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INTRODUCTION TO DIFFERENTIAL EQUATION 

 

DIFFERENCE EQUATION:  

An equation involving differences (derivatives) is called difference equation. 

 

DIFFERENTIAL EQUATION 

An equation that relate a function to its derivative in such a way that the 

function itself can be determined. 

OR an equation containing the derivatives of one dependent variable with 

respect to one or more independent variables is said to be a differential 

equation. It has two types: 

i. Ordinary differential equation (ODE) 

ii. Partial differential equation (PDE) 

 

ORDINARY DIFFERENTIAL EQUATION 

A differential equation that contains only one independent variable is called 

ODE. 

EXAMPLES: 

           ,       ( )    ( )        And in general      ( ) 

 

PARTIAL DIFFERENTIAL EQUATION 

A differential equation that contains, in addition to the dependent variable 

and the independent variables, one or more partial derivatives of the 

dependent variable is called a partial differential equation. 
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 In general, it may be written in the form 

  (                               )      

involving several independent variables x,y, an unknown function „u‟ of these 

variables, and the partial derivatives                      , of the function. 

Subscripts on dependent variables denote differentiations, e.g., 

   
  

  
          

  

  
.                are partial differential equations 

In general     (   ) 

 

HOMOGENEOUS DIFFERENTIAL EQUATION 

An equation which always posseses that trivial solution i.e.      is called 

Homogeneous DE. 

Or DE for which      is a solution is called a Homogeneous DE. 

EXAMPLES:                ,              

                      ,  (  )
   (  )

      

NON - HOMOGENEOUS DIFFERENTIAL EQUATION 

An equation which always posseses that non - trivial solution i.e.      is 

called non -Homogeneous DE. 

EXAMPLES:            (   )  ,                                

(  )
   (  )

       

THE ORDER OF A PARTIAL DIFFERENTIAL EQUATION 

The order of a partial differential equation is the order of the highest ordered 

partial derivative appearing in the equation.  

For example uxx +2xuxy + uyy = e
y
 is a second-order partial differential 

equation, 

And uxxy + xuyy +8u = 7y is a third-order partial differential equation. 
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THE DEGREE OF A PARTIAL DIFFERENTIAL EQUATION 

The degree  of PDE is the highest power of variable appear in PDE. For 

example ux +uy = u + xy  is of degree one.  And (uxx )
2
  =  (1+uy )

1/2
 is of degree 

two. 

LINEAR PARTIAL DIFFERENTIAL EQUATION 

A differential equation is said to be linear if it is linear in the unknown 

function (dependent variable) and all its derivatives with coefficients 

depending only on the independent variables. 

For example, the equation 

yuxx +2xyuyy + u = 1 and            are linear differential equations 

 

NON LINEAR PARTIAL DIFFERENTIAL EQUATION 

A differential equation is said to be nonlinear if the unknown function 

(dependent variable) and all its derivatives with coefficients depending only 

on the independent variables do not occur linearly. 

For example, uxx +uuy  = 1 ,  
  

  
 √    

 

INITIAL CONDITIONS: 

If all conditions are given at the same value of the independent variable, then 

they are called initial conditions. 

For example for a differential equation of order one 

  (   )    (   )      (   ) 

Then      (   ) with  ( )       ( )     then x = a is an initial 

condition. 
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INITIAL VALUE PROBLEM (IVP): 

A DE along with initial conditions defines an IVP. 

For example, the partial differential equation (PDE) 

ut − uxx = 0, 0 < x < l, t > 0,   with. u (x, 0) = sin x, 0≤ x ≤ l, t > 0,  is IVP 

 

BOUNDRY CONDITIONS: 

If the conditions are given at the end points of the intervals of definition (i.e. 

for different value of the independent variables) are at the boundary of the 

domain of definition then they are called boundary conditions.  

For example              with  ( )     ( )    is a BVP 

 

BOUNDRY VALUE PROBLEM (BVP):  

A DE along with boundary conditions defines an IVP. 

For example, the partial differential equation (PDE) 

ut − uxx = 0,   0 < x < l, t > 0, 

with      B.C.  u (0, t) = 0, t ≥ 0,  and       B.C. u (l, t) = 0, t ≥ 0, 

 

PRINCIPLE OF SUPERPOSITION:  

According to this principle, if we know „n‟ solutions “               ” we 

can construct other as linear combination. 

Statement: if                 are solutions of a linear, homogeneous PDE 

then                             where              are constant is 

also a solution of the equation. 

EXISTENCE THEOREM:   

An ODE of order „n‟ i.e. 

  ( ) 
      ( ) 

        ( ) 
    ( )   ( )  

Has exactly „n‟ liear indedpedently solutions. 
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THEOREM:  

Let    ( )   ( )      ( ) and  ( ) be continuous on an interval   ,   - 

and let   ( )    for every „x‟ in this interval. If      is any point in this 

interval then a unique solution  ( ) of IVP 

    
       

         
       ( ) with initial conditions exists on 

this interval. 

THEOREM:   

Let        ……..,    be „n‟ solutions of the linear (Homogeneous or Non 

Homogeneous) ODE on an interval “I” then the set of solutions is linearly 

independent on “I” if and only if  (             )( )    for every „x‟ in 

the interval. Where   is called Wronskian function. 

NOTE: 

i.  (             )( )    is a Wronskian of „n‟ functions of 

independent varaiable „x‟ 

ii. Wronskian of two functions   ( )     and   ( )     can be defined 

as   (     )( )  |
    

      
| 

iii. Wronskian of three functions   ( )        ( )            ( )     

can be defined as   (        )( )  |

      

         
            

| 

iv. Wronskian of „n‟ functions   ( )        ( )       ( )     

……………  ( )       can be defined as 

   (             )( )  |
|

       

          
             
    

  
     

      
   

|
|
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SOLUTION OF DIFFERENTIAL EQUATION  

(DIFFERENTIAL FUNCTION): 

A function in „x‟ (for an ODE) or functions of more than one variables (for 

PDE), such that when it is substituted in the given DE, it is satisfied  i.e. the 

DE takes the form 0 = 0 for all values of the independent variable(s) in the 

specified domain. It is the relation between the variables not involving 

differential coefficents. 

 

FUNDAMENTAL SET OF SOLUTIONS:      

The set of linearly independent solutions                   of the 

homogeneous or non  - homogeneous DE‟s is called Fundamental set of 

solutiosn on the interval „I‟ 

 

EIGENVALUE PROBLEMS:  

If an IVP or BVP contains a parameter   in the DE and non – trivial 

solution(s) corresponding to certain values of   can be found then the problem 

is called Eigenvalue Problem, and the corresponding values of   are called 

Eigenvalues of the problem. 
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EXAMPLE: (UoS,2018 –I, II)  

Solve the problem 
   

   
      where   is parameter and the boundry 

conditions are  ( )     and   ( )    

Solution: if     then   has trivial solutions.  

Now for non – trivial solutions we will discuss three cases; 

CASE I:  when     

   

   
      

   

   
 ( )    

   

   
    ( )          ……….(i) 

Now using BC‟s    ( )          and  ( )         

( )   ( )    which is trivial solution. So     is not an eigenvalue. 

CASE II:  when     then we may take       

Then 
   

   
      

   

   
 (   )    (     )         

Then general solution becomes  ( )     
      

    ……….(ii) 

Now using BC‟s    ( )     and  ( )              

(  )   ( )    which is trivial solution. So     is not an eigenvalue. 

CASE III:  when     then we may take      

Then 
   

   
      

   

   
 (  )    (     )          

Then general solution becomes  ( )                  ……….(iii) 

Now using BC‟s    ( )           

and  ( )         then     ( )      
  

 
    

           
  

    

  
 are the eigenvalues for the non – trivial solution   

  ( )       √     corresponding to    

 

 



9 
 

   MUHAMMAD USMAN HAMID (0323 – 6032785) 

GENERAL  FORMS OF FIRST-ORDER LINEAR EQUATIONS IN TWO 

VARIABLES 

For the general first-order linear partial differential equation  

a (x, y) ux + b (x, y) uy + c (x, y) u = d (x, y)   

 

SECOND-ORDER EQUATIONS IN ONE INDEPENDENT VARIABLE 

The general linear second-order partial differential equation in one dependent 

variable u may be written as 

∑         

 
      ∑      

 
          

in which we assume Aij = Aji and Aij , Bi, F, and G are real-valued functions 

defined in some region of the space (x1,x2, . . . ,xn) 

 

SECOND-ORDER EQUATIONS IN TWO INDEPENDENT VARIABLES 

Second-order equations in the dependent variable u and the independent 

variables x, y can be put in the form   Auxx + Buxy + Cuyy + Dux + Euy + Fu = G 

where the coefficients are functions of „x‟ and „y‟ and do not vanish 

simultaneously. We shall assume that the function „u‟ and the coefficients are 

twice continuously differentiable in some domain in R
2
. 

 

CLASSIFICATION OF SECOND-ORDER LINEAR EQUATIONS 

The classification of partial differential equations is suggested by the 

classification of the quadratic equation of conic sections in analytic geometry. 

The equation     Ax
2
 + Bxy + Cy

2
 + Dx + Ey + F = 0,  represents  

hyperbola if  B
2
 − 4AC is positive  i.e. B

2
 − 4AC > 0 

parabola  if  B
2
 − 4AC is zero i.e. B

2
 − 4AC = 0 

or ellipse if  B
2
 − 4AC is negative  i.e. B

2
 − 4AC < 0 
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for example: 

(i) The heat equation 
 

 
       is parabolic. 

(ii) The wave equation 
 

  
        is hyperbolic. 

(iii) The potential (Laplace) equation               is elliptic. 

 

METHOD OF SEPARATION OF VARIABLES 

During the last two centuries several methods have been developed for solving 

partial differential equations. Among these, a technique known as the method 

of separation of variables is perhaps the oldest systematic method for solving 

partial differential equations. 

 Its essential feature is to transform the partial differential equations by 

a set of ordinary differential equations. 

 The required solution of the partial differential equations is then 

exposed as a product u (x, y) = X (x) Y (y)   0                                

or as a sum u (x, y) = X (x)+Y (y) 

where X (x) and Y (y) are functions of x and y, respectively. 

 

IMPORTANCE: Many significant problems in partial differential equations 

can be solved by the method of separation of variables. This method has been 

considerably refined and generalized over the last two centuries and is one of 

the classical techniques of applied mathematics, mathematical physics and 

engineering science. Usually, the first-order partial differential equation can 

be solved by separation of variables without the need for Fourier series.This 

method is used to convert PDE into ODE. 
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Example: 

Solve by method of separation of variables 

 
   

   
 

  

  
      uxx – ut = 0,    where „x‟ is real and              

Solution:   given that  
   

   
 

  

  
     

let  u   u (x, t) = X (x) T (t)   XT 

   
  

   
(  )  

 

  
 (  )            ( )  ( )      ( )    ( )      

Dividing XT on both sides     
     

  
  

   

  
     

   
     

 
  

  

 
        

     

 
  

  

 
  

Since L.H.S of this equation is a function of x only and the R.H.S is a function 

of „t‟ only 

 
     

 
  

  

 
      

     

 
    and  

  

 
    where   is separation constant. 

Consequently, gives two ordinary differential equations 

X′′ (x) − λX (x) = 0  and    
  

 
    ∫

  

 
     ∫          

These equations have solutions given, respectively, by 

  ( )      √      √        
and         ( )       

where A and B are arbitrary integrating constants. 

Consequently, the general solution is given by 

  (   )     ( ) ( )    0  √      √   1 [    ]  0   √       √   1      

  (   )  0  √      √   1       where            
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Example: (UoS,2015 – II, 2018 – I)   

Solve by method of separation of variables 

 
   

   
 

 

  
   

   
      uxx – 

 

  
 utt = 0,   where „x‟ is real and              

Solution:   given that  
   

   
 

 

  
   

   
     

let  u   u (x, t) = X (x) T (t)   XT 

  
  

   
(  )  

 

  
 

   
 (  )        X′′ (x) T(t) - 

 

  
 X(x) T′′ (t) = 0 

Dividing XT on both sides     
     

  
 

 

  
 
    

  
     

   
     

 
 

 

  
 
   

 
        

     

 
 

 

  
 
   

 
  

Since  L.H.S of this equation is a function of x only and the R.H.S is a function 

of „t‟ only 

 
     

 
 

 

  
 
   

 
       

     

 
    and  

 

  
 
   

 
   where   is separation constant. 

Consequently, gives two ordinary differential equations 

    ( )       ( )       and       ( )        ( )       

These equations have solutions given, respectively, by 

  ( )      √      √        
and         ( )      √       √    

where A , B,C and D are arbitrary integrating constants. 

Consequently, the general solution is given by 

  (   )     ( ) ( )    0  √      √   1 0    √       √   1  
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Example: (UoS,2017 – II,   2018 – II, 2019 – I) Solve by method of 

separation of variables  
   

   
 

   

   
 

 

  
   

   
      uxx + uyy  

 

  
 utt = 0,  where 

  ,   -   ,   -     

Solution:   given that  
   

   
 

   

   
 

 

  
   

   
     

let  u   u (x, y,t) = X (x) Y(y) T(t)   XYT 

  
  

   
(   )  

 

   
 (   )  

 

  
 

   
 (   )      X′′ YT + XY′′ T 

 

  
 XY T′′ =0 

Dividing XYT on both sides     
      

   
  

     

   
 

 

  
     

   
     

   
     

 
  

   

 
  

 

  
   

 
       

     

 
  

   

 
 

 

  
   

 
 

 
     

 
  

   

 
 

 

  
   

 
     

     

 
  

   

 
    and  

 

  
   

 
    

Now solving for  
 

  
   

 
   we get   ( )       

√       
 √    

And solving 
     

 
  

   

 
    

     

 
    

   

 
   

 
     

 
    and    

   

 
   wher p is another constant. 

Consequently, gives two ordinary differential equations 

    ( )       ( )       and      ( )  (   ) ( )       where         

These equations have solutions given, respectively, by 

  ( )      
√      

 √         

and         ( )      
       

     for (  )  

or   ( )                    for (  ) 

Consequently, the general solution is given by 

  (     )     ( ) ( ) ( )  

 0   
√      

 √  1 [   
       

   ] 0   
√       

 √    1  
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Example:  

Solve by method of separation of variables    
   

   
 

   

   
       

  uxx + uyy = 0,  where   ,   -   ,   - 

Solution:   given that  
   

   
 

   

   
     

let  u   u (x, y) = X (x)Y(y)   XY  

  
  

   
(  )  

 

   
 (  )      X‟′(x) Y(y) + X(x) Y′′(y) = 0 

Dividing XY on both sides  

    
     

  
  

    

  
       

     

 
  

   

 
        

     

 
   

   

 
  

Since the L.H.S of this equation is a function of x only and the R.H.S is a 

function of t only 

 
     

 
   

   

 
      

     

 
    and    

   

 
   where   is separation constant. 

Consequently, gives two ordinary differential equations 

    ( )       ( )       and      ( )     ( )       

These equations have solutions given, respectively, by 

  ( )      √      √        
and         ( )        √       √   

where A , B,C and D are arbitrary integrating constants. 

Consequently, the general solution is given by 

  (   )     ( ) ( )    0  √      √   1 [    √       √  ]  
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STURM LIOUVILLE SYSTEM (SL – SYSTEM) 

 

The functions discussed in this chapter arise as solution of second order DE‟s 

which appear in special, rather than in general physical problems. So, these 

functions are usually known as “The Special Functions of Mathematical 

Physics” 

SELF ADJOINT OPERATOR: 

An operatior „A‟ defined over a linear space of functions is called Self Adjoint 

if  〈    〉  〈    〉 which is equivalent to 

∫  ( ),  ( )-  
 

 
 ∫ ,  ( )- ( )  

 

 
    where the functions „u‟ and „v‟ are 

supposed to be real. In case of complex functions a slight modification is 

necessary. 

EXAMPLES (JUST READ): 

 Sturm liouville Differential operator is Self Adjoint. 

 The Hormonic oscillator equation is Self Adjoint. 

 Legendre‟s equation is Self Adjoint. 

 Laguerre‟s equation and Hermite equation are not Self adjoint but 

could be made using few conditions. 

 

 

 

 

 

 

 

 



16 
 

   MUHAMMAD USMAN HAMID (0323 – 6032785) 

STURM LIOUVILLE EQUATION (SL - EQUATION): 

The SL equation is named after the German Mathematician John Sturm 

(1803 – 1855) and the French Mathematician Joseph Liouville (1809 - 1887), 

who did pioneering work on this DE and related problems. 

Defination: The Second order Ordinary Linear Homogeneous DE of the form 

 

  
2 ( )

  

  
3   ( )     ( )    

  ( )      ( )    ( )     ( )      is called a Sturm Liouville 

equation OR briefly an SL equation. If  ( )   ( )  ( )  ( ) are real and 

continuous over an interval [a,b]. 

 

STURM LIOUVILLE (SL) DIFFERENTIAL OPERATOR: 

 A self adjoint operator of the form   
 

  
2 ( )

 

  
3   ( )   is called SL 

differential operator. This operator is a second order linear differential 

operator because it operate on everything to the right, not just by ordinary 

multiplication but also by the operation of differentiation. 

 

REMARK (JUST READ): 

 SL differential operator   
 

  
2 ( )

 

  
3   ( ) is called normal 

operator if  ( )    in the range   (    ) 

 In terms of SL differential operator SL equation can also be written as 

   ( )     ( )       
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LINEAR SECOND ORDER DE‟s AND SL EQUATION 

There are may second order linear ODE‟s which appear in physical and 

engineering problems. Some of these are as follows; 

EQUATION OF SIMPLE HARMONIC MOTION: 

An equation of the form 
   

   
                 with condition on x(t) 

of the form  (   )                 (   )    

In this equation  ( )     ( )     ( )    

 

LEGENDRE‟S DIFFERENTIAL EQUATION: 

An equation of the form 

 
 

  
2(    )

  

  
3   (   )    (    )          (   )    

with condition on u(x) of the form  (  ) are finite. In this equation „    ‟ 

are singular points. 

In this equation  ( )  (    )  ( )     ( )    

 

BESSELE‟S DIFFERENTIAL EQUATION: 

An equation of the form 

      

   
  

  

  
 (       )                            where 

the solution of this DE are called Bessele‟s Functions. 

In this equation  ( )        ( )            ( )     

 

THE HERMITE EQUATION: 

An equation of the form 

 
   

   
   

  

  
                              

In this equation  ( )       ( )         ( )    
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THE LAGUERRE EQUATION: 

An equation of the form 

  
   

   
 (   )

  

  
           (   )                                   

with     a singular point. In this equation  ( )       ( )         ( )    

THE CHEBYSHEV EQUATION: 

An equation of the form 

 (    )
   

   
  

  

  
       (    )                     with 

       i.e   (    ) with  ( )  (    )    ( )         ( )    

AIRY‟S EQUATION: 

An equation of the form  
   

   
                       

In this equation  ( )       ( )        ( )    

POSSIBLE QUESTION: Describe about introduction to SL System of 

equations. 

 

SINGULAR POINTS: For SL equation 
 

  
2 ( )

  

  
3   ( )     ( )    

the points at which  ( )       ( ) vanishes (i.e. become zero) over any 

interval [a,b] are called singular points. 

 

REGULAR POINTS: For SL equation 
 

  
2 ( )

  

  
3   ( )     ( )    

the points at which  ( )       ( ) do not vanishes (i.e. become zero) over any 

interval [a,b] are called regular points. 
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WEIGHT FUNCTION: In SL equation 
 

  
2 ( )

  

  
3   ( )     ( )    

the continuous, non negative, real  function  ( )  on any interval „I‟ is called 

Weight Function. 

SINGULAR SL EQUATION:  

The SL equation 
 

  
2 ( )

  

  
3   ( )     ( )    is called Singular SL 

equation in the interval [a,b] if the points  ( )       ( ) vanishes  

(i.e. become zero) at any point the  interval [a,b]. 

EXAMPLES: 

 Legendre‟s DE 
 

  
2(    )

  

  
3   (   )    with  

 ( )  (    )  ( )     ( )    is singular at     . 

 Bessele‟s DE is singular after few arrangements. At     

 

SINGULAR SL SYSTEM: A singular SL equation together with suitable 

linear homogeneous conditions on  ( ) leads to a singular SL system. 

REGULAR SL EQUATION:  

The SL equation 
 

  
2 ( )

  

  
3   ( )     ( )    is called regular SL 

equation in the interval [a,b] if the points  ( )       ( ) do not vanishes (i.e. 

become zero) at any point the  interval [a,b]. 

EXAMPLES: 

    ( )    ( )    with  ( )       ( )     ( )      is 

regular SL equation in every interval. 

 Legendre‟s DE 
 

  
2(    )

  

  
3   (   )    with                            

 ( )  (    )  ( )     ( )    is singular or is not regular at 

    . 

 Bessele‟s DE is singular or is not regular. At     
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REGULAR SL SYSTEM: A Regular SL equation together with suitable end 

ponint  conditions leads to a regular SL system.  

Conditions are   ( )      ( )    and   ( )      ( )    

PERIODIC SL EQUATION:  

The SL equation 
 

  
2 ( )

  

  
3   ( )     ( )    is called periodic SL 

equation in the interval [a,b] if the points  ( )  ( )       ( )  are periodic 

funcitons of period     . 

EXAMPLES: 

          with  (  )   (  )        (  )    (  ) is periodic 

SL equation. 

 With period 2  , The Mathieu DE                        

with  (  )   (  )        (  )    (  ) is periodic SL equation. 

 

PERIODIC SL SYSTEM: A Periodic SL equation together with suitable end 

ponint  conditions leads to a Periodic SL system.  

Conditions are  ( )   ( )        ( )    ( ) 

BOUNDRY CONDITIONS ASSOCIATED WITH SL SYSTEM 

 The boundry conditions   ( )      ( )    and                                    

  ( )      ( )    are called Separated Boundry Conditions are 

Unmixed Boundry Conditions. 

 If the Separated Boundry conditions are of the form                                

 ( )           ( )     then they are called Drichlet BC‟s 

 If the Separated Boundry conditions are of the form                                 

  ( )             ( )      then they are called Neumann BC‟s 

 If the Separated Boundry conditions are of the form  ( )   ( )         

    ( )    ( ) then they are called Periodic BC‟s 
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EIGENVALUE PROBLEMS: 

A non – zero solution of an SL sytem (Regular or Periodic) is said to be an 

eigensolution or eigenfunction corresponding to a value of the parameter   in 

SL equation. The value of   then called sn eigenvalue of the DE. 

OR If an IVP or BVP contains a parameter   in the DE and non – trivial 

solution(s) corresponding to certain values of   can be found then the problem 

is called Eigenvalue Problem, and the corresponding values of   are called 

Eigenvalues of the problem. 

 

EXAMPLE:  

Find the eigenvalue and eigenfunctions (solutions) fo the regular SL system 

         where   is parameter and the boundry conditions are  ( )     

and   ( )    

Solution: (the end point conditions shows that the system is regular but not 

periodic) with          ( )     ( )     ( )     

Now               √  

Then general solution becomes  ( )      √       √         

Now using BC‟s    ( )               ( )      √    

 ( )        √        (                       )    √      

 √      √      ;         …….ommiting ,0, because gives trivial 

solution. 

Hence           ;         ……. are the eigenvalues for the non – 

trivial solution where the eigenfunctions are 

  ( )           ;         ……  whrer the constants    are in general 

different for each solution. 
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EXAMPLE: (UoS,2015 – I, 2018 – I)  Show that if  ( ) and  ( ) 

are periodic solutions of the Mathieu equation with period   having the 

distinct eigenvalues then    ∫  ( ) ( )  
 

 
    

Solution:  

we know that the Mathieu DE with period   is                    

with end point conditions  ( )   ( )        ( )    ( ) 

now if „u‟ and „v‟ are solutions of given equation corresponding to      and 

     respectively then 

                    ………...(i) with end point conditions              

 ( )   ( )        ( )    ( ) 

Similarly for „v‟ we have  

                    …….…...(ii) with end point conditions            

 ( )   ( )        ( )    ( ) 

Multiplying (i) with „v‟ and (ii) with „u‟ and subtracting we obtain 

(     )             …….…....(iii) 

 ∫ (     )    
 

 
 ∫            

 

 
  

 (     ) ∫  ( ) ( )  
 

 
 ∫

 

  
(       )  

 

 
  

 (     ) ∫  ( ) ( )  
 

 
 |       | 

   

 (     ) ∫  ( ) ( )  
 

 
  ( )  ( )    ( ) ( )   ( )  ( )    ( ) ( )  

Now using end conditions. 

 (     ) ∫  ( ) ( )  
 

 
  ( )  ( )    ( ) ( )   ( )  ( )    ( ) ( )  

 (     ) ∫  ( ) ( )  
 

 
    (     )    ∫  ( ) ( )  

 

 
     

as required. 
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EXAMPLE: (UoS,2014 – II)  

Determine eigenvalue of the system          with boundry conditions are 

 ( )   ( )  and    ( )     ( ) 

Solution:    Since we have           

Then               √  

Then general solution becomes  ( )      √       √   

Then   ( )   √     √   √     √   

Now using BC‟s   

 ( )   ( )      √ ( )      √ ( )      √ ( )      √ ( )  

 (   √ ( )   )      √ ( )     ………….(i) 

Similarly using BC‟s     ( )     ( )  

  √     √ ( )  √     ( )    √     √ ( )   √     √ ( )  

      √  .      √ ( )/     ………….(ii) 

Being homogeneous both equations have trivial solution. i.e. A = 0, B = 0. 

For non – trivial solution we must have 

|
   √ ( )      √ ( )

     √       √ ( )
|       √ ( )              

Corresponding eigne functions are                       

 

ORTHOGONAL FUNCTIONS: Functions  ( ) and  ( ) defined over [a,b] 

are said to be orthogonal w.r.to a weight function  ( ) if  

∫ ( ) ( ) ( )  
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SQUARE INTEGRABLE FUNCTION: A function  ( ) is said to be square integrable 

with respect to a weight function  ( )    over an interval [a,b] if   

∫  ( )| ( )|   
 

 
    

If  ( )    then ∫ | ( )|   
 

 
    in this case  ( ) is simply called square integrable. 

EXAMPLES: 

 Legendre‟s DE 
 

  
2(    )

  

  
3   (   )    is square integrable. 

 Bessele‟s DE is square integrable. 

 

LAGRANGE‟S IDENTITY: (UoS,2013 – II, 2017 –I , II) 

Suppose  ( ) and  ( ) are two solutions of an SL equation, then the 

following identity must hold 

  ( )    ( )  
 

  
{ ( )( ( )  ( )    ( ) ( ))}  

Which is called Differential form of Langrange‟s idenetity. While the integral 

form is given as follows 

∫ ,  ( )    ( )-  
 

 
 | ( )( ( )  ( )    ( ) ( ))|

 

 
  

PROOF:  Since   
 

  
2 ( )

 

  
3   ( ) therefore 

  ( )    ( )   
 

  
2 ( )

  

  
3   ( )   

 

  
2 ( )

  

  
3   ( )  

  ( )    ( )    ( )       ( )     ( )       ( )    

  ( )    ( )   ( )(         )    ( )(       )  

  ( )    ( )  
 

  
{ ( )( ( )  ( )    ( ) ( ))}  

   ( )    ( )  
 

  
* ( ) (   )( )+ , W is called Wronskian of „u‟ ,„v‟ 

Taking integral from „a‟ to „b‟  

∫ ,  ( )    ( )-  
 

 
 ∫

 

  
{ ( )( ( )  ( )    ( ) ( ))}  

 

 
  

∫ ,  ( )    ( )-  
 

 
 | ( )( ( )  ( )    ( ) ( ))|
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IMPORTANCE:  By using Lagrange‟s identity, we may prove reality, 

orthogonality and simplicity of eigenvalues of an SL system (regular or 

periodic) 

REALITY OF EIGENVALUES 

THEOREM – I : (UoS,2015 – II, 2017 –II) پوچھ لی جاتی ہے۔ 
 

ٹ

 

 ن
می

 

ی ٹ

 

سٹ

 یہ یا اس سے اگلا رزلٹ، ان میں سے کوئی ایک یا دونوں کی اکٹھی 

The eigenvalues of an SL system (regular) are real. 

PROOF:  Let „u‟ be eigenfunction corresponding to eigenvalue „ ‟ then 

  ( )         (   ) 

Now as  ( )     ( )     ( )      ( )  ……………..(i) 

If possible let „ ‟ be complex then  ̅( )    ̅  ( ) ̅  

Now „p‟,‟q‟,‟r‟ are real, therefore   is real hence     

  ( )    ̅  ( ) ̅ ……………..(ii) 

Now from Lagrange‟s identity 

∫ ,  ( )    ( )-  
 

 
 | ( )( ( )  ( )    ( ) ( ))|

 

 
  

Taking    ̅ then 

∫ ,  ( ̅)   ̅ ( )-  
 

 
 | ( )( ( ) ̅ ( )    ( ) ̅( ))|

 

 
   …………….(A) 

Now for a regular SL system   ( )      ( )    and   ( )      ( )    

Similarly     ̅( )     ̅ ( )    and   ̅( )     ̅ ( )    

If we substitute the values of  ( )  ( )  ̅ ( )  ̅ ( ) in R.H.S of (A) we find it 

will be zero. Hence  ∫ ,  ( ̅)   ̅ ( )-  
 

 
   

Using (i) and (ii) ∫ [ (  ̅  ( ) ̅)   ̅(    ( ) )]  
 

 
   

 ∫ [  ̅    ̅       ̅]  
 

 
   ∫ (   ̅)   ̅  

 

 
   ∫ (   ̅) | |   

 

 
    

Now as   ( )    also | |    therefore ∫  | |   
 

 
   

Then (   ̅)       ̅     is real as required. 
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THEOREM – II : (UoS,2015 – II, 2017 –II)  پوچھ لی جاتی ہے۔ 

 

ٹ

 

 ن
می

 

ی ٹ

 

سٹ

 یہ یا اس سے پچھلا رزلٹ،  یا دونوں کی اکٹھی 

The eigenvalues of an SL system (periodic) are real. 

PROOF:  Let „u‟ be eigenfunction corresponding to eigenvalue „ ‟ then 

 ( )         (   ) 

Now as  ( )     ( )     ( )      ( )  ……………..(i) 

If possible let „ ‟ be complex then  ̅( )    ̅  ( ) ̅  

Now „p‟,‟q‟,‟r‟ are real, therefore   is real hence 

  ( )    ̅  ( ) ̅ ……………..(ii) 

Now from Lagrange‟s identity 

 ∫ ,  ( )    ( )-  
 

 
 | ( )( ( )  ( )    ( ) ( ))|

 

 
  

Taking    ̅ then 

 ∫ ,  ( ̅)   ̅ ( )-  
 

 
 | ( )( ( ) ̅ ( )    ( ) ̅( ))|

 

 
   ……….(A) 

Now for a periodic SL system  ( )   ( )   ( )    ( )  ( )   ( ) and if 

B.C‟s are singular then  ( )   ( )    and R.H.S of (A) will be zero. 

Hence  ∫ ,  ( ̅)   ̅ ( )-  
 

 
   

Using (i) and (ii) ∫ [ (  ̅  ( ) ̅)   ̅(    ( ) )]  
 

 
   

 ∫ [  ̅    ̅       ̅]  
 

 
   ∫ (   ̅)   ̅  

 

 
    

 ∫ (   ̅) | |   
 

 
    

Now as   ( )    also | |    therefore ∫  | |   
 

 
   

Then (   ̅)       ̅     is real as required. 
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ORTHOGONALITY OF EIGENVALUES 

THEOREM: (UoS,2011, 2013) 

Eigenfunctions of a regular or periodic SL system corresponding to distinct 

eigenvalues are orthogonal w.r.to weight function  ( ). 

PROOF:  

Let „  ‟ and „  ‟ be eigenvalues of an SL system with eigenfunctions   ( ) 

and   ( ) respectively then using Lagrange‟s identity 

 (  )       ( )    and  (  )       ( )    with boundry conditions of 

the regular or periodic type. 

Again using Lagrange‟s identity for   ( ) and   ( ) 

∫ ,   (  )     (  )-  
 

 
 | ( )(  ( )   ( )     ( )  ( ))| 

 
  

For a regular or periodic SL system, R.H.S = 0 

Hence  ∫ ,   (  )     (  )-  
 

 
   

Using (i) and (ii) ∫ ,  (     ( )  )    (     ( )  )-  
 

 
   

 ∫ ,                  -  
 

 
   ∫ (     )       

 

 
    

 (     )    ∫        
 

 
    

This shows that eigenvalues are orthogonal w.r.to weight function  ( ). 

 

EXAMPLE: Determine eigenvalues and eigenfuctions of  the problem 

                 with the boundry conditions   ( )     ( )    

and  ( )    

Solution: Given                   

Then general solution becomes  ( )                   

   ( )                      

Now using BC‟s    ( )                       …………(i) 
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Now using BC‟s     ( )     ( )    

                    ,                  -     

                            

                                
       

                    (        )     

                 (        )     …………(ii) 

Substituiting     from (i) into (ii) we get 

     (       )                            which 

cannot be satisfied for any real value of  . Therefore the problem has only 

complex eigenvalues and complex eigenfunctions. 

 

EXAMPLE:  

Solve BVP defined by            with  ( )     ( )          

Solution:  Given                   

Then general solution becomes  ( )                   

Now using BC‟s    ( )           

then given solution reduces to   ( )          

Now using BC‟s    ( )       
 

    
 

Hence the solution can be written as     ( )  
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EXAMPLE: (UoS,2019 – I) 

Express the function  ( )  >
             

 

 

         
 

 
    

  defined in the interval [0,1] in 

terms of eigenfunctions of the SL problem            with the BC‟s 

  ( )    ( )    and  ( )    where       

OR  

Determine eigenvalues and eigenfuctions of  the problem 

                 with the boundry conditions   ( )    ( )    

and  ( )    

Solution: Given                   

Then general solution becomes  ( )                   

Now using BC‟s    ( )          

Then  ( )           and    ( )           

Now using BC‟s     ( )    ( )    

 ,      -              ,           -     

      ,           -     

Given problem has infinite numbers of eigenvalues which satisfy the equation  

       
  

 
 where corresponding eigenfunctions are 

               n = 1,2,3,……… 
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SIMPLICITY OF EIGENVALUES 

“The eigenvalues of a regular SL system are simple”. i.e. to each eigenvalue 

there corresponds only one linearly independent eigenfunction. 

 In other words, if  ( ) and  ( ) are eigenfunctions corresponding to 

the same eigenvalue, then they must differ by a multiplicative constant. 

PROOF:  If possible let  ( ) and  ( )  be two linearly independent solutions 

corresponding to the same eigenvalue   then using Lagrange‟s identity 

 ( )      ( )   and  ( )      ( )    

Then   ( )    ( )      ( )      ( )      …………..(i) 

But from Lagrange‟s identity, we have 

  ( )    ( )  
 

  
* ( ) (   )( )+  

Thus using (i)   
 

  
* ( ) (   )( )+          ,   - 

Since in ,   - ,    ( )     (   )( )    

It follows that  ( ) and  ( )  be linearly dependent solutions. i.e. to each 

eigenvalue there corresponds only one linearly independent eigenfunction. 

 

ABEL’S FORMULA 

If   ( ) and  ( ) are any two solutions of a regular or periodic SL equation, 

then        ( ) (   )( )                 ,   -  

PROOF: 

Since for a regular or periodic SL equation   ( )    ( )    for any pair 

of solutions. Hence from Lagrange‟s identity 

 

  
* ( ) (   )( )+          ,   -  

  ( ) (   )( )                 ,   -  
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THEOREM: Any eigenvalue „ ‟ can be related to its eigenfunction  ( ) 

by Rayleigh quotient       
|   ( )  ( )| 

  ∫     ( )  
 

 

∫  ( )    
 

 

  

This result cannot be used to determine eigenvalues, however, interesting and 

important results can be obtained from it. 

EXAMPLE: Using Rayleigh quotient, discuss the signe of eigenvalue(s) 

of the SL system 

          with   ( )     ( )     ( )     ( )     ( )    

Solution:  here           ( )     ( )     ( )    

Therefore using formula    
|   ( )  ( )| 

  ∫     ( )  
 

 

∫  ( )    
 

 

 
∫    ( )  
 

 

∫     
 

 

 

This result cannot be used to determine eigenvalues, however, interesting and 

important results about the eigenvalues can be obtained from it. 

COMPLETENESS OF EIGENVALUES (just read) 

“The eigenvalues of an SL system are complete”  

OR“ the set of eigenfunctions of an SL system are complete” 

OR “ Every function  ( )    ,   - can be represented in terms of these 

eigenfunctions as  ( )  ∑     ( )
 
        ,   - 

OR “ A set of functions is said to be complete, if any function can be written 

as a linear combination of the function in the set, with constant coefficients.” 

This is the generalization of the concept of the Fourier Series. 

REMARKS: 

 Legendre‟s polynomials are a complete set on   ,    - 

 Laguere polynomials are a complete set on   ,   ) 

 Hermite polynomials are a complete set on   (    ) 

 The eigenvalues of a Regular SL system are simple.i.e. Regular SL system have 

multiplicity 1. 

 The eigenvalues of a Periodic SL system have multiplicity 2. 
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SL OPERATOR IS SELF ADJOINT 

For self adjointness 〈    〉  〈    〉  〈    〉  〈    〉    

Or   ∫ ,  ( )    ( )-  
 

 
   

From Lagrange‟s identity we have;  ∫ ,  ( )    ( )-  
 

 
 | (       )| 

  

But for periodic and regular SL system  R.H.S = 0 

Thus  ∫ ,  ( )    ( )-  
 

 
   

This means that SL operator „L‟ is self adjoint for regular or periodic SL 

system. 

EXAMPLE: For the SL eigenvalue problem           with               

  ( )      ( )    verify the following general results 

i. There are an infinite number of eigenvalues with a smallest but no 

largest. 

ii. The nth eigenfunction has exactly „n-1‟ zeros. 

iii. The eigenfunctions are orthogonal and form a complete set. 

Solution: 

Then general solution becomes  ( )       √        √    

   ( )   √      √   √      √    

Now using BC‟s     ( )          then given solution reduces to   

  ( )   √      √    

Now using BC‟s     ( )     √      √      √            √     

 √        ;             ………….. 

   
    

  
   ;             ………….. 

Hence for the eigenvalues       
    

  
   ;             ………….. 
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Thus the eigenfunctions are given by             √         
   

 
   

i. It is clear that      is the smallest eigenvalue. The others eigenvalues 

are    for              ………….. obviously there are no other 

largest eigenvalue. 

The eigenfunction corresponding to the nth eigenvalues is                                 

             
(   )  

 
       

Or           
   

 
 ;             ………….. 

ii. Now we will prove that    ( ) has exactly „n-1‟ zeros. When „n‟ takes 

the largest values, i.e.           ………….. n-1 

When n = 0 then       has no zero as expected. 

When n = 1 then         
  

 
 then a zero of this function occur when 

  

 
 

 

 
 i.e. at   

 

 
 which lies in the interval (   ) and there is no other 

zero in this interval. Therefore , the eigenfunction has exactly „one‟ zero 

in the interval ,   -  the next zero occur at    
  

 
 (   ) 

Similarly, When n = 2 then         
   

 
         then a zero of 

this function occur when 
   

 
 

 

 
 i.e. at    

 

 
  and the second zero is 

given by 
   

 
 

  

 
 i.e. at    

  

 
  also the third zero is given by 

   

 
 

  

 
 

i.e. at    
  

 
 (   )   

iii. The eigenfunctions „  ‟ are said to be orthogonal. From the theory of 

Fourier series we know that they form a complete set for the half 

interval ,   -. Every function defined in this interval and satisfying 

some conditions can be written as 

 ( )  ∑     ( )
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EXAMPLE: Show that the following boundry conditions yield self 

adjoint problems. 

i.  ( )     ( )     ii.   ( )     ( )     

iii.  ( )   ( )  and  ( )  ( )   ( )  ( ) 

Solution:  Given              √    

For self adjointness we have   ∫ ,  ( )    ( )-  
 

 
 | (       )| 

    

i. Here we have           ( )     ( )     ( )     ( )     

therefore ∫ ,  ( )    ( )-  
 

 
 | (       )| 

    

∫ ,  ( )    ( )-  
 

 
  ( )( ( )  ( )    ( ) ( ))   ( )( ( )  ( )    ( ) ( ))     

∫ ,  ( )    ( )-  
 

 
    i.e. condition satisfied for self adjointness.  

ii. Here we have            ( )     ( )      ( )     ( )     

therefore ∫ ,  ( )    ( )-  
 

 
 | (       )| 

    

∫ ,  ( )    ( )-  
 

 
  ( )( ( )  ( )    ( ) ( ))   ( )( ( )  ( )    ( ) ( ))     

∫ ,  ( )    ( )-  
 

 
    i.e. condition satisfied for self adjointness.  

iii. Here we have   ( )   ( )  and  ( )  ( )   ( )  ( )  

also  ( )   ( )  and  ( )  ( )   ( )  ( )  

therefore ∫ ,  ( )    ( )-  
 

 
 | (       )| 

    

∫ ,  ( )    ( )-  
 

 
  ( )( ( )  ( )    ( ) ( ))   ( )( ( )  ( )    ( ) ( ))     

∫ ,  ( )    ( )-  
 

 
    i.e. condition satisfied for self adjointness.  
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BOUNDRY CONDITIONS OF 1- D HEAT EQUATION 

i. THE DRICHLET BC‟s  or  BC‟s OF 1
st
 KIND: 

Booundry conditions of the form  (   )    ( )   

and  (   )    ( )  ;     are called Drichlet boundry conditions. 

Physical Meaning: This condition tells that the temperature at the 

boundry of a body may be controlled in some way without being held 

constant. 

ii. THE NEUMANN  BC‟s  or  BC‟s OF 2
nd

  KIND: 

Booundry conditions of the form   (   )   ( )  and   (   )   ( )  

are called Neumann boundry conditions. Where   and   are functions 

of time. And in particular,   and   may be zero. If     then there is 

no flow at x = 0 

Physical Meaning: This condition tells that the rate of flow of heat 

is specified at one or more boundry. 

 

iii. THE ROBBIN  BC‟s  or  BC‟s OF 3
rd

  KIND: 

Booundry conditions of the form    (   )      (   )             

and    (   )      (   )             are called Robbin  boundry 

conditions. 

Physical Meaning: This condition tells about the proportionality 

between the rate of transfer of heat to the difference of temperature 

between the two bodies. i.e. both will be Proportional. 

iv. MIXED  BC‟s  or  BC‟s OF 4
th

  KIND: 

If more than one boundry points involved the BC‟s are called Mixed 

BC‟s. these are of the form   (    )   (    )   

and   (    )    (    ) 
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MATHEMATICAL MODELS 

 

Usually, in almost all physical phenomena (or physical processes), the 

dependent variable           u = u (x, y, z, t) is a function of three space variables, 

x, y, z and time variable t. 

The three basic types of second-order partial differential equations are: 

 

(a) The wave equation    utt − c
2
 (uxx + uyy + uzz) = 0                

 

(b) The heat equation    ut − k (uxx + uyy + uzz) = 0               

 

(c) The Laplace equation      uxx + uyy + uzz = 0        

 

WAVE: A wave is a disturbance that carries energy from one place to 

another. For example, wave produced on the string. 

 

There are two types of waves. 

MECHANICAL WAVE: Waves which required any medium for their 

propogation.  

e.g.  (i) Sound waves  (ii) water waves. 

 

ELECTROMEGNATIC  WAVE: Waves which  do not required any medium 

for their propogation. 

e.g.  (i) Radio waves  (ii) X -  Rays. 
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Mechanical waves have two types 

 

TRANSVERSE WAVES:  

In the case of transverse waves, the motion of particles of the medium is 

perpendicular to the motion of waves. 

e.g.  Waves produced on water surface 

 

LONGITUDINAL  WAVES:  

In the case of longitudinal waves, the particles of the medium move back and 

forth along the direction of propogation of wave. 

e.g.  Waves produced in an elastic spring. 

 

 

GENERAL FORM OF  WAVE EQUATION  

In general, the wave equation may be written as     utt = c
2∇2

u 

where the Laplace operator may be one, two, or three dimensional. 

 

The importance of the wave equation stems from the facts that this type 

of equation arises in many physical problems; for example, sound waves in 

space, electrical vibration in a conductor, torsional oscillation of a rod, 

shallow water waves, linearized supersonic flow in a gas, waves in an electric 

transmission line, waves in magnetohydrodynamics, and longitudinal 

vibrations of a bar. 
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ONE DIMENSIONAL WAVE EQUATION (UoS; 2017 – I , II ) 

An equation of the form utt = c
2
uxx  where c

2
 = 

 

 
 is called the one-dimensional 

wave equation.  Where u (x,t) is a function of displacement at position x in time 

‘t’ and ‘c’ denotes the velocity of wave equation. 

PROOF : Let us consider a stretched string of length   fixed at the end points. 

The 

problem here is to determine the equation of motion which characterizes 

the position u (x,t) of the string at time t after an initial disturbance is given. 

In order to obtain a simple equation, we make the following 

assumptions: 

1. The string is flexible and elastic, that is the string cannot resist bending 

moment and thus the tension in the string is always in the direction of the 

tangent to the existing profile of the string. 

2. There is no elongation of a single segment of the string and hence, by 

Hooke‟s law, the tension is constant. 

3. The weight of the string is small compared with the tension in the string. 

4. The deflection is small compared with the length of the string. 

5. The slope of the displaced string at any point is small compared with unity. 

6. There is only pure transverse vibration. 
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We consider a differential element of the string. Let T be the tension at the 

end points as shown in Figure. The forces acting on the element of the string 

in the vertical direction are    T sin β − T sin α 

By Newton‟s second law of motion, the resultant force is equal to the 

mass times the acceleration. Hence, 

T sin β − T sin α =    utt   ……………(i)          

where ρ is the line density and δs is the smaller arc length of the string. 

Since the slope of the displaced string is small, we have     δs ≃ δx 

Since the angles α and β are small    sin α ≃ tan α, sin β ≃ tan β 

Thus, equation (i) becomes   tan β − tan α = 
 

 
δx utt   ……………(ii) 

But, from calculus we know that        and       are the slopes of the string 

at x and x + δx: 

tan α = ux (x,t)   and  tan β = ux (x + δx, t) at time t.  

Then Equation (ii) may thus be written as 

 

  
 [(ux)x+δx − (ux)x] = 

 

 
 utt 

 

  
 [ux (x + δx, t) − ux (x, t)] = 

 

 
 utt 

       
 

  
 [ux (x + δx, t) − ux (x, t)] = 

 

 
 utt   limit have no effect on R.H.S 

utt = c
2
uxx         ……………(iii) 

where c
2
 = 

 

 
. This is called the one-dimensional wave equation. 
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D ALEMBERT‟S SOLUTION OF WAVE EQUATION 

This is the general method for the solution of the wave equation 
   

    
 

  
   

   
 

Let        and       , so that the function  (   ) is now a function of 

the new variables „w‟ and „z‟ 

Using the rules for partial differentiation we have 

  

  
 

  

  

  

  
 

  

  

  

  
  

 
  

  
 

  

  

 

  
(    )  

  

  

 

  
(    )  

  

  
 

  

  
 

  

  
 

 

  
 

 

  
 

 

  
 ………(i) 

Similarly 
  

  
 

  

  

  

  
 

  

  

  

  
  

 
  

  
 

  

  

 

  
(    )  

  

  

 

  
(    )  

  

  
   

  

  
  

  

  
 

 

  
   

 

  
  

 

  
 ……(ii) 

Hence  
   

    
 

  
.
  

  
/  .

 

  
 

 

  
/ .

  

  
 

  

  
/  

   

    
   

     
   

    
 

   

   
  ………(iii) 

Similarly Hence   
   

   
      

   
       

    
      

   
  ………(iv) 

Thus putting all values in 
   

    
 

  
   

   
 we get the form 

 
   

   
  

   

    
 

   

   
 

 

  
0     

   
       

    
      

   
1  

   

    
    

 
 

  

  

  
   

  

  
  ( )    ∫  ( )                    

  (   )   ( )   ( )  

  (   )   (    )   (    )  

This solution is called D‟Alembert‟s Solution of the wave equation. 
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EXAMPLE:  

Sove the problem                    …………..(i) 

with conditions  (   )   (   )  and   (   )    …………..(ii) 

 (   )     (   ) …………..(iii)  where „h‟ is constant. 

Solution: 

We suppose that   (   )   (   )   ( ) is the solution of PDE (i) then on 

substituiting in (i), (ii), (iii) we get  

    (       )             …………..(iv) 

 (   )   ( )   (   )   …………..(v)    (   )    ………..(vi)  

  (   )   ( )    .…..(vii)     (   )   ( )   …....(viii)  

The DE (iv) together with the BC‟s and IC‟s (vi) to (viii) are equivalent to the 

following two IVP/BVP 

            ( )         ( )        …………..(ix)  

and             …………..(x)   (   )   (   )   ( )   …………..(xi) 

  (   )    ………..(xii)   

  (   )   ……..(xiii)         

  (   )     …….....(xiv) 

General solution of ODE in (ix) is given by 

 ( )   
 

 
            

On applying the BC‟s we get      
 

 
          we get 

 ( )   
 

 
    

 

 
   

 

 
 (   )  

TRANSIENT TEMPERATURE DISTRIBUTION: for wave equation we 

consider  (   )   (   )   ( ), in this phenomenon  (   ) is called 

transient solution,  (   ) is non steady state solution and  ( ) is steady state 

solution. 
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EXAMPLE: (UoS; 2017)  

Sove the problem                       …………..(i) 

with conditions  (   )    (   )    …………..(ii); 

  (   )     (   ) …………..(iii)   

Solution: We suppose that   (   )   (   )   ( ) is the solution of PDE (i) 

then on substituiting in (i), (ii), (iii) we get  

      (       )              …………..(iv) 

 (   )   ( )      …………..(v)    (   )    ………..(vi) 

 (   )   ( )    .…..(vii)          (   )   ( )     …....(viii)  

The DE (iv) together with the BC‟s and IC‟s (vi) to (viii) are equivalent to the 

following two IVP/BVP 

             ( )      ( )   ………..(ix) and               ……..(x) 

 (   )    ( )   ,    (   )    ,   (   )    , (   )     …….....(xi) 

General solution of ODE in (ix) is given by       ( )   
 

    
           

On applying the BC‟s we get      
 

    
          we get 

 ( )   
 

    
   

 

    
  

 

    
(    )  

Solving (x) by separating variables 

 (   )  ∑       (                   )   …………….(xii) 

Now initial conditions (xi) give respectively 

∑           
 

    
(    )  and     ∑             ; n = 1,2,3,…………. 

From these equations we obtained;          ∫
 

    
(    )              

 

 
 

(   )   (   )  ∑                   

Then the complete solution is     

 (   )  ∑                  
 

    
(    )  
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HEAT: Heat is a form of energy that transferred from hot body to the 

cold body, by means of thermal contact. It is denoted by „q‟ 

CONDUCTION OF HEAT:  In this mode heat is transmitted through actual 

contact between particles (molecules) of the medium.  

CONVECTION OF HEAT:  In this mode heat is transmitted through gases 

or liquids by actual motion of particles (molecules) of the medium.  

RADIATION OF HEAT:  In this mode heat is transmitted through 

electromagnetic waves. Or by means of heat waves or thermal radiations. 

Medium is not essential for it. i.e. heat can take places in vaccume also. 

SPECIFIC HEAT OF SUBSTANCE (MATERIAL) :  The quantity of heat 

required to raise the temperature of 1g of material by 1   and it is denoted by 

C and mathematically could be written as         

HEAT FLUX (THERMAL FLUX) :   Is the rate of heat energy transfer 

through a given surface per unit surface area. Its unit is watt or Js
-1

 

THERMAL CONDUCTIVITY:   The quantity of heat flowing per second 

across a plate (of the material) of unit area and unit thickness, when the 

temperature difference between opposite sides is 1   

It determines how good a conductor the material is . It is large for good 

conductors and small for bad conductors. 

 

SOME FACTORS ON WHICH RATE OF FLOW OF  HEAT DEPENDS 

 Area as   (   )    

 Length as    (   )  
 

 
 

 Change in temperature as     (   )     

 



44 
 

   MUHAMMAD USMAN HAMID (0323 – 6032785) 

ONE DIMENSIONAL HEAT EQUATION  

 

An equation of the form 
   

    
 

 

  

  
  is called heat equation. Where U= U(x,t) is a 

temperature of a body at „x‟ position in time „t‟ and „K‟ is called diffusivity or thermal 

conductivity of the material. 

 

PROOF: 

    U = U(x,t) 

 

 

     ∆x 

  

 

 

                   x - axis 

     x   x + ∆x 

 

Let us consider the flow of heat through a uniform rod of length     and cross sectional area 

    then    

Density of rod =                                         

We choose the x – axis along the length of the rod with origin at one end  of the rod. Then 

temperature at point „x‟ from origin at time „t‟ will be U = U(x,t) 

Let   flow of heat = q (x,t)     

(quantity of heat entering per second through unit area perpendicular to the direction of 

flow) 

Also   Heat generation  =    and  heat stored per second = cm 
  

  
 = cρA∆x 

  

  
 

Now using law of conservation of heat energy 

(Quantity of heat which entered) + (heat generated inside the rod)  

=  (Quantity of heat which leave) + (quantity of heat stored) 

  (   )             (        )           
  

  
  

dividing both sides by „A‟ we get    (   )            (        )          
  

  
 

dividing both sides by ∆x we get   
 

  
 ,  (   )      (        ) -             

  

  
 

Applying       -  
  

  
 +   =  cρ 

  

  
 

Now by using Fourier law of heat conductivity which is  q = - K∆u 

Then (i) becomes  -  
 

  
(     ) +   =  cρ 

  

  
  then we get   κ 

   

    +   =  cρ 
  

  
 

For standard form we suppose      and cρ = 1 (i.e. no heat generation) 

Then  κ 
   

    =  
  

  
 

Or  
   

    
 

 

  

  
 which is required heat equation in one dimension 

In general   ut = κ∇2
u   or  ∇2

u  = 
 

 
 ut  
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EXAMPLE:  

Show that solution of heat flowing problem is unique. 

Solution: 

Consider 
   

   
 

 

 

  

  
  …………(i)    (     )        

With BC‟s   (    )     and  (    )      

with original temperature  distribution  (    )    

for unique solution of (i) we suppose on contrary that equation (i) has two 

solutions „u‟ and „v‟ then by principle of superposition       is also a 

solution of (i) and satirsfy equation (i) 

 
   

   
 

 

 

  

  
  With BC‟s   (    )     (    )  and  (    )      

          

Now we will prove  (   )    

Define  ( )  ∫   (   )  
  

  
 …………(ii)   clearly  ( )    and  (  )    

Diff. (ii) w.r.to „t‟     ( )  ∫       
  

  
 

   ( )  ∫   (    )  
  

  
   ∫       

  

  
   0|   |  

   ∫       
  

  
1  

   ( )      ∫   
   

  

  
   since  (    )     (    ) 

   ( )    ∫   
   

  

  
     ( )      ( )    or   ( )     

If   ( )    then  ( ) is decreasing function. 

If   ( )    then  ( ) is constant function. 

This result together with the fact that  ( )            and  (  )    

  ( )             

(  )   (   )               (contradiction) 

Hence solution is unique. 

 

MAXIMUM PRINCIPLE FOR THE HEAT EQUATION: 

Let  (   ) be a continuous differentiable function that satisfy the heat 

equation 
   

   
 

 

 

  

  
      (   )       with BC‟s   (   )     (   ) then 

 (   ) attains its maximum value at      for some   ,   - 
In other words       

     
 (   )        

     
 (   ) 

This principle is called Maximum Principle. 
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LAPLACE TRANSFORMATION WITH APPLICATIONS 

Because of their simplicity, Laplace transforms are frequently used to solve a 

wide class of partial differential equations. Like other transforms, Laplace 

transforms are used to determine particular solutions. In solving partial 

differential equations, the general solutions are difficult, if not impossible, to 

obtain. The transform technique sometimes offers a useful tool for finding 

particular solutions. The Laplace transform is closely related to the complex 

Fourier transform, so the Fourier integral formula can be used to define the 

Laplace transform and its inverse. 

 

INTEGRAL TRANSFORMATION 

Consider a set  (   )  * ( )                         ,   -+ then integral 

transformation is defined as 

 * ( )+    ( )  ∫  ( ) (   )  
 

 
  where  (   ) is kernel of T. 

 

LAPLACE TRANSFORMATION 

If  ( ) is defined for all values of    , then the Laplace transform of  ( ) is 

denoted by   ( ) or  * ( )+ and is defined by the integral 

 * ( )+    ( )  ∫      

 

 

 ( )      
   

∫     

 

 

 ( )   

If  ( ) is laplace transform of  ( ) then  ( ) is called the  INVERSE 

LAPLACE TRANSFORM of  ( ) i.e.           * ( )+    ( ) 
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QUESTION:  Show that  * +  
 

 
 where „c‟ is constant. 

SOLUTION:  Since  * ( )+  ∫       

 
 ( )   

Then   * +  ∫       

 
     ∫       

 
    | 

    

 
|
 

 

 
 

 
 

QUESTION:  Show that  *    +  
 

   
 where „a‟ is constant. 

SOLUTION:  Since  * ( )+  ∫       

 
 ( )   

Then   *    +  ∫       

 
       ∫   (   )   

 
   | 

  (   )  

(   )
|
 

 

 
 

   
 

QUESTION:  Show that  *   +  
  

    
 where „   ‟ 

SOLUTION:  Since  * ( )+  ∫       

 
 ( )   

Then for n = 1; 

  * +  ∫       

 
    | 

      

 
|
 

 

 ∫
     

 

 

 
   | 

      

 
|
 

 

 
 

 
∫       

 
   

 

 
 

In above            as     

for n = 2; 

   *   +  ∫       

 
      | 

        

 
|
 

 

 ∫
     

 
  

 

 
   | 

        

 
|
 

 

 

 

 
∫       

 
   

 

  
     In this part                     as     

And in general  

 *   +  ∫       

 
      | 

        

 
|
 

 

 ∫
     

 
       

 
    

 *   +  | 
        

 
|
 

 

 
 

 
∫       

 
        

 

 
 *     +  

 

 
 
   

 
 
   

 
     

 

 
 
 

 
 *   +  

 *   +  
(   )(   )(   )          

  
 * +  

  

  
 
 

 
  

Hence  *   +  
  

    
 where „   ‟ 
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QUESTION:  Show that  *     +  
 

     
  

SOLUTION:  Since  * ( )+  ∫       

 
 ( )        

Then   *     +  ∫       

 
        

 ∫      

 
        

    

     
,             -  therefore 

 *     +  |
     

     
,              -|

 

 

 0  
   

     
(  )1  

 

     
  

QUESTION:  Show that  *     +  
 

     
  

SOLUTION:  Since  * ( )+  ∫       

 
 ( )        

Then   *     +  ∫       

 
        

 ∫      

 
        

    

     
,             -  therefore 

 *     +  |
     

     
,              -|

 

 

 0  
   

     
(  )1  

 

     
  

 

QUESTION:  Show that  *      +  
 

     
  

SOLUTION:  Since  * ( )+  ∫       

 
 ( )        

Then   *      +  ∫       

 
.
        

 
/   

 

 
[∫       

 
      ∫       

 
      ] 

 *      +  
 

 
[∫   (   )  

 
   ∫   (   )  

 
  ]  

 *      +  
 

 
|
  (   ) 

 (   )
 

  (   ) 

(   )
|
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QUESTION:  Show that  *      +  
 

     
  

SOLUTION:  Since  * ( )+  ∫       

 
 ( )        

Then  

 *      +  ∫       

 
.
        

 
/   

 

 
[∫       

 
      ∫       

 
      ] 

 *      +  
 

 
[∫   (   )  

 
   ∫   (   )  

 
  ]  

 *      +  
 

 
|
  (   ) 

 (   )
 

  (   ) 

(   )
|
 

 

 
 

     
  

FUNCTION OF EXPONENTIAL ORDER: A function f (t) is said to be of 

exponential order as       if there exist real constants   and   such that 

|  ( )|           for            

 

FUNCTION OF CLASS „A‟: A function f (t) which is peicewise continuous 

and is of exponential order is said to be function of class A. 

 

EXISTENCE THEOREM OF LAPLACE TRANSFORMATION: 

(UoS; 2013,2015) 

Let   be piecewise continuous in the interval ,   - for every positive  , and let 

  be of exponential order, that is,   ( )      (    ) as       for some      . 

Then, the Laplace transform of   ( ) exists for        . 

OR sufficient condition for the existence of Laplace transformation is that it 

should be a function of class A. 

Proof: Since   is piecewise continuous and of exponential order, we have 

| * ( )+|  |∫       

 
 ( )  |  ∫       

 
| ( )|   ∫       

 
         ∫   (   )   

 
    

| * ( )+|  
 

   
  Thus the Laplace transform of   ( ) exists for        . 
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Remark:   ( )     is not L.T. of any piecewise continuous function of 

exponential order, because    does not approaches to zero as     i.e. 

   *  + does not exists. 

QUESTION:  Show that  *   +  
 (   )

    
 where   is any real. 

SOLUTION:  Since  * ( )+  ∫       

 
 ( )   

   *   +  ∫       

 
      ∫      

 
.
 

 
/
   

 
   

 

    ∫         

 
   ………(i) 

Since by definition of Gamma function we have  

 ( )  ∫           

 
    (   )  ∫         

 
    ( )   *   +  

 (   )

    
  

USEFUL RESULTS: 

  (   )    ( ) then  *   +  
  ( )

    
 

  *   +  
 

 
 *     + 

QUESTION:  Find   {     } and  {      }  

SOLUTION:  Since  *   +  
 (   )

    
 

Put   
 

 
 Then  2 

 

 
 3  

 .
 

 
  /

 
 
 
  

 now using  *   +  
  ( )

    
  

we have  2 
 

 
 3  

 

 
 .

 

 
/

   
 
 
 
 

Then  {     }  
 

  

√ 

√ 
    as  .

 

 
/  √    thus  {     }  

 

  
√

 

 
 

Put    
 

 
 Then  {      }  

 . 
 

 
  /

 
 
 
 
  

 now we have  {      }  
 .

 

 
/

     
 

Then  {      }  
√ 

√ 
    as  .

 

 
/  √    thus  {      }  √
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QUESTION:  Find   {     } where „k‟ is an odd positive integer.  {     }    

SOLUTION:  Suppose k = m + 1 where „m‟ is any positive integer. 

Then using  *   +  
 

 
 *     + 

 { 
 

 
 }   2 

    

 
 3   2   

 

 
 3  

  
 

 

 
 2   

 

 
   3  

  
 

 

 
 
  

 

 

 
  2   

 

 
   3  

 { 
 

 
 }  

    

  
 
    

  
 
    

  
    

 

  
 
 

  
  2  

 

 
 3  

(    ) (    ) (    )        

(  )   √
 

 
  

 { 
 

 
 }  

(    ) (      ) (      )        

(  )   √
 

 
 

( ) (   ) (   )        

( )
   
 

√
 

    
  

Where we use          (   )   

If k = 5 then  { 
 

 
 }  

     

( )
   
 

√
 

    
 

  

( ) 
√

 

  
 

PROPERTIES OF LAPLACE TRANSFORMS 

LINEARITY PROPERTY: THE LAPLACE TRANSFORMATION   IS 

LINEAR. 

Proof.   Let   ( )    ( )    ( ) where a and b are constants. 

We have, by definition 

  *  ( )+  ∫       

 
 ( )   ∫       

 
,  ( )    ( )-    

  *  ( )+   ∫       

 
 ( )    ∫       

 
 ( )      * ( )+     * ( )+  

   *  ( )    ( )+     * ( )+     * ( )+   hence proved. 

 

1
st
 SHIFTING PROPERTY (1

st
 TRANSLATION THEOREM): 

 If  ( ) is the laplace transformation of  ( )  Then    *     ( )+   (   ) 

Proof. By definition, we have 

  *     ( )+  ∫       

 
     ( )   ∫   (   )   

 
 ( )    (   )  

This result also known as 1
st
 shifting theorem or 1

st
 translation theorem.  
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EXAMPLES: 

i. If  *   +  
 

  
 then  *      +  

 

(   ) 
 

ii. If  *     +  
 

     
 then  *         +  

 

(   )    
 

iii. If  *     +  
 

     
 then  *         +  

   

(   )    
 

iv. If  *   +  
  

    
 then  *       +  

  

(   )   
 

Question: Find    2
 

     
3 

Answer:  in this question we will use the first shifting theorem according to 

which  *     ( )+   (   )       ( )         * ( )+     * (   )+ 

Thus    2
 

     
3     2

 

(   )    3         2
 

     3            

 

Question: Find    2
 

     
3 

Answer:  in this question we will use the first shifting theorem according to 

which  *     ( )+   (   )       ( )         * ( )+     * (   )+ 

Thus    2
 

     
3     2

 

(   )    3         2
 

     3            

 

Question: Find    2
   

       
3 

Answer:  in this question we will use the first shifting theorem according to 

which  *     ( )+   (   )       ( )         * ( )+     * (   )+ 

Thus    2
   

       
3     2

 

   
 

 

   
3     2

 

   
3     2

 

   
3 2

 

 
3 

   2
   

       
3         2

 

 
3          2

 

 
3  

   2
   

       
3                 since    2

 

 
3    
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SCALING PROPERTY: If  ( ) is the laplace transformation of ( ) , then 

  ,  (  )-  
 

 
   (

 

 
)     with a > 0  

Proof. By definition we have  

  * (  )+  ∫       

 
 (  )   

 

 
∫  

 .
 

 
/    

 
 (  )    

 

 
   (

 

 
)     

putting        This result also known as Rule of Scale.  

EXAMPLES: 

i. If  *    +  
 

    
 then  *     +  

 

     
 

 

 
0

   

(   )   
1 

ii. If  *   +  
 

   
 then  *    +  

 

   
 

 

 
6

 

.
 

 
  /

7 

 

DIFFERENTIATION PROPERTY: (UoS; 2011,2014) 

Let   be continuous and    piecewise continuous, in           for all     . 

Let   also be of exponential order as     Then, the Laplace transform of 

   ( ) exists and is given by 

 ,   ( )-      , ( )-     ( )      ( )    ( ) 

Proof. If  ( ) is continuous and   ( ) is sectionally continuous on the interval 

,   ) and both are of exponential order then 

  *  ( )+  ∫       

 
  ( )   |      ( )| 

  (  )∫       

 
 ( )    

  *  ( )+  ,   ( )-     * ( )+  

 ,   ( )-      , ( )-     ( )      ( )    ( )  

If    and      satisfy the same conditions imposed on   and    respectively, 

then, the Laplace transform of     ( ) can be obtained immediately by 

applying the preceding theorem; that is 

 ,   ( )-     , ( )-     ( )      ( )     ( )     ( ) 

 



54 
 

   MUHAMMAD USMAN HAMID (0323 – 6032785) 

Proof. If  ( )   ( ) are continuous and    ( ) is sectionally continuous on the 

interval ,   ) and all are of exponential order then 

  *   ( )+  ∫       

 
   ( )   |       ( )| 

  (  )∫       

 
  ( )    

  *   ( )+  ,    ( )-     *  ( )+     ( )   ,  ( )    ( )-  

 ,   ( )-     , ( )-     ( )      ( )     ( )      ( )  

Clearly, the Laplace transform of   ( ) can be obtained in a similar 

manner by successive application.The result may be written as 

 ,  ( )-     , ( )-       ( )           ( )      ( )  

 

INTEGRATION PROPERTY : 

 If  ( )  is the Laplace transform of  ( )  then 

 6∫  ( )
 

 

  7  
 ( )

 
 

PROOF: 

Consider  ( )  ∫  ( )
 

 
     ( )   ( )   ,  ( )-   , ( )- 

   ( )    ( )   , ( )-     , ( )-      , ( )-  

  , ( )-   
 ( )

 
         0∫  ( )

 

 
  1  

 ( )

 
  

Question: Solve the initial value problem          with  ( )    

Answer:  Given         

   *  +     * +      ( )   ( )    ( )     

Using  ( )       ( )      ( )     ( )  
 

   
  

    * ( )+     2
 

   
3     ( )       required answer. 
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Question:  

Solve the initial value problem               with  ( )      ( )    

Answer:  Given              

   *   +      *  +     * +     

    ( )    ( )    ( )     ( )    ( )    ( )     

    ( )       ( )      ( )     since  ( )      ( )    

  ( )  
   

       
     * ( )+     2

   

       
3  

  ( )     2
   

       
3     2

   

   
 

   

   
3     2

   

   
3     2

   

   
3  

  ( )         2
   

 
3          2

   

 
3  

   2
   

       
3  

 

 
     

 

 
        since    2

 

 
3    

 

UNIT STEP  FUNCTION: A real valued function       is defined as  

  (   )   {
               
                

    When              ( )   2
               
                

 

CONVOLUTION FUNCTION / FAULTUNG FUNCTION OF LAPLACE 

TRANSFORMATION. 

The function (     ) ( )    ∫   (     )   ( )   
 

 
  is called the convolution of 

the functions   and   regarding laplace transformation. 

THE CONVOLUTION SATISFIES THE FOLLOWING PROPERTIES: 

                (commutative). 

      (     )    (     )      (associative). 

      (       )      (     )    (     )  (distributive), 

where   and   are constants. 

USEFUL RESULT:  

 (     )( )  ∫   (     )  ( )  
 

 
  ∫   (   )  (     )   ( )   
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CONVOLUTION / FAULTUNG THEOREM OF LAPLACE 

TRANSFORMATION         (UoS; 2015) 

If  ( ) and  ( )are the Laplace transforms of  ( ) and  ( ) respectively, 

then the Laplace transform of the convolution (    ) ( ) is the product 

 ( ) ( ) 

OR     * ( ) ( )+        *    +   ( ) ( ) 

PROOF: By definition, we have 

 *    +   ∫      (    )   
 

 
  

 *    +   ∫      ∫   (     )   ( )   
 

 
   

 

 
  

 *    +   ∫      ∫  ( )  (     )   
 

 
   

 

 
   since               

 *    +   ∫       [∫   (   ) ( ) (     )   
 

 
]   

 

 
  

By reversing the order of integration, we have 

 *    +   ∫  [∫        (   ) (     )   
 

 
] ( )  

 

 
  

If we introduce the new variable     (     ) in the inner integral, we obtain 

 *    +   ∫   ( )   0∫    (    )  ( ) ( )   
 

  
1

 

 
  

 *    +  

 ∫   ( )   0∫    (    )  ( ) ( )   
 

  
 ∫    (    )  ( ) ( )   

 

 
1

 

 
  

 *    +  ∫  ( )   0∫    (    )   ( )   
 

  
 ∫    (    )    ( )   

 

 
1

 

 
  by step function 

 *    +  ∫  ( )   [∫    (    ) ( )   
 

 
]

 

 
  

 *    +   ∫      ( )   ∫       ( ) 
 

 
  

 

 
  

 *    +   ( ) ( )  
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PROBLEM: Use covolution theorem to find       2
 

  (    )
3 

Solution:   Here we have  ( )   ( ) ( )  

then taking   ( )  
 

  
    * ( )+     2

 

  
3   ( )    

 ( )  
 

(    )
    * ( )+     2

 

(    )
3   ( )         

Now using Convolution theorem 

 ( )       ∫   (     )  ( )  
 

 
 ∫ (     )     ( )   

 

 
  

 ( )  ∫       ( )   
 

 
 ∫        ( )  

 

 
 | 

      

 
 

      

 
 

     

 
|
 

 
  

 ( )   
     

 
 

 

 
 

 

 
(        )     2

 

  (    )
3  

PROBLEM: Use covolution theorem to find       2
 

(    ) 
3 

Solution:   Here we have  ( )   ( ) ( ) 

 then taking   ( )  
 

(    )
    * ( )+     2

 

(    )
3   ( )        

 ( )  
 

(    )
    * ( )+  

 

 
   2

 

(    )
3   ( )  

 

 
       

Now using Convolution theorem 

 ( )       ∫   (     )  ( )  
 

 
 

 

 
∫     (     )     ( )   
 

 
  

 ( )  
 

 
∫ (                       )     ( )   
 

 
  

 ( )  
 

 
∫                               
 

 
  

 ( )  
 

 
     ∫              

 

 
 

 

 
     ∫          

 

 
  

 ( )  
 

 
     ∫        

 

 
 

 

 
     ∫ .

       

 
/    

 

 
  

 ( )  
 

 
     | 

     

 
|
 

 
 

 

 
     |  

     

 
|
 

 
  

 ( )  
 

  
     (       )  

 

 
     .  

     

 
/  
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 ( )  
 

  
      

 

  
           

 

 
       

 

  
            

 ( )   
 

  
,                     -  

 

 
       

 

  
       

 ( )   
 

  
,   (     )-  

 

 
       

 

  
       

 ( )   
 

  
      

 

 
       

 

  
       

 

 
          2

 

(    ) 
3  

 

PROBLEM: (UoS; Past Paper) 

Use covolution theorem to find       2
 

        
3 

Solution:   Here we have  ( )   ( ) ( )  
 

        
 

 

(      )(      )
 

 ( )  
 

      
    * ( )+     2

 

      
3    ( )    (    )   

 ( )  
 

      
    * ( )+     2

 

      
3   ( )    (    )   

Now using Convolution theorem 

 ( )       ∫   ( ) (   )  
 

 
 ∫   (    )    (    )(   )  

 

 
  

 ( )    (    ) ∫  (    )   (    )   

 

 

 

 ( )    (    ) ∫        

 

 

 

 ( )    (    ) |
     

   
|
 

 

 
  (    ) 

   
|        |  

  (    ) 

   
|       | 

 ( )  
    

 
6
          

   
7  

    

 
6
          

  
7 

 ( )  
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PROBLEM:  

Use covolution theorem to calculate laplace transform of  

   ( )  ∫ (     )         
 

 
 

Solution:    

Let  ( )       ∫ (     )         
 

 
 …………..(i) 

Comparing with       ∫   (     )  ( )  
 

 
 …………..(ii) we get 

  (     )  (     )    (  )      and    ( )           ( )         

Now  * ( )+   *    +   ( ) ( )   * ( )+  * ( )+   *  +  *      + 

 * ( )+  
  

    
 

 

(   )    
 

 

  (       )
  

 

THE GAUSSIAN INTEGRAL   (UoS; 2015 – I ) 

Show that  ∫      

  
   √     or   ∫      

 
   

√ 

 
 

Solution:   consider    ∫      

  
    and   ∫      

  
     

then multiplying both        ∫ ∫         

  

 

  
      

Now using polar coordinates  

    ∫ ∫      

 

  

 
      ∫   . 

 

 
/ ∫      

 

  

 
(   )       √  

 ∫      

  
   √   ∫      

 
   √  ∫      

 
   

√ 
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LAPLACE TRANSFORM OF STEP FUNCTION: 

The Heaviside unit step function is defined by 

  (     )   2
              
              

   where a ≥ 0 

Now, we will find its Laplace transform. 

 *  (     )+   ∫        (     )   
 

 
  

 *  (     )+  ∫        (     )   
 

 
 ∫        (     )   

 

 
  

 *  (     )+   ∫           
 

 
 ∫           

 

 
  

 *  (     )+   ∫        
 

 
 |

    

  
|
 

 

 
    

 
             

 

THEOREM: (UoS; 2014 ,  2015) 

If  ( ) is a function of exponential order „c‟ then 

 *   ( )+  (  ) 
  

   
 ( )       

PROOF: Consider    ( )   * ( )+  ∫       

 
 ( )   

Differentiating w.r.to „s‟  

 
 

  
  ( )  (  )∫       

 
  ( )   (  ) *  ( )+  (  )

  

   
 ( )   *   ( )+  

Again differentiating w.r.to „s‟  

 
  

   
  ( )  (  )(  )∫      (  )

 

 
  ( )   (  ) ∫       

 
   ( )   (  )  *   ( )+   

 (  ) 
  

   
 ( )  (  )  *   ( )+  

Continuing this process, we get the required 

  *   ( )+  (  ) 
  

   
 ( )         (  )  (  )   

REMARK:  *    ( )+  
  

   
 ( ) 
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LAPLACE TRANSFORMATION OF LOGRITHMIC FUNCTION:  

(UoS; 2015 – I) 

Show that   *   +  
 

 
(  ( )     ) 

SOLUTION: by using definition 

 *   +  ∫       

 
      ∫      

 
  .

 

 
/

  

 
    by putting      

 *   +  
 

 
∫      

 
      

 

 
∫      

 
      

 

 
( )  

 

 
   ∫      

 
    

 *   +  
 

 
( )  

 

 
   ( )  

 

 
( )  

 

 
     …………..(i) 

Now consider    ∫      

 
      

Since  ( )  ∫           

 
    (   )  ∫         

 
     ( )  ∫           

 

 
   

Put        ( )  ∫        
 

 
     

Thus  *   +  
 

 
(  ( )     )   

where   ( )          is called Euler‟s constant. 

 

THE GAMMA FUNCTION:     

Gamma function can be defined as follows   ( )  ∫           

 
    

 

USEFUL RESULTS: 

 

  (   )    ( ) 

Proof: since  ( )  ∫           

 
    (   )  ∫         

 
   

  (   )  ∫         

 
   |    

   

  
|
 

 

 ∫ |
    

  
|        

 
    

  (   )     ∫           

 
     ( )  

  ( )    we can prove it using  ( )  ∫           

 
    with     
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  (   )     

Proof: since  (   )    ( ) 

          ( )     ( )          

          ( )     ( )          

          ( )     ( )            

:   : 

Then  (  )         (   )     

SECOND SHIFTING (TRANSLATION) THEOREM: 

If  ( ) and  ( ) are the Laplace transforms of  ( ) and  ( ) respectively, 

then 

 ,  (     )   (     )-          ( )          *  ( )+   

Or    *      ( )+    (     )   (     ) 

Proof:  By definition 

 *  (     )   (     )+   ∫        (     )   (     )   
 

 
  

 *  (    )   (   )+   ∫        (    )  (     )   
 

 
 ∫        (     )  (     )   

 

 
  

 *  (     )   (     )+   ∫        (     )   
 

 
  

Introducing the new variable          , we obtain 

 *  (     )   (     )+   ∫   (    )    ( )   
 

 
     ∫        ( )   

 

 
  

 *  (     )   (     )+        *   (  )+       ( )  

 

REMARK: 

1
st
 Shifting theorem enables us to calculate Laplace transform of the function 

of the form      ( ) where the 2
nd

  Shifting theorem in similar way enables us 

to calculate inverse Laplace transform of the function of the form      ( ) 
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COROLLARY: Prove that  * ( ) ( )+   (  ) ( ) where  ( ) is a 

polynomial in „t‟. 

SOLUTION:  

Since   ( )            
  …………..    

  ∑    
  

      Then 

 * ( ) ( )+   *∑    
  

    ( )+  ∑   
 
    *   ( )+  ∑   

 
   (  ) 

  

   
 ( ) 

 * ( ) ( )+  ∑   
 
   (  )    ( )  ∑   

 
   (  )  ( )   (  ) ( )  

LAPLACE TRANSFORMATION OF BESSEL’S FUNCTION 

EXAMPLE: (UoS; 2014,2019 – I ) 

Find Laplace Tranformation of    ( )  
 

 
∫    (     )  
 

 
 also find  *  (  )+ 

Solution: By definition 

 *  ( )+   ∫        ( )   
 

 
 ∫      0

 

 
∫    (     )  
 

 
1    

 

 
 

 *  ( )+  
 

 
∫ [∫        (     )   

 

 
]

 

 
   

 

 
∫  
 

 
    ………………(i) 

Now    ∫        (    )    
 

 
  *   (    ) +  

 

   (    ) 
 

  *  ( )+  
 

 
∫

 

        

 

 
   

 

 
∫

 

        

   

 
     ∫  ( )  

 

 
  ∫  ( )  

    

 
 

  *  ( )+  
 

 
∫

 

       .
 

 
  /

   

 
     ∫  ( )  

 

 
 ∫  (   )  

 

 
 

  *  ( )+  
 

 
∫

 

        

   

 
   

 

 
∫

      

     (        )

   

 
   

 

 
∫

      

         

   

 
    

  *  ( )+  
 

 
∫

      

  (       )  

   

 
   

 

 
∫

      

(    ) (       )

   

 
    

  *  ( )+  
 

 
∫

      

  [
    

  
      ]

   

 
   

 

  
∫

     

[
    

  
      ]

   

 
    

  *  ( )+  
 

  
∫

  

     

 

 
   by putting                   

  *  ( )+  
 

  
|
 

 
      

 
|
 

 

 
 

  
.

 

  
/  

 

  
 

 

 
 

 

√    
 

 

√    
       

    

  
 

  *  ( )+  
 

√    
  

 To find  *  (  )+ see last portion of next example. 
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EXAMPLE: Given the Bessel‟s functions of the first kind and positive integral order satisfy 

the recurrence relations                                   

with    ( )       ( )           then show that    *  ( )+  
.√      /

 

√    
  

also find  *  (  )+            

Solution: We will prove the result by mathematical induction. 

Using first recurrence relation: 

 *  ( )+   *    ( )+    {   ( )}   ,  *  ( )+    ( )-   
 

√    
    

 *  ( )+  
.√      /

 

√    
  result is true for n = 0 

For n = 1: 

              *  ( )+   *  ( )+    *   ( )+  
 

√    
  ,  *  ( )+    ( )-  

  *  ( )+  
 

√    
  [  

.√      /
 

√    
  ]  

 

√    
 

  .√      /

√    
 

.√      /
 

√    
  

  *  ( )+  
.√      /

 

√    
  result is true for n = 1 

Suppose that result is true for n = k.    *  ( )+  
.√      /

 

√    
  

Now we will check the result For n = k+1: 

                *    +   *    +    {   }  
.√      /

   

√    
  ,  *  ( )+    ( )-  

  *    +  
.√      /

   

√    
  [  

.√      /
 

√    
  ]  

.√      /
   

√    
 

  .√      /
 

√    
  

  *    +  
.√      /

   

√    
[    (√      )]  

.√      /
   

√    
(√      )

 
  

 

  *    +  
.√      /

   

√    
  result is true for n = k+1 

So induction complete and result is proved.i.e.    *  ( )+  
.√      /

 

√    
 

Now to find  *  (  )+            we will use rule of scale. i.e   ,  (  )-  
 

 
   (

 

 
) 

Then   ,  (  )-  
 

 
   .

 

 
/  

 

 
 

:√.
 

 
/
 
   .

 

 
/;

 

√.
 

 
/
 
  

 
.√       /

 

  √     
 

Then for n = 0     ,  (  )-  
.√       /

 

  √     
 

 

√     
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EXAMPLE: (UoS; 2018 – I ) 

Show that    2
       

  
3  

 

 
    2  

  

  
3 

Solution:  We will use the result  2
 ( )

 
3  ∫  (  )   

 

 
    ………….(i) 

provided       2
 ( )

 
3 exists 

now            2
 ( )

 
3        2

       

  
3        2

      

 
3    

 ( )   * ( )+   *       +   * +   *     +  
 

 
 

 

     
         

Hence 

 ( )   2
 ( )

 
3  ∫  (  )   

 

 
( )   2

       

  
3  ∫ .

 

  
 

  

      /   
 

 
 

  2
       

  
3  |     

 

 
  (      )|

 

 

 |  
  

√      
|
 

 

     √   

        √     

  
  

Thus  2
       

  
3  

 

 
  2  

  

  
3  

 

 
    2  

  

  
3 

EXAMPLE:  Find    2
         

 
3 and deduce  2

     

 
3  

 

 
  .

    

  
/        

Solution:  We will use the result  2
 ( )

 
3  ∫  ( )  

 

 
    ………….(i) 

provided       2
 ( )

 
3 exists 

now         2
 ( )

 
3        2

         

 
3        2

           

 
3    

 ( )   * ( )+   *         +   *   +   *     +  
 

   
 

 

     
  

 ( )  
 

   
 

 

     
     

Hence  ( )   2
 ( )

 
3  ∫  ( )  

 

 
  2

         

 
3  ∫ .

 

   
 

 

     
 /   

 

 
 

  2
         

 
3  |  (   )  

 

 
  (     )|

 

 

 |  
   

√     
|
 

 

 |  
  

 

 

 √  .
 

 
/
 
|

 

 

  

  2
         

 
3      

   

√     
   

√     
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Thus  2
         

 
3    

√     

   
 

Now putting a = 0, b = 2 we get   2
        

 
3    

√     

   
  2

       

 
3    

√    

 
 

Hence  2
     

 
3  

 

 
  .

    

  
/        

 

NULL FUNCTION:  A function   ( ) is called Null Function if  ∫  ( )  
 

 
   

HEAVISIDE EXPANSION THEOREMS 

THEOREM – I : 

If   ( ) and  ( ) are polynomials of degree „m‟ and „n‟ respectively with           

m < n and  ( ) has „n‟ distinct zeros              …….  none of which is 

zero of   ( )  then 

   8
 ( )

 ( )
9  ∑

 (   )

  (   )

 

   

      

Proof: Given  ( ) and  ( ) are polynomials of degree „m‟ and „n‟ 

respectively 

Let  ( )            
  ……….    

  (    )(    )    (    ) 

Then consider   
 ( )

 ( )
 

  

    
 

  

    
      

  

    
 ∑

  

    

 
      ………..(i) 

    2
 ( )

 ( )
3     2∑

  

    

 
   3  ∑     

  2
 

    
3 

      

    2
 ( )

 ( )
3  ∑     

     
       ………..(ii) 

( )            0(    )
 ( )

 ( )
1  

       
, ( )-         0

(    )

 ( )
1   (  )        0

 

  ( )
1   

( )     
 (   )

  (   )
  

(  )     2
 ( )

 ( )
3  ∑

 (   )

  (   )
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THEOREM – II : 

If   ( ) and  ( ) are polynomials of degree „m‟ and „n‟ respectively with        

m < n and if   ( ) has a repeated root      of multiplicity „r‟ while othere roots 

∑    
 
     are not repeated then 

   * ( )+     8
 ( )

 ( )
9  ∑

 (   )

  (   )

 

   

      ∑
 

(    )

 

   

8
    

     
(    )

 
 ( )

 ( )
9      |

     

 

Proof: Since  ( ) has a repeated root      of multiplicity „r‟ while othere roots 

              are not repeated it means 

 ( )  (    )
 (    )    (    )  

 
 ( )

 ( )
 

 ( )

(    ) (    )    (    )
  

Then in terms of Partial fraction we will be as follows 

 ( )

 ( )
 

  

(    ) 
 

    

(    )   
 

    

(    )   
      

    

(    )   
     

 

(    ) 
 

  

(    ) 
 

  

(    )
 

  

(    )
      

  

(    )
     ………………(A) 

Multiplying (    )
  on both sides 

(    )
  ( )

 ( )
        (    )          (    )

    ∑    
(    )

 

(    )
 
    ………...(B) 

Now taking    
    

 on both sides we get 

          0(    )
  ( )

 ( )
1  

            

 

  
0(    )

  ( )

 ( )
1   diff.w.to „s‟ 

     
 

  
       

  

   
0(    )

  ( )

 ( )
1   again diff.w.to „s‟ 

     
 

  
       .

 

  
/
 
0(    )

  ( )

 ( )
1   again diff.w.to „s‟   –        
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Now by second translation theorem 

   *      ( )+    (     )   (     )  

or  ,  (     )   (     )-          ( )          *  ( )+  

    2
 

(    ) 
3         2

 

  
3          

(   ) 
  

Now by „A‟ we have  
 ( )

 ( )
 ∑

  

(    ) 
 
    ∑  

  
(    )

 
    

Then taking laplace inverse on  both sides 

    2
 ( )

 ( )
3     2∑

  

(    ) 
 
   3     2∑  

  
(    )

 
   3  ∑    2

  

(    ) 
3 

    ∑     2
  

(    )
3 

    

    2
 ( )

 ( )
3  ∑

 

(   ) 
       .

 

  
/
   

0(    )
  ( )

 ( )
1 

         ∑         
(    )

 ( )

 ( )
 
     

    * ( )+     2
 ( )

 ( )
3  ∑

 (   )

  (   )
 
         ∑

 

( - ) 
 
   2

    

     
(    )

  ( )

 ( )
3      |

     
  

EXAMPLE: (UoS; 2018 – I ) 

Using Heaviside Expansion theorem evaluate      2
   

(   )   
3 

Solution: Given that  ( )  
   

(   )   
 has a pole at s = 1 of order„2‟ and at s = 0 of order „3‟ 

Then in terms of Partial fraction we will be as follows 

 ( )  
  

(   ) 
 

  

(   )
 

  

  
 

  

  
 

  

 
  

Now using Heaviside formula 

         ,(   )  ( )-        0(   ) 
   

(   )   
1        0

   

  
1     

         
 

  
,(   )  ( )-        

 

  
0(   ) 

   

(   )   
1        

 

  
0
   

  
1      

          , 
  ( )-        0 

    

(   )   
1        0

   

(   ) 
1     

         
 

  
,   ( )-        

 

  
0     

(   )   
1        

 

  
0

   

(   ) 
1     

   
 

  
      

  

   
,   ( )-  

 

 
      

  

   
0     

(   )   
1  

 

 
      

  

   
0

   

(   ) 
1     

    * ( )+   ( )     
  2

 

(   ) 
3     

  2
 

(   )
3     

  2
 

  
3     

  2
 

  
3     

  2
 

 
3  

    * ( )+   ( )            
  

 
      (    )   (       )  



69 
 

   MUHAMMAD USMAN HAMID (0323 – 6032785) 

EXAMPLE: Using Heaviside Expansion theorem evaluate      2
 

  (         )
3 

Solution:  Given that   ( )  
 

  (         )
 

 

  (    )(    )
 has simple poles at 

          and a pole of order „2‟ at s = 0  

Then in terms of Partial fraction we will be as follows 

 ( )  
 

  (         )
 

 

  (    )(    )
 

  

  
 

  

 
 

  

(    )
 

  

(    )
  

Where we take           ,            then                 

Now using Heaviside formula 

          , 
  ( )-         0 

  

  (    )(    )
1         0

 

(    )(    )
1  

 

    

         
 

  
,   ( )-        

 

  
0   

  (    )(    )
1        

 

  
0

 

(    )(    )
1  

         
 

  
0

 

         1        
 (     )

(         )
  

   

    

           ,(    ) ( )-         0(    )
 

  (    )(    )
1         0

 

  (    )
1  

   
 

   (     )
  

           ,(    ) ( )-         0(    )
 

  (    )(    )
1         0

 

  (    )
1  

   
 

  
 (     )

  

Now as          √            
  (     )                

         √           
  (     )             then   

           

Then    
 

   (     )
  

    

     
 and    

 

   (     )
 

     

     
 

    * ( )+   ( )     
  2

 

  
3     

  2
 

 
3     

  2
 

(    )
3     

  2
 

(    )
3  

    * ( )+   ( )  
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EXAMPLE: (UoS; 2015 – II ) 

Find the general solution of the differential equation evaluate 

    ( )     ( )   ( ) 

Solution:  Given that     ( )     ( )   ( )   

  *   ( )+     * ( )+   * ( )+  

    ( )    ( )    ( )     ( )   ( )     ( )     ( )   ( )    ( )    ( )  

  ( )  
        ( )

     
   where we use   ( )      ( )     

Now      * ( )+   ( )     2
  

     3     2
   

     3     2
 ( )

     3 

    * ( )+   ( )  
  

 
   2

 

     3     
  2

 

     3     2
 ( )

     3  

    * ( )+   ( )  
  

 
              

 

 
        ( )  

  ( )  
  

 
              

 

 
∫          (    )  ( )   
 

 
  

EXAMPLE: (UoS; 2017 – I , II ) 

Slove the IVP       ( )     ( )   ( )     with  ( )      ( )    

Solution:  Given that     ( )     ( )   ( )      

  *   ( )+   *   ( )+   * ( )+     

    ( )    ( )    ( )  . 
 

  
/ *  ( )+   ( )     

    ( )    .
 

  
/ *  ( )   ( )+   ( )       

where we use  ( )      ( )    

    ( )       ( )   ( )   ( )     where we use  ( )      ( )    

   ( )  
    

 
 ( )   

 

 
   this will have in         

  

   

Thus   ( )  
 

  
   

  

   ( )  
 

  
 when              

Now      * ( )+   ( )     2
 

  
3   ( )    
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EXAMPLE:   

Slove the IVP            ( )  with  ( )       ( )     

Solution:  Given that          ( )   

  *   +    * +   * ( )+  

    ( )    ( )    ( )    ( )   ( )  

    ( )           ( )   ( )   where we use  ( )       ( )     

 (    ) ( )   ( )          

  ( )  
 ( )

    
    

 

    
    

 

    
     

Now      * ( )+   ( )     2
 ( )

    
3     

  2
 

    
3     

  2
 

    
3 

    * ( )+   ( )  
 

√ 
   { ( ) 

√ 

   (√ )
 }     

  {
 

   (√ )
 }  

  

√ 
   {

√ 

   (√ )
 }  

  ( )  
 

√ 
   { ( )      √  }        √   

  

√ 
    √    

  ( )  
 

√ 
∫          √ (    )  ( )   
 

 
       √   

  

√ 
    √    

 

MELLIN INTEGRAL TRANSFORMATION: 

For a well behaved function „ ‟ Mellin Integral Transformation is defined as 

 * ( )  +    ( )  ∫  ( )      
 

 
  

 

INVERSE MELLIN INTEGRAL TRANSFORMATION: 

For a well behaved function „ ‟ Inverse Mellin Integral Transformation is 

defined as 

   *  ( )  +  
 

   
∫   ( )     
    

    
          ( )  
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THE LAPLACE INVERSION INTEGRAL 

or THE FOURIER MELLIN INTEGRAL 

or DERIVATION OF INVERSION INTEGRAL 

 

STATEMENT : 

If  ( ) is inverse Laplace Transformation of   ( ) and all singularties of  ( ) 

in the complex plane „S‟ lie to the left of the line      then 

 ( )  
 

   
      ∫     ( )  

    

    
  

Proof:  

Draw the line     in the „S‟ plane and mark the points   (   ) and 

  (    ) on this line and draw a semicircle S of radius R to the right of the 

line    . Let     ̅̅ ̅̅    be the closed contour consisting of the line 

segment   ̅̅ ̅̅  and S. 

 

  

Let the function  ( )  ∫      ( )  
 

 
 is an analytic function on and within 

the contour C. if „s‟ is any point inside C then by Cauchy Integral Theorem 

 ( )  
 

   
 

 ( )

   
    ( )  

 

   
 

 

   
∫      ( )  
 

 
    

  ( )  
 

   
∫  ( ) 0 

 

   
      1  

 

 
  interchanging the order of integration. 

  ( )  
 

   
∫  ( ) 0∫

    

   
  

  
 ∫

    

   
  

 

 
1   

 

 
 

 

   
∫  ( ) ∫

    

   
  

 

 
  

 

 
  by Jordan‟s 
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Also ∫
    

   
  

 

 
       ∫

    

   
  

    

    
  ∫

    

   
  

    

    
 

  ( )  
  

   
∫  ( ) ∫

    

   
  

    

    
  

 

 
 

 

   
∫  ( ) ∫

    

   
  

    

    
  

 

 
  

  ( )  
 

   
∫ [∫      ( )  

 

 
]

 

   
  

    

    
   again changing the order of integration. 

  ( )  
 

   
∫

 ( )

   
  

    

    
  

    * ( )+   ( )  
 

   
∫  ( )   2

 

   
3  

    

    
 

 

   
∫     ( )  
    

    
  

    * ( )+   ( )  
 

   
∫     ( )  
    

    
 

 

   
      ∫     ( )  

    

    
  

SPECIAL CASE:  

Now suppose  ( ) has poles only to the left of the line         then we 

can enclose all those poles in a contour C on the left of     then 

  ( )  
 

   
 
 
    ( )   

 

   
∑ (     )  ∑       

where                  ( ) at the poles      

 

EXAMPLE:   

Use Laplace Inversion Intgral (or Rasidue method) evaluate       2
        

  (    )
3 

Solution:   

Given  ( )  
        

  (    )
 

        

  (   )(   )
 has simple poles at      and a pole of 

order „2‟ at     

Now using  (   )        
 

(   ) 

    

     
,(   )     ( )- 

 (   )           
 

  
,      ( )-        

 

  
0      

        

  (    )
1     

 (   )           ,(   )    ( )-        0(   )           

  (   )(   )
1  

 (   )     
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 (    )            ,(   )    ( )-         0(   )           

  (   )(   )
1  

 (    )     
   

  
      

Now   ( )  ∑              

  ( )  ∑       
   

  
    

   

  
      

  ( )  ∑       
   

  
(          )  

   

  
(          )  

  ( )  ∑                   after solving. 

 

EXAMPLE:   

Use Laplace Inversion Intgral (or Rasidue method) evaluate       2
    

 (    )
3 

Solution:  Given  ( )  
    

 (    )
 

    

 (   )(   )
 has simple poles at        

Now using  (   )        
 

(   ) 

    

     
,(   )     ( )- 

 (   )           ,  
   ( )-        0     

    

 (    )
1     

 (   )           ,(   )    ( )-        0(   )       

 (   )(   )
1  

 (   )     
    

   
     

 (    )            ,(   )    ( )-         0(   )       

 (   )(   )
1   

 (    )     
    

   
      

Now   ( )  ∑              

  ( )  ∑       
    

  
    

    

  
      

  ( )  ∑       
    

  
(          )  

    

  
(          )  

  ( )  ∑                    after solving. 
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EXAMPLE:   

Use Laplace Inversion Intgral (or Rasidue method) evaluate       2
 

  (   )
3 

Solution:  Given  ( )  
 

  (   )
 has simple pole at      and a pole of order „2‟ at     

Now using  (   )        
 

(   ) 

    

     
,(   )     ( )- 

 (   )           
 

  
,      ( )-        

 

  
0      

 

  (   )
1       

 (    )            ,(   )    ( )-        0(   )     
 

  (   )
1       

Now   ( )  ∑           

  ( )  ∑              

 

In order to find a solution of linear partial differential equations, the following 

formulas and results are useful. 

If  , (   )-    (   ) then 

 2
  

  
3     (   )   (   )  

 2
   

   
3      (   )    (   )    (   )  

    :  :  : 

    :  :  : 

 2
   

   
3      (   )       (   )              

(   )       
(   )  

Similarly, it is easy to show that 

 2
  

  
3  

 

  
  (   )   2

   

   
3  

  

   
  (   )    ……………..,   2

   

   
3  

  

   
 (   ) 
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EXAMPLE:  

Use Laplace Transformation method to solve BVP 

  
   

   
 

  

  
                

  (   )      (   )               (   )            

Solution:  

Given  
   

   
 

  

  
  2

   

   3   2
  

  
3  

  

   
 (   )     (   )   (   ) 

 
  

   
 (   )     (   )  (       )  

 
  

   
 (   )     (   )             …………(i) 

Which is non – homogeneous 2
nd

 order DE with solution 

 (   )    (   )    (   )     …………(ii) 

For Chractristic (auxiliary) solution 

( )  (    ) (   )                     √   

Then    (   )     
√      

 √   

For Particular  solution 

Consider   (   )  
        

    
 

    

    
    

    

    
 

  

    
 

     

(  )   
 

 

 
 

     

     
 

Then   (   )  
 

 
 

     

    
 

(  )   (   )    (   )    (   )     
√      

 √   
 

 
 

     

    
    

  (   )     
√      

 √   
 

 
 

     

    
     …………(iii) 

Now using BC‟s 

  (   )     *  (   )+   *    +   (   )  
 

 
  

  (   )     *  (   )+   *    +   (   )  
 

 
  

(   )   (   )  
 

 
    

     
  

 

 
 

   ( )
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(   )   (   )  
 

 
    

√ ( )     
 √ ( )  

 

 
 

    

    
    

√     
 √  

 

 
 

 

 
    

    
√     

 √        
√     

 √              

   [ 
 √   √ ]           [  √   √ ]     

                     

(   )   (   )  
 

 
 

     

    
            

    * (   )+     2
 

 
3     2

     

    
3     2

 

 
3          2

 

  (   )
3  

   (   )                 required solution. 

 

EXAMPLE: (UoS; 2017 – II ) 

Use Laplace Transformation method to solve BVP   

    (   )        (   )         

  (   )     (   )      (   )    (  )           (   )     

Solution:  

Given      (   )        (   )   *   +     *   + 

     (   )    (   )    (   )      

   
 (   )  

     (   )  ( )  ( )      

   
 (   )      (   )      

   
 (   )  

 
  

   
 (   )  

  

  
  (   )     

This is Homogeneous DE of 2
nd

 order therefore 

 .   
  

  / (   )       
  

  
      

 

 
  

Then   (   )     
 

 
     

 
 

 
 
     …………(i) 

Now using BC‟s 

  (   )   (  )   *  (   )+   * (  )+   (   )   (  )  

        (   )     *        (   )+            (   )     
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( )   (   )   (  )     
 

 
( )     

 
 

 
( )         (  )  

( )          (   )       
   

0   
 

 
     

 
 

 
 1     

     
    

                     (  )           (  ) 

Thus ( )   (   )   (  )  
 

 
 
 

    * (   )+     2 (  )  
 

 
 3  

   (   )   .   
 

 
/  .   

 

 
/   where  .   

 

 
/  .   

 

 
/  {

             
 

 

 (  )         
 

 

 

EXAMPLE: 

Use Laplace Transformation method to solve BVP 

    (   )        (   )      

  (   )     (   )      (   )               (   )     

Solution:  Given      (   )        (   )     *   +     *   +    * + 

     (   )    (   )    (   )      

   
 (   )  

 

 
  

     (   )  ( )  ( )      

   
 (   )  

 

 
  

     (   )      

   
 (   )  

 

 
  

 
  

   
 (   )  

  

  
  (   )  

 

   
   …………(i) 

Which is non – homogeneous 2
nd

 order DE with solution 

 (   )    (   )    (   )     …………(ii) 

For Chractristic (auxiliary) solution 

 .   
  

  / (   )       
  

  
      

 

 
  

Then    (   )     
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For Particular  solution 

Consider   (   )  
 

   

   
  

  

 
 

   
   

   
  

  

 
 

   

 
  

  

  
 

  
 

(  )   (   )    (   )    (   )     
 

 
     

 
 

 
  

 

  
    

  (   )     
 

 
     

 
 

 
  

 

  
     …………(iii) 

Now using BC‟s 

  (   )     *  (   )+     (   )     

         (   )     *         (   )+          
 

  
  (   )     

(   )   (   )       
     

   
 

  
       

 

  
  

(   )        
 

  
  (   )       

   
0  

 

 
 

 

 
  

 

 
   

 
 

 
 1    

 

 
     

 

 
     

   
 

 
                 

 

 
                    

 

  
         

 

  
 

Thus (   )   (   )  
 

  
  

 

 
  

 

  
 

    * (   )+  
 

  
   2  

 

 
  

  

    3  
 

  
   2

  

    3  

   (   )  
 

 
 .   

 

 
/ .   

 

 
/
 
 

 

 
(  )   

   (   )  
 

 
[ .   

 

 
/ .   

 

 
/
 
 (  )]      

where  .   
 

 
/ .   

 

 
/
 
 {
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EXAMPLE: (UoS; 2017) 

Use Laplace Transformation method to solve BVP 

     (   )      (   )            

  (   )      (   )   (   )              (   )          

Solution:  

Given      (   )      (   )   *   +   *   + 

 
  

   
 (   )      (   )    (   )    (   )  

 
  

   
 (   )      (   )                

 
  

   
 (   )      (   )                 …………(i) 

Which is non – homogeneous 2
nd

 order DE with solution 

 (   )    (   )    (   )     …………(ii) 

For Chractristic (auxiliary) solution 

 (     ) (   )                  

Then    (   )     
      

       

For Particular  solution 

Consider 

  (   )  
(   )     

     
 (   )   

    

     
 (   )

     

(  )   
 (   )

     

     
  

  (   )  
(   )     

    
  

(  )   (   )    (   )    (   )     
      

    
(   )     

    
    

  (   )     
      

    
(   )     

    
     …………(iii) 

Now using BC‟s     (   )     *  (   )+     (   )     

  (   )     *  (   )+     (   )     

(   )   (   )       
     

   
(   )    ( )
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(   )   (   )       
     

   
(   )    

    
    

     
        

     
      

   ( 
     )             (      )          

Thus (   )   (   )  
(   )     

    
 

    * (   )+          2
 

     3  
     

 
   2

 

     3  

   (   )             
     

 
           0      

     

 
1  

 

EXAMPLE: (UoS; 2019 – I ) 

A uniform bar of length     is fixed at one end. Let the force 

 (  )  {
              
           

   be suddenly applied at the end      , if the bar is 

initially at rest, find the longitudinal displacement  for     using Laplace 

Transformation the motion of bar is govern by the differential system 

                     and   is constant. 

 (   )   (   )    (   )          (   )  
  

 
   where   is constant. 

Solution:  

Given      (   )        (   )   *   +     *   + 

     (   )    (   )    (   )      

   
 (   )  

     (   )  ( )  ( )      

   
 (   )      (   )      

   
 (   )  

 
  

   
 (   )  

  

  
  (   )     

This is Homogeneous DE of 2
nd

 order therefore 

 .   
  

  / (   )       
  

  
      

 

 
  

Then   (   )     
 

 
     

 
 

 
 
     …………(i) 
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Now using BC‟s 

  (   )     *  (   )+     (   )     

  (   )  
  

 
  *  (   )+   2

  

 
3  

 

  
  (   )  

  

 
  

( )   (   )   (  )     
     

                   

Then   (   )     
 

 
     

 
 

 
 
   …………(ii) 

 
 

  
 (   )    

 

 
 

 

 
    

 

 
  

 

 
 
  

Then using  
 

  
  (   )  

  

 
 we get 

 
 

  
 (   )  

  

 
   

 

 
 

 

 
    

 

 
  

 

 
     

  

 (
 

 
 
 
   

 

 
 
 
 
  *

  

Hence  (  )   (   )  
  

 (
 

 
 
 
   

 

 
 
 
 
  *

 . 
 

 
    

 

 
 /  

  

 

( 
 
 
 
  

 
 
 
 
*

 

 
( 

 
    

 
 
  *

 

Taking Laplace inverse on both sides 

 (   )     {
  

 

( 
 
 
 
  

 
 
 
 
*

 

 
( 

 
    

 
 
  *

}   

which is required longitudinal displacement for     
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THEOREM:  Let    ( )  be a piecewise continuous function for     
and of exponential order. If   ( ) is periodic with period T then show 
that 

 *   (  )+  
 

      ∫        (  )   
 

 
  

PROOF:  By definition, we have 

 *   (  )+   ∫         (  )   
 

 
  

 *   (  )+  ∫         (  )   
 

 
  ∫         (  )   

 

 
  

In the 2nd integral on the right put             

 *   (  )+  ∫         (  )   
 

 
  ∫    (    )    (    )   

 

 
  

 *   (  )+  ∫         (  )   
 

 
      ∫         (    )   

 

 
  

Since given functionis periodic with period T therefore   (    )    ( )  

 *   (  )+  ∫         (  )   
 

 
      ∫         (  )   

 

 
  

 *   (  )+  ∫         (  )   
 

 
       *   (  )+  

 *   (  )+  ∫         (  )   
 

 
       *   (  )+  

(      ) *   (  )+  ∫         (  )   
 

 
  

 *   (  )+  
 

      ∫        (  )   
 

 
   As required the result. 

 

THEOREM:  If  *   (  )+   ( ) then  2 
  (  )

 
 3  ∫  ( )   

 

 
 

PROOF:  By definition, we have 

 *   (  )+   ( )   ∫         ( )   
 

 
  

∫  ( )   
 

 
 ∫ [∫         ( )   

 

 
]   

 

 
  integrating. 

∫  ( )   
 

 
 ∫   ( )

 

 
[∫        

 

 
]    changing the order of integration. 

∫  ( )   
 

 
 ∫   ( )

 

 
|
    

  
|
 

 

   ∫
  ( )

 

 

 
        2 

  (  )

 
 3  

Hence   2 
  (  )

 
 3  ∫  ( )   
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FOURIER TRANSFORMATION AND INTEGRALS 

 WITH APPLICATIONS 

 

FOURIER TRANSFORMATION:  If   ( ) is a continuous, piecewise 

smooth, and absolutely integrable function, then the Fourier transform of 

  ( )with respect to     is denoted by   ( )and is defined by 

  *  ( )+     ( )  
 

√  
∫      

 

  

  ( )    

where k is called the Fourier transform variable and     (    ) is called the 

kernel of the transform. 

Then, for all      , the INVERSE FOURIER TRANSFORM of   ( ) is 

defined by 

    *  ( )+     ( )  
 

√  
∫       

 

  

  ( )    

CONDITION FOR EXISTENCE OF FOURIER TRANSFORMATION 

Fourier Transforamtion and Inverse Fourier Transformation exist if 

(i) The function  ( ) or  ( ) is continuous or piecewise continuous over 

(    ) and bounded. 

(ii) The function  ( ) or  ( ) are absolutely integrable i.e.     

∫ | ( )|  
 

  
 or ∫ | ( )|  

 

  
 this condition is sufficient for 

existence of Fourier Transforamtion and Inverse Fourier 

Transformation. 
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Example: (UoS; 2014 – II, 2015 – I )  

Show that for a Guassian Function     {       }  
 

√  
 
( 

  

  
* 
               is 

constant. 

Solution. We have, by definition 

  *  ( )+  
 

√  
∫       

  
  ( )   

 

√  
∫       

  
           

  *  ( )+  
 

√  
∫           

  
   

 

√  
∫  

  [.  
  

  
/
 
 

 

   

 
]  

  
    

  *  ( )+  
  

 
  

  
 

√  
∫  

  .  
  

  
/
 
  

  
    

Put  .  
  

  
/
 

    √ .  
  

  
/    √          

  

√ 
 

   *  ( )+  
  

 
  

  
 

√  
∫  

  .  
  

  
/
 
  

  
   

  
 
  

  
 

√  
∫       

  
 
  

√ 
  

   *  ( )+  
  

 
  

  
 

√   
 √    ∫       

  
   √  

   *  ( )+    {       }  
 

√  
 
( 

  

  
* 

  

 

Example: Find the Fourier transform of a box function 

 ( )  {
       | |              
                                     | |   

   

Solution. Let  we have, by definition 

  *  ( )+  
 

√  
∫       

  
  ( )    

  *  ( )+  
 

√  
[∫        

  
  ( )   ∫       

  
  ( )   ∫       

 
  ( )  ]  

  *  ( )+  
 

√  
[∫        

  
     ∫       

  
     ∫       

 
    ]  

  *  ( )+  
 

√  
∫       

  
   

 

 √  
.
            

  
/  √

 

 
.
     

 
/  

Consider    𝐢𝐤𝐱  𝐚𝐱𝟐  

  𝐚.𝒙𝟐  
𝐢𝐤𝐱

𝒂
/  

  𝐚 <
.𝒙𝟐  

𝟐𝐢𝐤𝐱

𝟐𝒂
/    

 .
𝐢𝐤

𝟐𝒂
/
𝟐

 .
𝐢𝐤

𝟐𝒂
/
𝟐=  

  𝒂 [.𝐱  
𝐢𝐤

𝟐𝒂
/
𝟐

 
𝐤

𝟒𝒂𝟐

𝟐
]  
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Example: (UoS; 2013, 2014) 

Find the Fourier transform of   ( )  
 

     
   

Solution. Let  we have, by definition 

  * ( )+  
 

√  
∫       

  
 ( )   

 

√  
∫       

  

 

     
    

  * ( )+  
 

√  
 
 

     

     
     replacing „x‟ with „z‟ 

          (    )                                                          

Similarly                when       

Let   ( )  
     

     
       are the simple poles of   ( ) 

Now using  (   )        
 

(   ) 

    

     
,(   )     ( )- 

 (    )            (    )
     

(    )(    )
    

    

     

(    )
 

   (  ) 

   
 

     

   
  

Similarly 

  (     )             (    )
     

(    )(    )
    

    

     

(    )
 

   (   ) 

    
 

    

    
 

Now    * ( )+  
 

√  
 
 

     

     
   

 

√  
    ∑     

 

√  
    ,     - 

Now we use     for the contour as a semi circle in upper half plane and      

for the contour as a semi circle in lower half plane 

   * ( )+  
 

√  
 ,(   )   (   )  -  

 

√  
    ,     -  

   * ( )+  
 

√  
    0

     

   
 

    

   
1  √

 

 
[          ]    

   * ( )+  √
 

 
[  | |    | | ]             | |     

   * ( )+  √
 

 
    | |  √    | |   
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PROPERTIES OF FOURIER TRANSFORMS 

LINEARITY PROPERTY: THE FOURIER TRANSFORMATION   IS 

LINEAR. 

Proof. Let   ( )    ( )    ( ) where a and b are constants. 

We have, by definition 

  *  ( )+  
 

√  
∫       

  
  ( )   

 

√  
∫       

  
,  ( )    ( )-    

  *  ( )+  
 

√  
∫       

  
 ( )   

 

√  
∫       

  
 ( )    

  *  ( )+     * ( )+     * ( )+  

  *  ( )    ( )+     * ( )+     * ( )+   hence proved. 

LINEARITY PROPERTY: THE INVERSE FOURIER TRANSFORMATION     IS 

LINEAR. 

Proof.   Let   ( )    ( )    ( ) where a and b are constants. 

We have, by definition 

    *  ( )+   
 

√  
∫        

  
 ( )   

 

√  
∫        

  
,  ( )    ( )-    

    *  ( )+   
 

√  
∫        

  
 ( )   

 

√  
∫        

  
 ( )    

    *  ( )    ( )+       * ( )+       * ( )+   hence proved. 

 

SHIFTING PROPERTY: Let   *  ( )+ be a Fourier transform of  ( )  Then 

(i)   ,  (     )-        ( )       where „a‟ is a real constant. 

Proof. From the definition, we have, for a > 0, 

  ,  (     )-  
 

√  
∫       

  
  (     )    

Put                 also as      then       

  ,  (     )-  
 

√  
∫    (    )  

  
  (  )    

 

√  
∫              

  
  (  )     

  ,  (    )-        
 

√  
∫        

  
  (  )           *  ( )+        ( )  
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(ii)   ,       ( )-   (   )       where „a‟ is a real constant. 

Proof. From the definition, we have, for a > 0, 

  ,       ( )-  
 

√  
∫             ( )
 

  
   

 

√  
∫   (   )    ( )
 

  
    (   )  

SCALING PROPERTY: If   is the Fourier transform of  , then 

  ,  (  )-    (
 

| |
)   (

 

 
)     where c is a real nonzero constant. 

Proof. For           we have              ,  (  )-    
 

√  
∫       

  
  (  )    

  ,  (  )-   
 

√  
∫  

  (
  

 
*  

  
  (  )

   

 
 

 

 
 

 

√  
∫  

  (
  

 
*  

  
  (  )    

 

 
  (

 

 
)  

Since       then either      or      

If      then   ,  (  )-  
 

  
  (

 

 
)        If      then   ,  (  )-  

 

  
  (

 

 
) 

Hence   ,  (  )-    (
 

| |
)   (

 

 
) 

CONJUGATION PROPERTY: Let   is real then    (  )    ( )̅̅ ̅̅ ̅̅ ̅ 

Proof. Since   is real therefore   ( )    ( )̅̅ ̅̅ ̅̅ ̅ then by defination 

  ( )    , ( )-    
 

√  
∫       

  
  ( )    

  ( )̅̅ ̅̅ ̅̅ ̅    [  ( )̅̅ ̅̅ ̅̅ ̅]   
 

√  
∫        

  
  ( )̅̅ ̅̅ ̅̅ ̅   

 

√  
∫   (  )   

  
  ( )     (  )  

Hence   (  )    ( )̅̅ ̅̅ ̅̅ ̅ 

ATTENUATION PROPERTY: (UoS; 2015 – II, 2018 – I )  

For a function    ( ) the result will be ,     ,     ( )-     (    ) 

Proof.  By definition    ( )    , ( )-    
 

√  
∫       

  
  ( )    

Then   ,     ( )-    
 

√  
∫       

  
     ( )   

 

√  
∫       

  
        ( )   

  ,     ( )-   
 

√  
∫   (    )   

  
  ( )    ……….(i) 

Also    (    )    , ( )-    
 

√  
∫   (    )   

  
  ( )    ……….(ii) 

Thus from (i) and (ii)   ,     ( )-     (    ) 
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MODULATION PROPERTY(i):   ,       ( )-   
 

 
,  (   )    (   )- 

Proof.  By definition    ,       ( )-      ,.
            

 
/   ( )-  

  ,       ( )-  
 

 
,   *       ( )+    *        ( )+-  

 

 
,  (   )    (   )-  

MODULATION PROPERTY (ii):   ,       ( )-   
 

  
,  (   )    (   )- 

Proof.   By definition    ,       ( )-      ,.
            

  
/   ( )-  

  ,       ( )-  
 

  
,   *       ( )+    *        ( )+-  

 

  
,  (   )    (   )-  

 

ROPERTY: if    ( ) is real and even then   ( ) is real. 

Proof. Since   is real therefore   ( )    ( )̅̅ ̅̅ ̅̅ ̅  ....(i) and   (  )    ( ) ……(ii) 

then by defination 

  ( )    , ( )-   
 

√  
∫       

  
  ( )   

 

√  
∫       

  
  (  )    

  ( )  
 

√  
∫          

 
  (  )(    )  

 

√  
∫         

  
  (  )̅̅ ̅̅ ̅̅ ̅̅      

Hence   ( )    ( )̅̅ ̅̅ ̅̅ ̅  then   ( ) is real. 

 

ROPERTY: if    ( ) is real and odd then    ( ) is pure imaginary. 

Proof. Since   is real therefore   ( )    ( )̅̅ ̅̅ ̅̅ ̅  ………..(i)  

and is odd    (  )     ( ) ………(ii) then by defination 

  ( )    , ( )-   
 

√  
∫       

  
  ( )   

 

√  
∫       

  
(   (  ))    

  ( )    , ( )-   
  

√  
∫       

  
  (  )    

  ( )  
  

√  
∫          

 
  (  )(    )  

  

√  
∫         

  
  (  )     

Hence   ( )     ( )̅̅ ̅̅ ̅̅ ̅  or    ( )̅̅ ̅̅ ̅̅ ̅     ( )  then   ( ) is pure imaginary. 
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ROPERTY: if    ( ) is complex then   [ (  )̅̅ ̅̅ ̅̅ ̅̅ ]    ( )̅̅ ̅̅ ̅̅ ̅  

Proof. by definition  

  [ (  )̅̅ ̅̅ ̅̅ ̅̅ ]   
 

√  
∫       

  
 (  )̅̅ ̅̅ ̅̅ ̅̅    

 

√  
∫    (   )   

 
 (  )̅̅ ̅̅ ̅̅ ̅(    )  

  [ (  )̅̅ ̅̅ ̅̅ ̅̅ ]  
  

√  
∫          

 
 (  )̅̅ ̅̅ ̅̅ ̅    

 

√  
∫         

  
 (  )̅̅ ̅̅ ̅̅ ̅     

  [ (  )̅̅ ̅̅ ̅̅ ̅̅ ]  
 

√  
∫        

  
 ( )̅̅ ̅̅ ̅̅     replacing    with x 

  [ (  )̅̅ ̅̅ ̅̅ ̅̅ ]  
 

√  
∫       

  
 ( )  

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
   ( )̅̅ ̅̅ ̅̅ ̅  

  [ (  )̅̅ ̅̅ ̅̅ ̅̅ ]    ( )̅̅ ̅̅ ̅̅ ̅   as required. 

 

DIFFERENTIATION PROPERTY (higher derivative theorem):                             

Let   be continuous and piecewise smooth in (    ). Let  ( ) approach 

zero as | |       If   and    are absolutely integrable, then 

  ,   ( )-    (   )  ,  ( )-    (   )  ( )  

Proof. 

  ,   ( )-    
 

√  
∫       

  
   ( )    

  ,  ( )-   
 

√  
0|       ( )|

  

 
 ∫      (  )

 

  
  ( )  1  

  ,  ( )-  
 

√  
[  (   )∫       

  
  ( )  ]  

  ,   ( )-    (   )  ,  ( )-    (   )  ( )  

For n = 2 

  ,    ( )-    
 

√  
∫       

  
    ( )    

  ,   ( )-   
 

√  
0|       ( )|

  

 
 ∫      (  )

 

  
  ( )  1  

  ,   ( )-  
 

√  
[  (   )∫       

  
  ( )  ]  

  ,   ( )-   (   )  ,  ( )-   (   )(   )  ( )  (   )    ( )  
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This result can be easily extended. If f and its first (n − 1) derivatives are 

continuous, and if its nth derivative is piecewise continuous, then 

  ,  ( )-    (   )   ,  ( )-    (   )    ( )                .............  

provided   and its derivatives are absolutely integrable. In addition, we 

assume that   and its first (n − 1) derivatives tend to zero as |x| tends to 

infinity. 

 

CONVOLUTION FUNCTION / FAULTUNG FUNCTION  

The function (     ) ( )    
 

√  
∫   (     )   ( )   
 

  
 

is called the convolution of the functions f and g over the interval (−∞,∞) 

 

NOTE: The convolution satisfies the following properties: 

1.               (commutative) 

2.     (     )    (     )      (associative) 

3.    (       )      (     )    (     ) , (distributive) 

where a and b are constants. 

 

PROPERTY:               

PROOF:  since by definition (     ) ( )    
 

√  
∫   (     )   ( )   
 

  
 

Put                               and if      then      

then 

(     )( )   
 

√  
∫   ( )  (     ) (   )
  

 
         

(     )( )   
 

√  
∫   (     )  ( )   (  )
 

  
         

Hence                
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CONVOLUTION / FAULTUNG THEOREM  (UoS; 2013 – I) 

If  ( ) and  ( ) are the Fourier transforms of  ( ) and  ( ) respectively, 

then the Fourier transform of the convolution (     ) is the product 

  ( ) ( ). That is, 

  *  ( )     ( )+     ( ) ( )    

Or, equivalently,          *  ( ) ( )+      ( )      ( )  

Or   

    *  ( ) ( )+  
 

√  
∫        

  
  ( ) ( )   (     ) ( )    

 

√  
∫   (   )   ( )   
 

  
  

 

PROOF:  By definition, we have 

    *  ( ) ( )+  
 

√  
∫        

  
  ( ) ( )    

    *  ( ) ( )+  
 

√  
∫        

  
 ( ) 2 

 

√  
∫        

  
  (  )   3     

By changing the order of integration 

    *  ( ) ( )+  
 

√  
∫ 0

 

√  
∫     (    )  

  
 ( )  1

 

  
  (  )     

    *  ( ) ( )+   
 

√  
∫   (    )  (  )    

  
   

    *  ( ) ( )+  
 

√  
∫   (   )  ( )   
 

  
 (   )( )  

Where we replace   with    

Hence     *  ( ) ( )+      ( )      ( )        

 Or    *  ( )     ( )+     ( ) ( ) 
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PARSEVAL‟S FORMULA OF 1
ST

 AND 2
ND

 KIND (UoS; 2019 – I, 2018 – I ) 

Theorem given by Marc Anotoine des Chenes Parseval (1755 – 1836) 

 

1
ST

 KIND:  According to this formula ∫ | ( )| 
 

  
   ∫ | ( )| 

 

  
   

 

PROOF: The convolution formula gives 

 

√  
∫        

  
  ( ) ( )    

 

√  
∫   ( )  (   )  
 

  
  

∫   ( )  (   )   
 

  
 ∫        

  
  ( ) ( )    

which is, by putting                 ∫   ( )  (  )   
 

  
 ∫   ( ) ( )  

 

  
  

∫   ( )  (  )   
 

  
 ∫   ( ) ( )  

 

  
  

Putting   (  )      ( )̅̅ ̅̅ ̅̅ ̅  then   ( )     (  )̅̅ ̅̅ ̅̅ ̅̅ ̅    *  ( )+    {  (  )̅̅ ̅̅ ̅̅ ̅̅ ̅} 

  ( )    ( )̅̅ ̅̅ ̅̅ ̅           {  (  )̅̅ ̅̅ ̅̅ ̅̅ ̅}    ( )̅̅ ̅̅ ̅̅ ̅   for complex  . 

∫   ( )  ( )̅̅ ̅̅ ̅̅ ̅   
 

  
 ∫   ( )  ( )̅̅ ̅̅ ̅̅ ̅  

 

  
   

where the bar denotes the complex conjugate. 

 ∫ | ( )| 
 

  
   ∫ | ( )| 

 

  
    

In terms of the notation of the norm, this is    ‖ ‖   ‖ ‖ 

 

2
ND

 KIND:  According to this formula  

∫   ( ) ( )
 

  
   ∫   ( )  (  )

 

  
   

PROOF: The convolution formula gives 

 

√  
∫        

  
  ( ) ( )    

 

√  
∫   ( )  (   )  
 

  
  

by putting       we get  ∫   ( ) ( )
 

  
    ∫   ( )  (  )  
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BOUNDEDNESS AND CONTINUITY OF FOURIER TRANSFORMATION 

If  ( ) is piecewise smooth and absolutely integrable function on the interval  

(    ) then its fourier transformation  ( ) is bounded and continuous. 

PROOF:   given that  ( ) is piecewise smooth and absolutely integrable 

function i.e.   ∫ | ( )|  
 

  
 

now by definition      ( )    , ( )-   
 

√  
∫       

  
  ( )    

For boundedness taking mod on both sides 

 |  ( )|   |
 

√  
∫       

  
  ( )  |  

 

√  
∫ |     |
 

  
|  ( )|    

 |  ( )|  
 

√  
∫ |  ( )|
 

  
     since |     |    

 |  ( )|  
 

√  
     since   ∫ | ( )|  

 

  
 

 |  ( )|      where   
 

√  
     

   ( )  is bounded. 

Now for continuity of   ( ) we have  

  (   )    ( )  
 

√  
∫   (   )   

  
  ( )   

 

√  
∫       

  
  ( )    

  (   )    ( )  
 

√  
∫      (       )
 

  
 ( )    (   )  say 

      ,  (   )    ( )-         (   )   ………..(i) 

Now        (   ) exists if   (   ) is uniformly convergent. 

For this consider 

 | (   )|   |
 

√  
∫      (       )
 

  
 ( )  |  

 | (   )|  
 

√  
∫ |     |
 

  
|       ||  ( )|    

 | (   )|  
 

√  
∫  ( )
 

  
|              ||  ( )|    

 | (   )|  
 

√  
∫ |(       )        ||  ( )|
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 | (   )|  
 

√  
 √ ∫ √       |  ( )|

 

  
    

 | (   )|  
 

√ 
∫ √       |  ( )|
 

  
    

    
   

| (   )|  
 

√ 
∫    

   
√       |  ( )|

 

  
         

    
   

| (   )|       
   

 (   )     

( )        ,  (   )    ( )-     

         (   )    ( )    ( )  is continuous. 

Hence If  ( ) is piecewise smooth and absolutely integrable function on the 

interval  (    ) then its fourier transformation  ( ) is bounded and 

continuous. 

RIEMANN LEBESQUE THEOREM 

If  ( ) is piecewise smooth and absolutely integrable function then 

   | |    ( )    

PROOF:   given that  ( ) is piecewise smooth and absolutely integrable 

function i.e.   ∫ | ( )|  
 

  
 

now by definition      ( )    , ( )-   
 

√  
∫       

  
  ( )    

  ( )   
 

√  
[| ( )

     

  
|
  

 

 ∫
     

  

 

  
  ( )  ]  

 |  ( )|   |
 

√  
[| ( )

     

  
|
  

 

 ∫
     

  

 

  
  ( )  ]|  

 |  ( )|   |
 

√  
[| ( )

     

  
|
  

 

 ∫
     

  

 

  
  ( )  ]|  

 |  ( )|  
 

√  
|| ( )|

|     |

|  |
|
  

 

 | ∫
     

  

 

  
  ( )  |  

 |  ( )|  
 

√  
0      

| ( )|

| |
        

| ( )|

| |
1  ∫

|     |

|  |

 

  
|  ( )|    

 |  ( )|  
 

√  
0      

| ( )|

| |
        

| ( )|

| |
1  ∫

 

| |

 

  
|  ( )|    ……..(i) 
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Since  ( ) is absolutely integrable function then         | ( )|    

( )  |  ( )|  
 

√  
 
 

| |
∫ |  ( )|
 

  
     ……..(ii) 

Since  ( ) is piecewise smooth then    ( ) will be piecewise continuous and 

therefore  ∫ |  ( )|
 

  
     

(  )     
| |  

|  ( )|     
| |  

 

√  
 

 

| |
        

| |  
|  ( )|     

 

FOURIER TRANSFORM OF THE FUNCTION OF THE FORM ,   ( )- 

Let   be piecewise continuous on the interval  ,    - for every positive „ ‟ and  

∫ |   ( )|
 

  
 converges then 

  ,   ( )-  
 

  
  ( )        ( )                    .............  

Proof. By definition        ,  ( )-   ( )     
 

√  
∫       

  
 ( )    

   ( )     
 

√  
∫       

  
(  ) ( )    diff. w.r.to „k‟ 

      ( )     
 

√  
∫       

  
( ) ( )     ,  ( )-       ( )   

    ( )     
 

√  
∫       

  
(  )  ( )    again diff. w.r.to „k‟ 

       ( )     
 

√  
∫       

  
(  ) ( )     ,   ( )-       ( )   

Continuing in this mannar we can get the required result as follows; 

  ,   ( )-       ( )  
 

  
  ( )                    .............  

  ,   ( )-   (  ) 
  

   
 ( )                    .............  

Where we use the result      .
 

 
/
 
 .

 

 
 

 

 
/
 
 .

 

  
/
 
 (  )  
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FOURIER TRANSFORM OF AN INTEGRAL 

Let   be piecewise continuous on the interval (    ) and that 

 ∫ | ( )|
 

  
    also  ( )    with   ,  ( )-   ( ) then 

  {∫  (  )
 

  
   }  

 

   
 ( )  

 

 
 ( )  

Proof. Let    ( )  ∫  (  )
 

  
     ……………..(i) 

Given that    ,  ( )-   ( )  
 

√  
∫       

  
 ( )   

  ( )  
 

√  
∫  ( )
 

  
     putting k = 0 also      

 
 

√  
∫  ( )
 

  
        since  ( )    

 ∫  ( )
 

  
        

   
∫  (  )
 

  
         

   
 ( )     

Now from (i) we get by using Leibniz Rule 

  ( )   (  )    *  ( )+    * (  )+  (   )  * ( )+   ( )  

   * ( )+  
 

   
 ( )  

   * ( )+    {∫  (  )
 

  
   }  

 

   
 ( )  

 

 
 ( )  

 

FOURIER INTEGRAL THEOREM  

(UoS; 2019 – I, 2014 – II, 2015 – I ) 

If    ( )  is real valued function over (     ) and the integral ∫  ( )
 

  
   is 

absolutely convergent then      ( )  
 

 
∫   
 

 
∫     (    ) (  )   
 

  
  

PROOF: Since ∫  ( )
 

  
   is absolutely convergent then F.T and I.F.T of 

function exists. 

  ( )  
 

√  
∫        

  
 ( )       since     *  ( )+    ( ) 

  ( )  
 

√  
0∫        

  
 ( )   ∫        

 
 ( )  1 ………….(i) 
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Put in 1
st
 term                    also if        then        

( )    ( )  
 

√  
0∫        

 
 (   )(    )  ∫        

 
 ( )  1  

  ( )  
 

√  
[∫        

 
 (   )    ∫        

 
 ( )  ]  

  ( )  
 

√  
[∫       

 
 (  )   ∫        

 
 ( )  ]    replacing    with k 

  ( )  
 

√  
∫ [      ( )̅̅ ̅̅ ̅̅         ( )]
 

 
    ………….(ii)     (  )   ( )̅̅ ̅̅ ̅̅  

Consider    ( )  
 

√  
∫        

  
 (  )    

  ( )̅̅ ̅̅ ̅̅  
 

√  
∫         

  
 (  )̅̅ ̅̅ ̅̅ ̅      taking conjugate 

Then         ( )  
 

√  
∫     (    )  

  
 (  )    

Also         ( )̅̅ ̅̅ ̅̅  
 

√  
∫    (    )  

  
 (  )̅̅ ̅̅ ̅̅ ̅    

Since  ( ) is real therefore  (  )̅̅ ̅̅ ̅̅ ̅   (  ) 

Now        ( )̅̅ ̅̅ ̅̅         ( )  
 

√  
∫ [   (    )      (    )]
 

  
 (  )    

      ( )̅̅ ̅̅ ̅̅         ( )  
 

√  
∫

 

 
[   (    )      (    )]

 

  
 (  )     

      ( )̅̅ ̅̅ ̅̅         ( )  
 

√  
∫     (    )
 

  
 (  )     

(  )   ( )  
 

√  
∫

 

√  
∫     (    )
 

  
 (  )   

 

 
    

  ( )  
 

  
∫   
 

 
∫     (    ) (  )   
 

  
  

  ( )  
 

 
∫   
 

 
∫     (    ) (  )   
 

  
  as required. 
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THE FOURIER TRANSFORMS OF STEP AND IMPULSE FUNCTIONS 

The Heaviside unit step function is defined by 

  (     )   2
              
              

     where a ≥ 0 

The Fourier transform of the Heaviside unit step function can be easily 

determined. We consider first 

  ,  (     )-    
 

√  
∫       

  
  (     )    

  ,  (     )-    
 

√  
∫       

  
  (     )   

 

√  
∫       

 
  (     )    

  ,  (     )-    
 

√  
∫       

  
     

 

√  
∫       

 
     

 

√  
∫       

 
    

This integral does not exist. However, we can prove the existence of this 

integral by defining a new function 

  (     )       2
              

                  
 

This is evidently the unit step function as      . Thus, we find the Fourier 

transform of the unit step function as 

  ,  (     )-             ,  (     )     -   

  ,  (     )-           
 

√  
∫       

  
  (     )         

  ,  (     )-           
 

√  
∫       

 
                

 

√  
∫   (   )   

 
    

  ,  (     )-   
 

√  
∫       

 
   

     

√    
     For a = 0    ,  (  )-   

 

√    
 

 

An impulse function is defined by 

  (  )   2
                                  
                              

   

where h is large and positive,      , and   is a small positive constant, This 

type of function appears in practical applications; for instance, a force of large 

magnitude may act over a very short period of time. 
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The Fourier transform of the impulse function is 

  ,  (  ) -    
 

√  
∫       

  
  (  )    

  ,  (  ) -    
 

√  
∫           

  
  (  )   

 

√  
∫          

     
  (  )   

 

√  
∫       

    
  (  )    

  ,  (  ) -    
 

√  
∫           

     
    

 

√  
|
     

  
|
     

     

  

  ,  (  ) -    
 

√  
 
 

  
(   (    )     (    ) )  

  ,  (  ) -    
 

√  
 
     

  
(            )  

   

√  
     .

            

    
/  

   

√  
     .

     

  
/  

Now if we choose the value of     (
 

  
) then the impulse defined by 

  ( )  ∫   (  )  
 

  
 ∫

 

  

    

     
      

which is a constant independent of  . In the limit as      , this particular 

function    (  ) with h = (1/2ε) satisfies            (  )                        

and           ( )    

Thus, we arrive at the result    (    )   ,     , and ∫  (   )  
 

  
   

This is the Dirac delta function  

We now define the Fourier transform of  ( ) as the limit of the transform of 

   (  ). We then consider 

  ,  (     )  -              ,   (  )  -          
     

√  
.
     

  
/  

     

√  
  

in which we note that, by L‟Hospital‟s rule,         .
     

  
/     

When a = 0, we obtain                ,  ( )  -   
 

√  
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FOURIER COSINE TRANSFORMATION AND INVERSE  

Let   ( ) be defined for            and extended as an even function in 

(    ) satisfying the conditions of Fourier Integral formula. Then, at the 

points of continuity, the Fourier cosine transform of  ( ) and its inverse 

transform are defined by 

   *  ( )+      ( )  √
 

 
∫   ( )
 

 
         

   
  *   ( )+    ( )  √

 

 
∫    ( )
 

 
         

 

FOURIER SINE TRANSFORMATION AND INVERSE  

Let   ( ) be defined for            and extended as an odd function in 

(    ) satisfying the conditions of Fourier Integral formula. Then, at the 

points of continuity, the Fourier sine transform of  ( ) and its inverse 

transform are defined by 

   *  ( )+      ( )  √
 

 
∫   ( )
 

 
         

   
  *   ( )+    ( )  √

 

 
∫    ( )
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Example: (Just read) 

 Show that     * 
   +  √

 

 
.

 

     /           

Solution:  We have, by definition 

   *  ( )+      ( )  √
 

 
∫   ( )
 

 
         

   * 
   +  √

 

 
∫      

 
.
          

 
/   

 

 
 √

 

 
∫ [  (    )    (    ) ]
 

 
    

   * 
   +  

 

 
 √

 

 
0

 

    
 

 

    
1     

   * 
   +  √

 

 
.

 

     /           

Example: (Just read) 

Show that     * 
   +  √

 

 
.

 

     /           

Solution:  We have, by definition 

   *  ( )+      ( )  √
 

 
∫   ( )
 

 
         

   * 
   +  √

 

 
∫      

 
.
          

  
/   

 

  
 √

 

 
∫ [  (    )    (    ) ]
 

 
    

   * 
   +  

 

  
 √

 

 
0

 

    
 

 

    
1     

   * 
   +  √

 

 
.

 

     /           

Example: (Just read) 

 Show that    
   2

 

 
    3  √

 

 
     .

 

 
/   

Solution:  To prove this we use the standard definite integral 

√
 

 
  

   {    }  √
 

 
∫      
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Integrating both sides w.r.to „s‟ from „s‟ to „ ‟ 

∫
    

 

 

 
         ∫

   

     

 

 
 |     .

 

 
/|

 

 
 

 

 
      .

 

 
/  

Consequently  

  
   2

 

 
    3  √

 

 
∫

    

 

 

 
        √

 

 
     .

 

 
/    

Example: (UoS; Past papers)  

Show that     *  
   +  √

 

 

     

(     ) 
           

Solution:  We have, by definition 

   *  ( )+      ( )  √
 

 
∫   ( )
 

 
         

   *  
   +  √

 

 
∫       

 
         

   *  
   +  √

 

 
[| (∫           )| 

  ∫ (∫           )
 

 
  ] ……..(i) 

Now using formula ∫           
   

     
,             - one becomes 

   *  
   +  

√
 

 
0|  

    

     
,              -|

 

 

 ∫ .
    

     
,              -/

 

 
  1  

   *  
   +  √

 

 
0(   )  

 

     ∫            
 

 
 

 

     ∫            
 

 
1  

 √
 

 
0

 

     |
    

     
,              -|

 

 

 
 

     |
    

     
,              -|

 

 

1  

   *  
   +  √

 

 
0

 

     2  .
  

     /3  
 

     2  .
  

     /31  

   *  
   +  √

 

 
0

  

(     ) 
 

  

(     ) 
1  

   *  
   +  √

 

 
0

     

(     ) 
1   as required. 
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Example: (UoS; Past papers)  

Show that     *  
   +  √

 

 

   

(     ) 
           

Solution:  We have, by definition 

   *  ( )+      ( )  √
 

 
∫   ( )
 

 
         

   *  
   +  √

 

 
∫       

 
         

   *  
   +  √

 

 
[| (∫           )| 

  ∫ (∫           )
 

 
  ] ……..(i) 

Now using formula ∫           
   

     
,             - one becomes 

   *  
   +  

√
 

 
0|  

    

     
,              -|

 

 

 ∫ .
    

     
,              -/

 

 
  1  

   *  
   +  √

 

 
0(   )  

 

     ∫            
 

 
 

 

     ∫            
 

 
1  

 √
 

 
0

 

     |
    

     
,              -|

 

 

 
 

     |
    

     
,              -|

 

 

1  

   *  
   +  √

 

 
0

 

     2  .
  

     /3  
 

     2  .
  

     /31  

   *  
   +  √

 

 
0

  

(     ) 
 

  

(     ) 
1  

   *  
   +  √

 

 

   

(     ) 
             as required. 
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Example: (UoS; 2013 – I)  

Calculate Fourier Sine Transform of the function    ( )           

Solution:  We have, by definition 

   *  ( )+      ( )  √
 

 
∫   ( )
 

 
         

   * 
      +  √

 

 
∫        
 

 
        

 

 
√

 

 
∫     

 
(          )    

   *  
   +  

 

√  
∫     

 
,   (    )     (    )-    

   *  
   +  

 

√  
∫     

 
   (   )    

 

√  
∫     

 
   (   )     

   *  
   +  

 

√  
   

 

√  
     ……………..(i) 

Now using formula ∫           
   

     
,             - 

   ∫     

 
   (   )    |

   

(  )  (   ) 
,(  )   (   )  (   )   (   ) -|

 

 

  

   0  
  

  (   ) 
*   (   )( )+1  

 

         
(   )  

(   )

       
  

Similarly 

   ∫     

 
   (   )    |

   

(  )  (   ) 
,(  )   (   )  (   )   (   ) -|

 

 

  

   0  
  

  (   ) 
*   (   )( )+1  

 

         
(   )  

(   )

       
  

( )     *  
   +  

 

√  
0

(   )

       
 

(   )

       
1  

    *  
   +  

 

√  
0

   

    
1  

    *  
   +  √

 

 
0

  

    
1  
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Example: (UoS; 2015 – I)  

Calculate Fourier Sine Transform of the function    ( )  2
              
                     

  

Solution:  We have, by definition 

   *  ( )+      ( )  √
 

 
∫   ( )
 

 
         

   *  ( )+  √
 

 
∫     
 

 
        √

 

 
∫   
 

 
         

   *  ( )+  √
 

 
∫     
 

 
        √

 

 
. 

 

 
/ ∫ (           )

 

 
    

   *  ( )+  
  

√  
∫ ,   (    )     (    )-
 

 
    

   *  ( )+  
  

√  
∫    (   ) 
 

 
   

 

√  
∫    (   ) 
 

 
    

   *  ( )+  
  

√  
|
   (   ) 

   
|
 

 

 
 

√  
|
   (   ) 

   
|
 

 

  

   *  ( )+  
 

√  
|
   (    )

   
 

   (    )

   
|
 

 

 
 

√  
0.

   (    )

   
 

   (    )

   
/   1  

   *  ( )+  
 

√  
[
                   

   
 

                   

   
] 

   *  ( )+  
 

√  
0
      

   
 

     

   
1    since         

   *  ( )+  
     

√  
0

 

   
 

 

   
1  

   *  ( )+  
     

√  
0

       

(   )(   )
1  

   *  ( )+  
     

√  
0

  

    
1  

   *  ( )+   √
 

 
0
     

    
1  

 

 

 



107 
 

   MUHAMMAD USMAN HAMID (0323 – 6032785) 

Example:  Evaluate      * 
   +           * 

   + 

Solution:   

 

We have by definition 

    * 
   +      ( )  √

 

 
∫      

 
         …………….(  ) 

   * 
   +      ( )  √

 

 
∫      

 
         …………….(  ) 

Firstly we calculate       for this we consider the complex valued function 

  ( )                         

Which is analytic in the closed contour    then by Cauchy Theorem 

 
 
 ( )      

∫  ( )  
 

 
 ∫

  
 ( )   ∫  ( )  

 

 
 ∫

  
 ( )      

If        then by Jordan theorem ∫
  
 ( )       ∫

  
 ( )     

∫  ( )  
 

 
 ∫  ( )  

 

 
    

∫           
 

 
 ∫ (  )      (  )(   )

 

 
    

∫           
 

 
  ∫ ( )   ( )      (  )(   )

 

 
  

∫           
 

 
 ∫ ( ) ( )      (  )  

 

 
  

( )  ∫           
 

 
 ∫ ( )      (  )  

 

 
  

 ( )   .   
 

 
     

 

 
/
  

 .  
 

 /
  

    
 

 
 

  

   
 

 
 
∫           
 

 
 ∫ ( )      (  )  

 

 
  

.   
 

 
      

 

 
 /∫           

 

 
 ∫ ( )   (            )  
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Comparing real and imaginary parts 

.   
 

 
 /∫           

 

 
 ∫ ( )   (     )  

 

 
   …………(i) 

.   
 

 
 /∫           

 

 
 ∫ ( )   (     )  

 

 
  …………(ii) 

Put x = y in both above 

( )  ∫     (     )  
 

 
 .   

 

 
 /∫           

 

 
   …………(iii) 

(  )  ∫     (     )  
 

 
 .   

 

 
 /∫           

 

 
    …………(iv) 

Multiplying √
 

 
 on both sides of (iii) 

 √
 

 
∫     (     )  
 

 
 √

 

 
.   

 

 
 /∫           

 

 
  

    * 
   +  √

 

 
.   

 

 
 /∫           

 

 
  

    * 
   +  √

 

 
.   

 

 
 /∫ .

 

 
/
   

     

 

 

 
          

 

 
 

    * 
   +  

 

  
√

 

 
.   

 

 
 /∫ ( )        

 

 
  

    * 
   +  √

 

 
.   

 

 
 /

 ( )

  
  

Multiplying √
 

 
 on both sides of (iv) 

 √
 

 
∫     (     )  
 

 
 √

 

 
.   

 

 
 /∫           

 

 
  

    * 
   +  √

 

 
.   

 

 
 /∫           

 

 
  

    * 
   +  

 

 
√

 

 
.   

 

 
 /∫ .

 

 
/
   

     
 

 
          

 

 
 

    * 
   +  

 

  
√

 

 
.   

 

 
 /∫ ( )        

 

 
  

    * 
   +  √

 

 
.   

 

 
 /

 ( )
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Theorem :  Let f (x) and its first derivative vanish as x → ∞. If    ( ) is the 

Fourier cosine transform, then       *    ( )+         ( )  √
 

 
   ( ) 

PROOF: Consider   ( ) is real and         |  ( )|    then  

   *    ( )+  √
 

 
∫     ( )
 

 
         

   *    ( )+  √
 

 
[|        ( )| 

  ∫    ( )
 

 
(       )  ]  

   *    ( )+  √
 

 
[        |        ( )|          |        ( )|   ∫    ( )

 

 
       ]  

   *    ( )+  √
 

 
[     ( )   ∫    ( )

 

 
       ]  

   *    ( )+  6 √
 

 
   ( )   8√

 

 
|       ( )| 

  √
 

 
∫   ( )
 

 
(      )  97  

   *    ( )+  6 √
 

 
   ( )   8√

 

 
|       ( )| 

   √
 

 
∫   ( )
 

 
(     )  97  

   *    ( )+  6 √
 

 
   ( )   8√

 

 
(        |       ( )|          |       ( )|)      ( )97   

   *    ( )+         ( )  √
 

 
   ( )  

In a similar manner, the Fourier cosine transforms of higher-order 

derivatives of f (x) can be obtained. 
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Theorem :  Let f (x) and its first derivative vanish as x → ∞. If    ( ) is the 

Fourier cosine transform, then       *    ( )+   √
 

 
   ( )       ( ) 

PROOF: Consider   ( ) is real and         |  ( )|    then  

   *    ( )+  √
 

 
∫     ( )
 

 
         

   *    ( )+  √
 

 
[|        ( )| 

  ∫    ( )
 

 
(     )  ]  

   *    ( )+  √
 

 
[        |        ( )|          |       ( )|   ∫    ( )

 

 
       ]  

   *    ( )+  √
 

 
[     ∫    ( )

 

 
       ]  

   *    ( )+    6√
 

 
|       ( )| 

  √
 

 
∫   ( )
 

 
(       )  7  

   *    ( )+  

  6√
 

 
(        |       ( )|          |       ( )|)   √

 

 
∫   ( )
 

 
(     )  7  

   *    ( )+    6√
 

 
(        |       ( )|          |       ( )|)      ( )7   

   *    ( )+   √
 

 
   ( )       ( )  

In a similar manner, the Fourier sine transforms of higher-order 

derivatives of   ( ) can be obtained. 

REMARK: 

   ,  ( )-    (   )   ,  ( )-    (   )    ( )              ...... 

 If     *   +    *   +  
 

  
  *  (   )+  (   )   *  (   )+ when „x‟ varies not „t‟ 

 When range of spatial variable is infinite then Fourier transform is used rather than 

the sine or cosine. 

 If boundry conditions are of the form  (   )         then use Sine transform, 

while conditions are of the form   (   )         then use Cosine transform, 
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EXAMPLE: Solve the potential equation for the potential  (   ) in the semi 

infinite strip             that satisfies the following conditions; 

 (   )           (   )         (   )   ( )  

Solution: the potential equation is given as                           

Since the BC‟s are in the form    (   )           therefor we use fourier 

cosine transform w.r.to „y‟ 

   *   +     {   }    
  

   
   * (   )+     {   }     

 
  

   
   (   )  6      (   )  √

 

 
  (   )7     

 
  

   
   (   )       (   )     

Then general solution will be     (   )     
      

    ………….(i) 

Now using BC‟s     (   )      *  (   )+      (   )    

( )    (   )       
     

          

Now   
 

  
   (   )      

       
    ………….(ii) 

using BC‟s     (   )   ( )    *  (   )+   ( )  
 

  
  (   )    ( ) 

(  )  
 

  
  (   )    ( )      

       
     

 
 

  
  (   )    ( )       

       
      since        

   ( )      ( 
       )      

  ( )

  (
        

 
*
  

  ( )

        
  

     
  ( )

        
    

  ( )

        
    since        

Then  ( )    (   )  
  ( )

        
    

  ( )

        
      

  (   )  
  ( )

       
.
        

 
/  

  ( )

       
        

   
  *  (   )+    

  2
  ( )

       
      3  
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  (   )  √
 

 
∫

  ( )

       
      

 

 
        √

 

 
∫

           

       

 

 
  ( )    

  (   )  √
 

 
∫

           

       

 

 
6√

 

 
∫   (  )
 

 
         7    

  (   )  
 

 
∫ ∫

                 

       

 

 

 

 
  (  )       

 

EXAMPLE: Solve the problem using Fourier Transformation method  

       with   (   )           (   )                    

Solution: BC‟s suggest that  we should use fourier sine transform w.r.to „x‟ 

   *  +     *   +  
 

  
   * (   )+     *   +  

 
 

  
   (   )  √

 

 
  (   )       (   )  √

 

 
         (   )  

 
 

  
   (   )       (   )  √

 

 
       …………….(i) 

This is 1
st
 order, linear, non – homogeneous ODE 

Therefore  I.F. =  ∫          

( )       

  
   (   )       (   ) 

    √
 

 
    

     

 ∫
 

  
         ∫√

 

 
    

        + Cosntant 

        √
 

 
   

    

  
     (   )  √

 

 

  

 
         …………….(ii) 

Now using IC‟s    (   )      *  (   )+      (   )    

(  )    (   )    √
 

 

  

 
        √

 

 

  

 
  

Thus  (  )    (   )  √
 

 

  

 
 √

 

 

  

 
      √

 

 

  

 
(       ) 

   
  *  (   )+    

  8√
 

 

  

 
(       )9  

  (   )  √
 

 
∫ √

 

 

  

 
(       )

 

 
        

  

 

 

 
∫ (       )
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EXAMPLE: Solve the problem using Fourier Transformation method    

       with   (   )      (   )   ( )                

Solution:  BC‟s suggest that  we should use fourier cosine transform w.r.to „x‟ 

   *  +     *   +  
 

  
   * (   )+     *   +  

 
 

  
   (   )  6      (   )  √

 

 
  (   )7        (   )     

 
 

  
   (   )       (   )     …………….(i) 

This is 1
st
 order, linear, homogeneous ODE 

Then general solution will be     (   )         ………….(ii) 

Now using IC‟s 

  (   )   ( )    *  (   )+    * ( )+    (   )    ( )  

Thus  ( )    (   )    ( )          ( ) 

( )    (   )    ( ) 
      

   
  *  (   )+    

  {  ( ) 
    }  

  (   )  √
 

 
∫   ( ) 

     

 
         

  (   )  √
 

 
∫ 6√

 

 
∫  (  )
 

 
         7       

 
         

  (   )  
 

 
∫ [∫  (  )

 

 
         ]      
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Example: (UoS; 2017) :       Solve the problem using Fourier 

Transformation method                         

with  (   )       
   ( )   ( )                

Solution: since        therefore we should use fourier transform w.r.to „x‟ 

  *   +     *  +  

 (   )   * (   )+  
 

  
  * (   )+      (   )  

 

  
 (   )  

 
 

 

  

  
     ∫

  

 
    ∫               

  (   )           (   )       
   ……………(i)  where      

Now using IC‟s 

  (   )       
  *  (   )+   {     

}  

  (   )  
 

√  
∫           

  
 

  
 

 

√  
∫         

  
 

  
  

  (   )  
 

√  
∫  

  [.  
  

  
/
 
 

 

   

 
]  

  
    

  (   )  
 
 
  

  
 

√  
∫  

  .  
  

  
/
 
  

  
    

Put  .  
  

  
/
 

    √ .  
  

  
/    √          

  

√ 
 

  (   )  
 
 
  

  
 

√  
∫  

  .  
  

  
/
 
  

  
   

 
 
  

  
 

√  
∫       

  
 
  

√ 
  

  (   )  
 
 
  

  
 

√   
 √    ∫       

  
   √  

  (   )  
 

√  
 
( 

  

  
* 

  ……………(ii)     

( )   (   )        
 

√  
 
( 

  

  
* 

  

Thus    (   )  
 

√  
 
( 

  

  
* 
    

 
 

√  
 
   .  

 

  
/ 

 

Consider    𝐢𝐤𝐱  𝐚𝐱𝟐  

  𝐚.𝒙𝟐  
𝐢𝐤𝐱

𝒂
/  

  𝐚 <
.𝒙𝟐  

𝟐𝐢𝐤𝐱

𝟐𝒂
/    

 .
𝐢𝐤

𝟐𝒂
/
𝟐

 .
𝐢𝐤

𝟐𝒂
/
𝟐=  

  𝒂 [.𝐱  
𝐢𝐤

𝟐𝒂
/
𝟐

 
𝐤

𝟒𝒂𝟐

𝟐
]  
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    * (   )+     {
 

√  
 
   .  

 

  
/ 
}   

  (   )  
 

√  
 √

 

 
∫       

  
  

   .  
 

  
/ 
    

  (   )  
 

√   
∫    6 .  

 

  
/ 8   

   

.  
 

  
/
97

 

  
   ……………(iii)    

Since     
   

.  
 

  
/
     ( )4

  

 .  
 

  
/
5  4

  

 .  
 

  
/
5

 

 4
  

 .  
 

  
/
5

 

 

   
   

.  
 

  
/
 4  

  

 .  
 

  
/
5

 

 
  

 .  
 

  
/
   

(   )   (   )  
 

√   
∫    [ .  

 

  
/ 4  

  

 .  
 

  
/
5

 

]  

:
  

 .  
 
  

/
 ;

 

  
    

  (   )  
 

(
  

 .  
 
  

/
 ,

√   
∫    [ .  

 

  
/ 4  

  

 .  
 

  
/
5

 

]
 

  
    …………..(iv) 

Now put  .  
 

  
/ 4  

  

 .  
 

  
/
5

 

    √.  
 

  
/ 4  

  

 .  
 

  
/
5    

 √.  
 

  
/         

 

√.  
 

  
/

    

(  )   (   )  
 

(
  

 .  
 
  

/
 ,

√    √.  
 

  
/
∫       

  
   

 

(
  

 .  
 
  

/
 ,

√    
 

√  
√     

 √   

  (   )  
 

√     
 
(

   

     
*
  

 



116 
 

   MUHAMMAD USMAN HAMID (0323 – 6032785) 

Example: (UoS; 2017 – II) :       Solve the problem using Fourier 

Transformation method    (   )       (   )                 

with   (   )   ( )  | (   )|     

Solution: since        therefore we should use fourier transform w.r.to „x‟ 

   *  +      *   +  

 
 

  
  * (   )+    (   )   * (   )+  

 

  
 (   )        (   )  

 
 

 

  

  
       ∫

  

 
      ∫                 

  (   )             (   )         
   ……………(i)  where      

Now using IC‟s 

   (   )   ( )      | (   )|     (   )   ( )  

  * (   )+   * ( )+      (   )   ( )  

( )   (   )         ( )  

Thus  ( )   (   )   ( )        

    * (   )+     { ( )      
}   

  (   )  
 

√  
∫       

  
  ( )           

  (   )  
 

√  
∫       

  
0

 

√  
∫       

  
 (  )   1            

  (   )  
 

  
∫ [∫     (    )        

 

  
]

 

  
 (  )    ……………(iii)    

Now consider   ∫     (    )        
 

  
 

  ∫          
  

 

  
   put        and       

  ∫  
  .   

  

 
/
  

 

  
  

  ∫  
  .  

  

  
/
 

  
 

  

    
 

  
  

   
 

  

  ∫  
  .  

  

  
/
 

  
 

  
   ……….(iv) 

 (𝒌  
𝐢𝒖

𝟐𝜷
*
𝟐

 (
𝐢𝒖

𝟐𝜷
*
𝟐

 

 (𝒌  
𝐢𝒖

𝟐𝜷
*
𝟐

 
𝒖𝟐

𝟒𝜷𝟐
 

Consider    𝒌𝟐  
𝐢𝐤

𝜷
𝒖  

 𝒌𝟐  𝟐𝐤.
𝐢𝒖

𝟐𝜷
/  .

𝐢𝒖

𝟐𝜷
/
𝟐

 

.
𝐢𝒖

𝟐𝜷
/
𝟐
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Put  .  
  

  
/
 

    √ .  
  

  
/    √          

  

√ 
 

(  )     
 

  

  ∫       

  
 
  

√ 
 

  

√ 
 
 

  

  ∫       

  
   

 

√ 
 
 

  

   √   

(   )   (   )  
 

  
∫

√ 

√ 
 
 

  

  
 

  
 (  )      

  (   )  
 

 √  √ 
∫

√ 

√   
 
 

(    )
 

 (   )
 

  
 (  )     

  (   )  
 

 √     
∫  

 
(    )

 

 (   )
 

  
 (  )     

Example: 

Solve the problem using Fourier Transformation method        
 

  
      

with  (   )   ( )   (   )     ( ) and                            

Solution: since        therefore we should use fourier transform w.r.to „x‟ 

  *     +  
 

  
   *   +  

 (   )   * (   )+  
 

  

  

   
  * (   )+       (   )  

  

   
 (   )  

 
  

   
           

  (   )                   ……………(i) 

 
 

  
 (   )                         ……………(ii) 

Now using IC‟s     (   )   ( )   *  (   )+   * ( )+   (   )   ( )  

Then ( )   (   )               ( ) ……………(iii) 

Also   (   )     ( )   *   (   )+   *   ( )+ 

 
 

  
 (   )   (   )   *  ( )+  

 

  
 (   )       ( )  

Then (  )  
 

  
 (   )                     ( )            

    ( )  (   )       
 

 
 ( ) ……………(iv)  
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Adding (iii) and (iv)    
 

 
0 ( )  

 

 
 ( ) 1 

Subtracting (iii) and (iv)    
 

 
0 ( )  

 

 
 ( ) 1 

Then (i) becomes 

  (   )  
 

 
0 ( )  

 

 
 ( ) 1       

 

 
0 ( )  

 

 
 ( ) 1         

  (   )   ( ) [
            

 
 ]  

 

 
 ( ) [

            

 
  ]  

  (   )   ( )         
 

 
 ( )          

    * (   )+     * ( )        +     2
 

 
 ( )        3   

  (   )  
 

√  
0∫       

  
 ( )           ∫       

  

 

 
 ( )          1  

  (   )  
 

√  
∫       

  
 (   )      is our required solution. 

 

Example: (UoS; 2017 – I, II) :       Solve the problem using Fourier 

Transformation method      
 

  
      

with  (   )   ( )   (   )   ( ) and                 

Solution: since        therefore we should use fourier transform w.r.to „x‟ 

  *   +  
 

  
   *   +  

 (   )   * (   )+  
 

  
  

   
  * (   )+        (   )  

  

   
 (   )  

 
  

   
            (   )                     

  (   )    .
            

 
/    .

            

 
/  

  (   )  .
     

 
/       .

     

 
/         

  (   )                  ……………(i) 

 
 

  
 (   )                      ……………(ii) 

Now using IC‟s     (   )   ( )   *  (   )+   * ( )+   (   )   ( )  
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Then ( )   (   )               ( ) ……………(iii) 

Also   (   )   ( )   *   (   )+   * ( )+  
 

  
 (   )   ( ) 

Then (  )  
 

  
 (   )                

  ( )     (   )      
 

   
 ( ) ……………(iv)  

Adding (iii) and (iv)    
 

 
0 ( )  

 

   
 ( ) 1 

Subtracting (iii) and (iv)    
 

 
0 ( )  

 

   
 ( ) 1 

Then (i) becomes 

  (   )  
 

 
0 ( )  

 

   
 ( ) 1       

 

 
0 ( )  

 

   
 ( ) 1         

  (   )   ( ) 0
            

 
 1  

 

   
 ( ) 0

            

 
 1  

    * (   )+  

 

 
[   { ( )     }     { ( )      }]  

 

    
   { ( )(            )} ….(A) 

   { ( )     }  
 

√  
∫       

  
 ( )        

 

√  
∫    (    )  

  
 ( )    

   { ( )     }   (    )  

Similarly     { ( )      }   (    ) 

And consider   ( )     * ( )+  
 

√  
∫       

  
 ( )   

∫  ( )  
    

    
 

 

√  
∫ ∫       

  
 ( )    

    

    
  

∫  ( )  
    

    
 

 

√  
∫ ∫       

    ( )  
    

    

 

  
 

 

√  
∫ |

      

   
|
    

    
 

  
 ( )    

∫  ( )  
    

    
 

 

√  
∫

 

   
[    (    )      (    )]

 

  
 ( )    

∫  ( )  
    

    
 

 

√  
∫

 

  
[    (    )      (    )]

 

  
 ( )    

 

  
∫  ( )  
    

    
 

 

   

 

√  
∫      [            ]
 

  

 ( )

 
    

 

  
∫  ( )  
    

    
 

 

   
   2(            )

 ( )

 
  3  

( )   (   )  
 

 
, (    )   (    )-  

 

  
∫  (  )   
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THE DOUBLE FOURIER TRANSFORM AND ITS INVERSE 

Let  (     ) be a function defined over the whole plane i.e.            

then its fourier transform and inverse are defined as follows; 

 * (     )+   (     )  
 

(√  )
 ∫ ∫  (     ) 

 (         )
 

  

 

  
        

   * (     )+   (     )  
 

(√  )
 ∫ ∫  (     ) 

  (         )
 

  

 

  
        

 

THREE DIMENSIONAL FOURIER TRANSFORM AND ITS INVERSE 

Let  (        ) be a function defined over the whole plane i.e. 

              then its fourier transform and inverse are defined as 

follows; 

 * (        )+   (        )  

 

(√  )
 ∫ ∫ ∫  (        ) 

 (              )
 

  

 

  

 

  
           

   * (        )+   (        )  

 

(√  )
 ∫ ∫ ∫  (        ) 

  (              )
 

  

 

  

 

  
           

 

n - DIMENSIONAL FOURIER TRANSFORM AND ITS INVERSE 

 * (∑   
 
   )+   (∑   

 
   )  

 

(√  )
 ∫  (∑   

 
   )  (∑     

 
   )

         
 ∑   

 
     

   * (∑   
 
   )+   (∑   

 
   )  

 

(√  )
 ∫  (∑   

 
   )   (∑     

 
   )

         
 ∑   
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FOURIER SERIES 

A trigonometric series with any piecewise continuous periodic function 

  ( ) of period    and of the form   ( )  
  

 
 ∑ (                    )

 
      

is called the Fourier Series of a real valued function  ( ) where the symbol   

indicates an association of a0, ak, and bk to   in some unique manner.  

Where     

   
 

 
∫  ( )  
 

  
      

 

 
∫  ( )       
 

  
      

 

 
∫  ( )       
 

  
  

And are called Fourier Coefficiets. 

We may also write     ( )  
  

 
 ∑ (                    )

 
    

COMPLEX FORM OF FOURIER SERIES 

Fourier Series expansion for in complex form is given as follows 

  ( )  ∑    
    

              ;          Where     

   
 

  
∫  ( )       
 

  
 

OR     ( )  ∑    
 
   

  
            Where        

 

  
∫  ( )   

  

   
 

  
 

Example (just read)  :Find the Fourier series expansion for the function                                            

f(x) = x+ x
2
,        

Solultion: Here      
 

 
∫  ( )  
 

  
 

   

 
  

   
 

 
∫  ( )       
 

  
 

 

  
      

 

  
(  )                  

   
 

 
∫  ( )       
 

  
  

 

 
       

 

 
(  )                  

Therefore, the Fourier series expansion for   is 

  ( )  
  

 
 ∑ (                    )

 
     

  ( )  
  

 
 ∑ (

 

  
(  )          

 

 
(  )        ) 

     

  ( )  
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Example (just read): Find the Fourier series expansion for the function 

  ( )  2
                       
                     

  

Solultion: Here 

   
 

 
∫  ( )  
 

  
 

 

 
0∫  ( )  

 

  
 ∫  ( )  

 

 
1   

 

 
  

   
 

 
∫  ( )       
 

  
 

 

 
0∫  ( )       

 

  
 ∫  ( )       

 

 
1  

   
 

   
(       )  

 

   
[(  )    ]                 

   
 

 
∫  ( )       
 

  
 

 

 
0∫  ( )       

 

  
 ∫  ( )       

 

 
1  

   
 

 
(        )  

 

 
[   (  ) ]                

Therefore, the Fourier series expansion for   is 

  ( )  
  

 
 ∑ (                    )

 
     

  ( )   
 

 
  ∑ 0

 

   
[(  )    ]        

 

 
[   (  ) ]       )1 
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FOURIER INVERSION FORMULA: 

The proper inversion formula is given as 

 ( )  
 

√  
∫       

 

  

 ( )    

The formula nearly states that   is the fourier transform of  ( )                            

where  ( )    * ( )+ 

PROOF:  

by Fourier integral theorem   ( )  
 

 
∫   
 

 
∫     (    ) (  )   
 

  
 

    ( )  
 

 
∫   
 

 
∫     (    ) (  )   
 

  
  

   ( )  
 

 
∫  (  )   
 

  
∫     (    )  
 

 
     changing the order 

   ( )  
 

 
∫  (  )   
 

  
       ∫     (    )  

 

 
  ………(i) 

Since   ∫     (    )  
 

  
  ∫     (    )  

 

 
  ………(ii) 

Also   ∫     (    )  
 

  
    ∫     (    )  

 

  
     ………(iii) 

On subtraction from (ii) and (iii) we have 

∫ ,    (    )       (    )-  
 

  
  ∫     (    )  

 

 
  

 ∫     (    )  
 

  
  ∫     (    )  

 

 
  

 ∫     (    )  
 

 
 

 

 
∫     (    )  
 

  
  ………(iv) 

Hence from (i) and (iv) 

   ( )  
 

  
∫  (  )   
 

  
       ∫     (    )  

 

  
  

   ( )  
 

  
∫  (  )   
 

  
∫     (    )  
 

  
  

   ( )  
 

√  
∫       

  
   

 

√  
∫       (  )  
 

  
   

   ( )  
 

√  
∫        

  
 ( )     as required. 
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GREEN‟S FUNCTION AND ASSOCIATED BVP‟s 

 

THE KRONECKER DELTA FUNCTION:   

It is denoted by     and can be defined as follows; 

    {
              
              

  

DIRAC DELTA FUNCTION 

The dirac delta function is defined as follows; 

 ( )          ( )  {
              
              

       Or   (   )  {
              
              

 

PROPERTIES: 

i. ∫  ( )  
 

  
   

ii. For any continuous function  ( );   ∫  ( ) ( )  
 

  
  ( ) 

iii.  ( )   (  ) 

iv.  (  )  
 

 
 ( )           

v. SHIFTING PROPERTY: For any continuous function  ( );                     

 ∫  ( ) (   )  
 

  
  ( ) 

vi. If  ( ) is continuous differentiable. Then ∫  ( )  ( )  
 

  
    ( ) 

REMARK: 

i. Dirac delta function can be regarded as the generalization of 

Kronecker delta function. It strictly speaking a “generalized 

function” or “distribution function” or “ a unit impulse function” 

ii. In kronecker delta function     the indecis i,j, are integral variables, 

whereas in passing to direc delta function they become real 

continuous variables. 
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1
st
 SHIFTING PROPERTY OF DIRAC DELTA FUNCTION:  

For any continuous function  ( );  ∫  ( ) ( )  
 

  
  ( ) 

Where  ( ) is analytic (regualar or continuous function) at x = 0 

Proof: Since  ( ) has singularity at x = 0, the limits    and   of the 

integration may be changed to (or replace by)     and     where   is a 

small positive number. 

Since ∫  ( ) ( )  
 

  
       ∫  ( ) ( )  

   

   
 

Moreover, since  ( ) is continuous at x = 0. We obtain in    
   

 follow; 

 (   )   (   )   ( )   

Therefore  ∫  ( ) ( )  
 

  
  ( )       ∫  ( ) ( )  

   

   
 

since  ( ) has singularity at x = 0. Therefore 

∫  ( ) ( )  
 

  
  ( )    ( )  

 

2
nd

 SHIFTING PROPERTY OF DIRAC DELTA FUNCTION:  

(UoS, Past Paper) 

 For any continuous function  ( );  ∫  ( ) (   )  
 

  
  ( ) 

Where  ( ) is analytic (regualar or continuous function) at x = a 

Proof:  Consider ∫  ( ) (   )  
 

  
 

Set       and write   (   )   ( )   ( )   ( ) 

∫  ( ) (   )  
 

  
 ∫  (   ) ( )  

 

  
 ∫  ( ) ( )  

 

  
  

∫  ( ) (   )  
 

  
  ( )  by 1

st
 shifting property 

∫  ( ) (   )  
 

  
  ( )  by hypothesis 
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GREEN‟s FUNCTION 

Green‟s Function is the impulse response of non – homogeneous differential 

equation with specified initial and boundry conditions. 

 IMPORTANCE: it provides an important tool in the study of BVP‟s. it 

also have an intrinsic value for mathematicians. Such function is the response 

corresponding to the source unit. 

PROPERTIES OF GREEN‟s FUNCTION: (UoS; S.Q) 

i. Green‟s Function is denoted by  (    ) 

ii.  (    ) is symmetric i.e.  (    )   (    ) 

iii.  (    ) as a function of „x‟ satisfies the D Equation  
  

   
 (    )     in 

each of the interval        and        

iv.  (    )    and  (    )    which are the same BC‟s as those satisfied 

by   

v.  (    ) is continuous function of „x‟ in the interval ,     -  

(in constructing the Green‟s function, we will make use of its continuity 

at        and this can be seen from the following 

       
  (    )         

  (    )  

       
 

  

 
(   )         

 
 

 
(    )  

  

 
(    )  

  

 
(    )  

vi. If we calculate   (    )  
 

  
 (    ) we find that                            

  (    )  >

    

 
                      

  

 
                            

  and   (    ) will be  

discontinuous at      

(UoS – 2013) define Green’s function and write its properties. 
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AN IMPORTANT RESULT: ∫ ∫  (  )
  

 

 

 
       ∫ 0∫    

 

  
1

 

 
 (  )    

EXAMPLE: Solve the problem 
   

   
  ( ) with  ( )     ( )         

SOLUTION: This a Singular SL system with  ( )    

   

   
  ( )     ( )   ( )  ∫    ( )  

 

 
 ∫  ( )  

 

 
  

 |  ( )| 
  ∫  (  )   

 

 
   ( )    ( )  ∫  (  )   

 

 
  

 ∫ ,  ( )    ( )-
 

 
   ∫ [∫  (  )   

 

 
]

 

 
    

 ∫   ( )
 

 
   ∫   ( )

 

 
   ∫ ∫  (  )      

 

 

 
      

 | ( )| 
    ( )| | 

  ∫ [∫     
 

  ]
 

 
 (  )     

 , ( )   ( )-    ( ),   -  ∫ |   |  
  

 
 (  )     

  ( )     ∫ (    )
 

 
 (  )          where   ( )    (say) and  ( )    

  ( )  ∫ (    )
 

 
 (  )        ………….(i) 

Put         ( )  ∫ (    )
 

 
 (  )       

 ∫ (    )
 

 
 (  )           since   ( )    

    
 

 
∫ (    )
 

 
 (  )     ………….(ii) use it in (i) 

  ( )  ∫ (    )
 

 
 (  )    

 

 
∫ (    )
 

 
 (  )     

  ( )  ∫ (    )
 

 
 (  )    

 

 
∫ (    )
 

 
 (  )      ………….(iii) 

This is the solution of given problem. 

Now we can costruct a Green‟s Function by solving (iii) 

  ( )  ∫ (    )
 

 
 (  )    

 

 
0∫ (    )

 

 
 (  )    ∫ (    )

 

 
 (  )   1  

  ( )  ∫ 0     
 

 
(    )1

 

 
 (  )    

 

 
∫ (    )
 

 
 (  )     

  ( )  ∫ 0     
   

 
  1

 

 
 (  )    

 

 
∫ (    )
 

 
 (  )     
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  ( )  
  

 
∫ (   )
 

 
 (  )    

 

 
∫ (    )
 

 
 (  )     

  ( )  ∫  (    )
 

 
 (  )                                              

Where     (    )  >

  

 
(   )                      

 

 
(    )                            

    

is called Green‟s function of given problem. 

EXAMPLE: Solve and obtained the associated Green‟s Function 

   

   
      ( ) with  ( )     ( )         

SOLUTION: This a linear non – homogeneous DE of order 2 with constant 

coefficients. Its general solution is as follows; 

         

For Charactristic Solution: 

   

   
                                              

For Charactristic Solution: 

For this we will use Wronskian method (Variation of Parameters) 

Let                      

Where      ∫
      ( )

 

 

  
    and      ∫

      ( )

 

 

  
   

             |
          

             
|     

Then     ∫
       (  )

 

 

  
     and      ∫

       (  )

 

 

  
    

     ∫
       (  )

 

 

  
         ∫

       (  )

 

 

  
          

    
 

 
∫ ,                       - (  )    

  
  

    
 

 
∫    (      ) (  )    

  
    

 

 
∫     (    ) (  )    

  
  

    
 

 
∫     (    ) (  )    

 
   with      a fixed point 
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Thus for         we have 

 ( )                  
 

 
∫     (    ) (  )    

 
  …………..(i) 

  ( )       ( )       ( )  
 

 
∫     (    ) (  )    

 
  

       since  ( )    

  ( )                  
 

 
∫     (    ) (  )    

 
  put       

             
 

 
∫     (    ) (  )    

 
  

     
 

      
∫     (    ) (  )    

 
  

Using       in (i) 

 ( )   
     

      
∫     (    ) (  )    

 
 

 

 
∫     (    ) (  )    

 
  

 ( )   
     

      
0∫     (    ) (  )    

 
 ∫     (    ) (  )    

 
 

 

 
∫     (    ) (  )    

 
1  

 ( )  
 

 
∫ 0    (    )  

     

     
    (    )1  (  )    

     

      

 

 
∫     (    ) (  )    

 
  

 
 

 
∫ 0    (    )  

     

     
    (    )1

     

     
  (  )    

     

      

 

 
∫     (    ) (  )    

 
  

 ( )  

 

 
∫ ,(                       )      
 

 

     (                       )-
 (  )

     
    

     

      
∫     (    ) (  )    

 
  

 ( )  
 

 
∫ ,                                                   
 

 

                -
 (  )

     
    

     

      
∫     (    ) (  )    

 
  

 ( )  
 

 
∫ ,                                  -

 (  )

     
    

 

 

     

      
∫     (    ) (  )    

 
  

  
 

 
∫ ,       (                     )-

 (  )

     
    

     

      

 

 
∫     (    ) (  )    
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∫ ,      (                     )-

 (  )

     
    

     

      

 

 
∫     (    ) (  )    

 
  

  
 

 
∫ ,          (   )-

 (  )

     
    

     

      

 

 
∫     (    ) (  )    

 
  

 ( )  ∫
          (   )

      
 (  )    

 
 ∫

         (    )

      
 (  )    

 
  

 ( )  ∫  (    ) (  )    

 
  

Where    (    )  >

          (   )

      
                      

         (    )

      
                            

    

is called Green‟s function of given problem. 

Note:         i.e. „k‟ is not eigenvalue of associated homogeneous problem. 

PROPERTIES OF PREVIOUS GREEN‟s FUNCTION 

i.  (    ) is symmetric i.e.  (    )   (    ) 

ii.  (    ) as a function of „x‟ satisfies the D Equation  
  

   
 (    )     in 

each of the interval        and        

iii.  (    )    and  (    )    are the same BC‟s as those satisfied by the 

given Green‟s function.  

iv.  (    ) is continuous function of „x‟ in the interval ,     - and 

particularly  at        

v.   (    )  
 

  
 (    ) exists as                          

  (    )  >

          (   )

      
                      

         (    )

      
                      

  and   (    ) will be  

discontinuous at      

REMEMBER: The Greenn‟s Function technique is used to solve DE of the 

form (   )( )   ( )       where    is a linear operator with specified 

BC‟s. 
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EXITENCE OF GREEN‟s FUNCTION: 

If the homogeneous problem associated with SL system  

 

  
2 ( )

  

  
3   ( )     ( )    with usual BC‟s has trivial solution then 

Green‟s Function exists. 

In other words, if     is not an eigenvalue for  ( )     ( )    with 

usual BC‟s then Green‟s Function exists. 

 

GREEN‟s FUNCTION ASSOCIATED WITH REGULAR SL SYSTEM: 

Let  ( )     ( )    be the SL equation with the endpoint conditions 

   ( )      ( )    and    ( )      ( )     which may also be 

written as   ( )       
 

  
    and   ( )       

 

  
   where    is a 

BC‟s operatior define regular SL system and gives a trivial solution. Then the 

Green‟s Function associated with regular SL system has the following 

properties; 

i.  (   ) considered as the function of „x‟ satisfies the DE  * (   )+    

in each of the interval       and       

ii.   ( )    and   ( )    are the same BC‟s as those satisfied by the 

given Green‟s function.  

iii.  (   ) is continuous function of „x‟ in the interval ,     - 

iv.   (   )  
 

  
 (   )  will be discontinuous as     and  moreover 

         (   )           (   )  
 

 ( )
  

but           (   )           (   )  
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EXAMPLE: Solve the problem associated with non – homogeneous DE 

 ( )     ( )   ( )  where   
 

  
2 ( )

 

  
3   ( ) 

SOLUTION: The solution of this non – homogeneous DE subject to BC‟s is 

closely related to the existence of Green‟s function associated with 

homogeneous equation  ( )     ( )    

If the function  (     ) which does not depends on the source function  ( ) 

exists, then solution of given equation can be written as 

 ( )  ∫  (     ) ( )  
 

 
  where  (     ) is called Green‟s function and 

satisfies the equation  ( )     ( )   (   ) 

 

EXAMPLE: (UoS,2013, 2014, 2015, 2019 – I)  

Construct Green‟s function associated with the problem           with 

the boundry conditions  ( )     and   ( )    

Solution:  here  ( )     ( ) 

i. Put     in given equation 

   

   
      

   

   
 ( )    

   

   
    ( )        ……….(i) 

Now using BC‟s    ( )     and  ( )    we have         

( )   ( )    which is trivial solution. So     is not an eigenvalue. 

ii.  (   ) as a function of „x‟ satisfies the D Equation  
  

   
 (   )     in 

each of the interval       and       therefore we have  

 (   )  {
                         
                           

  

iii.  (   ) is continuous function of „x‟ in the interval ,    - and 

particularly  at       therefore 

        (   )          (   )  
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       (    )         (       )  

               (    )     

Hence  (   )  {
                                               
    (    )                       

 

iv.  (   )    and  (   )    are the same BC‟s as those satisfied by 

the given Green‟s function.i.e. 

 (   )     ( )           

 (   )      ( )  (    )        
  (   )

 
  with     

Then  (   )  >

  (   )

 
                                              

    .
  (   )

 
   /                        

 

Hence  (   )  8
  (   )

 
                      

                          
          

v.   (   )  
 

  
 (   ) exists and  will be discontinuous as     i.e.  

         (   )           (   )  

But           (   )           (   )  
 

 ( )
  

       
 

  
(      )         

 

  
.
  (   )

 
 /  

 

 
  

       ( 
 )         .

  (   )

 
/     

   
  (   )

 
    

  .
 

 
/          

Then   (   )  8
 (   )

 
                      

                        
        

Hence  (   )  {
(   )                      
(   )                     

          

This is our required Green‟s Function.   
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EXAMPLE: (UoS,2013, 2014, 2015)  

Construct Green‟s function associated with the problem                

with the boundry conditions  ( ) is finite  and   ( )    

Solution:  here  ( )     then   ( )    

i. Put     in given equation 

                        
 

  
(   )  

  ( )         ……….(i) 

Now using BC‟s  ( )            and  ( )    we have         

( )   ( )    which is trivial solution. So     is not an eigenvalue. 

ii.  (   ) as a function of „x‟ satisfies the D Equation             in 

each of the interval       and       therefore we have  

 (   )  {
                          
                             

  

iii.  (   ) is continuous function of „x‟ in the interval ,    - and 

particularly  at       therefore 

        (   )          (   )  

       (      )         (         )  

                   (    )       

Hence  (   )  {
                          

      (    )                          
 

iv.  (   )         and  (   )    are the same BC‟s as those satisfied 

by the given Green‟s function.i.e. 

 (   )            ( )                

 (   )        ( )  (    )                                    

    
 

   
  with       ( )    

Then  (   )  {
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v.   (   )  
 

  
 (   ) exists and  will be discontinuous as     i.e.  

         (   )           (   )  

But           (   )           (   )  
 

 ( )
  

         .
 

 
/         ( )  

 

 
  

  .
 

 
/  

 

 
       

Then   (   )  {
                              
                        

   is our required Green‟s Function. 

 

EXAMPLE: (UoS,2018 – II )  Construct Green‟s function associated 

with the problem         
  

 
         with the boundry conditions 

 ( ) is finite  and   ( )    

Solution:here  ( )     then   ( )     this is regular system with  ( )   
  

 
 

i. Put     in given equation 

        
  

 
  ( )             

  

 
     

 .      
  

 
/     

 (          )    ……….(i)     this is Cauchy Euler equation 

Put                  and       (   )       

( )  (         )    (     )          

  ( )              (  )   (  )    

  ( )             ……….(ii) 

Now using BC‟s    ( )          and  ( )    we have         

(  )   ( )    which is trivial solution. So     is not an eigenvalue. 
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ii.  (   ) as a function of „x‟ satisfies the Differential Equation  

                 in each of the interval       and 

      therefore we have  

 (   )  {
                             
                               

  

iii.  (   ) is continuous function of „x‟ in the interval ,    - and 

particularly  at       therefore 

        (   )          (   )  

       (        )         (          )  

                       (    )       

Hence  (   )  {
                                                            

     (    )                                
 

iv.  (   )    and  (   )    are the same BC‟s as those satisfied by 

the given Green‟s function.i.e. 

 (   )          ( )   ( )               

 (   )      ( )  (    )   ( )   ( )( )    

     (      )  with     

Then  

 (   )  {
  (      )   ( )                                      

     (.  (      )/    *        ( )            
  

 (   )  {
  (      )                                     
                                               

  

Hence  (   )  {
  (      )                                     
  (      )                                     

           

v.   (   )  
 

  
 (   ) exists and  will be discontinuous as     i.e.  

         (   )           (   )  

But           (   )           (   )  
 

 ( )
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         (            )            (      )     
 

 
  

  (            )     (     )     
 

 
         

  

 (     )
        after solving 

Then   (   )  >

  

 (     )
(      )                                     

  

 (     )
(      )                                     

    

is our required Green‟s Function. 

 

EXAMPLE: (UoS, 2009, 2011)  Construct Green‟s function 

associated with the problem 
 

  
*(    )  +  

  

    
         with the 

boundry conditions  (  ) are finite 

Solution:here  ( )        then   ( )        this is singular system 

i. Put     in given equation 

 

  
*(    )  +  

  

    
    (    )         

  

    
     

 (    )       (    )          ……….(i) 

Put     .
   

   
/    (   )    (   )  

  

  
 

 

    
   

   
  

  
 

  

  

  

  
 

 

    

  

  
     

 

(    ) 
0
   

   
  

  

  
1  after solving 

( )  (    ) 
 

(    ) 
0
   

   
  

  

  
1    (    )

 

    

  

  
        

  
   

   
   

  

  
   

  

  
       

   

   
 

  

 
       

 

 
  

  ( )    
 

 
     

 

 
   (  )     (  )      

  ( )   .
   

   
/
   

  .
   

   
/
    

   ……….(ii) 

Now using BC‟s    (   )          we have         

(  )   ( )    which is trivial solution. So     is not an eigenvalue. 
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ii.  (   ) as a function of „x‟ satisfies the Differential Equation  

 

  
*(    )  +  

  

    
     in each of the interval       and 

      therefore we have  

 (   )  {
 .

   

   
/
   

  .
   

   
/
    

                      

  .
   

   
/

 

 
   .

   

   
/
    

                     

  

iii.  (   ) is continuous function of „x‟ in the interval ,    - and 

particularly  at       therefore 

        (   )          (   )  

       ( .
   

   
/
   

  .
   

   
/
    

*         4  .
   

   
/

 

 
   .

   

   
/
    

5  

 .
   

   
/
   

  .
   

   
/
    

   .
   

   
/

 

 
   .

   

   
/
    

  

    (    ) .
   

   
/
 
    

then 

  (   )  {
 .

   

   
/
   

  .
   

   
/
    

                                       

  .
   

   
/

 

 
 [(    ) .

   

   
/
 

  ] .
   

   
/
    

             

 

 (   )  {
 .

   

   
/
   

  .
   

   
/
    

                                       

  .
   

   
/

 

 
 [(    ) .

   

   
/
 

  ] .
   

   
/
    

             

  

iv.  (   )         are the BC‟s satisfied by the Green‟s function. 

 (    )          .
  (  )

  (  )
/
   

  .
  (  )

  (  )
/
    

             

 (   )           .
  ( )

  ( )
/

 

 
 [(    ) .

   

   
/
 

  ] .
  ( )

  ( )
/
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Then        (   )  {
 .

   

   
/
   

                                 

 .
   

   
/
 

.
   

   
/
    

             

  

v.   (   )  
 

  
 (   ) exists and  will be discontinuous as     i.e.  

         (   )           (   )  

But           (   )           (   )  
 

 ( )
  

       4  
 

 
.
   

   
/
 

.
   

   
/
 

 

 
  

0
 

(   ) 
15         4 

 

 
.
   

   
/

 

 
  

0
 

(   ) 
15  

 

    
  

  
 

 
.
   

   
/
 

.
   

   
/
 

 

 
  

0
 

(   ) 
1   

 

 
.
   

   
/

 

 
  

0
 

(   ) 
1  

 

    
  

    
 

  
.
   

   
/
   

   after solving 

Then   (   )  {
 

 

  
.
   

   
/
   

.
   

   
/
   

                                 

 
 

  
.
   

   
/
   

.
   

   
/
 

.
   

   
/
    

             

    

is our required Green‟s Function. 

 

EXAMPLE: (UoS, 2017, 2018 – I)  

Construct Green‟s function associated with the problem           with 

the boundry conditions  ( )    ( )     and   ( )     ( )    

Solution:  here  ( )     ( ) 

i. Put     in given equation 

   

   
      

   

   
 ( )    

   

   
    ( )        ……….(i) 

Now using BC‟s 

  ( )    ( )     and  ( )     ( )    we have         

( )   ( )    which is trivial solution. So     is not an eigenvalue. 
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ii.  (   ) as a function of „x‟ satisfies the D Equation  
  

   
 (   )     in 

each of the interval       and       therefore we have  

 (   )  {
                         
                           

  

iii.  (   ) is continuous function of „x‟ in the interval ,    - and 

particularly  at       therefore 

        (   )          (   )  

       (    )         (       )  

               (    )     

Hence  (   )  {
                                               
    (    )                       

 

iv.  (   ) satisfies the BC‟s  

 (   )    (   )     ( )                

 (   )     (   )      ( )  (    )          

     .
 

   
/  with       

Then  (   )  >
  .

 

   
/                                               

    .  .
 

   
/    /                         

 

Hence  (   )  >
  .

 

   
   /                                           

  0  .
 

   
  /    1                    

          

v.   (   )  
 

  
 (   ) exists and  will be discontinuous as     i.e.  

         (   )           (   )  

But           (   )           (   )  
 

 ( )
  

       ( 
 )           .

 

   
/  

 

 
  

     .
 

   
/          
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Then   (   )  >

   

 
.

 

   
   /                                           

   

 
0  .

 

   
  /    1                    

        

  (   )  >

 

 
  

   

 
                                           

   

 
  

  

 
 

 (   )

 
 

   

 
                    

  

Hence   (   )  >

      

 
                            

(   )      

 
                    

  required Green‟s Function. 

EXAMPLE: (UoS, 2017 – II)  

Construct Green‟s function associated with the problem           with 

the boundry conditions   ( )     and   ( )    

Solution:  here  ( )     ( ) 

i. Put     in given equation 

   

   
      

   

   
 ( )    

   

   
    ( )        ……….(i) 

Now using BC‟s     ( )     and  ( )    we have         

( )   ( )    which is trivial solution. So     is not an eigenvalue. 

ii.  (   ) as a function of „x‟ satisfies the D Equation  
  

   
 (   )     in 

each of the interval       and       therefore we have  

 (   )  {
                         
                           

  

iii.  (   ) is continuous function of „x‟ in the interval ,    - and 

particularly  at       therefore 

        (   )          (   )  

       (    )         (       )  

               (    )     

Hence  (   )  {
                                               
    (    )                       
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iv.  (   )    and  (   )    are the same BC‟s as those satisfied by 

the given Green‟s function.i.e. 

  (   )         

 (   )        (   )  with     

Then  (   )  {
  (   )                                           

    (    )    (   )                    
 

Hence  (   )  {
  (   )                     

  (   )                    
          

v.   (   )  
 

  
 (   ) exists and  will be discontinuous as     i.e.  

         (   )           (   )  

But           (   )           (   )  
 

 ( )
  

       ( 
 )         ( )  

 

 
        

Hence  (   )  {
(   )                     
(   )                    

  required Green‟s Function. 

EXAMPLE: (UoS, 2015 – I)  

Construct Green‟s function associated with the problem           with 

the boundry conditions   ( )     and   ( )    

Solution:  here  ( )     ( ) 

i. Put     in given equation 

   

   
      

   

   
 ( )    

   

   
    ( )        ……….(i) 

Now using BC‟s     ( )     and  ( )    we have         

( )   ( )    which is trivial solution. So     is not an eigenvalue. 

ii.  (   ) as a function of „x‟ satisfies the D Equation  
  

   
 (   )     in 

each of the interval       and       therefore we have  

 (   )  {
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iii.  (   ) is continuous function of „x‟ in the interval ,    - and 

particularly  at       therefore 

        (   )          (   )  

       (    )         (       )  

               (    )     

Hence  (   )  {
                                               
    (    )                       

 

iv.  (   )    and  (   )    are the same BC‟s as those satisfied by 

the given Green‟s function.i.e. 

  (   )         

 (   )      ( )  (    )        (   )       

     (   )  with     

Then  (   )  {
  (   )                                           

    (    )    (   )                    
 

Hence  (   )  {
  (   )                     

  (   )                    
          

v.   (   )  
 

  
 (   ) exists and  will be discontinuous as     i.e.  

         (   )           (   )  

But           (   )           (   )  
 

 ( )
  

       ( 
 )         ( )  

 

 
        

Hence  (   )  {
(   )                     
(   )                    

  required Green‟s Function. 
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MODIFIED GREEN‟s FUNCTION 

When     is an eigenvalue of the SL system defined by  ( )        

with   ( )      ( )    then the associated Green‟s function is called 

modified green‟s function. And is denoted by   (   ) 

PROPERTIES OF MODIFIED GREEN‟s FUNCTION: (UoS; S.Q) 

Let   ( ) be the normalized eigenfunction corresponding to     this means 

that 〈  ( )   ( )〉  ∫   ( )   ( )  
 

 
   then   (   ) will have the 

following properties; 

i.   (   ) satisfies the D Equation   ,  (   )-    ( )   ( )  in each of 

the interval       and       

ii.   ,  (   )-    and   ,  (   )-    which are the same BC‟s as 

those satisfied by   (   ) 

iii.   (   ) is continuous function of „x‟ in the interval ,    - and 

particularly at x = t 

iv.    (   )  
 

  
  (   ) exists and  will be discontinuous as     i.e.  

          (   )            (   )  

But            (   )            (   )  
 

 ( )
  

v. The modified Green‟s function   (   ) satisfies the orthogonality 

condition  ∫   (   )   ( )  
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EXAMPLE:Construct Green‟s function associated with the problem 

           with the boundry conditions   ( )     and    ( )    

Solution:  here  ( )     ( ) 

i. Put     in given equation 

   

   
      

   

   
 ( )    

   

   
    ( )         

   ( )    ……….(i) 

Now using BC‟s     ( )     and   ( )    we have         

( )   ( )    which is non - trivial solution. So     is an eigenvalue. 

Therefore we take   ( )    as a normalized function.i.e. 

〈  ( )   ( )〉  ∫   ( )   ( )  
 

 
 ∫    

 

 
    

ii.   (   ) as a function of „x‟ satisfies the D Equation                    

  

   
  (   )    ( )  ( )     in each of the interval       and 

      therefore we have     (   )       (   )       

   (   )  
  

 
      

   (   )  >

  

 
                          

  

 
                            

  

iii.   (   ) satisfies the BC‟s i.e.      (   )         and 

    (   )          

thus     (   )  >

  

 
                       

  

 
                          

 

iv.   (   ) is continuous function of „x‟ in the interval ,    - and 

particularly at x = t i.e. 

         (   )           (   )  
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       .
  

 
     /            .

  

 
  /  

  

 
      

  

 
           

thus     (   )  >

  

 
                       

  

 
                         

 

v.    (   )  
 

  
  (   ) exists and  will be discontinuous as     i.e.  

          (   )            (   )  

But            (   )            (   )  
 

 ( )
  

       .
  

 
  /         .

  

 
/  

 

 
  

              

Thus the discontinuity condition does not help to determining the 

unknown constant B. so we will use orthogonality condition. 

vi. Using orthogonality condition  ∫   (   )   ( )  
 

 
   

∫   (   )   ( )  
 

 
 ∫   (   )   ( )  

 

 
    

∫ .
  

 
  /  

 

 
 ∫ .

  

 
      /  

 

 
       with   ( )    

  
  

 
   

 

 
    after solving 

Hence our required Green‟s function is as follows; 

   (   )  >

  

 
 

  

 
   

 

 
                     

  

 
   

  

 
   

 

 
                     

  

   (   )  >
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EXAMPLE:Construct Green‟s function associated with the problem 

          with the boundry conditions  ( )   ( )  and    ( )    ( ) 

Solution:  here  ( )     ( ) 

i. Put     in given equation 

   

   
      

   

   
 ( )    

   

   
    ( )         

   ( )    ……….(i) 

Now using BC‟s    ( )   ( )  and   ( )    ( ) we have         

( )   ( )    which is non - trivial solution. So     is an eigenvalue. 

Therefore we take   ( )    as a normalized function.i.e. 

〈  ( )   ( )〉  ∫   ( )   ( )  
 

 
 ∫    

 

 
    

ii.   (   ) as a function of „x‟ satisfies the D Equation                    

  

   
  (   )    ( )  ( )     in each of the interval       and 

      therefore we have     (   )       (   )       

   (   )  
  

 
      

   (   )  >

  

 
                          

  

 
                            

  

iii.   (   ) satisfies the BC‟s i.e.     (   )    (   )          

and     (   )     (   )         
 

 
 

thus     (   )  >

  

 
                          

  

 
 (   )      

 

 
                     

 

iv.   (   ) is continuous function of „x‟ in the interval ,    - and 

particularly at x = t i.e. 

         (   )           (   )  
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       .
  

 
 (   )      

 

 
/            .

  

 
     /  

  

 
 (   )      

 

 
 

  

 
        

 

 
    

thus  

   (   )  

>

  

 
 .

 

 
  /                         

  

 
 .

 

 
    /    .

 

 
  /  

 

 
                     

 

   (   )  >

  

 
 .

 

 
  /                        

  

 
 .

 

 
  /                          

  

v.    (   )  
 

  
  (   ) exists and  will be discontinuous as     i.e.  

          (   )            (   )  

But            (   )            (   )  
 

 ( )
  

       (
  

 
 .

 

 
  /*         (

  

 
 .

 

 
  /*  

 

 
  

  
 

 
     

 

 
          

Thus the discontinuity condition does not help to determining the 

unknown constant B. so we will use orthogonality condition. 

vi. Using orthogonality condition  ∫   (   )   ( )  
 

 
   

∫   (   )   ( )  
 

 
 ∫   (   )   ( )  

 

 
      

∫ .
  

 
 .

 

 
  /    /  

 

 
 ∫ .

  

 
 .

 

 
  /      /  

 

 
     with 

  ( )    

  
  

 
 

 

 
 

 

  
    after solving 

Hence our required Green‟s function is as follows; 
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   (   )  >

  

 
 .

 

 
  /  

  

 
 

 

 
 

 

  
                     

  

 
 .

 

 
  /    

  

 
 

 

 
 

 

  
                     

  

   (   )  >

  

 
 .

 

 
  /  

  

 
 

 

 
 

 

  
                     

  

 
 .

 

 
  /  

  

 
 

 

 
 

 

  
                     

  

 

EXAMPLE: (UoS, 2018 –I, II ) 

Construct Green‟s function associated with the problem 

         with the boundry conditions  (  )   ( ) and    (  )    ( ) 

Solution:  here  ( )     ( ) 

i. Put     in given equation 

   

   
      

   

   
 ( )    

   

   
    ( )         

   ( )    ……….(i) 

Now using BC‟s    (  )   ( )  and   (  )    ( ) we have         

( )   ( )    which is non - trivial solution. So     is an eigenvalue. 

Therefore we take   ( )  
 

√ 
 as a normalized function.i.e. 

〈  ( )   ( )〉  ∫   ( )   ( )  
 

 
 ∫

 

√ 
 
 

√ 
  

 

  
    

ii.   (   ) as a function of „x‟ satisfies the D Equation                    

  

   
  (   )    ( )  ( )  

 

 
  in each of the interval        

and       therefore we have     (   )  
 

 
    (   )  

 

 
     

   (   )  
  

 
      

   (   )  >
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iii.   (   ) satisfies the BC‟s i.e. 

     (    )    (   )             

 and     (    )     (   )         

thus     (   )  >

  

 
                           

  

 
 (   )                             

 

iv.   (   ) is continuous function of „x‟ in the interval ,     - and 

particularly at x = t i.e. 

         (   )           (   )  

       .
  

 
 (   )        /            .

  

 
     /  

  

 
 (   )         

  

 
        

   

 
  

   (   )  >

  

 
 .

   

 
/                          

  

 
 .

   

 
  /       .

   

 
/                     

  

   (   )  >

  

 
 .

   

 
/                         

  

 
 .

   

 
/                  

  

v.    (   )  
 

  
  (   ) exists and  will be discontinuous as     and 

gives no information about unknown. So we will use orthogonality 

condition. 

vi. Using orthogonality condition  ∫   (   )   ( )  
 

  
   

∫   (   )   ( )  
 

  
 ∫   (   )   ( )  

 

 
      

∫ .
  

 
 .

   

 
/    /  

 

  
 ∫ .

  

 
 .

   

 
/      /  

 

 
     with 

  ( )  
 

√ 
   

  
  

 
 

 

 
 

 

 
    after solving 
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Hence our required Green‟s function is as follows; 

   (   )  >

  

 
 .

   

 
/  

  

 
 

 

 
 

 

 
                      

  

 
 .

   

 
/    

  

 
 

 

 
 

 

 
             

  

   (   )  >

  

 
 .

   

 
/  

  

 
 

 

 
 

 

 
                      

  

 
 .

   

 
/  

  

 
 

 

 
 

 

 
             

  

 

EXAMPLE: (UoS, 2013,2014,2015,2017 – I, II ) 

Solve the problem 
   

   
  ( ) with  ( )     ( )    

SOLUTION: Let  (    ) be a Green‟s function for the associated 

homogeneous equation or BVP. Then it satisfies the equation 

 
   

   
  (    ) …………(i) with  (    )     (    )  therefore 

  (    )  >
 

 

 
(    )               

 
  

 
(   )              

  

Since from Lagrange‟s identity 

∫ ,  ( )    ( )-  
 

 
 | ( )( ( )  ( )    ( ) ( ))|

 

 
 …………(ii) 

By comparing given equation with SL equation w get 

 ( )     ( )     and from BC‟s           

And   
 

  
2 ( )

 

  
3   ( )  

 

  
2  

 

  
3    

  

   
 

 Then   (  )  ∫ 0 
   

   
  

   

   
1   

 

 
 | ( ( )  ( )    ( ) ( ))|

 

 
  

Take  ( )   (    ) 

 ∫ 0 
   

   
  

   

   
1   

 

 
 |( ( )  (    )    ( )  (    ))|

 

 
  

Since from (i)  
   

   
  (    ) and also given 

   

   
  ( ) therefore 
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 ∫ ,  (    )    ( )-  
 

 
 |( ( )  (    )    ( )  (    ))|

 

 
  

 ( ( )  (    )    ( )  (    ))  ( ( )  (    )    ( )  (    )) ………(iii) 

Now using   (    )  >
 

 

 
(    )               

 
  

 
(   )              

  and  ( )     ( )    

 ∫ ,  (    )    ( )-  
 

 
  

 4 .
  

 
/    . 

  

 
/ (   )5   ( . 

 

 
/ (    )   . 

 

 
/ (    )*  

 ∫ ,  (    )    ( )-  
 

 
  .

  

 
/  

 

 
(    )  

 ∫ ,  (    )    ( )-  
 

 
 (   )

  

 
    ………(iv) 

Now using property of dirac delta 

∫ (    ) ( )    (  )  ∫ (    ) ( )    (  )  

(  )  ∫  ( ) (    )  
 

 
 ∫  (    ) ( )  

 

 
 (   )

  

 
    

  (  )  ∫  (    ) ( )  
 

 
 (   )

  

 
    

  (  )  ∫  (    ) ( )  
 

 
 (   )

  

 
    

  ( )  ∫  (     ) (   )    
 

 
 (   )

 

 
    

Where we replace   , with   and   with     

 

 

 

 

 

 



153 
 

   MUHAMMAD USMAN HAMID (0323 – 6032785) 

EXAMPLE: (UoS, 2019 – I)  Determines the Green‟s function for the 

exterior dirichlet problem for a unit circle                    

Solution: Consider Green‟s function assume the form 

 (       )   (       )   (       )    

where  (       ) known as free space Green‟s function satisfies                                            

     (       ) in domain D and  (       ) satisfies       

so that by superposition       satisfies the equation 

     (       ) in domain D 

Also     on boundries requires that      on boundries. 

Now for Laplace operator   must satisfies      (       ) in domain D then for 

    we have 

     
 

 

 

  
. 

  

  
/    and solution will be              

Now applying the condition       ∫
  

  

  
     where   is outward normal to the circle 

and    (   )  (   )     We get    
 

  
     

Now if we introduce the polar coordinates         by means of the equations  

                                

We get   (   )  
  

   
 ∑   (               ) 

    

Where   
 

  
   .          (   )/ on boundry 

Now by using the relation    .          (   )/   ∑
      (   )

 

 
    and equating 

the coefficients of             to determine       we find     
       

   
    

       

   
 

It therefor follows that  (       )  
 

  
∑

(  )     (   )

 

 
    

 (       )  
 

  
   .  (  )        (   )/  

Hence the required Green‟s function is as follows; 

 (       )  
 

  
   .            (   )/  

  
 

  
   .  (  )        (   )/  
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VARIATIONAL METHODS 

The subject of calculus of variation or variational method is similar to but 

more general than the subject of maxima and minima in Calculus. 

FUNCTIONAL: 

Let M be the set of functions defined over the interval [a,b] 

i.e.   *     ,   -   + such that each function is integrable then a rule of 

function       defined by  , ( )-      is called functional. 

STATIONARY VALUE: 

The maximum or minimum value of the function or functional is called 

stationay value  OR the point at which the 1
st
 derivative of a function or 

functional become zero is called Stationary value. 

EXTERMAL: 

The curve    ( ) along which the functional „I‟ takes the stationary values 

is called extermal. i.e. if   , ( )-    then    ( ) is extermal curve. 

 

SOME EXAMPLES OF VARIATIONAL PROBLEMS: 

Here we discuss some important problems whose attempted solutions have led 

to the development of the subject of Calculus of Variation. 

Historically there are three such problems; 

i. The problems of geodesics: i.e. to find the cuve of minimum length 

joining two points on given surface. 

ii. The brachistochrone problems: i.e. to find the path of quickest 

descent, joining two points in spacew, for a particle moving under 

gravity. 

iii. Dido‟s problems: i.e. the problem of findind curve of given length 

which encloses maximum area by itself or with a given straight line. 
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GEOSDESICS PROBLEM: 

Find the curve whose distance between two points is minimum. 

EXPLANATION: Let    ( ) be a curve C on the surface S which is 

represented by    (   ). Then suppose that A and B be the two points on 

the curve C. then distance (length) between two points A and B is given by 

  ∫   
 

 
  ……………(i) 

       B 

 ds 

  A 

 

      

In the case of any surface    √(  )  (  )  (  )  

Since curve lies in xy – plane therefore z = 0 then we get 

   √(  )  (  )  √  .
  

  
/
 
   √  (  )     

( )    ∫   
 

 
 ∫ √  (  )    

 

 
  this is our required length. 

BRACHISTOCHRONE PROBLEM: (UoS, S.Q) 

A particle falls under gravity from A to B. determine the curve along which 

the time taken by the particle will be minimum. 

EXPLANATION: Consider a particle falls under gravity from A to B . then 

instantaneous velocity is given by   
  

  
 and time taken between A and B is 

given by            ∫   
 

 
 ∫

  

  
  

 

 
 ∫

 
  

  

  
 

 
 ∫

 

 
  

 

 
 ……….(i) 

Now using 3
rd

 equation of motion under gravity we get   √    

( )             
 

√  
∫

 

√ 
√  (  )   

 

 
 

 

√  
∫ √

  (  ) 

 
  

 

 
  required. 
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DIDO‟s PROBLEM: (UoS, S.Q) 

Find the closed curve of given length which enclosed maximum area. 

EXPLANATION:  

Suppose that    ( ) is the curve which meet the x – axis at points    and    

and enclosed maximum area   ∫    
  

  
 and and the length of the same 

curve given as    ∫   
  

  
 ∫ √  (  )   

  

  
  then the problem reduces to 

that of maximizing the area in equation   ∫    
  

  
 subject to the condition 

given in   ∫   
  

  
 ∫ √  (  )   

  

  
 

(                 ) 

Discuss 3 well known problmes, viz., geodesic, brachistochrone and dido’ and 

formulate them as variational problems. 

 

FUNDAMENTAL THEOREM ON VARIATIONAL CALCULUS: 

 (PU, 2002, 2010, 2011) 

If  ( ) is continuous function in the interval (     ) and the integral 

∫  ( ) ( )  
  

  
 is identically zero. i.e. ∫  ( ) ( )  

  

  
   where  ( ) 

satisfies the following conditions; 

i. It is an arbitrary function with continuous derivatives in the interval 

(     ) 

ii.  (  )   (  )    

Then  ( )    for all   ,     - 

PROOF: We prove by contradiction. If possible let  ( )    in (     ). Then 

there is at least one point    in (     ) such that  (  )   . Then because of 

continuity of  ( ) in (     ) there must exists an interval (         ) 

where     surrounding    such that  ( )    for all   ,         - 
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Since  ( ) is arbitrary, it can be taken as 

 ( )  {
(      ) (      )             ,         -

                                                                               
  

It is clear that  ( )    at the endpoints of the interval (         ) and 

has continuous derivative inside the interval. Then  integral ∫  ( ) ( )  
  

  
 

becomes   ∫  ( )(      ) (      )   
    

    
    

This is contradiction, as ∫  ( ) ( )  
  

  
   

Hence  ( )    for all   ,     - 

 

EULER LAGRANGE‟s EQUATION: (UoS, 2013, 2014, 2015) 

Let   ∫  (      )  
  

  
 where    ( ) is a continuous function having 

continuous 1
st
 and 2

nd
 order derivatives satisfying the following endpoint 

condtions     (  ) and     (  ), also if F is supposed to be have 

continuous 1
st
 and 2

nd
 order derivatives w.r.to its arguments, then the function 

   ( )  will extremise the given integral if it satisfies the following DE 

  

  
 

 

  
.

  

   /     

PROOF:  given that    ∫  (      )  
  

  
 

   ∫   (      )  
  

  
 ∫ .

  

  
   

  

   
   /   

  

  
  

   ∫
  

  
    

  

  
 ∫

  

   
     

  

  
 ∫

  

  
    

  

  
 ∫

  

   
 .

  

  
/   

  

  
  

   ∫
  

  
    

  

  
 ∫

  

   

 

  
(  )  

  

  
  

   ∫
  

  
    

  

  
 6|

  

   
(  )|

  

  

 ∫ (  )
 

  
.
  

   
/  

  

  
7  

   ∫
  

  
    

  

  
 ∫ (  )

 

  
.

  

   
/  

  

  
   since   (  )      (  ) 
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For extermal curve      then   ∫
  

  
    

  

  
 ∫ (  )

 

  
.

  

   /  
  

  
    

∫ 0
  

  
 

 

  
.

  

   /1     
  

  
    

  

  
 

 

  
.

  

   /                being orbitrary values. 

SPECIAL CASES: (UoS, 2019 – I ) 

i. When F is independent of „  ‟ 

Then 
  

   
   then EL equation becomes as follows; 

  

  
   this is an algebraic equation in „x‟ and „y‟. the solution may 

not satisfy the given boundry conditions.  

ii. When F is independent of „y‟ 

Then 
  

  
   then EL equation becomes as follows; 

 

  
.

  

   /    
  

   
           

iii. When F is independent of „x‟ 

Then 
  

  
   then EL equation becomes as follows; 

  

  
 

 

  
.

  

   /     

 
  

  
 

 

  
.

  

   /  
  

  
 

 

  
.

  

   /
  

  
   

  

  
 

 

  
.

  

   /    

 .
  

  
/    .

  

   /     …………(i) 

Since    (    )     
  

  
   

  

   
    

     .
  

   /    
  

   
      by (i) 

     .    

   /   .      

   /     
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iv. Suppose „F‟ is linear function in    

i.e.   (      )   (   )   (   )    ………(i) 

( )  
  

  
 .

  

  

  

  
 

  

  

  

  
/  .

  

  

  

  
 

  

  

  

  
/     

 
  

  
 .

  

  
/  .

  

  
/   ………(ii) 

Again ( )  
  

   
  (   ) 

 
 

  
.
  

   
/  

 

  
( (   ))  

  

  

  

  
 

  

  

  

  
 

  

  
 

  

  
   ………(iii) 

now as 
  

  
 

 

  
.

  

   /    

 .
  

  
/  .

  

  
/   

  

  
 

  

  
      

 
  

  
 

  

  
   

  

  
 

  

  
  

   (   )    (   )  this is not a DE which may not satisfy the given 

boundry conditions. 

 

EULER‟s LAGRANGE EQUATION IS SECOND ORDER DE 

As we know that  
  

  
 

 

  
.

  

   /    ………..(i) 

Since    (      ) then 
  

  
     

  

   
 are also functions of             

Then by using chain rule   

  

  
 

 

  
.

  

   /  
 

  
.

  

   /
  

  
 

 

  
.

  

   /
  

  
 

 

   
.

  

   /
   

  
  

 
  

  
 

 

  
.

  

   /  
 

  
.

  

   /   
 

   .
  

   /     

                           which is 2
nd

 oder Differential equation. 
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EXTENSION OF EULER LAGRANGE‟s EQUATION WITH ONE 

INDEPENDENT VARIABLE AND MANY DEPENDENT VARIABLES: 

Let   ∫  (        )  
  

  
                with the stationary condtions 

  (  )           and   (  )          , then Euler‟s Lagrange‟s 

equation can be written as 
  

   
 

 

  
.

  

   
 /     

PROOF:  given that    ∫  (        )  
  

  
 

   ∫   (        )  
  

  
 ∫ .

  

   
    

  

    
    /   

  

  
  

   ∫
  

   
    

  

  
 ∫

  

    
      

  

  
 ∫

  

   
     

  

  
 ∫

  

    
 .

   

  
/  

  

  
  

   ∫
  

   
     

  

  
 ∫

  

    

 

  
(   )  

  

  
  

   ∫
  

   
     

  

  
 6|

  

    
(   )|

  

  

 ∫ (   )
 

  
.

  

    
/  

  

  
7  

   ∫
  

   
    

  

  
 ∫ (   )

 

  
.

  

    
/  

  

  
  since    (  )       (  ) 

For extermal curve      then   ∫
  

   
     

  

  
 ∫ (   )

 

  
.

  

   
 /  

  

  
    

∫ 0
  

   
 

 

  
.

  

   
 /1      

  

  
    

  

   
 

 

  
.

  

   
 /                        

           being orbitrary values. 
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EXAMPLE: Let   ∫  (           )  
  

  
 with the stationary condtions 

  (  )    (  )    and   (  )    (  )    then  

  

  
 

 

  
.

  

   /      and  
  

  
 

 

  
.

  

   /    

PROOF:  given that    ∫  (           )  
  

  
 

   ∫   (           )  
  

  
 ∫ .

  

  
   

  

  
   

  

   
    

  

   
   /  

  

  
  

   ∫
  

  
    

  

  
 ∫

  

   
     

  

  
 ∫

  

  
    

  

  
 ∫

  

   
     

  

  
  

   ∫
  

  
    

  

  
 ∫

  

   
 .

  

  
/  

  

  
 ∫

  

  
    

  

  
 ∫

  

   
 .

  

  
/  

  

  
  

   ∫
  

  
    

  

  
 ∫

  

  
    

  

  
 ∫

  

   

 

  
(  )  

  

  
 ∫

  

   

 

  
(  )  

  

  
  

   ∫
  

  
    

  

  
 ∫

  

  
    

  

  
 6|

  

   
(  )|

  

  

 ∫ (  )
 

  
.

  

   
/  

  

  
7  

6|
  

   
(  )|

  

  

 ∫ (  )
 

  
.

  

   
/  

  

  
7  

   ∫
  

  
    

  

  
 ∫

  

  
    

  

  
 ∫ (  )

 

  
.

  

   
/  

  

  
 ∫ (  )

 

  
.

  

   
/  

  

  
 

since   (  )    (  )    and   (  )    (  )    

   ∫ 4
  

  
 

 

  
.

  

   
/5     

  

  
 ∫ 4

  

  
 

 

  
.

  

   
/5     

  

  
  

For extermal curve      then 

∫ 4
  

  
 

 

  
.

  

   
/5    

  

  
 ∫ 4

  

  
 

 

  
.

  

   
/5    

  

  
    

∫ 4
  

  
 

 

  
.

  

   
/5    

  

  
       ∫ 4

  

  
 

 

  
.

  

   
/5     

  

  
    

  

  
 

 

  
.

  

   /      and 
  

  
 

 

  
.

  

   /    

               being orbitrary values. 
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EXTENSION OF EULER LAGRANGE‟s EQUATION WITH ONE 

INDEPENDENT VARIABLE AND ONE DEPENDENT VARIABLE WITH 

ITS HIGHER ORDER DERIVATIVES: 

 (UoS, 2017, 2018 – I ) 

Let   ∫  (                   ( ))  
  

  
 with the stationary condtions 

 (  )    (  )     (  )           ( )(  )             and 

 (  )    (  )     (  )         ( )(  )          , then Euler‟s 

Lagrange‟s equation can be written as 

  

  
 (  )

 

  
.
  

   
/  (  ) 

  

   .
  

    
/       (  ) 

  

   .
  

  ( )/     

PROOF:  given that    ∫  (                   ( ))  
  

  
 

   ∫   (                   ( ))  
  

  
  

   ∫ .
  

  
   

  

   
    

  

    
           

  

  ( )   
( )/  

  

  
  

   ∫
  

  
    

  

  
 ∫

  

   
     

  

  
 ∫

  

    
      

  

  
     ∫

  

  ( )   
( )  

  

  
  

……………(i) 

Consider ∫
  

   
     

  

  
 ∫

  

   
 .

  

  
/  

  

  
 ∫

  

   

 

  
(  )  

  

  
 

∫
  

   
     

  

  
 |

  

   
(  )|

  

  

 ∫ (  )
 

  
.
  

   
/  

  

  
  

∫
  

   
     

  

  
  ∫ (  )

 

  
.
  

   
/  

  

  
   since   (  )      (  ) 

∫
  

   
     

  

  
 (  ) ∫ (  )

 

  
.
  

   
/  

  

  
  

Also  ∫
  

    
      

  

  
 ∫

  

    
 .

   

  
/  

  

  
 ∫

  

    

 

  
(   )  

  

  
 

∫
  

    
      

  

  
 |

  

    
(   )|

  

  

 ∫ (   )
 

  
.

  

    
/  

  

  
  

∫
  

    
      

  

  
  ∫ (   )

 

  
.

  

    
/  

  

  
   since   (  )      (  ) 
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∫
  

    
      

  

  
 | 

 

  
.

  

    
/ (  )|

  

  

 (  ) ∫ (  )
  

   .
  

    
/  

  

  
  

∫
  

    
      

  

  
 (  ) ∫ (  )

  

   .
  

    
/  

  

  
  

Similarly ∫
  

  ( )   
( )  

  

  
 (  ) ∫ (  )

  

   .
  

  ( )/  
  

  
 

Then equation (i) becomes 

   ∫
  

  
    

  

  
 (  ) ∫ (  )

 

  
.

  

   
/  

  

  
 (  ) ∫ (  )

  

   .
  

    
/  

  

  
 

    (  ) ∫ (  )
  

   .
  

  ( )/  
  

  
  

For extermal curve      then 

∫
  

  
    

  

  
 (  ) ∫ (  )

 

  
.
  

   
/  

  

  
 (  ) ∫ (  )

  

   .
  

    
/  

  

  
 

    (  ) ∫ (  )
  

   .
  

  ( )/  
  

  
     

∫ 0
  

  
 (  ) 

 

  
.

  

   /  (  ) 
  

   .
  

    
/     (  ) 

  

   .
  

  ( )/1     
  

  
    

  

  
 (  )

 

  
.
  

   
/  (  ) 

  

   .
  

    
/       (  ) 

  

   .
  

  ( )/       

          being orbitrary values. 
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EULER LAGRANGE‟s EQUATION WITH TWO INDEPENDENT 

VARIABLES: (UoS, 2011 ) 

Let    
 
 (           )      then Euler‟s Lagrange‟s equation can be 

written as 
  

  
 

 

  
.

  

   
/  

 

  
(

  

   
*     

PROOF:  given that     
 
 (           )     

    
 
  (           )      

    
 (

  

  
   

  

   
    

  

   
   *      ………..(i) 

Consider   
 

  
.

  

   
  /  

 

  
.

  

   
/   

  

   

 

  
(  )  

  

   

 

  
(  )  

 

  
.

  

   
  /  

 

  
.

  

   
/    

  

   
    

 

  
.

  

   
  /  

 

  
.

  

   
/    

Similarly 
  

   
    

 

  
(

  

   
  *  

 

  
(

  

   
*    

( )      
 
(
  

  
   

 

  
.

  

   
  /  

 

  
.

  

   
/    

 

  
(

  

   
  *  

 

  
(

  

   
*   *      

     
 
4
  

  
 

 

  
.

  

   
/  

 

  
(

  

   
*5         

 
4

 

  
.

  

   
  /  

 

  
(

  

   
  *5      

            ………..(ii) 

Consider       
 4

 

  
.

  

   
  /  

 

  
(

  

   
  *5     

    
 
 (

  

   
    *  .

  

   
    /   

 (
  

   
   

  

   
  *       by Green‟s theorem 

Since   is prescribed on the boundry therefore due to the closed curve    

must be zero. i.e.      

(  )      
 4

  

  
 

 

  
.

  

   
/  

 

  
(

  

   
*5        

  
 4

  

  
 

 

  
.

  

   
/  

 

  
(

  

   
*5          for extermal curve      

 
  

  
 

 

  
.

  

   
/  

 

  
(

  

   
*     since                

Hence required. 
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EULER LAGRANGE‟s EQUATION WITH THREE INDEPENDENT 

VARIABLES: 

Let    
 
 (                )        then Euler‟s Lagrange‟s equation 

can be written as 
  

  
 

 

  
.

  

   
/  

 

  
(

  

   
*  

 

  
.

  

   
/     

PROOF:   

given that     
 
 (                )       

    
 
  (                )        

    
 
(
  

  
   

  

   
    

  

   
    

  

   
   *        ………..(i) 

Consider   
 

  
.

  

   
  /  

 

  
.

  

   
/    

  

   

 

  
(  )  

  

   

 

  
(  )  

 

  
.

  

   
  /  

 

  
.

  

   
/    

  

   
    

 

  
.

  

   
  /  

 

  
.

  

   
/     

Similarly 
  

   
    

 

  
(

  

   
  *  

 

  
(

  

   
*    

And  
  

   
    

 

  
.

  

   
  /  

 

  
.

  

   
/    

( )      
 
(
  

  
   

 

  
.

  

   
  /  

 

  
.

  

   
/   

 

  
(

  

   
  *  

 

  
(

  

   
*   

 

  
.

  

   
  /  

 

  
.

  

   
/  *        

     
 
4
  

  
 

 

  
.

  

   
/  

 

  
(

  

   
*  

 

  
.

  

   
/5         

 
4

 

  
.

  

   
  /  

 

  
(

  

   
  *  

 

  
.

  

   
  /5        

            ………..(ii) 

Consider       
 
4

 

  
.

  

   
  /  

 

  
(

  

   
  *  

 

  
.

  

   
  /5       

    
 
.

 

  
 ̂  

 

  
 ̂  

 

  
 ̂/  (

  

   
   ̂  

  

   
   ̂  

  

   
   ̂*    

    
 
   ⃗⃗     

     
 
 ⃗⃗   ⃗⃗     by divergence theorem. 

Since   is prescribed on the boundry therefore due to the closed curve    must be zero. i.e. 

     

(  )      
 
4
  

  
 

 

  
.

  

   
/  

 

  
(

  

   
*  

 

  
.

  

   
/5        

  
 
4
  

  
 

 

  
.

  

   
/  

 

  
(

  

   
*  

 

  
.

  

   
/5          for extermal curve      

 
  

  
 

 

  
.

  

   
/  

 

  
(

  

   
*  

 

  
.

  

   
/     since                     

Hence required. 



166 
 

   MUHAMMAD USMAN HAMID (0323 – 6032785) 

PLATEAU‟S  PROBLEM: (Problem of minimal surface) 

In this problem we will find the surface of minimal area which is bounded by 

a given closed curve. 

EXPLANATION: 

Consider a surface     (   ) where    (   ) and    (   )  then 1
st
 

fundamental form of given surface is 

(  )   (  )          (  )   

Where   ⃗    ⃗   | ⃗  |
  ,    ⃗    ⃗   ,    ⃗    ⃗   | ⃗  |

  are fundamental 

quantities of the surface.  If we take parameters (x,y) and put         

then 

  | ⃗  |
  |

  

  
 ̂  

  

  
 ̂  

  

  
 ̂|

 
 |  ̂    ̂     ̂|

 
 .√|    

 |/
 
  

      
   

  | ⃗  |
 
 |

  

  
 ̂  

  

  
 ̂  

  

  
 ̂|

 
 |  ̂    ̂     ̂|

 
 4√|    

 |5

 

  

      
   

   ⃗    ⃗   .
  

  
 ̂  

  

  
 ̂  

  

  
 ̂/ .

  

  
 ̂  

  

  
 ̂  

  

  
 ̂/  (  ̂     ̂)(  ̂     ̂)  

        

Put v = constant  then (   )
   (  )     √    

Put u = constant  then (   )
   (  )     √    

Then    |       |  |   ||   |     

   √   √            √            ………(i) 

if      
 

√  
  and       √        

√     

√  
 

( )     √           

     √           
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    √(    
 )(    

 )  (    )
 
      

    √    
    

       

Now let     (           )  √    
    

  

Then by using EL equation for two independent variables 

  

  
 

 

  
.

  

   
/  

 

  
(

  

   
*     

 
 

  
√    

    
  

 

  
(

 

   
√    

    
 *  

 

  
(

 

   
√    

    
 *     

   
 

  
:

  

√    
    

 
;  

 

  
:

  

√    
    

 
;     

 
 

  
:

  

√    
    

 
; 

 

  
:

  

√    
    

 
;     

 (

(√    
    

 *    
     

√    
    

 
  

(√    
    

 *

 ,  (

(√    
    

 *    
     

√    
    

 
  

(√    
    

 *

 ,     

 4
(    

    
 )      

    

(    
    

 )
   5  4

(    
    

 )      
    

(    
    

 )
   5     

 (    
    

 )      
     (    

    
 )      

        

 (    
 )    (    

 )       this is our required. 
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CONSTRAIN EXTREMA OR PROBLEMS WITH CONSTRAINTS OR 

VARIATIONAL PROBLEMS WITH SIDE CONDITIONS OR 

ISOPERIMETRIC PROBLEMS: 

To find the stationary value of a functional    ∫  (        )  
  

  
   where the  

argument of F are subjected to constraints or additional conditions such as   

i.  (    )             

ii.    (        )           

iii. ∫  (        )  
  

  
          

Then we construct a new function involving parameter   i.e.        

 

EULER LAGRANGE EQUATION FOR CONSTRAIN EXTREMA 

The extermal curves      ( )                  of the functional 

  ∫  (        )  
  

  
  with  constraints 

  (    )                            ………….(i) 

Then    ∫  (        )  
  

  
 ∑   

 
   ∫   (    )  

  

  
 

  ∫ ( (        )  ∑   
 
     (    ))

  

  
   ∫  

  

  
    

With  (        )  ∑   
 
     (    )     where      ( ) are suitably 

choosen multiplier. It is clear that the Euler Lagrange‟s equation in this case 

will be  
  

   
 

 

  
(

  

   
 

*                        ………….(ii) 

Then the curves      ( )                  can be obtained from 

both equations.i.e. (i) and (ii) 
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GEODESIC: 

A geodesic is the curve of shortest length joining two points in space. 

EXAMPLE: (UoS, 2017  ) 

Prove that a straight line is the shortest distance between two points in the 

plane. 

PROOF:  Since this is the geodesic problem therefore we use the functional 

  ∫ √  (  )   
 

 
   with     (      )  √  (  )  

Since F is not depend on „y‟ therefore we use following EL equation; 

  

  
 

 

  
.
  

   
/     

 
  

  
       

 

  
.
  

   
/     

 
  

   
             

 
 

   
.√  (  ) /     

 
  

√  (  ) 
       √  (  )   

 (  )    (  (  ) )       (  )   

 (  )    (  )     (    )(  )      

 (  )  
  

    
    √

  

    
  

    
  

  
     (   )  where   √

  

    
 

 ∫
  

  
   ∫        

         which is straight line. 
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The applications of the Calculus of Variations in Mechanics are based on 

employing Principle of Least Action and Hamilton‟s Principle;  

stated as below; 

PRINCIPLE OF LEAST ACTION 

According to this principle:   

Let a particle move in an external field of force which is conservative. If the 

motion takes place in the interval of the time from          where       then 

the actual path traced by the particle is the one along which   ∫    
  
  

  is 

minimum. Where L is the Lagrangian and for a conservative system 

                                       

HAMILTON‟s PRINCIPLE:  (UoS, S.Q ) 

According to this principle: 

The path of motion of a rigid body in the time interval       is such that the 

integral    ∫    
  
  

 has a stationary value, where L is the Lagrangian. 

EXAMPLE: (UoS, 2015 – I ) 

Find the equation of the path in space down which a particle will fall from one 

point to another in shortest possible time. 

Solution: 

This is the Brachistochrone problem, therefore we use the following functional  

  ∫   
 

 
   

 

√  
∫ √

  (  ) 

 
  

 

 
   with     (      )  

 

√  
√

  (  ) 

 
 

Since F is not depend on „x‟ therefore we use following EL equation; 

    .
  

   
/            

 
 

√  
√

  (  ) 

 
   

 

√  

 

√ 

 

   
.√  (  ) /            
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√  
6√

  (  ) 

 
   

 

√ 

 

   
.√  (  ) /7            

 
 

√  
6√

  (  ) 

 
   

 

√ 

  

√  (  ) 
7            

 
 

√  
6√

  (  ) 

 
 

(  ) 

√ √  (  ) 
7            

 √
  (  ) 

 
 

(  ) 

√ (  (  ) )
 √  (        )   (   )  

 4√
  (  ) 

 
 

(  ) 

√ (  (  ) )
5

 

     

 
  (  ) 

 
 

(  ) 

 (  (  ) )
  4√

  (  ) 

 
 

(  ) 

√ (  (  ) )
5      

 
  (  ) 

 
 

(  ) 

 (  (  ) )
 

 (  ) 

 
     

 
(  (  ) )

 
 (  )   (  ) (  (  ) )

 (  (  ) )
    

 

 (  (  ) )
     after solving 

      (  (  ) )  
 

   
 (  (  ) )  (  )  

 

   
   

     

   
  

    
  

  
 √

     

   
 ∫

√   

√     
   ∫        

Put                               
 

  
           

 ∫
√     

√       
 
 

  
               

 

  ∫
    

    
                 

 
 

  ∫            
 

  ∫
       

 
   

 

  ∫               

   
 

   
(        )      ………(i)   

and     
 

   
(      )    

 

   
(       )   ………(ii) 

(i) and (ii) are parametric equations of cycloid, where „a‟ ,‟b‟ are constants. 

Thus the curve downwhich the particle takes the minimum time is cycloid. 
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DIDO‟s PROBLEM: (UoS, 2018 – I ) 

Find the closed curve of given length which enclosed maximum area. 

EXPLANATION: 

 

 Suppose that    ( ) is the curve which meet the x – axis at points  (    ) 

and  (    ) and encloses maximum area. Since area enclosed    ∫    
  

  
 

therefore we have to extremized the functional   ∫   
  

  
 ∫ √  (  )   

  

  
  

Here        √  (  )  and therefore we construct a new function 

          √  (  )   

Since there is no explicit dependence on „x‟ so we use the special case of EL 

equation. i.e.       

   
          

    √  (  )     

   .   √  (  ) /      

    √  (  )  
 (  ) 

√  (  ) 
     

  (
  (  )  (  ) 

√  (  ) 
*        (

 

√  (  ) 
*        

 
    

 
 

 

√  (  ) 
 

(    ) 

  
 

 

  (  ) 
   (  )  

  

(    ) 
  

 (  )  
  

(    ) 
   (  )  

   (    ) 

(    ) 
    

  

  
 

√   (    ) 

    
  

 ∫
    

√   (    ) 
   ∫    ∫

 

√     
   ∫     put        

 
 

 
∫(     )    (   )         
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(     )
   

 

 

      (     )               (    )
   

    (    )
        (    )

  (    )
   

This is an equation of circular arc where the constants       can be 

determined by using the given conditions  (  )     (  )  

INVERSE OF DIDO‟s PROBLEM: 

It can be stated as; 

The extermal curves of the functional  , ( )-  ∫  (      )  
  

  
  with the 

endpoint conditions  (  )      (  )     and subject to the constraint 

 , -  ∫  (      )  
  

  
           are the same as the extermals of 

funtioan J with the same endpoint conditions and subject to the constraint 

 , -           

PROOF: 

Consider    (       ̇  ̇)  √ ̇   ̇  and    (       ̇  ̇)  
 

 
(  ̇   ̇ ) 

Therefore        √ ̇   ̇  
 

 
(  ̇   ̇ ) 

As the EL equations are 
  

  
 

 

  
.
  

  ̇
/    and 

  

  
 

 

  
.
  

  ̇
/    

In this problem these equations reduce to 

  ̇  
 

  
(

 

√ ̇   ̇ 
   *      and    ̇  

 

  
(

 

√ ̇   ̇ 
   *    

Which on simplification and integration yield 

    
 ̇

√ ̇   ̇ 
     and      

 ̇

√ ̇   ̇ 
     

On eliminating  ̇  ̇ we obtain  (    
 )  (    

 )  .
 

  
/
 
 

Where    
  

  

  
   and    
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EXAMPLE:  

Find the curve joining the points  (     ) and  (     ) which give the 

minimum area of the surface of revolution around y – axis. 

Solution:  

This is a Dido Problem in xy – plane. We want to find a curve which gives the 

minimum area of surface of revolution generated around y – axis. 

Since curve revolve around y – axis therefore 

     ∫      
 

 
   ∫  √  (  )   

 

 
  with  (      )   √  (  )  

Since F is not depend on „y‟ therefore we use following EL equation; 

  

  
 

 

  
.
  

   
/     

 
  

  
       

 

  
.
  

   
/    

  

   
           

 
 

   
. √  (  ) /    (   )  

   

√  (  ) 
      after solving 

      √  (  )    (  )    (  (  ) )  (     )(  )      

 (  )  
  

     
    

  

  
 

 

√     
 ∫   ∫

 

√     
   

          .
 

 
/     required. 

EXAMPLE:  

Find the curve joining the points  (     ) and  (     ) which give the 

minimum area of the surface of revolution around x – axis. 

Solution:  

This is a Dido Problem in xy – plane. We want to find a curve which gives the 

minimum area of surface of revolution generated around x – axis. 

Since curve revolve around x – axis therefore 

     ∫      
 

 
   ∫  √  (  )   

 

 
  with  (      )   √  (  )  

Since F is not depend on „x‟ therefore we use following EL equation; 
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    .
  

   
/            

 √  (  )    4
 

   
. √  (  ) /5            

  √  (  )  
 (  ) 

√  (  ) 
   (   )  

 
 (  (  ) )  (  ) 

√  (  ) 
    (  (  )  (  ) )   √  (  )   

    √  (  )       (  (  ) )       (  )   

         (  )   

   (  )  
     

  
    

  

  
 

√     

 
 ∫

 

√     
   ∫   

          .
 

 
/     required. 

EXAMPLE:   

On what curves can the functional   ∫ ((  )    )  
 

 
 

 with condition 

 ( )     .
 

 
/    be extremized. 

Solution:  

  ∫ √(  )      
 

 
 

  with  (      )  (  )     

Since F is not depend on „y‟ therefore we use following EL equation; 

  

  
 

 

  
.
  

   
/     

 
 

  
((  )    )  

 

  
4

 

   
((  )    )5     

     
 

  
(   )      (     )             

Then general solution will be                

  ( )         and    .
 

 
/        

Hence The general solution will be         
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EXAMPLE: (UoS, 2013 – I, 2015 – II )  

Find the extermal for    ∫ ((  )  (  )     )  
 

 
 

 with condition 

 ( )     .
 

 
/     ( )     .

 

 
/     be extremized. 

Solution:   

We have   ∫ ((  )  (  )     )  
 

 
 

  with   (  )  (  )      

since there are two unknown functions „y‟, „z‟ (extermal curves) there will be 

a pair of EL equations; 

Since F is not depend on „y‟ therefore we use following EL equation; 
  

  
 

 

  
.
  

   
/    ……….(i) and  

  

  
 

 

  
.
  

   
/    ……….(ii) 

( )  
 

  
((  )  (  )     )  

 

  
4

 

   
((  )  (  )     )5     

    
 

  
(   )     (     )          ……….(iii) 

(  )  
 

  
((  )  (  )     )  

 

  
(

 

   
((  )  (  )     )*     

    
 

  
(   )     (     )          ……….(iv) 

Using (iii) in (iv) we get          ……….(v) 

Then general solution of (v)  will be                         

And                            

  ( )            ……….(vi) 

  And     .
 

 
/      

 

     
 

      ……….(vii) 

Similarly   ( )            ……….(viii) 

  And     .
 

 
/       

 

     
 

       ……….(ix) 

Adding (v) and (vii)      also subtraction from (v) and (vii)     

Adding (vi) and (viii)   
 

     
 

    also subtraction from (vi) and (viii) 

    then using the relation      we get         

Putting all values we get                 
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EXAMPLE: 

Find the extermal for    ∫ ((   )       )  
 

 
 

 with condition 

 ( )     .
 

 
/      ( )      .

 

 
/    be extremized. 

Solution: 

We have   ∫ ((   )       )  
 

 
 

   

with    (          )  (   )        

therefore the extermal curve    ( ) is obtained by the solving EL equation 

  

  
 (  ) 

 

  
.
  

   
/  (  ) 

  

   .
  

    
/    ……….(i) 

( )        
  

   
(    )                

         ……….(ii) 

Then general solution of (v)  will be                         

And                         

  ( )            ……….(iii) 

  And     .
 

 
/      

 

     
 

      ……….(iv) 

Similarly    ( )            ……….(v) 

  And      .
 

 
/      

 

     
 

       ……….(vi) 

Subtracting and simlifying (iv) and (v)  . 
 

   /  .  
 

   /    

Adding and simlifying (iii) and (vi)  . 
 

   /  .  
 

   /      

 
 

  ( 
 
 
   *

 
 

   ( 
 
   *

 
 

  ( 
 
   *( 

 
 
   * ( 

 
   *( 

 
 
   *

  

 
 

  ( 
 
 
   *

 
 

   ( 
 
   *

  
 

 
  

   
 

  
.  

 

   /  and       
 

  
. 

 

   /  

(   )  
 

  
.  

 

   /  
 

  
. 

 

   /        
 

  
. 

 

    
 

 /  

( )  
 

  
.  

 

   /  
 

  
. 

 

   /         
 

  
. 

 

    
 

 /  

Hence  

  
 

  
.  

 

   /   
 

  
. 

 

   /    
 

  
. 

 

    
 

 /      
 

  
. 

 

    
 

 /       
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EXAMPLE:  

Show that the EL equation for the functional     ∫  (           )  
 

 
    

admit the following 1
st
 integrals; 

i. 
  

   
    if F does not contains „y‟ 

ii.       

   
     

   
           if F does not contains „x‟ 

Solution: The corresponding EL equations are 

  

  
 

 

  
.
  

   
/    ……..(i) and    

  

  
 

 

  
.
  

   
/    ……..(ii) 

i. When F is independent of „y‟ 

Then 
  

  
   then EL equation becomes as follows; 

 

  
.

  

   /    
  

   
           

ii. When F is independent of „x‟ 

Since    (           ) 

    
  

  
   

  

  
   

  

   
    

  

   
     ……..(iii) 

From (i) and (ii)  
  

  
 

 

  
.
  

   
/ and    

  

  
 

 

  
.
  

   
/  

  

  
 

 

  
.
  

   
/

  

  
 and    

  

  
 

 

  
.
  

   
/

  

  
 

  

  
 

 

  
.
  

   
/    and    

  

  
 

 

  
.
  

   
/    

  

  
    .

  

   
/    and    

  

  
    .

  

   
/    

(   )      .
  

   
/     .

  

   
/    

  

   
    

  

   
     

     .
  

   
  /   .

  

   
  /   .      

   
     

   
/     
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EXAMPLE: (                       ): 

A uniform cable is fixed at its ends at the same level in space and is allowed to 

hang under gravity. Find the final shape of the cable. 

SOLUTION: 

(0,0)           (a,0) x 

  

   ds 

 

G(x,y) 

        y 

The final shape of the cable wil correspond to the state of a stable equilibrium 

or minimum P.E. we choose the coordinate axis as shown in the figure. Let 

(0,0) and (a,0) be the position of the end points of the cable. The P.E. of the 

cable is given by      ̅  where  ̅ is the y – coordinate of centroid of the 

cable. The minimum value of V corresponds to the minimum value of  ̅ 

Now y – coordinate of centroid of the curve    ( ) is given by 

 ̅  
 

  
 

   

  
 

  

 
 

∫  
 

 
   

∫  
 

 
  

 
∫    
 

 

∫   
 

 

 
 

 
∫  √  (  )   
 

 
  

Where „l ‟ is the length of the curve.i.e   ∫   
 

 
 ∫ √  (  )   

 

 
 

And we use   
 

 
       ∫   

 

 
 

Here     √  (  )    √  (  )  and therefore we construct a new 

function         √  (  )   √  (  )   

   (   )√  (  )   

Since there is no explicit dependence on „x‟ so we use the special case of EL 

equation. i.e.       

   
          

 (   )√  (  )     

   .(   )√  (  ) /      
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 (   )√  (  )  
 (  ) 

√  (  ) 
     

 (   ) (
  (  )  (  ) 

√  (  ) 
*     (   ) (

 

√  (  ) 
*      

 
 

√  (  ) 
 

  

   
 

(  )
 

(   ) 
 

 

  (  ) 
   (  )  

(   ) 

(  )
 

  

 (  )  
(   ) 

(  )
 

   (  )  
(   )  (  )

 

(  )
 

    
  

  
 

√(   )  (  )
 

  
  

 ∫
  

√(   )  (  )
 
   ∫    ∫

  

√   (  )
 
   ∫     put       

       
  .

 

  
/             .

 

  
/  

    

  
 

 

  
     .

    

  
/  

 
   

  
     .

    

  
/          .

    

  
/      ………….(i) 

  ( )           ( )    
 

  
       .

  

  
/        

 

  
       .

    

  
/  

       .
  

  
/        . 

    

  
/  

  

  
  

    

  
     

 

 
  

Using     
 

 
  and         .

  

   
/  then using in  ( ) we get 

         (
  

 

 

  
*        .

  

   
/  

      [   (
  

 

 

  
*      .

  

   
/]  This curve is called Catenary. 

EXAMPLE: 

Show that a solid of revolution which for a given surface area has maximum 

volume is a sphere. 

OR find the curve which generates a surface of revolution of a given area 

which enclosed the maximum volume. 

SOLUTION: 

Let a curve    ( ) with  ( )     ( ) be rotated about x – axis so as to 

generate a surface of revolution. An element of the surface is  . therefore total 

area will be      ∫    
 

 
   ∫  √  (  )   

 

 
     and the volume 
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element or solid of revolution is          therefore total volume will be 

   ∫     
 

 
 

Here          √  (  )  and therefore we construct a new function 

            √  (  )    

Since there is no explicit dependence on „x‟ so we use the special case of EL 

equation. i.e.       

   
          

      √  (  )     

   . 
    √  (  ) /     

      √  (  )  
  (  ) 

√  (  ) 
        [√  (  )  

(  ) 

√  (  ) 
]     

   [
  (  )  (  ) 

√  (  ) 
]          (    )√  (  )    ………..(i) 

Using  ( )        √  (  )    

( )        √  (  )      √  (  )       ,  (  ) -  

         (  )  (  )  
     

  
    

√     

 
 

  

  
  

 ∫
 

√     
   ∫    √                (   )   

 (   )  (   )        this is an equation of circle centered 

at (   ) having radius   and hence the surface of revolution is sphere. 

EXAMPLE:  Find eigenvalue and eigen function of the functional 

  ∫ ,(    ) (  )    -  
 

 
  subjected to the endpoin conditions  

 ( )     ( ) and side condition ∫     
 

 
 

SOLUTION: 

Here    (    ) (  )          and therefore we construct a new 

function        (    ) (  )           

  (    ) (  )  (   )    
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Using EL equation 
  

  
 

 

  
.
  

   /    

 

  
((    ) (  )  (   )  )  

 

  
4

 

   
((    ) (  )  (   )  )5     

 (   )   
 

  
((    )    )     

   0
 

  
((    )   )  (   ) 1    

 

  
((    )   )  (   )     

 (    )      (    )    (   )     

  .  
 

 
/
 
     .  

 

 
/   (   )     

 [ .  
 

 
/
 
    .  

 

 
/  (   )]      ……………(i) 

Put            (    )    

And  .  
 

 
/    .  

 

 
/
 
    (   )       

( )  ,          (   )-     

           (   )     since      

        (   )       
 

 
 

 

 
√     

if             We obtain trivial solution for the given problem  

if     We obtain non – trivial solution for the given problem 

if       then    
 

 
 

 

 
   

and general solution will be   ( )    
 

 
 0     

 

 
        

 

 
  1 

 ( )  (  ) 
 

 0     
 

 
  (    )       

 

 
  (    )1  

 ( )  (    ) 
 

 0     
 

 
  (    )       

 

 
  (    )1 ………...(ii) 

Using  ( )    

     
 

 
  ( )       

 

 
  ( )     ………...(iii) 
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Also Using  ( )    

     
 

 
  ( )       

 

 
  ( )     

         ( )          ( )    ………...(iv) 

For non – trivial solution 

|
   

 

 
  ( )    

 

 
  ( )

      ( )       ( )
|     

 (   
 

 
  ( )* (      ( ))  (      ( )) (   

 

 
  ( )*     

    (   ( )  
 

 
  ( )*       ( )  

 

 
  ( )       ( )  

 
 

 
  ( )       n = 1,2,3,…………… 

   
   

  ( )
    

   

  ( )
   n = 1,2,3,…………… 

(  )       
   

  ( )
  ( )       

   

  ( )
  ( )     

                       ( )    ( )          

But      we take       then eigen solution will be as follows; 

  ( )  
  

√    
   

  

  ( )
  (    )  

GEODESIC: 

A geodesic is the curve of shortest length joining two points in space. 

EXAMPLE: 

Find the curve of shortest length between the given points in a plane using 

polar coordinates. 

Solution: 

Since we know that   ∫   
 

 
    …………..(i) 

Also     √(  )  (  )    …………..(ii) 

Now usig                 
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(  )  (  )              (  )                

(  )  (  )              (  )                

(  )     √(  )  (  )  √(  )    (  )  √   .
  

  
/
 
    

    √   (  )     

( )    ∫ √   (  )   
  

  
  subjected to   (  )     and  (  )     

Here    √   (  )  Since there is no explicit dependence on „ ‟ so we use 

the special case of EL equation. i.e.       

   
          

 √   (  )     

   
0√   (  ) 1      

 √   (  )    
  

√   (  ) 
    

   (  )  (  ) 

√   (  ) 
   

  

√   (  ) 
     

 
√   (  ) 

  
 

 

  
 √   (  )  

  

  
    (  )  

  

  
 
 (  )  

  

  
 
     

 (  )  
     

   

  
 

 (  )  
  (     

 )

  
 

    
  

  
 

 √     
 

  
  

   ∫
 

 √     
 
   ∫     

 

  
     .

 

  
/            .

 

  
/        

 
 

  
    (    )  

 

   (    )
           (    )  

     (                   )  

    (                       )  

    (             )  

                      

             

Which represent the straight line. 
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EXAMPLE: (UoS, 2015 – II) 

Find the curve of shortest length on the surface of sphere. 

Solution: 

Let A and Bbe the two points on the sphere S. here the problem is to minimize 

Since we know that   ∫   
 

 
 ∫ √(  )  (  )  (  ) 

 

 
 ………(i) 

Now usig                                 

    ,                     -  

    ,                     -  

             

    √(  )  (  )  (  )  √  [       .
  

  
/
 

]     

     √       (  )     

( )     ∫ √       (  )   
  

  
   subjected to   (  )     and  (  )     

Here    √       (  )    then corresponding EL equation will be 

  

  
 

 

  
.

  

   /     

   
 

  
.

  

   /    
  

   
          

 

   .√       (  ) /     

 
       

√       (  ) 
            √       (  )   

      (  )    (       (  ) )       (  )            (  )   

      (  )         (  )          (        )(  )      

 (  )  
  

     (        )
    

  

  
 

 

    √        
  

    
  

  
 

 

     √  
  

     

 
         

√           
 

         

√    (       )
 

         

√            
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 ∫   ∫
         

√            
     ∫

         

 √4
√    

 
5

 

      

    

   ∫
       

√4
√    

 
5

 

      

    

   ∫
  

√     
    with 

√    

 
                               

        .
 

 
/          .

    

 
/            .

    

 
/  

    (   )  
    

 
                   

 

 
 
    

    
  

                                      

  (         )      (         )            

                          

This is an equation of the plane through center of sphere. Hence the curve of 

shortest length joining A and B is the arc of great circle through A and B. 

 

EXAMPLE: (UoS, 2017 – II, 2019 – I) 

Find the geodesic curve for the cylinder          

Solution: 

We have to minimize   ∫   
 

 
 ∫ √(  )  (  )  (  ) 

 

 
  ………(i) 

Now usig                     for cylindrical coordinates 

                              

    √(  )  (  )  (  )  √   .
  

  
/
 
    

 ( )    ∫ √   (  )   
  

  
   subjected to   (  )     and  (  )     

Here    √   (  )    then corresponding EL equation will be 
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.
  

   
/     

   
 

  
.
  

   
/    

  

   
          

 

   
.√   (  ) /     

 
  

√   (  ) 
       √   (  )  (  )    (   (  ) )  

 (  )    (  )       (    )(  )       (  )  
    

(    )
  

    
  

√    
 

  

  
  (   )                     .

 

 
/  

    .
    

 
/  

 

 
  

The intersection of this surface with given cylinder gives required extreme 

curve. 

EXAMPLE: 

Find the shortest distance between the points  (      ) and  (      ) in 

the plane                

Solution: 

We have to minimize   ∫   
 

 
 ∫ √(  )  (  )  (  ) 

 

 
 

  ∫ √  .
  

  
/
 
 .

  

  
/
  

 
   ∫ √  (  )  (  ) 

 

 
    

   ∫ √  (  )  (  )   
  

  
    

subjected to constraint              

Here    √  (  )  (  )                 

and therefore we construct a new function 

        √  (  )  (  )   (           )   

Using EL equation 
  

  
 

 

  
.
  

   /    
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.√  (  )  (  )   (           )/  

 

  
4

 

   .√  (  )  (  )   (           )/5     

     
 

  
(

  

√  (  )  (  ) 
*     …………..(i) 

Also Using EL equation 
  

  
 

 

  
.
  

   
/    

 

  
.√  (  )  (  )   (           )/  

 

  
(

 

   
.√  (  )  (  )   (           )/*     

   
 

  
(

  

√  (  )  (  ) 
*     …………..(ii) 

Multiplying (ii) with 7 then adding in (i) 

 
 

  
(

      

√  (  )  (  ) 
*    

      

√  (  )  (  ) 
    …………..(iii) 

Since                 

The endpoint conditions satisfied by the functions    ( ) and    ( ) are 

 ( )      ( )     ( )     ( )     

                        diff. w.r.to „x‟ 

(   )  
    (      )

√  (  )  (      ) 
    

              √  (  )    (  )             

           √  (  )             

 , (       )-  0 √  (  )           1
 
  

   (       )    (  (  )           )  

   (   (  )           )    (  (  )           )  

 (         )(  )  (           )   (           )     

This is the quadratic equation in    



189 
 

   MUHAMMAD USMAN HAMID (0323 – 6032785) 

Since C was arbitray, we can always choose it , so that the equation has real 

roots. Let   be one such root then             

         

Now using  ( )      ( )     ( )     ( )     

               then            

Then we get              

Also for      we have                

Then required least distance is     ∫ √  (  )  (  )   
 

 
 

   ∫ √       
 

 
 √ | | 

  √   

   √   is required least distance. 

EXAMPLE: 

Find the shortest distance between the points  (      ) and  (      ) in 

the plane          

Solution: 

We have to minimize   ∫   
 

 
 ∫ √(  )  (  )  (  ) 

 

 
 

  ∫ √  .
  

  
/
 
 .

  

  
/
  

 
   ∫ √  (  )  (  ) 

 

 
    

   ∫ √  (  )  (  )   
  

  
    

subjected to constraint        

Here    √  (  )  (  )           

and therefore we construct a new function 

        √  (  )  (  )   (     )   

Using EL equation 
  

  
 

 

  
.
  

   /    
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.√  (  )  (  )   (       )/  

 

  
4

 

   .√  (  )  (  )  

 (       )/5     

   
 

  
(

  

√  (  )  (  ) 
*     …………..(i) 

Also Using EL equation 
  

  
 

 

  
.
  

   
/    

 

  
.√  (  )  (  )   (     )/  

 

  
(

 

   
.√  (  )  (  )  

 (     )/*     

   
 

  
(

  

√  (  )  (  ) 
*     …………..(ii) 

Subtracting (i) and (ii) we get 

 

  
(

     

√  (  )  (  ) 
*    

     

√  (  )  (  ) 
    …………..(iii) 

Since           

The endpoint condition satisfied by the functions    ( )  is  

 ( )     ( )      

                     diff. w.r.to „x‟ 

(   )  
       

√  (  )  (     ) 
    

        √  (  )  (  )         

 ,     -  0 √   (  )     1
 
  

    (  )        (   (  )     )  

 (     )(  )  (     )   (     )     

This is the quadratic equation in    
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Since C was arbitray, we can always choose it , so that the equation has real 

roots. Let   be one such root then             

         

Now using  ( )     ( )     

        ( )        then            

Then we get             

Also for      we have               

Then required least distance is     ∫ √  (  )  (  )   
 

 
 

   ∫ √       
 

 
 √ | | 

  √   

   √   is required least distance. 
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INTEGRAL EQUATIONS  (IE‟s) 

Integral equations are an important tool in solving problems of Applied 

mathematics and mathematical physics. 

 A special advantage of using integral equations in dealing with IVP‟s or 

BVP‟s is that the IC‟s or BC‟s are automatically incorporated in the resulting 

integral equation. 

 

INTEGRAL EQUATION: An equation which involves the unknown variable 

under the integral sigh is called Integral Equation. 

EXAMPLES: 

 ∫   ( )  
 

 
   , ∫  (    ) (  )   

 

 
  ( ) are non – homogeneous 

IE‟s 

 ∫  (    ) (  )   
 

 
   ( )    is homogeneous IE where  (  ) is the 

unknown function and  (    ) is called Kernal. 

 

LINEAR INTEGRAL EQUATION: An equation in which unknown function 

appears linearly is called Linear Integral Equation. 

EXAMPLES: 

∫   ( )  
 

 
    and  ∫  (   ) ( )  

 

 
  ( ) 

 

NON – LINEAR INTEGRAL EQUATION: An equation in which unknown 

function does not appears linearly is called non – Linear Integral Equation. 

EXAMPLE: ∫  (   ) ( )  
 

 
   ( ) 

HOMOGENEOUS INTEGRAL EQUATION: An Integral Equation in which 

unknown function vanishes i.e.  ( )    then both sides of equation are 

equal, such type of equation is called H.I.EQ. 

EXAMPLE: ∫  (   ) ( )  
 

 
   ( )    

 

Non – HOMOGENEOUS INTEGRAL EQUATION: An Integral Equation in 

which unknown function does not  vanishes i.e.  ( )   , such type of 

equation is called non – H.I.EQ. 

EXAMPLE: ∫  (   ) ( )  
 

 
  ( ) 
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FREDHOLM INTEGRAL EQUATION OF 1
ST

 KIND:  

An Integral Equation of the form  ( )  ∫  (   ) ( )  
 

 
 where  ( ) and 

 (   ) are known functions is called F.I.Eq. of 1
st
 kind. And  (   ) is called 

Kernal of the IE. 

 

FREDHOLM INTEGRAL EQUATION OF 2
nd

  KIND:  

The non – Homogeneous linear  Integral Equation of the form 

 ( )   ( )   ∫  (   ) ( )  
 

 
   where  ( ) and  (   ) are known 

functions is called F.I.Eq. of 2
nd

 kind. And  (   ) is called Kernal of the IE. 

 

HOMOGENEOUS AND NON – HOMOGENEOUS F.I.EQUATIONs.  

The linear IE   ( )   ∫  (   ) ( )  
 

 
 is called homogeneous FI Eq. it can 

be written as an operator equation in the form          
 

 
  

A F.IE which is not homogeneus is called non – homogeneous or 

inhomogeneous. 

 

VOLTERA INTEGRAL EQUATION OF 1
ST

 KIND:  

If  (   )    when y>x then Fredholm integral equation of 1
st
 kind assume 

the form  ( )  ∫  (   ) ( )  
 

 
 and is called Voltera IE of the 1

st
 kind. 

 

VOLTERA INTEGRAL EQUATION OF 2
nd

 KIND:  

If  (   )    when y > x then Fredholm integral equation of 2
nd

 kind assume 

the form  ( )   ( )   ∫  (   ) ( )  
 

 
 and is called Voltera IE of the 2

nd
  

kind. 

 

REMEMBER: Voltera IE of 1
st
 kind  ( )  ∫  (   ) ( )  

 

 
 can be 

convertd into Voltera IE of 2
nd

 kind by differentiating 1
st
 kind w.r.to „x‟ and 

using Leibniz rule i.e.   ( )  ∫
 

  
 (   ) ( )    (   ) ( )

 

 
 

 

SINGULAR INTEGRAL EQUATION:  

An IE in which either one or both limits of integration are infinite or the 

integrand become infinite anywhere in the range of integration is called 

Singular IE. 

EXAMPLE: ∫
 

 
  

 

  
 in this integrand 

 

 
 becomes infinite in   ,    - 
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TYPES OF KERNELS 
HERMITIAN KERNELS: 

If  (   )   (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅  wher bar denots the complex conjugate, then  (   ) is 

called Hermitian kernel. 

SYMMETRIC KERNELS: 

If  (   )   (   ), then  (   ) is called “real symmetric kernel” or 

“merely symmetric kernel”. 

It is clear that every symmetric kernel is also Hermitian. 

 

CONVOLUTION TYPE KERNELS: 

If  (   )   (   ), then  (   ) is called convolution type kernel and the 

corresponding IE is called Convoluton type IE. 

 

SQUARE INTEGRABLE KERNEL: 

A kernel  (   ) defined over         i.e. over the square ,   -  ,   - 

is called square integrable if ∫ ∫ | (   )|     
 

 

 

 
   

i.e. ∫ ∫ | (   )|     
 

 

 

 
 is finite. 

 

SEPARABLE OR DEGENERATE KERNEL: 

If a kernel is of the form  (   )  ∑   ( )  ( )  i.e. it can be expressed as 

sum of products of functions of x only and y only, then it is called Separable or 

degenerate kernel. 

EXAMPLE:  

    (   )              are separable. 

    (  )       (   ) are not separable. 

 

 

 

 



195 
 

   MUHAMMAD USMAN HAMID (0323 – 6032785) 

STEPS TO FIND SOLUTION OF AN INTEGRAL EQUATION FOR A 

SEPARABLE KERNEL 

(UoS, 2013 – I , 2014 – II , 2019 – I) 

 Start with Fredholm integral equation of 2
nd

 kind in the notation 

 ( )   ( )   ∫  (   ) ( )  
 

 
  

with the separable kernel  (   )  ∑   ( )  ( )  where   ( )    ( ) are 

linearly independent sets of functions. 

 Susbstitute value of  (   ) 

  ( )   ( )   ∑   ( ) ∫   ( ) ( )  
 

 
  

  ( )   ( )   ∑     ( )   with    ∫   ( ) ( )  
 

 
 

  ( )   ( )   ∑     ( )   rewriting 

 Now for     ∫   ( ) ( )  
 

 
 

    ∫   ( ), ( )   ∑     ( ) -  
 

 
  

    ∫   ( ) ( )  
 

 
  ∑    ∫   ( )  ( )  

 

 
  

        ∑             ∑            

 ∑         ∑            since ∑           

 ∑ (        )        ………….(A) 

 Now since      2
        
        

 then previous equation is equivalent to a 

set of n – algebraic equations in „n‟ unknown constants          …..    

and written in full form as follows; 

(      )                          

        (      )                  ………….(B) for all 

                         

                    (      )       
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Then system of equations (A) and (B) will have a unique solution if the 

matrix of coefficients is non – singular 

 i.e. if   ( )  |        |    

 Let          …..    be the roots of the equation  ( )    then the 

system will have a unique solution if      (an eigenvalue) 

 After solving the system ∑ (        )       we substitute for    in  

 ( )   ( )   ∑     ( )  and obtaing the solution of given IE. 

 

RESOLVENT KERNEL:  

If the solution of the IE  ( )   ( )   ∫  (   ) ( )  
 

 
 is written as 

 ( )   ( )   ∫  (     ) ( )  
 

 
 then  (     ) is called Resolvent Kernel 

 

EXAMPLE: (UoS, 2014 – II ) 

Solve Fredholm IE of 2
nd

 kind given by  ( )     ∫ (       ) ( )  
 

 
 

Solution: here  (   )            is Separable Kernel. 

 Given  ( )     ∫ (       ) ( )  
 

 
 ………..(i) 

  ( )     ∫     ( )  
 

 
  ∫     ( )  

 

 
  

  ( )      ∫    ( )  
 

 
    ∫   ( )  

 

 
  

  ( )                 ………..(ii) 

with    ∫    ( )  
 

 
 and     ∫   ( )  

 

 
 

  ( )                rewriting 

 Now for     ∫   ( ) ( )  
 

 
 

    ∫   ( ), ( )   ∑     ( ) -  
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    ∫   ,            -  
 

 
  

    ∫ ,              -  
 

 
 

 

 
 

   

 
 

   

 
  

 .
 

 
  /   

   

 
  

 

 
    ………..(iii) 

Also      ∫  ,            -  
 

 
  

    ∫ ,              -  
 

 
 

 

 
 

   

 
 

   

 
  

 
 

 
   .

 

 
  /    

 

 
    ………..(iv) 

Now (   )  (     )                        

And  (  )       (     )                   

As above system of two equations is in two unknowns. It will have a 

unique solution if 

|
       

       
|    

 (     )(     )         

               

Now from above system of two equations is in two unknowns. 

  

          
 

  

          
 

 

           
  

    
    

           
     

  

           
  

Thus our required system is from (ii) 

  ( )      .
    

           
/     .

  

           
/  
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EXAMPLE: (UoS, 2013 – I ) 

Solve Fredholm IE of 2
nd

 kind given by  ( )   ( )   ∫ (   ) ( )  
 

 
                

also obtain its Resolven Kernel. 

Solution: here  (   )        is Separable Kernel. 

 Given  ( )   ( )   ∫ (   ) ( )  
 

 
 ………..(i) 

  ( )   ( )   ∫   ( )  
 

 
  ∫   ( )  

 

 
  

  ( )   ( )    ∫  ( )  
 

 
  ∫   ( )  

 

 
  

  ( )   ( )             ………..(ii) 

with    ∫  ( )  
 

 
 and     ∫   ( )  

 

 
 

  ( )   ( )            rewriting 

 Now for     ∫   ( ) ( )  
 

 
 

    ∫   ( ), ( )   ∑     ( ) -  
 

 
  

    ∫  ( )  
 

 
 ∫ , ( )          -  

 

 
  

    ∫  ( )  
 

 
    ∫    

 

 
    ∫   

 

 
  

       
   

 
      

 .  
 

 
/              ………..(iii) 

Also      ∫   ( )  
 

 
 ∫  , ( )          -  

 

 
  

    ∫   ( )  
 

 
    ∫     

 

 
    ∫    

 

 
  

       
   

 
 

   

 
  

  
 

 
   .  

 

 
/          ………..(iv) 
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Now  .  
 

 
/           

And    
 

 
   .  

 

 
/      

As above system of two equations is in two unknowns. It will have a 

unique solution if 

|
  

 

 
  

 
 

 
  

 

 

|     

 .  
 

 
/
 
 

  

 
    

Now from above system of two equations is in two unknowns. 

  

    .  
 

 
/  

 
  

 

 
   .  

 

 
/  

 
 

.  
 

 
/
 
 

  

 

  

    
    .  

 

 
/  

.  
 

 
/
 
 

  

 

     
 

 
   .  

 

 
/  

.  
 

 
/
 
 

  

 

  

Thus our required system is from (ii) 

  ( )   ( )    (
    .  

 

 
/  

.  
 

 
/
 
 

  

 

+   (
 

 
   .  

 

 
/  

.  
 

 
/
 
 

  

 

+ ………..(v) 

FOR RESOLVENT KERNEL: 

Rearranging (v)  

  ( )   ( )  (
 

.  
 

 
/
 
 

  

 

+ 0      .  
 

 
/    

 

 
   .  

 

 
/   1  

Now substituting    ∫  ( )  
 

 
  and     ∫   ( )  

 

 
 

  ( )   ( )  (
 

.  
 

 
/
 
 

  

 

+ 0  ∫   ( )  
 

 
  .  

 

 
/∫  ( )  

 

 
 

 

 
∫  ( )  
 

 
 .  

 

 
/ ∫   ( )  

 

 
1  
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  ( )   ( )  (
 

.  
 

 
/
 
 

  

 

+∫ 0     .  
 

 
/  

 

 
 .  

 

 
/  1

 

 
 ( )    

  ( )   ( )   ∫ [
     .  

 

 
/ 

 

 
 .  

 

 
/ 

.  
 

 
/
 
 

  

 

]
 

 
 ( )    

  ( )   ( )   ∫  (     )
 

 
 ( )    

Where  (     )  [
     .  

 

 
/ 

 

 
 .  

 

 
/ 

.  
 

 
/
 
 

  

 

] is the Resolvent Kernel. 

EXAMPLE: 

Solve Fredholm IE of 2
nd

 kind given by 

 ( )   ( )   ∫ (        ) ( )  
  

 
          also obtain its Resolven Kernel. 

Solution: here  (   )             is Separable Kernel. 

 Given  ( )   ( )   ∫ (        ) ( )  
  

 
 ………..(i) 

  ( )   ( )       ∫ (    ) ( )  
  

 
  

  ( )   ( )             ………..(ii) 

with   ∫ (    ) ( )  
  

 
 

  ( )   ( )          rewriting 

 Now for     ∫   ( ) ( )  
 

 
 

    ∫   ( ), ( )   ∑     ( ) -  
 

 
  

   ∫ (    ) ( )  
  

 
 ∫ (    ), ( )        -  

  

 
  

   ∫ (    ) ( )  
  

 
  ∫        

  

 
  

           

 (    )       
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Thus our required system is from (ii) 

  ( )   ( )       .
  

    
/ ………..(iii) 

FOR RESOLVENT KERNEL: 

Rearranging (iii)  

  ( )   ( )  
 

    
    (  )  

Now substituting    ∫ (    ) ( )  
  

 
 

  ( )   ( )  
 

    
∫          ( )  
  

 
  

  ( )   ( )   ∫ 0
        

    
1  ( )  

  

 
  

  ( )   ( )   ∫  (     ) ( )  
  

 
  

Where  (     )  0
        

    
1 is the Resolvent Kernel. 

 

EXAMPLE: (UoS, 2018 – I ) 

Solve Fredholm IE of 2
nd

 kind given by 

  ( )   ( )   ∫ (       ) ( )  
 

  
   also obtain its Resolven Kernel. 

Solution: here  (   )            is Separable Kernel. 

 Given  ( )   ( )   ∫ (       ) ( )  
 

  
 ………..(i) 

  ( )   ( )    ∫   ( )  
 

  
     ∫    ( )  

 

  
  

  ( )   ( )               ………..(ii) 

with    ∫   ( )  
 

  
 and     ∫    ( )  

 

  
 

  ( )   ( )              rewriting 

 Now for     ∫   ( ) ( )  
 

 
 

    ∫   ( ), ( )   ∑     ( ) -  
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    ∫   ( )  
 

  
 ∫  , ( )            -  

 

  
  

    ∫   ( )  
 

  
    ∫     

 

  
    ∫     

 

  
  

       
 

 
     

 .  
 

 
 /         

  

.  
 

 
 /
      

 

 
    ………..(iii) 

Also      ∫    ( )  
 

  
 ∫   , ( )            -  

 

  
  

    ∫    ( )  
 

  
    ∫     

 

  
    ∫     

 

  
  

       
 

 
     

 .  
 

 
 /         

  

.  
 

 
 /
      

 

 
    ………..(iv) 

Thus our required system is from (ii) 

  ( )   ( )    4
  

.  
 

 
 /
5     4

  

.  
 

 
 /
5 ………..(v) 

FOR RESOLVENT KERNEL: 

As    ( )   ( )               ………..(ii) 

Substituting    ∫   ( )  
 

  
  and     ∫    ( )  

 

  
 in (ii) 

  ( )   ( )  4
  

.  
 

 
 /
5∫   ( )  

 

  
 4

   

.  
 

 
 /
5∫    ( )  

 

  
  

  ( )   ( )   ∫ 6
  

.  
 

 
 /

 
    

.  
 

 
 /
7

 

  
 ( )    

  ( )   ( )   ∫ , (     )-
 

  
 ( )    

Where  (     )  6
  

.  
 

 
 /

 
    

.  
 

 
 /
7 is the Resolvent Kernel. 
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EXAMPLE: 

Find the eigenvalue and eigensolution of the IE 

  ( )   ∫ (                     ) ( )  
 

 
 

Solution: Given ( )   ∫ (                     ) ( )  
 

 
 …..(i) 

  ( )   ∫            ( )  
 

 
  ∫            ( )  

 

 
  

  ( )        ∫       ( )  
 

 
       ∫       ( )  

 

 
  

  ( )                      ………..(ii) 

with    ∫       ( )  
 

 
 and     ∫       ( )  

 

 
 

  ( )                     rewriting 

Now 

    ∫       ( )  
 

 
 ∫      ,                 -  

 

 
  

     ∫               
 

 
  ∫               

 

 
   

                  ………..(iii) 

Now     ∫             
 

 
 ∫      .

       

 
/  

 

 
 

   
 

 
∫ ,            -  
 

 
 

 

 
|
     

 
|
 

 
 

 

 
∫ .

       

 
/  

 

 
  

     
 

 
|  

     

 
|
 

 
    

 

 
  

Also    ∫             
 

 
 

 

 
∫              
 

 
 

   
 

 
∫ (          )  
 

 
 

 

 
|
     

 
     |

 

 
       

(   )        
 

 
 .   

 

 
/           

Or .   
 

 
/           ………..(iv) 

Now as    ∫       ( )  
 

 
 

    ∫      ,                 -  
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       ∫             
 

 
    ∫             

 

 
  

                 

Now     ∫             
 

 
 ∫        

 

 
 

Put     
 

 
       also as       then    

 

 
  

 

 
 respectively 

   ∫     .  
 

 
/  

 

 

 
 

 

  ∫        
 

 

 
 

 

    because integral is odd. 

Now     ∫             
 

 
 ∫      (             )  

 

 
 

   ∫ (              )  
 

 
  

Put     
 

 
       also as       then    

 

 
  

 

 
 respectively 

   ∫ (      .  
 

 
/       .  

 

 
/*  

 

 

 
 

 

 ∫ (              )  
 

 

 
 

 

  

   ∫ (              )  
 

 
 

  

Now using the recursion formulae 

∫        
 

 
 

 
      (   )

       
 

 

 
  when „n‟ is even 

      
   

   
 

 

 
   

     

     
 

 

 
 

 

 
  

       ( )     .
 

 
/      .   

 

 
/       ………..(v) 

From (iv) and (v) we can write 

.   
 

 
/                .   

 

 
/       

For eigenvalues |
   

 

 
 

    
 

 

|     

 .   
 

 
/ .   

 

 
/    .   

 

 
/    .   

 

 
/     
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For      
 

 
 equation (iv) becomes .   

 

 
/         

 .  
 

 
 
 

 
/               

And  For      
 

 
 equation (v) becomes     .   

 

 
/      

     .  
 

 
 
 

 
/            and    arbitrary 

(  )   ( )            

Therefore eigenfunction for      
 

 
 is   ( )  

 

 
     

   

   ( )                  

For      
 

 
 equation (iv) becomes .   

 

 
/         

 .  
 

 
 
 

 
/                and    arbitrary  

(  )   ( )        
     

Therefore eigenfunction for      
 

 
 is   ( )  

 

 
     

    

   ( )                   
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THE NEUMANN SERIES FOR THE SOLUTION OF THE FREDHOLM 

NON – HOMOGENEOUS I.E. OF THE SECOND KIND WITH 

SEPARABLE KERNEL OR  MAY NOT BE A SEPARABLE. 

OR METHOD OF SUCCESSIVE APPROXIMATION (UoS, 2018 – I) 

 Start with Fredholm integral equation of 2
nd

 kind in the notation 

 ( )   ( )   ∫  (   ) ( )  
 

 
  

Where  ( ) and  (   ) are square integrable functions. 

i.e. ∫ | ( )| 
 

 
         and  ∫ ∫ | (   )| 

 

 

 

 
       

and the kernel may not be separable. 

We want to find condition under which solution converges. 

 First consider the zeroth order approximation and take   ( )   ( ) 

   ( )   ( ) for the solution of IE of 2
nd

 kind. 

 To obtain first order approximation, 

Since   ( )   ( )   ∫  (   ) ( )  
 

 
 

   ( )   ( )   ∫  (   )  ( )  
 

 
  

   ( )   ( )   ∫  (    ) (  )   
 

 
  

Similarly for second approximation; 

   ( )   ( )   ∫  (   )  ( )  
 

 
  

                      

                      

And in general we have; 

     ( )   ( )   ∫  (   )  ( )  
 

 
  

Here    ( )   ( ) as      then the approximation is said to 

converge to  ( ). 
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Now we find convergence of solutio; 

As   ( )   ( )   ∫  (    ) (  )   
 

 
 

 Then    ( )   ( )   ∫  (   )  ( )  
 

 
 

   ( )   ( )   ∫  (   ) 0 ( )   ∫  (    ) (  )   
 

 
1   

 

 
  

   ( )  

 ( )   ∫  (   ) ( )     ∫ 0∫  (   ) (    )  
 

 
1

 

 
 (  )   

 

 
  

   ( )   ( )   ∫   (   ) ( )     ∫   (   )
 

 
 ( )  

 

 
  

Where    (   )   (   )  and   (   )  ∫  (   ) (    )  
 

 
 

 Similarly 

  ( )   ( )   ∫   (   ) ( )     ∫   (   )
 

 
 ( )  

 

 
 

  ∫   (   )
 

 
 ( )   

 And in general; 

  ( )   ( )  ∑    
   ∫   (   )

 

 
 ( )    

And   ( )   ( ) as      then the approximation is said to 

converge to  ( ). And the general series is called Neumann Series with  

  (   )  ∫   (   )    (   )  
 

 
 ∫     (   )  (   )  

 

 
  

Where    (   )   (   ) 
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CONDITION FOR CONVERGENCE OF NEUMANN SERIES 

Consider a general term of Neumann series and apply the schwarz inequality 

to it. 

|∫   (   )
 

 
 ( )  |

 
 ∫ | ( )| 

 

 
  ∫ |  (   )| 

 

 
    

Now let ∫ | ( )| 
 

 
       and  sup 2∫ |  (   )| 

 

 
  3    

  

 |∫   (   )
 

 
 ( )  |

 
     

    ……..(i) 

To obtain the formula for   
  apply Schwarz inequality to it. 

|  (   )|  |∫     (   )
 

 
  (   )  |

 
  

|  (   )|  ∫ |    (   )|
  

 
  ∫ |  (   )|

  

 
    

 ∫ |  (   )| 
 

 
   ∫ |    (   )|

  

 
  ∫ ∫ |  (   )|

  

 
  

 

 
    

   
      

     with    ∫ ∫ |  (   )|
  

 
  

 

 
   

Repeating the procedure we obtain 

  
      

        
      

           
 (  )   

   
    

 (  )     general 

( )  |∫   (   )
 

 
 ( )  |

 
     

 (  )     

And    
      

        
 (  )      

 (  )    

 |∫   (   )
 

 
 ( )  |      

     

 |  ∫   (   )
 

 
 ( )  |  |  |    

       |  | on B.Sides 

This show that the absolute value of general term in Neumann series is less 

than or equal to the general term of geometric series    ∑ | |      with 

common ratio  | |. This geometric series will be convergent if  | |    or if 

| |     . This is the condition for convergence of geometric series. 



209 
 

   MUHAMMAD USMAN HAMID (0323 – 6032785) 

UNIQUENESS SOLUTION OF THE FREDHOLM I.E. OF THE 2
ND

  KIND 

Since  ( )   ( )   ∫  (   ) ( )  
 

 
 

To prove its uniqueness consider if possible, there exists two solutions, then 

  ( )   ( )   ∫  (   )  ( )  
 

 
  

  ( )   ( )   ∫  (   )  ( )  
 

 
  

Subtracting both 

  ( )    ( )   ( )   ∫  (   )  ( )  
 

 
  ( )   ∫  (   )  ( )  

 

 
  

 ( )   ∫  (   ),  ( )    ( )-  
 

 
  

 ( )   ∫  (   ) ( )  
 

 
 ………..(i) 

∫ | ( )| 
 

 
   | ∫ ∫  (   ) ( )  

 

 

 

 
|
 
  

∫ | ( )| 
 

 
   | | ∫ ∫ | (   )| 

 

 
  

 

 
∫ | ( )| 
 

 
    

∫ | ( )| 
 

 
   | |   ∫ | ( )| 

 

 
    

∫ | ( )| 
 

 
   | |   ∫ | ( )| 

 

 
     replacing „x‟ with „y‟ 

∫ ,| ( )|  | |   | ( )| -
 

 
      

∫ | ( )| ,  | |   -
 

 
      

For a convergent Neumann Series | |    therefore ∫ | ( )| 
 

 
     

  ( )     hence the solution must be unieque. 

( )   ( )     ∫  (   ) ( )  
 

 
  

  ∫  (   )  ( )  
 

 
  ∫  (   )  ( )  

 

 
    

  ( )   ∫  (   )  ( )  
 

 
  ( )   ∫  (   )  ( )  

 

 
  

   ( )    ( )   ( )  
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RESOLVENT KERNEL FOR NEUMANN SERIES 

Since Neumann series solution is as 

  ( )   ( )   ( )  ∑    
   ∫   (   )

 

 
 ( )   

  ( )   ( )   ∫ .∑      
     (   )/

 

 
 ( )                    

  ( )   ( )   ∫  (     )
 

 
 ( )    

With (     )  ∑      
     (   ) called Resolvent Kernel 

Also  (     )    (   )     (   )      (   )    will be convergent if 

| |    where   (   ) is mth iterated kernel. 

ERROR: 

|  |  
   | |

   

  | | 
  is the error when term after nth term in Neumann‟s left out. 

EXAMPLE: 

Solve the IE by the method of successive approximation 

 ( )   ( )   ∫      ( )  
 

 
  

Solution: By the method of successive approximation solution is 

  ( )   ( )   ∫  (     )
 

 
 ( )    ……….(i) 

With (     )  ∑      
     (   ) called Resolvent Kernel 

Also  (     )    (   )     (   )      (   )    

Here   (   )       

Now since   (   )  ∫   (   )    (   )  
 

 
 

   (   )  ∫   (   )  (   )  
 

 
 ∫           

 

 
 ∫       

 

 
  

   (   )        after solving 

Similarly    (   )  ∫   (   )  (   )  
 

 
 ∫           

 

 
 

   (   )  ∫       
 

 
   (   )        
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Similary                    

Hence  (     )                  (           ) 

 (     )      (   )   
    

   
  

( )   ( )   ( )  
 

   
∫      

 
 ( )    

For convergence | |    where    ∫ ∫ |  (   )|
  

 
    

 

 
 

EXAMPLE: 

Solve the IE also find the resolvent kernel by the method of successive 

approximation   ( )     ∫ (     ) ( )  
 

 
  

Solution: 

 (     )  ∑      
     (   )    (   )     (   )      (   )     

Here   (   )        

Now since   (   )  ∫   (   )    (   )  
 

 
 

   (   )  ∫   (   )  (   )  
 

 
 ∫ (     )(     )  

 

 
  

   (   )  ∫ (               )  
 

 
   

  

 
 

  

 
      

   (   )   
 

 
(   )  (     )  

Similarly    (   )  ∫   (   )  (   )  
 

 
 

   (   )  ∫ (     ) ( 
 

 
(   )  (     )*  

 

 
  

   (   )  
 

 
(     )   after solving 

Similarly    (   )  ∫   (   )  (   )  
 

 
 

   (   )  
 

 
∫ (     )(     )  
 

 
 

 

 
.  

  

 
 

  

 
    /  

   (   )  
 

 
  (   )  
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Similarly   (   )  
 

  
  (   )  and    (   )  

 

  
  (   ) 

Since  

 (     )  ∑      
     (   )    (   )     (   )      (   )     

 (     )  (              )  (               )  

 (     )  .   
  

 
   

  

  
    /  .    

  

 
   

  

  
    /  

 (     )    .  
  

 
 

  

  
  /     .  

  

 
 

  

  
  /  

 (     )  .  
  

 
 

  

  
  / (      )  

 (     )  .  
  

 
 

  

  
  / 0(     )   ( 

 

 
(   )  (     )*1  

 (     )  .  
  

 
/
  

0(     )   ( 
 

 
(   )  (     )*1  

 (     )  
 

  
  

 

0(     )   ( 
 

 
(   )  (     )*1  

So the solution is  

 ( )    
 

  
  

 

∫ 0(     )   ( 
 

 
(   )  (     )*1 ( )  

 

 
  

 ( )    
 

  
  

 

.  
 

 
  

 

 
/   after solving 

EXAMPLE: 

Solve the IE also find the resolvent kernel and condition of convergence by the 

method of successive approximation   ( )     ∫    (   ) ( )  
 

 
  

Solution: By the method of successive approximation the solution is 

 ( )   ( )   ∫  (     ) ( )  
 

 
   where  ( )    and 

 (     )  ∑      
     (   )    (   )     (   )      (   )     

Here   (   )   (   )     (   ) 

  (   )                     



213 
 

   MUHAMMAD USMAN HAMID (0323 – 6032785) 

Now since   (   )  ∫   (   )    (   )  
 

 
 

   (   )  ∫   (   )  (   )  
 

 
 ∫    (   )   (   )  

 

 
  

   (   )  ∫ (                 )(                 )  
 

 
  

   (   )  

∫ (                                             
 

 

                )    

   (   )  

(                 ) ∫           
 

 
         ∫        

 

 
 

        ∫        
 

 
  

   (   )  

   (   ) |
     

 
|
 

 

         ∫ .
       

 
/  

 

 
         ∫ .

       

 
/  

 

 
  

   (   )     (   )( )  
 

 
         |  
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        |  
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   (   )  
 

 
         |  
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        |  

     

 
|
 

 
  

   (   )  
 

 
          

 

 
         

 

 
(                  )  

   (   )  
 

 
   (   )  

Similarly    (   )  ∫   (   )  (   )  
 

 
 

   (   )  ∫ (                 ) (
 

 
   (   )*  
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∫ (                 )(                 )  
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   (   )  

 

 
∫ (                                             
 

 

                )    

   (   )  

 

 
[(                 ) ∫           

 

 
         ∫        

 

 
 

        ∫        
 

 
]  

   (   )  
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         ∫ .
       

 
/  
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(                  )  
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  (   )  

Similarly     (   )  
  

 
   (   )  

  

 
  (   ) 

And     (   )  
  

  
   (   )  

  

  
  (   ) 

Since  

 (     )  ∑      
     (   )                      

 (     )         
    

 
   

    

 
   

    

  
      

 (     )    .  
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So the solution is given by   ( )     ∫  (     ) ( )  
 

 
 

 ( )    
 

  
    

 

∫ 0   (   )  
  

 
   (   )1  ( )  

 

 
  

EXAMPLE: 
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EXAMPLE: 
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VOLTERA IE AND THE METHOD OF SUCCESSIVE APOROXIMATION 
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EXAMPLE: 
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EXAMPLE: 
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EXAMPLE: 
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EXAMPLE: 
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 (UoS, Past Paper)   

Justify that Laplace Transformation could be used to solve I.E. 

Consider the IE (Voltera IE of 1
st
 kind) 

 ( )  ∫  (   ) ( )  
 

 
  

  ( )        using Convolution law. 

  * ( )+   *   +  

  ̃( )   ̃( ) ̃( )   using Convolution law. 

  ̃( )  
 ̃( )

 ̃( )
    * ̃( )+     2

 ̃( )

 ̃( )
3   ( )   

 

   
∫

    ̃( )

 ̃( )

    

    
    

after solving we get the result. 

 

 

Justify that Fourier Transformation could be used to solve I.E. 

Consider the IE  

 ( )   ( )   ∫  (   ) ( )  
 

  
  

  ( )   ( )  √         using Convolution law. 

  * ( )+   { ( )  √      }  

  ̃( )   ̃( )  √    ̃( ) ̃( )   using Convolution law. 

  ̃( )  
 ̃( )

    ̃( )
    * ̃( )+     2

 ̃( )

    ̃( )
3  

  ( )  
 

√ 
∫

      ̃( )

    ̃( )

 

 
    after solving we get the result. 
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AN IMPORTANT RESULT: 

∫ ∫  (  )      
  

 

 

 
 ∫ (    ) (  )   

 

 
  

 

Example 1: (UoS, 2019 – I )   

Redue the IVP     ( )    ( )   ( ) with  ( )      ( )    

Solution: 

Given that     ( )    ( )   ( ) 

 ∫ ,   ( )    ( )-
 

 
   ∫  ( )

 

 
    

 |  ( )| 
   ∫  ( )

 

 
   ∫  ( )

 

 
    

   ( )    ( )   ∫  ( )
 

 
   ∫  ( )

 

 
    

   ( )   ∫  ( )
 

 
   ∫  ( )

 

 
    since   ( )    

 ∫   ( )
 

 
    ∫ ∫  (  )

  

 

 

 
       ∫ ∫  (  )

  

 

 

 
        

  ( )   ( )   ∫ ∫  (  )
  

 

 

 
       ∫ ∫  (  )

  

 

 

 
        

  ( )     ∫ ∫  (  )
  

 

 

 
       ∫ ∫  (  )

  

 

 

 
        

  ( )     ∫ (    ) (  )   
 

 
 ∫ (    ) (  )   

 

 
  using result 

  ( )     ∫ (    ) (  )   
 

 
 ∫ (    ) (  )   

 

 
  

  ( )     ∫ (   ) ( )  
 

 
 ∫ (   ) ( )  

 

 
  

  ( )    ∫ (   ) ( )  
 

 
  ∫ (   ) ( )  

 

 
  

  ( )   ( )   ∫  (   ) ( )  
 

 
  required Voltera IE 

Where  ( )    ∫ (   ) ( )  
 

 
  and   (   )      
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