z)\"‘/ Km(z, v)f(y)dy

m=1

T (p 2m._.
_ (1+m)+mz=l;\m [ ((2myl o Fw)dy
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EXAMPLE:

Find the Neumann series for the sblution of L.E.
u(z) = f(z) + A / & Vu(y)dy
i 0

Solution

Here K(z, y) = =¥ = K\(z, y). Therefore
e, n) = [ Ki(e, Dt g
Y :

Z
= / e tet Yt
y

. |
= -.ex'y/ dt = " Y(p _
J, @ (z~y)

 Sinilarly
Kz, 3) = / Ki(s, DI(t, y)d
y

= / e?“et‘y(t-y)dz
y
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Tm— z
ez—v-/ (i - y)dt
2
-y (L - yt) ]
= 2 y
. 2
22 P\ ooy oy yx)
) 2 2
e*rY 2
_ 1 -t (32 +t .-2ts) = —5,“(3 - ¥)
and

1 1
R~ 2|
*:\
,-::
t\"n
.'.
f"‘\
-~ T
1 w
oo
Ty
S
w!
=
-
\.../
[ %]
=W
L™

ery 3
= 3 ( - ] (I - y)
By similar calculation we obtain
er- 4
K5($’ y) = 4! (:J: - y) .
and
Km(z, y) = -ffl_( m-1
~1)! z=y)
§ The Nﬁumann series for the solution of the equation is
o o0
“(z)‘-'f(z)-{- Am/z
K
20" | Kn(z, 1) f(4) dy

“(z)'“":f(z):l- iAm f‘ e*~v
0

_ - . (m-—nt(‘”- y)™ " f(y) dy
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EXAMPLE:
Solve the Volterra 1.E.

u(z) = 1+/:zyu(‘y)dy

SOIUtiOH
Here Ki(z, v) = K(x, y) = zy, and

Ka(zs ¥) = [ Kz, ) (1, y)dt = / zt -t - ydt
Jy 5

= :rytd]: Soy(z® — )
= P Y w Loy
3,7 3

Similarly
x
I\..S(x’ y) = f Ii—l(I, t) Ii—Q(t’ y)dt

lv x

= 3 / rtity (t3 — yB)dg
4

1 i 5 2_.4

= 3 [ (zyt® —zt%y%)dt
v

1 ¢ 3 3> o
== —_ U
Lol (=% vy 2Py
= 3% \e " 6 3 3
S U Kol A i €l y"’)]
= 3% 6 3
- 51'6“”? (2 — y® — 2¢°2 + 24°)

it 4 a 6 _ 9,323} = ¥ (23 _ ,,3)2
= zog (B°+ 9% —20°2%) = T2 (=7 = ¢%)

Therefore
T(z, y;A) = JK; + AK2+ A2Kaz+ A°Kq+---

z3 — o3 2TY . 3 342
= :z:y+)\:l:y(————3 +A—-—18(:c —y)? 4.
A A% 3 3
= xy[1+§(x3_y3)+.1_8(x )+

Therefore the solution is
xX
u(z) = 1+ A/ Iz, y; A)f(y)dy
o
\%“‘" T(z, y; A) is given by (1)
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I

. y—T ]
u(z)=smhr+[) ¢!~ "uy)dy

Solution
Here f(z) = 1. K(z, y)=1-1Y, and A = 1.

The solution is given by
)= fla)+ [ D v S0 s
0

where i this case

o0

L(z, )—}:A'“‘A (2, y::i

with K\(z, y) = K(z, y) =z -y.

Kz, y) = /},, (z, 1)K

/,, Ki(z, DKq(t, y)dr =

3 .3
2 oy

——

/ 3_T‘gm2+zymz _)

-H

y y)dt = / (:L‘-—t)(t__y)dt

t—ty - _
/,,(“ y -2t HY)di=2/2- 2y~ 1/34 /9

222

/,, (= 1)(t/2 -ty — 1/3 4 y/2)d
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(UoS, Past Paper)

Justify that Laplace Transformation could be used to solve I.E.
Consider the IE (Voltera IE of 1% kind)

f(x0) = [y K(x = y)u(y)dy

=>f(x)=Kx*u using Convolution law.

= L{f(x)} = L{K * u}

= f(p) = K(p)u(p) using Convolution law.

fy+l°° eP* f(p)

S fi(p) = I® _ p- i(p)} = £~ {f(p)}:u(x) io K@)

K K)
after solving we get the result.

dp

Zm

Justify that Fourier Transformation could be used to solve I.E.
Consider the IE

u@) =) + 1 K(x—y)u@®)dy

= u(x) = f(x) +V2mAK *u using Convolution law.
= Flu(x)} = F{f(x) + V2maK * u}
= (k) = f(k) +V2rAK(k)ii(k) using Convolution law.

Fk _1( Fk
= u(k) = /1(K)(k) = FHuk)} = F { —1:1(1?)(1{)}

L (O] dk after solving we get the result.

= u(x) = \/_f 1-2K (k)
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Example 1
Solve the Volterra LE.

/ sina{z - y)u(y)dy = 1 — cos fz (1)
0
Solution

It can be seen that the I.E. is consistent. With z = 0 we obtain 0 = 0.

Making use of the definition of the convolution (of functions sin az and
u(z)) we can write (1) as

(sinaz) * u(z) = 1 ~ cos 8z (2)

Taking the Laplace transform of both sides of (2) and using the conve-
‘lution theorem we have

L{sinaz}L{u(z)} = L{1 - cos Bz}

or

4] - 1 2

wherefrom |

___ B
PP B p(p?+ B2

_ 2 2 2
ip)= L L H4p

& p(? + p?) (3)
transform, we have

uz) = £y {i”iﬂ_
@ p(B? + p?)

Finally on taking inverse Laplace

Now

a2+p2

e = ol
p(B2+p) <

- p
B+t
) r?) B2 4 p2

- T
T O\ T m— 4
ﬂ by 52+p2) +ﬂ2+p2
Therefore from (3)
2 [ Y
w(z) = L 2B + p?)
L (1 P Ef-L"l{ 2p 2}
2
— o — caxcosPBzr 4+ —— cos Gz
z 2
— a_|_‘6 cos Bx
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Example 2
solve rhe Volterra 1LE. .
wiry = 7 + /r 63(I—y)u(y) dy (1)
0
Solution

This is Volterra LE. of the second kind, with convolution-type ker
It can be solved by the LL.T. method.

nel.

Equation . 1) can be written as
u(r) =1’ + € »u(rx)
Therefore taking Laplace transforms of both sides, we obtain
L{u(2)} = L{z"} + L{e* + u(z))

or

a(p) = 2—:& L{e*"}L{u(z)}

_ 6,1
T opt p-3

- u(p)

Or on simplification

3 _ 6(p—3) _6(p—-4)+6
R A A )
3, 8

p?  pip—4)

= L{z?} + L{z’}L{e""}

Hence
4r

H

L-Ya(p)) =2+ e
o+ /f p3edx==) !
0

u(z)

On performing the integration on the right side, we obtain

1, 3, 3 3 3
-3 _ [ L K] 2.2 . e —— ir
uz) =z (f Tt Tt st )
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Example 3
Solve the Volterra LE. of the second kind using

u(z) = cosx — /‘(z — y)cos(z — y)uly)dy
o

Laplace transforms.

(1)

Solution
The 1.E. (1) can be written as

. u(z) = cosx — (2 cosx) = u(r) (2)

Taking the Laplace transform of both sides of (2) and using the convo-
lution theorem, we have

i(p) = — ~ L{zcosz} i(p)

+1 [( dp) p’+1] u(p)
P

d _p
p’+1+[dppz+1] (p)
- o
P’+1+(p’+1)2“(”)

which on simplification can be reduced to

P+3p
@ +1y2 UP) = 3 +1

On further simplification we obtain

y
p2

PP+

Hp) = s

P + 1 ’
P+3 " p(p?+3) '-

P +1(1__£_)
£+3 3\p P43

On taking inverse Laplace transform;we obtain

+§c_05\/§a:

1
u(z) = cos 3:c+3 (l—coss/_:r) 3
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Example 4
Solve the integral equation
+oo R 1
y(z) = f(=z} + A/ e~'** y(z) dz (1) ..
—o
Solution

We will use the definitions of Fourier transform and its inverse as given
in chapter 7. Denoting the Fourier transform of f(z) by f(k), (1) can
be written as '

y(z).= f(z) + AV2ry(—<) (2)
where #(z) is the Fourier transform of y(z).
Taking the Fourier transform of both sides of (2), we have

Sk . "k AV%_—L Foo ikz-t_)d
k) = R+ IR = [ e g(-x) da

. B +oo .
= F&y+ T = [ e g(a) da (3)
Using the definition of inverse Fourier transform, (3) becomes
| §(k) = F(k) + V2T Ay(k) @
- From (4)
L §(—z) = f(—=z) + V27 y(-z) 5)

sl-li:mt'ituting for §(—z) from (5) into (2), we have

o) = =)+ WET [{(—2) + VERA y(~2)|
- = f(=) + AV2r f(—z) + 2x22 y(—1) (6) -

From (6) .
y(—z) = f(—2) + V27Af(z) + 27 A?y(z)

Substituting for y(—x) into (6), we finally obiain

y(z) = f(z)+ V2rAf(—z) + 27A% x
% [f(=2) + VETAF(z) + 2722 y(a:)]

From the last equation

¥(2)(1 = 47*A%) = f(2) + VETAF(—2) + 2w A% f(—2) + (27)%/27% f ()
1 -
Y(=) = T gmand [1(2) + VERAF(=2) + 2032 () 4 (2r)%/25% f(z)]

The solution given above is unique as long as 1

. 2,4 . .
equal to one of the eigenvalues of the associated o 7 0 I-e A s not

homogeneous IE.
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AN IMPORTANT RESULT:
Jo 37 p(xdxydx; = [ (x — x1)p(x)dx,

Example 1: (UoS, 2019 1)

Redue the IVP  y""(x) + Ay(x) = F(x) withy(0)=1,y'(0) =0
Solution:

Given that y"(x) + Ay(x) = F(x)

= [y @) + Ay()] dx = [ F(x) dx

>y @5+ 4, y@) dx = [} F(x)dx

=y'(x) —y'(0) + [, y(x)dx = [ F(x) dx

>y’ @) +A[ yx)dx= [ F(x)dx  sincey'(0) =0

= [ Y dx+A [ [?y(x;) dxdx, =[5 [7 F(xy) dx;dx;
= y(x) —y(0) + A [ [ y(x1) dxydx, = [ [7 F(xq) dxydx,
=>y(x0) -1+ 4[5 [ y(xy) dxgdx; = [y [ F(xq) dx,dx;

= y(x0) — 144 [; (x — x)y(x)dxy = [; (x — x1)F(xq)dxy using result
= y(x) =1 -4, (x — x)y(x)dxy + [, (x — x)F(x;)dx,
=>y(x) =1—- 4], (x— Dy®dt + [, (x — OF(D)dt

= y(x) =1+ [j(x - )F@®dt + 4 [ (t — x)y(D)dt

= y(x) = f(x) + 4 [, K(x, Dy)dt required Voltera IE

Where f(x) =1+ [ (x — )F(t)dt and K(x,t) =t —x
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Example 2

Reduce the boundary-value problem”™
v (@) + AP(z)y = Q(z) | (1)

y(a) =0, y(b) =0 ' (2)
to a Fredholm integral equation.

Solution

Integrating both sides of-(1) from a to .

V(@) - v+ A [ Playleddn = [ e@ydn

y'(a) can be replaced by a constant ¢. Integrating again from' ato zang

using (2},

y(z) — y(a) — (= — a) + A [E {/:2 P(sc{)y(zl)dzl} dz,

- [: {Lzz Q(zl)d:rl} dz2

Or rﬁaking use of the first initial condition of (2) and of the result
(10.5.1), we have

v(z) — 0 — e(z — a) + f\]j(é _ 21)P(z1) ¥(z1) dzs

= /x(z — $1)Q($_1) dz, ' (4)

To determine the constant ¢, we put = = b in (4) and use the condi
tion y(d) = 0. Thns gives - -

0-0—c(b—a)+ Aj (b — t)P(t) y(t) dt = / (b — 1) Q1) dt
Wherefrom ’

A b
c=b—a/a

Substituting for ¢ in (4), we get -

1 b 5
_a/a(b—t)Q(t)dt (3)

- y(zx ).i.i(i__,_) b)P(t)y(t)dt+ / (b-—t)O(‘)‘f‘
raf (2 — 1) P(E) p(2) dt = [@-nawa

or

w(z) = jtz-z)oct)dm-““j(t——b)amdt
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: [z —a)b-1t . |
+ o [T [ezae )P(t)+(t-—x)P(t)] v(2) di
+ A b(:r—a)(b-t)

r b-—a

P(t) y(t) dt

which can also be rewritten as

. ‘
y(z) = f(z)+ A /; K(z, t) f(t)dt

where

1@ = [(@-newa+ri=t [t-nowa

and

. _ [ [@=a)b—-0)/(b—a)+ (t—2)] P(t), t<z
K 0= { (2200 01 ire, ?] o

Example 3 -
Convert the D.E.

y'(z) + azy(z) = f(z) on [0,8]

(where a; and b are constants), subject to t-he I.C’s
y(0) = ¥'(0) =1
| into an equivalent IE, where f(z) is defined by
1, 0<e<l @)
'f(z)_z-{o, 1<z<b - 1
Soll-ltioh .
Integl'atmg (1) wr.t. z from 0 to 7,
’(-’v)-y (0)+az / y(zz)dxl = / £ (31)"“
3 0 Y
" using the second I.C. of (2), | Ao
. zl)d‘.h o - ‘ .
y(z)—1 +a2/ (:n)dzl-_/ f( >

@

@
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Integrating (4) w.r.t. z from 0 to Z,

y(z) - y(0) -z + 02 /0 /:zy(xl)dﬂfldﬁz: /: /:2 f(&1)deydy, |

| Using the first L.C. of (2) and the result (10.5.1), we have

I

et | =008 (g

0

I

y(m)-l-—a:+ag/

0

Now to substitute for f(z) in (5), we wil make use of (3), and consige
the cases (i) z < 1 and (ii) z > L.

(i) "When z < 1,
/:(m—t)f(t)dt=/I(x—t)di=x2—$2/‘2=m2/2 -
0 0 ’

In this case (5) becomes
12 2

y(z)=14+z+ 3+02/ (t-z)y(t)dt

0
(i) Whenz > 1,

I

' /(m—-t)f(t)dt:l]

0 ..

In this case (5) becomes "'~

T

y(?»)=1+:c+f (t-z)y(t)dt

0
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FUTRCr

tions of Fredhoj,,

nd Eigensom
heorem

' alues a '
0.3 Eigen [ternative T

[Es and the A

L3

1e0Us fredholm integral equy,

10.3.1 Solution of homogel
tion

”

When the kernel 18 separable, the ethod of solution for homogenegyg
en v )

Fredholm IE of the second kind, vz
b
(o) = [ Kle uls) & 103
a

s similar to that discussed above for the nonhomOgENeous Fredholm
[F. However there is one important difference as far as the existence
of solution corresponding-to & particular value of M is concerned. We
have observed that if A # Ay, 1= 1, 2. (where A; is an eigenvalue
of the homogeneous IE), then the nonhomogeneous Fredholm IE has a
unique solution. On the other hand the homogeneous Fredholm IE will,

in general, have a solution only when A = ;. This can be seen from the
following discussion. | ‘

We repeat the steps from equations (10.2.3), (10.2.4) and (10.2.6 3.
b) with f(z) = 0 and obtain the following equation for the constants ¢

;(&'k - )\a,-k) &y =1 (10.3,2)
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—_—

when written iu full this equation is the same

: ) e as equations (102 7Y
=0 i=12 o (027
(1—-)\(111)61 - ANayoca —_ Aar e
Aazy € + (1= Xapic o =0
—Aﬂ'.!l 1 A 8 B2 (':’ FFFF T ,\(]_zﬂ CH g 0
~Aa31 €1 - 32 €2 s 2 o Aa e
3nCn = () (1(]33)
~Xani €1 — Ay ~--4+ (1 =Xapn)en = 0

This system of equations will have a non-trivial solution if

D(A) =6k — Aawx] =0 (10.3.4)

Fquation (10.3.4) 1s a polynomial of degree n and therefore has n roots,
which may be real, repeated or complex. These roots are called eigenval-
wes or characteristic values of the 1E (10.3.1) or of the kernel K(z, y).
The corresponding solutions are called eigenfunctions of the IE (10.3.1)
or of the kernel K (z, y) and can be found from the equation

u(z) = 1) aA(z) (10.3.5)

where ¢; are to be determined from the system of equations
3 " (Sik — Aaix) ek =0 (10.3.6)
T | .

for each vajue of A = A;.

It is clear that the homogeneous IE (10.3.1) will have a nontrivial
%lution only when the parameter A equals an eigenvalue. On the con-
Z‘“V: the nonhomogeneous IE will have a unique solution corresponding

those values of A which do not equal eigenvalues.

i g
0.
-, 3.2 The Fredholm alternative theorem
ang l_tel;:*?'l‘em relates to the existence of solutions of a nonhomogeneous
ted homogeneous Fredholm IEs of the second kind, viz..

| u(z) = f(z)+ A f bK(x,' y) u(y) dy (10.3.7)
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B u(z) = A ] K(z, ¥) u(y)'dy .(10.3..3.)7_,. :
gtatement of the theorem
. ‘and only one solution u(z) fOr" :

xed A, posscsses one

the IE (10.3.7) with fi
tegrable functions

the arbitrary square in
u=0for’f=0.

Or

the homogeneous 1.E. (10.3.8)
dependent solutions ugi, ¢ = 1, 2,

f(z) and K(z, ¥),in partlcula,r _

possesses a finite number of linearly in- -

In the first case the transposed equatlon

. | o(z) = f($)+)\/ K(y, x)v(y) dy (1039) ;

also possesses a unique solution. In the second case the transposed

homogeneous equation

b - D T
iy X / Ky, 2)u()dy (10.3.10

also has r linearly independent solutions Wois 1= 1,2, 50

Moreover the inhomogeneous lntegra.l equation (10.3.7) has- + sl

tion corresponding to A = A;, an e
f(z) satisfies the ¥ Condltlon‘s’ igenvalue, if and only if the functm

- 10.3.3 y I
ummary of results on homogen IE ‘
S eous 8-

I The homogeneous IE

A
u(z)gx_ / K(=,y) u(y) dy
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has only the trivial solution v = 0 if p )

(A) # 0. s o
non-Trivial solutions. )#0. 1 DX =01 may have

9. Tt is clear that A = 0 is not an eigenvalue, because it gives u(zr) = 0.
3. 1f the kernel K'(z, y) is continuous in the square ¢ < T, y<b a.b
being finite, or the kernel is quadratically integrable then to e\'(:,_ry :eige;\-
value A there corresponds a finite number of linearly independent eigen-
functions wy, Wz, * * - Wr. The number ris called the indez or multiplicity

of the eigenvalue A. Different eigenvalues can have different multiplici-
ties.

4. In general the sc;lution of the Fredholm IE of the second kind

b

u(z) = f(@)+ [ Kz puw)dy

a

can be written as

b S
u(z) = f(@)+ 2 [ T, v ) Iy

where

| D(z, y, A)
| I[(z. y; A) = DOV
ad D(z, y, A) and D(X) are Fredholm determinants; (the kernel K
may not be separable).

5.In the case of an arbitrary (non-separable) kernel, the eigenvalues are
zeros of the Fredholm determinant D(A) i.e. P01‘3$ of I(z, ¥, A)-

10.3.4 TIllustrative examples

The method of determining eigenvalues and eigenvectors of a homoge-

I:EO“S Fredholm L.E. as well as the applications of Fredholm alternative
forem are illustrated below with examples.
Example 1

3 e the homogeneous Fredholm IE and find its eigenvalues.

| u(z) = A.[: e**V u(y) dy

¥ Polution
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440W _ exp(z) exp(y) is separable.

Here the kernel K (z, ) ocedure we have

Following the standard pT | .
1 - |
Y dy=Are ¢ ;
u(z) = Ae* ]0 e¥ u(y) ay =

. 1 . ;
where . / eyu(y) dy (2)
. _

Substituting for u(y) from (1) into (2), we have

1 1
c:cA/ ezydy:——c,\(ez—l)
0 2 L -
which can also be written as
c{l—%(e""-l)] =0

Either ¢ = 0 which leads to trivial solution or ¢ # 0. This gives

2
e? — 1

A .
1——5(62—1):0 or A=

which is an eigenvalue of the given IE, and the required eigensolution is

given by o>
- 2c ‘ X
e =g e \"“\*:-\"- \::.
where ¢ # 0 is an arbitrary constant. . ¥ T‘;\i
Example 2 | Ny \i e
Show tha 3 g
t the IE N
gl ¢
u(x): f(m)+ ..].l 27 % D\‘\_ﬁz
. | Sz + y) u(y) dy 5 O
i No solytj
solutions when f(:-:{)jz}_: f;:ll‘ f(I) = Z, byt it ) g
Solution ] POssesses infinitely many
WG WIH ma_ke
the e Use of the
1€ (.’Igon\vd]ug\b of {,he ho:::dholm alternatin th
Ogenecoys [p €orem. First we calculate
uw(z) = A . n(
+ 1
\ 0 Y)u !
‘*"’lnu, N (¥) d (1)

236
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) " N/
Stn (X144 = Sinx (asj-i—%sxsx'v\d
T .. Integral Equations A41
Loepattt -
. : {hw <tandard procedure for a separable kernel, we can write
..ll\\“\ l
b ,,(‘;-) = Nsinrep 4+ A COsST ey (2)
' u[l‘ i P
M o= / C“"U”(y)dy:/%J[AL}.?('4’,\%(3)
0
t}.l;r S‘j CL] Q(:j
8 Ld ;
o =) A _{ln?‘g; e .. A
0 o= [ smyuydy T 3T T () g
0 Iz

i d

TS S“’.“f""*.’-i*‘fg.” W
| uting Tor u(y) from (2) into (3) and (4), we obtain, on simplifi- Av’“')‘)d
: -5!1‘35“ uliits

o €y = ATcy OF €2 = ATC $
5 <
L ; system of simultaneous equations and can be >
3 These 3‘1‘13“2{15 {D;rfl_f )@;) €, -€30=) &= Cu UKD ACE(JMM q;,,) 3
g wilten & 7 5 : -.% (J’.‘fﬂx‘FCv:sx)
- 4 = A?TCZ = } (5)
Ci i
—Arcy + Ca = 0 Qh— ';u-\f‘.
- - - 7‘ \f\
; ] e the characteristic polynomial X w
& 1 sigenvalues of the IE we hav A =
! 1. —AT o s )\2 ‘JT2 >
D(A) = = g
M=1_x 1 5 3
3 ; i 4
2 The characteristic equation therefore 1s )
| 1-Ax?=0 W& e
D(/\') o § 2
. 25 igenvalues. :
Exhich gives \y = 1/7 and Az = (1/m) as eige ) i '%}
* i i ows that corresponc- <
Trom the Fredholm alterndtive theorem it foll <t

ous 1E (1) in general has no

¥ _ : homogene :
gt0 A = A;, A; the given non g :ch the samé has a solution,

hition. To discuss the special case in Wh : :
2% puaranteed by the said theorem, we need t_he eigensohfnonso(:f‘t'ggi 2:
posed IE of (1'), which is the same as (1) itself. The elger;re b
: 1) with ) = A = 1/7 can be found from (2), where cl,dcze to
g dfmm equations (5). In this case (A1 = 1/=), they redu¢

sm o T T

¢ =€ =20, (Sa'y)
Flore ?igensolution of (1) can be obtained from (2) as

"'(i')-_-u"'(z) = Asinzc+ Acosze=cA(sinz +cos z) (6)
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l‘!’,’] }:’Mﬂllu v ———
-

According 10 Fredholm alternative theorem, the nonhomogeneous

(1) will have a solution if

j ugy JLoydr = 0 (7)
0 4
Ju

When flz) = r.the integral on LIS, of (7) becomes

¢ o
o [ (sinx + cos HNrdr= ~2c#0 ' o
= Jo :

{ when f(r) =7 the 1E (1) has no solution

Hence we conclude tha
corresponding 1o A= 17 r
A
When flr) =1 the same inte \,ml becomes s 3
. am ,"y yrvfesztﬁlh !77 f,fj +(~€J":.
_ ) 2
- ] (sinz + COS r)dz =0 \ 2L
a 0 ] = & 2
= el
M which shows that (1') has a solution in this casec. * e J; ' §+
~ Example 3 &i 5
-]
* associated with the 1E

Find the cigenvalues of the homogeneous 1k

w(z) = f(2)+ A ] (1 - 3zy) uly)dy )

and discuss its solution.

Solution
the standard method

We first determine the eige
kernel K (Z, y)

nvalues of 1E (1). Using
=1~ 3:cy, we have

for a separable

sz = > [ ul)dy =3 [[ sy = =32 ®
. Jo : 0
where
1 1 3)
= j u(y)dy and €2 = j yu(y)dy (
0
On subsututmg for u(y) from (2) into (3), we obtain, after s'lmpl':ﬁcanon.
the set of equations
1-Na + (3/2) Ae2 = 0 } (4)
..(A/?)C} + (1+A)c2 = 0 ‘
a l . N M
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A\

w U,JLUU\ Azl @-:) "‘-’|‘fg(1_,:~a ..:-.)C-,:..QCL
(i/‘);) U(x) e é)(‘l_(‘fq_ K) ﬂp_

@g@:)}i-ﬁ Integral Equations ' 7 J%/4, ,

- . - - . ,
The characteristic polynomial in this case is Cln )

1-X 3a/2

D(A) = —2/2 1+A\ = 1,_.'\2/4

The characteristic equation D()A) = 0 gives the eigenvalues A, = 2 and %, f
?\2‘ = -2. : ! !
From the Fredholm alternative theorem we know that the nonhomo-

geneous IE (1) will in general have no solution when A = )\, A,. For all
other values the same will have a unique solution.

Next we ﬁnd the solution correspondmg to A # ).1, Ag The required
solution is given by

u(zx) = f(:c)-i-,\él —-3zAc (5)

which is different from the equation (2) in having the nonhomogeneous -
term f(z).

The constants ¢; and ¢z in (5) are the same as given by (3). On
| substituting for u(y) from (5) into (3), we obtain p

i } (6)

(1 - A)C} -+ (3!2) Acy
~(M2)er. + (1+A)e

hn

Here .
= S = [ e

gon solving equations (6) for ¢; and ¢z, we obtain

. 1
= 1= A2) +(3/4)2

C1

C2 .
| (-3/2)Af2 CIEERY A (1/2)Af1 + (1N

(=3/2)Af»+ (L+ )N
c = (1-A%)+ (3/4)A?

€2 = (1 _ /\2) + (3/4))\2

MUHAMMAD USMAN HAMID (0323 - 6032785)



240

e

Example 4

. ntegral equation
Find the eigenvalues and cigenfunctions of the intc®

w .
u(z) = A/ K(z, y)u(y) dy (1)
0
where
. cos T siny, 0<z<y 2
Kz, v) = cosysinz, ¥y<7Z <
Solution

Here the separable kernel is not defined by a single expression but t.wo
expressions. We have to split the integral into two parts, c':or'respondmg
ta the subintervals (0,z] and (z,7]. The method discussed in example
3 above and other examples cannot be applied here. Instead we follow

a different method whereby we transform the given IE into a boundary
value problem.

Rewriting (1) as

u(z) = A ]0 K(z.9)a(y)dy+ A f K(z, y)u(y)dy
and using (2), we have

u(z) Afycosysinzu(y)dy + A [ cosz siny u(y) dy h

Asinz f§ cosyu(y) dy + Acosz [ sinyu(y) dy &

To obtain the equivalent initial-value problem, wé differentiate both sides

of (3) w.r.t. z. Usi s . et
i sing Leibniz rule of differentiation under the integral

d /‘5(1') F( B(z) ’
-~ z, y)d =-/
S dz o(z) _ ) e k,_ a(z) e+ iz, ﬁ) g~ F(z, a)a,

we obtain -

(z) = .;c?s z _}p’rc?s ¥ w(y)dy + Asin
T oasinz | sin yu(y)dy - A
= Acosz | oy

T cosz u(zr)
E o
o CQS yu(y)dy — A sin

zsinzu(z)  (4)
z j: sin ylﬁ(y)dy .
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-Diﬁefentiating again

d"(z) = -A sinm] cos y u(y)dy + A cos’ zu(z)
0

i ,\cosx]Isinyu(y)dy-l—)\sinz:w(z)

= -du(z)+ Au(z)
or | -
| '+ (1-Au=0 -or o+ u=0 (5)
From (3) and (4)

o u(vr) =0, and u(0)=0 | (6)

DE (5) alongwith B.C’s (6) is equivalent to the given IE

Tt can be shown that the problem (5), (6) has trivial solution only

when X = 1 and A > 1. Therefore we consider the case A < 1. In this
case we put 1 — A = 72‘,

U= €1 COSYT + 28N YT

It will satisfy the given B.C’s if ¢, = 0 is arbitrary and cosy ™ = 0 which
gives 4 = n — 1/2, where n is a positive integer.

" Therefore

I-M=92=(n=1/2)% or A, =1-(n-1/2)?are the eigenvalues
-and

Un = €1n 08742 = dycos(n — 1/2)z are the corresponding eigenfunc-
tions, -

be Since Js cos*(n=1/2) zdz = x/2, the normalized eigenfunctions will

| -u_\[? 1 )
-ﬁ-' ICOS n—'a)zg_n=l,2,3,"’
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‘,_0.8 Fredholm’s The‘ofy of Integral Equations

Fredhol o T -
tegral e(r;;a(:i Swedish mathematician, was founder of the theory of in-
°ns. Here we will not discuss the details of his theory but

briefly state his pya: _
::znﬂ iii: tIl;S Tain results on the solution of Fredholm LEs of the
F of the LE. whls analysis gives a method for resolvent kernel I'(z,y,)

lution is erffas in the raethod of successive approximations, the
b f ?‘pgr(.)xlmate: here it is exact. The resolvent kernel is in the
form of an Infinite series which must be convergent for the solution to

B be valid.

In Fredholm’s method we write.

' D(z,y,)) -
r =
| (z,9,A) DY) (}0.8‘.1)
-4 where LT

’ | = (-1 k -

: Dz, N) =Y. TDk(x,y))\ (108.2)
; k=0 ; ;
4 0 ¢ .

poy =Y Sl an o (1083)

Thé functions Di(z, ¥) and the constants dg can be determined‘by

“{*urence relations as explained below.

1 Westart with

| bo(x, y) = K(_.”.’ y)‘ and dp=1
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here K (2, ¥) 1 the kernel appearing in the crigingl LB, The TeMaining
where 1 5
di and Di(z,y) 3¢ given bY _
b
di = f D,z F=LET (10.8.4)
a - 8 :

Dk(x.'y)%K(w,y)dk [ K (z,51) Dk-1 (y1,) 491 (19..8.5)

A specxal feature of the Fredholm method is that the POWeT Serieg
converge for all values of ),

teed to
(10.8.2) an d (10.8.3) are both guaran
_ unlike the Neumani series, which converges when the condition IAIB <1

is satisfied, (see section 10.4).

The Fredholm method therefore leads to a unique, non-singular
solution provided D(\) #0. The solution D (A) 0 gives the eigenvalues

of the a.ssoma.ted homogeneous LE.

Example §
Us,e the Fredholm power series method to solve the LE.

u(:c)=_m+Aj::£yu(y)dy. o (1)

Solution ke o .
" Here f(z) =1z, K@ y)=2¥ and Do(z, y) = oy. Alsodo =1
From (10 8.4) and (10. 8.5) | ' :

1 '. 1
d].—[ Do(a:,:c)d:c—f 22dy = =
0 3

| :Dl(a:, Yl = K(a:,y)ch —f K“(m, yl)Dé(yl,'y)dyl j

( ) f (391)(y1y)dy1

1
.'5"’” “’”5-0

fl

Again - |

w-,'ﬁ
_l

}"-, ’ Mu' - .
"""" e

M
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i T—e [T eew

DZ(may) -~ I(.’B y

———

/ Ik SB 1 Y1 Dl(yh )dyl

= 0
gimilarly dg=d4=-+-=0, anq Dy=D,=... =0
Also &
. D(A)zd()_dlA-}-dzAz-l—-n:l—.i
| 3
j D(z,y;A) = Do(z,y) - AD\(2,y) = Dy(z, y)
Thetefore ' B

7 | D'(m y) 3z
Hand)= (A/3)w - |

Hence the solutlon is glven by

: - :
ue) = f(z)+A / Iz, 4 \) () dy
| I=‘x+,\/0 33fy,\ydy
* | BN LI
FTIINT3
i — Az 3z
‘ | T REIRTI
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nels

This theory deals with IEs with Hermitian and real symmetric kernels,
It is similar to the S-L theory for DEs. It i> based on the following factg
about a real-symmetric kernel:

(i) Eigenvalues of such a kernel are real.
(ii) Eigenvectors corresponding to distinct eigenvalues are orthogonal,

(iii) The set of exgenvectors corresponding to a given eigenvalue is com-
plete. ‘

Let u‘(a:), §= 1 2, denote orthonormal eigenfunctions of the homo-
geneous Fredholm IE

ux) =2 [ Ko 1) uls) dy (1092)

corresponding to an eigenvalue )\,- of (10.9.1), where K(z, y) is ;eal-
symmetric. ‘ _ o

With this 1nforma.t1on about a homogeneous Fredholm IE with sym-
metric kernel, we can obtain a unique solutlon of the Fredholm IE of the
second kind, viz. ' :

| u(z) Flz) + A f K (z, y) u(y) dy (10.9.2)

Because of property (m) of the e1genfunctlons u,(x), we £an expa.nd the |

solution u(z), as _ u(x) E ai u.(x) | ' (1093)

where a; are consta.nt coefﬁments

Substituting from (10.9.3) mto (10.9: 2), we have _
Saw(z) = f@+ [ K(r,y)fi:qaui(y) dy
£

= f(z) + X};‘a; ]: K(z,y)uv)dy -(10-9.4)
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~ —_—
ow from (1091) :

f K (2, y)ui(y)dy = —-—'u,,(z) (10.9.5)
ote that Ai # 0). Substituting from (10.9.5) into (‘1079 4)

Z aiui(z) = f(z) + ,\Z “—u,(z)

Za;u,—(z) (1 — i\—) = f(z] |

(1096)
Now we will make use of orthonormality property of the eigenfunctions “'
4(z) and express a; in (10.9.6) in term of known quantities.

!
. On multiplying both sides of (10.9.6) w1th u_,(:c) and integrating i
1 wr.t. z from a to b, we have

Za, (1 - ——) / u'(z)ug(z) dz _f f(ﬁ:)uJ(a;) d# o ;ﬁ
Zai (1 - -A—I) bi; = '[a f(?:) u;(z) d:: -

.GT g

of

i w1

PR

or

or

(10.9.7)

On substituting in (10 9. 3), we obta.ln

| ui > ui(z)
: u(:c) —] ZA'—-A <‘f
._f___o..f’_‘-t-"-:-\-—-u (z) (10.9.8) _

N
)=
>
)
\

; of the .
_ genvalue O ;
. A i, an €= {
he above solution is unique 8 ot d ingular i
Ogeneous I.E. a; (10 9 ) becomes 0, then

1 If A= An then. the coeﬁ’l(neﬂts J f: als

¥
ever if .
] d no solution will exist. HO

: v
*
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the coefficients in (10.9.8) may be finite, and a non-singular solutio j
possible.

Thus if the condition < f, %i >= 0i.e. f f(z)uidz =01 i\s satisfieq,
then a solution of the mhomogeneous IE correspondmg to A = A cap
be obtained.

Example

Using the method based on Hilbert-Scmidt theory to solve the L.E.

u(z) :Isin(m +a)+ A /“ sin(z + y) w(y)dy (1)
0 .

 Solution

The eigenvalues and eigenfunctions of the homogeneous LE.

u(z) = A] sin(z + y)u(y) dy o (2)
0 :
are found to be A\; = 2/7, A2 = —2/% with orthonormalized eig’gnfunc-
tions B .
' -(sin z 4 cos T) (sinz — cosT) .
u1(z) =

\/_TF ’ ‘U.g(.'.r) = \/1_r
The solution to the LE. (2) is given by |

< f, ui>
u(z) = E Ai N u.,(:r:)
‘ <f1ul> -<f, U >
= A P u1_+.\g " U

g Here | = sin(z-+ a)-. Therefore

' sm:r:-l-cosx .
<fiwm> = / sin(z + a dz

f [sinz(sinz cosa +cosz sina)

+ cos z(sin 2 cos & + cos z sin a)] dz

1 .
7= (cosaf+sina ) = VX (cosa +sina) .

- -
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st

T
(fiu> = ] sin(z + )22
. d

P

1"

1

1 [ . *‘ m
_\/? j; -[sm z(sin z cos a + cos za)

— cos & (sinz cosa + cos z sin )] dz

i

1 T
P S T T

: VT (cosa 9 _Sm 2 5) = %(cosa - sina)
Therefore the solution will be
2/7) V7 ~ sinz +cosz
: z) = Q-1 2 (cosa + sina) 5
. ~2/7 ﬁ(coaa _din a)smn: ~ COST
1 2/t —X 2 T
: v (cosasmz+cosacosm+sinasinm+sinacosz)

+ 2+M(cosasm:c—cosacosz-—smasmz+smacosz)
; = 1 costT — a

. (sin(z + ) + (e - o))
+ [sin(z + a) — cos(Z ~ a))

24 AT |
, o
sin(z + a)m + cos(z - ")4 Nt

. 1 == )
o)+ ..A;r cos(z ]
T [sm(:r + ) |
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