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PREFACE 

Mechanics is one of the most important course in maximum disciplines of science and engineering. 

No matter what your interest in science or engineering, mechanics will be important for you. 

Mechanics is a branch of physics which deals with the bodies at rest and in motion. During 

the early modern period, scientists such as Galileo, Kepler, and Newton laid the foundation for 

what is now known as classical mechanics. Hence there is an extensive use of mathematics in its 

foundation. 

Mechanics is  core course for undergraduate Mathematics, Physics and many engineering 

disciplines. It appears under different names as Analytical/Classical Mechanics, Theoretical 

Mechanics, Mechanics I, Mechanics II, Mechanics III, Analytical Dynamics.  

This textbook is designed to support teaching activities in Theoretical Mechanics specially 

Dynamics. It covers the contents of “Mechanics” for many undergraduate science and engineering 

programs. It presents simply and clearly the main theoretical aspects of mechanics. 

It is assumed that the students have completed their courses in Calculus, Linear Algebra and 

Differential Equations and Mechanics II. This book also lay the foundations for further studies in 

physics, physical sciences, and engineering. 

For each concept a number books, documents and lecture notes are consulted. I wish to express 

my gratitude to the authors of such works.  

In chapter 1, Lagrangian and Hamiltonian Mechanics are discussed. The concepts of constraints, 

degree of freedom, generalized coordinates, ignorable coordinates, generalized momenta, 

Lagrangian, Lagrange’s equations of motion, law of conservation of energy, Hamiltonian, 

Hamilton’s equations of motion are given by considering the motion of a particle in one 

dimensional, two dimensional, and three dimensional rectangular coordinate systems and polar, 

cylindrical, and spherical coordinate systems. Routhian Mechanics is also included in this chapter. 

Lagrange’s equations of motion and Hamiltonian, Hamilton’s equations of motion are also derived 

by using Hamilton’s principle.  

In chapter 2, the concepts of exact/canonical transformations are discussed. In your differential 

equation course, you have studied exact differential equation. The same concept is here. The 

generating function and its four types are also given in this chapter. In chapter 3, Lagrange and 

Poisson Brackets are given. This chapter is in progress. Hopefully will be complete in its next 

edition. 

 

In a book of this concept, level and size, there may be a possibility that some misprint might have 

remained uncorrected. If you find such misprints or want to give some suggestions for its 

improvement, please write me at: babar.sms@gmail.com 

Dr. Babar Ahmad 

Islamabad, Pakistan 

June, 2020 

https://en.wikipedia.org/wiki/Early_modern_period
https://en.wikipedia.org/wiki/Galileo
https://en.wikipedia.org/wiki/Johannes_Kepler
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Classical_mechanics
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Chapter 1

Lagrangian Mechanics

In Newtonian Mechanics, we have different vector equations for the motions of objects in
the form of forces. The simplest example is, a point like particle moving under the influence
of some force, is governed by the vector equation.

~F = ~̇p

In 1788 Lagrange did something different. He examined energy, by using generalized coor-
dinates, and thats what we will do in this chapter.
dynamical system In mathematics, a dynamical system is a system in which a function
describes the time dependence of a point in a geometrical space. In Ordinary Differential
Equations course, If you have followed the book by D. G. Zill, 8th edition, In chapter 3, you
have studied ”Modeling with First-Order Differential Equations” and in chapter 5, ”Model-
ing with Higher-Order Differential Equations” The mathematical models in these chapters
are all Dynamical systems.

1.1 System Configurations and Coordinates

1.1.1 Constraints

Any thing that resists the motion of a particle is known as constraint. e.g gas molecules
contained in a cylinder are constrained by the walls of the cylinder to move only inside the
cylinder.

Holonomic Constraints

If the constrains are relation between coordinates (and possibly time) only are called holo-
nomic constraints. If x1, x2, ..., xN are generalized coordinates then holonomic constraints
can be expressed as following

f(x1, x2, ..., xN , t) = 0

1



2 1 Lagrangian Mechanics

Examples

1. The motion of simple pendulum is in two dimensional system. We consider polar
coordinate system. Its length l (radial component r)is fixed is the constraint, mathe-
matically is given as

r2 − l2 = 0

2. The motion of a particle constrained to lie on the surface of a sphere of radius a is
holonomic constraint. Its equation will be

r2 − a2 = 0

Where r is the distance of the particle from the centre of a sphere of radius a.

3. A rigid body is a holonomic system, as the distance between any two points is fixed.
Consider a rigid body in 3−space rectangular coordinate system. Let Pi = Pi (xi, yi, zi)
and Pj = Pj (xj , yj , zj) two points of it having position vectors ri and rj relative to
some reference point O, then the distance between them is

|ri − ri| = dij

or

or (xi − xj)2 + (yi − yj)2 + (zi − zj)2 = d2ij

Figure 1.1: Rigid body
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Non-Holonomic Constraints

Any constraints which is not holonomic is called non-holonomic constraint, hence a non-
holonomic constraint can not be expressed as

f(x1, x2, ..., xN , t) = 0

Such constrains are relation between coordinates, velocities or higher order derivatives (and
possibly time). If ẋ1, ẋ2, ..., ẋN are velocities with respect to x1, x2, ..., xN generalized coor-
dinates then non-holonomic constraints can be expressed as following

f(x1, x2, ..., xN , ẋ1, ẋ2, ..., ẋN , t) = 0

Examples

1. A particle moving on the surface of a sphere of radius a may fall off under the influence
of gravity is non-holonomic constraint. Its equation will be

r2 − a2 ≥ 0

Where r is the distance of the particle from the centre of a sphere of radius a.

2. A particle of mass m moves within a cylinder of radius a and height h. The motion

Figure 1.2: Rigid body



4 1 Lagrangian Mechanics

is constrained by the following relations

0 ≤ r ≤ a
0 ≤ θ ≤ 2π

0 ≤ z ≤ h

These constraints are non-holonomic.

1.1.2 Degrees of Freedom

A most fundamental property of a physical system is its number of degrees of freedom.
This is the minimal number of variables needed to completely specify the positions of all
particles and bodies that are part of the system, i.e. its configuration.
For a general system, the number of degrees of freedom is denoted by NDOF . We usually
thus need NDOF numbers (called coordinates) to describe the system. If there are N
coordinates and r constraints then

NDOF = N − r

Critical Point: The number of DOF is a characteristic of the system and does not depend
on the particular set of coordinates used to describe the configuration.
Examples

(1) A point particle moving on a line has one degree of freedom. A generalized coordinate
can be taken as x, the coordinate along the line.

(2) A particle moving in three dimensions has three degrees of freedom. Examples of
generalized coordinates are the usual rectilinear ones, ~r = (x, y, z), and the spherical
ones, r = (r, θ, φ), where

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

Here r = 0 and N = 3
Hence DOF = N − r = 3

(3) A rigid body in two dimensions has three degrees of freedom - two ”translational”
which give the position of some specified point on the body and one ”rotational”
which gives the orientation of the body. An example, the most common one, of
generalized coordinates is (xc, yc, φ), where xc and yc are rectilinear components of
the position of the center of mass of the body, and φ is the angle from the xaxis to a
line from the center of mass to another point (x1, y1) on the body.
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(4) A rigid body in three dimensions has six degrees of freedom (Three due to its position,
and three due to its orientation). Three of these are translational and correspond to
the degrees of freedom of the center of mass. The other three are rotational and
give the orientation of the rigid body. We will not discuss how to assign generalized
coordinates to the rotational degrees of freedom (one way is the so called Euler angles),
but the number should be clear from the fact that one needs a vector ω with three
components to specify the rate of change of the orientation.

1.1.3 Transforming Coordinates

Once a problem is described in certain generalized coordinates, it can also be described in
other coordinate systems. For this, we use coordinate transformations, like

qi = qi(x1, x2, ..., xN , t) (1.1.1)

similarly

xi = xi(q1, q2, ..., qN , t) (1.1.2)

is known as the inverse transformation.

1.1.4 Generalized Coordinates

Describing the configuration of a system can be done in many ways. (We could use many
kinds of coordinate systems.) However, we want to be able to work with any description of
the system. To accomplish this, we define generalized coordinates qi as the coordinates that
describe the configuration of the system relative to some reference configuration. These
coordinates must uniquely define the configuration of the system relative to the reference
configuration. If the number of degrees of freedom of a system is N, any set of variables
(q1, q2, ..., qN ) specifying the configuration is called a set of generalized coordinates. Math-
ematically consider the transformation

T : (x1, x2, ..., xN ) → (q1, q2, ..., qN ) (1.1.3)

If T is invertible transformation i.e

J =
∂ (x1, x2, ..., xN )

∂ (q1, q2, ..., qN )
6= 0 (1.1.4)

Then

q1 = q1 (x1, x2, ..., xN )

q2 = q2 (x1, x2, ..., xN )

·
·
·

qN = qN (x1, x2, ..., xN )
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are called generalized coordinates.

Example 1.1.1. The cylindrical coordinates (r, θ, z) are generalized coordinates.

By transformation

T : (x, y, z) → (r, θ, z)

the cartesian coordinates in terms of cylindrical coordinates are

x = r cos θ

y = r sin θ

z = z

Then

J =
∂ (x, y, z)

∂ (r, θ, z)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x
∂r

∂x
∂θ

∂x
∂z

∂y
∂r

∂y
∂θ

∂y
∂z

∂z
∂r

∂z
∂θ

∂z
∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣∣ = r

If r = 0, then there is no transformation. Hence r 6= 0, so the cylindrical coordinates

r =
√
x2 + y2

θ = arctan
(y
x

)
z = z

are generalized coordinates.
Note: The formulation of dynamics problems in terms of generalized coordinates is known
as Lagrangian dynamics.

1.1.5 Generalized Velocities

Generalized velocities are defined from the generalized coordinates exactly as ordinary ve-
locity from ordinary coordinates:

vi = q̇i (1.1.5)
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Note that the dimension of a generalized velocity depends on the dimension of the corre-
sponding generalized coordinate, so that e.g. the dimension of a generalized velocity for an
angular coordinate is (time)−1 it is an angular velocity. In general, (v1, ..., vN ) is not the
velocity vector.

Example 1.1.2. With polar coordinates (r, θ) as generalized coordinates, the generalized

velocities are (ṙ, θ̇), while the velocity vector is (ṙr̂, rθ̇θ̂).

1.1.6 Generalized Forces

Generalized Forces are obtained from the applied forces, Fi, i = 1, ..., n, acting on a system
that has its configuration defined in terms of generalized coordinates. Consider a system,
consisting of N point particles with coordinates (x1, ..., xN ) , and that the configuration of
the system also is described by the set of generalized coordinates (q1, ..., qN ). Since both
sets of coordinates specify the configuration, there must be a relation between them:

x1 = x1 (q1, q2, ..., qN ) = x1(q)

x2 = x2 (q1, q2, ..., qN ) = x2(q)

.

.

.

xN = x3 (q1, q2, ..., qN ) = xN (q)

compactly written as xi = xi(q). To make the relation between the two sets of variable spec-
ifying the configuration completely general, the functions xi could also involve an explicit
time dependence.We choose not to include it here. If we make a small (infinitesimal) dis-
placement dqi in the variables qi, the chain rule implies that the corresponding displacement
in xi is

dxi =
N∑
i=1

∂xi
∂qi

dqi (1.1.6)

The infinitesimal work done by a force during such a displacement is the sum of terms of
the type ~F · ~r, i.e.

dWi =
N∑
i=1

Fidxi

Using (1.1.6), the infinitesimal work done

dWi =

N∑
i=1

Fi
∂xi
∂qi

dqi (1.1.7)
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or we can write

dWi =

N∑
j=1

Qjdqj (1.1.8)

where Qj is the generalized force associated to the generalized coordinate qj hence is given
as

Qj =

N∑
i=1

Fi
∂xi
∂qj

(1.1.9)

Note: As was the case with the generalized velocities, the dimensions of the Qj ’s need not
be those of ordinary forces.
Example: Consider a mathematical pendulum with length l, the generalized coordinate
being φ, the angle from the vertical. Suppose that the mass moves an angle dφ under the
influence of a force ~F . The displacement of the mass is

d~r = ldφφ̂

and the infinitesimal work becomes

dWi = ~F · ~r = Fφldφ

The generalized force associated with the angular coordinate φ obviously is

Qφ = Fφl (1.1.10)

which is exactly the torque of the force.
If the force is conservative, we may get it from a potential U as

Qi = −∂U
∂xi

(1.1.11)

Using this expression in (1.1.9), the generalized force are

Qj =
N∑
i=1

−∂U
∂xi

∂xi
∂qj

= −∂U
∂qi

(1.1.12)

The relation between the potential and the generalized force looks the same whatever gen-
eralized coordinates one uses.

1.2 Virtual Displacement and Virtual Work

The concepts of virtual displacement and virtual work are very useful and are given next.



1.2 Virtual Displacement and Virtual Work 9

1.2.1 Virtual Displacement

A hypothetical displacement of a system in which the forces and constraints remain un-
changed and which takes place during infinitesimal time interval is called virtual displace-
ment. It is denoted by δri for the ith particle.
Note: During this displacement, the forces of constraints do not do work.

1.2.2 Real and Virtual Displacement

Let ~ri be the position vector of the ith particle having generalized coordinates qi at time t.
Then

ri = ri (qi, t) (1.2.1)

and the quantity

dri =
∂ri
∂qi

dqi +
∂ri
∂t
dt (1.2.2)

is called the real displacement. If t is fixed then dt = 0 and the quantity

δri =
∂ri
∂qi

δqi (1.2.3)

is called the virtual displacement.

1.2.3 Virtual Work

The work done by a force in virtual displacement.

Example 1.2.1. A particle of mass m moves under the central force F = −µm
r2
, where µ

is some constant. Find virtual work done.

The particle moves in polar coordinates, so r and θ are the generalized coordinates.
Then r, θ, ṙ and θ̇ are linearly independent. The force acting on the particle is

F = −µm
r2

The generalized force F can be written in polar components as

Fr = −µm
r2

Fθ = 0

As the system is Holonomic, the virtual work done is given by
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Figure 1.3: Polar motion

δW =
2∑
i=1

Fi.δqi

= F1.δq1 + F2.δq2

= Fr.δr + Fθ.δθ

= Fr.δr

1.2.4 Principle of Virtual Work

The necessary and sufficient condition for a system of N particles to be in equilibrium is
the total virtual work done by applied forces is zero.
Proof : Consider a system of N particles. Let Qi be the force acting on the ith particle.
Then

Qi = Fi + fi (1.2.4)

Where Fi are external applied forces and fi are constraint forces. If δri is the virtual
displacement of the ith particle. Then the virtual work is

δWi = (Fi + fi) .δri (1.2.5)

Let the system be in equilibrium, then

Qi = 0 ∀i (1.2.6)

⇒ δWi = 0 ∀i (1.2.7)
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And for the whole system

N∑
i=1

δWi =
N∑
i=1

Qi.δri = 0

=
N∑
i=1

(Fi + fi) .δri = 0

=

N∑
i=1

Fi.δri +

N∑
i=1

fi.δri = 0

Since the work done by the constraint forces is zero, we have

N∑
i=1

δWi =
N∑
i=1

(Fi.δri) = 0 (1.2.8)

Conversely suppose that the total work done by applied forces is zero. Then

N∑
i=1

δWi = 0

If δri is the virtual displacement for the applied force Fi, then we have

N∑
i=1

Fi.δri = 0

or

N∑
i=1

Fi = 0

Hence the system is in equilibrium.

1.3 D Alembert’s Principle

The virtual work done by the applied forces acting on a system in equilibrium is zero.
Let us consider a system of N particles. Let ~ri be the position vector of the ith particle
Pi of mass mi of the system, at any time t. Let ~̇ri, ~̈ri be the velocity and acceleration of
particle Pi and ~Fi be the external force acting on it. Let ~Ri be the force of constraints on
particle Pi and ~Fij be the mutual force exerted by particle Pi on particle Pj and ~Fji be the
mutual force exerted by particle Pj on particle Pi. (see Fig. 1.4) Then by Newton’s second
law of motion, the equation of motion of the ith particle are given by

mi
~̈ri = ~Fi + ~Ri + ~Fij + ~Fji; i, j = 1 . . . N (1.3.1)
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Figure 1.4: virtual motion

For the whole system of particles, we sum this equation (1.3.1) over i, j from 1 to N

N∑
i=1

mi
~̈ri =

N∑
i=1

~Fi +

N∑
i=1

~Ri +

N∑
i=1

N∑
j=1

(
~Fij + ~Fji

)
(1.3.2)

We assume that the mutual forces ~Fij and ~Fji are equal in magnitude and opposite in
direction. Then by Newton’s law of actions and reactions

~Fij = − ~Fji

which gives

N∑
i=1

N∑
j=1

(
~Fij + ~Fji

)
=

N∑
i=1

N∑
j=1

(
~Fij − ~Fij

)
= 0 (1.3.3)

Using (1.3.3) in (1.3.2), we have

N∑
i=1

mi
~̈ri =

N∑
i=1

(
~Fi + ~Ri

)
(1.3.4)

Let us now consider a virtual displacement δ~ri and dot multiplication of (1.3.1) with δ~ri to
give

mi
~̈ri · δ~ri =

~Fi + ~Ri +
N∑
i=1

N∑
j=1

(
~Fij + ~Fji

) · δ~ri i, j = 1 . . . N
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This can be written for the whole system of N particles as

N∑
i=1

(
~Fi −mi

~̈ri

)
· δ~ri = −

 N∑
i=1

~Ri +
N∑
i=1

N∑
j=1

(
~Fij + ~Fji

) · δ~ri (1.3.5)

We assume that the condition (1.3.3) hold, also suppose that the constraints are ideal i.e.
the work done by all the forces of constraints along a virtual displacement is zero.

N∑
i=1

~Ri · δ~ri = 0 (1.3.6)

Using (1.3.3) and (1.3.6), then (1.3.2) takes the form

N∑
i=1

(
~Fi −mi

~̈ri

)
· δ~ri = 0 (1.3.7)

(1.3.7) is known as D Alembert’s Principle. If the system is at rest, then ~̇ri = 0 and ~̈ri = 0
and (1.3.7) takes the form

N∑
i=1

~Fi · δ~ri = 0 (1.3.8)

Also for uniform motion, ~̇ri is constant and ~̈ri = 0 and the result is (1.3.8).

1.4 Euler Lagrange’s Equation of Motion

Consider a system of N particles whose configuration at any time t is specified by N
Lagrangian coordinates (q1, q2, q3 · · · qN ), then

~ri = ~ri (q1, q2, q3 · · · qN , t)
= ~ri (qs) s = 1 . . . N (1.4.1)

(Note: i is fixed while s is free index)
Let ~Fi be the applied force on the ith particle Pi of mass mi of the system as shown in
Fig. 1.12. Then by D Alembert’s Principle, the virtual work done by the applied forces
acting on a system in equilibrium is zero. So we transform (1.3.7) in terms of generalized
coordinates. We have to find expressions for δ~ri and ~̈ri from (1.4.1).

δ~ri =
N∑
s=1

∂~ri
∂qs

δqs (1.4.2)
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Figure 1.5: virtual motion

Using (1.4.2) in (1.3.7), we have

N∑
s=1

N∑
i=1

(
~Fi −mi

~̈ri

)
· ∂~ri
∂qs

δqs = 0

N∑
s=1

(
N∑
i=1

~Fi ·
∂~ri
∂qs
−

N∑
i=1

mi
~̈ri ·

∂~ri
∂qs

)
δqs = 0 (1.4.3)

we write

Qs =

N∑
s=1

~Fi ·
∂~ri
∂qs

(1.4.4)

generalized forces corresponding to coordinates qs s = 1 . . . N
Next consider

d

dt

(
mi
~̇ri ·

∂~ri
∂qs

)
= mi

~̈ri ·
∂~ri
∂qs

+mi
~̇ri ·

d

dt

(
∂~ri
∂qs

)
or we can write

mi
~̈ri ·

∂~ri
∂qs

=
d

dt

(
mi
~̇ri ·

∂~ri
∂qs

)
−mi

~̇ri ·
d

dt

(
∂~ri
∂qs

)
(1.4.5)

Using chain rule, the time derivative of (1.4.1) is

~̇
ir =

d~ri
dt

=
N∑
s=1

∂~ri
∂qs

q̇s (1.4.6)
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and differentiate (1.4.6) partially with respect to q̇s,

∂ ~̇ir

∂q̇s
=

∂

∂q̇s

(
N∑
s=1

∂~ri
∂qs

q̇s

)

=

N∑
s=1

∂~ri
∂qk

∂q̇k
∂q̇s

(1.4.7)

Since all qk for k = 1 · · ·N are linearly independent and so does q̇k, then we have

∂q̇k
∂q̇s

=

 1 k = s

0 k 6= s
(1.4.8)

In view of (1.4.8), (1.4.7) becomes

∂ ~̇ir

∂q̇s
=

∂~ri
∂qs

(1.4.9)

Next the term d
dt

(
∂~ri
∂qs

)
can be calculated as by using contraction property

d

dt

(
∂~ri
∂qs

)
=

∂

∂qs

(
d~ri
dt

)
=

∂ ~̇ir

∂qs
(1.4.10)

Using (1.4.9) and (1.4.10) in (1.4.5)

mi
~̈ri ·

∂~ri
∂qs

=
d

dt

(
mi
~̇ri ·

∂ ~̇ir

∂q̇s

)
−mi

~̇ri ·
∂ ~̇ir

∂qs

=
d

dt

(
1

2
mi

∂

∂q̇s

(
~̇
ir
)2)
−
(

1

2
mi

∂

∂qs

(
~̇
ir
)2)

(1.4.11)

Summing (1.4.11) over i from 1 to N

N∑
i=1

mi
~̈ri ·

∂~ri
∂qs

=
d

dt

(
∂

∂q̇s

(
N∑
i=1

1

2
miṙ

2
i

))
− ∂

∂qs

(
N∑
i=1

1

2
miṙ

2
i

)
(1.4.12)

If

Ti =
1

2
miṙ

2
i (1.4.13)

is the kinetic energy of the ith particle, then summing (1.4.13) over i from 1 to N

T =

N∑
i=1

Ti =

N∑
i=1

1

2
miṙ

2
i (1.4.14)
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is the kinetic energy of the whole system. Using (1.4.14) in (1.4.12)

N∑
i=1

mi
~̈ri ·

∂~ri
∂qs

=
d

dt

(
∂T

∂q̇s

)
− ∂T

∂qs
(1.4.15)

Using (1.4.4) and (1.4.15) in (1.4.3)[
Qs −

d

dt

(
∂T

∂q̇s

)
+
∂T

∂qs

]
δqs = 0

or [
d

dt

(
∂T

∂q̇s

)
− ∂T

∂qs
−Qs

]
δqs = 0 (1.4.16)

Since all qs for s = 1 · · ·N are linearly independent and so does δqs, and consequently
the coefficient of each δqs must be equal to zero. Then from (1.4.16), we can write

d

dt

(
∂T

∂q̇s

)
− ∂T

∂qs
−Qs = 0, s = 1 · · ·N (1.4.17)

(1.4.17) are known as Lagrange’s Equations of Motion.
If the given forces are conservative, then there exist a function U(qs), s = 1 · · ·N is at
least of C1,

U = U(q1, q2, . . . qN ) (1.4.18)

then Qs is expressible in the form

Qs = −∂U
∂qs

, s = 1 · · ·N (1.4.19)

Using (1.4.19), (1.4.17) becomes

d

dt

(
∂T

∂q̇s

)
− ∂T

∂qs
+
∂U

∂qs
= 0, s = 1 · · ·N (1.4.20)

Since U(qs), it follows that ∂U
∂q̇s

= 0, then we can write (1.4.20) as

d

dt

(
∂T

∂q̇s
− ∂U

∂q̇s

)
− ∂

∂qs
(T − U) = 0, s = 1 · · ·N

d

dt

(
∂

∂q̇s
(T − U)

)
− ∂

∂qs
(T − U) = 0, s = 1 · · ·N (1.4.21)

We now introduce Lagrangian L by the relation

L = T − U (1.4.22)
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Using (1.4.22), (1.4.21) becomes

d

dt

(
∂L

∂q̇s

)
− ∂L

∂qs
= 0, s = 1 · · ·N (1.4.23)

(1.4.23) are called Euler Lagrange equations (Lagrange equations) of motion for conserva-
tive forces (field) in terms of any generalized coordinates. The Lagrangian function can be
written as

L = L(qi, q̇i) (1.4.24)

1.4.1 Free Particle Motion

In this case, we have

T =
1

2
mṙ2

and U = 0

then L = T =
1

2
mṙ2

then

∂L

∂ṙ
= mṙ and

∂L

∂r
= 0

then Lagrange’s equations of motion are

d

dt
(mṙ) = 0

mr̈ = 0

Since m 6= 0 then r̈ = 0 or ṙ = v is constant.

1.4.2 Expression for Kinetic Energy in terms of Generalized Coordinates

The kinetic energy of a system of N particles is given by (1.4.14)

T =

N∑
i=1

1

2
miṙ

2
i
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Using (1.4.6),

T =
N∑
i=1

1

2
mi

(
∂~ri
∂qs

q̇s

)2

=
N∑
i=1

1

2
mi

(
∂~ri
∂qs

q̇s

)
·
(
∂~ri
∂qk

q̇k

)

=

N∑
i=1

1

2
mi

(
∂~ri
∂qs
· ∂~ri
∂qk

)
q̇sq̇k

Let

ask =

N∑
i=1

mi

(
∂~ri
∂qs
· ∂~ri
∂qk

)
= aks

T =
1

2
askq̇sq̇k = T (qs, q̇s) (1.4.25)

(1.4.25) is the expression for kinetic energy in terms of generalized coordinates.

1.5 One Dimensional Lagrange’s Equations of Motion

Consider a particle of mass m moves in one dimensional conservative system. At any time

Figure 1.6: One dimensional motion

t it is at P having position x relative to origin as shown in Fig. 1.6. Then ẋ be its velocity
and ẍ be its acceleration at P . Its kinetic energy is

T =
1

2
mẋ2 (1.5.1)

and potential energy is

U = U(x) (1.5.2)

Using (1.5.1) and (1.5.2) in (1.4.22), the Euler Lagrange function is

L =
1

2
mẋ2 − U(x) (1.5.3)
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Here x is the only generalized coordinate and x and ẋ are independent variables, hence the
Euler Lagrange equation for x is

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 (1.5.4)

From (1.5.3) the quantity (
∂L

∂ẋ

)
= mẋ

then

d

dt

(
∂L

∂ẋ

)
= mẍ (1.5.5)

and the quantity

∂L

∂x
= −∂U

∂x
(1.5.6)

Using (1.5.5), (1.5.6), (1.5.4) becomes

mẍ+
∂U

∂x
= 0

As U is a function of one variable so we can write

mẍ+
dU

dx
= 0 (1.5.7)

(1.5.7) is the one dimensional Euler Lagrange equation of motion.

1.5.1 Energy in One Dimensional Motion is conserved

Multiplying (1.5.7) by ẋ = dx
dt , we have

mẍẋ+
dU

dx

dx

dt
= 0 (1.5.8)

The quantity mẍẋ = 1
2mẋ

2 and by chain rule the quantity dU
dx

dx
dt = dU

dt , then (1.5.8) can be
written as

d

dt

[
1

2
mẋ2 + U(x)

]
= 0

d

dt
[T + U ] = 0

dE

dt
= 0

Integrating we have

E = constant

Hence the energy of the system is conserved.
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Example 1.5.1. Find Euler lagrange equation of motion of free fall body.

Solution In free fall motion, a body of mass m is dropped (at rest) from a height of
h meters. Since it is one dimensional motion, the reference axis may be z − axis only. At

Figure 1.7: Free fall motion

time t the body is at P with position z relative to point A as shown in Fig. 1.18. Then ż
be its velocity and z̈ be its acceleration at P . Its kinetic energy at P is

T =
1

2
mż2 (1.5.9)

Taking A as the reference point its potential energy is

U = −mgz (1.5.10)

Using (1.5.9) and (1.5.10) in (1.4.22), the Euler Lagrange function is

L =
1

2
mż2 +mgz (1.5.11)

Here z is the only generalized coordinate and z and ż are independent variables, hence the
Euler Lagrange equation for z is

d

dt

(
∂L

∂ż

)
− ∂L

∂z
= 0 (1.5.12)

From (1.5.11) the quantity (
∂L

∂ż

)
= mż
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then

d

dt

(
∂L

∂ż

)
= mz̈ (1.5.13)

and the quantity

∂L

∂z
= mg (1.5.14)

Using (1.5.13), (1.5.14), (1.5.12) becomes

mz̈ −mg = 0 (1.5.15)

(1.5.15) is the Euler Lagrange equation of free fall motion.

Corollary 1.5.1. Energy in free fall motion is conserved

Multiplying (1.5.15) by ż, we have

mżz̈ −mgż = 0 (1.5.16)

we can write (1.5.16) as

d

dt

[
1

2
mż2 −mgz

]
= 0

d

dt
[T + U ] = 0

dE

dt
= 0

Integrating we have

E = constant

Hence the energy of the system is conserved.

1.5.2 Two Dimensional Euler Lagrange Equations of Motion

Consider a particle of mass m moves in two dimensional conservative system. At any time t
it is at P having position P (x, y) relative to origin as shown in Fig. 1.19. Then its velocity
at P is

v = 〈ẋ, ẏ〉

and square of its magnitude is

v2 = ẋ2 + ẏ2
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Figure 1.8: Two dimensional motion

Its kinetic energy is

T =
1

2
mv2

=
1

2
m
(
ẋ2 + ẏ2

)
(1.5.17)

and potential energy is

U = U(x, y) (1.5.18)

Using (1.5.17) and (1.5.18) in (1.4.22), the Euler Lagrange function is

L =
1

2
m
(
ẋ2 + ẏ2

)
− U(x, y) (1.5.19)

Here x and y are the generalized coordinate. The Euler Lagrange equations are

d

dt

(
∂L

∂q̇s

)
− ∂L

∂qs
= 0, s = 1, 2

Set q1 = x and q2 = y, then Euler Lagrange equation for x is

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 (1.5.20)

and for y is

d

dt

(
∂L

∂ẏ

)
− ∂L

∂y
= 0 (1.5.21)

From (1.5.19) for x we have (
∂L

∂ẋ

)
= mẋ
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then

d

dt

(
∂L

∂ẋ

)
= mẍ (1.5.22)

and the quantity

∂L

∂x
=

∂U

∂x
(1.5.23)

Using (1.5.22), (1.5.23), (1.5.20) becomes

mẍ− ∂U

∂x
= 0 (1.5.24)

From (1.5.19) for y we have (
∂L

∂ẏ

)
= mẏ

then

d

dt

(
∂L

∂ẏ

)
= mÿ (1.5.25)

and the quantity

∂L

∂y
=

∂U

∂y
(1.5.26)

Using (1.5.25), (1.5.26), (1.5.21) becomes

mÿ − ∂U

∂y
= 0 (1.5.27)

(1.5.24) and (1.5.27) are Euler Lagrange equations of motion for two dimensional system.
Special Case In above if we consider OX axis as reference line, then y will be the height
of the body (see Fig 1.20) and potential energy function is

U = mgy (1.5.28)

The Euler Lagrange function is

L =
1

2
m
(
ẋ2 + ẏ2

)
−mgy (1.5.29)

then

∂L

∂x
= 0 (1.5.30)
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Figure 1.9: Two dimensional motion

and Euler Lagrange equation for x becomes

mẍ = 0 (1.5.31)

and the quantity

∂L

∂y
= mg

then Euler Lagrange equation for y is

mÿ −mg = 0 (1.5.32)

1.6 Lagrange’s Equations of Motion in terms of Polar Coor-

dinates

Consider a particle of massmmoves in polar coordinates. At any time t, it be at P = P (r, θ).
Then its velocity in polar coordinate is

~v = ṙr̂ + rθ̇θ̂

and

v2 = (ṙ)2 + (rθ̇)2

Then its kinetic energy at P is

T =
1

2
mv2

=
1

2
m
(
ṙ2 + r2θ̇2

)
(1.6.1)
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Figure 1.10: Polar motion

The potential energy can be written as

U = U(r, θ) (1.6.2)

Using (1.6.1) and (1.6.2) in (1.4.22), the Euler Lagrange function is

L =
1

2
m
(
ṙ2 + r2θ̇2

)
− U(r, θ) (1.6.3)

Here r and θ are the generalized coordinates. Then r, θ, ṙ and θ̇ are linearly independent
variables. The Euler Lagrange equations for r and θ are

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0 (1.6.4)

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (1.6.5)

From (1.6.3) the quantities

∂L

∂ṙ
= mṙ

then

d

dt

(
∂L

∂ṙ

)
= mr̈

and

∂L

∂r
= mrθ̇2 − ∂U

∂r
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then (1.6.4) becomes

mr̈ −
(
mrθ̇2 − ∂U

∂r

)
= 0

mr̈ −mrθ̇2 +
∂U

∂r
= 0 (1.6.6)

From (1.6.3) the quantities

∂L

∂θ̇
= mr2θ̇

then

d

dt

(
∂L

∂θ̇

)
= mr2θ̈ + 2mrṙθ̇

and

∂L

∂θ
= −∂U

∂θ

then (1.6.5) becomes

mr2θ̈ + 2mrṙθ̇ +
∂U

∂θ
= 0 (1.6.7)

(1.6.6) and (1.6.7) are the Euler Lagrange equations of motion in terms of polar coordinates.

Example 1.6.1. Lagrangian and the Lagrange’s equations of motion for a simple pendulum.

Consider OXY a cartesian coordinate system. Let a particle of m is attached with a
massless string of length l, with other end fixed at O, forming a simple pendulum, as shown
in Fig. 1.11 At any time t, the particle be at P (r, θ). Clearly

l = r

is the constraint
Here

N = 2

and

r = 1

Hence degree of freedom of this system is

DOF = 2− 1 = 1
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Figure 1.11: Simple Pendulum

And the only generalized coordinate is θ. The velocity of particle P is

~v = lθ̇θ̂

then

v2 = (lθ̇)2

and the kinetic energy is

T =
1

2
ml2θ̇2 (1.6.8)

At P , the particle has height h, given by

h = l − l cos θ

Hence the potential energy of the particle is

U = mgh

= mgl (1− cos θ) (1.6.9)

Using (1.13.3) and (1.6.9) the lagrangian is

L = T − U

=
1

2
ml2θ̇2 −mgl (1− cos θ) (1.6.10)
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Using (1.4.17), the Euler - Lagrange’s equation of motion is

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (1.6.11)

Differentiate (1.6.10) with respect to θ and θ̇,

∂L

∂θ
= −mgl sin θ (1.6.12)

∂L

∂θ̇
= ml2θ̇ (1.6.13)

Next time derivative of (1.6.13) is

d

dt

(
∂L

∂θ̇

)
= ml2θ̈ (1.6.14)

Using (1.6.12) and (1.6.14), (1.6.11) becomes

ml2θ̈ +mgl sin θ = 0

θ̈ +
g

l
sin θ = 0

θ̈ + ω2 sin θ = 0 (1.6.15)

with ω =

√
g

l
is the frequency of oscillation.

By Euler - Lagrange’s equation of motion, (1.6.15) is the equation of motion of a simple
pendulum.

Example 1.6.2. A particle of mass m moves under the central force F = −µm
r2
, where µ is

some constant, describing planetary motion. Find its Euler Lagrange equations of motion.

Solution For central force motion, the particle moves in polar coordinates. At any time
t, it be at P = P (r, θ). Then its kinetic energy at P is

T =
1

2
m
(
ṙ2 + r2θ̇2

)
The force acting on the particle is

F = −µm
r2
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Figure 1.12: Polar motion

The potential energy function is

U = −
∫
Fdr = −

∫ (
−µm

r2

)
dr

= µ
m

r

The Lagrangian is

L =
1

2
m
(
ṙ2 + r2θ̇2

)
− µm

r

Here r and θ are the generalized coordinates. Then r, θ, ṙ and θ̇ are linearly independent
variables. Using (1.4.17), the Lagrange’s equations of motion are

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0 (1.6.16)

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (1.6.17)

Differentiate (1.13.11) with respect to r, θ, ṙ and θ̇, we have

∂L

∂r
= mrθ̇2 + µ

m

r2

∂L

∂ṙ
= mṙ

∂L

∂θ
= 0

∂L

∂θ̇
= mr2θ̇
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Next

d

dt

(
∂L

∂ṙ

)
= mr̈

d

dt

(
∂L

∂θ̇

)
= m

(
2rṙθ̇ + r2θ̈

)
Using above results, (1.6.16) becomes

mr̈ −mrθ̇2 + µ
m

r2
= 0

r̈ = rθ̇2 − µ 1

r2
(1.6.18)

and (1.6.16) becomes

d

dt

(
∂L

∂θ̇

)
= m

(
2rṙθ̇ + r2θ̈

)
= 0

d

dt

(
mr2θ̇

)
= 0

mr2θ̇ = c (constant)

which shows that the angular momentum is conserved (Keplers Second Law)

θ̇ =
c

mr2
(1.6.19)

(1.6.18) and (1.6.19) can be regarded as Lagrange’s equations of motion.
In view of (1.6.19), (1.6.18) becomes

r̈ =
c2

m2r3
− µ 1

r2
(1.6.20)

(1.6.20) is the equation of motion under central force.

1.7 Lagrange’s Equations of Motion in terms of 3 − space

Cartesian Coordinates

Consider a particle of mass m moves in 3 − space cartesian coordinates system. At any
time t, it be at P = P (x, y, z), see Fig. 1.24 . Its velocity at P is

~v =
(
ẋî+ ẏĵ + żk̂

)
then

v2 = ẋ2 + ẏ2 + ż2
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Figure 1.13: Cylindrical motion

the kinetic energy is

T =
1

2
mv2

=
1

2
m
(
ẋ2 + ẏ2 + ż2

)
(1.7.1)

and the potential energy is

U = U(x, y, z) (1.7.2)

Using (1.7.1) and (1.7.2) in (1.4.22), the Euler Lagrange function is

L =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
− U(x, y, z) (1.7.3)

L = L(x, y, z, ẋ, ẏ, ż)

Here x, y and z are the generalized coordinate. The Euler Lagrange equations are

d

dt

(
∂L

∂q̇s

)
− ∂L

∂qs
= 0, s = 1, 2, 3

Set q1 = x, q2 = y and q3 = z, then Euler Lagrange equation for x is

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 (1.7.4)

for y is

d

dt

(
∂L

∂ẏ

)
− ∂L

∂y
= 0 (1.7.5)
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and for z is

d

dt

(
∂L

∂ż

)
− ∂L

∂z
= 0 (1.7.6)

From (1.7.3) for x we have (
∂L

∂ẋ

)
= mẋ

then

d

dt

(
∂L

∂ẋ

)
= mẍ (1.7.7)

and the quantity

∂L

∂x
=

∂U

∂x
(1.7.8)

Using (1.7.7) and (1.7.8) in (1.7.4) we have

mẍ− ∂U

∂x
= 0 (1.7.9)

From (1.7.3) for y we have (
∂L

∂ẏ

)
= mẏ

then

d

dt

(
∂L

∂ẏ

)
= mÿ (1.7.10)

and the quantity

∂L

∂y
=

∂U

∂y
(1.7.11)

Using (1.7.10) and (1.7.11) in (1.7.5) we have

mÿ − ∂U

∂y
= 0 (1.7.12)

From (1.7.3) for z we have (
∂L

∂ż

)
= mż
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then

d

dt

(
∂L

∂ż

)
= mz̈ (1.7.13)

and the quantity

∂L

∂z
=

∂U

∂z
(1.7.14)

Using (1.7.13) and (1.7.14) in (1.7.7) we have

mz̈ − ∂U

∂z
= 0 (1.7.15)

(1.7.9), (1.7.12)and (1.7.15) are Euler Lagrange equations of motion for three dimensional
system.
Special Case In above if XOY plane be the zero level for potential energy of the particle,
then clearly P is at height z above the XOY plane. Then potential energy function is

U = mgz (1.7.16)

Using (1.4.22), the Lagrangian is

L =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
−mgz (1.7.17)

L = L(x, y, z, ẋ, ẏ, ż)

Here x, y and z are the generalized coordinates. Using (1.4.23), the Lagrange’s equations
of motion are

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 (1.7.18)

d

dt

(
∂L

∂ẏ

)
− ∂L

∂y
= 0 (1.7.19)

d

dt

(
∂L

∂ż

)
− ∂L

∂z
= 0 (1.7.20)

Differentiate (1.7.17) with respect to x, y, z, ẋ, ẏ and ż, we have

∂L

∂x
= 0

∂L

∂ṙ
= mẋ

∂L

∂y
= 0

∂L

∂ẏ
= mẏ

∂L

∂z
= mg

∂L

∂ż
= mż
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Next

d

dt

(
∂L

∂ẋ

)
= mẍ

d

dt

(
∂L

∂ẏ

)
= mÿ

d

dt

(
∂L

∂ż

)
= mz̈

Using above results, (1.7.18) becomes

mẍ = 0

ẍ = 0 (1.7.21)

Next (1.7.19) becomes

mÿ = 0

ÿ = 0 (1.7.22)

and (1.7.20) becomes

mz̈ +mg = 0

z̈ = −g (1.7.23)

(1.7.21), (1.7.22) and (1.7.23) are the Lagrange equations of motion.

Example 1.7.1. A particle of mass m moves in space with Lagrangian

L =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
+Aẋ+Bẏ + Cż − U (1.7.24)

where A, B, C and U are functions of x, y, z. Then show that the particle has equations

of motion as

mẍ = −∂U
∂x

+ ẏ

(
∂B

∂x
− ∂A

∂y

)
+ ż

(
∂C

∂x
− ∂A

∂z

)
mÿ = −∂U

∂y
+ ẋ

(
∂A

∂y
− ∂B

∂x

)
+ ż

(
∂C

∂y
− ∂B

∂z

)
mz̈ = −∂U

∂z
+ ẋ

(
∂A

∂z
− ∂C

∂x

)
+ ẏ

(
∂B

∂z
− ∂C

∂y

)
Solution From (1.7.24) the Lagrangian can be written as

L = L (x, y, z, ẋ, ẏ, ż) (1.7.25)
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with q1 = x, q2 = y, q3 = z as generalized coordinates. Then by (1.4.23), the Lagrange’s
equations of motion are

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 (1.7.26)

d

dt

(
∂L

∂ẏ

)
− ∂L

∂y
= 0 (1.7.27)

d

dt

(
∂L

∂ż

)
− ∂L

∂z
= 0 (1.7.28)

From (1.7.24), we can write

∂L

∂ẋ
= mẋ+A (1.7.29)

Time derivative of (1.7.29) is

d

dt

(
∂L

∂ẋ

)
= mẍ+

∂A

∂x
ẋ+

∂A

∂y
ẏ +

∂A

∂z
ż (1.7.30)

Again considering (1.7.24), we have(
∂L

∂x

)
=

∂A

∂x
ẋ+

∂A

∂y
ẏ +

∂A

∂z
ż − ∂U

∂x
(1.7.31)

Using (1.7.30) and (1.7.31) in (1.7.26)

mẍ+
∂A

∂x
ẋ+

∂A

∂y
ẏ +

∂A

∂z
ż −

(
∂A

∂x
ẋ+

∂A

∂y
ẏ +

∂A

∂z
ż − ∂U

∂x

)
= 0

or

mẍ = −∂U
∂x

+ ẏ

(
∂B

∂x
− ∂A

∂y

)
+ ż

(
∂C

∂x
− ∂A

∂z

)
(1.7.32)

Similarly from (1.7.27) and (1.7.28), we have

mÿ = −∂U
∂y

+ ẋ

(
∂A

∂y
− ∂B

∂x

)
+ ż

(
∂C

∂y
− ∂B

∂z

)
(1.7.33)

mz̈ = −∂U
∂z

+ ẋ

(
∂A

∂z
− ∂C

∂x

)
+ ẏ

(
∂B

∂z
− ∂C

∂y

)
(1.7.34)

Hence (1.7.32), (1.7.33) and (1.7.34) are the required equations of motion.
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Figure 1.14: Cylindrical motion

1.8 Lagrange’s Equations of Motion in terms of Cylindrical

Polar Coordinates

Consider a particle of mass m moves in cylindrical polar coordinates. At any time t, it be
at P = P (r, θ, z). Then its velocity at P is

~v =
(
ṙr̂ + rθ̇θ̂ + żẑ

)
then

v2 = ṙ2 + (rθ̇)2 + ż2

and the kinetic energy is

T =
1

2
mv2

=
1

2
m
(
ṙ2 + r2θ̇2 + ż2

)
(1.8.1)

The potential energy can be written as

U = U(r, θ, z) (1.8.2)

Using (1.8.1) and (1.8.2) in (1.4.22), the Euler Lagrange function is

L =
1

2
m
(
ṙ2 + r2θ̇2 + ż2

)
− U(r, θ, z) (1.8.3)

L = L(r, θ, z, ṙ, θ̇, ż)
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Here r, θ and z are the generalized coordinates. Then r, θ, z, ṙ, θ̇, and ż are linearly
independent variables. The Euler Lagrange equations for r, θ and z are

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0 (1.8.4)

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (1.8.5)

d

dt

(
∂L

∂ż

)
− ∂L

∂z
= 0 (1.8.6)

From (1.8.3) the quantities

∂L

∂ṙ
= mṙ

then

d

dt

(
∂L

∂ṙ

)
= mr̈

and

∂L

∂r
= mrθ̇2 − ∂U

∂r

then (1.8.4) becomes

mr̈ −
(
mrθ̇2 − ∂U

∂r

)
= 0

mr̈ −mrθ̇2 +
∂U

∂r
= 0 (1.8.7)

From (1.8.3) the quantities

∂L

∂θ̇
= mr2θ̇

then

d

dt

(
∂L

∂θ̇

)
= mr2θ̈ + 2mrṙθ̇

and

∂L

∂θ
= −∂U

∂θ

then (1.8.5) becomes

mr2θ̈ + 2mrṙθ̇ +
∂U

∂θ
= 0 (1.8.8)
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From (1.8.3) the quantities

∂L

∂ż
= mż

then

d

dt

(
∂L

∂ż

)
= mz̈

and

∂L

∂z
= −∂U

∂z

then (1.8.6) becomes

mz̈ +
∂U

∂z
= 0 (1.8.9)

(1.8.7) (1.8.8) and (1.8.9) are the Euler Lagrange equations of motion in terms of cylindrical
polar coordinates.
Special Case In above if XOY plane be the zeroth level, then the potential energy of the
particle is

U = mgz (1.8.10)

Using (1.4.22), the Lagrangian is

L =
1

2
m
(
ṙ2 + r2θ̇2 + ż2

)
−mgz (1.8.11)

L = L(r, z, ṙ, θ̇, ż)

Here r, θ and z are the generalized coordinates. Using (1.4.23), the Lagrange’s equations
of motion for r, θ and z are

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0 (1.8.12)

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (1.8.13)

d

dt

(
∂L

∂ż

)
− ∂L

∂z
= 0 (1.8.14)



1.8 Lagrange’s Equations of Motion in terms of Cylindrical Polar Coordinates 39

Differentiate (1.8.11) with respect to r, θ, z, ṙ, θ̇ and ż, we have

∂L

∂r
= mrθ̇2

∂L

∂ṙ
= mṙ

∂L

∂θ
= 0

∂L

∂θ̇
= mr2θ̇

∂L

∂z
= −mg

∂L

∂ż
= mż

Next

d

dt

(
∂L

∂ṙ

)
= mr̈

d

dt

(
∂L

∂θ̇

)
= m

(
2rṙθ̇ + r2θ̈

)
d

dt

(
∂L

∂ṙ

)
= mz̈

Using above results, (1.8.12) becomes

mr̈ −mrθ̇2 = 0

r̈ = rθ̇2 (1.8.15)

Next (1.8.13) becomes

m
(

2rṙθ̇ + r2θ̈
)

= 0

θ̈ = −2
1

r
ṙθ̇ (1.8.16)

and (1.8.14) becomes

mz̈ +mg = 0

z̈ = −g (1.8.17)

(1.8.15), (1.8.16) and (1.8.17) are the Lagrangian equations of motion for this system.
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1.9 Lagrange’s Equations of Motion in terms of Spherical

Polar Coordinates

Consider a particle of mass m moves in spherical polar coordinates. At any time t, it be at
P = P (r, θ, φ). Then its velocity at P is

Figure 1.15: Cylindrical motion

~v =
(
ṙr̂ + rθ̇θ̂ + rφ̇ sin θφ̂

)
then

v2 = ṙ2 + (rθ̇)2 +
(
rφ̇ sin θ

)2
and the kinetic energy is

T =
1

2
mv2

=
1

2
m
(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
(1.9.1)

The potential energy can be written as

U = U(r, θ, φ) (1.9.2)

Using (1.9.1) and (1.9.2) in (1.4.22), the Euler Lagrange function is

L =
1

2
m
(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
− U(r, θ, φ) (1.9.3)

L = L(r, θ, φ, ṙ, θ̇, φ̇)
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Here r, θ and φ are the generalized coordinates. Then r, θ, φ, ṙ, θ̇, and φ̇ are linearly
independent variables. The Euler Lagrange equations for r, θ and φ are

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0 (1.9.4)

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (1.9.5)

d

dt

(
∂L

∂φ̇

)
− ∂L

∂φ
= 0 (1.9.6)

Differentiate (1.9.3) with respect to r and ṙ, we have

∂L

∂r
= mr

(
rθ̇2 + r sin2 θφ̇2

)
− ∂U

∂r
∂L

∂ṙ
= mṙ

Next

d

dt

(
∂L

∂ṙ

)
= mr̈

Using above results, (1.9.4) becomes

mr̈ −mr
(
θ̇2 + sin2 θφ̇2

)
− ∂U

∂r
= 0 (1.9.7)

(1.9.7) is the Euler-Lagrange equation of motion in the radial direction.
Next differentiate (1.9.3) with respect to θ and θ̇, we have

∂L

∂θ
= mr2 sin θ cos θφ̇2 − ∂U

∂θ
∂L

∂θ̇
= mr2θ̇

Next

d

dt

(
∂L

∂θ̇

)
= m

(
2rṙθ̇ + r2θ̈

)
Using above results, (1.9.5) becomes

m
(

2rṙθ̇ + r2θ̈
)
−mr2 sin θ cos θφ̇2 − ∂U

∂θ
= 0 (1.9.8)

(1.9.8), is the Euler-Lagrange equation of motion in the polar direction.
Next Differentiate (1.9.3) with respect to φ and φ̇, we have

∂L

∂φ
= −∂U

∂φ

∂L

∂φ̇
= mr2 sin2 θφ̇
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Next

d

dt

(
∂L

∂φ̇

)
=

d

dt

(
mr2 sin2 θφ̇

)
= m

(
2rṙ sin2 θφ̇+ 2r2 sin θ cos θθ̇φ̇+ r2 sin2 θφ̈

)
Using above results, (1.9.6) becomes

m
(

2rṙ sin2 θφ̇+ 2r2 sin θ cos θθ̇φ̇+ r2 sin2 θφ̈
)
− ∂U

∂φ
= 0 (1.9.9)

(1.9.9), is the Euler Lagrange equation of motion in the azimuthal direction.
Special Case If xy plane is the zeroth level, then its potential energy is

U = mgr cos θ (1.9.10)

Using (1.9.10) in (1.9.3), the Lagrangian is

L =
1

2
m
(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
−mgr cos θ (1.9.11)

L = L(r, θ, ṙ, θ̇, φ̇)

Here r, θ and φ are the generalized coordinates. Differentiate (1.9.11) with respect to
r, θ, φ, ṙ, θ̇ and φ̇, we have

∂L

∂r
= mr

(
rθ̇2 + r sin2 θφ̇2

)
−mg cos θ

∂L

∂ṙ
= mṙ

∂L

∂θ
= mr2 sin θ cos θφ̇2 +mgr sin θ

∂L

∂θ̇
= mr2θ̇

∂L

∂φ
= 0

∂L

∂φ̇
= mr2 sin2 θφ̇

Next

d

dt

(
∂L

∂ṙ

)
= mr̈

d

dt

(
∂L

∂θ̇

)
= m

(
2rṙθ̇ + r2θ̈

)
d

dt

(
∂L

∂ṙ

)
=

d

dt

(
mr2 sin2 θφ̇

)
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Using above results, (1.9.4) becomes

mr̈ −mr
(
θ̇2 + sin2 θφ̇2

)
+mg cos θ = 0

r̈ − r
(
θ̇2 + sin2 θφ̇2

)
= −g cos θ (1.9.12)

(1.9.12) is the Euler-Lagrange equation in the radial direction.
Next Using (1.9.11), the Euler-Lagrange equation in the polar direction is

m
(

2rṙθ̇ + r2θ̈
)
−mr2 sin θ cos θφ̇2 +mgr sin θ = 0(

2ṙθ̇ + rθ̈
)
− r sin θ cos θφ̇2 + g sin θ = 0 (1.9.13)

and by (1.9.11), in the azimuthal direction is

d

dt

(
mr2 sin2 θφ̇

)
= 0 (1.9.14)(

mr2 sin2 θφ̇
)

= C (constant)

r2φ̇ =
C

m sin2 θ
= A (constant) (1.9.15)

with m 6= 0 and sin2 θ 6= 0
(1.9.12), (1.9.13) and (1.9.15) are the Lagrangian equations of motion.
From (1.9.14), in the azimuthal direction, we have another form as

r2 sin2 θφ̈+ 2r2 sin θ cos θθ̇φ̇+ 2rṙ sin2 θφ̈ = 0

r sin θφ̈+ 2r cos θθ̇φ̇+ 2ṙ sin θφ̈ = 0 (1.9.16)

with r 6= 0 and sin θ 6= 0
If the particle of mass m moves under the influence of a potential U(r) (potential indepen-
dent on velocity) and assume for the time being that the kinetic energy is given as the sum
of quadratic terms of the time derivatives of the independent coordinates, then the kinetic
energy is (1.9.1) and the potential energy is

U = U(r) (1.9.17)

Using (1.4.22), the Lagrangian is

L =
1

2
m
(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
− U(r) (1.9.18)

L = L(r, θ, z, ṙ, θ̇, ż)

The Lagrange’s equations of motion are same as above. For r coordinate, the force compo-
nent Fr which (for a conservative force) can be derived from the potential energy function
as

Fr = −∂U
∂r
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and the Lagrange’s equations of motion is

mr
(
rθ̇2 + r sin2 θφ̇2

)
+
∂U

∂r
= 0

Example 1.9.1. A particle of mass m moves on the surface of a sphere of radius a. Find

its Euler Lagrange equations of motion.

Solution Consider OXY Z a cartesian coordinate system and a sphere of radius a, with
center at the origin. Let a particle of m is moving on a sphere as shown in Fig. 1.26. Under
the gravitational force, its configuration at any time t is P (x, y, z) = P (r, θ, φ). Clearly

Figure 1.16: Cylindrical motion

r = a =
√
x2 + y2 + z2

is the constraint
The number of coordinates is

N = 3

and the number of constraints is

r = 1

Hence degree of freedom of this system is

DOF = 3− 1 = 2
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The radius of the sphere is fixed, so the generalized coordinates are θ and φ. The velocity
of particle P is

~v =
(

0r̂ + aθ̇θ̂ + aφ̇ sin θφ̂
)

then

v2 = (aθ̇)2 +
(
aφ̇ sin θ

)2
and the kinetic energy is

T =
1

2
ma2

(
θ̇2 + sin2 θφ̇2

)
Let xy plane be the zero level for potential energy of the particle, then

U = mga cos θ

Using (1.4.22), the Lagrangian is

L =
1

2
ma2

(
θ̇2 + sin2 θφ̇2

)
−mga cos θ (1.9.19)

L = L(θ, θ̇, φ̇)

Here θ and φ are the generalized coordinates. Using (1.4.23), the Lagrange’s equations of
motion are

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0 (1.9.20)

d

dt

(
∂L

∂φ̇

)
− ∂L

∂φ
= 0 (1.9.21)

Differentiate (1.9.19) with respect to θ, φ, θ̇ and φ̇, we have

∂L

∂θ
= ma2 sin θ cos θφ̇2 +mga sin θ

∂L

∂θ̇
= ma2θ̇

∂L

∂φ
= 0

∂L

∂φ̇
= ma2 sin2 θφ̇

Next

d

dt

(
∂L

∂θ̇

)
= ma2θ̈

d

dt

(
∂L

∂φ̇

)
=

d

dt

(
ma2 sin2 θφ̇

)



46 1 Lagrangian Mechanics

Next Using (1.9.20), the Euler-Lagrange equation in the polar direction is

ma2θ̈ −ma2 sin θ cos θφ̇2 −mga sin θ = 0 (1.9.22)

aθ̈ − a sin θ cos θφ̇2 − g sin θ = 0 (1.9.23)

and by (1.9.21), in the azimuthal direction is

d

dt

(
ma2 sin2 θφ̇

)
= 0 (1.9.24)(

ma2 sin2 θφ̇
)

= C (constant) (1.9.25)

(1.9.23) and (1.9.25) are the Lagrangian equations of motion.

Example 1.9.2. A particle of mass m moves on the surface of a sphere of radius a. Show

that energy of the system is conserved.

Solution Multiplying (1.9.22) by θ̇, the result is

ma2θ̇θ̈ −ma2 sin θ cos θθ̇φ̇2 −mga sin θθ̇ = 0 (1.9.26)

As θ is a function of t, the terms in (1.9.26) can be written in derivative form. First the
term θ̇θ̈ can be written as

θ̇θ̈ =
1

2

d

dt

(
θ̇2
)

the therm sin θ cos θθ̇ can be written as

sin θ cos θθ̇ =
1

2

d

dt

(
sin2 θ

)
and the therm sin θθ̇ can be written as

− sin θθ̇ =
d

dt
(cos θ)

Then (1.9.26) becomes

1

2
ma2

d

dt

(
θ̇2
)
− 1

2

d

dt

(
ma2 sin2 θ

)
φ̇2 +

d

dt
(mga cos θ) = 0 (1.9.27)

(1.9.24) indicates that φ̇ is independent of t, so the term d
dt

(
ma2 sin2 θ

)
φ̇2 can be written

as d
dt

(
ma2 sin2 θφ̇

)
φ̇ and the quantity d

dt

(
ma2 sin2 θφ̇

)
= 0 as given in (1.9.24). Then

(1.9.27) can be written as

1

2
ma2

d

dt

(
θ̇2
)

+
1

2

d

dt

(
ma2 sin2 θ

)
φ̇2 +

d

dt
(mga cos θ) = 0

d

dt

[
1

2
ma2

(
θ̇2 + sin2 θφ̇2

)
+mga cos θ

]
= 0 (1.9.28)
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Note the quantity 1
2ma

2
(
θ̇2 + sin2 θφ̇2

)
is the kinetic energy of the system and the quantity

mga cos θ is the potential energy of the system, hence (1.9.28) becomes

d

dt
[T + U ] = 0

dE

dt
= 0

Integrating we have

E = constant

Hence the energy of the system is conserved.
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1.10 Ignorable or Cyclic Coordinates

Sometimes it may be happened that some of the generalized coordinates say q1, q2, q3, ...qk, (k ≤
N ; N is the degree of freedom of the system) are not present in the Lagrangian function
but their corresponding generalized velocities are present in it. Such coordinates are known
as ignorable or cyclic coordinates.

Example 1.10.1. The Lagrangian for a particle of mass m moving under the central force

F = −µm
r2
, where µ is some constant, is

L =
1

2
m
(
ṙ2 + r2θ̇2

)
− µm

r

The generalized coordinate θ is not present in the Lagrangian but its corresponding velocity

θ̇ is present in it. Hence θ is ignorable coordinate.

Example 1.10.2. The Lagrangian for a particle of mass m moving on a sphere of radius

a is

L =
1

2
ma2

(
θ̇2 + sin2 θφ̇2

)
−mga cos θ

= L(θ, θ̇, φ̇)

The generalized coordinate φ is not present in the Lagrangian but its corresponding velocity

φ̇ is present in it. Hence φ is ignorable coordinate.

1.11 Generalized Momentum

The generalized momentum ps associated with the generalized coordinate qs is defined as

ps =
∂L

∂q̇s
(1.11.1)

1.12 Canonical Conjugate Momentum

If a system has ignorable coordinates then Euler Lagrange equation is

d

dt

(
∂L

∂q̇s

)
= 0
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then the generalized momentum

ps = c

is constant or conserved, such momentum is termed as canonical conjugate momentum. In
this motion, the momentum is same specified by initial conditions.
In simple cases, the canonical momentum is constant multiple of its corresponding general-
ized velocity. For example the generalized momentum pz for free fall motion is

pz =
∂L

∂ż
= mż

But generally it is not true. For example a particle of mass m moving under the central
force F = −µm

r2
, where µ is some constant, the generalized momentum is

pθ =
∂L

∂θ̇
= mr2θ̇

Then we can get very useful information between coordinates and/or velocities. The Euler
Lagrange equation of motion for generalized coordinate θ is

d

dt

(
∂L

∂θ̇

)
= 0

which implies that

∂L

∂θ̇
= c (constant)

then the generalized momentum

pθ = mr2θ̇ = c

is constant and we have a very useful fact that angular velocity is inversely proportional to
the square of the radius of the circle. Mathematically can be written as

θ̇ ∝ r−2

As the particle moves inward towards origin, its angular velocity must increase in a specific
way. In general, a cyclic coordinate results in a conserved momentum that simplifies the
dynamics in the cyclic coordinate.
The above definition of canonical momentum also holds for non-cyclic coordinates.
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1.13 Routh’s Function

Let us consider a system of N particles whose configuration at any time t is specified by N
Lagrangian coordinates (q1, q2, ..., qN ). Let (q1, q2, ..., qm) ,m ≤ N be ignorable coordinates.
Then we have

∂L

∂qk
= 0, k = 1 · · ·m ≤ N (1.13.1)

Then the Lagrangian (1.4.23) becomes

d

dt

(
∂L

∂q̇s

)
= 0, s = 1 · · ·N (1.13.2)

Using (1.11.1), (1.13.2) becomes

ṗs = 0, s = 1 · · ·N (1.13.3)

The generalized forces corresponding to cyclic coordinates are all zero. The Lagrangian for
cyclic coordinates can be written as

L = L (qm+1, qm+2 . . . qN , q̇1, q̇2, . . . q̇N , t)

= L(qk, q̇s, t) s = 1 · · ·N, k = m+ 1 · · ·N

Ruth’s define a function as

R = L− ∂L

∂q̇s
q̇s, s = 1 · · ·N

= L(qk, q̇s, t)− q̇sps, k = m+ 1 · · ·N (1.13.4)

or we can write

R = R (qk, q̇k, ps, t) s = 1 · · ·N, k = m+ 1 · · ·N (1.13.5)

1.13.1 Rouths Equations of Motion for Non-cyclic Coordinates

This equation of motion can be derived by taking total differential of (1.13.4 ) and (1.13.5).
First take total differential of (1.13.4)

dR = dL(qk, q̇s, t)− d(q̇s ps)

=
∂L

∂qk
dqk +

∂L

∂q̇s
dq̇s +

∂L

∂t
dt− dq̇s ps − q̇s dps

Using (1.11.1) and (1.13.2)

dR =
∂L

∂qk
dqk + psdq̇s +

∂L

∂q̇k
dq̇k +

∂L

∂t
dt− dq̇s ps − q̇s dps

=
∂L

∂qk
dqk +

∂L

∂q̇k
dq̇k − q̇s dps +

∂L

∂t
dt (1.13.6)
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Next taking total differential of (1.13.5)

dR = dR (qk, q̇k, ps, t)

=
∂R

∂qk
dqk +

∂R

∂q̇k
dq̇k +

∂R

∂ps
dps +

∂R

∂t
dt (1.13.7)

From (1.13.6) and (1.13.7), we can write

∂L

∂qk
=

∂R

∂qk
∂L

∂q̇k
=

∂R

∂q̇k

− q̇s =
∂R

∂ps
∂L

∂t
=

∂R

∂t

The Lagrangian’s equations of motion for non-cyclic coordinates are

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0, k = m+ 1 · · ·N (1.13.8)

Using above results, we can write

d

dt

(
∂R

∂q̇k

)
− ∂R

∂qk
= 0, k = m+ 1 · · ·N (1.13.9)

(1.13.9) are known as Ruth’s equations of motion for non-cyclic coordinates.
Consider

q̇s = − ∂R
∂ps

Integrating with respect to t, we have

qs = −
∫

∂R

∂ps
dt (1.13.10)

(1.13.10) gives the generalized coordinates.

1.13.2 Routh’s Equations of Motion for Circular Orbit

OR

Routh’s Equations of Motion in terms of Polar Coordinates

It can be continued from Lagrange’s equation of motion for planetary motion.
The kinetic energy is

T =
1

2
m
(
ṙ2 + r2θ̇2

)
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Under the action of inverse square law of attraction, the force acting on the particle is

F = −µm
r2

This force has a relation with potential energy function as

F = −∂U
∂qs

−µm
r2

= −dU
dr

dU

dr
= µ

m

r2

is separable first order differential equation and can be solved as

U = µm

r∫
−∞

1

r2
dr

= µ
m

r

is the potential energy of the system The Lagrangian function is

L =
1

2
m
(
ṙ2 + r2θ̇2

)
− µm

r

= L
(
r, ṙ, θ̇

)
Here θ is the cyclic coordinates. The Routh’s function is

R = L− ∂L

∂q̇s
q̇s, s = 1 · · ·N

= L− ∂L

∂θ̇
θ̇ (1.13.11)

Differentiate (1.18.9) with respect to θ̇, we have

∂L

∂θ̇
= mr2θ̇

pθ = mr2θ̇

or

θ̇ =
pθ
mr2

(1.13.12)

Using above results, (1.13.11) can be written as

R =
1

2
m
(
ṙ2 + r2θ̇2

)
− µm

r
−
(
mr2θ̇

)
θ̇
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Using, (1.13.12)

R =
1

2
m

(
ṙ2 + r2

p2θ
m2r4

)
− µm

r
−mr2

p2θ
m2r4

=
1

2
mṙ2 +

1

2

p2θ
mr2

− µm
r
−

p2θ
mr2

=
1

2
mṙ2 − 1

2

p2θ
mr2

− µm
r

(1.13.13)

(1.13.13) is the Ruth’s function. For generalized coordinate r the Routh’s equation of
motion can be written as

d

dt

(
∂R

∂ṙ

)
− ∂R

∂r
= 0, (1.13.14)

Differentiate (1.13.13) with respect to r and ṙ

∂R

∂r
=

p2θ
mr3

+ µ
m

r2

∂R

∂ṙ
= mṙ

Next

d

dt

(
∂R

∂ṙ

)
= mr̈

(1.13.14) becomes

mr̈ − ∂R

∂r
−

p2θ
mr3

− µm
r2

= 0 (1.13.15)

(1.13.15) is the Routh’s equation of motion for circular orbit.
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1.14 Hamiltons Dynamics

Hamiltonian mechanics is a theory developed as a reformulation of classical mechanics and
predicts the same outcomes as non-Hamiltonian classical mechanics. It uses a different
mathematical formalism, providing a more abstract understanding of the theory. Histori-
cally, it was an important reformulation of classical mechanics, which later contributed to
the formulation of quantum mechanics.
Hamiltonian mechanics was first formulated by William Rowan Hamilton in 1833, starting
from Lagrangian mechanics, a previous reformulation of classical mechanics introduced by
Joseph Louis Lagrange in 1788.

1.14.1 Hamilton’s Function

Let us consider a system of N particles whose configuration at any time t is specified
by N Lagrangian coordinates (q1, q2, ..., qN ). In Lagrangian formulation, the independent
variables are the generalized coordinates qi and the generalized velocities q̇i. i.e.

L = L(qs, q̇s) (1.14.1)

Its time derivative is

dL

dt
=

∑(
∂L

∂qs
q̇s +

∂L

∂q̇s
q̈s

)
(1.14.2)

Lagrange’s equation of motion (1.4.23) can be written as

∂L

∂qs
=

d

dt

(
∂L

∂q̇s

)
, s = 1 · · ·N (1.14.3)

Using (1.11.1)

∂L

∂qs
=

d

dt
(ps) = ṗs, s = 1 · · ·N (1.14.4)

Using (1.11.1) and (1.14.4) in (1.14.2), we have

dL

dt
=

∑
(ṗsq̇s + psq̈s)

=
d

dt

(∑
psq̇s

)
or

d

dt

(∑
psq̇s − L

)
= 0

Integrating,

H =
∑

q̇sps − L(qs, q̇s), s = 1 · · ·N (1.14.5)

(1.14.5) is known as Hamilton’s function.
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1.14.2 Physical Significance of Hamilton’s Function

For a conservative system, potential energy function is

U = U (qs)

then

∂U

∂q̇s
= 0 (1.14.6)

Using (1.11.1) in (1.14.5)

H =
∑ ∂L

∂q̇s
q̇s − L(qs, q̇s), s = 1 · · ·N (1.14.7)

Since L = T − U , then (1.14.7) can be written as

H =
∑ ∂

∂q̇s
(T − U) q̇s − L(qs, q̇s), s = 1 · · ·N

=
∑(

∂T

∂q̇s
q̇s −

∂U

∂q̇s
q̇s

)
− L(qs, q̇s) (1.14.8)

Since U is independent of q̇s, so (1.14.8) can be written as

H =
∑ ∂T

∂q̇s
q̇s − L(qs, q̇s), s = 1 · · ·N (1.14.9)

Using (1.4.14), (1.14.9) can be written as

H =
∑ ∂

∂q̇s

(
N∑
i=1

1

2
miq̇

2
i

)
q̇s − L(qs, q̇s), s, i = 1 · · ·N (1.14.10)

Since all qs and qi for s, i = 1 · · ·N are linearly independent and so does q̇s and q̇i, then
we have

∂q̇i
∂q̇s

=

 1 i = s

0 i 6= s
(1.14.11)

In view of (1.14.11), (1.14.10) becomes

H =
∑(

1

2
ms (2q̇s)

)
q̇s − L(qs, q̇s), s, i = 1 · · ·N

= 2
∑(

1

2
msq̇

2
s

)
− L

= 2T − (T − U)

= T + U (1.14.12)

This means Hamiltonian is the total energy of the system.
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1.14.3 Hamiltonian is Time independent Function

For this we will show only

dH

dt
= 0

Differentiate (1.14.12) with respect to t

dH

dt
=

d

dt
(T + U) =

dE

dt

From law of conservation of energy we can use (??) in above expression, then

dH

dt
= 0

Hence Hamiltonian is time independent function.

1.15 Hamiltons Equations of Motion

In Lagrangian formulation, the independent variables are the generalized coordinates qs and
the generalized velocities q̇s, whereas in Hamiltonian formulation, the independent variables
are the generalized coordinates qs and the generalized momenta ps. i.e.

L = L(qs, q̇s)

H = H(qs, ps) (1.15.1)

The Hamiltonian’s equations of motion can be derived by taking total differential of (1.15.1
) and (1.14.6). First take total differential of (1.15.1)

dH = dH (qs, ps)

=
∑ ∂H

∂qs
dqs +

∑ ∂H

∂ps
dps (1.15.2)

Next taking total differential of (1.14.6)

dH =
∑

d(q̇s ps)−
∑

dL(qs, q̇s)

=
∑

dq̇s ps +
∑

q̇s dps −
∑(

∂L

∂qs
dqs +

∂L

∂q̇s
dq̇s

)
Using (1.11.1)

dH =
∑

dq̇s ps +
∑

q̇s dps −
∑ ∂L

∂qs
dqs −

∑
psdq̇s

=
∑

q̇s dps −
∑ ∂L

∂qs
dqs (1.15.3)
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From (1.4.23), we can write

∂L

∂qs
=

d

dt

(
∂L

∂q̇s

)
, s = 1 · · ·N

Using (1.11.1)

∂L

∂qs
=

d

dt
(ps) = ṗs, s = 1 · · ·N (1.15.4)

Using (1.15.4), (1.15.3) becomes

dH =
∑

q̇s dps −
∑

ṗsdqs (1.15.5)

From (1.15.2) and (1.15.5), we can write

q̇s =
∂H

∂ps
(1.15.6)

ṗs = −∂H
∂qs

(1.15.7)

are Hamilton’s equations of motion.

1.16 One Dimensional Hamilton’s Equations of Motion

Consider a particle of mass m moves in one dimensional conservative system. At any time

Figure 1.17: One dimensional motion

t it is at P having position x relative to origin as shown in Fig. 1.17. Then ẋ be its velocity
and ẍ be its acceleration at P . Its kinetic energy is

T =
1

2
mẋ2 (1.16.1)

and potential energy is

U = U(x) (1.16.2)
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Using (1.16.1) and (1.16.2) in (1.4.22), the Euler Lagrange’s function is

L = T − U

=
1

2
mẋ2 − U(x)

The Hamilton’s function is

H = T + U

=
1

2
mẋ2 + U(x) (1.16.3)

Since Hamiltonian is function of coordinates and momentum, so the velocity coordinate will
be replaced by momentum coordinate. Here x is the only generalized coordinate and x and
ẋ are independent variables. Its corresponding generalized momentum px can be calculated
as

px =
∂L

∂ẋ
= mẋ

The velocity in momentum can be expressed as

ẋ =
px
m

(1.16.4)

Using (1.16.4) in (1.16.10), the Hamiltonian is

H =
1

2

p2x
m

+ U(x) (1.16.5)

Here x and px are independent variables. The Hamilton’s equations of motion are

q̇s =
∂H

∂ps

and

ṗs = −∂H
∂qs

Here s = 1 with q1 = x. Hence the Hamilton’s equations of motion are

ẋ =
∂H

∂px

ṗx = −∂H
∂x

the equation for x is obtained by differentiating (1.16.5) w.r.t.px

ẋ =
px
m

(1.16.6)
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and for p the equation is obtained by differentiating (1.16.5) w.r.t.x

ṗx = −∂U
∂x

(1.16.7)

(1.16.6) and (1.16.7) are one dimensional Hamilton’s equations of motion.

Example 1.16.1. Find Hamilton’s equations of motion of free fall body.

Solution In free fall motion, a body of mass m is dropped (at rest) from a height of
h meters. Since it is one dimensional motion, the reference axis may be z − axis only. At

Figure 1.18: Free fall motion

time t the body is at P with position z relative to point A as shown in Fig. 1.18. Then ż
be its velocity and z̈ be its acceleration at P . Its kinetic energy is

T =
1

2
mż2 (1.16.8)

Taking A as the reference point its potential energy is

U = −mgz (1.16.9)

Using (1.16.8) and (1.16.9) in (1.4.22), the Euler Lagrange function is

L =
1

2
mż2 +mgz

Here z is the only generalized coordinate and z and ż are independent variables. The
Hamiltonian is

H = T + U

=
1

2
mż2 + U(z) (1.16.10)
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Since Hamiltonian is function of coordinates and momentum, so the velocity coordinate will
be replaced by momentum coordinate. The generalized momentum pz is

pz =
∂L

∂ż
= mż

The velocity in momentum can be expressed as

ż =
pz
m

(1.16.11)

Then the Hamiltonian is

H =
1

2

p2z
m
−mgz (1.16.12)

Here z and pz are independent variables. The Hamilton’s equations of motion are

ż =
∂H

∂pz

ṗz = −∂H
∂z

the equation for z is

ż =
pz
m

(1.16.13)

and for p is

ṗz = −(−mg) = mg (1.16.14)

(1.16.13) and (1.16.14) are Hamilton’s equations of motion for free fall motion.

1.17 Two Dimensional Hamilton’s Equations of Motion

Consider a particle of mass m moves in two dimensional conservative system. At any time
t it is at P having position P (x, y) relative to origin as shown in Fig. 1.19. Set q1 = x and
q2 = y. Then its velocity at P is

v = 〈ẋ, ẏ〉

and square of its magnitude is

v2 = ẋ2 + ẏ2
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Figure 1.19: Two dimensional motion

Its kinetic energy is

T =
1

2
mv2

=
1

2
m
(
ẋ2 + ẏ2

)
(1.17.1)

and potential energy is

U = U(x, y) (1.17.2)

Using (1.17.1) and (1.17.2) in (1.4.22), the Euler Lagrange function is

L =
1

2
m
(
ẋ2 + ẏ2

)
− U(x, y) (1.17.3)

Here x and y are the generalized coordinate. The Hamilton’s function is

H = T + U

=
1

2
m
(
ẋ2 + ẏ2

)
+ U(x, y) (1.17.4)

Since Hamiltonian is function of coordinates and momentum, so the velocity coordinates
will be replaced by momentum coordinate. Here x and y are the generalized coordinate.
For x, the corresponding generalized momentum px can be calculated as

px =
∂L

∂ẋ
= mẋ

The velocity in momentum can be expressed as

ẋ =
px
m

(1.17.5)
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For y, the corresponding generalized momentum py can be calculated as

py =
∂L

∂ẏ
= mẏ

The velocity in momentum can be expressed as

ẏ =
py
m

(1.17.6)

Then the Hamiltonian is

H =
1

2m

(
p2x + p2y

)
+ U(x, y) (1.17.7)

The Hamilton’s equations of motion for x are

ẋ =
∂H

∂px

=
px
m

(1.17.8)

and ṗx = −∂H
∂x

= −∂U
∂x

(1.17.9)

The Hamilton’s equations of motion for y are

ẏ =
∂H

∂py

=
py
m

(1.17.10)

and ṗy = −∂H
∂y

= −∂U
∂y

(1.17.11)

Special Case In above if we consider OX axis as reference line, then y will be the
height of the body (see Fig 1.20) and potential energy function is

U = mgy (1.17.12)

The Euler Lagrange function is

L =
1

2
m
(
ẋ2 + ẏ2

)
−mgy (1.17.13)

And the Hamiltonian is

H =
1

2m

(
p2x + p2y

)
+mgy (1.17.14)
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Figure 1.20: Two dimensional motion

The Hamilton’s equations of motion are

q̇s =
∂H

∂ps

and

ṗs = −∂H
∂qs

Here s = 2 with q1 = x and q2 = y.
The Hamilton’s equations of motion for x are

ẋ =
px
m

(1.17.15)

and for px is

ṗx = −∂U
∂x

= 0 (1.17.16)

The Hamilton’s equations of motion for y are

ẏ =
py
m

(1.17.17)

and for py is

ṗy = −∂U
∂y

= −mg (1.17.18)
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Figure 1.21: Planetary Motion

1.18 Hamilton’s Equations of Motion in terms of Polar Co-

ordinates

Consider a particle of massmmoves in polar coordinates. At any time t, it be at P = P (r, θ).
Then its velocity in polar coordinate is

~v = ṙr̂ + rθ̇θ̂

and

v2 = (ṙ)2 + (rθ̇)2

Then its kinetic energy at P is

T =
1

2
mv2

=
1

2
m
(
ṙ2 + r2θ̇2

)
(1.18.1)

The potential energy can be written as

U = U(r, θ) (1.18.2)

Using (1.18.1) and (1.18.2) in (1.4.22), the Euler Lagrange function is

L =
1

2
m
(
ṙ2 + r2θ̇2

)
− U(r, θ) (1.18.3)
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Here r and θ are the generalized coordinates. Then r, θ, ṙ and θ̇ are linearly independent
variables. The Hamilton’s function is

H =
∑

q̇sps − L(qs, q̇s, t), s = 1 · · ·N

= prṙ + pθθ̇ −
1

2
m
(
ṙ2 + r2θ̇2

)
+ U(r, θ)

Next

pr =
∂L

∂ṙ
= mṙ

Here r is non-cyclic coordinate, ṙ can be written as

ṙ =
pr
m

and

pθ =
∂L

∂θ̇
= mr2θ̇

also θ̇ can be written as

r2θ̇ =
pθ
m

θ̇ =
pθ
r2m

Using all above results, Hamilton’s function becomes

H = prṙ + pθθ̇ −
1

2
m
(
ṙ2 + r2θ̇2

)
+ U(r, θ)

= pr
pr
m

+ pθ
pθ
r2m

− 1

2
m
(pr
m

)2
+

1

2
m
( pθ
mr

)2
+ U(r, θ)

=
p2r
m

+
p2θ
r2m

− 1

2

(
p2r
m

)
− 1

2

(
p2θ
mr2

)
+ U(r, θ)

=
1

2

(
p2r
m

)
+

1

2

(
p2θ
r2m

)
+ U(r, θ) (1.18.4)

(1.18.4) is the Hamiltonian.
The Hamilton’s equations of motion are

q̇s =
∂H

∂ps

and

ṗs = −∂H
∂qs
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Here s = 2 with q1 = r and q2 = θ.
For generalized coordinate r, the Hamilton’s equations of motion are

ṙ =
∂H

∂pr

=
pr
m

(1.18.5)

and

ṗr = −∂H
∂r

=

(
p2θ
mr3

)
− ∂U(r)

∂r
(1.18.6)

For generalized coordinate θ, the Hamilton’s equations of motion are

θ̇ =
∂H

∂pθ

=
pθ
r2m

(1.18.7)

and

ṗθ = −∂H
∂θ

= −∂U
∂θ

(1.18.8)

Special Case If potential energy is a function of r coordinate only, can be considered
as motion under central force. The potential energy function is

Figure 1.22: Planetary Motion
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U = U(r)

The Lagrangian function is

L =
1

2
m
(
ṙ2 + r2θ̇2

)
− U(r)

= L
(
r, ṙ, θ̇

)
Here θ is the cyclic coordinates. Using (1.14.6), the Hamilton’s function is

H =
∑

q̇sps − L(qs, q̇s, t), s = 1 · · ·N

= prṙ + pθθ̇ −
1

2
m
(
ṙ2 + r2θ̇2

)
+ U(r)

Next

pr =
∂L

∂ṙ
= mṙ

Here r is non-cyclic coordinate, ṙ can be written as

ṙ =
pr
m

and

pθ =
∂L

∂θ̇
= mr2θ̇

also θ̇ can be written as

r2θ̇ =
pθ
m

θ̇ =
pθ
r2m

Using all above results, Hamilton’s equation of motion becomes

H = prṙ + pθθ̇ −
1

2
m
(
ṙ2 + r2θ̇2

)
+ U(r)

= pr
pr
m

+ pθ
pθ
r2m

− 1

2
m
(pr
m

)2
+

1

2
m
( pθ
mr

)2
+ U(r)

=
p2r
m

+
p2θ
r2m

− 1

2

(
p2r
m

)
− 1

2

(
p2θ
mr2

)
+ U(r)

=
1

2

(
p2r
m

)
+

1

2

(
p2θ
r2m

)
+ U(r) (1.18.9)

(1.18.9) is the Hamiltonian.
For generalized coordinate r, the Hamilton’s equations of motion are

ṙ =
∂H

∂pr

=
pr
m

(1.18.10)
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and

ṗr = −∂H
∂r

=

(
p2θ
mr3

)
− ∂U(r)

∂r
(1.18.11)

Since θ is cyclic variable, so it is dropped off by itself.

Example 1.18.1. Hamiltonian and the Hamilton’s equations of motion for a simple pen-

dulum.

Consider OXY a cartesian coordinate system. Let a particle of m is attached with a
massless string of length l, with other end fixed at O, forming a simple pendulum, as shown
in Fig. 1.23 At any time t, the particle be at P (r, θ). From (1.6.10) the lagrangian is

Figure 1.23: Simple Pendulum

L =
1

2
ml2θ̇2 −mgl (1− cos θ)

Here θ is the only generalized coordinate. From (1.11.1)

pθ =
∂L

∂θ̇
= ml2θ̇

Then

θ̇ =
pθ
ml2

(1.18.12)
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Using (1.14.6), the Hamiltonian is

H = q̇sps − L(qs, q̇s, t), s = 1 · · ·N

= θ̇pθ −
1

2
ml2θ̇2 +mgl (1− cos θ) (1.18.13)

Using (1.18.12), (1.18.13)

H =
pθ
ml2

pθ −
1

2
ml2

( pθ
ml2

)2
+mgl (1− cos θ)

=
1

2

p2θ
ml2

+mgl (1− cos θ) (1.18.14)

Here θ is the only generalized coordinate, its Hamilton’s equation of motion is

θ̇ =
∂H

∂pθ

=
pθ
ml2

or

pθ = ml2θ̇ (1.18.15)

time derivative of (1.18.15)

ṗθ = ml2θ̈ (1.18.16)

ṗθ = −∂H
∂θ

= −mgl sin θ (1.18.17)

Using (1.18.16), (1.18.17) becomes

ml2θ̈ = −mgl sin θ
ml2θ̈ +mgl sin θ = 0

θ̈ +
g

l
sin θ = 0

θ̈ + ω2 sin θ = 0 (1.18.18)

with ω =

√
g

l
is the frequency of oscillation.

Same as (1.6.15) (equation of motion of a simple pendulum.) By Hamilton’s equation of
motion, (1.18.18) is the equation of motion of a simple pendulum.
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1.19 Hamilton’s Equations of Motion in terms of 3 − space

Cartesian Coordinates

Consider a particle of mass m moves in 3 − space cartesian coordinates system. At any
time t, it be at P = P (x, y, z), see Fig. 1.24 . Its velocity at P is

Figure 1.24: Cylindrical motion

~v =
(
ẋî+ ẏĵ + żk̂

)
then

v2 = ẋ2 + ẏ2 + ż2

the kinetic energy is

T =
1

2
mv2

=
1

2
m
(
ẋ2 + ẏ2 + ż2

)
(1.19.1)

and the potential energy is

U = U(x, y, z) (1.19.2)

Using (1.19.1) and (1.19.2) in (1.4.22), the Euler Lagrange function is

L =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
− U(x, y, z)

L = L(x, y, z, ẋ, ẏ, ż)
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The Hamilton’s function is

H = T + U

=
1

2
m
(
ẋ2 + ẏ2 + ż2

)
+ U(x, y, z) (1.19.3)

Since Hamiltonian is function of coordinates and momentum, so the velocity coordinates
will be replaced by momentum coordinate. Here x, y and z are the generalized coordinate.
For x, the corresponding generalized momentum px can be calculated as

px =
∂L

∂ẋ
= mẋ

The velocity component ẋ in momentum can be expressed as

ẋ =
px
m

(1.19.4)

For y, the corresponding generalized momentum py can be calculated as

py =
∂L

∂ẏ
= mẏ

The velocity component ẏ in momentum can be expressed as

ẏ =
py
m

(1.19.5)

For z, the corresponding generalized momentum pz can be calculated as

pz =
∂L

∂ż
= mż

The velocity component ż in momentum can be expressed as

ż =
pz
m

(1.19.6)

Then the Hamiltonian is

H =
1

2m

(
p2x + p2y + p2z

)
+ U(x, y, z) (1.19.7)

The Hamilton’s equation of motion for x is

ẋ =
∂H

∂px

=
px
m

(1.19.8)
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and for px is

ṗx = −∂H
∂x

= −∂U
∂x

(1.19.9)

The Hamilton’s equation of motion for y is

ẏ =
∂H

∂py

=
py
m

(1.19.10)

and for py is

ṗy = −∂H
∂y

= −∂U
∂y

(1.19.11)

The Hamilton’s equation of motion for z is

ż =
∂H

∂pz

=
pz
m

(1.19.12)

and for pz is

ṗz = −∂H
∂z

= −∂U
∂z

(1.19.13)

Special Case In above if XOY plane be the zero level for potential energy of the particle,
then clearly P is at height z above the XOY plane. Then potential energy function is

U = mgz

and the Lagrangian is

L =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
−mgz

L = L(z, ẋ, ẏ, ż)

Here x, y and z are the generalized coordinate. The Hamilton’s function is

H =
1

2
m
(
ẋ2 + ẏ2 + ż2

)
+mgz

H = H(z, ẋ, ẏ, ż)
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Replacing coordinates with their corresponding momenta, the Hamiltonian is

H =
1

2m

(
p2x + p2y + p2z

)
+mgz (1.19.14)

Here x and y are cyclic coordinates, so are dropped and are left with z coordinate only.
The Hamilton’s equationsof motion for z is

ż =
∂H

∂pz

=
pz
m

(1.19.15)

and for pz is

ṗz = −∂H
∂z

= −∂U
∂z

= −mg (1.19.16)

1.20 Hamilton’s Equations of Motion in terms of Cylindrical

Polar Coordinates

Consider a particle of mass m moves in cylindrical polar coordinates. At any time t, it be
at P = P (r, θ, z). Then its velocity at P is

Figure 1.25: Cylindrical motion
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~v =
(
ṙr̂ + rθ̇θ̂ + żẑ

)
then

v2 = ṙ2 + (rθ̇)2 + ż2

and the kinetic energy is

T =
1

2
mv2

=
1

2
m
(
ṙ2 + r2θ̇2 + ż2

)
The potential energy can be written as

U = U(r, θ, z)

The Euler Lagrange function is

L =
1

2
m
(
ṙ2 + r2θ̇2 + ż2

)
− U(r, θ, z)

The Hamilton’s function is

H =
∑

q̇sps − L(qs, q̇s, t), s = 1 · · ·N

= prṙ + pθθ̇ + +pz ż −
1

2
m
(
ṙ2 + r2θ̇2 + ż2

)
+ U(r, θ, z) (1.20.1)

Here r, θ and z are the generalized coordinates. Then r, θ, z, ṙ, θ̇, and ż are linearly
independent variables, hence are non-cyclic coordinates. The velocities components will be
replaced by generalized momentum corresponding to generalized coordinate. First for r is

pr =
∂L

∂ṙ
= mṙ

then ṙ can be written as

ṙ =
pr
m

and

pθ =
∂L

∂θ̇
= mr2θ̇

also θ̇ can be written as

r2θ̇ =
pθ
m

θ̇ =
pθ
r2m
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For z, the corresponding generalized momentum pz can be calculated as

pz =
∂L

∂ż
= mż

The velocity component ż in momentum can be expressed as

ż =
pz
m

Using all above results, Hamilton’s equation of motion becomes

H = prṙ + pθθ̇ + pz ż −
1

2
m
(
ṙ2 + r2θ̇2 + ż2

)
+ U(r, θ, z)

= pr
pr
m

+ pθ
pθ
r2m

+ pz
pz
m
− 1

2
m
(pr
m

)2
− 1

2
m
( pθ
mr

)2
− 1

2
m
(pr
m

)2
− 1

2
m
(pz
m

)2
+ U(r, θ, z)

=
p2r
m

+
p2θ
r2m

+
p2z
m
− 1

2

(
p2r
m

)
− 1

2

(
p2θ
mr2

)
− 1

2

(
p2z
m

)
+ U(r, θ, z)

=
1

2

(
p2r
m

)
+

1

2

(
p2θ
r2m

)
+

1

2

(
p2z
m

)
+ U(r, θ, z) (1.20.2)

(1.20.10) is the Hamiltonian.
The Hamilton’s equations of motion are

q̇s =
∂H

∂ps

ṗs = −∂H
∂qs

Here s = 1, 2, 3, set q1 = r, q2 = θ and q3 = z For generalized coordinate r, the Hamilton’s
equations of motion are

ṙ =
∂H

∂pr

=
pr
m

(1.20.3)

and

ṗr = −∂H
∂r

=

(
p2θ
mr3

)
− ∂U(r)

∂r
(1.20.4)

For generalized coordinate θ, the Hamilton’s equations of motion are

θ̇ =
∂H

∂pθ

=
pθ
r2m

(1.20.5)
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and

ṗθ = −∂H
∂θ

= −∂U
∂θ

(1.20.6)

For generalized coordinate z, the Hamilton’s equations of motion are

ż =
∂H

∂pz

=
pz
m

(1.20.7)

and

ṗz = −∂H
∂z

= −∂U
∂z

(1.20.8)

Special Case In above if XOY plane be the zeroth level, then the potential energy of the
particle is

U = mgz (1.20.9)

Using (1.4.22), the Lagrangian is

L =
1

2
m
(
ṙ2 + r2θ̇2 + ż2

)
−mgz

L = L(r, z, ṙ, θ̇, ż)

and the Hamiltonian is Using all above results, Hamilton’s equation of motion becomes

H =
1

2

(
p2r
m

)
+

1

2

(
p2θ
r2m

)
+

1

2

(
p2z
m

)
+mgz (1.20.10)

(1.20.10) is the Hamiltonian.
The Hamilton’s equations of motion are For generalized coordinate r, the Hamilton’s equa-
tions of motion are

ṙ =
pr
m

and

ṗr =

(
p2θ
mr3

)
For generalized coordinate θ, the Hamilton’s equations of motion are

θ̇ =
pθ
r2m
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and

ṗθ = −∂H
∂θ

= −∂U
∂θ

(1.20.11)

For generalized coordinate z, the Hamilton’s equations of motion are

ż =
∂H

∂pz

=
pz
m

(1.20.12)

and

ṗz = −∂H
∂z

= −∂U
∂z

(1.20.13)

1.21 Hamilton’s Equations of Motion in terms of Spherical

Polar Coordinates

Consider a particle of mass m moves in spherical polar coordinates. At any time t, it be at
P = P (r, θ, φ). Then its velocity at P is

Figure 1.26: Cylindrical motion

~v =
(
ṙr̂ + rθ̇θ̂ + rφ̇ sin θφ̂

)
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then

v2 = ṙ2 + (rθ̇)2 +
(
rφ̇ sin θ

)2
and the kinetic energy is

T =
1

2
mv2

=
1

2
m
(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
The potential energy can be written as

U = U(r, θ, φ)

The Euler Lagrange function is

L =
1

2
m
(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
− U(r, θ, φ)

L = L(r, θ, φ, ṙ, θ̇, φ̇)

The Hamilton’s function is

H =
∑

q̇sps − L(qs, q̇s, t), s = 1 · · ·N

= prṙ + pθθ̇ + +pφφ̇−
1

2
m
(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
+ U(r, θ, φ) (1.21.1)

Here r, θ and φ are the generalized coordinates. Then r, θ, φ, ṙ, θ̇, and φ̇ are linearly
independent variables, hence are non-cyclic coordinates. The velocities components will be
replaced by generalized momentum corresponding to generalized coordinate. First for r is

pr =
∂L

∂ṙ
= mṙ

then ṙ can be written as

ṙ =
pr
m

For generalized coordinate θ, the corresponding generalized momentum pθ can be calculated
as

pθ =
∂L

∂θ̇
= mr2θ̇

also θ̇ can be written as

r2θ̇ =
pθ
m

θ̇ =
pθ
r2m
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For generalized coordinate φ, the corresponding generalized momentum pφ can be calculated
as

pφ =
∂L

∂φ̇

= mr2 sin2 θφ̇

The velocity component φ̇ in momentum can be expressed as

φ̇ =
pφ

mr2 sin2 θ
(1.21.2)

Using all above results, Hamilton’s function becomes

H = prṙ + pθθ̇ + pφφ̇−
1

2
m
(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
+ U(r, θ, φ)

= pr
pr
m

+ pθ
pθ
r2m

+ pφ
pφ

mr2 sin2 θ
− 1

2
m
(pr
m

)2
− 1

2
m
( pθ
mr

)2
− 1

2
m
(pr
m

)2
− 1

2
mr2 sin2 θ

( pφ

mr2 sin2 θ

)2
+ U(r, θ, φ)

=
p2r
m

+
p2θ
r2m

+
p2φ
m
− 1

2

(
p2r
m

)
− 1

2

(
p2θ
mr2

)
− 1

2

(
p2φ

mr2 sin2 θ

)
+ U(r, θ, φ)

=
1

2

(
p2r
m

)
+

1

2

(
p2θ
r2m

)
+

1

2

(
p2φ

mr2 sin2 θ

)
+ U(r, θ, φ) (1.21.3)

(1.21.3) is the Hamiltonian.
The Hamilton’s equations of motion are

q̇s =
∂H

∂ps

ṗs = −∂H
∂qs

Here s = 1, 2, 3, set q1 = r, q2 = θ and q3 = φ For generalized coordinate r, the Hamilton’s
equations of motion are

ṙ =
∂H

∂pr

=
pr
m

(1.21.4)

and

ṗr = −∂H
∂r

=
p2θ
mr3

+
p2φ

mr3 sin2 θ
− ∂U

∂r
(1.21.5)
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For generalized coordinate θ, the Hamilton’s equations of motion are

θ̇ =
∂H

∂pθ

=
pθ
r2m

(1.21.6)

and

ṗθ = −∂H
∂θ

=
p2φ csc2 θ cot θ

mr2
− ∂U

∂θ
(1.21.7)

For generalized coordinate φ, the Hamilton’s equations of motion are

φ̇ =
∂H

∂pφ

=
pφ

mr2 sin2 θ
(1.21.8)

and

ṗφ = −∂H
∂φ

= −∂U
∂φ

(1.21.9)
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1.22 Hamilton’s Principle

In many physical systems we are interested to minimize certain physical quantities. Hamil-
ton formalized this minimization under the principle known as Hamilton’s Principle which
states:
” Of all the possible paths along which a dynamical system may move from one point to
another within a specified time interval (consistent with any constraints), the actual path
followed is that which minimizes the time integral of the difference between the kinetic and
potential energies. ”
If T is kinetic energy and U is potential energy, this principle in terms of the calculus of
variations is

δI = δ

t2∫
t1

(T − U) dt = δ

t2∫
t1

Ldt (1.22.1)

The quantity T − U is the Lagrangian L.

1.22.1 Lagrange’s Equation of motion from Hamilton’s Principle

1.22.2 Lagrange’s Equation of motion from Hamilton’s Principle

Let us consider a system of N particles whose configuration at any time t is specified by N
Lagrangian coordinates (q1, q2, ..., qN ). Let the particle moves along curve C with A and B
be terminal points with time t1 and t2 respectively. Let it be at P (qs, q̇s) as shown in Fig.
1.28. We can write the integral along C as

Figure 1.27: Two neighbouring paths with same end points

I1 =

t2∫
t1

L (qs, q̇s) dt (1.22.2)
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Let C1 be a neighbouring curve with same end points A and B. Let position of the particle
at time t+δt is Q (qs + δqs, q̇s + δq̇s) as shown in Fig. 1.28. We can write the integral along
C1 as

I2 =

t2∫
t1

L (qs + δqs, q̇s + δq̇s) dt (1.22.3)

The change in integrals is

δI =

t2∫
t1

[L (qs + δqs, q̇s + δq̇s)− L (qs, q̇s)] dt (1.22.4)

This integral can be simplified by using ”Increment theorem for functions of several vari-
ables”. Then the result is

δI =

t2∫
t1

[
L (qs, q̇s) +

(
∂L

∂qs
δqs +

∂L

∂q̇s
δq̇s

)
− L (qs, q̇s)

]
dt

=

t2∫
t1

(
∂L

∂qs
δqs +

∂L

∂q̇s
δq̇s

)
dt (1.22.5)

Integrating second term by parts

δI =

t2∫
t1

(
∂L

∂qs
δqs

)
dt+

∣∣∣∣ ∂L∂q̇s δqs
∣∣∣∣t2
t1

−
t2∫
t1

d

dt

(
∂L

∂q̇s
δqs

)
dt

Since both curves have same end points, then the variation in coordinates at time t1 and t2
is zero. This means

δqs (t1) = 0 = δqs (t2)

Then we are left with

δI =

t2∫
t1

(
∂L

∂qs
− d

dt

(
∂L

∂q̇s

))
δqsdt (1.22.6)

By Hamilton’s principle, the variation of the action integral for fixed time t1 and t2 must
be zero.

δI = δ

t2∫
t1

Ldt = 0
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Using (1.22.12), we can write

t2∫
t1

(
∂L

∂qs
− d

dt

(
∂L

∂q̇s

))
δqsdt = 0 (1.22.7)

This could be satisfied only if

d

dt

(
∂L

∂q̇s

)
− ∂L

∂qs
= 0 s = 1, 2, ...N

is the Lagrange equations of motion.
Let us consider a system of N particles whose configuration at any time t is specified

by N Lagrangian coordinates (q1, q2, ..., qN ). Let the particle moves along curve C with A
and B be terminal points with time t1 and t2 respectively. Let it be at P (qs, q̇s) as shown
in Fig. 1.28. We can write the integral along C as

Figure 1.28: Two neighbouring paths with same end points

I1 =

t2∫
t1

L (qs, q̇s) dt (1.22.8)

Let C1 be a neighbouring curve with same end points A and B. Let position of the particle
at time t+δt is Q (qs + δqs, q̇s + δq̇s) as shown in Fig. 1.28. We can write the integral along
C1 as

I2 =

t2∫
t1

L (qs + δqs, q̇s + δq̇s) dt (1.22.9)

The change in integrals is

δI =

t2∫
t1

[L (qs + δqs, q̇s + δq̇s)− L (qs, q̇s)] dt (1.22.10)
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This integral can be simplified by using ”Increment theorem for functions of several vari-
ables”. Then the result is

δI =

t2∫
t1

[
L (qs, q̇s) +

(
∂L

∂qs
δqs +

∂L

∂q̇s
δq̇s

)
− L (qs, q̇s)

]
dt

=

t2∫
t1

(
∂L

∂qs
δqs +

∂L

∂q̇s
δq̇s

)
dt (1.22.11)

Integrating second term by parts

δI =

t2∫
t1

(
∂L

∂qs
δqs

)
dt+

∣∣∣∣ ∂L∂q̇s δqs
∣∣∣∣t2
t1

−
t2∫
t1

d

dt

(
∂L

∂q̇s
δqs

)
dt

Since both curves have same end points, then the variation in coordinates at time t1 and t2
is zero. This means

δqs (t1) = 0 = δqs (t2)

Then we are left with

δI =

t2∫
t1

(
∂L

∂qs
− d

dt

(
∂L

∂q̇s

))
δqsdt (1.22.12)

Using Lagrange’s equation of motion we can write

δI = 0

Hence the integral I has stationary value along the actual curve C as comparing with the
neighbouring trajectory.

1.22.3 Lagrange’s Equation of motion from Hamilton’s Principle

By Hamilton’s principle, the variation of the action integral for fixed time t1 and t2 must
be zero.

δI = δ

t2∫
t1

Ldt = 0

Using (1.22.12), we can write

t2∫
t1

(
∂L

∂qs
− d

dt

(
∂L

∂q̇s

))
δqsdt = 0 (1.22.13)
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This could be satisfied only if

d

dt

(
∂L

∂q̇s

)
− ∂L

∂qs
= 0 s = 1, 2, ...N

is the Lagrange equations of motion.
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1.22.4 Hamilton’s Equation of motion from Hamilton’s Principle

From (1.14.6) Hamilton’s function is

H =
∑

q̇sps − L(qs, q̇s, t), s = 1 · · ·N

or L =
∑

q̇sps −H (1.22.14)

Using (1.22.14) in (1.22.1), change in integral is

δI = δ

t2∫
t1

Ldt = δ

t2∫
t1

(∑
q̇sps −H

)
dt

By Hamilton’s principle, the variation of the action integral for fixed time t1 and t2 must
be zero.

δI = 0

δ

t2∫
t1

(∑
q̇sps −H

)
dt = 0

t2∫
t1

(∑
q̇sδps +

∑
psδq̇s − δH

)
dt = 0 (1.22.15)

Since

δH =
∑ ∂H

∂qs
δqs +

∑ ∂H

∂ps
δps (1.22.16)

Using (1.22.16) in (1.22.15), we have

t2∫
t1

(∑
psδq̇s +

∑
q̇sδps −

(∑ ∂H

∂qs
δqs +

∑ ∂H

∂ps
δps

))
dt = 0 (1.22.17)

Integrate first term by parts

∑
|psδqs|t2t1 −

t2∫
t1

∑
ṗsδqsdt+

t2∫
t1

(∑
q̇sδps −

∑ ∂H

∂qs
δqs −

∑ ∂H

∂ps
δps

)
dt = 0

Since

δqs (t1) = 0 = δqs (t2)
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Then we are left with

∑ t2∫
t1

((
q̇s −

∂H

∂ps

)
δps −

(
ṗs +

∂H

∂qs

)
δqs

)
dt = 0

Since all qs and ps are linearly independent and so does δqs and δps, which is possible only
if

q̇s −
∂H

∂ps
= 0

and ṗs +
∂H

∂qs
= 0

which gives us

q̇s =
∂H

∂ps

and ṗs = −∂H
∂qs

the Hamilton’s equations of motion.

1.23 The method of Lagrange multiplier

The method of Lagrange multiplier is used in classical mechanics in handling situations
where the number of dynamical variables happens to be more than the number of degrees
of freedom.
In the presence of non-holonomic constraints, the generalised coordinates are not indepen-
dent as their number is greater than the number of degrees of freedom and consequently
(1.4.23) is not valid. In such situations (and also in case care is not taken to reduce the
number of generalised coordinates using the holonomic constraints), the method of unde-
termined multiplier is useful. (The method has limitations, for instance, it cannot be used
in cases where the constraints are stated as inequalities)
Suppose there are m number of non-holonomic constraints involving the generalised coor-
dinates in differential form

n∑
s=1

ar,sdqs + br,sdt = 0 (1.23.1)

ar,s and br,s may depend on s and t. Here r is an index which runs from 1 to m and (1.23.1)
is actually m equations, one for each value of r. We can get correct equations motion if
the varied paths are virtual displacements from actual motion in which case the constraint
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is
∑n

s=1 ar,sdqs because vital displacements take place over constant time. We can then
rewrite the principle of least action as

n∑
s=1

s

∫
dt

[
d

dt

(
∂L

∂q̇s

)
− ∂L

∂qs
+

m∑
r=1

λrar,s

]
δqs = 0

Note that the additional term
∑n

s=1

∑m
r=1 λrar,sδqs is actually zero and hence we can put

it inside the integral. δqs are not independent and satisfy (1.23.1). Since we have m
undetermined multipliers λr, we can choose them such that the first m terms, i.e.s = 1 to
m is each zero. Suppose we choose λs such that for s = 1, 2, . . .m, the equation to be
satisfied is

d

dt

(
∂L

∂q̇s

)
− ∂L

∂qs
+

m∑
r=1

λrar,s = 0 (1.23.2)

Note that the last term in the above equation is no longer zero as the sum over s is missing
and we have simply redistributed the term which was zero in various ways. With the λr
determined by (1.23.2), we are left with

n∑
s=m+1

∫
dt

[
d

dt

(
∂L

∂q̇s

)
− ∂L

∂qs
+

m∑
r=1

λrar,s

]
δqs = 0

However, now our qs are independent and we have, as a consequence, for s = m+ 1, . . .m

d

dt

(
∂L

∂q̇s

)
− ∂L

∂qs
+

m∑
r=1

λrar,s = 0 (1.23.3)

(1.23.2) and (1.23.3) allows us to write a single equation for s = 1, 2, . . .m

d

dt

(
∂L

∂q̇s

)
− ∂L

∂qs
+

m∑
r=1

λrar,s = 0 (1.23.4)

(1.23.2) determines the m values of λ and (1.23.3) gives us n equations of motion. Define

m∑
r=1

λrar,s = −Qs (1.23.5)

as generalised force corresponding to the constraint conditions. Equation (1.23.3) can now
be written as

d

dt

(
∂L

∂q̇s

)
− ∂L

∂qs
= Qs (1.23.6)
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Exercises

1. Are (q1, q2, q3) are generalized coordinates defined as

x = q1 + q2 + q3

y = 2q1 + 3q2 − q3
z = 4q1 − q2 + 4q3

2. Find Routh’s equation of motion for spherical pendulum.

3. Find Hamilton’s equation of motion in example 1.7.1.

4. Find Hamilton’s equation of motion for the following Hamilton’s function

H = q1p1 − q2p2 − aq21 + bq22

Also show the following relations

(a) q1q2 is constant.

(b) ln q1 = t+ C, where C is some constant.

(c) p2−bq2
q1

is constant.

5. Find Hamilton’s equations of motion of a particle moving on a Sphere of radius a.
(Use Lagrangian from article 1.9)
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Chapter 2

Exact or Canonical Transformation

2.1 Exact or Canonical Transformation

In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates
(q, p, t)→ (Q,P, t) that preserves the form of Hamilton’s equations (that is, the new Hamil-
ton’s equations resulting from the transformed Hamiltonian may be simply obtained by
substituting the new coordinates for the old coordinates), although it might not preserve
the Hamiltonian itself. This is sometimes known as form invariance.

2.1.1 Canonical Conjugate Variables

In mathematics conjugate means the change of sign in the middle of two terms like this

x + 2

x − 2

Physical conjugation of variables was invented by Hamilton in 1833 to reduce the sec-
ond degree n−dimensional partial differential equations of Lagrange into the first degree
2n−dimensional partial differential equations in phase space. Clearly, the implementation
of phase space is only effective if there are pairs of conjugated variables. The traditional
pair of conjugated variables was the position vector and the linear momentum vector of
analytical mechanics. The two canonical forms of Hamiltons equations are written as the
time derivative of the s− th position vector set equal to the partial derivative of the Hamil-
tonian energy function with respect to the s− th momentum vector and the time derivative
of the s − th linear momentum vector set equal to the negative of the partial derivative
of the Hamiltonian energy function with respect to the s− th position vector, the dummy
index s takes on value from 1 to 2n, where for infinitely dimensional spaces, n = 2n is equal
to infinity. In phase space, none of the two conjugate variables takes the value of zero.
Since these possible values are positive definite, always greater than zero, they are useful
for quantifying the uncertainty principle of quantum mechanics.

91
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Coming to our subject, we can say that the variables satisfying Hamilton’s equation of
motion

q̇s =
∂H

∂ps

ṗs = −∂H
∂qs

are called canonical conjugate variables.

2.1.2 Exact or Canonical Transformation

Let q1, q2, ...qN & p1, p2, ...pN be independent variables and Q1, Q2, ...QN &P1, P2, ...PN be
another set of independent variables connected by the transformation

Qs = Qs (q1, q2, ...qN , p1, p2, ...pN , t)

Ps = Ps (q1, q2, ...qN , p1, p2, ...pN , t)

 (2.1.1)

such that the new variables Qs &Ps are canonical conjugate variables. Then

Q̇s =
∂K

∂Ps

Ṗs = − ∂K
∂Qs

Where K play’s the role of Hamilton’s to the variables Qs &Ps. (2.1.1) contains 4n + 1
variables out of which only 2n + 1 are independent variables. The inverse transformation
of (2.1.1) can be obtained if

J =
∂ (Qs, Ps)

∂ (qs, ps)
6= 0

The Hamilton’s principle

δI = δ

t2∫
t1

Ldt

Using Hamiltonian we can write

δ

t2∫
t1

Ldt = δ

t2∫
t1

(q̇sps −H) dt (2.1.2)

Hence for transformed Hamiltonian, Hamilton’s principle is

δ

t2∫
t1

Ldt = δ

t2∫
t1

(
Q̇sPs −K

)
dt (2.1.3)
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In both cases the variation at the end points is zero. (2.1.2) and (2.1.3) does not mean
that the two integrals are equal but can differ at the most by the total time derivative of
an arbitrary function. If F is an arbitrary function then we can write

q̇sps −H = Q̇sPs −K +
dF

dt

q̇sps −H −
(
Q̇sPs −K

)
=

dF

dt
dqs
dt
ps −H −

(
dQs
dt

Ps −K
)

=
dF

dt

psdqs −Hdt− (PsdQs −Kdt) = dF

If Hamiltonian is time independent, then

H = K

then we have

dF

dt
= 0

and we are left with

psdqs − PsdQs = dF (2.1.4)

For very small increment we can write

psδqs − PsδQs = δF

2.1.3 Criteria for a transformation to be Canonical Transformation

A transformation from (qs, ps, t)→ (Qs, Ps, t) is said to be contact if the following differential

psδqs − PsδQs = 0 (2.1.5)

is an exact differential and its solution is a generating function F . For exactness we first
transform (2.1.5) in the form

M (qs, ps) δqs +N (qs, ps) δps = 0

and then show that the following relation holds.

∂

∂ps
M (qs, ps) =

∂

∂qs
N (qs, ps) (2.1.6)
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2.1.4 Method to find Generating Function

If (2.1.6) holds then there exist a function F (qs, ps) such that

∂F

∂qs
= M (qs, ps)

We can find F by integrating M (qs, ps) with respect to qs while holding ps constant:

F (qs, ps) =

∫
M (qs, ps) dqs + g (ps) (2.1.7)

where the arbitrary function g (ps) is the constant of integration. We assume that

∂F

∂ps
= N (qs, ps) (2.1.8)

Next differentiate (2.1.7) with respect to ps and equate it with (2.1.8)

∂F

∂ps
=

∂

∂ps

∫
M (qs, ps) dqs +

d

dps
g (ps) = N (qs, ps)

This gives

d

dps
g (ps) = N (qs, ps)−

∂

∂ps

∫
M (qs, ps) dqs (2.1.9)

Finally, integrate (2.1.9) with respect to ps and substitute the result in (2.1.7). The gener-
ating function is

F (qs, ps) = C (2.1.10)

It is important to realize that the expression (2.1.9) is independent of ps because

∂

∂qs

[
N (qs, ps)−

∂

∂ps

∫
M (qs, ps) dqs

]
=

∂N

∂qs
− ∂

∂ps

(
∂

∂qs

∫
M (qs, ps) dqs

)
=

∂N

∂qs
− ∂M

∂ps
= 0

We can also start the foregoing procedure with the assumption that

∂F

∂ps
= N (qs, ps)

Next integrate N with respect to ps

F (qs, ps) =

∫
N (qs, ps) dps + h (qs) (2.1.11)

and then differentiating that result

d

dqs
h (qs) = M (qs, ps)−

∂

∂qs

∫
N (qs, ps) dps (2.1.12)

Finally, integrate (2.1.12) with respect to qs and substitute the result in (2.1.11). The
generating function is F (qs, ps) = C. Sometimes we ignore this C.
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2.1.5 Types of Generating Functions

There are four types of generating functions, namely

F1 = F1 (qs, Qs)

F2 = F2 (qs, Ps)

F3 = F3 (ps, Qs)

F4 = F4 (ps, Ps)

The generating function given by (2.1.10) has equivalence relation with above generating
functions in the following way.

F1 (qs, Qs) = F (qs, ps)

F2 (qs, Ps) = F (qs, ps) + PQ

F3 (ps, Qs) = F (qs, ps)− pq
F4 (ps, Ps) = F (qs, ps)− pq + PQ

Example 2.1.1. Show that the transformation

Q =
1

2

(
p2 + q2

)
P = − arctan

(
q

p

)

is exact. Find its generating function and then transform it into its four types.

Solution From given transformation, we first formulate the expression

pδq − PδQ = 0

pδq + arctan

(
q

p

)
1

2
(2pδp+ 2qδq) = 0

pδq + arctan

(
q

p

)
(pδp+ qδq) = 0(

p+ q arctan

(
q

p

))
δq +

(
p arctan

(
q

p

))
δp = 0

M (qs, ps) =

(
p+ q arctan

(
q

p

))
and N (qs, ps) = p

(
arctan

(
q

p

))
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Following (2.1.5) the above equation is exact if

∂

∂ps

(
p+ q arctan

(
q

p

))
=

∂

∂qs

(
p arctan

(
q

p

))
1 + q

1

1 +
(
q
p

)2 (− q

p2

)
= p

1

1 +
(
q
p

)2 (1

p

)

1− q2

q2 + p2
=

p2

q2 + p2

p2

q2 + p2
=

p2

q2 + p2

Since (2.1.5) is satisfied, hence the given transformation is exact or canonical transformation.
We can find generating function F by integrating M (q, p) with respect to q while holding
p constant:

F (q, p) =

∫
M (q, p) dq + g (p)

=

∫ (
p+ q arctan

(
q

p

))
dq + g (p)

Where the arbitrary function g (p) is the constant of integration. Integrate second term in
first expression by parts

F (q, p) = pq +
q2

2
arctan

(
q

p

)
−
∫
q2

2

p2

q2 + p2
1

p
dq + g (p)

= pq +
q2

2
arctan

(
q

p

)
− p

2

∫
q2

q2 + p2
dq + g (p)

= pq +
q2

2
arctan

(
q

p

)
− p

2

∫ (
1− p2

q2 + p2

)
dq + g (p)

= pq +
q2

2
arctan

(
q

p

)
− pq

2
+
p3

2

∫ (
1

q2 + p2

)
dq + g (p)

=
pq

2
+
q2

2
arctan

(
q

p

)
+
p3

2

1

p
arctan

(
q

p

)
+ g (p)

=
pq

2
+

1

2

(
q2 + p2

)
arctan

(
q

p

)
+ g (p) (2.1.13)

We assume that

∂F

∂p
= N (qs, ps) = p

(
arctan

(
q

p

))
(2.1.14)
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Next differentiate (2.1.13) with respect to p and equate it with (2.1.14)

∂F

∂p
=

q

2
+

1

2
(2p) arctan

(
q

p

)
+

1

2

(
q2 + p2

) −q/p2

1 + (q2/p2)
+ g

′
(p)

p

(
arctan

(
q

p

))
=

q

2
+ p

(
arctan

(
q

p

))
+

1

2

(
q2 + p2

) −q/p2

(q2 + p2) /p2
+ g

′
(p)

=
q

2
+ p

(
arctan

(
q

p

))
− q

2
+ g

′
(p)

This gives

g
′
(p) = 0 (2.1.15)

Finally, integrate (2.1.16) with respect to p

g (p) = C (2.1.16)

and substitute the result in (2.1.13).

F (q, p) =
pq

2
+

1

2

(
q2 + p2

)
arctan

(
q

p

)
+ C

Ignoring C the generating function is

F (q, p) =
pq

2
+

1

2

(
q2 + p2

)
arctan

(
q

p

)
Its corresponding four types of generating functions are as following. For F1, we have to
transform (qs, ps)→ (qs, Qs).

F1 (qs, Qs) = F (qs, ps)

=
pq

2
+

1

2

(
q2 + p2

)
arctan

(
q

p

)
From

Q =
1

2

(
q2 + p2

)
We can write

p =
√

2Q− q2

Then

F1 (qs, Qs) =
(q

2

√
2Q− q2

)
+Q arctan

(
q√

2Q− q2

)
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To calculate F2 we proceed as

F2 (qs, Ps) = F (qs, ps) + PQ

=
pq

2
+

1

2

(
q2 + p2

)
arctan

(
q

p

)
+ PQ

Using given transformation we can write

F2 (qs, Ps) =
pq

2
+Q (−P ) + PQ

=
pq

2
(2.1.17)

Since

P = − arctan

(
q

p

)
⇒ q

p
= − tan (P )

or p = −q cot (P )

Using above result in (2.1.17), F2 can be written as

F2 = −1

2
q2 cot (P )

For F3, consider

F3 (ps, Qs) = F (qs, ps)− pq

=
pq

2
+

1

2

(
q2 + p2

)
arctan

(
q

p

)
− pq

= −pq
2

+
1

2

(
q2 + p2

)
arctan

(
q

p

)
From

Q =
1

2

(
q2 + p2

)
We can write

q =
√

2Q− p2

Then

F3 (ps, Qs) = −1

2
p
√

2Q− p2 +Q arctan

(√
2Q− p2
p

)
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For F4, consider

F4 (ps, Ps) = F (qs, ps)− pq + PQ

=
pq

2
+

1

2

(
q2 + p2

)
arctan

(
q

p

)
− pq + PQ

Using given transformation, F4 becomes

F4 (ps, Ps) = −pq
2

+ (Q) arctan (−P ) + PQ

= −pq
2

(2.1.18)

Since

P = − arctan

(
q

p

)
⇒ q

p
= − tan (P )

or q = −p tan (P )

Using above result in (2.1.18), F4 can be written as

F4 =
1

2
p2 tan (P )

2.2 Canonical Transformation for these Four Types of Gen-

erating Functions

If we are given a particular generating function, then we have the canonical transformation
as following:

2.2.1 Canonical Transformation for Generating Functions F1 (qs, Qs, t)

If the generating function is F1 (qs, Qs, t), then we can write

F = F1

then total time derivative on both sides gives

dF = dF1

Since dF is given by (2.1.4), and

dF1 =
∂F1

qs
dqs +

∂F1

Qs
dQs +

dF1

dt
dt



100 2 Exact or Canonical Transformation

so we have

psdqs − PsdQs + (K −H) dt =
∂F1

qs
dqs +

∂F1

Qs
dQs +

dF1

dt
dt

Comparing the coefficients of dqs, dQs and dt we have

ps =
∂F1

qs
(2.2.1)

Ps = −∂F1

Qs
(2.2.2)

K −H =
dF1

dt
(2.2.3)

If Hamiltonian is time independent, then

H = K

and we have

dF1

dt
= 0

Then (2.2.1) and (2.2.2) are known as canonical transformation for generating function F1.

2.2.2 Canonical Transformation for Generating Functions F2 (qs, Ps, t)

If the generating function is F2 (qs, Ps, t), then we can write

F + PsQs = F2

then total time derivative on both sides gives

dF + d (PsQs) = dF2

Since dF is given by (2.1.4), and

dF2 =
∂F2

qs
dqs +

∂F2

Ps
dPs +

dF2

dt
dt

so we have

psdqs − PsdQs + (K −H) dt+ PsdQs +QsdPs =
∂F2

qs
dqs +

∂F2

Ps
dPs +

dF2

dt
dt

or

psdqs +QsdPs + (K −H) dt =
∂F2

qs
dqs +

∂F2

Ps
dPs +

dF2

dt
dt
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Comparing the coefficients of dqs, dPs and dt we have

ps =
∂F2

qs
(2.2.4)

Qs = −∂F2

Ps
(2.2.5)

K −H =
dF2

dt
(2.2.6)

If Hamiltonian is time independent, then

H = K

and we have

dF2

dt
= 0

Then (2.2.4) and (2.2.5) are known as canonical transformation for generating function F2.

2.2.3 Canonical Transformation for Generating Functions F3 (ps, Qs, t)

If the generating function is F3 (ps, Qs, t), then we can write

F − psqs = F3

then total time derivative on both sides gives

dF − d (psqs) = dF3

Since dF is given by (2.1.4), and

dF3 =
∂F3

ps
dps +

∂F3

Qs
dQs +

dF3

dt
dt

so we have

psdqs − PsdQs + (K −H) dt− psdqs − qsdps =
∂F3

ps
dps +

∂F3

Qs
dQs +

dF3

dt
dt

or

−qsdps − PsdQs + (K −H) dt =
∂F3

ps
dps +

∂F3

Qs
dQs +

dF3

dt
dt

Comparing the coefficients of dps, dQs and dt we have

qs = −∂F3

ps
(2.2.7)

Ps = −∂F3

Qs
(2.2.8)

K −H =
dF3

dt
(2.2.9)
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If Hamiltonian is time independent, then

H = K

and we have

dF3

dt
= 0

Then (2.2.7) and (2.2.8) are known as canonical transformation for generating function F3.

2.2.4 Canonical Transformation for Generating Functions F4 (ps, Ps, t)

If the generating function is F4 (ps, Ps, t), then we can write

F + PsQs − psqs = F4

then total time derivative on both sides gives

dF + d (PsQs)− d (psqs) = dF4

Since dF is given by (2.1.4), and

dF4 =
∂F4

ps
dps +

∂F4

Ps
dPs +

dF4

dt
dt

so we have

psdqs − PsdQs + (K −H) dt+ PsdQs −QsdPs − psdqs − qsdps =
∂F4

ps
dps +

∂F4

Ps
dPs +

dF4

dt
dt

or

QsdPs − qsdps + (K −H) dt =
∂F4

ps
dps +

∂F4

Ps
dPs +

dF4

dt
dt

Comparing the coefficients of dps, dQs and dt we have

qs = −∂F4

ps
(2.2.10)

Qs =
∂F4

Ps
(2.2.11)

K −H =
dF4

dt
(2.2.12)

If Hamiltonian is time independent, then

H = K

and we have

dF4

dt
= 0

Then (2.2.10) and (2.2.11) are known as canonical transformation for generating function
F4.
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Example 2.2.1. Consider a one dimensional linear harmonic oscillator oscillates about its

mean position. Let this mean position be origin. The generating function F1 for this system

is

F1 =
mω

2
q2 cotQ,

with m is mass and ω =
√

k
m is frequency of oscillator and k is spring constant. Find all

possible transformations in terms of q, p,Q and P

Solution:
The transformation for generating function F1 are given by (2.2.1) and (2.2.2). So we have

p =
∂F1

q
=
∂

q

(mω
2
q2 cotQ

)
= mωq cotQ (2.2.13)

P = −∂F1

Q
= − ∂

Q

(mω
2
q2 cotQ

)
=

mω

2
q2 csc

2
Q (2.2.14)

From (2.2.13), q can be written as

q =
p

mω
tanQ (2.2.15)

and from (2.2.14) q can be written as

q =

√
2P

mω
sinQ (2.2.16)

Using (2.2.16) in (2.2.13) p is

p =
√

2Pmω cosQ (2.2.17)

Using (2.2.15) in (2.2.14) P is

P =
1

2mω
p2 sec

2
Q (2.2.18)

From (2.2.13), tanQ can be written as

tanQ =
qmω

p

then Q is

Q = arctan

(
mωq

p

)
(2.2.19)
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Next using trigonometric relation

sec
2
Q = 1 + tan

2
Q

From (2.2.18), P can also be written as

P =
1

2mω

(
p2 +m2ω2q2

)
(2.2.20)

From (2.2.20), p is

p =
√

2mωP −m2ω2q2 (2.2.21)

From (2.2.20), p is

q =
1

mω

(√
2mωP − p2

)
(2.2.22)

From (2.2.14), Q can be written as

Q = arcsin

(√
mω

2P
q

)
(2.2.23)

From (2.2.17), Q can be written as

Q = arccos

(
p√

2Pmω

)
(2.2.24)

Any two from above transformation containing all 4 coordinates can be taken as canonical
transformation.

Example 2.2.2. If

q =

√
2P

mω
sinQ

p =
√

2Pmω cosQ

(with m is mass and ω =
√

k
m is frequency of oscillator and k is spring constant) are

canonical transformation of one dimensional linear harmonic oscillator. Express its position

in terms of energy.

Solution:
Kinetic energy for one dimensional linear harmonic oscillator is

T =
1

2
mq̇2
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Since

p = mq̇

so the kinetic energy in terms of p is

T =
1

2m
p2

And the potential energy for one dimensional linear harmonic oscillator is

U =
k

2
q2

The Hamiltonian is the total energy of the system

E = H = T + U
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Exercises

1. Check whether the following transformations are exact, if yes find their corresponding
generating functions and then transform them into their four types.

(a)

p = mωq cotQ, m & ω are constants

P =
mωq2

2 sin2Q

(b)

Q = ln

(
sin p

q

)
P = q cot p

(c)

Q =
√

2qek cos p, k is constant

P =
√

2qe−k sin p

(d)

Q = ln (1 +
√
q cos p)

P = 2 (1 +
√
q cos p)

√
q sin p

(e)

Q =
√
q cos 2p

P =
√
q sin 2p

2. For what values of α and β the transformation

Q = qα cosβp

P = qα sinβp

is exact.

3. Prove that the following relations hold for canonical transformations

(a)

∂qs
∂Qs

=
∂Ps
∂ps
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(b)

∂ps
∂Qs

= −∂Ps
∂qs

(c)

∂qs
∂Ps

= −∂Qs
∂ps

(d)

∂ps
∂Ps

=
∂Qs
∂qs
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Chapter 3

Lagrange and Poisson Brackets

3.1 Lagrange Brackets

Lagrange brackets are certain expressions closely related to Poisson brackets that were
introduced by Joseph Louis Lagrange in 1808 − 1810 for the purposes of mathematical
formulation of classical mechanics, but unlike the Poisson brackets, have fallen out of use.
Suppose that (q1, , qn, p1, , pn) is a system of canonical coordinates on a phase space. If each
of them is expressed as a function of two variables, u and v, then the Lagrange bracket of
u and v is defined by the formula

[u, v]p,q =
n∑
i=1

(
∂qi
∂u

∂pi
∂v
− ∂pi
∂u

∂qi
∂v

)

3.2 Poisson Brackets

If u and v are two functions defined on phase space, we can define a new function on phase
space, called the Poisson bracket of the two functions:

[u, v]p,q =

n∑
i=1

(
∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi

)
It turns out that for the variables (q, p) themselves, the Poisson bracket takes on particularly
simple values:

[qj , qk]q,p = 0 = [pj , pk]p,q

[qj , pk]p,q = δjk = [pj , qk]p,q

These relationships are called the fundamental Poisson brackets. It turns out that Pois-
son brackets are invariant under Canonical transformations. This means that a necessary
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and sufficient condition for a transformation to be a Canonical transformation, is that the
transformation functions satisfy the fundamental Poisson brackets.
The invariance of Poisson brackets under canonical transformations allows us to write all
time evolution as follows:

du

dt
= [u,H] +

∂u

∂t

A special case are the canonical equations of Hamilton:

q̇ = [qi, H]

ṗ = [pi, H]
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