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PREFACE 

Mechanics is one of the most important course in maximum disciplines of science and engineering. 

No matter what your interest in science or engineering, mechanics will be important for you. 

Mechanics is a branch of physics which deals with the bodies at rest and in motion. During 

the early modern period, scientists such as Galileo, Kepler, and Newton laid the foundation for 

what is now known as classical mechanics. Hence there is an extensive use of mathematics in its 

foundation. 

Mechanics is  core course for undergraduate Mathematics, Physics and many engineering 

disciplines. It appears under different names as Analytical/Classical Mechanics, Theoretical 

Mechanics, Mechanics I, Mechanics II, Mechanics III, Analytical Dynamics.  

This textbook is designed to support teaching activities in Theoretical Mechanics specially 

Dynamics. It covers the contents of “Mechanics” for many undergraduate science and engineering 

programs. It presents simply and clearly the main theoretical aspects of mechanics. 

It is assumed that the students have completed their courses in Calculus, Linear Algebra and 

Differential Equations. This book also lay the foundations for further studies in physics, physical 

sciences, and engineering. 

For each concept a number books, documents and lecture notes are consulted. I wish to express 

my gratitude to the authors of such works.  

In Chapter 1, preliminary theory of dynamics of rigid body is given. Newton’s laws and some 

types of motion are also given in this chapter. Chapter 2 is about one dimensional motion. In this 

chapter, the kinematics of body is discussed by using graphical method, differentiation and 

integration. In chapter 3, the motion is also one dimensional, but the particle is restricted to move 

under gravity. This motion is discussed without and with air resistance. In chapter 4, the kinematics 

of a body in two and three dimensional coordinate systems is presented.  

From Chapter 5, we will learn angular kinematics. In this chapter we will learn kinematics of a 

particle in polar coordinates.  In chapter 6, Simple Harmonic Motion is discussed under natural, 

forced and damping aspects. Two dimensional projectile motion (without and with air resistance) 

is presented in chapter 7. Chapter 8 starts with Kepler’s postulates to discuss the motion under 

Central Force. Some useful information about planetary motion is also available. Chapter 9 is 

about Small Oscillation. The stability of horizontally and vertically modulated pendulum under 

various forces is discussed. Chapter 10 is about rotational dynamics. Chapter 10 contains Rotation 

of rigid bodies in two space and three space. The concepts of rotational matrix, angle of rotation 

and axis of rotation are also discussed in this chapter. Euler’s theorem and Chasle’s theorem are 

also given in this chapter. This chapter also contains kinematics of a body in cylindrical and 

spherical coordinate systems. 

 

In a book of this concept, level and size, there may be a possibility that some misprint might have 

remained uncorrected. If you find such misprints or want to give some suggestions for its 

improvement, please write me at: babar.sms@gmail.com 

Dr. Babar Ahmad 

Islamabad, Pakistan 

June, 2020 
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Chapter 1

Basic Review of Mechanics

In this chapter some basic concepts of Mechanics are presented for the revision of elementary
knowledge of the students. These concepts are essential part of mechanics. Some types of
Motion are defined, their detail will be in next chapters. Newton’s three laws of motion
and Newton’s gravitational law are also mentioned.

1.1 Definitions of some basic concepts

Mechanics : A branch of physics which describes or predicts the conditions of rest or
motion of bodies under the action of forces. It has two branches:

1. statics

2. dynamics

1. Statics: Statics deals with the forces, their effects, acting upon the bodies at rest.

2. Dynamics: Dynamics deals with the forces, their effects, while acting upon the bodies
in motion (accelerated motion).

Parts of Dynamics:

1. Kinematics is the study of motion without reference to the forces which cause motion.
It is the geometric theory of motion.

2. Kinetics is the study of motion with reference to the forces which cause motion.

1.2 Particle and Rigid body

Particle: The smallest thing/part which has no dimension. It is idealization used to
represent a phenomena (body).

1



2 1 Basic Review of Mechanics

A man standing on ground is observing the flight of an aeroplane moving away from him.
At first instant he can see its shape very clear. At next instant, the shape becomes smaller
and next becoming smaller and smaller. At last instant he sees a dot and then nothing.
This dot can be regarded as particle (see Fig. 1.1).
Body: An aggregate of particles is known as body.

Figure 1.1: Representation of particle

Kinds of bodies: There are various types of bodies e.g rigid, elastic, plastic, elasto plastic,
etc
The bodies are of two categories:

a) Rigid bodies

b) Deformable bodies

Rigid body A body is considered rigid when the relative movement between its parts is
negligible.
In Mechanics we will assume the bodies to be perfectly rigid, no deformation. This is never
true in the real world, everything deforms a little when a load is applied. These deforma-
tions are small and will not significantly affect the conditions of equilibrium or motion, so
we will neglect the deformations.

1.3 Kinematics of a Particle

Space: The geometric region occupied by bodies whose positions are described by linear
and angular measurements relative to a coordinate system.
Length: The magnitude of displacement vector between two bodies/points is called length.
It is usually denoted by l and is measured in m in SI.



1.3 Kinematics of a Particle 3

Time: It is interval between the existence of events. Time is completely independent
quantity, because its relation is with the sun. It is denoted by t and is measured in s in SI.
Mass: The measure of the inertia of a body, which is its resistance to a change of motion.
sometimes called ”quantity of matter” contained by a particle. It is denoted by m and is
measured in kg in SI.
Position: The position of a particle is a point with respect to some reference point (usually
origin).
Rest: A body is said to be at rest, if does not change its position with respect to its
surrounding.
Motion: A body is said to be in motion, if it changes its position with respect to its
surrounding.
Distance: If the rigid body is moved from one position to another, the total length of the
path is called distance moved by the body. It is usually denoted by s and is measured in m
in SI.
Displacement If the rigid body is moved from one position to another, the change of
position is called displacement of the body. It is a vector quantity. It is usually denoted by
~r and is measured in m in SI.
Speed Time rate of change of distance is called speed. It is the only magnitude. It is
usually denoted by v and is measured in m/s in SI.
Uniform speed A body has uniform speed if it covers equal distance in equal intervals of
time.
Velocity: Rate of change of position vector (displacement) is called velocity. It is usually
denoted by ~v and is measured in m/s in SI.
Uniform velocity A body has uniform velocity if it covers equal displacement in equal
intervals of time.
Average velocity If a body has initial velocity ~v1 and final velocity ~v2, then the average
velocity is

~v =
~v1 + ~v2

2

Acceleration: Acceleration is the rate of change of velocity vector.It is usually denoted by
~a and is measured in m/s2 in SI.
Uniform acceleration A body has uniform acceleration if it has equal changes in velocity
in equal intervals of time.
Force: Force is an agency which changes or tends to change the state of rest or of uniform
motion of a body. It is usually denoted by ~F and is measured in N in SI.
Linear Momentum: The linear momentum of a particle of mass m is the product of
mass and velocity of the body. It is usually denoted by ~p and is measured in N.s in SI.
Mathematically it is given by:

~p = m~v (1.3.1)

In (1.3.1) m is the mass of the particle and ~v is its velocity relative to a reference system.
The concepts of position vector, velocity and acceleration are very useful to describe the
kinematics of a particle. These concepts are discussed in detail.



4 1 Basic Review of Mechanics

1.3.1 Position Vector

The position vector of a point P with reference to some point is discussed in chapter 1. It
can be represented as

~r(t) = r(t)r̂

If position function of a particle is given, then differentiation is used to define the notions
of instantaneous velocity and acceleration, and if acceleration function is given, then inte-
gration is used to define the notions of instantaneous velocity and position. First we define
the relations of instantaneous velocity and acceleration for a particle in rectilinear motion
in the form of derivatives.

1.3.2 Instantaneous Velocity

If the coordinate of a particle at time t1 is r(t1) and ~r1 be its position vector with respect to
some reference point, next its coordinate at a later time t2 is r(t2) and the position vector
be ~r2, then the displacement describes the change in position of the particle and is given as

∆~r = ~r2 − ~r1

then the average velocity is

~vavg =
∆~r

∆t

And instantaneous velocity is defined as

~v = lim
∆t→0

∆~r

∆t

~v(t) =
d

dt
~r(t) = ~r

′
(1.3.2)

The velocity vector ~v always points in the direction of motion. The magnitude of the ve-
locity, v = |~v| is known as the speed.
Units commonly used to express velocity and speed are m/s and ft/sec.

1.3.3 Instantaneous Acceleration

The rate at which the instantaneous velocity of a particle changes with time is called its
instantaneous acceleration. Provided the velocity of the particle is known at two points,
the average acceleration of the particle during the time interval ∆t is defined as

~aavg =
∆~v

∆t
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Thus, if a particle in rectilinear motion has velocity function ~v(t), then its instantaneous
acceleration at time (acceleration function) is defined as

~a(t) = lim
∆t→0

∆~v

∆t

=
d

dt
~v(t) (1.3.3)

If the velocity changes in either magnitude or direction (or both), the particle must have
an acceleration.
Using (4.1.1), the acceleration function in terms of the position function is

~a(t) =
d2

dt2
~r(t) = ~r

′′
(1.3.4)

The acceleration vector ~a can point anywhere. Units commonly used to express acceleration
are m/s2 or ft/sec2

1.3.4 Displacement

If the velocity vector ~v(t) of a moving particle over the time interval [t1, t2] is given, then
the displacement ∆~r = ~r(t2)− ~r(t1) or simply ~r(t) is

~r(t) =

t2∫
t1

~v(t)dt (1.3.5)

and the distance is

r(t) =

t2∫
t1

|v(t)|dt (1.3.6)

=

t2∫
t1

−v(t)dt+

t3∫
t2

v(t)dt (1.3.7)

The examples of these concepts are in next chapters.

1.4 Types of motion

Almost everything in the universe is in motion. Some objects move along a straight line,
some move along a curved path, some moves in a circle and some have to and fro motion.
These different types of motions are discussed as follow:
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1.4.1 Translation

A motion by which a body shifts from one point in space to another in such a way that
the straight lines joining the initial and final positions of each of the points of the body
are parallel. i.e. every point of the body moves an equal distance. If the path of motion
is straight line, the motion is said a rectilinear motion. The line might be an x − axis,
a y − axis, or a coordinate line inclined at some angle. If the paths are curved lines, the
motion is a curvilinear motion. The motion of a bullet fired from a gun is the example
of such motion.

1.4.2 Rotation

A motion by which an extended body changes orientation, with respect to other bodies in
space, without changing position (e.g., the motion of a spinning top). Rotation is of two
types.

a) Rotation about a line.

b) Rotation about a point .

a) Rotation about a line: Rotation of a rigid body about a line l is such a motion in
which the position in space of every point of the body that lies on l in unchanged.
The line l is called the axis of rotation.

b) Rotation about a point: Rotation of a rigid body about some point P of itself is
such a motion in which the position in space of the point P is unchanged.

1.4.3 Oscillation

A motion, which continually repeats in time with a fixed period (e.g., the motion of a
pendulum in a grandfather clock).

1.4.4 Circular motion

A motion by which a body executes a circular orbit about another fixed body [e.g., the
(approximate) motion of the Earth about the Sun].

1.4.5 Random motion

The disordered or irregular motion of an object is called random motion.
These different types of motion can be combined: for instance, the motion of a swing/spinning
bowled ball consists of a combination of translational and rotational motion, whereas wave
propagation is a combination of translational and oscillatory motion. Furthermore, the
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above mentioned types of motion are not entirely distinct: e.g., circular motion contains
elements of both rotational and oscillatory motion.

1.5 Newton’s Fundamental Laws

Newton developed the fundamentals of mechanics. The concepts above, space, time, and
mass are absolute, independent of each other in Newtonian Mechanics.

• Newton’s First Law of motion A particle remains at rest or continues to move
in a straight line with a constant speed if there is no unbalanced force acting on it
(resultant force is zero).

Inertia Newton’s first law is also known as Galilian Law Inertia as it was discovered by the
Italian astronomer, Galileo Galilei (1564-1642).
Inertia Inertia is the resistance of any physical object to a change in its state of motion
or rest, or the tendency of an object to resist any change in its motion. The principle of
inertia is one of the fundamental principles of classical physics which are used to describe
the motion of matter and how it is affected by applied forces. Inertia comes from the
Latin word, iners, meaning idle, or lazy. Isaac Newton defined inertia as his first law in his
Philosophiee Naturalis Principia Mathematica, which states:
The vis insita, or innate force of matter, is a power of resisting by which every body, as
much as in it lies, endeavours to preserve its present state, whether it be of rest or of moving
uniformly forward in a straight line.

• Newton’s Second Law of motion The time rate of change of linear momentum of
a particle is equal to the force producing it, and takes place in the direction in which
the force acts.

If a particle of mass m subject to a force ~F moves with velocity ~v, at time t its linear
momentum is ~p. Mathematically the second law is

~F =
dp

dt
(1.5.1)

=
d

dt
(m~v)

If the mass of the particle is constant, the (1.5.1) can be written as

~F = m~a (1.5.2)

It means the acceleration of a particle is proportional to the resultant force acting on it and
is in the direction of this force.

• Newton’s Third Law of motion The forces of action and reaction between inter-
acting bodies are equal in magnitude, opposite in direction, and act along the same
line of action (Collinear).

In simple form, the action of one body on another.
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1.6 Newton’s Law of Gravitation

Every particle of matter in the universe attracts every other particle with a force that is
directly proportional to the product of the masses of the particles and inversely proportional
to the square of the distance between them.
If m1 and m2 are masses of the two particles and r is the distance between the centers of
two particles, then the magnitude of the force due to the gravitational interaction between
two particles is

F = G
m1m2

r2
(1.6.1)

Here G = 6.67× 1011N −m2/kg2 is the universal gravitational constant.
Weight is the attraction of the earth on a particle located on its surface. If we introduce
the constant

g = G
M

r2
(1.6.2)

and let: M = mass of earth
m = mass of a particle
r = radius of earth
g = acceleration of gravity at earth’s surface
(1.6.2) can be written as

G = g
r2

M
(1.6.3)

substituting (1.6.3) into (1.5.2)

~F = m~a

Force due to gravity, is the weight of the body

~W = m~g (1.6.4)

comparing (1.6.4) with (1.6.1), the acceleration at the surface of the Earth is

~a = ~g

g is dependent upon r. In most cases the value of g in SI system is

g = 9.81m/s2

and in non SI system is

g = 32.2ft/s2



Chapter 2

Rectilinear Motion

2.1 Rectilinear Motion

The motion of a particle along a coordinate line is said to be rectilinear motion. It is also
known as motion along a straight line or one dimensional motion. The line might be an
x − axis, y − axis, or a coordinate line inclined at some angle. In general discussions we
will designate the coordinate line as r − axis. It is the simplest motion in nature.
Mostly the direction of vector quantities is along the axis of motion or an angle is specified,
so a plus or minus sign is enough to specify the direction of motion. Hence in rectilinear
motion scalar and vector equations are same, and we can use x in place of ~x, v in place of
~v and a in place of ~a.
We begin observing the motion of the particle at time t = 0 with respect to a fixed point on
the line, known as reference point. Usually we take origin O as the reference point. As the
particle moves along r − axis, its coordinate r will be some function of time, say r = r(t)
known as the position function of the particle.

2.1.1 Position Vector

The position vector of a point P with reference to some point is discussed in chapter 1. It
can be represented as r(t). Usually rectilinear motion is considered along x − axis, so the
position vector can be represented as x(t).
In rectilinear motion, if position function of a particle is given, then differentiation is used to
define the notions of instantaneous velocity and acceleration and if acceleration function is
given, then integration is used to define the notions of instantaneous velocity and position.
If velocity function is given, then integration is used to define the notions of position and
differentiation is used to define the notions of instantaneous acceleration.
First we define the relations of instantaneous velocity and acceleration for a particle in
rectilinear motion in the form of derivatives.

9



10 2 Rectilinear Motion

2.1.2 Displacement

If the coordinate of a particle at time t1 is x(t1) and x1 be its position vector with respect
to some reference point usually is the origin , next its coordinate at a later time t2 is x(t2)
and the position vector be x2, then the displacement describes the change in position of the
particle and is given as

∆x = x2 − x1

Usually we represent x = ∆x. Then the relation

Figure 2.1: Rectilinear motion

x = x(t2)− x(t1) (2.1.1)

gives the displacement of the particle in time interval (t1, t2).
Distance: The magnitude of the displacement, |x| is known as the distance. The relation

|x| = |x(t2)− x(t1)| (2.1.2)

gives the distance travelled by the particle in time interval (t1, t2) Units commonly used to
express displacement and distance are m and ft.

2.1.3 Instantaneous Velocity

The average velocity of a particle in one dimension is

vavg =
∆x

∆t

And instantaneous velocity is defined as

v = lim
∆t→0

∆x

∆t

v(t) =
d

dt
x(t) = ẋ (2.1.3)

The velocity of a moving particle always points in the direction of motion.
Speed: The magnitude of the velocity, |v| is known as the speed. Units commonly used to
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express velocity and speed are m/s and ft/sec.
Direction of motion
In rectilinear motion, the sign of the velocity tells the direction of motion. A positive value
for v(t) means that x(t) is increasing with time, so the particle is moving in the positive
direction, and a negative value for v(t) means that x(t) is decreasing with time, so the
particle is moving in the negative direction. If v(t) = 0, then the particle has momentarily
stopped.

2.1.4 Instantaneous Acceleration

In rectilinear motion, the rate at which the instantaneous velocity of a particle changes with
time is called its instantaneous acceleration. If the velocity of the particle is known at two
points, the average acceleration of the particle during the time interval ∆t is defined as

aavg =
∆v

∆t

Thus, if a particle in rectilinear motion has velocity function v(t), then its instantaneous
acceleration at time (acceleration function) is defined as

a(t) = lim
∆t→0

∆v

∆t

a =
dv

dt
(2.1.4)

Also we can write

a =
dv

dx

dx

dt

a(v) = v
dv

dx
(2.1.5)

Equation (2.1.5) represents acceleration as a function of velocity. From equation (2.1.5) we
can write

adx = vdv (2.1.6)

Equation (2.1.6) is known as differential relation.
Using equation (2.1.3) in equation (2.1.4) we can express the acceleration function in terms
of the position function as

a(t) =
d

dt

(
dx

dt

)
=

d2

dt2
x(t)

= ẍ (2.1.7)

The acceleration vector a can point anywhere. Units commonly used to express acceleration
are m/s2 or ft/s2.
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2.2 Constant and Variable Quantities

To discuss the motion of a particle the quantities displacement, velocity and acceleration
may be constant or variable or both. If these quantities are constant, we simply write x, v
and a for displacement, velocity and acceleration respectively. If these quantities are vari-
able, they may be functions of time, functions of each other or function of any combination
from them. For example if acceleration is a function of time we write a(t), if it is a function
of position we write a(x) and if it is a function of velocity we write a(v). It may be a
function of any two, or all the three quantities, but will be a complicated case.

2.3 Graphical Methods

It is often very convenient to employ the graphical techniques for solving dynamical problems
as they yield results more readily than the ordinary calculations.

2.3.1 Time-Displacement Curve

Consider the displacement function

x = x(t)

Here t is independent variable and x is dependent variable. For time-displacement curve,
we take t along horizontal axis and x along vertical axis. The plane so formed is known as
tx−plane (see Fig. 2.2). The slope of the tangent to the curve at (x, t)

Figure 2.2: Position versus time curve

v =
dx

dt

represents the velocity of the particle at (x, t). If the velocity is constant, the slope of the
time-displacement curve remains the same. That is, the curve is a straight line.
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2.3.2 Time-Velocity Curve

Consider the velocity function

v = v(t)

Here t is independent variable and v is dependent variable. For time-velocity curve, we take
t along horizontal axis and v along vertical axis. The plane so formed is known as tv−plane.
The slope of the tangent to the curve at (x, t)

a =
dv

dt

represents the acceleration of the particle at (x, t). If the acceleration is constant, the slope
of the time-velocity curve remains the same. That is, the curve is a straight line. Here we
have an important result:

Remark 2.3.1. The slope time-velocity curve of a particle moving in a straight line gives its

acceleration and area under the curve gives the distance travelled by the particle.

Example 2.3.1. A particle starts to move from origin O. It moves with constant accelera-

tion a for time interval t1. At t1 it acquires a velocity v, then it starts to move with uniform

velocity v and continued for time interval t2. After that its velocity starts to decrease with

retardation 2a and comes to rest after time interval t3. If t is the time taken by the particle

from rest to rest, find the distance travelled by the particle in terms of v, t and a.

Solution The time velocity graph of this motion is shown in Fig. 2.3. According to

Figure 2.3: Time velocity curve

remark (2.3.1), area under the velocity curve gives the distance travelled by the particle.
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The motion of a particle has three phases. In first phase it moves with velocity v and
acceleration a for time interval t1, forming a triangle AOM . Its area will give the distance
travelled by the particle along line OA. According to Fig. 2.3

|OM | = t1 and |AM | = v

Area of the triangle AOM is

A1 =
1

2
|OM ||AM |

=
1

2
vt1

The slope of the line OA is the acceleration.

a =
v

t1

or t1 =
v

a

Then area of the triangle AOM becomes

A1 =
v2

2a
(2.3.1)

In second phase it moves with constant velocity v for time interval t2, forming a rectangle
ABMN . Its area will give the distance travelled by the particle along line AB. According
to Fig.

|MN | = t2 and |AM | = v

Area of the rectangle ABMN is

A2 = |MN ||AM |
= vt2

In third phase it moves with velocity −v and retardation 2a for time interval t3, forming
a triangle BNC. Its area will give the distance travelled by the particle along line BC.
According to Fig.

|NC| = t3 and |BN | = v

Area of the triangle BNC is

A3 =
1

2
|BN ||NC|

=
1

2
vt3
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The slope of the line BC is the retardation.

2a =
v

t3

or t3 =
v

2a

Then area of the triangle BNC becomes

A3 =
v2

4a
(2.3.2)

The total time of motion is

t = t1 + t2 + t3

or t2 = t− t1 − t3
= t− 3v

2a

Area of the rectangle ABMN can be rewritten as

A2 = v

(
t− 3v

2a

)
(2.3.3)

Total area under the velocity curve is the sum of all these area. Add equations (2.3.1)
(2.3.2) (2.3.3) to get this sum.

A = A1 +A2 +A3

=
v2

2a
+ v

(
t− 3v

2a

)
+
v2

4a

= v

(
t− 3v

4a

)
(2.3.4)

Equation (2.3.4) gives the distance travelled by the particle in terms of v, t and a.

2.3.3 Time-Acceleration Curve

Consider the acceleration function

a = a(t)

Here t is independent variable and a is dependent variable. For time-acceleration curve,
we take t along horizontal axis and a along vertical axis. The plane so formed is known as
ta−plane. The slope of the tangent to the curve at (x, t)

j =
da

dt

represents the jerk of the particle at (x, t). If the jerk is constant, the slope of the time-
acceleration curve remains the same. That is, the curve is a straight line.
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Remark 2.3.2. The slope time-acceleration curve of a particle moving in a straight line gives

its jerk and area under the curve gives the speed of the particle for defined interval.

2.3.4 Speeding up and Slowing downslowing down

In rectilinear motion, if the speed of a particle is increasing it is speeding up or accelerating
and if its speed is decreasing it is slowing down or decelerating. In first case acceleration is
positive and in second it is negative. When velocity is constant, acceleration is zero.
The signs of velocity and acceleration
A particle in rectilinear motion is speeding up when its velocity and acceleration have the
same sign and slowing down when they have opposite signs.

Example 2.3.2. Let x(t) = t3 − 6t2 be the position function of a particle moving along

x−axis. Find the velocity, speed and acceleration functions, and show the graphs of position,

velocity, speed and acceleration versus time. From these graphs, determine when the particle

is speeding up and slowing down.

Solution At any time the position of the particle along x− axis is

x(t) = t3 − 6t2

Using (2.1.3), the velocity at any time is

v(t) =
d

dt
x(t) = 3t2 − 12t

The speed is

|v(t)| = |3t2 − 12t|

Using (2.1.4), the acceleration is

a(t) =
d

dt
v(t) = 6t− 12

The graphs of position versus time is given in Fig. 2.4
The graphs of speed versus time is given in Fig. 2.5
The graphs of acceleration (magnitude) versus time is given in Fig. 2.6
From figures 2.5 and 2.6, observe that over the time interval 0 < t < 2 the velocity and

acceleration are negative, so the particle is speeding up. Over the time interval 2 < t < 4
the velocity is negative and the acceleration is positive, so the particle is slowing down.
Finally, on the time interval t > 4 the velocity and acceleration are positive, so the particle
is speeding up.
At t = 4, the velocity is zero, so the particle has momentarily stopped.



2.3 Graphical Methods 17

Figure 2.4: Position versus time

Example 2.3.3. In example 2.3.2.

(a) Find displacement and distance for time interval 0 ≤ t ≤ 6

(b) Find velocity and speed for time interval 0 ≤ t ≤ 6

Solution Using (2.1.1), the displacement of the particle for time interval 0 ≤ t ≤ 6 is

x(t) = x(6)− x(0)

=
[
(6)3 − 6(6)2

]
−
[
(0)3 − 6(0)2

]
= 0 m

Using (2.1.2), the distance of the particle for time interval 0 ≤ t ≤ 6 is

|x| = |x(6)− x(0)|
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Figure 2.5: Velocity versus time

Using remark 2.3.1, the distance may be calculated by finding the area under the curve

|x| =

∣∣∣∣∣∣
6∫

0

(
3t2 − 12t

)
dt

∣∣∣∣∣∣
= −

 4∫
0

(
3t2 − 12t

)
dt

+

 6∫
4

(
3t2 − 12t

)
dt


= −

∣∣t3 − 6t2
∣∣4
0

+
∣∣t3 − 6t2

∣∣6
4

= −(4)3 + 6(4)2 + (6)3 − (4)3 − 6(6)2 + 6(4)2

= 64 m

Using (2.1.3), the velocity at any time is

v(t) =
dx

dt
= 3t2 − 12t

velocity and speed for time interval 0 ≤ t ≤ 6

v = v(6)− v(0)

=
[
3(6)2 − 12(6)

]
−
[
(0)3 − 6(0)2

]
= 36 m/s

The speed is

|v(t)| = |3t2 − 12t|
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Figure 2.6: acceleration versus time

Using remark 2.3.2, the distance may be calculated by finding the area under the curve

|v| =

∣∣∣∣∣∣
6∫

0

(6t− 12) dt

∣∣∣∣∣∣
= −

 2∫
0

(6t− 12) dt

+

 4∫
2

(6t− 12) dt


= −

∣∣3t2 − 12t
∣∣2
0

+
∣∣3t2 − 12t

∣∣6
2

= −3(2)2 + 12(2) + 3(6)2 − 3(2)2 − 12(6) + 12(2)

= 60 m/s

2.4 Kinematics by Using Integration

In this section acceleration or velocity functions will be given and we will find velocity and
displacement functions by integration. First consider velocity function from acceleration.

2.4.1 Velocity from Acceleration

If we know the acceleration function a(t) of the particle, then by integrating a(t) we can
produce a family of velocity functions. If, in addition, we know the velocity v0 of the particle
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at any time t0, then we have sufficient information to find the constant of integration and
determine a unique velocity function. If acceleration function is given, the following two
cases arise:

a) Acceleration function is constant.

b) Acceleration function is variable.

a) Acceleration function is constant.

consider (2.1.4)

a(t) = a =
d

dt
v(t)

dv = adt

integrating (separation of variables), assuming that initially (at t = 0) v = v0∫ v

v0

dv(t) = ac

∫ t

0
dt

v
∣∣∣v
v0

= act
∣∣∣t
0

v − v0 = ac(t− 0)

v = v0 + act (2.4.1)

(2.4.1) gives the velocity of the particle moving with constant acceleration at any time t.

Figure 2.7: Family of velocity functions

b) Acceleration function is variable.
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If acceleration is variable, then (2.1.4) can be written as

ẍ = a(t)

d

dt
(ẋ) = a(t)

integrating with respect to t

v = ẋ =

∫
a(t)dt+ C1 (2.4.2)

Where C1 is constant of integration and can be determined by applying initial condition.
(2.4.2) gives the velocity of the particle moving with variable acceleration at any time t.

2.5 Displacement by Using Integration

We can find displacement function if velocity or acceleration function is given. First consider
both velocity and acceleration functions are given.

2.5.1 Position from Velocity and acceleration

If we know the velocity function v(t) of a particle in rectilinear motion, then by integrating
v(t) we can produce a family of position functions with that velocity function. If, in addition,
we know the position x0 of the particle at any time t0, then we have sufficient information
to find the constant of integration and determine a unique position function. Consider
equations. (2.1.3) and (2.4.1)

v =
dx

dt
= v0 + at

dx = (v0 + at)dt

integrating (separation of variables), assuming that initially (at t = 0) x = x0∫ x

x0

dx =

∫ t

0
(v0 + at)dt

= v0

∫ t

0
dt+ ac

∫ t

0
tdt

x
∣∣∣x
x0

= v0t
∣∣∣t
0

+ a
t2

2

∣∣∣t
0

x− x0 = v0t+
1

2
at2

x = x0 + v0t+
1

2
at2 (2.5.1)
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If the particle starts from origin O, then x0 = 0, then (2.5.1) becomes

x =
1

2
at2 + v0t (2.5.2)

Figure 2.8: Family of position functions

2.5.2 Displacement from Velocity

If velocity function is given, the following two cases arise:

a) Velocity function is constant.

b) Velocity function is variable.

a) Velocity function is constant.

If the velocity function of particle is constant over the time interval [0, t] and an initial
condition x(0) = x0, then (2.1.3) can be written as

dx

dt
= v

It is first order separable differential equation, separating variables

dx = vdt
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Integrating

x∫
x0

dx = v

t∫
0

dt

x− x0 = vt

or

x = x0 + vt (2.5.3)

(2.5.3) gives the position of the particle moving with constant velocity at any time t.

b) Velocity function is variable.

If the velocity function of particle is constant over the time interval [0, t] and an initial
condition x(0) = x0, then (2.1.3) can be written as

dx

dt
= v(t)

It is first order separable differential equation, separating variables

dx = v(t)dt

Integrating

x∫
x0

dx =

t∫
0

v(t)dt

or

x = x0 +

t∫
0

v(t)dt (2.5.4)

(2.5.4) gives the position of the particle moving with variable velocity at any time t.

2.5.3 Distance from Velocity

If the velocity v(t) of a moving particle over the time interval [t1, t2] is given, then the
distance is

|x(t)| =

t2∫
t1

|v(t)|dt (2.5.5)

=

t2∫
t1

−v(t)dt+

t3∫
t2

v(t)dt (2.5.6)
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2.5.4 Displacement from Acceleration

If acceleration function is given, the following two cases arise:

a) Acceleration function is constant.

b) Acceleration function is variable.

a) Acceleration function is constant.

If the acceleration function of particle is constant over the time interval [0, t] and boundary
condition x(0) = 0 and x(t1) = x1, then (4.1.3) can be written as

ẍ = a

integrating two times with respect to t we have

x =
1

2
at2 + C1t+ C2 (2.5.7)

Where C1 and C2 are constants of integration. Using x(0) = 0, we have C2 = 0, then (2.5.7)
becomes

x =
1

2
at2 + C1t (2.5.8)

Next use x(t1) = x1, in (2.5.8)

x1 =
1

2
at21 + C1t1

or

C1 =
x1

t1
− a

2
t1 (2.5.9)

Using (2.5.9) in (2.5.8), we have

x =
1

2
at2 +

(
x1

t1
− a

2
t1

)
t (2.5.10)

(2.5.10) gives the position of the particle moving with constant acceleration at any time
t from origin O. A comparison of equations (2.5.2) and (2.5.10) shows that the term(
x1
t1
− a

2 t1

)
in (2.5.10) is the velocity of the particle at t = 0.

b) Acceleration function is variable.
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If the acceleration function of particle is time dependent, then (4.1.3) can be written as

ẍ = a(t)

integrating with respect to t we have

dx

dt
=

∫
a(t)dt+ C1 (2.5.11)

Where C1 is constant of integration. another integrating with respect to t yields

x =

∫ (∫
a(t)dt

)
dt+ C1t+ C2 (2.5.12)

Where C2 is constant of integration. These constants of integration can be determined
by applying boundary conditions. (2.5.12) gives the position of the particle moving with
variable acceleration at any time t.

2.5.5 Velocity as a Function of Position

A differential relation involving the displacement, velocity, and acceleration may be obtained
by eliminating the time differential dt from equations (2.1.3) and (2.1.4)

vdv = adx (2.5.13)

integrating (separation of variables), assuming that initially (at t = 0) v = v0 and x = x0∫ v

v0

vdv = a

∫ x

x0

dx

v2

2

∣∣∣v
v0

= at
∣∣∣x
x0

1

2
(v2 − v2

0) = a(x− x0)

v2 = v2
0 + 2a(x− x0) (2.5.14)

Equation (2.5.14) gives the velocity of the particle moving with constant acceleration a and
initial conditions v(0) = v0 and x(0) = x0, after it has moved a displacement x. If the
particle starts from origin, then equation (2.5.14) becomes

v2 = v2
0 + 2ax (2.5.15)

Equation (2.5.15) gives the velocity of the particle starts to move from origin with velocity
v0 and constant acceleration a at any time t after it has moved a displacement x. Equation
(2.5.14) can also be written as

2a(x− x0) = v2 − v2
0 (2.5.16)
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Equation (2.5.15) gives the displacement of the particle moving with constant acceleration
a and initial conditions v(0) = v0 and x(0) = x0, after it has gained velocity v during time
t. If the particle starts from origin, then equation (2.5.15) becomes

2ax = v2 − v2
0 (2.5.17)

Equation (2.5.17) gives the displacement of the particle starts to move from origin with
velocity v0 and constant acceleration a at any time t after it has gained a velocity v.
Equation (2.5.17) also gives the acceleration of the particle that would change its velocity
from v0 to v in a given displacement x.

2.5.6 Acceleration as a Function of Velocity

When the acceleration depends only on the velocity v, then consider equation (2.1.5)

a(v) = v
dv

dx

is first order separable differential equation. On separating variables we get

dx =
vdv

a(v)

On integration we have

x =

∫
vdv

a(v)
+A (2.5.18)

Where A is constant of integration and can be determined if we know the velocity of the
particle for some value of x
When the acceleration depends only on the velocity v, then equation (2.1.4) may be written
as

a(v) =
dv

dt

is first order separable differential equation. On separating variables we get

dt =
dv

a(v)

On integration we have

t =

∫
dv

a(v)
+B (2.5.19)

Where B is constant of integration and can be determined if we know the velocity of the
particle for some value of t
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Example 2.5.1. A particle starts to move from origin with acceleration a = kv3 along

a straight line. If the initial velocity is v0, find the velocity and the time spend when the

particle has moved a displacement x. Also find this displacement.

Solution Here the acceleration depends only on the velocity v, then equation (2.1.5)
can be written as

v
dv

dx
= kv3 (2.5.20)

The particle starts from origin, it means at x = 0, v = v0. This initial condition can be
written as

v(0) = v0 (2.5.21)

Equation (2.5.20) is first order separable differential equation. On separating variables we
get

dv

v2
= kdx

On integration we have

−1

v
= kx+A

Where A is constant of integration and can be determined from the given initial condition.

− 1

v0
= k(0) +A

or A = − 1

v0

Then equation of motion becomes

−1

v
= kx− 1

v0

Hence the velocity of the particle when it has travelled a displacement x, is given by

v =
v0

1− kxv0
(2.5.22)

The time spend to travel a displacement x can be calculated by using (2.5.19)

t =

∫
dv

kv3
+B

= − 1

2kv2
+B (2.5.23)
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Where B is constant of integration and can be determined from the following initial con-
dition. Since the particle starts from origin, it means at t = 0, v = v0. Hence the initial
condition is

v(0) = v0 (2.5.24)

Using equation (2.5.24) in equation(2.5.23), we get

0 = − 1

2kv2
0

+B

or B =
1

2kv2
0

Hence the time of motion is

t =
1

2kv2
0

− 1

2kv2

=
1

2k

(
1

v2
0

− 1

v2

)
(2.5.25)

Equation (2.5.25) gives the time of motion in terms of velocities. It may be calculated in
terms of initial velocity and displacement by using equation (2.5.22) in equation (2.5.25)

t =
1

2k

(
1

v2
0

− (1− kxv0)2

v2
0

)
=

1

2kv2
0

(
1−

(
1− 2kxv0 + k2x2v2

0

))
=

x

2v0
(2− kxv0) (2.5.26)

The displacement can be calculated by using equation (2.5.18)

x =

∫
vdv

kv3
+ C

=

∫
dv

kv2
+ C

= − 1

kv
+ C (2.5.27)

Using initial condition given by equation (2.5.21), the constant of integration is

C =
1

kv0

Then equation (2.5.27) becomes

x =
1

k

(
1

v0
− 1

v

)
(2.5.28)

Equation (2.5.28) gives the displacement moved by the particle in terms of velocities.
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2.5.7 Geometric Interpretation of a = v dv
dx

Consider a particle moves in displacement velocity plane. At any time t the particle is at
P (x, v). The slope of the curve at any point is given by dv

dx . Thus if θ is the angle which
the tangent at P of the displacement velocity curve makes with the x axis as shown in Fig.
2.9, then

tan θ =
dv

dx
(2.5.29)

Let PN be the normal to the curve at P and PM be the perpendicular to the x axis as

Figure 2.9: velocity versus position curve

shown in Fig. 2.9. Then

∠MPN = θ

and the subnormal MN is given by

MN = PM tan θ (2.5.30)

From Fig. 2.9, we have

PM = v (2.5.31)

Using eqs. (2.5.29) and (2.5.31) in eq. (2.5.30), we have

MN = v
dv

dx
(2.5.32)

Equation (2.5.31) gives the acceleration of the particle at any time t.
Thus the length of the subnormal at a point of the displacement velocity curve, gives the
corresponding acceleration of the particle.
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2.5.8 Acceleration as a Function of Position

When the acceleration depends only on the velocity x, then consider equation (2.1.5)

v
dv

dx
= a(x)

is first order separable differential equation. On separating variables we get

vdv = a(x)dx

On integration we have

v2

2
=

∫
a(x)dx+A (2.5.33)

Where A is constant of integration and can be determined if we know the position of the
particle for some value of x. The velocity may be written as

v = ±

√
2

(∫
a(x)dx+A

)
(2.5.34)

or
dx

dt
= ±

√
2

(∫
a(x)dx+A

)
(2.5.35)

Then equation (2.5.35) is first order separable differential equation. On separating variables
we get

dt = ± dx√
2
(∫
a(x)dx+A

)
On integration we have

t = ±
∫

dx√
2
(∫
a(x)dx+A

) +B (2.5.36)

Where B is constant of integration and can be determined if we know the position of the
particle for some value of t

Example 2.5.2. A particle moves along a straight line with acceleration a = x3, where x

is the displacement of the particle from a fixed point O. If at t = 0, its distance from origin

is c and velocity is c2√
2

find the velocity and the time spend when the particle has moved a

displacement x.
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Solution Here acceleration depends only on the velocity x, then consider equation
(2.1.5)

v
dv

dx
= x3

Following equation (2.5.33), its solution is

v2

2
=

∫
x3dx+A

=
x4

4
+A (2.5.37)

Where A is constant of integration and can be determined from the given initial condition.
That is, at x = c, v = c2√

2
. Then equation (2.5.37) becomes

c4

4
=

c4

4
+A

⇒ A = 0

Equation (2.5.37) becomes

v2

2
=

x4

4

or v =
x2

√
2

(2.5.38)

Equation (2.5.38) gives the velocity of the particle when it has moved a displacement x
from fixed point O. Then equation (2.5.38) can be written as

dx

dt
=

x2

√
2

(2.5.39)

Equation (2.5.39) is first order separable differential equation. On separating variables we
get

dt =
√

2
dx

x2

On integration we have

t = −
√

2

x
+B (2.5.40)

Where B is constant of integration and can be determined from given initial condition.
That is at t = 0, x = c. Then equation (2.5.40) becomes

0 = −
√

2

c
+B

or B =

√
2

c
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Then equation (2.5.40) becomes

t =
√

2

(
1

c
− 1

x

)
(2.5.41)

Equation (2.5.41) gives the time of the particle when it has moved a displacement x from
fixed point O.

Example 2.5.3. A particle moves along x− axis with acceleration a(t) = 3 sin 3t; v(0) =

3; x(0) = 3. Find the velocity and position functions of the particle.

Solution Here the acceleration is

a(t) =
d

dt
v(t) = 3 sin 3t (2.5.42)

The initial conditions are

v(0) = v(0) = 3

x(0) = 3

The velocity function is obtained by integrating (2.5.42)

v(t) = −cos3t+ C1 (2.5.43)

(2.5.43) is the family of velocity functions.
Using initial condition v(0) = v(0) = 3, the constant of integration is obtained as

3 = −1 + C1

C1 = 4

Hence the velocity function is

v(t) = −cos3t+ 4 (2.5.44)

(2.5.44) is unique velocity function.
The position function is obtained by integrating (2.5.44)

x(t) = −1

3
sin3t+ 4t+ C2 (2.5.45)

(2.5.45) is the family of position functions.
Again using initial condition x(0) = 3, the constant of integration is

3 = C2;

Hence the position function is

x(t) = −1

3
sin3t+ 4t+ 3 (2.5.46)

(2.5.46) is unique position function.
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Figure 2.10: Family of velocity functions

Example 2.5.4. A particle moves along an r− axis with velocity v(t) = t2 − 2t m/s; (see

Fig. 2.12)

(a) Find the displacement of the particle during the time interval 0 ≤ t ≤ 3.

(b) Find the distance of the particle during the time interval 0 ≤ t ≤ 3.

Solution (a) Here the velocity is

v(t) = t2 − 2t

Using (1.3.5), the displacement of the particle during the time interval 0 ≤ t ≤ 3 is

t2∫
t1

v(t)dt =

3∫
0

(
t2 − 2t

)
dt

=

[
1

3
t3 − t2

]3

0

=

(
1

3
33 − 32

)
= 9− 9

= 0 (2.5.47)
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Figure 2.11: Family of position functions

Also from graph 2.17, we see that the displacement or position vector is a zero vector. (b)
For distance, see Fig. 2.12, v(t) ≤ 0 for 0 ≤ t ≤ 2 and v(t) ≥ 0 for 2 ≤ t ≤ 3 Thus, it
follows from (2.5.5) that the distance traveled is

t2∫
t1

|v(t)|dt =

2∫
0

−
(
t2 − 2t

)
dt+

3∫
2

(
t2 − 2t

)
dt

= −
[

1

3
t3 − t2

]2

0

+

[
1

3
t3 − t2

]3

2

= −
(

1

3
23 − 22

)
+

(
1

3
33 − 32 − 1

3
23 + 22

)
=

4

3
+

4

3

=
8

3
m (2.5.48)

Example 2.5.5. A particle moves starts to move along a straight line from origin, so at

t = 0, x = 0 and v = 0. At any time t its acceleration is a(t) = t2 + sin t+ et m2/s. Find

(a) Velocity at any time t
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Figure 2.12: velocity at time t

(b) Speed at any time t

(c) Displacement at any time t

(d) Distance at any time t

Solution Here the given data is

ẍ = t2 + sin t+ et (2.5.49)

v(0) = 0 (2.5.50)

x(0) = 0 (2.5.51)

(a) Velocity at any time t is calculated by integrating (2.5.49) with respect to t

v(t) = ẋ =
1

3
t3 − cos t+ et +A (2.5.52)

Where A is constant of integration and can be calculated by using (2.5.50) in (2.5.52)

0 = 0− 1 + 1 +A

⇒ A = 0

Hence (2.5.52) becomes

v(t) =
1

3
t3 − cos t+ et (2.5.53)

(b) The peed at any time t is
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Figure 2.13: Displacement and distance for 0 ≤ t ≤ 3.

|v(t)| =

∣∣∣∣13 t3 − cos t+ et
∣∣∣∣ (2.5.54)

(c) Displacement at any time t is calculated by integrating (2.5.53) with respect to t

x =
1

12
t4 − sin t+ et +B (2.5.55)

Where B is constant of integration and can be calculated by using (2.5.51) in (2.5.55)

0 = 0− 0 + 1 +B

⇒ B = −1

Hence (2.5.55) becomes

x =
1

12
t4 − sin t+ et − 1 (2.5.56)

(d) Distance at any time t is

|x| =

∣∣∣∣ 1

12
t4 − sin t+ et − 1

∣∣∣∣ (2.5.57)
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Figure 2.14: velocity and speed any time t.

Example 2.5.6. A car starts from rest and with constant acceleration achieves a velocity

of 15m/s when it travels a distance of 200m. Determine the acceleration of the car and

the time required.

Solution 1: Since the car starts from rest, we have
v0 = 0m/s and v = 15m/s
x0 = 0m and x = 200m
As acceleration is constant, Using, (2.5.14 )

v2 = v2
0 + 2ac(x− x0)

(15)2 = 0 + 2ac(200− 0)

ac = 0.562m/s2

For time Using (2.4.1)

v = v0 + act

15 = 0 + 0.562 t

t = 26.66s

Example 2.5.7. A car moves in a straight line such that for a short time its velocity is

defined by v = (3t2 + 2t) ft/sec. Determine its position and acceleration when t = 3 s.

When t = 0, x = 0.
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Figure 2.15: Displacement and distance at time t

Solution : For Position: Since v = v(t), and x = 0 when t = 0,
using, (2.1.3)

v =
dx

dt
= 3t2 + 2t

dx = (3t2 + 2t)dt

integrating (separation of variables)∫ x

0
dx = (3t2 + 2t)

∫ t

0
dt

x
∣∣∣x
0

= (t3 + t2)
∣∣∣t
0

x = t3 + t2

When t = 3 s

x = 33 + 32

x = 36 ft

For acceleration using, (2.1.4)

a =
dv

dt

=
d

dt
(3t2 + 2t)

= 6t+ 2
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Figure 2.16: velocity at time t

When t = 3 s

a = 6(3) + 2

a = 20 ft/s2

Example 2.5.8. A particle starts to move from origin O in a straight line with uniform

acceleration a. After 4 seconds it attains a velocity of 60 miles/hour. Determine

(a) Acceleration of motion.

(b) Displacement travelled in first 3 seconds

(c) Displacement travelled in last 3 seconds.

(d) Displacement travelled in 4th seconds.

Solution: The given data is

v0 = 0

t = 4 s

v4 = 60 miles/hour

=
60× 1760× 3

60× 60
= 88 ft/s
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Figure 2.17: Displacement at time t

(a) From equation (2.4.1) we can write

a =
1

t
(v4 − v0)

=
1

4
(88− 0)

= 22 ft/s2

(b) Let x1 represents the displacement travelled by the particle in first 3 seconds. It can be
determined by using equation (2.5.2)

x1 = v0t+
1

2
at2

= 0(3) +
1

2
22(3)2

= 99 ft

(c) Let x2 represents the displacement travelled by the particle in last 3 seconds. It can be
determined by subtracting displacement travelled in first second from displacement travelled
in 4 seconds. Both displacements will be determined by using equation (2.5.2)

x2 =

(
0(4) +

1

2
22(4)2

)
−
(

0(1) +
1

2
22(1)2

)
= 176− 11

= 165 ft

(d) Let x3 represents the displacement travelled by the particle in last 4th second. It can
be determined by subtracting displacement travelled in first 3 second from displacement
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travelled in 4 seconds. Both displacements will be determined by using equation (2.5.2)

x2 =

(
0(4) +

1

2
22(4)2

)
−
(

0(3) +
1

2
22(3)2

)
= 176− 99

= 77 ft

Corollary 2.5.1. A particle moves in a straight line with uniform acceleration a. At time

t = 0 it is at origin O moving with velocity v0. Hence the displacement travelled by the

particle in the nth unit of time is

x = v0 +
1

2
a(2n− 1) (2.5.58)

Proof: Let x1 and x2 be the displacement travelled by the particle in the first n and
n− 1 units of time respectively. Then it follows from equation (2.5.2) that

x1 = v0n+
1

2
an2

and x2 = v0(n− 1) +
1

2
a(n− 1)2

Then the distance travelled by the particle in the nth unit of time is

x = x1 − x2 =

(
v0n+

1

2
an2

)
−
(
v0(n− 1) +

1

2
a(n− 1)2

)
=

(
v0n+

1

2
an2

)
−
(
v0n− v0 +

1

2
a(n2 − 2n+ 1)

)
= v0 +

1

2
a(2n− 1)

Example 2.5.9. In example 2.5.8 the displacement travelled in 4th seconds can be calculated

by using equation (2.5.58)

x4 = v0 +
1

2
a(2n− 1)

= 0 +
1

2
22[2(4)− 1]

= 77 ft
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Exercise

1. Find velocity and acceleration of the particle for t ≥ 0 for the following position
curves.

(a) r(t) = 2t2 + 5t2 − 6t+ 4

(b) r(t) = −4t+ 3

(c) r(t) = 5t2 − 20t

(d) r(t) = t3 − 9t2 + 24t

(e) r(t) = t3 − 6t2 + 9t+ 1

2. Let x(t) = 2t3 − 21t2 + 60t + 3 be the position function of a particle moving along
x− axis, Find the velocity, speed and acceleration functions. Also plot the graphs of
position, velocity, speed and acceleration versus time. From these graphs, determine
when the particle is speeding up and slowing down.

3. Let a particle moves with constant acceleration a along straight line. Obtain the
following equations of motion by graphical method.

(a) vf = vi + at

(b) x = vit+ 1
2at

2

(c) 2ax = v2
f − v2

i

4. Let r1 = 15t2 + 10t+ 20 and r2 = 5t2 + 40t, t ≥ 0, be the position functions of cars
A and B that are moving along parallel straight lanes of a highway.

(a) How far is car A ahead of car B when t = 0?

(b) At what instants of time are the cars next to each other?

(c) At what instant of time do they have the same velocity?

(d) Which car is ahead at this instant?

5. Two particles A and B are moving in a straight line in the same direction in such a
way that A is accelerated and B is retard. At point O, A is accelerated at the rate of
2 ft/s2 having velocity 45 miles/hour, while B is retard at the rate of 8 ft/s2 having
velocity 90 miles/hour.

(a) At what time both particles have same velocity, find this velocity.

(b) At what time both particles have same displacement from O, find this displace-
ment.

6. Two particles A and B are moving in a straight line in the same direction in such a
way that A is accelerated and B is retarded. At point O, A is accelerated at the rate
of 1.2 m/s2 having velocity 60 km/hour, while B is retard at the rate of 7.1 m/s2

having velocity 120 km/hour.
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(a) At what time both particles have same velocity, find this velocity.

(b) At what time both particles have same displacement from O, find this displace-
ment.

7. A particle starts to move from rest along straight line from origin. At any time t, its
acceleration is given as following. Find velocity, speed, displacement and distance of
the particle at ant time t.

(a) a(t) = tn

(b) a(t) = a cos t+ b sin t

(c) a(t) = 3t2 − 4t

(d) a(t) = 1
t

(e) a(t) = 6et + 2t

8. A particle moves along a straight line with acceleration a = −n2x, where x is the
displacement of the particle from a fixed point O. Let the particle starts from rest
from origin. Find the velocity and the time spend when the particle has moved a
displacement x. Also find this displacement as a function of time.

9. A particle moves along a straight line with acceleration a = µx, where x is the
displacement of the particle from a fixed point O. Let the particle starts from rest
at a displacement x0 from origin. Find the velocity, displacement and the time spend
when the particle has moved a displacement x.

10. A particle moves along a straight line with acceleration a = x, where x is the displace-
ment of the particle from a fixed point O. If at t = 0, its displacement from origin
and velocity are c. Find the velocity and the time spend when the particle has moved
a displacement x.

11. A particle moves along a straight line with acceleration a = x2, where x is the dis-
placement of the particle from a fixed point O. If at t = 0, its distance from origin is

c and velocity is
√

2c3

3 . Find the velocity and the time spend when the particle has

moved a displacement x.

12. A particle starts to move from origin along a straight line with velocity vi. If it has
acceleration v3, where v is the velocity of the particle at any time t, find the velocity
and the time spend when the particle has moved a displacement x. Also find this
displacement as a function of time.

13. A particle starts to move from origin along a straight line with velocity vi. If it suffers
a retardation equal to the square of the velocity of the particle at any time t, find the
velocity and the time spend when the particle has moved a displacement x. Also find
this displacement as a function of time.
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14. A particle starts to move from rest from origin O along a straight line. It moves with
uniform acceleration a till it attains a velocity v. The motion is then retarded and
the particle comes to rest after travelling a total distance x. Find the retardation and
the total time taken by the particle from rest to rest.

15. Two particles A and B are moving in a straight line and are accelerated uniformly
such that if acceleration of A is a then acceleration of B is 1

2a. Both particles starts
from origin at the same time. The motion is such that when a particle attains the
maximum velocity v, the motion is retarded uniformly in a way that retardation of A
is 1

2a and retardation of B is a. Then the two particles comes to rest simultaneously
at a distance x from the starting point. Find the distance between the points where
the two particles attain their maximum velocities.

16. At time t = 0, a gunner detects a plane approaching him with a velocity v, the
horizontal and vertical displacements of the plane being h and k respectively. His gun
can fire a shell vertically upwards with an initial velocity u . Find the time when he
should fire the gun and the condition on u so that he may be able to hit the plane if
it continues its flight in the same horizontal line.



Chapter 3

Vertical Motion Under Gravity

A motion under the force of gravity is called projectile motion and a body executing such a
motion is called projectile. This motion is in the vertically upward or downward direction,
hence also called vertical motion. Sometimes air resistance also takes place in this motion.
So we will discuss it as free projectile motion and resisted projectile motion. For example,
an object dropped from a height, thrown vertically upwards or thrown at an angle (oblique).
We can subdivide this motion in two categories namely

a) One dimensional Projectile Motion.

b) Two dimensional Projectile Motion.

In this chapter we will discuss only One dimensional Projectile Motion. Two dimensional
Projectile Motion will be discussed in chapter 7.

3.1 One Dimensional Projectile Motion or Vertical Motion

An object dropped from a height or thrown vertically upwards are the examples of such
motion. Since this motion takes place along vertical axis so is known as vertical motion.
This motion is one of the most important case of uniform accelerated motions. The objects
which are near to earth allowed to free fall. At first, it might seem that different objects
accelerate at different rates near the earth depending on their weight. That is what people
thought before Galileo did his experiments in the late 1500s. However, Galileo showed that
objects of different weights dropped at the same rate.
The reason that some things drop slower in the air is because air resistance pushes against
the moving object. If there was no air resistance then even the open paper would drop at
the same rate. (On the moon, where there is no air, a feather and a hammer fell at the same
rate). When an object is dropped, the rate of increase of its velocity is 9.80 m/s2 in SI
system and 32 ft/s2 in BE system. It continues to go faster. If there was no air resistance,
this would continue every second. Because there is air resistance, the object eventually
reaches a terminal velocity and does not go any faster. But for many applications, we can
neglect air resistance. Then, everything near the surface of the earth accelerates toward

45
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the center of the earth with a constat acceleration. Therefore, all of the equations we have
derived for constant acceleration apply to an object in free fall, neglecting air resistance). All
objects fall with a constant acceleration of about 9.80 m/s2 which we call g, the acceleration
due to gravity.
In this chapter, we will consider vertically free and resisted motions. Assume that both
gravity and mass remain constant and, for convenience, choose the downward direction as
the positive direction. Since it is one dimensional motion, so the reference point may not
be with respect to coordinate system. First of all consider free vertical motion.

3.1.1 Free Vertical Motion

In this motion, the particle is moving vertically under the action of gravitational force only.
Then equations for vertically downward motion are the equations of motion for rectilinear
motion only replacing a by g. The elementary equations of motion for vertically downward
motion are:

vf = vi + gt (3.1.1)

x = vit+
1

2
gt2 (3.1.2)

2gx = v2
f − v2

i (3.1.3)

Example 3.1.1. A body is dropped (at rest) from a height of h meters. If the motion is
free fall, then at what speed will it hit the ground? Also find the time required for it.

Solution Since it is one dimensional motion, the reference axis may be z − axis only.
As the body starts from rest, so the initial data is

t0 = 0

v0 =
dz

dt
(0) = 0

z0 = 0

At time t the body is at P . At P , the only force acting on the particle is the gravitational
force W = mg. Hence by Newton’s second law of motion

F = mg

m
d2z

dt2
= mg

d2z

dt2
= g

dv

dt
= g

is first order differential equation in variable v and can be solved as (separating variables)

v(t) = gt+ v0
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Figure 3.1: Downward motion

Using initial condition v(0) = 0, the above relation is

v(t) =
dz

dt
= gt

now it is first order differential equation in variable z and can be solved as (separating
variables)

z(t) =
1

2
gt2 + z0

Using initial condition z(0) = 0, the above relation is

z(t) =
1

2
gt2

Let it hits the ground after time t1 then z(t1) = h, then we have

h =
1

2
gt21

or time is

t1 =

√
2h

g

at that time its (vertical) velocity is

v(t1) = gt1

=
√

2hg.

Since it is one dimensional motion, the reference axis may be z − axis only.
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Example 3.1.2. A body of mass 5 slugs is dropped from a height of 100 ft with zero
velocity. Assuming no air resistance, find

(a) an expression for the velocity of the body at any time t.

(b) an expression for the position of the body at any time t, and

(c) the time required to reach the ground.

(d) at what speed will it hit the ground?

Solution: Since it is one dimensional motion, the reference axis may be x− axis only.
As the body starts from rest, so the initial data is

t0 = 0

v0 = 0

x0 = 0

Choose the coordinate system as in Fig. (3.2). Since there is no air resistance, so the only

Figure 3.2: Free fall motion

force acting on the body is W = mg and by Newton’s second law of motion:

F = mg

ma = mg (3.1.4)

Since

a =
dv

dt

then (3.1.4) becomes

dv

dt
= g
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This differential equation is linear or, in differential form, separable; its solution is

v = gt+ C1 (3.1.5)

initially the body has zero velocity i.e. at t = 0, v = 0 or v(0) = 0 using in (3.1.5), we have

0 = g(0) + C1 (3.1.6)

or C1 = 0. Thus,

v = gt

assuming g = 32ft/sec, then

v = 32t (3.1.7)

Since

v =
dx

dt
,

then (3.1.7) becomes

dx

dt
= 32t (3.1.8)

This differential equation is also both linear and separable; its solution is

x = 16t2 + C2 (3.1.9)

But at t = 0, x = 0 (see Fig. 3.2). Thus,

0 = (16)(0)2 + C2

or C2 = 0. Substituting this value into (3.1.9), we have

x = 16t2 (3.1.10)

We require t when x = 100. From (3.1.10)

t =

√
100

16
= 2.5 s

Using this time in equation (3.1.8) the speed with which it will hit the ground is

v = 32(2.5)

= 80 ft/s

Example 3.1.3. A body is dropped from a height of h meters with speed v0. Assuming no
air resistance, find
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(a) an expression for the velocity of the body at any time t.

(b) an expression for the position of the body at any time t, and

(c) the time required to reach the ground.

(d) at what speed will it hit the ground?

Solution Since it is one dimensional motion, the reference axis may be z − axis only.
As the body starts from rest, so the initial data is

t0 = 0

v0 =
dz

dt
(0) = v0

z0 = 0

At time t the body is at P . At P , the only force acting on the particle is the gravitational

Figure 3.3: Downward motion

force W = mg. Hence by Newton’s second law of motion

F = mg

m
d2z

dt2
= mg

d2z

dt2
= g

dv

dt
= g
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is first order differential equation in variable v and can be solved as (separating variables)

v(t) = gt+ v0

Using initial condition v(0) = 0, the above relation is

v(t) =
dz

dt
= gt

now it is first order differential equation in variable z and can be solved as (separating
variables)

z(t) =
1

2
gt2 + z0

Using initial condition z(0) = 0, the above relation is

z(t) =
1

2
gt2

Let it hits the ground after time t1 then z(t1) = h, then we have

h =
1

2
gt21

or time is

t1 =

√
2h

g

at that time its (vertical) velocity is

v(t1) = gt1

=
√

2hg.

Since it is one dimensional motion, the reference axis may be z − axis only.

Example 3.1.4. A particle is projected vertically upward with a velocity
√

2gh and at
the same time, an other is dropped from a height h with zero velocity. Assuming no air
resistance, find the height where they meet each other.

Solution Since it is one dimensional motion, the reference axis may be x − axis only.
Choose the coordinate system as in Fig. (3.4). Let both the particles meet at time t at P ,
first particle has distance x from A and the second particle has distance h− x from B. Let
x(t) be the position variable for the first particle and y(t) be the position variable for the
second particle Then the first particle has coordinates at P (x, v1, t) and the second particle
has coordinates at P (h− x, v2, t) = P (y, v2, t). Since there is no air resistance, so the only
force acting on the body is w = mg.
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Figure 3.4: Free fall motion

Equation of motion of the first particle:
First particle is moving in the upward direction, so the initial data for it is

t0 = 0

v1(0) =
dx

dt
(0) =

√
2gh

x0 = 0

By Newton’s second law of motion, the equation of motion of the first particle is:

F = −mg
a = −g

dv1

dt
= −g (3.1.11)

Integrating (3.1.11) with respect to t

v1(t) = −gt+ C1 (3.1.12)

Using initial data for first particle, at t = 0, v1 =
√

2gh i.e. ,

v1(0) =
√

2gh

then (3.1.12) becomes √
2gh = −g(0) + C1

or √
2gh = C1
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then (3.1.12) becomes

v1(t) = −gt+
√

2gh

dx

dt
= −gt+

√
2gh (3.1.13)

(3.1.13) gives the velocity of first ball at any time t. Integrating (3.1.13) with respect to t

x(t) = −1

2
gt2 +

√
2gh t+ C2 (3.1.14)

Using initial data for first particle, at t = 0, x = 0 i.e. ,

x(0) = 0

then (3.1.14) becomes

C2 = 0

Hence the position of the first particle at t is

x(t) = −1

2
gt2 +

√
2gh t (3.1.15)

(3.1.15) gives the position of first ball at any time t.
Equation of motion of the second particle:
The second particle is moving in the downward direction, so the initial data for it is

t0 = 0

v2(0) =
dy

dt
(0) = 0

y0 = 0

By Newton’s second law of motion, the equation of motion of the second particle is:

F = mg

a = g

dv2

dt
= g (3.1.16)

Integrating (3.1.16) with respect to t

v2(t) = gt+ C1 (3.1.17)

Using initial data for first particle, at t = 0, v2 = 0 i.e. ,

v2(0) = 0
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then (3.1.17) becomes

0 = g(0) + C1

or

C1 = 0

then (3.1.17) becomes

v2(t) = gt

dy

dt
= gt (3.1.18)

(3.1.18) gives the velocity of second ball at any time t. Integrating (3.1.18) with respect to
t

y(t) =
1

2
gt2 + C2 (3.1.19)

Using initial data for first particle, at t = 0, y = 0 i.e. ,

y(0) = 0

then (3.1.14) becomes

C2 = 0

Hence the position of the first particle at t is

y(t) =
1

2
gt2 (3.1.20)

At P , y = h− x, then (3.1.20) becomes. Hence the position of the second particle at t is

h− x(t) =
1

2
gt2

x(t) = h− 1

2
gt2 (3.1.21)

(3.1.21) gives the position of second ball at P . Here (3.1.15) and (3.1.21) are the positions
of the two balls at P . From (3.1.15) and (3.1.21), we can write

−1

2
gt2 +

√
2gh t = h− 1

2
gt2 (3.1.22)

Hence both the particles meet at time

t =

√
h

2g
(3.1.23)
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Using (3.1.23) in (3.1.21), the position is

x(t) = h− 1

2
g

(
h

2g

)
= h− 1

4
h

=
3

4
h (3.1.24)

Hence the two particles meet each other at a height 3
4h

3.1.2 Resisted Vertical Motion

In this motion, the particle is moving under the influence of gravitational force and air re-
sistance force (offered by the atmosphere). The air resistance acts in the opposite direction
of the motion, producing a retardation in the motion. It is proportional to the velocity or
square of the velocity of the body.

Example 3.1.5. A body of mass m is thrown vertically into the air with an initial velocity
v0. If the body encounters an air resistance proportional to its velocity, find

(a) the equation of motion in the coordinate system

(b) an expression for the velocity of the body at any time t, and

(c) the time at which the body reaches its maximum height.

Solution

(a) Equation of motion in the coordinate system

Choose the coordinate system as in Fig. (3.5). Consider a body of mass m is thrown
vertically into the air from A. At A, the initial data is

t0 = 0

v(0) =
dx

dt
(0) = v0

x0 = 0

After time t the body is at P having coordinates P (x, v, t). Then by Newton’s second law
of motion, at time t, the net force acting on a body is

F = m
dv

dt
(3.1.25)

where F is the net force on the body and v is the velocity of the body. At P there are two
forces acting on the body:
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Figure 3.5: Resisted motion

(1) the force due to gravity given by the weight W = −mg of the body, and
(2) the force due to air resistance given by −kv, where k > 0 is a constant of proportionality.
The minus sign is required because this force opposes the velocity; that is, it acts in the
downward (see Fig. 3.5 ). The net force F on the body is, therefore,

F = −mg − kv (3.1.26)

using (3.1.26) in (3.1.25), we obtain

m
dv

dt
= −mg − kv

or

dv

dt
+
k

m
v = −g (3.1.27)

(3.1.27) is the equation of motion in the coordinate system.

(b) Expression for the velocity of the body at any time t

(3.1.27) is a linear differential equation. Its solution will give the expression for velocity at
any time t. The integrating factor is

I.F = e
k
m
t

then (3.1.27) can be written as

d

dt

(
ve

k
m
t
)

= −ge
k
m
t (3.1.28)
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Integrating (3.1.28) with respect to t(
ve

k
m
t
)

= −mg
k
e
k
m
t + C1

v(t) = −mg
k

+ C1e
− k
m
t (3.1.29)

Using initial condition v(0) = v0, then (3.1.29) implies

C1 = v0 +
mg

k
(3.1.30)

Using (3.1.30), (3.1.29) becomes

v(t) = −mg
k

+
(
v0 +

mg

k

)
e−

k
m
t (3.1.31)

(3.1.31) is the expression for the velocity of the body at any time t.
When k > 0, the limiting velocity vl is defined by

vl =
mg

k
(3.1.32)

(c) Time required to reach the body at its maximum height.

The body reaches its maximum height when v = 0. Hence to calculate time t required to
reach maximum height, we put v = 0 in (3.1.31)

0 = −mg
k

+
(
v0 +

mg

k

)
e−

k
m
t

mg

k
=

(
v0 +

mg

k

)
e−

k
m
t

mg

k
e
k
m
t =

(
v0 +

mg

k

)
e
k
m
t =

k

mg

(
v0 +

mg

k

)
e
k
m
t =

(
kv0

mg
+ 1

)
Taking natural log on both sides, we have

k

m
t = ln

(
kv0

mg
+ 1

)
and time is

t =
m

k

[
ln

(
kv0

mg
+ 1

)]
(3.1.33)

Hence (3.1.33) gives the time required to reach maximum height.
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Example 3.1.6. A steel ball weighing 4.9 N is dropped from a height of 100 m with no
velocity. As it falls, the ball encounters air resistance numerically equal to 0.2v (in Newton),
where v is the velocity of the ball (in m/s). Find

(a) the limiting velocity for the ball and

(b) the time required for the ball to hit the ground.

Solution Choose the coordinate system as in Fig. (3.6). The weight of the ball is
w = 4.9 N , its mass is 0.5 kg. Let the ball is dropped from A. At A, the initial data is

t0 = 0

v0 = 0

x0 = 0

After time t the body is at P having coordinates P (x, v, t). Then by Newton’s second law

Figure 3.6: Resisted motion

of motion, at time t, the net force acting on a body is

F = m
dv

dt
(3.1.34)

where F is the net force on the body and v is the velocity of the body. At P there are two
forces acting on the body:
(1) the force due to gravity given by the weight W = 4.9 N of the body, and
(2) the force due to air resistance is −0.2 v. The net force F on the body is,

F = mg − kv (3.1.35)
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using (3.1.35) in (3.1.34), we obtain

m
dv

dt
+ 0.2v = 4.9

0.5
dv

dt
+ 0.2v = 4.9

dv

dt
+ 0.4v = 9.8 (3.1.36)

(3.1.36) is a linear differential equation, the integrating factor is

I.F = e0.4t

then (3.1.36) can be written as

d

dt

(
ve0.4t

)
= 9.8e0.4t (3.1.37)

Integrating (3.1.37) with respect to t(
ve0.4t

)
=

9.8

0.4
e0.4t + C1

v(t) = 24.5 + C1e
−0.4t (3.1.38)

Using initial condition v(0) = v0 = 0, then (3.1.38) implies

C1 = 24.5 (3.1.39)

Using (3.1.39), (3.1.38) becomes

v(t) = 24.5 + 24.5e−0.4t (3.1.40)

a) the limiting velocity for the ball is

lim
t→∞

v(t) = lim
t→∞

(
24.5 + 24.5e−0.4t

)
= 24.5 m/s (3.1.41)

b) the time required for the ball to hit the ground.

From (3.1.40) we can write

dx

dt
= v(t) = 24.5 + 24.5e−0.4t (3.1.42)

Integrating (3.1.42) with respect to t

x(t) = 24.5t+ 24.5
1

−0.4
e−0.4t + C2

= 24.5t− 61.25e−0.4t + C2 (3.1.43)
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Using initial condition x(0) = v0 = 0, then (3.1.43) implies

C2 = 61.25 (3.1.44)

Using (3.1.44), (3.1.43) becomes

x(t) = 24.5t− 61.25e−0.4t + 61.25 (3.1.45)

The ball hits the ground when x(t) = 100, then (3.1.45) has the form

100 = 24.5t− 61.25e−0.4t + 61.25

0 = 24.5t− 61.25e−0.4t − 38.75 (3.1.46)

Although (3.1.46) cannot be solved explicitly for t, we can approximate the solution by trial
and error, substituting different values of t into (3.1.45) until we locate a solution to the
degree of accuracy we need. Such approximation is illustrated in table 3.1
From table 3.1, we see that the ball hits the ground at time t = 2.5 s

Table 3.1: Numerical Approximation

Time Distance

0 0

1 44.69289718

2 82.72860095

2.1 86.25773044

2.2 89.74454666

2.3 93.19070873

2.4 96.59781073

2.5 99.96738423 ∼= 100

Alternatively, we note that for any large value of t, the negative exponential term will be
negligible. A good approximation is obtained by setting exponential is essentially zero, then

24.5t = 38.75

t = 1.58 s (3.1.47)

Example 3.1.7. (a) A small stone of mass m is thrown vertically upwards with initial
speed V . If the air resistance at speed v is mkv2, where k > 0 constant, show that the stone

returns to its starting point with speed V
(

1− k V 2

g

) 1
2

(b) If kv2 << g i.e. kv
2

g << 1 in the above case, find the velocity with which stone strikes
the ground.
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Figure 3.7: Upward motion

Solution Here we consider two way motion, firstly upward and next downward motion.
Upward Motion:
The upward motion of the small stone is illustrated in the Fig 3.7.

Let OO
′

= H be the maximum height of attained by it. Let at time t, its position be
at P with distance x ≤ H from the ground. Let its upward velocity at P be ẋ, and the
acceleration in the direction of increasing x is

a =
dv

dt

=
dv

dx

dx

dt
= v

dv

dx

=
d

dx

1

2
v2 (3.1.48)

For the problem at hand, there are two forces acting on the body at P :
(1) the force due to gravity acting in downward direction given by the weight w of the body,
which equals mg, and
(2) the force due to air resistance acting in downward direction given by mkv2, where k > 0
is a constant of proportionality.
The minus sign is required because the forces oppose the velocity; that is, they act in the
downward, or negative, direction (see Fig. 3.7). The net force F on the body is, therefore,
the equation of motion is:

F = −mg −mkv2

ma = −m(g + kv2)

using (3.1.48), we have

d

dx
v2 + 2kv2 = −2g(

d

dx
+ 2k

)
v2 = −2g (3.1.49)
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(3.1.49) is first order linear nonhomogeneous differential equation and can be solved by the
method of undetermined coefficient. The homogeneous part of (3.1.49) is:(

d

dx
+ 2k

)
v2 = 0 (3.1.50)

The characteristic equation is

D + 2k = 0

D = −2k

and the complementary solution is:

v2
c = Ae−2kx (3.1.51)

For particular solution, let

v2
p = C (3.1.52)

then

d

dx
v2
p = 0 (3.1.53)

using above result in (3.1.49), we have

2kC = −2g

C = −g
k

(3.1.54)

Hence the particular solution is:

v2
p = −g

k
(3.1.55)

Hence the general solution is:

v2(x) = Ae−2kx − g

k
(3.1.56)

Since the stone is thrown with initial speed V with distance x = 0, i.e.

v(0) = V (3.1.57)

Using (3.1.57), (3.1.58) becomes:

V 2 = A− g

k
(3.1.58)

or

A = V 2 +
g

k
(3.1.59)
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Using (3.1.59), (3.1.58) becomes:

v2(x) =
(
V 2 +

g

k

)
e−2kx − g

k
(3.1.60)

Next when the stone attains maximum height x = H, its speed becomes zero, i.e.

v(H) = 0 (3.1.61)

Using (3.1.61), (3.1.62) becomes:

0 =
(
V 2 +

g

k

)
e−2kH − g

k
g

k
=

(
V 2 +

g

k

)
e−2kH

e2kH =
k

g

(
V 2 +

g

k

)
=

(
1 +

k

g
V 2

)
2kH = log

(
1 +

k

g
V 2

)
H =

1

2k
log

(
1 +

k

g
V 2

)
(3.1.62)

is the maximum height attained by the stone.
Downward Motion:

The downward motion of the small stone is illustrated in the Fig 3.8.

Figure 3.8: Downward motion

After attaining the maximum height H, the stone rests for a while and then returns
back. Let at time t, its position be at P with distance y ≤ H from the top.
Let its downward velocity at P be ẏ, and the acceleration in the direction of increasing y is

a =
d

dy

1

2
v2 (3.1.63)
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For the problem at hand, two forces acting on the body at P :
(1) the force due to gravity acting in downward direction given by the weight w of the body,
which equals mg, and
(2) the force due to air resistance acting in upward direction given by mkv2, where k > 0
is a constant of proportionality.
The net force F on the body is mg −mkv2

therefore, the equation of motion is:

F = mg −mkv2

ma = m(g − kv2)

using (3.1.63), we have

d

dy
v2 + 2kv2 = 2g(

d

dx
+ 2k

)
v2 = 2g (3.1.64)

(3.1.64) is first order linear nonhomogeneous differential equation and can be solved by the
method of undetermined coefficient.

Hence the general solution in the similar way is:

v2(y) = Be−2ky +
g

k
(3.1.65)

At top y = 0 its speed is zero , i.e.

v(0) = 0 (3.1.66)

Using (3.1.66), (3.1.65) becomes:

B = −g
k

(3.1.67)

Using (3.1.67), (3.1.65) becomes:

v2(y) =
g

k

(
1− e−2ky

)
(3.1.68)

Next when the stone strikes the ground, then y = H, and its speed is:

v2(H) =
g

k

(
1− e−2kH

)
(3.1.69)

Using (3.1.62), we have

v2(H) =
g

k

(
1− e−log

(
1+ k

g
V 2

))
=

g

k

(
1−

(
1 +

k

g
V 2

)−1
)

(3.1.70)
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Expand second term upto second order, we have

v2 =
g

k

(
1−

(
1− k

g
V 2 +

(
k

g
V 2

)2
))

=
g

k

(
k

g
V 2

(
1− k

g
V 2

))
(3.1.71)

Hence the stone returns to its starting point with speed

v = V

(
1− k

g
V 2

) 1
2

(3.1.72)

(b) Expand (3.1.72) upto first order, we have

v = V

(
1− k

2g
V 2

)
(3.1.73)
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Exercises

1. A stone of mass 1 kg is dropped from the top of a tower with zero velocity. Assuming
no air resistance, it hits the ground after 3 seconds. Is the mass is helpful to increase
the velocity? Also find

(a) the height of the tower and

(b) the velocity with witch the stone hits the ground.

2. A body of mass 5 kg is dropped from a height of 20 m with zero velocity. Assuming
no air resistance, find

(a) an expression for the velocity of the body at any time t.

(b) an expression for the position of the body at any time t, and

(c) the time required to reach the ground.

3. A small marble ball is thrown vertically upward with a velocity. Assuming no air
resistance, it returns back and hit the ground after 8 seconds. Find

(a) the maximum height reached by the ball and

(b) the velocity with witch the ball is thrown up.

4. Assuming no air resistance, a particle is projected vertically upward with a velocity
v0 from origin. It passes through a point at a height h from origin at time t1. After
reaching its maximum height it returns back and passes through the same point at
time t2. Show that

t1 + t2 =
2v0

g

t1t2 =
2h

g

5. Two particles are projected simultaneously in the vertically upward direction with
velocities

√
2gh and

√
2gk, (k > h), where h and k are the maximum heights attained

by the particles. After a time t, when the two particles are still in flight, another
particle is projected upward with a velocity u. Find the condition so that the third
particle may meet the first two particles during their upward flights.

6. A particle is projected vertically upward. After a time t, another particle is sent up
from the same point with the same velocity and meets the first at height h during the
downward flight of the first. Find the velocity of projection.

7. The acceleration of a particle falling freely under the gravitational pull is equal to
k
x2

, where x is the distance of the particle from the center of the earth and k is some
constant. Find the velocity of the particle if it is let fall from an altitude R, on striking
the surface of the earth if the radius of earth is r and the air offers no resistance to
motion.
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8. A ball of weight 10 N is dropped from a height of 50 m with zero velocity. If the body
encounters an air resistance proportional to half its velocity, find

(a) the equation of motion in the coordinate system

(b) an expression for the velocity of the body at any time t,

(c) the limiting velocity for the ball and

(d) the time required to hit the ground.

9. A ball of mass 1
2 kg is dropped from a height of 25 m with an initial velocity of

10 m/sec. Assume that the air resistance is proportional to the velocity of the body.
If the limiting velocity is known to be 100 m/sec, find

(a) the equation of motion in the coordinate system

(b) an expression for the velocity of the body at any time t,

(c) an expression for the position of the body at any time t, and

10. A small stone of mass m is thrown vertically upwards with initial speed V . If the air
resistance at speed v is mkv, where k > 0 constant, show that the stone returns to its
starting point with speed U given by the relation

g − kU = (g + kV ) e
− k
g

(V+U)
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Chapter 4

Motion in Two and Three
Dimensional Cartesian Coordinate
Systems

In this chapter we will discuss the motion of a particle in 2 and 3 dimensional cartesian
coordinate system.

4.1 Two and Three Dimensional Cartesian Coordinate Sys-

tem

The concepts of position vector, displacement, velocity and acceleration will be discussed
in these systems.

4.1.1 Position Vector

The general expression of position vector of a point P with reference to some point is
discussed in chapter 2. In 2 dimensional space, if origin O is the reference point, the
position vector ~r of a point P (x, y) is

~r(t) = x(t)̂i+ y(t)ĵ

And the position vector ~r of a point P (x, y, z) in 3 dimensional space is

~r(t) = x(t)̂i+ y(t)ĵ + z(t)k̂

4.1.2 Displacement

(a) Displacement in 2 space

69
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Consider a particle moves along a curve C in 2 space as shown in Fig. 4.1 . Let at time t1
it is at point A = (x1, y1) whose position vector relative to O is ~r1 = x1î+ y1ĵ. At a latter
time t2 it is at point B = (x2, y2) whose position vector relative to O is ~r2 = x2î + y2ĵ.
Then displacement describes the change in position of the particle and is given as

Figure 4.1: Displacement vector in 2 space

∆~r = ~r2 − ~r1

=
(
x2î+ y2ĵ

)
−
(
x1î+ y1ĵ

)
= (x2 − x1) î+ (y2 − y1) ĵ

= ∆xî+ ∆yĵ

Where ∆x = x2−x1 and ∆y = y2−y1 are displacements along x axis and y axis respectively.

(b) Displacement in 3 space

Consider a particle moves along a curve C in 3 space as shown in Fig. 4.2. Let at time t1
it is at point A = (x1, y1, z1) whose position vector relative to O is ~r1 = x1î + y1ĵ + z1k̂.
At a latter time t2 it is at point B = (x2, y2, z2) whose position vector relative to O is
~r2 = x2î+y2ĵ+ z2k̂. Then the displacement describes the change in position of the particle
and is given as

∆~r = ~r2 − ~r1

=
(
x2î+ y2ĵ + z2k̂

)
−
(
x1î+ y1ĵ + z1k̂

)
= (x2 − x1) î+ (y2 − y1) ĵ + (z2 − z1) k̂

= ∆xî+ ∆yĵ + ∆zk̂

Where ∆x = x2 − x1, ∆y = y2 − y1 and ∆z = z2 − z1 are displacements along x axis, and
y axis and z axis respectively.
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Figure 4.2: Displacement vector in 3 space

4.1.3 Average Velocity and Instantaneous Velocity

Continuing above discussion, the particle moves from A to B in time internal

∆t = t2 − t1

Then average velocity is

average velocity =
displacement

time internal

~vavg =
∆~r

∆t

And instantaneous velocity is defined as

~v = lim
∆t→0

∆~r

∆t

~v(t) =
d~r(t)

dt
= ~r

′
(t) (4.1.1)

(a) Average Velocity in 2 space is

~vavg =
∆xî+ ∆yĵ

∆t

=
∆x

∆t
î+

∆y

∆t
ĵ

(b) Similarly Average Velocity in 3 space is
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~vavg =
∆x

∆t
î+

∆y

∆t
ĵ +

∆z

∆t
k̂

(c) Instantaneous Velocity in 2 space is

~v =
d~r

dt

=
d

dt

(
xî+ yĵ

)
=

dx

dt
î+

dy

dt
ĵ

= vxî+ vy ĵ

Where vx = dx
dt is the horizontal scalar component of velocity and vy = dy

dt is the vertical
scalar component of velocity as shown in Fig. 4.3.

Figure 4.3: Velocity and its components

(d) Similarly Instantaneous Velocity in 3 space is

~v = vxî+ vy ĵ + vzk̂

4.1.4 Average Acceleration and Instantaneous Acceleration

Continuing above discussion, if the particle at time t1 is at A having velocity ~v1 and at later
time t2 is at B having velocity ~v2. The change in velocity during the time interval ∆t is

∆~v = ~v2 − ~v1
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Then average acceleration is

average acceleration =
change in velocity

time internal

~aavg =
∆~v

∆t

And if a particle during motion has velocity function ~v(t), then its instantaneous accelera-
tion at time (acceleration function) is defined as

~a(t) = lim
∆t→0

∆~v

∆t

=
d

dt
~v(t) (4.1.2)

Using (4.1.1), the acceleration function in terms of the position function is

~a(t) =
d

dt

(
dx

dt

)
=

d2

dt2
~x(t)

= ~x
′′
(t) (4.1.3)

(a) Average Acceleration in 2 space is

~aavg =
∆vxî+ ∆vy ĵ

∆t

=
∆vx
∆t

î+
∆vy
∆t

ĵ

(b) Similarly Average Acceleration in 3 space is

~aavg =
∆vx
∆t

î+
∆vy
∆t

ĵ +
∆vz
∆t

k̂

(c) Instantaneous Acceleration in 2 space is

~a =
d~v

dt

=
d

dt

(
vxî+ vy ĵ

)
=

dvx
dt
î+

dvy
dt
ĵ

= axî+ ay ĵ

Where ax = dvx
dt is the horizontal scalar component of acceleration and ay =

dvy
dt is the

vertical scalar component of acceleration as shown in Fig. 4.4. the acceleration function in
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Figure 4.4: Acceleration and its components

terms of the position function is

~a =
d2~x

dt2

=
d2x

dt2
î+

d2y

dt2
ĵ

(d) Similarly Instantaneous Acceleration in 3 space is

~a = axî+ ay ĵ + azk̂

Example 4.1.1. A car is moving along a path C as shown in Fig. 4.5 Let at time t1 = 2s

the car is at point A having position vector ~r1 = (1m)̂i+ (4m)ĵ. After a later time t2 = 5s

the car is at point B having position vector ~r2 = (6m)̂i+ (6m)ĵ. Find its displacement and

average velocity.

Solution The given data is

t1 = 2s

t2 = 5s

~r1 = (1m)̂i+ (4m)ĵ

~r2 = (6m)̂i+ (6m)ĵ

Time internal to move from A to B is

∆t = t2 − t1
= 5− 2 = 3s
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Figure 4.5: Two dimensional motion

The horizontal scalar component of displacement is

∆x = x2 − x1

= 6− 1 = 5m

And the vertical scalar component of displacement is

∆y = y2 − y1

= 6− 4 = 2m

The displacement is

∆~r = ∆xî+ ∆yĵ

= 5̂i+ 2ĵ

And the average velocity is

~vavg =
∆x

∆t
î+

∆y

∆t
ĵ

=
5

3
î+

2

3
ĵ

Example 4.1.2. In above example, if car has velocity ~v1 = (1m/s)̂i+ (2m/s)ĵ.at point A

and ~v2 = (4m/s)̂i+ (8m/s)ĵ at point B. Find its average acceleration.

Solution The given data is

t1 = 2s

t2 = 5s

~v1 = î+ 2ĵ

~v2 = 4̂i+ 8ĵ
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Figure 4.6: Two dimensional motion

Time internal to move from A to B is

∆t = t2 − t1
= 5− 2 = 3s

The horizontal scalar component of velocity is

∆vx = vx2 − vx1
= 4− 1 = 3m/s

And the vertical scalar component of velocity is

∆vy = vy2 − vy1
= 8− 2 = 6m/s

And the average acceleration is

~aavg =
∆vx
∆t

î+
∆vy
∆t

ĵ

=
3

3
î+

6

3
ĵ

= (m/s2)̂i+ (2m/s2)ĵ

Example 4.1.3. A bus is moving along a path C as shown in Fig. 4.7 Let at time t1 = 2s

the bus is at point A having position vector ~r1 = (−2m)̂i + (4m)ĵ + (5m)k̂. After a later

time t2 = 5s the bus is at point B having position vector ~r2 = (3m)̂i+ (2m)ĵ+ (5m)k̂. Find

its displacement and average velocity.
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Figure 4.7: Three dimensional motion

Solution The given data is

t1 = 2s

t2 = 5s

~r1 = (−2m)̂i+ (4m)ĵ + (5m)k̂

~r2 = (3m)̂i+ (2m)ĵ + (5m)k̂

Time internal to move from A to B is

∆t = t2 − t1
= 5− 2 = 3s

The x component of displacement is

∆x = x2 − x1

= 3− (−2) = 5m

the y component of displacement is

∆y = y2 − y1

= 2− 4 = −2m

and the z component of displacement is

∆z = z2 − z1

= 5− 5 = 0m

The displacement is

∆~r = ∆xî+ ∆yĵ + ∆zk̂

= 5̂i− 2ĵ
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And the average velocity is

~vavg =
∆x

∆t
î+

∆y

∆t
ĵ +

∆z

∆t
k̂

=
5

3
î− 2

3
ĵ

Example 4.1.4. A particle moves along a path. Let ~r = î+ 4t2ĵ be its position vector.

(a) Write an expression for its velocity as functions of time

(b) Write an expression for its acceleration as functions of time

(c) Write expressions for position, velocity and acceleration at time t = 2s

Solution

(a) An expressions for its velocity as functions of time is

~v =
d~r

dt

=
d

dt

(
î+ 4t2ĵ

)
=

d

dt
(1)̂i+

d

dt

(
4t2
)
ĵ

= 0̂i+ 8tĵ

= (8t m/s)ĵ

(b) An expressions for its acceleration as functions of time is

~a =
d~r

dt

=
d

dt

(
8tĵ
)

= (8 m/s2)ĵ

(c) At time t = 2s position vector is

~r(2) = î+ 4(2)2ĵ

= (1m)̂i+ (16m)ĵ

Velocity of a particle at t = 2s is

~v(2) = 8(2)ĵ

= (16m/s)ĵ
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At time t = 2s acceleration is

~a(2) = 8ĵ

= (8m/s2)ĵ

Example 4.1.5. A particle moves along a path. Let the components of its position vector

are

x = t

y = 4t2 − 3

z = 1

(a) Write an expression for its velocity as functions of time

(b) Write an expression for its acceleration as functions of time

Solution The position vector can be written as

~r = t̂i+
(
4t2 − 3

)
ĵ + k̂

(a) An expressions for its velocity as functions of time is

~v =
d~r

dt

=
d

dt

(
t̂i+

(
4t2 − 3

)
ĵ + k̂

)
=

d

dt
(t)̂i+

d

dt

(
4t2 − 3

)
ĵ +

d

dt
(1)k̂

= î+ 8tĵ + 0k̂

= (1m)̂i+ (8t m/s)ĵ

(b) An expressions for its acceleration as functions of time is

~a =
d~r

dt

=
d

dt

(
î+ 8tĵ

)
= 0̂i+ 8ĵ

= (8 m/s2)ĵ
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Exercises

1. A particle is moving along a path. Let at time t1 = 2s the car is at point A having
position vector ~r1 = (2m)̂i + (2m)ĵ. After a later time t2 = 4s the car is at point
B having position vector ~r2 = (3m)̂i + (5m)ĵ. Find its displacement and average
velocity.

2. A car starts to move from point A having position vector ~r1 = (3m)̂i+(2m)ĵ+(4m)k̂.
After a later time t = 4s the car is at point B having position vector ~r2 = (3m)̂i +
(5m)ĵ. Find its displacement and average velocity.

3. A particle is moving along a path. Let at time t1 = 2s the car is at point A having
velocity ~v1 = (3m)̂i+ (2m)ĵ. After a later time t2 = 4s the car is at point B having
velocity ~v2 = (3m)̂i+ (5m)ĵ. Find its average acceleration.

4. A car starts to move from point A having velocity ~r1 = (3m)̂i+ (2m)ĵ+ (4m)k̂. After
a later time t = 4s the car is at point B having velocity ~v2 = (1m)̂i+ (3m)ĵ + (3m)k̂.
Find its average acceleration.

5. A particle moves along a path. Let ~r = 2t3î− 21t2ĵ be its position vector.

(a) Write an expression for its velocity as functions of time

(b) Write an expression for its acceleration as functions of time

(c) Write expressions for position, velocity and acceleration at time t = 1s

6. A particle moves along a path. Let ~r =
(
2t2 − 4

)
î+ 4t2ĵ + etk̂ be its position vector.

(a) Write an expression for its velocity as functions of time

(b) Write an expression for its acceleration as functions of time

(c) Write expressions for position, velocity and acceleration at time t = 3s

7. Analyze the motion of the particle for t ≥ 0 for the following position vectors.

(a) ~r(t) = t3î+
(
4t2 + 5

)
ĵ + (t+ 3)k̂

(b) ~r(t) = (−4t+ 3)̂i

(c) ~r(t) = 5t2î− 20tk̂

(d) ~r(t) = t3î− 9t2ĵ + 24tk̂

(e) ~r(t) = (9t+ 1)̂i− 6t2ĵ + t3k̂



Chapter 5

Angular Motion

In this chapter we will discuss the motion of a particle with rotational effects. First of all
consider some basic concepts of rotational kinematics.

5.1 Angular Kinematics

In this section we will discuss definitions of angular displacement, velocity and acceleration
moving along a rotating path.

5.1.1 Angular Displacement

In rotation, the displacement of the body is measured in angular displacement θ (measured
in radians). Consider a circle in cartesian plane, with center at origan. Let a particle is
initially at A, then moves from A to B along a circular path, the displacement is θ (see Fig
5.1). This displacement is a vector quantity having magnitude and direction (clockwise or
anticlockwise).
If the body moves the displacement θ along a circular path, the distance s (arc length) is

s = rθ

and if the body completes one rotation, the distance s is

s = 2πr

and the angular displacement θ is given as

θ =
s

r

81
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Figure 5.1: Angular displacement

5.1.2 Angular Velocity

Angular velocity is defined as the rate of change of angular coordinate with respect to t
(time) and is denoted by ~ω.
If a body is at point A and after a short interval of time ∆t it reaches at point B (see Fig.
5.2, then the change in its angular displacement is ∆θ and average angular velocity is

Figure 5.2: Angular velocity

~ωavg =
∆θ

∆t
â



5.1 Angular Kinematics 83

where â a unit vector in the direction of angular velocity. The instantaneous angular velocity
is

~ω = lim
∆t→0

∆θ

∆t
â

=
dθ

dt
â

= θ̇â (5.1.1)

And angular speed is

ω = θ̇ (5.1.2)

The directions are measured by right hand rule. The angular displacement (in magnitude)
is

θ = ωt (5.1.3)

5.1.3 Angular Acceleration

Angular acceleration is defined as the rate of change of angular velocity. It is denoted by
~α. Average angular acceleration is

~αavg =
∆ω

∆t
b̂

where b̂ a unit vector in the direction of angular acceleration. The instantaneous angular
acceleration is

~α = lim
∆t→0

∆ω

∆t
b̂

=
dω

dt
b̂

=
d2θ

dt2
b̂

or

~α =
d

dt
~ω =

d2~θ

dt2
(5.1.4)

The magnitude of angular acceleration is

α =
dω

dt
(5.1.5)
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5.2 Motion in Polar Coordinates or

Circular Motion

A particle executes circular motion if it travels around a circle or a circular arc. The velocity
is always directed tangent to the circle in the direction of the motion and the acceleration
is always directed radially inward (see Fig. 5.3).

5.2.1 Uniform Circular Motion

A particle is in uniform circular motion if it travels around a circle or a circular arc at
constant (uniform) speed (although speed does not vary, the particle is accelerating because
the velocity changes in direction). In this case

dv

dt
= 0

Figure 5.3: Velocity and acceleration for uniform circular motion.

5.2.2 Position Vector

Consider a Cartesian plane coordinate system. Let a particle be at P (x, y) whose position
vector relative to O is

~r = ~OP

= xî+ yĵ
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Its magnitude is

r = | ~OP |

Let the position vector ~r makes an angle θ with x axis, then completing right angle triangle
OAP , we have

Figure 5.4: Polar Coordinates

x = r cos θ (5.2.1)

y = r sin θ (5.2.2)

If P is a point in polar plane coordinates system then its coordinates are P (r, θ). The point
O is known as pole, x axis as initial line and y axis as terminal line. The number r is
called the radial coordinate of P and the number θ the angular coordinate (or polar angle)
of P . The number r is given as

r = | ~OP |
=

√
x2 + y2 (5.2.3)

The number θ is given as

θ = ∠AOP

= arctan
(y
x

)
(5.2.4)

Using (5.2.1) and (5.2.2), the position vector of a particle executing circular motion is

~r = r cos θî+ r sin θĵ

= rr̂ (5.2.5)

where

r̂ = cos θî+ sin θĵ

is a unit vector in the direction of position vector. Its detail will be in next section.
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5.2.3 Velocity

Since the velocity is the time rate of change of position vector

~v =
d~r

dt
=

d

dt

(
r cos θî+ r sin θĵ

)
= r

(
−θ̇ sin θî+ θ̇ cos θĵ

)
= rθ̇

(
− sin θî+ cos θĵ

)
= rω

(
− sin θî+ cos θĵ

)
(5.2.6)

= rωθ̂ (5.2.7)

θ̂ =
(
− sin θî+ cos θĵ

)
is a unit vector perpendicular to position vector. Its detail will be in next section.
The magnitude of velocity is

v = rω (5.2.8)

(5.2.8) is called the relation between linear and angular speed.
Another form of velocity can be calculated by considering (5.2.1) and (5.2.2)

cos θ =
x

r
(5.2.9)

sin θ =
y

r

Since the velocity ~v of a moving particle is always tangent to the circular path at particle’s
position, then ~v makes an angle θ with the vertical, that ~r makes with x axis. Then its
angle with horizontal (x axis) is

(
θ + π

2

)
. The ~v of the particle at P is

~v =
d~r

dt
=

dx

dt
î+

dy

dt
ĵ

= vxî+ vy ĵ

Since ~v makes an angle
(
θ + π

2

)
with x axis (see Fig. 5.7), so it can be written in its

rectangular components as

~v = v cos
(
θ +

π

2

)
î+ v sin

(
θ +

π

2

)
ĵ

= −v sin θî+ v cos θĵ

= v
(
− sin θî+ cos θĵ

)
= vθ̂ = rωθ̂ (5.2.10)



5.2 Motion in Polar Coordinates or
Circular Motion 87

Figure 5.5: Direction of velocity.

Then the velocity components are

vx =
dx

dt
= −v sin θ

vy =
dy

dt
= v cos θ

Using (5.2.9), (5.2.10) can be written as

~v = −vy
r
î+ v

x

r
ĵ

= −v
r
yî+

v

r
xĵ (5.2.11)

5.2.4 Acceleration

The acceleration of a particle at P is the time derivative of its velocity

~a =
d~v

dt
=

d

dt

(
rω
(
− sin θî+ cos θĵ

))
= r

[
ω
d

dt

(
− sin θî+ cos θĵ

)
+ ω̇

(
− sin θî+ cos θĵ

)]
= r

[
ω
(
−θ̇ cos θî− θ̇ sin θĵ

)
+ ω̇

(
− sin θî+ cos θĵ

)]
= r

[
−ω2

(
cos θî+ sin θĵ

)
+ ω̇

(
− sin θî+ cos θĵ

)]
= −rω2r̂ +

drω

dt
θ̂

= −rω2r̂ +
dv

dt
θ̂
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Figure 5.6: Rectangular components of velocity.

Acceleration in circular motion has both the radial (ar) and the tangential(at) components.
When the particle is moving with uniform speed then above relation becomes

Figure 5.7: Direction of velocity and acceleration.

~a = −rω2r̂

Then the magnitude of this acceleration is

a =
v2

r
=

(rω)2

r
= rω2 (5.2.12)
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Another form of acceleration can be calculated by considering (5.2.11)

~a =
d~v

dt
= −v

r

dy

dt
î+

v

r

dx

dt
ĵ (5.2.13)

Using (5.2.11), (5.2.13) can be written as

~a = −v
r
v cos θî+

v

r
(−v sin θ) ĵ

= −v
2

r

(
cos θî+ sin θĵ

)
(5.2.14)

The magnitude of this acceleration is

a =
v2

r
(5.2.15)

5.2.5 Centripetal Force

The force in action during the motion of bodies whirling at the ends of a string, spinning
on the shafts, artificial and natural satellite and nuclear particles in accelerators etc. It is
defined as The force needed to bend the normally straight path of the particle into a circular
path.
By Newton’s second law of motion, (in magnitude)

F = ma

For circular motion, the acceleration is given by (5.2.15), then the centripetal force is

Fc = m
v2

r
(5.2.16)

It acts in the direction of centripetal acceleration.

5.2.6 Relation Between Linear and Angular Acceleration (in magnitude)

The linear acceleration of a particle is:

a =
dv

dt

Using (5.2.8), we can write:

a =
rdω

dt

From (5.1.5), we can write:

a = rα (5.2.17)

(5.2.17) gives the relation between linear and angular acceleration.
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Example 5.2.1. A particle of mass 2 kg moves in a circle of radius 0.5 m with a linear

speed of 15 m/s. Find the angular speed and the force required to keep it in circular path.

Solution: The given data is

m = 2 kg

r = 0.5 m

v = 15 m/s

Using the relation (5.2.8)

ω =
v

r

=
15

0.5
= 30 rad/s

The force required to keep it in circular path is the centripetal force and is given by (5.2.16)

Fc = m
v2

r

= 2
(15)2

0.5
= 900 N

Example 5.2.2. A particle moves in a circle of radius 1 m. If its speed uniformly increases

from 5 m/s to 10 m/s in time interval 2 s, find the angular acceleration.

Solution : The given data is

r = 1 m

vi = 5 m/s

vf = 10 m/s

dt = 2 s

The particle is executing uniform circular motion The tangential acceleration is average
acceleration and given by

a =
dv

dt

=
vf − vi
dt

=
10− 5

2
= 2.5 m/s2
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Next using (5.2.17), angular acceleration is

α =
a

r

=
2.5

1
= 2.5 rad/s2

5.3 Motion in Radial and Transverse Plane

In some problems a particle P may not moving along a circular path but may be located
in a better way using its polar coordinates. In such cases it becomes convenient to resolve
the velocity and acceleration into components parallel and perpendicular to the tip of the
vector ~OP . These components are called the radial and transverse components. In order
to do this, attach 2 unit vectors to the tip of P . The vector r̂ is directed along OP and the
vector θ̂ is obtained by rotating r̂ about π

2 radians counterclockwise. The vector r̂ defines
the radial direction, that is the direction in which P would move if r were increased and θ
kept constant. And the vector θ̂ defines the radial direction, that is the direction P would
move if θ were increased and r kept constant. Its graphical representation is given in Fig.
5.8 Notice that in this coordinate system, unlike the xy coordinate system, the unit vectors

Figure 5.8: Position vector in radial and transverse plane.

constantly change direction, thus they have time derivatives. These two unit vectors are
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given by

r̂ = cos θî+ sin θĵ (5.3.1)

θ̂ =
(

cos
(
θ +

π

2

)
, sin

(
θ +

π

2

))
= − sin θî+ cos θĵ (5.3.2)

5.3.1 Position Vector

If a particle move along a curve r = r(θ), its position at any time t relative to O is P (r, θ)
and its position vector is

~r = rr̂ (5.3.3)

The above relation is already given by (5.2.5). The position vector in this system is same
as in polar plane system. Also it has only radial component as shown in Fig. 5.9.

Figure 5.9: Position vector in radial and transverse plane.

5.3.2 Radial and Transverse Components of Velocity

The velocity of P at any time t is

~v =
d~r

dt

=
d(rr̂)

dt

= ṙr̂ + r
dr̂

dt
(5.3.4)
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Let ~OQ = r̂ is fixed but its direction varies with θ (radial direction). Consider

dr̂

dt
=

dr̂

dθ

dθ

dt

= (− sin θ, cos θ)θ̇

= θ̇(− sin θ, cos θ)

Using (5.3.2)

dr̂

dt
= θ̇θ̂ (5.3.5)

Using (5.3.5), (5.3.4) becomes

~v = ṙr̂ + rθ̇θ̂ (5.3.6)

is the velocity of the particle at any time t. The radial component of velocity is

vr = ṙ

and the transverse component of velocity is

vt = rθ̇

Radial and transverse components of velocity are illustrated in Fig. 5.10

Figure 5.10: Radial and transverse components of velocity
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5.3.3 Radial and Transverse Components of Acceleration

The acceleration of the particle of P at any time t is

~a =
d~v

dt
=

d

dt
(ṙr̂ + rθ̇θ̂)

= ṙ
dr̂

dt
+ r̈r̂ + rθ̇

dθ̂

dt
+ rθ̈θ̂ + ṙθ̇θ̂

= r̈r̂ + ṙθ̇θ̂ + rθ̇(−θ̇r̂) + rθ̈θ̂ + ṙθ̇θ̂

=
(
r̈ − rθ̇2

)
r̂ +

(
2ṙθ̇ + rθ̈

)
θ̂ (5.3.7)

The radial component of acceleration is

ar = r̈ − rθ̇2

and the transverse component of acceleration is

at = 2ṙθ̇ + rθ̈

Radial and transverse components of acceleration are illustrated in Fig. 5.11

Figure 5.11: Radial and transverse components of acceleration

Example 5.3.1. A particle is constrained to move along the equiangular spiral r = aebθ, so

that the radius vector moves with constant angular velocity ω. Determine the velocity and

acceleration components.

Solution : From (5.1.3), angular distance at any time t is

θ(t) = ωt

θ̇ = ω

θ̈ = 0
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The path of the particle is

r = aebθ

Using (5.1.3), the path of the particle is

r(t) = aebωt

ṙ = ωabebωt

r̈ = ω2ab2ebωt

Using (5.3.6), the velocity of the particle at any time t is

~v = ṙr̂ + rθ̇θ̂

= ωabebωtr̂ + aωebωtθ̂

=
〈
abωebωt, ωaebωt

〉
The radial component of velocity is

vr = abωebωt

and the transverse component of velocity is

vt = aωebωt

Using (5.3.7), the acceleration of the particle at any time t is

~a =
(
r̈ − rθ̇2

)
r̂ +

(
2ṙθ̇ + rθ̈

)
θ̂

=
(
ω2ab2ebωt − aebωtω2

)
r̂ +

(
2ωabebωtω + aebωt(0)

)
θ̂

=
(
a(b2 − 1)ω2ebωt

)
r̂ +

(
2abω2ebωt

)
θ̂

=
〈
a(b2 − 1)ω2ebωt, 2abω2ebωt

〉
The radial component of acceleration is

ar = a(b2 − 1)ω2ebωt

and the transverse component of acceleration is

at = 2abω2ebωt

Example 5.3.2. Suppose we have an object that travels in a circle of constant radius 3

meters with a constant angular velocity of 2 radians per second. What are the expressions

for the position, velocity and acceleration as functions of time?
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Solution :
The given data is

r = 3

ω = 2

From r = 3, we can find

ṙ = 0

r̈ = 0

And from ω = 2, we can find

θ̇ = ω = 2 rad/s

θ = ωt = 2t rad

θ̈ = 0

The position as a function of time is trivial as

r(t) = 3

Using the relations between cartesian and polar coordinates, we have

x(t) = r cos(θ) = 3 cos(2t)

y(t) = r sin(θ) = 3 sin(2t)

In Cartesian coordinates, the expression for position would be

~r(t) = 3 cos(2t)̂i+ 3 sin(2t)ĵ

The velocity would be given by

v = ṙr̂ + rθ̇θ̂ (5.3.8)

= 0r̂ + 3(2)θ̂

= 0r̂ + 6θ̂

The velocity would have a radial speed of 0m/s and a tangential speed of 6m/s, both of
which were constant; i.e. the object would be traveling in a circle with a constant speed of
6m/s. In Cartesian coordinates, the expression for velocity would be

v(t) = = −6cos(2t)̂i+ 6sin(2t)ĵ. (5.3.9)

The acceleration would be given by

a = (r̈ − rθ̇2)r̂ + (2ṙθ̇ + rθ̈)θ̂
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so that

a = (0− 3(2)2)r̂ + (2(0)2 + 3(0))θ̂

which is simply

a = −12r̂ + 0θ̂

The acceleration has a constant magnitude of 12m/s2 and is directed towards the origin.
(Remember that positive r̂ points away from the origin.) This is the centripetal acceleration
as

ac =
v2

r

=
62

3
= 12 m/s2

There is no tangential component of the acceleration.
In Cartesian coordinates, the expression for acceleration would be:

a(t) = −12cos(2t)̂i− 12sin(2t)ĵ

5.4 Motion in Tangent and Normal Plane

We will discuss position, Velocity and acceleration of a Particle in this plane.
Let us consider the motion of a particle, which describes the curve C from A to B in
xy plane. The distance moved from A to B is the arc AB and its measure is the arc length
denoted by s and is defined as

ÂB = s =

∫ tB

tA

∥∥∥∥drdt
∥∥∥∥ dt (5.4.1)

Let P be the position of the particle at any time t. Let Q be the neighboring position along
the curve at time t+ ∆t. Then the small distance from P to Q is

P̂Q = ∆s

Next the position vectors of P and Q are

~OP = ~r

~OQ = ~r + ∆~r

Let ~v and ~v+ ∆~v be the velocities along the tangents to the curve at P and Q respectively.
Then from the Fig.

~PQ = ∆~r (5.4.2)
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Figure 5.12: Path of the particle

Which is the displacement during the time ∆t. Then the average velocity is

~vavg =
∆~r

∆t
(5.4.3)

and proceeding to the limit ∆t → 0, we obtain the actual velocity of the particle at any
time t

~v = lim
∆t→0

∆~r

∆t

=
d~r

dt

Here ∆r and ∆t are very very small quantities and are differentiable functions of time t.
Again consider Eq.(5.4.3)

~vavg =
∆~r

∆t
=

∆~r

∆s

∆s

∆t

Now proceeding limit as Q→ P , we have

~v = lim
Q→P

∆~r

∆t
= lim

Q→P

∆~r

∆s

∆s

∆t

=
dr

dt
= lim

∆s→0

∆~r

∆s
lim

∆t→0

∆s

∆t

=
d~r

ds

ds

dt

= ṡ
d~r

ds
(5.4.4)

Here d~r
ds is a vector in the direction of ~PQ. Next we show that it is a unit vector as∣∣∆r

∆s

∣∣ =
|∆r|
∆s

=
chord PQ

arc PQ
=
|PQ|
P̂Q
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In limiting case ∆s→ 0, then chord PQ ≈ arc PQ and we have ∆s ≈ ∆r. Hence

lim
∆s→0

|∆r|
∆s

=
∆r

∆r
= 1

or we can write as

d~r

ds
= lim

∆s→0

∆~r

∆s

= lim
∆s→0

∣∣∆~r
∆s

∣∣t̂ = 1 · t̂

= t̂ (tangent unit vector) (5.4.5)

Using (5.4.5), (5.4.4)can be written as

~v = ṡt̂ (5.4.6)

The velocity has only tangential component. The magnitude of velocity is

|~v| = v = ṡ (5.4.7)

From (5.4.28), the path or arc length moved by the particle in time interval T is

s =

T∫
0

√
vdt (5.4.8)

Next the acceleration is given as

~a =
d~v

dt
=

d

dt

(
ṡt̂
)

= s̈t̂+ ṡ
d

dt
t̂

consider

dt̂

dt
=

dt̂

ds

ds

dt

= ṡ
dt̂

ds

Here dt̂
ds is a vector whose magnitude is

∣∣ dt̂
ds

∣∣ = κ

then

dt̂

ds
= κn̂
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Hence the acceleration is given as

~a = s̈t̂+ ṡ2κn̂ (5.4.9)

When the particle is moving along a circular path with uniform speed, then the tangential
component of acceleration is zero, and we have only its normal component.

~a = ṡ2κn̂

= v2κn̂ (5.4.10)

Let κ = 1
r , then the magnitude of this acceleration is

a =
v2

r
(5.4.11)

If a particle of mass m is stretched by a massless string and allowed to move along a circular
path with uniform speed, as shown in Fig. 5.13 then according to Newton’s second law of

Figure 5.13: Circular Motion

motion, the magnitude of the centripetal force Fc is given by

Fc = mac

= m
v2

r
(5.4.12)

This force is provided by the tension T in the string. Hence its magnitude is

T = m
v2

r

Suppose that the string is such that it breaks up whenever the tension in it exceeds a certain
critical value Tm. It follows that there is a maximum velocity with which the weight can
be whirled around, and that speed is

vm =

√
rTm
m

(5.4.13)
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If v exceeds vm then the string will break, and the weight will cease to be subject to a
centripetal force, so it will fly off with velocity vm along the straight-line which is tangential
to its executed circular path.
There is another force, known as centrifugal force, equal in magnitude but acts in the
opposite direction of centripetal force.

Figure 5.14: Centripetal force and centrifugal force

Example 5.4.1. A particle of mass 0.50 kg is attached with a massless string of length one

meter. Let it is moving in a circle with speed 10 m/s. Find the tension in the string.

Solution The given data is

m = 0.50 kg

r = 1 m

v = 5 m/s

Fc = m
v2

r

T = 0.5
(10)2

1
= 50 N

Example 5.4.2. A particle is constrained to move along a circular helix represented by

~r = a cosωt̂i+ a sinωtĵ + btk̂ (5.4.14)
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Show that the distance moved by the particle in one full turn of the helix is 2π
ω

√
a2ω2 + b2

Solution : For z = 0, ~r represents a circle, a projection of ~r in xy plane.

~r = a cosωt̂i+ a sinωtĵ (5.4.15)

The particle starts at t = 0, and rotates in a circle of radius a about z axis with angular
velocity ω. So the time required to complete one full turn of the helical path is T = 2π

ω
At any time t(o < t < T ), the position vector is

~r = ~r(t)

= a cosωt̂i+ a sinωtĵ + btk̂

= 〈a cosωt, a sinωt, bt〉 (5.4.16)

the velocity is

~v =
d~r

dt
= 〈−aω sinωt, aω cosωt, b〉 (5.4.17)

The speed (magnitude of velocity) is given by

v =

∥∥∥∥drdt
∥∥∥∥

=
√

(−aω sinωt)2 + (aω cosωt)2 + (b)2

=
√
a2ω2 + b2

using (5.4.8), we can find the distance moved by the particle as

s =

∫ T

0
vdt =

∫ 2π
ω

0

√
a2ω2 + b2dt

=
2π

ω

√
a2ω2 + b2 (5.4.18)

Hence the result.

Example 5.4.3. A particle is constrained to move along a circular helix so that its coordi-

nates at any time t are (a cos θ, a sin θ, aθ tanα), where a > 0, 0 < α < π
2 are constants. The

speed increases linearly with time t from zero at t = 0 to V at t = T . Find the acceleration

at any time t < T , the motion taking place in the sense of θ increasing and starting from

the point (a, 0, 0).
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Solution : At any time t (o < t < T ), the position vector is

~r = ~r(θ)

= a〈cos θ, sin θ, θ tanα〉 (5.4.19)

the velocity is

~v =
d~r

dt
=
d~r

dθ

dθ

dt

= aθ̇〈− sin θ, cos θ, tanα〉 (5.4.20)

The speed (magnitude of velocity) is given by

v =

∥∥∥∥d~rdt
∥∥∥∥

= aθ̇
√

(− sin θ)2 + (cos θ)2 + (tanα)2

= aθ̇
√

1 + (tanα)2

= aθ̇ secα (5.4.21)

Using Eq. (5.4.21), Eq. (5.4.20) becomes

~v = aθ̇ secα〈− cosα sin θ, cosα cos θ, sinα〉 (5.4.22)

But

~v = vt̂ (5.4.23)

From Eqs. (5.4.22) and (5.4.23) we have

t̂ = 〈− cosα sin θ, cosα cos θ, sinα〉 (5.4.24)

Next the speed at any time t is

v = at (5.4.25)

The speed increases linearly with time t from zero at t = 0 to V at t = T , then acceleration
can be found as

a =
V

T
(5.4.26)

Using Eq. (5.4.26), Eq. (5.4.25) becomes

ṡ = v =
V

T
t (5.4.27)

Using Eq. (5.4.27). Eq. (5.4.21) becomes

~v =

(
V

T
t

)
t̂ (5.4.28)
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Which is the velocity of the particle at any time t, with t̂ is given by Eq.(5.4.24)
Next the acceleration of the particle is given by

~a = s̈t̂+ ṡ2κn̂ (5.4.29)

Consider Eq. (5.4.27), s̈ is given as

s̈ =
V

T
(5.4.30)

Next we need only κ and n̂, given by the relation

dt̂

ds
= κn̂ (5.4.31)

where s is the arc length, n̂ is the unit vector, and κ is

κ =
∣∣ dt̂
ds

∣∣
Since t̂ = t̂(θ), then Eq. (5.4.31) can be written as

dt̂

ds
=

dt̂

dθ

dθ

ds
(5.4.32)

first right part of Eq. (5.4.32) is

dt̂

dθ
= 〈− cosα cos θ,− cosα sin θ, 0〉 (5.4.33)

For dθ
ds , consider Eq. (5.4.21) and Eq. (5.4.27), we have

aθ̇ secα =
V

T
t

θ̇ =
V

aT
(cosα)t (5.4.34)

Integrating Eq. (5.4.34) with respect to t

θ =
V

aT
(cosα)

t2

2
+ C

at t = 0, θ = 0 ⇒ C = 0

θ(t) =
V

aT
(cosα)

t2

2
(5.4.35)

Here we find that θ is a function of t, so we can write

dθ

ds
=

dθ

dt

dt

ds
=
dθ

dt

1
ds
dt

=
θ̇

ṡ
(5.4.36)
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From Eqs. (5.4.27) and (5.4.34), Eq. (5.4.36) can be written as

dθ

ds
=

V

aT
(cosα)t× T

V t

=
cosα

a
(5.4.37)

Using Eqs. (5.4.33) and (5.4.37), Eq. (5.4.32) becomes

dt̂

ds
=

cos2 α

a
〈− cos θ,− sin θ, 0〉 (5.4.38)

so κ is

κ =
∣∣ dt̂
ds

∣∣ =
cos2 α

a
(5.4.39)

and n̂ is

n̂ = 〈− cos θ,− sin θ, 0〉 (5.4.40)

Finally the acceleration is given by

a =
V

T
t̂+
(V t
T

)2 cos2 α

a
n̂ (5.4.41)

Where t̂ and n̂ are given by Eqs. (5.4.24) and (5.4.40) respectively.

5.4.1 Equation of Motion of Simple Pendulum

Consider OXY a cartesian coordinate system. Let a particle of m is attached with a
massless string of length l, with other end fixed at O, forming a simple pendulum, as shown
in Fig. 5.15. At any time t, the particle be at P (x, y) = P (r, θ). Then by Newton’s second
law of motion its equation of motion is

F = −mg sin θ

ma = −mg sin θ

a = −g sin θ (5.4.42)

Here g is the acceleration due to gravity near the surface of the earth. The negative sign
on right hand side of (5.4.42) implies that θ and a always acts in opposite directions. Since
r = l is fixed, then using trigonometric relation

s = rθ = lθ

differentiating with respect to t

ds

dt
= l

dθ

dt

v = lθ̇
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Figure 5.15: Simple Pendulum

a =
du

dt
= lθ̈ (5.4.43)

Using (5.4.43) in (5.4.42)

lθ̈ = −g sin θ

θ̈ − g

l
sin θ = 0

θ̈ + ω2 sin θ = 0 (5.4.44)

with ω =

√
g

l
is the frequency of oscillation.

(5.4.44) is equation of motion of a simple pendulum.
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Exercises

1. A particle of mass 10 kg moves in a circle of radius 15 m with an angular speed of
2 rad/s. Find

(a) Its linear speed

(b) Its linear acceleration

(c) Its angular acceleration

(d) the centripetal force

2. A radar fixed on the ground, tracks the circular motion of a rocket under the gravi-
tational force only. At an instant, the rocket is at a distance of r = 75 km away from
the radar with an inclination of θ = π

3 with the ground. At that instant the rocket
has linear speed of ṙ = 1700 m/s and angular speed as ω = 0.8 degree/s. Find

(a) Its transverse component of velocity

(b) Its velocity and speed

(c) Its radial and transverse components of acceleration.

(d) Magnitude of acceleration.

(d) r̈ and θ̈

3. A particle is constrained to move along a circle helix so that its coordinates at any
time t are (a cos θ, a sin θ), where a > 0, is constants. The speed increases linearly
with time t from zero at t = 0 to V at t = T . Find the acceleration at any time
t < T , the motion taking place in the sense of θ increasing and starting from the
point (a, 0).

4. A particle is constrained to move along a circular helix so that its coordinates at any
time t are (a cos θ, a sin θ, bθ), where a > 0, b 6= 0 are constants. The speed increases
linearly with time t from zero at t = 0 to V at t = T . Find the acceleration at any
time t < T , the motion taking place in the sense of θ increasing and starting from
the point (a, 0, 0).
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Chapter 6

Simple Harmonic Motion

A periodic motion in which the displacement is symmetrical about a point is called harmonic
motion. It may be discussed as simple harmonic motion, damped harmonic motion, forced
harmonic motion and forced and damping harmonic motion. First consider simple harmonic
motion.

6.1 Simple Harmonic Motion

A very special kind of motion occurs when the force acting on a body is proportional to the
displacement of the body from some equilibrium position. If this force is always directed
toward the equilibrium position, and repetitive back and forth motion occurs about this
position, such motion is called periodic, harmonic, oscillation, or vibration motion (the four
terms are completely equivalent). To explain this oscillatory motion, we present spring mass
system.

6.1.1 Spring Mass System with Horizontal Oscillatory Motion.

Consider a physical system that consists of a block of mass m attached to the end of a
spring, whose other end is fixed in the wall, and the block is free to move on a horizontal,
frictionless surface. See Fig. 6.1. When the spring is neither stretched nor compressed,
the block is at the position x = 0 called the equilibrium position of the system. Let this
position is O. When the block is displaced a small distance x from equilibrium, the spring
exerts a force on the block that is proportional to the displacement and given by Hookes
law

Fr = −kx (6.1.1)

where k is a constant of proportionality called the spring constant. The spring is essentially
characterized by the number k. This force is called restoring force as it is always directed
toward the equilibrium position, opposite the displacement. That is, when the block is

109
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Figure 6.1: The system is at rest

Figure 6.2: Simple harmonic motion

displaced to the right of O in Figure 6.2, then the displacement is positive and the restoring
force is directed to the left. When the block is displaced to the left of O, then the dis-
placement is negative and the restoring force is directed to the right. This is the only force
acting on the block. Then by Newtons second law of motion, its equation of motion is

F = Fr

ma = −kx

a = − k
m
x (6.1.2)

Take

ω =

√
k

m
(6.1.3)
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is the angular frequency, then (6.1.2) can be written as

a(t) = −ω2x(t) (6.1.4)

(6.1.4) shows that the motion is with variable acceleration and this acceleration is propor-
tional to the displacement of the block, and is directed in the opposite direction of the
displacement (directed towards the equilibrium position). Systems that behave in this way
are said to exhibit simple harmonic motion. Thus simple harmonic motion can be defined
as
An object is said to execute simple harmonic motion whenever its acceleration
is proportional to its displacement from some equilibrium position and is oppo-
sitely directed.
This equilibrium position is called center of simple harmonic motion. If x = x2 is the center
of simple harmonic motion, then equation of simple harmonic motion is

a(t) = −ω2 (x(t)− x2) (6.1.5)

6.1.2 Spring Mass System with Vertical Oscillatory Motion.

Suppose that a flexible spring is suspended vertically from a rigid support (see Fig. 6.3 (a))
and then a mass m is attached to its free end. The amount of stretch, or elongation, of the
spring depends on the mass. By Hookes law the restoring force is

Figure 6.3: Simple harmonic motion

Fr = −ks

And the mass attains an equilibrium position at which its weight W = mg is balanced by
the restoring force ks (see Fig. 6.3 (b)).

mg = ks

mg − ks = 0 (6.1.6)
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If the mass is pulled down a distance x from its equilibrium position, the new restoring
force of the spring is

Fr = −k(x+ s)

Assuming that there are no retarding forces acting on the system, then by Newtons second
law of motion, its equation of motion is

F = Fr +W

ma = −kx− ks+mg (6.1.7)

Using (6.1.6), (6.1.7) becomes

a = − k
m
x

The same expression for acceleration as given in (6.1.2) and consequently we have the same
equation of motion. Hence we have same equation of motion for both horizontal and vertical
oscillatory motions.

6.2 Expression of velocity and Position in Simple Harmonic

Motion

: Let the block of mass m is pulled a distance x = x1 from its equilibrium position (from
O at x = 0) and is released from rest at time t = 0. Then its initial data (at P ) is

t = t0 = 0

v = v0 = 0

x = x0 = x1

From (6.1.4), we can say that the motion is taking place in such a way that when the
particle is moving towards O (equilibrium position), the acceleration is acting along it so
that as the time progresses, the velocity becomes higher and higher and when the particle
is moving away from O, the acceleration is acting against it so that as the time progresses,
the velocity becomes lesser and lesser. Let at time t = t1, the particle is at O with velocity
v = v1. Then the final data (at O) is

t = t1

v = v1

x = x1
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Since acceleration can be expressed as a function of velocity

a = v
dv

dx
(6.2.1)

Using (6.2.1), (6.1.4) can be written as

v
dv

dx
= −ω2x (6.2.2)

(6.2.2) is separable first order differential equation and can be solved as

v2

2
= −ω2x

2

2
+A (6.2.3)

The constant of integration A can be evaluated by using initial data

0 = −ω2x
2
1

2
+A

A = ω2x
2
1

2
(6.2.4)

Using (6.2.4), (6.2.3) can be written as

v2 = ω2
(
x2

1 − x2
)

Hence the velocity is

v = ω
√(

x2
1 − x2

)
(6.2.5)

Equation (6.2.5) gives the velocity of the particle at any time t. Since v = dx
dt , then (6.2.5)

can be written as

dx

dt
= ω

√(
x2

1 − x2
)

(6.2.6)

(6.2.6) is a separable first order differential equation, and can be solved as

dx√(
x2

1 − x2
) = ωdt

Integrating

sin−1 x

x1
= ωt+B (6.2.7)

The constant of integration B can be evaluated by using initial data

sin−1 x1

x1
= ω(0) +B

B = sin−1(1)

=
π

2
(6.2.8)
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Using (6.2.8), (6.2.7) can be written as

sin−1 x

x1
= ωt+

π

2
x

x1
= sin

(
ωt+

π

2

)
x = x1 cos (ωt) (6.2.9)

Since

cos (ωt) ≤ 1

it follows that the numerical value of x cannot be greater than x1. Thus the particle is
bound to stay within a distance x1 from the fixed point O. The length x1 is called the
amplitude of the motion. The point O is referred to as the centre of motion. Following
equation (6.2.5), the velocity of the particle at amplitude of the motion is zero and at the
centre of motion

()v = v1 = ωx1 (6.2.10)

Equation (6.2.10) gives the maximum velocity of the particle executing simple harmonic
motion. If we consider the motion starts from O, then the initial data (at O) is

Figure 6.4: Plot of displacement vs. time for Simple harmonic motion.

t0 = 0

v0 = v

x0 = 0
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Then the constant of integration B can be evaluated as

sin−1 0

x1
= ω(0) +B

B = sin−1(0)

= 0 (6.2.11)

Using (6.2.11), (6.2.7) can be written as

sin−1 x

x1
= ωt

x

x1
= sin (ωt)

x = x1 sin (ωt) (6.2.12)

(6.2.9) gives the displacement of the object from equilibrium position O, at any time t,

Figure 6.5: Plot of displacement vs. time for Simple harmonic motion.

when we consider its motion starts from P and (6.2.12) gives the displacement of the object
from equilibrium position P , at any time t, when we consider its motion starts from O.
From (6.2.9) and (6.2.12), the displacement has different expression due to different bound-
ary conditions. Similarly other boundary conditions give still different forms for displace-
ment.
For a general solution of (6.1.4), the acceleration can be written as

a =
d2x

dt2
(6.2.13)
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Using (6.2.13), (6.1.4) can be written as

d2x

dt2
= −ω2x

d2x

dt2
+ ω2x = 0 (6.2.14)

(6.2.14) is second order homogeneous differential equation. Its characteristic equation is

m2 + ω2 = 0 (6.2.15)

(6.2.15) has imaginary roots as

m = ± iω

and the solution is

x(t) = C1 cosωt+ C2 sinωt (6.2.16)

If we suppose the constants as C1 = A cosφ and C2 = −A sinφ, then (6.2.16) can be written
as

x(t) = A(cosφ cosωt− sinφ sinωt)

= A cos(ωt+ φ) (6.2.17)

Similarly

x(t) = A sin(ωt+ φ) (6.2.18)

Here φ is known as phase constant.

φ = tan−1

(
−C1

C2

)
(6.2.19)

(6.2.17) and (6.2.18) are the general expressions of displacement for simple harmonic motion.

6.2.1 Simple Harmonic Motion is Periodic

: A motion which repeats itself in time is called periodic motion. (6.2.9) can also be written
as

x = x1 cos (ωt+ 2π)

= x1 cos

(
ω

(
t+

2π

ω

))
(6.2.20)
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The velocity of the object is the time derivative of (6.2.9)

v =
dx

dt
= x1 ω sin (ωt)

= x1 ω sin (ωt+ 2π)

= x1 ω sin

(
ω

(
t+

2π

ω

))
(6.2.21)

And the acceleration can also be written as

a =
dv

dt
=
d2x

dt2
= −x1 ω

2 cos (ωt)

= −x1 ω
2 cos (ωt+ 2π)

= −x1 ω
2 cos

(
ω

(
t+

2π

ω

))
(6.2.22)

From (6.2.20), (6.2.21) and (6.2.22), we observe that the displacement, velocity and accel-
eration of the object executing simple harmonic motion are the same after an addition of
2π
ω in time t. Therefore simple harmonic motion is periodic of period 2π

ω . This time period
is denoted by T .

T =
2π

ω
(6.2.23)

Equation (6.2.23) indicates that time period depends only on frequency of oscillation and
is independent of amplitude.

6.2.2 Maximum Speed and Acceleration

From (6.2.14), we can find maximum speed as

vmax = maximum of

[
x1 ω sin

(
ω

(
t+

2π

ω

))]
This maximum occurs when sin (ωt+ 2π) is maximum, and

max (sin (ωt+ 2π)) = 1

Hence maximum speed is

vmax = x1 ω (6.2.24)

The maximum speed occurs at equilibrium position of the oscillation (at x = 0).
From (6.2.15), we can find the magnitude of maximum acceleration as

amax = maximum of

[
−x1 ω

2 cos

(
ω

(
t+

2π

ω

))]
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This maximum occurs when cos (ωt+ 2π) is maximum, and

max (cos (ωt+ 2π)) = 1

Hence magnitude of maximum acceleration is

amax = x1 ω
2 (6.2.25)

The magnitude of acceleration is greatest at the ends of the oscillation (at x = ±x1). The

Figure 6.6: Displacement velocity and acceleration of Simple harmonic motion at mean and end
points.

displacement, velocity and acceleration of an object at different positions are illustrated in
Fig. 6.6

6.3 Simple Harmonic Motion with Centre other than Origin

If the centre of simple harmonic motion is other than origin, say x = b, its equation of
motion is

ẍ+ ω2(x− b) = 0

Before going next, we present some definitions, considering the above spring mass example.
Oscillation or Vibration: The distance covered by the particle in time period T is called
oscillation
In spring mass example, the particle is at rest at P having distance x = x1 from O. Next
it is released from P to move towards O, at time t = 0. As the time progresses, it moves
towards O and its velocity increases to its maximum value v = x1 ω at O. The particle then
moves to the left of O and its velocity decreases and becomes zero at x = −x1. Next the
particle retrace its motion backwards and comes to rest at x = x1, i.e. it reaches at P and
completes one round known as one oscillation or vibration. The motion is then repeated.
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Frequency: The number of oscillation per unit time is called frequency. It is denoted by
f . Mathematically can be written as

f =
1

T
(6.3.1)

The frequency of spring mass system is

f =
ω

2π
(6.3.2)

or =
1

2π

√
k

m

Equation (6.3.2) indicates that the angular frequency ω and the frequency f are closely
related with a factor 2π. We normally express ω in rad/s and f in cycle/s or Hz (Hertz).
However, the real dimensions of both are 1/s in SI system.
Amplitude: The maximum distance covered by the particle on either side of equilibrium
position (i.e. from O) is called amplitude of simple harmonic motion. In above motion,
sinωt ≤ 1 so x = x1 is the amplitude. It is also equal to one-half of the total range of
motion 1

2 (xmax − xmin). In spring mass example, xmax = x1 and xmin = −x1, and the
amplitude is

A =
1

2
(xmax − xmin)

=
1

2
(x1 + x1)

= x1 (6.3.3)

Phase of the Motion: The time varying quantity (ωt + φ) is called the phase of the
motion.
Phase Constant or Phase Angle: The constant φ is called the phase constant or phase
angle. Its value depends on the displacement and velocity of the particle at t = 0. The
general expression for displacement is

x(t) = A cos(ωt+ φ)

at t = 0, the displacement is

x(0) = A cosφ (6.3.4)

and the velocity is

v(t) = = −ωA sin(ωt+ φ)

at t = 0, the displacement is

v(0) = −ωA sinφ (6.3.5)
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From (6.3.4) and (6.3.5), we can write

v(0)

x(0)
= −ω tanφ

or

φ = tan−1

(
− v(0)

ωx(0)

)
(6.3.6)

(6.3.6) gives the phase angle.

6.4 Kinetic and Potential Energies of Spring Mass System

The kinetic and potential energies of this system are as under.

6.4.1 Kinetic Energy

The energy due to motion of a particle is kinetic energy. It is denoted by T . In this unit T
stands for time period, so K is used to denote the kinetic energy. The kinetic energy of a
system is

K =
1

2
mv2

The velocity of the system is given by (6.2.5), using ω2 = k
m , the velocity of the system is

v =

√
k

m

(
x2

1 − x2
)

(6.4.1)

Using (6.4.1), the kinetic energy of the system is

K =
1

2
k
(
x2

1 − x2
)

(6.4.2)

The graph of the kinetic energy of spring mass system is illustrated in Fig. 6.7. The kinetic
energy is maximum at its mean position (at x = 0) and is zero (minimum) at its endpoints
(x = ±x1)

6.4.2 Potential Energy

In spring mass system, the force (restoring force) is given by (6.4.3)

F = −kx
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Figure 6.7: Kinetic energy of spring mass system

Since the force is conservative, there exist a potential function U such that

F = −dU
dx

Or we can write

U =

b∫
a

F =

b∫
a

kx

Let the limits of integration are from 0→ x, then the potential energy of the system is

U =

x∫
0

kx

=
1

2
kx2 (6.4.3)

The graph of the potential energy of spring mass system is illustrated in Fig. 6.8. The
potential energy is maximum at its endpoints (x = ±x1) and is zero (minimum) at its mean
position (at x = 0)

6.4.3 Total Energy of Spring Mass System is Constant

Let F be the force acting on the system, then by Newton’s second law of motion, we can
write

F = ma
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Figure 6.8: Potential energy of spring mass system

Using the force given by (6.4.3) and a = ẍ, we have

−kx = mẍ (6.4.4)

Multiplying ẋ on both sides of (6.4.4), we have

−kxẋ = mẋẍ (6.4.5)

(6.4.5) can also be written as

−1

2
k
dx2

dt
=

1

2
m
dẋ2

dt

− d

dt

(
1

2
kx2

)
=

d

dt

(
1

2
mẋ2

)
d

dt

(
1

2
mẋ2 +

1

2
kx2

)
= 0

1

2
mẋ2 +

1

2
kx2 = C (constant)

E = K + U = C (6.4.6)

Hence the total energy of spring mass system is constant as shown in Fig. 6.9

Example 6.4.1. A block of mass 680 g is fastened to a spring whose spring constant is

65 N/m. The block is pulled a distance 11 cm from its equilibrium position at x = 0 on a

frictionless surface and released from rest at t = 0.

a) What is the angular frequency?
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Figure 6.9: Total energy of spring mass system

b) What is the time of the resulting motion (time period)?

c) What is the frequency of oscillation?

d) What is the amplitude of oscillation?

e) What is the maximum speed vmax of the oscillating block, and where is the block when

it has this speed?

f) What is the magnitude of maximum acceleration amax of the motion, and where is the

block when this acceleration occur?

g) What is the phase constant φ of the motion?

h) What is the displacement function x(t) for the moving block?

i) What is the kinetic energy function for the moving block?

j) What is the potential energy function for the moving block?

k) Find the extreme values of kinetic and potential energies.
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l) What is the total energy function for the moving block?

Solution The given data is

m = 680 g = 0.68 kg

k = 65 N/m

And the initial data is (at t = 0 )

x(0) = 11 cm = 0.11 m

v(0) = ẋ(0) = 0m/s

a) Using (6.1.3), the angular frequency is:

ω =

√
k

m

=

√
65

0.68
= 9.87 rad/s

b) Using (6.2.23), the time period is:

T =
2π

ω

=
2π

9.87
= 0.636594 ∼= 0.64 s

c) Using (6.3.1), the frequency is:

f =
1

T

=
1

0.636594
= 1.57086 ∼= 1.6 Hz

d) Using (6.3.3), the amplitude is:

A = x1

= 0.11 m

e) Using (6.2.24), the maximum speed vmax is:
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vmax = x1 ω

= (0.11)(9.87) = 1.0857
∼= 1.1 m/s

The block has maximum speed at x = 0

f) Using (6.2.25), the greatest magnitude of acceleration amax is:

amax = x1 ω
2

= (0.11)(9.87)2 = 10.715859
∼= 10.7 m/s2

g) The phase constant φ, can be calculated as:

At t = 0, the displacement and velocity are

x(0) = 11 cm = 0.11 m

v(0) = 0 m/s

Using these values in (6.3.6)

φ = tan−1

(
− v(0)

ωx(0)

)
= tan−1

(
− 0

(9.87)(0.11)

)
= tan−1 (0)

= 0 rad.

h) Using (6.2.17), the displacement function x(t) for the moving block is:

x(t) = A cos(ωt+ φ)

= 0.11 cos(9.87t+ 0)

= 0.11 cos(9.87t) m

i) Using (6.4.2), the kinetic energy function for the moving block is:

K =
1

2
k
(
x2

1 − x2
)

=
1

2
(65)

(
(0.11)2 − x2

)
= 0.3933− 32.5x2
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Figure 6.10: Path of motion

j) Using (6.4.3), the potential energy function for the moving block is:

U =
1

2
kx2

=
1

2
(65)x2

= 32.5x2

k) The extreme values of kinetic and potential energies exist at mean and end positions.
The kinetic energy is minimum at end points (at x = ±0.11) and maximum at mean
position (at x = 0). The values are as under:

Kmin = 0

Kmax = 0.3933

The potential energy is maximum at end points (at x = ±0.11) and minimum at mean
position (at x = 0). The values are as under:

Umax = 0.3933

Umin = 0

l) The total energy of the system is

E = K + U

= (0.3933− 32.5x2) + 32.5x2

= 0.3933J

The energy of the system is constant.
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6.5 Relation Between Uniform Circular Motion and Simple

Harmonic Motion

There is a correspondence between simple harmonic motion and uniform circular motion.
Consider a particle P moves at constant speed v around a circle of radius r. At the instant
t, P has coordinates (x, y). Then the radius vector ~OP = ~r makes an angle θ with x axis.
Also the x coordinate in polar form is

x = r cos θ

The velocity component along x axis is

vx =
dx

dt
= −r sin θ

dθ

dt
= −r sin θ ω

The acceleration component along x axis is

ax =
dvx
dt

= −r cos θ
dθ

dt
ω

= −xω2

Hence the system executes simple harmonic motion.

6.5.1 Time Period of Uniform Circular Motion

The relation between linear and angular speed is

v = rω

Let the particle complete one rotation in time T , the distance covered is

s = 2πr

The time T is given by the relation

T =
distance

speed

=
2πr

rω

=
2π

ω
(6.5.1)

Example 6.5.1. The wheel of a car has a radius of 0.30 m and it being rotated at 15

revolutions per second on a tire-balancing machine. Determine the angular speed and the

speed at which the wheel moves at the outer edge.
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Solution The given data is

r = 0.30 m

f = 15 Hz

The time period is

T =
1

f
=

1

15
= 0.0667 s

The angular speed is

ω =
2π

T
=

2π

0.0667
= 94.274 m/s

And the speed at which the outer edge of the wheel moving is

v =
2πr

T
=

2π(0.3)

0.0667
= 28.274 m/s

Example 6.5.2. The Simple Pendulum

From (5.4.44), the equation of motion of a simple pendulum is

θ̈ = −ω2 sin θ

with

ω =

√
g

l
(6.5.2)

is the frequency of oscillation. The angle θ is defined with respect to the equilibrium
position. When θ > 0 , the bob has moved to the right, and when θ < 0 , the bob has
moved to the left. The object will move in a circular arc centered at the pivot point in
the absence of any dissipation due to air resistance or frictional forces acting at the pivot.
When there is small oscillation, i.e. θ is very very small, we can write sin θ ∼= θ, then above
equation can be written as

θ̈ = −ω2θ

which now represents simple harmonic motion.

Example 6.5.3. A simple pendulum has a period of 2.50 s.



6.5 Relation Between Uniform Circular Motion and Simple Harmonic Motion 129

Figure 6.11: Simple Pendulum

a) What is the angular frequency?

b) What is its length?

c) What would be its angular frequency on the Moon, if gMoon = 1.67m/s2?

d) What would be its period on the Moon?

Solution The given data is

T = 2.50 s

g = 9.80 m/s2

a) The angular frequency is

ω =
2π

T
=

2π

2.5
= 2.5133 rad/s

b) The length of the pendulum is

Since the angular frequency is

ω =

√
g

l

or the length is

l =
g

ω2
=

9.8

(2.5133)2

= 1.5515 m
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c) Its angular frequency on the Moon is

If we take this pendulum on the Moon, it will oscillate under Moon’s acceleration of gravity
with same length, so its angular frequency is

ω =

√
g

l
=

√
1.67

(1.5515)

= 1.0375 rad/s

d) Its period on the Moon is

T =
2π

ω
=

2π

1.0375
= 6.056 ∼= 6.06 s

6.5.2 Damped Oscillatory Motion

In many real situations, there is some damping, or loss of mechanical energy, which is
dissipated as heat. In our example spring mass system, damping may be caused by friction
between the block and the surface. Also this damping may be that the constant bending
and stretching of the spring produces heat. In any case, in addition to the restoring force kx,
there is also a damping force that is proportional to a power of the instantaneous velocity
of the particle. In this discussion, we shall assume that power one. Then the magnitude of
this damping force is

F = −bẋ

Where b > 0 is damping constant and negative sign indicates that the damping force acts
in a direction opposite to the direction of motion. Then by Newton’s second law of motion,
the equation of motion is

F = −kx− bẋ
mẍ+ bẋ+ kx = 0 (6.5.3)

(6.5.3) is second order homogenous linear differential equation with constant coefficients.
Its linear standard form is

ẍ+
b

m
ẋ+

k

m
x = 0

ẍ+ βẋ+ ω2x = 0 (6.5.4)

with β = b
m is damping constant. Let

x = emt (6.5.5)
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be the solution of (6.5.4). Then its characteristic equation is

d2 + βd+ ω2 = 0 (6.5.6)

(6.5.6) has roots

d =
−β ±

√
β2 − 4ω2

2
(6.5.7)

The nature of the roots depends on the value β2 − 4ω2, and we thus classify the damping
on this basis.

Case 1. If β2 − 4ω2 = 0, the system has critical damping.

Case 2. If β2 − 4ω2 < 0, the system is under damped has light damping.

Case 3. If β2 − 4ω2 > 0, the system is over damped or has heavy damping.

Case 1. Critical damping

When β2 − 4ω2 = 0, the characteristic equation (6.5.6) has equal roots:

d = −β
2

and the solution is

x(t) = A1e
−(β/2)t +A2te

−(β/2)t

= (A1 +A2t) e
−(β/2)t (6.5.8)

The motion is aperiodic (non-periodic) and non-oscillatory. Taking limit t→∞ of (6.5.8)

lim
t→∞

x(t) = lim
t→∞

(A1 +A2t) e
−(β/2)t

= 0 (by L’Hospital’s rule) (6.5.9)

Thus x→ 0 as t→∞. Hence the motion decays with time as shown in Fig. 6.12.

Case 2. Light damping

When β2 − 4ω2 < 0, the characteristic equation (6.5.6) has imaginary roots:

d =
1

2
(−β ± iγ)

with −γ2 = β2 − 4ω2 and the solution is

x(t) = e−(β/2)t(B1 cos γt+B2 sin γt) (6.5.10)



132 6 Simple Harmonic Motion

Figure 6.12: Critical damping

Set the constants B1 = B sinφ and B2 = B cosφ, then (6.5.10) is

x(t) = Be−(β/2)t(sinφ cos γt+ cosφ sin γt)

= Be−(β/2)t (sin (φ+ γt)) (6.5.11)

(6.5.11) represents simple harmonic motion with amplitude

A = Be−(β/2)t (6.5.12)

Taking limit t→∞ of (6.5.12)

lim
t→∞

A = lim
t→∞

Be−(β/2)t

= 0 as k > 0 (6.5.13)

Thus the amplitude decays with time and is damping. Consequently x → 0 as t → ∞.
Hence the motion decays with time as shown in Fig. 6.13. This motion is called damped
oscillatory motion.

Case 3. Heavy damping

When β2− 4ω2 > 0, the characteristic equation (6.5.6) has negative real and distinct roots:

d = −a,−b

with

−a = d1 =
−β +

√
β2 − 4ω2

2

−b = d2 =
−β −

√
β2 − 4ω2

2
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Figure 6.13: Light damping

and the solution is

x(t) = C1e
−at + C2e

−bt (6.5.14)

This motion is also aperiodic and non-oscillatory. Taking limit t→∞ of (6.5.14)

lim
t→∞

x(t) = lim
t→∞

(
C1e

−at + C2e
−bt
)

= 0 (6.5.15)

Thus x → 0 as t → ∞. Hence the motion decays with time as shown in Fig. 6.14. The
three damping cases, collectively are shown in Fig. 6.15.

Example 6.5.4. A block of mass 500 g is fastened to a spring whose spring constant is

2 N/m. The block is pulled a distance one meter from its equilibrium position on a surface

and is released with velocity 1 m/s. Assuming 5 is the damping constant of the surface.

Find

a) the angular frequency.

b) the restoring force.

c) the damping force function.
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Figure 6.14: Heavy damping

d) the nature of the damping.

e) the path of motion.

f) the time for which the function has a maximum.

g) the amplitude.

Solution In this problem, we have

m = 500 g = 0.5 kg

k = 2 N/m

β = 5

And the initial data is (at t = 0 )

x(0) = 1 m

v(0) = ẋ(0) = 1 m/s

a) the angular frequency.

First of all we will find its angular frequency, for this use (6.1.3)

ω =

√
k

m

=

√
2

0.5
= 2 rad/s
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Figure 6.15: All three damping oscillations.

b) The restoring force is

Fr = kx = 2x

c) For damping function, first find b

b = βm

= 5(0.5) = 2.5

Now the damping force function is

Fd = 2.5v

d) The nature of the damping is

β2 − 4ω2 = 25− 4(4)

= 9 > 0

The damping is heavy damping.

e) The path of motion is

Using (6.5.4), the equation of motion is

ẍ+ βẋ+ ω2x = 0

ẍ+ 5ẋ+ 4x = 0 (6.5.16)



136 6 Simple Harmonic Motion

Then its characteristic equation is

d2 + βd+ ω2 = 0

d2 + 5d+ 4 = 0 (6.5.17)

(6.5.17) has roots

d = −1 and− 4 (6.5.18)

Using (6.5.14), the solution is

x(t) = C1e
−t + C2e

−4t (6.5.19)

Using initial condition x(0) = 1, implies that

C1 + C2 = 0 (6.5.20)

Differentiate (6.5.19) with respect to t

ẋ(t) = −C1e
−t − 4C2e

−4t (6.5.21)

Using initial condition ẋ(0) = 1, (6.5.21) implies that

−C1 − 4C2 = 0 (6.5.22)

Solving (6.5.20) and (6.5.40), we have

C1 =
5

3

C2 = −2

3

The particular solution is

x(t) =
5

3
e−t − 2

3
e−4t (6.5.23)

And the graphical representation is given in Fig. 6.16

f) the time for which the function has a maximum.

We have to find the time when the block is at the amplitude position. At that position, the
velocity of the block is zero. Taking time derivative of (6.5.23), we have

ẋ(t) = −5

3
e−t +

8

3
e−4t (6.5.24)

Setting ẋ(t) = 0, we have

−5

3
e−t +

8

3
e−4t = 0
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Figure 6.16: Heavy damping.

or

e3t =
8

5

t =
1

3
ln

(
8

5

)
= 0.157s (6.5.25)

g) The amplitude

The position function is maximum at t = 0.157 if

ẍ(0.157) < 0

Taking time derivative of (6.5.24), we have

ẍ(t) =
5

3
e−t − 32

3
e−4t

ẍ(0.157) =
5

3
e−0.157 − 32

3
e−4(0.157)

= −4.267 < 0

Thus position function has maxima at t = 0.157 (see Fig 6.16)
Using (6.5.25) in (6.5.23)

x(0.157) =
5

3
e−0.157 − 2

3
e−4(0.157)

xmax = 1.069 m (6.5.26)
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Example 6.5.5. A block of mass 250 g is fastened to a spring whose spring constant is

4 N/m and can move on a surface. The block is released from its equilibrium position to

move towards left with a velocity 3 m/s . Assuming the damping force numerically equals

to two times the instantaneous velocity acts on the system. Determine the extremum of its

motion.

Solution In this problem, we have

m = 250 g = 0.25 kg

k = 4 N/m

Fd = 2v = 2ẋ

And the initial data is (at t = 0 )

x(0) = 0 m

v(0) = ẋ(0) = −3 m/s

The restoring force is

Fr = kx = 4x

Then by Newton’s second law of motion, the equation of motion is

F = −Fd − Fr
mẍ = −2ẋ− 4x

0.25ẍ = −2ẋ− 4x

ẍ+ 8ẋ+ 16x = 0 (6.5.27)

(6.5.27) is the equation of motion. From it, we have

β = 8

ω = 4

The nature of the damping is determined as

β2 − 4ω2 = 64− 4(16)

= 0

The system is under critical damping.
Considering (6.5.27), the characteristic equation is

d2 + βd+ ω2 = 0

d2 + 8d+ 16 = 0

(d+ 4)2 = 0 (6.5.28)
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(6.5.28) has roots

d = −4 and− 4

Using (6.5.8), the solution is

x(t) = (A1 +A2t) e
−(β/2)t

= (A1 +A2t) e
−4t (6.5.29)

Using initial condition x(0) = 0, implies that

A1 = 0

Then we are left with

x(t) = A2te
−4t (6.5.30)

Differentiate (6.5.30) with respect to t

ẋ(t) = A2 (1− 4t) e−4t (6.5.31)

Using initial condition ẋ(0) = −3, (6.5.31) implies that

A2 = −3 (6.5.32)

The particular solution is

x(t)− 3te−4t (6.5.33)

Its graphical representation is given in Fig. 6.18.
The time for which the function has an extremum. We have to find the time when the

block is at the amplitude position. At that position, the velocity of the block is zero. Taking
time derivative of (6.5.33), we have

ẋ(t) = −3(1− 4t)e−4t (6.5.34)

Setting ẋ(t) = 0, we have

−3(1− 4t)e−4t = 0

or

t =
1

4
= 0.25s (6.5.35)

The position function has an extremum at t = 0.25. For maxima, it has to follow

ẍ(0.25) < 0
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Figure 6.17: Critical damping.

and for minima it has to follow

ẍ(0.25) > 0

Taking time derivative of (6.5.34), we have

ẍ(t) = 24(1− 2t)e−4t

ẍ(0.25) = 24(1− 2(0.25))e−4(0.25)

= 4.4146 > 0

Thus position function has minima at t = 0.25 (see Fig 6.18)
Using (6.5.35) in (6.5.33)

x(0.25) = −3te−4(0.25)

xmin = −0.276 m

The particle is towards left, at a distance 0.276m, from equilibrium position, and the am-
plitude of the motion is

xmax = 0.276 m

Example 6.5.6. A block of mass 500 g is fastened to a spring whose spring constant is

5 N/m and can move on a surface. The block is pulled a distance 2 cm towards left from

its equilibrium position on a surface and released from rest. Assuming the damping force
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numerically equals to the instantaneous velocity acts on the system. Determine its path of

motion.

Solution In this problem, we have

m = 500 g = 0.5 kg

k = 5 N/m

Fd = v = ẋ

And the initial data is (at t = 0 )

x(0) = −2 m

v(0) = ẋ(0) = 0m/s

The restoring force is

Fr = kx = 5x

Then by Newton’s second law of motion, the equation of motion is

F = −Fd − Fr
mẍ = −ẋ− 5x

0.5ẍ = −ẋ− 5x

ẍ+ 2ẋ+ 10x = 0 (6.5.36)

(6.5.36) is the equation of motion. From it, we have

β = 2

ω =
√

10 rad/s

The nature of the damping is determined as

β2 − 4ω2 = 4− 4(10)

= −36 < 0

The system is under light damping.
Considering (6.5.36), the characteristic equation is

d2 + βd+ ω2 = 0

d2 + 2d+ 10 = 0

(6.5.37) has roots

d = −1± 3i
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Using (6.5.10), the solution is

x(t) = e−(β/2)t(B1 cos γt+B2 sin γt)

= e−t(B1 cos 3t+B2 sin 3t) (6.5.37)

Using initial condition x(0) = −2, implies that

B1 = −2

Then (6.5.37) takes the form

x(t) = e−t(−2 cos 3t+B2 sin 3t) (6.5.38)

Differentiate (6.5.38) with respect to t

ẋ(t) = e−t(2 cos 3t−B2 sin 3t+ 6 sin 3t+ 3B2 cos 3t) (6.5.39)

Using initial condition ẋ(0) = 0, (6.5.39) implies that

B2 = −2

3

Hence the solution (particular solution) is

x(t) = e−t(−2 cos 3t− 2

3
sin 3t) (6.5.40)

Its graphical representation is given in Fig. 6.18.

6.5.3 Driven or Forced Oscillatory Motion

If an external force f(t) is acting on a vibrating mass, executing harmonic motion, the
motion is driven or forced oscillatory motion. It has the following two cases.

a) Undamped Forced Oscillatory Motion.

b) Damped Forced Oscillatory Motion.

a) Undamped Forced Oscillatory Motion.

Consider spring mass system with f(t), a driving force causing an oscillatory motion of
the support of the spring. Let there is no damping force, then by Newton’s second law of
motion, its equation of motion is

F = −Fr + f(t)

mẍ+ kx = f(t)

ẍ+
k

m
x =

f(t)

m
ẍ+ ω2x = F (t) (6.5.41)
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Figure 6.18: Light damping.

With ω2 = k
m and F (t) = f(t)

m
We usually use a sinusoidal driving force.

F (t) = F0 sin γt or = F0 cos γt

with frequency γ 6= ω.
Initially the system is resting at equilibrium position. Next an external force F (t) = F0 sin γt
is applied and it executes oscillatory motion. Then (6.5.41) takes the form

ẍ+ ω2x = F0 sin γt (6.5.42)

Also we have initial conditions:

x(0) = 0

ẋ(0) = 0

(6.5.42) is second order linear nonhomogeneous differential equation and has solution

x(t) = xc(t) + xp(t) (6.5.43)

The complementary function xc(t) is given in (6.2.16) as

xc(t) = C1 cosωt+ C2 sinωt

For Particular Integral xp, we proceed as follows

xp(t) = A1 cos γt+A2 sin γt (6.5.44)
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Taking first and second time derivatives of (6.5.55)

ẋp(t) = −A1γ sin γt+A2γ cos γt

ẍp(t) = −γ2 (A1 cos γt+A2 sin γt) (6.5.45)

Using (6.5.55) and (6.5.45) in (6.5.42), we have

−γ2 (A1 cos γt+A2 sin γt) + ω2 (A1 cos γt+A2 sin γt) = F0 sin γt

A1

(
ω2 − γ2

)
cos γt+A2

(
ω2 − γ2

)
sin γt = F0 sin γt (6.5.46)

Comparing coefficients of cos γt and sin γt, we have

A1

(
ω2 − γ2

)
= 0 (6.5.47)

A2

(
ω2 − γ2

)
= F0 (6.5.48)

Since γ 6= ω, (6.5.47) implies that

A1 = 0

and (6.5.48) implies that

A2 =
F0

ω2 − γ2

Using these coefficients, (6.5.55) implies that

xp(t) =
F0

ω2 − γ2
sin γt (6.5.49)

Using (6.2.16) and (6.5.49) in (6.5.64), the general solution is

x(t) = C1 cosωt+ C2 sinωt+
F0

ω2 − γ2
sin γt (6.5.50)

Using initial conditions, a particular solution is calculated. Using initial condition x(0) = 0,
(6.5.52) implies that

C1 = 0

The time derivative of (6.5.52) is

ẋ(t) = −C1ω sinωt+ C2ω cosωt+
F0γ

ω2 − γ2
cos γt (6.5.51)

Using initial condition ẋ(0) = 0, (6.5.51) implies that

C2 = − F0γ

ω (ω2 − γ2)
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Using these coefficients, a particular solution is

x(t) = − F0γ

ω (ω2 − γ2)
sinωt+

F0

ω2 − γ2
sin γt

= − F0

ω (ω2 − γ2)
(γ sinωt+ ω sin γt) (6.5.52)

Example 6.5.7. A 128 lb weight is attached to a spring having a spring constant of 64lb/ft.

The weight is pulled a distance 6 inches towards left, from its equilibrium position. From

there, it is started in motion with no initial velocity by applying an external force F (t) =

8sin4t to the weight. Assuming no air resistance, find the subsequent motion of the weight.

Solution In this problem, we have

W = 128 lb

k = 64lb/ft

F (t) = 8 sin 4t

And the initial data is (at t = 0 )

x(0) = −6 in = −0.5 ft

v(0) = ẋ(0) = 0ft/s

The mass of the body is

m =
W

g
=

128

32

= 4 slug

Then

F (t) =
8

4
sin 4t = 2 sin 4t

And the angular frequency frequency is calculated by using (6.1.3)

ω =

√
k

m

=

√
64

4
=
√

16

= 4 rad/s

Using (6.5.42), the equation of motion is

ẍ+ ω2x = F0 sin γt

ẍ+ 16x = 2 sin 4t (6.5.53)
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(6.5.53) is second order linear nonhomogeneous differential equation and has solution

x(t) = xc(t) + xp(t)

The complementary function xc(t) is given in (6.2.16) as

xc(t) = C1 cosωt+ C2 sinωt

= C1 cos 4t+ C2 sin 4t (6.5.54)

The assumption for Particular Integral

xp(t) = A1 cos 4t+A2 sin 4t

will fail, since it is already appearing in xc. Next, we will try

xp(t) = A1t cos 4t+A2t sin 4t (6.5.55)

Taking first and second time derivatives of (6.5.55)

ẋp(t) = A1 cos 4t+A2 sin 4t− 4A1t sin 4t+ 4A2t cos 4t

ẍp(t) = −8A1 sin 4t+ 8A2 cos 4t− 16t (A1 cos 4t+A2 sin 4t) (6.5.56)

Using (6.5.55) and (6.5.56) in (6.5.53), we have

−8A1 sin 4t+ 8A2 cos 4t − 16t (A1 cos 4t+A2 sin 4t) +

16t (A1 cos 4t+A2 sin 4t) = 2 sin 4t

−8A1 sin 4t+ 8A2 cos 4t = 2 sin 4t (6.5.57)

Comparing coefficients of cos 4t and sin 4t, we have

−1

8
A1 = 2 (6.5.58)

A2 = 0

(6.5.58) implies that

A1 = −1

4

Using these coefficients, (6.5.55) implies that

xp(t) = −1

4
t cos 4t (6.5.59)

Using (6.5.54) and (6.5.59), the general solution is

x(t) = C1 cos 4t+ C2 sin 4t− 1

4
t cos 4t (6.5.60)
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Using initial conditions, a particular solution is calculated. Using initial condition x(0) =
−0.5, (6.5.60) implies that

C1 = −0.5

The time derivative of (6.5.60) is

ẋ(t) = 0.5 sin 4t+ 4C2 cos 4t+ t sin 4t− 1

4
cos 4t (6.5.61)

Using initial condition ẋ(0) = 0, (6.5.61) implies that

C2 =
1

16

Using these coefficients, a particular solution is

x(t) = −1

2
cos 4t+

1

16
sin 4t− 1

4
t cos 4t (6.5.62)

Its graphical representation is given in Fig. 6.19.

Figure 6.19: Undamped Forced oscillatory motion.

b) Damped Forced Oscillatory Motion.

During damped oscillatory motion, the oscillations eventually die away due to frictional
energy losses. To maintain the motion of a damped oscillator, an external force f(t) is
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applied to the system. Let the damping force is proportional to instantaneous velocity,
then by Newton’s second law of motion, its equation of motion is

F = −Fr − Fd + f(t)

mẍ+ bẋ+ kx = f(t)

ẍ+
b

m
ẋ+

k

m
x =

f(t)

m
ẍ+ βẋ+ ω2x = F (t)

Example 6.5.8. A body 200 g mass is attached to a spring having a spring constant of

2N/m. The weight is pulled a distance 50 cm towards right, from its equilibrium posi-

tion. From there, it is started in motion with no initial velocity by applying an external

force f(t) = 5cos4t to the mass. Assuming there is 1.2 v m/s a resistance force, find the

subsequent motion of the mass.

Solution In this problem, we have

m = 200 g =
1

5
kg

k = 2N/m

f(t) = 5 cos 4t

And the initial data is (at t = 0 )

x(0) = 50 cm = 0.5 m

v(0) = ẋ(0) = 0m/s

Three forces are acting on the body. These forces are

Fr = kx = 2x m

Fr = kẋ = 1.2ẋ m/s

f(t) = 5 cos 4t

Then by Newton’s second law of motion, its equation of motion is

F = −Fr − Fd + f(t)

mẍ+ bẋ+ kx = f(t)

1

5
ẍ+ 1.2ẋ+ 2x = 5 cos 4t

ẍ+ 6ẋ+ 10x = 25 cos 4t (6.5.63)
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(6.5.63) is second order linear nonhomogeneous differential equation and has solution

x(t) = xc(t) + xp(t)

The complementary function xc(t) is given by considering homogeneous part of (6.5.63)

ẍ+ 6ẋ+ 10x = 0 (6.5.64)

(6.5.64) has characteristic equation

d2 + 6d+ 10 = 0 (6.5.65)

(6.5.65) has roots

d = −3± i

The complementary function xc(t) is

xc(t) = e−3t (C1 cos t+ C2 sin t) (6.5.66)

Using undetermined coefficients method, the assumption for Particular Integral is

xp(t) = A1 cos 4t+A2 sin 4t (6.5.67)

Taking first and second time derivatives of (6.5.67)

ẋp(t) = −4A1 sin 4t+ 4A2 cos 4t (6.5.68)

ẍp(t) = −16 (A1 cos 4t+A2 sin 4t) (6.5.69)

Using (6.5.67), (6.5.68) and (6.5.69) in (6.5.63), we have

−16 (A1 cos 4t+A2 sin 4t) − 4A1 sin 4t+ 4A2 cos 4t+

10 (A1 cos 4t+A2 sin 4t) = 25 sin 4t

(−6A1 + 24A2) cos 4t+ (−24A1 − 6A2) sin 4t = 25 sin 4t (6.5.70)

Comparing coefficients of cos 4t and sin 4t, we have

−6A1 + 24A2 = 25 (6.5.71)

−24A1 − 6A2 = 0 (6.5.72)

Solving (6.5.71) and (6.5.72)

A1 = − 25

102

A2 =
50

51
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Using these coefficients, (6.5.67) implies that

xp(t) = − 25

102
cos 4t+

50

51
sin 4t (6.5.73)

Using (6.5.66) and (6.5.73), the general solution is

x(t) = e−3t (C1 cos t+ C2 sin t)− 25

102
cos 4t+

50

51
sin 4t (6.5.74)

Using initial conditions, a particular solution is calculated. Using initial condition x(0) =
0.5, (6.5.74) implies that

C1 =
38

51

The time derivative of (6.5.74) is

ẋ(t) = −3e−3t (C1 cos t+ C2 sin t) + e−3t (−C1 sin t+ C2 cos t)

+
50

51
sin 4t+

200

51
cos 4t (6.5.75)

Using initial condition ẋ(0) = 0, (6.5.61) implies that

C2 = −86

51

Using these coefficients, a particular solution is

x(t) = e−3t

(
38

51
cos t− 86

51
sin t

)
− 25

102
cos 4t+

50

51
sin 4t (6.5.76)

Its graphical representation is given in Fig. 6.20.
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Figure 6.20: Damped Forced oscillatory motion.

Exercises

1. A block of weight 490 N is fastened to a spring whose spring constant is 1.2 N/m.
The block is pulled a distance one meter from its equilibrium position on a surface and
is released with velocity 3 m/s. Assuming 2 is the damping constant of the surface.
Find

a) the angular frequency.

b) the restoring force.

c) the damping force function.

d) the nature of the damping.

e) the path of motion.

f) the time for which the function has a maximum.

g) the amplitude.

2. A particle describing simple harmonic motion has speeds 6 m/s and 4 m/s when its
distances from the center are 4 m and 4.5 m respectively. Find

a) the angular frequency.

b) its acceleration at these distances.

c) the time period of motion.

d) the amplitude of motion.

3. A particle describing simple harmonic motion has velocities 5ft/sec and 4ft/sec.When
its distances from the centre are 12ft and 13ft respectively find the time period of
the motion
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4. The maximum velocity that a particle executing simple harmonic motion of amplitude
a attains.is v if it is disturbed in such a way its maximum velocity becomes nv find
the change in the amplitude and the time period of the motion.

5. A point describes simple harmonic motion in such a way that its velocity and acceler-
ation at point P are u and f respectively and the corresponding quantities at another
point Q are v and g find the distance PQ.

6. If a point P moves with a velocity v given by

v2 = n2
(
ax2 + 2bx+ c

)
show that P executes a simple harmonic motion. Find the centre, the amplitude and
the time period of the motion.

7. A particle describes simple harmonic motion with frequency N . If the greatest velocity
is V , find the amplitude and the maximum value of the acceleration of the particle.
Also show that the velocity v at a distance x from the centre of motion is given by
v = 2π

√
a2 − x2, where a is the amplitude.



Chapter 7

Two Dimensional Projectile
Motion

Two dimensional projectile motion is namely horizontal motion and vertical motion. These
two motions are independent of each other. In cricket a bowler bowls a ball, a batsman hit
a ball by bat and fielder throw a ball. In all activities we observe two dimensional projectile
motion. This motion is simply known as projectile motion. The ball (object) executing this
motion is called projectile. Here we will discuss this motion as:

a) Free projectile motion

b) Resisted projectile motion

First consider free projectile motion.

7.1 Free Projectile Motion

In this projectile motion, we assume that air resistance is negligible. The projectile is
projected from a reference point making an oblique angle with some axis and is considered
to move under gravity, . Path followed by a projectile is known as a trajectory. If the
gravity is not present, the trajectory is a constant straight line. However, if the gravity is
present, the trajectory is an arc of a parabola, thus gravity accelerates objects downwards
(see Fig. 7.1).
The trajectory depends on the following factors:

a) Angle of projection

b) Projection velocity

c) Relative height of projection

We will discuss this motion in the following three categories.
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Figure 7.1: Projectile motion.

Figure 7.2: Horizontal and vertical components of projectile motion.

1. The projectile is projected from origin.

2. The projectile is projected from relative height from origin.

3. The projectile is projected from origin along inclined plane

7.2 Projectile Motion of a Projectile Projected from Origin

In this projectile motion the reference point is the origin. We will discuss it as following.

7.2.1 Path or Trajectory of a Projectile

Consider a cartesian plane as the vertical plane with x axis along horizontal and y axis
along vertical. A particle of mass m is projected from origin O with a velocity ~v0, making
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an angle α with the horizontal. The point O is named as point of projection, the velocity ~v0

is the velocity of projection and the angle α is called angle of projection. In the absence of
air resistance, the particle executes projectile motion. The initial velocity ~v0 can be written
as

~v0 = ~v(0) = v0 cosαî+ v0 sinαĵ (7.2.1)

After time t, the particle is at position P , as shown in Fig. 7.15. Let

~r(t) = x(t)̂i+ y(t)ĵ

be its position vector. Clearly at t = 0

~r(0) = ~0

x(0)̂i+ y(0)ĵ = 0̂i+ 0ĵ

implies that

x(0) = 0 (7.2.2)

and

y(0) = 0 (7.2.3)

Next its velocity is

Figure 7.3: Projectile motion.

~v(t) = ~̇r(t) = ẋ(t)̂i+ ẏ(t)ĵ

at t = 0

~v(0) = ẋ(0)̂i+ ẏ(0)ĵ (7.2.4)
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From (7.2.1) and (7.2.4), we can write

ẋ(0)̂i+ ẏ(0)ĵ = v0 cosαî+ v0 sinαĵ

Then the initial horizontal scalar component of velocity is

ẋ(0) = v0 cosα (7.2.5)

And the initial vertical scalar component of velocity is

ẏ(0) = v0 sinα (7.2.6)

Finally its acceleration is

~a(t) = ~̈r(t) = ẍ(t)̂i+ ÿ(t)ĵ

At P , the only force acting on the particle is force of gravity acting in the downward
direction. Then by Newton’s second law of motion its equation of motion is

~F = ~W

m~a = −m~g
ẍî+ ÿĵ = −gĵ (7.2.7)

From (7.2.7), the horizontal component of equation of motion is

ẍ(t) = 0 (7.2.8)

and the vertical component is

ÿ(t) = −g (7.2.9)

Integrating (7.2.8) with respect to t

ẋ(t) = A1 (7.2.10)

At t = 0, (7.2.10) becomes

ẋ(0) = A1 (7.2.11)

Using (7.2.5), (7.6.10) implies that

A1 = v0 cosα (7.2.12)

Using (7.2.12), (7.2.10) becomes

ẋ(t) = v0 cosα (7.2.13)
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(7.2.13) gives the horizontal scalar component of velocity of the particle at any time t.
Integrating it with respect to t

x(t) = (v0 cosα)t+B1 (7.2.14)

At t = 0, (7.2.14) becomes

x(0) = (v0 cosα)(0) +B1 (7.2.15)

Using (7.2.2), (7.2.15) becomes

B1 = 0 (7.2.16)

Using (7.2.16), (7.2.14) becomes

x(t) = (v0 cosα)t (7.2.17)

(7.2.17) gives the horizontal component of position of the particle at any time t.
Next for vertical component integrate (7.2.9) with respect to t

ẏ(t) = −gt+A2 (7.2.18)

At t = 0, (7.2.18) becomes

ẏ(0) = A2 (7.2.19)

Using (7.2.6), (7.2.19) implies that

A2 = v0 sinα (7.2.20)

Using (7.2.20), (7.2.18) becomes

ẏ(t) = −gt+ v0 sinα (7.2.21)

(7.2.21) gives the vertical scalar component of velocity of the particle at any time t.
Integrating (7.2.21) with respect to t

y(t) = −1

2
gt2 + (v0 sinα)t+B2 (7.2.22)

At t = 0, (7.2.22) becomes

y(0) = −1

2
g(0)2 + (v0 sinα)(0) +B2 (7.2.23)

Using (7.2.3), (7.2.23) becomes

B2 = 0 (7.2.24)
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Using (7.2.24), (7.2.22) becomes

y(t) = −1

2
gt2 + (v0 sinα)t (7.2.25)

(7.2.25) gives the vertical component of position of the particle at any time t.
From (7.2.17), we can find the time required to reach the particle at P as

t =
x(t)

v0 cosα
(7.2.26)

Using (7.2.26), (7.2.25) becomes

y(x) = −1

2
g

(
x

v0 cosα

)2

+ x tanα

= −g sec2 α

2v2
0

x2 + x tanα (7.2.27)

(7.2.27) gives the path of the projectile of the particle at any time t.

7.2.2 Parabolic Trajectory

(7.2.27) can be written as

x2 − 2v2
0 cosα sinα

g
x = −2v2

0 cos2 α

g
y (7.2.28)

Adding
(
v20 cosα sinα

g

)2
on both sides, then left hand side of (7.2.28) will become a complete

square. (
x− v2

0 cosα sinα

g

)2

= −2v2
0 cos2 α

g

(
y − v2

0 sin2 α

2g

)
(7.2.29)

Comparing (7.2.29) with the equation of the parabola

(x− h)2 = −4p(y − k)

with (h, k) is the vertex, p is the distance from the vertex to the focus and the vertex to
the directrix. The axis of the parabola is

x = h

equation of the directrix is

y = k
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Figure 7.4: Projectile motion.

and the length of the latus rectum is |4p|.
We observe that (7.2.29) represents a parabola as shown in Fig. 7.4, therefore the path of
the projectile is parabola with vertex

V =

(
v2

0 cosα sinα

g
,
v2

0 sin2 α

2g

)
.

The axis of the parabola is

x =
v2

0 cosα sinα

g
,

equation of the directrix is

y =
v2

0 sin2 α

2g
+
v2

0 cos2 α

2g

=
v2

0

2g

and the length of the latus rectum is
2v20 cos2 α

g . The focus is a point F (x1, y1) on the axis of
the parabola with

x1 = abscissa of the vertex =
v2

0 cosα sinα

g

=
v2

0

2g
sin 2α
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and

y1 = ordinate of the vertex− 1

4
(length of the latus rectum)

=
v2

0 sin2 α

2g
− 1

4

(
2v2

0 cos2 α

g

)
= −v

2
0

2g

(
cos2 α− sin2 α

)
= −v

2
0

2g
cos 2α

Hence the focus is

F =

(
v2

0

2g
sin 2α,−v

2
0

2g
cos 2α

)
Height of Directrix The directrix of a parabola is a line perpendicular to the axis of the
parabola and is given by

y = height of the vertex +
1

4
(length of the latus rectum)

=
v2

0 sin2 α

2g
+

1

4

(
2v2

0 cos2 α

g

)
=

v2
0

2g

(
sin2 α+ cos2 α

)
or

y2 =
v2

0

2g
(7.2.30)

(7.2.30) gives the height of directrix of parabola.
Time of Flight As the particle is moving under gravity, so it will strike horizontal axis (or
plane) after time t. At that time we have

y = 0

−1

2
gt2 + (v0 sinα)t = 0

t

(
−1

2
gt+ (v0 sinα)

)
= 0

Since t 6= 0, then (
−1

2
gt+ (v0 sinα)

)
= 0

or

t = tr =
2v0 sinα

g
(7.2.31)



7.2 Projectile Motion of a Projectile Projected from Origin 161

(7.2.31) gives the time of flight of the projectile.
Horizontal Range Let the particle hits the x axis at A after projected from O. Then the
distance |OA| is known as horizontal range and is calculated by using (7.2.31) in (7.2.17)

x(t) = (v0 cosα)
2v0 sinα

g

xR =
v2

0

g
sin 2α (7.2.32)

(7.2.32) gives the horizontal range of the projectile.
Using trigonometric relation

sin 2α = sin (π − 2α) ,

(7.2.32) can also be written as

xR =
v2

0

g
sin (π − 2α)

=
v2

0

g
sin
[
2
(π

2
− α

)]
=

v2
0

g
sin (π − 2α)

=
v2

0

g
sin 2α (7.2.33)

(7.2.32) and (7.2.33) implies that the horizontal range is the same for both the angles of
projection α and π

2 − α as shown in Fig. 7.5.
Maximum Horizontal Range The maximum horizontal range is given by the maximum

Figure 7.5: Range of Projectile motion.

of right hand side of (7.2.32). This maximum is accompanied with the maximum of sin 2α
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and maximum of sin 2α is 1, which implies that

2α =
π

2

or

α =
π

4

Hence the projectile has maximum horizontal range when its angle of projection is π
4 and

the maximum horizontal range is

xR−max =
v2

0

g
(7.2.34)

Hight of the Projectile The vertex of the parabola is the highest point of the trajectory,
so ordinate of the vertex gives the hight attained by the projectile.

yH =
v2

0 sin2 α

2g
(7.2.35)

When the projectile has maximum horizontal range, angle of projection is π
4 . In this case

height of the projectile is

y3 =
v2

0

2g
sin2

(π
4

)
=

v2
0

2g

(
1

2

)
=

v2
0

4g
(7.2.36)

Maximum Hight of the Projectile The projectile can attain maximum hight if

sin2 α = 1

which implies that α = π
2 , then the projectile will be projected vertically upward and the

motion will be one dimensional motion. Hence the height will be

ymax =
v2

0

2g
(7.2.37)

(7.2.37) gives the maximum hight of the projectile.

Example 7.2.1. A golfer hit a ball and it is projected with a speed of 10 m/s at an incli-

nation π
6 with the ground.

(a) Write an expression for its horizontal component of position.
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(b) Write an expression for its vertical component of position.

(c) Find its horizontal range.

(d) What will be its maximum horizontal range.

(e) Calculate its time of flight.

(f) Calculate height attained by the ball.

Solution

(a) Using (7.2.17) an expression for its horizontal component of position is

x(t) = (v0 cosα)t

= 10(cos
π

6
)t

= 8.6601t m

(b) Using (7.2.25) an expression for its vertical component of position is

y(t) = −1

2
gt2 + (v0 sinα)t

= −1

2
9.8 t2 + 10(sin

π

6
)t

= (−4.9 t2 + 5t) m

(c) Using (7.2.32) horizontal range is

xR =
v2

0

g
sin 2α

=
(10)2

9.8
sin 2

(π
6

)
= 8.837 m

(d) Using (7.2.34), its maximum horizontal range is

xR−max =
v2

0

g

=
(10)2

9.8
= 10.2041 m
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(e) Using (7.2.31), its time of flight is

t1 =
2v0 sinα

g

=
2(10) sin

(
π
6

)
9.8

= 1.0204 s

(f) Using (7.2.35), height attained by the ball is.

y1 =
v2

0 sin2 α

2g

=
(10)2 sin2

(
π
6

)
2(9.8)

= 1.2755 m

Example 7.2.2. A built is fired from a cannon having muzzle velocity 1 mile/s.

(a) What will be its maximum horizontal range.

(b) What will be the height attained in this case.

Solution Muzzle velocity The velocity with which a bullet or shell leaves the muzzle of
a gun is called muzzle velocity.
Here the initial speed is in mile/s. It should be in mile/h or ft/s. Let it be in ft/s. As

1 mile = 1760 yards

1 yard = 3 feet

then 1 mile = 5280 feet

the initial speed is

v0 = 5280 ft/s

(a) Using (7.2.34), its maximum horizontal range is

xR−max =
v2

0

g

=
(5280)2

32
= 871200 ft
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(b) Using (7.2.36), its maximum height in this case is

yr =
v2

0

4g

=
(5280)2

4(32)

= 217800 ft

Corollary 7.2.1. A projectile projected from origin with initial speed v0 with angle of

projection α (moving under gravity only), has horizontal range xR and maximum height

yH , then show that initial speed v0 has expression

v0 =

√
g
x2
R + 16y2

H

8yH
(7.2.38)

and angle of projection α has expression

α = arccos

 xR√
x2
R + 16y2

H

 (7.2.39)

and α = arcsin

 4yH√
x2
R + 16y2

H

 (7.2.40)

Solution: Horizontal range xR of a projectile projected from origin with initial speed v0

with angle of projection α (moving under gravity only), is given by (7.2.32)

xR =
v2

0

g
sin 2α

and maximum height yH is given by (7.2.35)

yH =
v2

0 sin2 α

2g

Here the goal is to express v0 in terms of xR, yH and g. From (7.2.32) we can write

x2
R = 4

v2
0

g
sin2 α

v2
0

g
cos2 α

Using (7.2.35), we can write

x2
R = 8yH

v2
0

g
cos2 α
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or

v2
0 cos2 α = g

x2
R

8yH
(7.2.41)

Also from (7.2.35), we can write

v2
0 sin2 α = 2gyH (7.2.42)

Adding (7.2.41) and (7.2.43)

v2
0

(
cos2 α+ sin2 α

)
= g

x2
R

8yH
+ 2gyH (7.2.43)

v2
0 = g

x2
R + 16y2

H

8yH
(7.2.44)

Taking square root we have

v0 =

√
g
x2
R + 16y2

H

8yH

Using (7.2.38) in (7.2.41) we can write

cos2 α =
x2

x2
R + 16y2

H

or

cosα =
xR√

x2
R + 16y2

H

i.e.

α = arccos

 xR√
x2
R + 16y2

H


Using (7.2.38) in (7.2.43) we can write

sin2 α =
16y2

H

x2
R + 16y2

H

or

sinα =
4yH√

x2
R + 16y2

H

i.e.

α = arcsin

 4yH√
x2
R + 16y2

H


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Corollary 7.2.2. A projectile projected from origin with initial speed v0 (moving under

gravity only) has same horizontal range xR for two angles of projections, namely α and

π
2 − α. If y1 is the maximum height with angle α and y2 is the maximum height with angle

π
2 − α, then show that

xR = 4
√
y1y2

Solution: For angle of projection α, the horizontal range xR is given by (7.2.32)

xR =
v2

0

g
sin 2α

and maximum height y1 is given by (7.2.35)

y1 =
v2

0 sin2 α

2g

And for angle of projection π
2 − α, the horizontal range xR is same given by (7.2.32)

xR =
v2

0

g
sin 2α

and maximum height y2 is given by (7.2.35)

y2 =
v2

0

2g
sin2

(π
2
− α

)
=

v2
0 cos2 α

2g

The product of these two heights is

y1y2 =

(
v2

0

2g

)2

sin2 α cos2 α

=
1

16

(
v2

0

2g

)2

(2 sinα cosα)2

=
1

16

(
v2

0

2g
sin 2α

)2

Using (7.2.32), we have

xR = 4
√
y1y2
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Corollary 7.2.3. A projectile projected from origin with initial speed v0 (moving under

gravity only) has maximum horizontal range xR−max. If y is its maximum height, then

show that

Its maximum height is y =
xR−max

4
(7.2.45)

Its initial speed is v0 =
√
xR−maxg (7.2.46)

Its time of flight is tr =

√
2xR−max

g
(7.2.47)

Solution: When a projectile has maximum horizontal range its angle of projection is
π
4 . In this case maximum horizontal range xR−max is given by (7.2.34)

xR−max =
v2

0

g

and maximum hight attained by the projectile is given by (7.2.36)

y =
v2

0

4g

Using (7.2.34), we have

y =
xR−max

4

From (7.2.34), initial speed of a projectile can be written as

v0 =
√
xR−maxg

Time of flight of the projectile is given by (7.2.31)

t =
2v0 sinα

g

For maximum horizontal range, α is π
4 and v0 is given by (7.2.46), so the above relation can

be written as

tr =
2

g

(√
xR−maxg

) 1√
2

=

√
2xR−max

g

Corollary 7.2.4. A particle of mass m is projected from origin with initial speed v0 and

angle of projection α. At any time t the particle is at A(x, y). Another particle of same
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Figure 7.6: Projectile motion.

mass is dropped from B, a point on the directrix of the trajectory, vertically above A as

shown in Fig. 7.6 . Neglecting air resistance in both motions, show that both particles have

same speed at A.

Solution: This can be shown by the law of conservation of energy. First consider the
particle executing two dimensional projectile motion.
At O its speed is v0, so its kinetic energy is

T1 =
1

2
mv2

0

And its height is y = 0, so its potential energy is

U1 = mgh = 0

Total energy at O is

E = T1 + U1 =
1

2
mv2

0 + 0

=
1

2
mv2

0

Next at A its speed is v1, so its kinetic energy is

T2 =
1

2
mv2

1

And its height is y, so its potential energy is

U2 = mgh = mgy
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Total energy at A is

E = T2 + U2 =
1

2
mv2

1 +mgy

By law of conservation of energy, we have

Total energy at O = Total energy at A
1

2
mv2

0 =
1

2
mv2

1 +mgy

v2
0 = v2

1 + 2gy (7.2.48)

Next we consider the particle executing one dimensional projectile motion.
At B its speed is vb = 0, so its kinetic energy is

T3 =
1

2
mv2

b = 0

Since B lies on the directrix of the parabolic trajectory, so its height is y =
v20
2g , and its

potential energy is

U3 = mgh = mg
v2

0

2g

= m
v2

0

2

Total energy at B is

E = T3 + U3 = 0 +
1

2
mv2

0

=
1

2
mv2

0

As the particle is dropped, at A it gains a speed v2, so its kinetic energy is

T4 =
1

2
mv2

2

And its height is y, so its potential energy is

U2 = mgh = mgy

Total energy at P is

E = T4 + U4 =
1

2
mv2

2 +mgy

By law of conservation of energy, we have

Total energy at B = Total energy at A
1

2
mv2

0 =
1

2
mv2

2 +mgy

v2
0 = v2

2 + 2gy (7.2.49)
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From (7.2.48) and (7.2.49), we can write

v2
1 = v2

2

or v1 = v2

Hence proved.

Corollary 7.2.5. A particle of mass m is projected from origin with initial speed v0 and

angle of projection α. Neglecting air resistance, find the least speed v0, so that it passes

through two points P and Q at heights y1 and y2 respectively.

Solution: A particle of mass m is projected from origin with initial speed v0 and angle
of projection α. At any time t the particle is at A(x, y). Let ~r be its position vector

Figure 7.7: Projectile motion.

~r = xî+ yĵ

then its velocity is

~v =
d~r

dt
=

dx

dt
î+

dy

dt
ĵ

= v0 cosαî+ (v0 sinα− gt) ĵ
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and its speed is

v = |~v| =

√(
dx

dt

)2

+

(
dy

dt

)2

=

√
(v0 cosα)2 + (v0 sinα− gt)2

=
√
v2

0 cos2 α+ v2
0 sin2 α− 2v0 sinαgt+ g2t2

=

√
v2

0 − 2g

(
v0 sinαt− 1

2
gt2
)

Since

y = v0 sinαt− 1

2
gt2

so the speed of the particle at A is

v =
√
v2

0 − 2gy

=

√
2g

(
v2

0

2g
− y
)

=
√

2g (height of the directrix− ordinate of A) (7.2.50)

If B is a point on the directrix of the trajectory, vertically above A as shown in Fig. 7.7,
then speed of the particle at A is

v =
√

2g |AB| (7.2.51)

If the particle passes through P with speed v1, then by (7.2.50), its speed is

v1 =
√

2g (height of the directrix− ordinate of P)

=

√
2g

(
v2

0

2g
− y1

)
(7.2.52)

If M is a point on the directrix of the trajectory, vertically above P as shown in Fig. 7.7,
then using (7.2.51) speed of the particle at P is

v1 =
√

2g |MP | (7.2.53)

From (7.2.52) and (7.2.53), we can write

2g |MP | = 2g

(
v2

0

2g
− y1

)
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or

v2
0 = 2g (|MP |+ y1) (7.2.54)

If the particle passes through Q with speed v2, then by (7.2.50), its speed is

v2 =
√

2g (height of the directrix− ordinate of Q)

=

√
2g

(
v2

0

2g
− y2

)
(7.2.55)

If N is a point on the directrix of the trajectory, vertically above Q as shown in Fig. 7.7,
then using (7.2.51) speed of the particle at Q is

v2 =
√

2g |NQ| (7.2.56)

From (7.2.55) and (7.2.56), we can write

2g |NQ| = 2g

(
v2

0

2g
− y2

)
or

v2
0 = 2g (|NQ|+ y2) (7.2.57)

Adding (7.2.54) and (7.2.57), we have

2v2
0 = 2g (|MP |+ y1 + |NQ|+ y2)

or v2
0 = g (y1 + y2 + |MP |+ |NQ|) (7.2.58)

If S is the focus of parabolic trajectory, then using the focus-directrix property of the
parabola, |MP | = |PS| and |NQ| = |SQ| as shown in Fig. 7.7. Then (7.2.58) can be
written as

v2
0 = g (y1 + y2 + |PS|+ |SQ|)

Now v2
0 is least when |PS|+ |SQ| is least, which is least when S lies on PQ, i.e., when

|PS|+ |SQ| = |PQ|
or |MP |+ |NQ| = |PQ|

Hence the least speed v0, so that it passes through two points P and Q at heights y1 and
y2 respectively is

(v0)min =
√
g (y1 + y2 + |PQ|) (7.2.59)
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Figure 7.8: Parabola of Safety.

7.3 Parabola of Safety

Parabola of safety in a vertical plane is a boundary curve which includes all possible paths
of projectiles, that are projected with same speed v0 in different directions from same point.

7.3.1 Equation of Parabola of Safety

Consider a particle of mass m is projected from origin with initial speed v0 and angle of
projection α. Neglecting air resistance, its path is given by (7.2.27)

y(x) = −g sec2 α

2v2
0

x2 + x tanα

Using trigonometric relation

sec2 α = 1 + tan2 α

(7.2.27) can be written as

gx2

2v2
0

tan2 α− x tanα+
g

2v2
0

x2 + y = 0 (7.3.1)
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If α is regarded as parameter, then (7.3.1) represents a family of projectile trajectories with
the same initial speed v0. Hence (7.3.1) is quadratic equation in tanα. For real and equal
roots, the discernment must be equal to zero. i.e.

x2 − 4

(
gx2

2v2
0

)(
g

2v2
0

x2 + y

)
= 0

x2

(
1− 2g

v2
0

(
g

2v2
0

x2 + y

))
= 0

Since x2 6= 0, implies that (
1− 2g

v2
0

(
g

2v2
0

x2 + y

))
= 0

or we can write

2g

v2
0

(
g

2v2
0

x2 + y

)
= 1(

g

2v2
0

x2 + y

)
=

v2
0

2g

or

x2 = −2v2
0

g

(
y − v2

0

2g

)
(7.3.2)

(7.3.2) represents a parabola, known as parabola of safety as shown in Fig. 7.8. Its vertex
is

V =

(
0,
v2

0

2g

)
,

the axis of the parabola is the y axis, equation of the directrix is

y1 =
v2

0

g
,

the length of the latus rectum is
2v20
g and origin is the focus

F = O = (0, 0)

Example 7.3.1. A shell bursts on contact with the ground and pieces from it fly in all

directions with all speeds up-to 80 ft/s. Prove that a man standing 100 ft away is in

danger for 5√
2

seconds.
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Solution The point of contact with the ground may be taken as origin O. From O all
pieces fly in different directions with all speeds up-to 80 ft/s. We will discuss projectile
motion for one of the pieces with initial speed v0 = 80 ft/s. We will discuss projectile
motion for one of the pieces that has 100 ft horizontal range. Here we have two cases:

(a) The horizontal range is 100 ft.

(b) The maximum horizontal range is 100 ft.

(a) The horizontal range is 100 ft.

This horizontal range may have two angles of projections. If first angle of projection is α,
then the other angle of projection is π

2 − α. These angles may be calculated using (7.2.32),
describing the horizontal range of a projectile.

xR =
v2

0

g
sin 2α

and α is

α =
1

2
arcsin

(
gxR
v2

0

)
=

1

2
arcsin

(
32(100)

(80)2

)
=

1

2
arcsin

(
1

2

)
=

1

2

(π
6

)
=

π

12
= 15◦

the other angle π
2 − α is

π

2
− α =

π

2
− π

12

=
5π

12
= 75◦

Time of flight of the projectile is given by (7.2.31)

t =
2v0 sinα

g

Let t1 be the time of flight with elevation α = π
12

t1 =
2(100) sin

(
π
12

)
32
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t2 be the time of flight with elevation α = 5π
12

t2 =
2(100) sin

(
5π
12

)
32

The man is danger for the time t1 − t2

(b) The maximum horizontal range is 100 ft.

In this case angle of projection is α = π
4 and t3 the time of flight is

t3 =
2(100) sin

(
π
4

)
32

=
5√
2

7.4 Projectile Motion of a Projectile Projected from a Rel-

ative Height from Origin

In this projectile motion the reference point is other than origin. We will discuss it as
following.

7.4.1 Path of a Projectile with Oblique Angle of Projection

Consider a cartesian plane as the vertical plane with x axis along horizontal and y axis
along vertical. A particle of mass m is projected from point A at a height y0 from origin O
with a projection velocity ~v0, making an angle α with the horizontal. The coordinates of A
are A(0, y0). In the absence of air resistance, the particle executes projectile motion.
Here the velocity and horizontal component of position of projectile will be same as discussed
as above. The vertical component of position will be different due to its relative height. For
it we can proceed as follows.
After time t, the particle is at position P , as shown in Fig. 7.9. The position vector of P is

~r(t) = x(t)̂i+ y(t)ĵ

The particle starts from A at t = 0, so its position vector is

~r(0) = x(0)̂i+ y(0)ĵ = 0̂i+ y0ĵ

separating vector components we have

x(0) = 0 (7.4.1)
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Figure 7.9: Projectile motion.

and

y(0) = y0 (7.4.2)

Next we can continue considering (7.2.22)

y(t) = −1

2
gt2 + (v0 sinα)t+B3 (7.4.3)

At t = 0, (7.4.3) becomes

y(0) = −1

2
g(0)2 + (v0 sinα)(0) +B3 (7.4.4)

Using (7.4.2), (7.4.4) becomes

B3 = y0 (7.4.5)

Using (7.4.5), (7.4.3) becomes

y(t) = y0 −
1

2
gt2 + (v0 sinα)t (7.4.6)

(7.4.8) gives the vertical component of position of the particle at any time t.
Using (7.2.26), (7.4.8) becomes

y(x) = y0 −
1

2
g

(
x(t)

v0 cosα

)2

+ x(t) tanα

= y0 −
g sec2 α

2v2
0

x2 + x tanα (7.4.7)

(7.4.7) gives the path of the projectile.
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Example 7.4.1. A flying squirrel launches itself from the top of a 10 m high tree. The

squirrel leaves the tree with a velocity of 5 m/s making an inclination 30◦ relative to a level

above the ground and approaches a shorter tree of height of 5 m located 8.78 m away from

the first tree.

(a) Calculate the time of flight of the squirrel.

(b) Write an expression for its horizontal component of position.

(c) Write an expression for its vertical component of position.

(d) Find the path of its projectile motion.

Figure 7.10: Squirrel projectile motion

Solution The height of the shorter tree can be set as zero level above the ground and
the horizontal line from the mid of longer tree to the top of small tree can be considered
as x axis and y axis along the longer tree. Its center can be considered as the origin. The
system is illustrated in Fig. 7.12. Here C is the top of longer tree from where the squirrel
jumps and approaches to D, executing projectile motion. The given data is

v0 = 5 m/s

xR = 8.78 m

Y0 = 10− 5 = 5 m

α = 30◦
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(a) The time of flight can be calculated as

The horizontal component of velocity is

vx = v0 cosα

= 5 cos 30◦

= 4.33 m/s

Hence the time of flight is

t =
xR
vx

=
8.78

4.33
= 2.03 s ' 2 s

(b) Using (7.2.17) an expression for its horizontal component of position is

x(t) = (v0 cosα)t

= 4.33t m

(c) Using (7.4.33) an expression for its vertical component of position is

y(t) = y0 −
1

2
gt2 + (v0 sinα)t

= 5− 1

2
(9.8)t2 + (5 sin 30◦)t

= −4.9t2 + 2.5t+ 5

(d) The path of flight can be calculated by using (7.4.7)

y(x) = y0 −
g sec2 α

2v2
0

x2 + x tanα

= 5− 9.81 sec2(30)

252
x2 + x tan(30)

= 5− 0.1307x2 + 0.5773x

= −0.13x2 + 0.58x+ 5

is the path of the squirrel.
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7.4.2 Path of a Projectile with Zero Degree Angle of Projection

Consider polar coordinate system as the vertical plane with t as its axis. A particle of mass
m is projected from point A at a height y0 from origin O with a projection velocity ~v0 along
the horizontal. In the absence of air resistance, the particle executes projectile motion.
The initial velocity ~v0 can be written as

~v0 = ~v(0) = v0î+ 0ĵ (7.4.8)

After time t, the particle is at position P , as shown in Fig. 7.11. Let

~r(t) = x(t)̂i+ y(t)ĵ

be its position vector. Clearly at t = 0, the particle is at A, so its position vector is

~r(0) = ~r0

x(0)̂i+ y(0)ĵ = 0̂i+ y0ĵ

implies that

x(0) = 0 (7.4.9)

and

y(0) = y0 (7.4.10)

Next its velocity is

Figure 7.11: Projectile motion.

~v(t) = ~̇r(t) = ẋ(t)̂i+ ẏ(t)ĵ

at t = 0

~v(0) = ẋ(0)̂i+ ẏ(0)ĵ (7.4.11)



182 7 Two Dimensional Projectile Motion

From (7.4.8) and (7.4.11), we can write

ẋ(0)̂i+ ẏ(0)ĵ = v0î+ 0ĵ

Then the initial horizontal scalar component of velocity is

ẋ(0) = v0 (7.4.12)

And the initial vertical scalar component of velocity is

ẏ(0) = 0 (7.4.13)

Finally its acceleration is

~a(t) = ~̈r(t) = ẍ(t)̂i+ ÿ(t)ĵ

At P , the only force acting on the particle is force of gravity acting in the downward
direction. Then by Newton’s second law of motion its equation of motion is

~F = ~W

m~a = −m~g
ẍî+ ÿĵ = −gĵ (7.4.14)

From (7.4.14), the horizontal component of equation of motion is

ẍ(t) = 0 (7.4.15)

and the vertical component is

ÿ(t) = −g (7.4.16)

Integrating (7.4.15) with respect to t

ẋ(t) = A1 (7.4.17)

At t = 0, (7.4.17) becomes

ẋ(0) = A1 (7.4.18)

Using (7.4.12), (7.4.18) implies that

A1 = v0 (7.4.19)

Using (7.4.19), (7.4.17) becomes

ẋ(t) = v0 (7.4.20)
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(7.4.20) gives the horizontal scalar component of velocity of the particle at any time t.
Integrating it with respect to t

x(t) = v0t+B1 (7.4.21)

At t = 0, (7.4.21) becomes

x(0) = v0(0) +B1 (7.4.22)

Using (7.4.9), (7.4.22) becomes

B1 = 0 (7.4.23)

Using (7.4.23), (7.4.21) becomes

x(t) = v0t (7.4.24)

(7.4.24) gives the horizontal component of position of the particle at any time t.
Next for vertical component integrate (7.4.16) with respect to t

ẏ(t) = −gt+A2 (7.4.25)

At t = 0, (7.4.25) becomes

ẏ(0) = A2 (7.4.26)

Using (7.4.13), (7.4.26) implies that

A2 = 0 (7.4.27)

Using (7.4.27), (7.4.25) becomes

ẏ(t) = −gt (7.4.28)

(7.4.28) gives the vertical scalar component of velocity of the particle at any time t.
Hence the velocity of the particle at any time t is

~v(t) = v0î+−gtĵ (7.4.29)

Integrating (7.4.28) with respect to t

y(t) = −1

2
gt2 +B2 (7.4.30)

At t = 0, (7.4.30) becomes

y(0) = −1

2
g(0)2 +B2 (7.4.31)
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Using (7.4.10), (7.4.31) becomes

B2 = y0 (7.4.32)

Using (7.4.32), (7.4.30) becomes

y(t) = y0 −
1

2
gt2 (7.4.33)

(7.4.33) gives the vertical component of position of the particle at any time t.
When the projectile hit the ground, then y = 0, so the time of flight can be calculated by
equating (7.4.33) zero.

0 = y0 −
1

2
gt2

or

t =

√
2y0

g
(7.4.34)

Using (7.4.34), (7.4.29) will give the velocity with which the projectile will hit the ground.

~v(t) = v0î− g
√

2y0

g
ĵ (7.4.35)

From (7.4.24), we can find the time required to reach the particle at P as

t =
x(t)

v0
(7.4.36)

Using (7.4.36), (7.4.33) becomes

y(t) = y0 −
1

2
g

(
x(t)

v0

)2

(7.4.37)

(7.4.37) gives the path of the projectile of the particle at any time t.

Example 7.4.2. A cannonball is fixed at the top of a cliff. The height of the cliff is 20 m

from ground level. A ball is fired from the cannon horizontally with a speed 100 m/s.

(a) Write an expression for its horizontal component of position.

(b) Write an expression for its vertical component of position.

(c) Calculate its time of flight.
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Figure 7.12: System of canon ball.

(d) Find its horizontal range.

Solution The system can be illustrated in Fig. 7.12

(a) Using (7.4.24) an expression for its horizontal component of position is

x(t) = v0t

= 100t m (7.4.38)

(b) Using (7.4.33) an expression for its vertical component of position is

y(t) = y0 −
1

2
gt2

= 20− 4.9t2 m

(c) Using (7.4.34) , its time of flight is

t =

√
2y0

g

=

√
2(10)

9.8
= 1.4 s

(d) Using (7.4.39), horizontal range is

x(t) = 100(1.4)

= 140 m (7.4.39)
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7.4.3 Projectile Motion of a Projectile projected from Origin along an

Inclined Plane

Consider a vertical plane (xy plane). Let a projectile of mass m be projected from origin O
with a velocity ~v0, at an angle of inclination α. Let a plane p be inclined at an angle β(< α)
to the horizontal so that its intersection with the vertical plane is the line with slope

Figure 7.13: Range on an inclined plane.

tanβ =
y

x

with P (x, y) is a point common to both planes (see Fig. 7.13). Clearly this line passes
through the origin, so its equation is

y = x tanβ (7.4.40)

Also by (7.2.27), the path of the projectile is

y = −g sec2 α

2v2
0

x2 + x tanα

Using (7.4.40), (7.2.27) can be written as

x tanβ = −g sec2 α

2v2
0

x2 + x tanα
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Since x 6= 0, we can write

g sec2 α

2v2
0

x = tanα− tanβ

or

x =
2v2

0

g sec2 α
(tanα− tanβ)

=
2v2

0

g
cos2 α

(
sinα

cosα
− sinβ

cosβ

)
=

2v2
0

g

cosα

cosβ
(sinα cosβ − sinβ cosα)

=
v2

0 secβ

g
2 cosα sin (α− β) (7.4.41)

Using trigonometric relation

2 cosα sinβ = sin (α+ β)− sin (α− β)

(7.4.41) becomes

x =
v2

0 secβ

g
[sin (α+ (α− β))− sin (α− (α− β))]

=
v2

0 secβ

g
(sin (2α− β)− sinβ) (7.4.42)

As the projectile hit the point P , then |OP | is its range. Consider right angle triangle OAP
as shown in Fig. 7.14

Figure 7.14: Right angle triangle OAP

|OP | = r =
x

cosβ

= x secβ
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(7.4.42) can be written as

xRu = x secβ =
v2

0 sec2 β

g
(sin (2α− β)− sinβ) (7.4.43)

If the plane p is inclined downward to the horizontal, then the angle β is replaced with −β
and its intersection with the vertical plane is the line

y = −x tanβ (7.4.44)

The x coordinate of the point where the projectile hits the plane p is given by replacing β
by −β in (7.4.42)

x =
v2

0 sec(−β)

g
(sin (2α− (−β))− sin(−β))

xRd = =
v2

0 secβ

g
(sin (2α+ β) + sinβ) (7.4.45)

Time of Flight on an Inclined Plane The time of flight up the inclined plane p is defined
as the time taken by the projectile to achieve the full range. This time can be calculated as

time =
distance

speed

The distance is the horizontal distance x is given by (7.4.41) and speed is horizontal speed
v0 cosα

t =
1

v0 cosα

v2
0 secβ

g
2 cosα sin (α− β)

=
2v0

g
secβ sin (α− β) (7.4.46)

Maximum Range on an Inclined Plane Since β is a fixed angle, then for a given value
of v0, the range up the inclined plane is maximum if

sin (2α− β) = 1 (7.4.47)

which implies that

2α− β =
π

2

or

α =
π

4
+
β

2
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Hence maximum range up the inclined plane is obtained by using (7.4.47) in (7.4.43)

xRu−max =
v2

0

g cos2 β
(1− sinβ)

=
v2

0

g
(
1− sin2 β

) (1− sinβ)

=
v2

0

g (1 + sinβ)
(7.4.48)

Similarly maximum range down the inclined plane is

xRd−max =
v2

0

g (1− sinβ)
(7.4.49)

7.5 Projectile Motion with Horizontal Relative Motion

An object is moving horizontally with velocity ~V and a particle of mass m is projected from
it with a velocity ~v0, making an angle α with the horizontal. This motion is different only
in horizontal motion from the projectile motion discussed in section 7.2.1. Here we will
discuss only horizontal motion in the following two cases.

a) Projected in backward direction.

b) Projected in forward direction.

First consider the particle is projected in the backward direction, then both velocities have
opposite directions. Consider a cartesian plane as the vertical plane with x axis along
horizontal and y axis along vertical. The point O is the point of projection. Since ~v0 is
considered positive in section 7.2.1 so ~V will be considered negative. The initial velocity ~v0

can be written as

~v0 = ~v(0)− ~V = v0 cosαî+ v0 sinαĵ − V î (7.5.1)

After time t, the particle is at position P , as shown in Fig. 7.15. Let

~r(t) = x(t)̂i+ y(t)ĵ

be its position vector. Clearly at t = 0

~r(0) = ~0

x(0)̂i+ y(0)ĵ = 0̂i+ 0ĵ

implies that

x(0) = 0 (7.5.2)
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Figure 7.15: Projectile motion with relative horizontal motion.

and

y(0) = 0 (7.5.3)

Next its velocity is

~v(t) = ~̇r(t) = ẋ(t)̂i+ ẏ(t)ĵ

at t = 0

~v(0) = ẋ(0)̂i+ ẏ(0)ĵ (7.5.4)

From (7.5.1) and (7.5.4), we can write

ẋ(0)̂i+ ẏ(0)ĵ = (v0 cosα− V ) î+ v0 sinαĵ

Then the initial horizontal scalar component of velocity is

ẋ(0) = v0 cosα− V (7.5.5)

And the initial vertical scalar component of velocity is

ẏ(0) = v0 sinα (7.5.6)

Finally its acceleration is

~a(t) = ~̈r(t) = ẍ(t)̂i+ ÿ(t)ĵ

At P , the only force acting on the particle is force of gravity acting in the downward
direction. Then by Newton’s second law of motion its equation of motion is

~F = ~W

m~a = −m~g
ẍî+ ÿĵ = −gĵ (7.5.7)
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From (7.5.7), the horizontal component of equation of motion is

ẍ(t) = 0 (7.5.8)

and the vertical component is

ÿ(t) = −g (7.5.9)

Integrating (7.5.8) with respect to t

ẋ(t) = A1 (7.5.10)

At t = 0, (7.5.10) becomes

ẋ(0) = A1 (7.5.11)

Using (7.5.5), (??) implies that

A1 = v0 cosα− V (7.5.12)

Using (7.5.12), (7.5.10) becomes

ẋ(t) = v0 cosα− V (7.5.13)

(7.5.13) gives the horizontal scalar component of velocity of the particle at any time t.
Integrating it with respect to t

x(t) = (v0 cosα− V ) t+B1 (7.5.14)

At t = 0, (7.5.14) becomes

x(0) = (v0 cosα)(0) +B1 (7.5.15)

Using (7.5.2), (7.5.15) becomes

B1 = 0 (7.5.16)

Using (7.5.16), (7.5.14) becomes

x(t) = (v0 cosα− V ) t (7.5.17)

(7.5.17) gives the horizontal component of position of the particle at any time t.
From section 7.2.1 the vertical component of position of the particle at any time t is

y(t) = −1

2
gt2 + (v0 sinα)t

From (7.5.17), we can find the time required to reach the particle at P as

t =
x(t)

v0 cosα− V
(7.5.18)



192 7 Two Dimensional Projectile Motion

Using (7.5.18), (7.5.18) becomes

y(t) = −1

2
g

(
x(t)

v0 cosα− V

)2

+ x(t) tanα (7.5.19)

(7.5.19) gives the path of the projectile of the particle at any time t.
Time of Flight: It’s time of flight is the same as discussed in section 7.2.1 and is given by
(7.2.31).
Horizontal Range Let the particle hits the x axis at A after projected from O. Then the
distance |OA| is known as horizontal range and is calculated by using (7.2.31) in (7.5.17)

xR = (v0 cosα− V )
2v0 sinα

g
(7.5.20)

Angle of Projection for Maximum Horizontal Range The maximum horizontal range
is the maximum of (7.5.20) and can be calculated by using 2nd derivative test.
Differentiate (7.5.20) with respect to α

dxR
dα

=
dx

dα

(
1

g
v2

0 sin 2α− 2V v0 sinα

)
=

v0

g
(2v0 cos 2α− 2V cosα)

For critical point we must have

dxR
dα

= 0

or

2v0

g
(v0 cos 2α− V cosα) = 0

Since v0 6= 0 and g 6= 0, then(
2v0 cos2 α− V cosα− v0

)
= 0 (7.5.21)

(7.5.21) is quadratic equation in cosα and its roots are

cosα =
V ±

√
V 2 + 8v2

0

4v0

Next second derivative of (7.5.20) is

d2xR
dα2

=
2v0

g
sinα (V − v0 cosα)

For maximum horizontal range, we must have

d2xR
dα2

< 0



7.6 Projectile Motion of a Projectile Projected with a Relative speed from Origin 193

which is possible only if

cosα =
V +

√
V 2 + 8v2

0

4v0

or

α = arccos

(
V +

√
V 2 + 8v2

0

4v0

)
(7.5.22)

(7.5.22) gives the angle of elevation for maximum range.

7.6 Projectile Motion of a Projectile Projected with a Rela-

tive speed from Origin

Consider a cartesian plane as the vertical plane with x axis along horizontal and y axis along
vertical. A particle of mass m is projected from a moving cart making an angle α with the
horizontal with velocity ~v0. The motion of the cart is along horizontal with velocity V and
both motions are in the same directions. Let the point of projection considered as origin
O. In the absence of air resistance, the initial velocity ~v0 of the projectile can be written as

~v0 = ~v(0) = v0 cosαî+ v0 sinαĵ + V î

= (V + v0 cosα) î+ v0 sinαĵ (7.6.1)

After time t, the particle is at position P , as shown in Fig. 7.16. Let

~r(t) = x(t)̂i+ y(t)ĵ

be its position vector. Clearly at t = 0

~r(0) = ~0

x(0)̂i+ y(0)ĵ = 0̂i+ 0ĵ

implies that

x(0) = 0 (7.6.2)

and

y(0) = 0 (7.6.3)

Next its velocity is

~v(t) = ~̇r(t) = ẋ(t)̂i+ ẏ(t)ĵ
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Figure 7.16: Projectile motion.

at t = 0

~v(0) = ẋ(0)̂i+ ẏ(0)ĵ (7.6.4)

From (7.6.1) and (7.6.4), we can write

ẋ(0)̂i+ ẏ(0)ĵ = (V + v0 cosα) î+ v0 sinαĵ

Then the initial horizontal scalar component of velocity is

ẋ(0) = V + v0 cosα (7.6.5)

And the initial vertical scalar component of velocity is

ẏ(0) = v0 sinα (7.6.6)

Finally its acceleration is

~a(t) = ~̈r(t) = ẍ(t)̂i+ ÿ(t)ĵ

At P , the only force acting on the particle is force of gravity acting in the downward
direction. Then by Newton’s second law of motion its equation of motion is

~F = ~W

m~a = −m~g
ẍî+ ÿĵ = −gĵ (7.6.7)

From (7.7.1), the horizontal component of equation of motion is

ẍ(t) = 0 (7.6.8)

Integrating (7.7.2) with respect to t

ẋ(t) = A1 (7.6.9)
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At t = 0, (7.7.4) becomes

ẋ(0) = A1 (7.6.10)

Using (7.6.5), (7.7.5) implies that

A1 = V + v0 cosα (7.6.11)

Using (7.6.11), (7.7.4) becomes

ẋ(t) = V + v0 cosα (7.6.12)

(7.7.6) gives the horizontal scalar component of velocity of the particle at any time t.
Integrating it with respect to t

x(t) = (v0 cosα+ V ) t+B1 (7.6.13)

At t = 0, (7.7.7) becomes

x(0) = (v0 cosα+ V ) (0) +B1 (7.6.14)

Using (7.6.2), (7.7.8) becomes

B1 = 0 (7.6.15)

Using (7.7.9), (7.7.7) becomes

x(t) = (V + v0 cosα) t (7.6.16)

(7.7.10) gives the horizontal component of position of the particle at any time t.
Since the motion of the cart is along horizontal only, so at ant time t, vertical component
speed is given by (7.2.21) and vertical component of position is given by (7.2.25). From
(7.7.10), we can find the time required to reach the particle at P as

t =
x(t)

V + v0 cosα
(7.6.17)

Time of Flight As the particle is moving under gravity, so it will strike horizontal axis
(or plane) after time t. This time is obtained by taking vertical component of speed equal
to zero. Since there is no change in it so same relation is for time of flight that is given by
(7.2.31)

t = tr =
2v0 sinα

g

Horizontal Range Let the particle hits the x axis at A after projected from O. Then the
distance |OA| is known as horizontal range and is calculated by using (7.2.31) in (7.7.10)

x(t) = (V + v0 cosα)
2v0 sinα

g

xr =
2V v0 sinα

g
+
v2

0

g
sin 2α (7.6.18)
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If the projectile has relative horizontal velocity, then increase in range is

∆x = xr − xR

=
2V v0 sinα

g
(7.6.19)

7.7 Projectile Motion with Air Resistance

In first section we neglect air-resistance (drag force), but it has a major effect on the motion
of many objects, including tennis balls, bicycle riders, and airplanes.
Air resistance is a force that retards the motion of the projectile. The force of air resistance
always acts in a direction opposite to the direction of motion of the projectile (opposite
to the velocity v). The magnitude of force of air resistance depends on the size of the
body, its shape and its speed. In many cases, it is proportional to the velocity of the body.
Mathematically, it is written as

~Fr = −k~v = −kẋî− kẏĵ

7.7.1 Path of a Projectile Moving Under Air Resistance

Consider a cartesian plane as the vertical plane with x axis along horizontal and y axis along
vertical. A particle of mass m is projected from origin O with a velocity ~v0, making an
angle α with the horizontal. The point O is named as point of projection, the velocity ~v0 is
the velocity of projection and the angle α is called angle of projection. If the air resistance
is proportional to the velocity of the body, The initial conditions are

Figure 7.17: Resisted Projectile motion.

ẋ(0) = v0 cosα

ẏ(0) = v0 sinα
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and

x(0) = 0

y(0) = 0

then at P , two force are acting on the particle, one is force of gravity, acting in the downward
direction and the other is air resistance, opposing the velocity. Then by Newton’s second
law of motion its equation of motion is

~F = ~W + ~Fr

m~a = −m~g − k~v
ẍî+ ÿĵ = −gĵ − kẋî− kẏĵ

= −kẋî− (g + kẏ)ĵ (7.7.1)

From (7.7.1), the horizontal component of equation of motion is

ẍ(t) = −kẋ
ẍ(t) + kẋ = 0 (7.7.2)

and the vertical component is

ÿ(t) = −(g + kẏ) (7.7.3)

Replace ẋ by w and ẍ by ẇ, (7.7.2) becomes first order differential equation

ẇ(t) + kw = 0

and has solution

w = A1e
−kt

ẋ(t) = A1e
−kt (7.7.4)

At t = 0, (7.7.4) becomes

ẋ(0) = A1 (7.7.5)

Using initial condition ẋ(0) = v0 cosα, (7.7.5) implies that

A1 = v0 cosα

Then, (7.7.4) becomes

ẋ(t) = v0 cosαe−kt (7.7.6)

(7.7.6) gives the horizontal velocity of the particle at any time t. Integrating it with respect
to t

x(t) =
1

−k
(v0 cosα)e−kt +B1 (7.7.7)
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At t = 0, (7.7.7) becomes

x(0) = −1

k
(v0 cosα)(1) +B1 (7.7.8)

Using initial condition x(0) = 0, (7.7.8) implies that

B1 =
1

k
(v0 cosα) (7.7.9)

Using (7.7.9), (7.7.7) becomes

x(t) = −1

k
(v0 cosα)e−kt +

1

k
(v0 cosα)

=
v0 cosα

k

(
1− e−kt

)
(7.7.10)

(7.7.10) gives the horizontal scalar component of position of the particle at any time t. This
time can be calculated as (

1− e−kt
)

=
kx

v0 cosα
(7.7.11)

e−kt =

(
1− kx

v0 cosα

)
−kt = ln

(
1− kx

v0 cosα

)
−t =

1

k
ln

(
1− kx

v0 cosα

)
(7.7.12)

Next for vertical component consider (7.7.3), replace ẏ by z and ÿ by ż, (7.7.2) becomes
linear first order differential equation

ż(t) + kz = −g

and has solution

z = A2e
−kt − g

k

ẏ(t) = A2e
−kt − g

k
(7.7.13)

At t = 0, (7.7.13) becomes

ẏ(0) = A2 −
g

k
(7.7.14)

Using initial condition ẏ(0) = v0 sinα, (7.7.14) implies that

A2 = v0 sinα+
g

k
(7.7.15)
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Using (7.7.15), (7.7.13) becomes

ẏ(t) =
(
v0 sinα+

g

k

)
e−kt − g

k
(7.7.16)

(7.7.16) gives the vertical velocity of the particle at any time t.
Integrating (7.7.16), with respect to t

y(t) = −1

k

(
v0 sinα+

g

k

)
e−kt − g

k
t+B2 (7.7.17)

At t = 0, (7.7.17) becomes

y(0) = −1

k

(
v0 sinα+

g

k

)
(1)− g

k
t(0) +B2 (7.7.18)

Using initial condition y(0) = 0, (7.7.18) becomes

B2 =
1

k

(
v0 sinα+

g

k

)
(7.7.19)

Using (7.7.19), (7.7.17) becomes

y(t) = −1

k

(
v0 sinα+

g

k

)
e−kt − g

k
t+

1

k

(
v0 sinα+

g

k

)
=

1

k

(
v0 sinα+

g

k

)(
1− e−kt

)
− g

k
t (7.7.20)

(7.7.20) gives the vertical component of position of the particle at any time t. It can be
expressed in terms of x by using (7.7.11) and (7.7.12).

y =
1

k

(
v0 sinα+

g

k

) kx

v0 cosα
+
g

k

[
1

k
ln

(
1− kx

v0 cosα

)]
= x tanα+

gx

kv0 cosα
+

g

k2
ln

(
1− kx

v0 cosα

)
(7.7.21)

Next using the result

log(1− x) = −x− x2

2
− x3

3
− . . .

(7.7.21) becomes

y = x tanα+
gx

kv0 cosα

+
g

k2

(
− kx

v0 cosα
− k2x2

2v2
0 cos2 α

− k3x3

3v3
0 cos3 α

− . . .

)
= x tanα+

gx

kv0 cosα
− gx

kv0 cosα
− gx2

2v2
0 cos2 α

− gkx3

3v3
0 cos3 α

− . . .

= x tanα− gx2

2v2
0 cos2 α

− gkx3

3v3
0 cos3 α

− . . .

Ignoring higher powers, the path of the projectile is

y = x tanα− gx2

2v2
0 cos2 α

− gkx3

3v3
0 cos3 α
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Exercises

1. A footballer running on ground level kicks a football and the ball is projected with a
speed of 10 m/s at an inclination 35◦ with the ground.

(a) Write an expression for its horizontal component of position.

(b) Write an expression for its vertical component of position.

(c) Find its horizontal range.

(d) What will be its maximum range.

(e) Calculate its time of flight.

(f) Calculate height attained by it.

(g) What will be its height in case of maximum range.

2. Babur missile is projected with a speed of 880 km/h at an inclination π
3 with the

ground.

(a) Write an expression for its horizontal component of position.

(b) Write an expression for its vertical component of position.

(c) Find its horizontal range.

(d) What will be its maximum range.

(e) Calculate its time of flight.

(f) Calculate height attained by it.

3. The maximum range of Shaheen missile from ground to ground mark is 1500 km.

(a) What will be its muzzle velocity.

(b) Calculate its time of flight.

(c) Calculate height attained by it.

If it is fired making an angle of 67◦ with the ground

(d) Find its horizontal range.

(e) Write an expression for its horizontal component of position.

(f) Write an expression for its vertical component of position.

(g) Calculate height attained by its.

4. A shell bursts on contact with the ground and pieces from it, fly in all directions. If
a piece is flying making an angle π

6 with the ground with a speed of 500 m/s.

(a) Write an expression for its horizontal component of position.

(b) Write an expression for its vertical component of position.

(c) Find its horizontal range.
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(d) What will be its maximum range.

(e) Calculate its time of flight.

(f) Calculate height attained by the shell.

5. A particle of mass m is projected from the ground with a velocity ~v0, making an angle
α with the ground. If the air resistance is proportional to the square of the velocity
of the body.

(a) Write an expression for its horizontal component of position.

(b) Write an expression for its vertical component of position.

(c) Calculate its time of flight.
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Chapter 8

Motion Under Central Force

If a particle is moving under the action of a force which is always directed towards or away
from a fixed point and depends on its distance from that point, then the force is called a
central force, the motion is known as central force motion and the fixed point is called the
center of the force. The fixed point is usually taken as the origin. The orbital movement
of planets and satellites are such motions. The laws which govern this motion were first
postulated by Kepler (1571-1630). His interest was in describing the motion of planets
around the sun. He postulated the following laws:

K1 The orbits of the planets are ellipses with the Sun at one focus

K2 The line joining a planet to the Sun sweeps out equal areas in equal intervals of time

K3 The square of the period of a planet is proportional to the cube of the major axis of
its elliptical orbit

These three laws can indeed be derived from Newtonian mechanics.

8.1 Keplers Problem

Consider the motion of a particle of mass m, in an inertial reference frame, under the
influence of a central force, F , as shown in Fig. 8.1. Let the particle be at P having
position vector ~r. Then the force at P is

~F (r) = F r̂

where r̂ is a unit vector in the radial direction. Particularly, if the force is inversely pro-
portional to the square of the distance between the particle and the origin, such as the
gravitational force given as,

~F (r) = −µm
r2

r̂ (8.1.1)

203
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Figure 8.1: Central motion.

where µ is the gravitational parameter.
In general, Keplers problem is equivalent to the two-body problem, in which two masses, m1

and m2, can move solely due to their mutual gravitational attraction. This equivalence is
obvious when m1 >> m2, since, in this case, the center of mass of the system can be taken
to be at m1. Even when the two masses are of similar size, the problem can be reduced to a
Kepler problem. In this case, the force is directed along the line connecting the (centres of
mass of) the two bodies. The most fundamental forces like the gravitational, electrostatic
and certain nuclear forces, are of this kind.

8.1.1 Equivalence Between the Two-body Problem and Keplers Problem

Consider a system of two bodies of masses m1 and m2 which interact though gravitational
attraction. Let ~r1 and ~r2 be their position vectors relative to a fixed origin O, as shown in
Fig. 8.2. Thus, the position of the center of gravity, G, of the system will be

Figure 8.2: Central motion.
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~R =
m1~r1 +m2~r2

m1 +m2
(8.1.2)

Also

~r = ~r2 − ~r1 (8.1.3)

Then

~r1 = ~r2 − ~r (8.1.4)

and

~r2 = ~r + ~r1 (8.1.5)

Using (8.1.4) in (8.1.2), we have

~R =
m1 (~r2 − ~r) +m2~r2

m1 +m2

= − ~r

m1 +m2
+ ~r2

or

~r2 = ~R+
~r

m1 +m2
(8.1.6)

Similarly

~r1 = ~R− ~r

m1 +m2
(8.1.7)

The attractive force on m1 due to m2 is

~F = G
m1m2

r2
r̂

where G is the gravitational constant And by Newton’s second law of motion, this force is

~F = m1
~̈r1 (8.1.8)

Then we can write

m1
~̈r1 = G

m1m2

r2
r̂

~̈r1 = G
m2

r2
r̂ (8.1.9)

Similarly the attractive force on m2 due to m1 is

~F = −Gm1m2

r2
r̂
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And by Newton’s second law of motion, this force is

~F = m2
~̈r2 (8.1.10)

Then we can write

m2
~̈r2 = −Gm1m2

r2
r̂

~̈r2 = −Gm1

r2
r̂ (8.1.11)

From (8.1.3), we can write

~̈r = ~̈r2 − ~̈r1 (8.1.12)

Using (8.1.9) and (8.1.11), (8.1.12) can becomes

~̈r = −Gm1

r2
r̂ −Gm2

r2
r̂

= −Gm1 +m2

r2
r̂

1

m1 +m2

~̈r = −G 1

r2
r̂ (8.1.13)

Taking product (8.1.13) with m1m2

m1m2

m1 +m2

~̈r = −Gm1m2

r2
r̂ (8.1.14)

µ~̈r = −Gm1m2

r2
r̂

The quantity

µ =
m1m2

m1 +m2

is known as reduced mass. Multiplying (8.1.8) by m2

m2
~F = −m1m2

~̈r1 (8.1.15)

Multiplying (8.1.10) by m1

m1
~F = m1m2

~̈r2 (8.1.16)

Adding (8.1.15) and (8.1.16)

(m1 +m2) ~F = m1m2

(
~̈r2 − ~̈r1

)
(8.1.17)

Using (8.1.12), (8.1.17) can be written as

~F =
m1m2

m1 +m2

~̈r (8.1.18)

From (8.1.14) and (8.1.18), we can be written as

~F = −Gm1m2

r2
r̂ (8.1.19)

The above expression shows that the motion of m2 relative to m1 is in fact a Kepler problem.
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8.2 Motion under Central Force

When a particle moves under the action of a force directed toward a fixed point (center of
attraction), the motion is called central-force motion as discussed in the beginning of this
chapter.

8.2.1 Angular Momentum under Central Force is Constant

or Central Motion is Planar Motion

Consider a particle of mass m is moving under the influence of central force. At time t the
particle is at P , having position vector ~r. The cental force acts along radial component and
the velocity ~v of the particle is tangent to ~r at P . The angular momentum L of the particle
is

~L = ~r × ~p
= ~r ×m~v

where p is the linear momentum of the particle. Therefore, the angular momentum ~L is
always perpendicular to the plane defined by the particle’s position vector ~r and velocity ~v.
The rate of change of the angular momentum ~L equals the net torque

~τ =
d~L

dt
= ~r × ~F

Using (8.2.1)

d~L

dt
= ~̇r ×m~v + ~r ×m~̇v

= ~̇r ×m~̇r + ~r ×m~̈r
= 0 + ~r × ~F

Since ~r and ~F points in the same or opposite direction so

~r × ~F = rr̂ × F (r)r̂ = 0

Hence, the angular momentum ~L is constant. Consequently, the particle’s position ~r and
velocity ~v always lie in a single plane perpendicular to ~L, as shown in Fig. 8.3.

8.2.2 Equation of Motion in Polar Coordinates

Since the motion is confined to a plane, we can choose our coordinate system with ẑ being
parallel to ~L, so that the motion is in the xy plane with origin at the centre of force. The
equation of motion is of a particle of mass m moving under cental force is

~F (r) = m~̈r



208 8 Motion Under Central Force

Figure 8.3: Central force motion is planer motion.

Introducing polar coordinates, the equation of motion is

F (r)r̂ = m
[(
r̈ − rθ̇2

)
r̂ +

(
2ṙθ̇ + θ̈

)
θ̂
]

(8.2.1)

Using (8.1.1), (8.2.2) becomes

−µm
r2

r̂ = m
[(
r̈ − rθ̇2

)
r̂ +

(
2ṙθ̇ + θ̈

)
θ̂
]

(8.2.2)

Since m 6= 0, the radial component is

− µ
r2

=
(
r̈ − rθ̇2

)
(8.2.3)

and the transverse component is (
2ṙθ̇ + θ̈

)
= 0 (8.2.4)

(8.2.4) can be written as

1

r

[
d

dt

(
r2θ̇
)]

=
(

2ṙθ̇ + θ̈
)

or

r2θ̇ = h (constant) (8.2.5)

r2 =
h

θ̇
(8.2.6)

and

θ̇ =
h

r2
(8.2.7)
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8.2.3 Motion in a Central-Force Field (Gravitational Field)

In a uniform gravitational field, the gravitational acceleration is everywhere constant and
depends only on its distance r from the center of force. Here, the magnitude F (r) (which
is positive for a repulsive force and negative for an attractive force) is defined in terms of
the central potential U(r) as

F (r) = −U ′
(r)

K2 The line joining a planet to the Sun sweeps out equal areas in equal intervals of time.
That is

dA

dt
= constant (8.2.8)

Proof Consider a planet P moves around the sun S. The trajectory is in the xy plane.
At any time t, P has coordinates P (r, θ) relative to S. At time t + dt, the planet is at Q,
having position vector r + dr as shown in Fig. 8.4. Since dr is very very small, then

Figure 8.4: Planet motion around sun.

dr ∼= ds = rdθ

Let dA be the area swept by ~r, which is the area of the small region SPQ, that is

dA =
1

2
r2dθ

The areal velocity of the planet is

dA

dt
=

1

2
r2dθ

dt

=
1

2
r2θ̇ (8.2.9)
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Using (8.2.5), (8.2.21) becomes

dA

dt
=

h

2
(constant) (8.2.10)

which proves Keplers second law.

8.2.4 Radial Component

Since

d

dt

(
1

r

)
= − 1

r2
ṙ

or

ṙ = −r2 d

dt

(
1

r

)
(8.2.11)

Using (8.2.6), (8.2.11) becomes

ṙ = −h
θ̇

d

dt

(
1

r

)
= −h

θ̇

d

dθ

(
1

r

)
dθ

dt

= −h d
dθ

(
1

r

)
(8.2.12)

Differentiate (8.2.12) with respect to time

r̈ = −h d
dt

(
d

dθ

(
1

r

))
= −h d

2

dθ2

(
1

r

)
dθ

dt

= −hθ̇ d
2

dθ2

(
1

r

)
(8.2.13)

Using (8.2.7), (8.2.13) becomes

r̈ = −h
2

r2

d2

dθ2

(
1

r

)
(8.2.14)

Using (8.2.14), (8.2.3), can be written as

− µ
r2

=

(
−h

2

r2

d2

dθ2

(
1

r

)
− rθ̇2

)
µ =

(
h2 d

2

dθ2

(
1

r

)
+

1

r
r4θ̇2

)
(8.2.15)
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Since h = r2θ̇, i.e. h2 = r4θ̇2, then (8.2.15) can be written as

µ =

(
h2 d

2

dθ2

(
1

r

)
+
h2

r

)
or

d2

dθ2

(
1

r

)
+

1

r
=

µ

h2
(8.2.16)

(8.2.16) is a linear second order nonhomogeneous differential equation for 1
r as a function

of θ. Its general solution is

1

r
=

(
1

r

)
c

+

(
1

r

)
p

Where
(

1
r

)
c

is complementary solution and
(

1
r

)
p

is particular integral. For
(

1
r

)
c
, the char-

acteristic equation is

m2 + 1 = 0

and the solution is (
1

r

)
c

= A1 cos θ +A2 sin θ

Where A1 and A2 are constants of integration, let A1 = e µ
h2

cosψ and A2 = −e µ
h2

sinψ,
with e and ψ are constants. Then(

1

r

)
c

= e
µ

h2
cos(θ + ψ)

The particular integral is (
1

r

)
p

=
µ

h2

Hence the general solution is

1

r
=

µ

h2
(1 + e cos(θ + ψ))

The constant ψ = 0 and e > 0 if we rotate the base line θ = 0, then the equation describing
the trajectory will be

r =
h2

µ (1 + e cos θ)
(8.2.17)
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The standard polar form of a conic section is

r =
l

(1 + e cos θ)
(8.2.18)

Hence (8.2.17) represents the equation of a conic in polar coordinates with one focus at the
center of the force. The length of the semi latus rectum is

l =
h2

µ
(8.2.19)

Hence the reduced mass is

µ =
h2

l
(8.2.20)

The constant e ≥ 0 is called the eccentricity, defining the conic surface as follows

e = 0 the curve is a circle

e < 1 the curve is an ellipse

e = 1 the curve is a parabola

e > 1 the curve is a hyperbola

When e < 1, the trajectory given by (8.2.17) is an ellipse, thus proving Keplers first law.

Figure 8.5: conic surfaces

The point in the trajectory which is closest to the focus is called the periapsis and is denoted
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by π. For elliptical orbits, the point in the trajectory which is farthest away from the focus
is called the apoapsis and is denoted by α. When considering orbits around the earth, these
points are called the perigee and apogee, whereas for orbits around the sun, these points are
called the perihelion and aphelion, respectively.
At perihelion and aphelion, the radial velocity is zero, so ~v is orthogonal to the radius vector
~r . At these points the areal velocity of the planet is

dA

dt
=

1

2
rv

8.2.5 Elliptical Trajectories

When e < 1, (8.2.17) represents an ellipse with one focus is S(0, 0), as shown in Fig. 8.7.
Its trajectory is

r =
l

(1 + e cos θ)
(8.2.21)

The point π is closest to the focus S, so is the perihelion and the point α is farthest away

Figure 8.6: Elliptic trajectories

from the focus S, so is the aphelion. If a is the semi major axis and b is the semi minor axis
of the ellipse, then

a2 = b2 + c2 (8.2.22)

Also the distance between the focus S and the center of the ellipse is

c = ae = a− rπ (8.2.23)

The eccentricity is

e =
c

a
(8.2.24)
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Then (8.2.22) becomes

a2 = b2 + (ae)2 (8.2.25)

or

b2 = a2(1− e2) (8.2.26)

And the semi-minor axis of the ellipse is

b = a
√

(1− e2) (8.2.27)

Also l is its semi latus rectum, given as

l =
b2

a
(8.2.28)

Using (8.2.28), (8.2.26) becomes

l = a(1− e2) (8.2.29)

or

a =
l

(1− e2)
(8.2.30)

From Fig. 8.7, the major axis can be written as

2a = rπ + rα (8.2.31)

Using (8.2.30), (8.2.31) can be written as

2a = rπ + rα =
2l

(1− e2)
(8.2.32)

Apply partial fraction technique on right hand side of (8.2.32), then we have

2a = rπ + rα =
l

(1 + e)
+

l

(1− e)
(8.2.33)

so from (8.2.33), we can suppose that

rπ =
l

(1 + e)
= a(1− e) (8.2.34)

and

rα =
l

(1− e)
= a(1 + e) (8.2.35)
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The area of the ellipse is

A = πab

= πa2
√

(1− e2) (8.2.36)

Consider (8.2.10)

dA

dt
=

h

2

which is first order differential equation and has solution

A =
h

2
T (8.2.37)

where T is constant of integration, known as period of the orbit. Equating (8.2.38) and
(8.2.39)

h

2
T = πa2

√
(1− e2)

h =
2π

T
a2
√

(1− e2) (8.2.38)

Using (8.2.29), (8.2.38) can be written as

h2 =

(
2π

T

)2

a3l (8.2.39)

Using (8.2.39), the reduced mass given by (8.2.20) can be written as

µ =
h2

l

=

(
2π

T

)2

a3

or

T 2 =

(
4π2

µ

)
a3 (8.2.40)

(8.2.40) is the Keplers third law.

Example 8.2.1. The planet Mercury orbits the Sun in 87.97 days, in an elliptic orbit with

semi major axis is 57.91× 106 km and semi minor axis is 56.67× 106 km. Find

1. the coordinates of the center of the elliptic path.
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2. the eccentricity.

3. the length of the semi latusrectum.

4. the area of the ellipse

5. the areal velocity.

6. its speed

a) at its perihelion which is 46.00× 106 km away from the sun;

b) at its aphelion which is 69.82× 106 km away from the sun.

Solution The given data is

T = 87.97 days = 7.6× 105 s

a = 57.91× 106 km

b = 56.67× 106 km

rπ = 46.00× 106 km

rα = 69.82× 106 km

Figure 8.7: The planet Mercury moves in elliptic orbit around the Sun

1. To find the center of the elliptic path, we use (8.2.23), to calculate the distance of the
focus S(0, 0) from the center C(−c, 0) as
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c = a− rπ
= 57.91× 106 − 46.00× 106

= 11.91× 106 km (8.2.41)

Hence the coordinate of the center are C(−11.91× 106, 0).

2. The eccentricity is given by (8.2.24)

e =
c

a

=
11.91× 106

57.91× 106

≈ 0.2057 (8.2.42)

3. The length of semi latusrectum is given by (8.2.28)

l =
b2

a

=

(
56.67× 106

)2
57.91× 106

= 36.54× 106 km (8.2.43)

4. the area of the ellipse is

A = πab

= π
(
56.67× 106

) (
57.91× 106

)
(8.2.44)

= 8.37× 1015 km2 (8.2.45)

5. The areal velocity is

Consider (8.2.10)

dA

dt
=

A

T

=
8.37× 1015

7.6× 105

= 1.1× 109 km2/s (8.2.46)

At perihelion and aphelion, the areal velocity of the planet is

dA

dt
=

1

2
rv
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6. So its speed

a) at its perihelion is

v =
2

r

dA

dt

At perihelion, rπ = 46.00× 106 km, then the speed is

v =
2
(
1.1× 109

)
46.00× 106

= 47.8 km/s (8.2.47)

b) At aphelion, rα = 69.82× 106, then the speed is

v =
2
(
1.1× 109

)
69.82× 106

= 31.5 km/s (8.2.48)
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Exercise A satellite is launched in a direction parallel to the surface of the earth with
a speed 36, 900 km/h in an elliptic orbit from perigee, 500 km away from the earth. Let
63700 be the radius of the earth, then find

1. the coordinates of the center of the elliptic path.

2. the eccentricity.

3. the length of the semi latusrectum.

4. the semi minor axis

5. semi major axis

6. the time period.

7. the area of the ellipse

8. the areal velocity.

9. its speed at apogee

10. apogee distance from earth.
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Chapter 9

Small Oscillation

9.1 Small Oscillation

Consider one dimensional motion of a particle of mass m under a conservative force. If
U(x) is the potential function then the force is

F = −dU
dx

(9.1.1)

Let the particle initially be at rest at a local minimum of U(x). Let this minimum is zero
and it exists at x = x0. Then

U(x0) = 0 (9.1.2)

and

dU

dx0
= 0 (9.1.3)

Let it be given a small kick, from its equilibrium position, so that it moves back and forth
around it, executing simple harmonic motion of small amplitude. To see this, expand U(x)
in a Taylor series around the equilibrium point, x0.

U(x) = U(x0) + U ′(x0)(x− x0) +
1

2!
U ′′(x0)(x− x0)2

+
1

3!
U ′′′(x0)(x− x0)3 + · · · (9.1.4)

Using (9.1.2) and (9.1.3) in (9.1.4), we are left with the U ′′(x0) and higher-order terms.
But for sufficiently small displacements, these higher-order terms are negligible compared
to the U ′′(x0) term, and we are left with

U(x) ∼=
1

2
U ′′(x0)(x− x0)2 (9.1.5)

221
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Also the Hookes-law potential is

U(x) =
1

2
k(x0)(x− x0)2 (9.1.6)

From (9.1.5) and (9.1.6) the spring constant is

k = U ′′(x0) (9.1.7)

And the frequency of small oscillations is

ω =

√
k

m

=

√
U ′′(x0)

m
(9.1.8)

Example 9.1.1. A particle of mass m is moving under the influence of the potential

U(x) =
A

x2
− B

x
(9.1.9)

Find

a) Equilibrium position.

b) Angular frequency.

Solution Using (9.1.3), the equilibrium point, x0 is

U ′(x) = 0 (9.1.10)

− A
x3

+
B

x2
= 0 (9.1.11)

x = 2
A

B
(9.1.12)

or

x0 = 2
A

B
(9.1.13)

The spring constant is given by using Using (9.1.7). First the second derivative of U(x) is

U ′′(x) =
A

x4
− B

x3
(9.1.14)

Using (9.1.13),(9.1.14) becomes,

ω =

√
U ′′(x0)

m

=

√
B4

8mA3
(9.1.15)

(9.1.15) gives the frequency of oscillation.
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9.2 Equilibrium and Stability

A body is said to be in equilibrium if the vector sum of all the external forces acting on it
is zero. If F given by (9.1.1), is the only acting force, then for equilibrium, we can write

F = 0

−U ′(x) = 0

or

U ′(x) = 0

Next we consider this equilibrium is stable or unstable.

9.2.1 Stable Equilibrium

The equilibrium of a particle is stable if

U ′(x) = 0

U ′′(x) > 0

9.2.2 Unstable Equilibrium

The equilibrium of a particle is unstable if

U ′(x) = 0

U ′′(x) < 0

Example 9.2.1. In spring mass system with k > 0, the potential energy function is

U(x) =
1

2
kx2

and

U ′(x) = kx

then

U ′(x) = 0

gives

x = 0
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Next

U ′′(x) = k

U ′′(0) = k > 0

Hence the system has stable equilibrium at x = 0.

9.3 Motion in a Rapidly Oscillating Field under Harmonic

Force

In this section, the application of small but fast oscillation is presented accompanied with
the stability of the system. This stabilization was initialized by Stephenson in 1908. Later,
in 1950 Kapitza renewed it. In 1961 Landau introduced oscillation under the harmonic force.
For stabilization, the potential energy function is obtained by using averaging procedure.
For this consider one dimensional motion of a particle of mass m under the action of a time
independent potential field force

F1 =
−dU
dx

(9.3.1)

and a small but fast oscillating force

F2 = f(x, t) = f1 cosωt+ f2 sinωt. (9.3.2)

The system has time period TU due to force F1, so may oscillate due to this force with
frequency ωU = 1

TU
and T is the time period due the force F2, and oscillation due to this

force is ω = 1
T . The fast oscillation means the frequency ω � ωU . Also the coefficients f1, f2

are functions of co-ordinates only. The magnitude of F2 is not assumed small in comparison
with the force F1 but we shall assume that the oscillation of the particle (denoted below by
ξ) due to this force is small.
Since the system has one dimensional motion it means it depends only on the space co-
ordinate x. Then by Newton’second law of motion, equation of motion of the particle
is

mẍ = F1 + F2 (9.3.3)

Since the particle transverse a slow path and at the same time execute fast but small
oscillations of frequency ω about the path, the function x(t) (path) is a sum of both parts
as shown in Fig. 9.5.17. If we represent X(t) the slow path and ξ(t) the fast but small
oscillations, the path is

x(t) = X(t) + ξ(t) (9.3.4)

By (9.3.4) the functions f and U will also be transformed. Using Taylor’s expansion in
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Figure 9.1: Path of the particle

powers of ξ up to first order terms we have

f(x) = f(X + ξ) = f(X) + ξ
∂f

∂X

U(x) = U(X + ξ) = U(X) + ξ
∂U

∂X

Since U is a function of coordinates only so x→ X and will treated independent of ξ. Hence
for (9.3.1) we can write

dU

dx
=

d

dX
[U(x) = U(X + ξ)] =

d

dX
[U(X) + ξ

∂U

∂X
] =

dU

dX
+ ξ

d2U

dX2
(9.3.5)

substituting Eq.(9.3.5) in Eq.(9.3.3) we have

mẌ +mξ̈ = − dU
dX
− ξ d

2U

dX2
+ f(X, t) + ξ

df

dX
(9.3.6)

This equation involves both fast and slow motions, which must be separately equal. For
the fast oscillating term we can put simply

mξ̈ = f(X, t) (9.3.7)

and the slow term is

mẌ = − dU
dX
− ξ d

2U

dX2
+ ξ

df

dX
(9.3.8)

Which contain the small factor ξ and are therefore of a higher order of smallness (but
the derivative ξ̈ is proportional to the large quantity ω2 and so is not small). Integrating
equation Eq. (9.3.7) with the function f given by Eq. (9.3.2). Since the coefficients f1 and
f2 are functions of coordinates only, so will be treated as a constant.

mξ̇ =

∫
fdt

=

∫
(f1 cosωt+ f2 sinωt) dt

=
1

ω
(−f1 sinωt+ f2 cosωt) + C1
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The term C1 = ξ̇0 is the initial speed of the small oscillation. Let at t = 0, ξ̇0 = 0, then
above relation is

mξ̇ =
1

ω
(−f1 sinωt+ f2 cosωt)

Again integrating, we have

mξ = − 1

ω2
(f1 cosωt+ f2 sinωt) + C2

The term C2 = ξ0 is the initial position of the small oscillation. Let at t = 0, ξ0 = 0, then
above relation is

mξ = − f

ω2

or

ξ = − f

mω2
(9.3.9)

(9.3.9) gives the small but fast oscillation. Next the mean value of a T periodic function is
denoted by bar and is given by

f̄ =
1

T

∫ T

0
f(t)dt (9.3.10)

Using Eq. (9.3.10), the mean value of f(t) over its period T = 2π
ω is

f̄ =
1

T

∫ T

0
(f1 cosωt+ f2 sinωt) dt

=
1

T

(
−f1

ω
sinωt+

f2

ω
cosωt

)T
0

=
1

2π

[
− f1 [sin(2π)− sin(0)] + f2 [cos(2π)− cos(0)]

]
= 0

Hence the mean value of f(t) over its period T is zero. Since ξ(t) contains f , so its mean
value over same period is also zero. Also

¯̈
ξ = 0

During this time averaging, the function X(t) remains invariant. We therefore have x =
X(t), i.e. X(t) describes the slow motion of the particle averaged over the rapid oscillations.
Using this time averaging technique, we shall derive a relation which will be the function
X(t) only.
Next time averaging (9.3.6) over its period (0→ T ). As calculated above, the mean values
of the first powers of f and ξ over this period are zero, so the mean value of (9.3.6) over
this period is

mẌ = − dU
dX
− ξ df

dX

= − dU
dX
− 1

mω2
f
df

dX
(9.3.11)
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This relation represent smooth motion of the particle averaged over small oscillation. Con-
sider

1

2

df2

dX
= f

df

dX
(9.3.12)

Using Eq. (9.3.12), Eq. (9.3.11) becomes

mẌ = − dU
dX
− 1

mω2

1

2

df2

dX
(9.3.13)

(9.3.13) is a function of X only so can be written as

mẌ = − d

dX

(
U +

f
2

2mω2

)
(9.3.14)

In (9.3.14) the quantity

(
U + f

2

2mω2

)
can be regarded as potential energy function. We call

it effective potential energy function and is given by

Ueff = U +
f

2

2mω2
(9.3.15)

Using (9.3.15), (9.3.14) can be written as

mẌ = −
dUeff
dX

(9.3.16)

(9.3.16) represents that after averaging the net force is conservative. To calculate f
2

we
first calculate the quantity f2 from (9.3.2) as

f2 = (f1 cosωt+ f2 sinωt)2

= f2
1 cos2 ωt+ f2

2 sin2 ωt+ 2f1f2 cosωt sinωt (9.3.17)

Taking time average of (9.3.17), we have

f2 = f2
1 cos2 ωt+ f2

2 sin2 ωt+ 2f1f2cosωt sinωt (9.3.18)

To simplify this calculation we make use of the following trigonometric orthogonal relations.

sinωt cosωt =
1

T

∫ T

0
sinωt cosωtdt = 0

cos2 ωt =
1

T

∫ T

0
cos2 ωtdt =

1

T

∫ T

0

1

2
(1 + cos 2ωt)dt =

1

2

sin kω2t =
1

T

∫ T

0
sin2 ωtdt =

1

T

∫ T

0

1

2
(1− cos 2ωt)dt =

1

2
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Hence (9.3.18) can be written as

f2 =
1

2
(f2

1 + f2
2 ) (9.3.19)

Using (9.3.19), (9.3.15) can be written as

Ueff = U +
f2

1 + f2
2

4mω2
(9.3.20)

Thus the motion of the particle averaged over the small but fast oscillations is the same
as if the constant potential U were augmented by a constant quantity proportional to the
squared amplitude of the variable field.
The system moving under the action small but fast oscillation will be stabilized by mini-
mizing (9.3.20).

9.4 Stabilization of Modulated Pendulum with Harmonic Force

The modulated pendulum consists of a bob of mass m attached a massless string of length
l, whose point of support oscillates horizontally or vertically with a high frequency. This
pendulum is stabilized by minimizing its effective potential energy function given by Eq.
(9.3.20). Here we will consider two cases:

• Modulation with a high frequency horizontal small oscillations.

• Modulation with a high frequency vertical small oscillations.

9.4.1 Horizontal Modulation with Sin External Force

Consider a bob of mass m is attached with a massless string of length l and is free to
oscillate. Let it make an angle φ with the vertical. If g is the gravitational acceleration,

then its natural frequency is ω0 =
√

g
l . Its potential energy function is

U = −mgy = −mgl cosφ (9.4.1)

An external force sinωt of high frequency with amplitude a is applied at the pivot point to
have a horizontal modulation, as shown in Fig. (9.5). This high frequency means ω � ω0.
Then at any time the position of the particle is

x = a sinωt+ l sinφ

y = l cosφ

We can write down the equation of motion of the above system by finding Euler-Lagrange
equations. The time independent potential energy function is given by (9.4.1), so we need
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Figure 9.2: Horizontally modulated Pendulum with sin force

to find its kinetic energy only. For this the velocity components are

ẋ = aω cosωt+ φ̇l cosφ

ẏ = − φ̇l sinφ

Then the kinetic energy is

K =
1

2
m
(
ẋ2 + ẏ2

)
=

m

2

(
a2ω2 cos2 ωt+ φ̇2l2 cos2 φ+ 2aωφ̇l cosωt cosφ+ φ̇2l2 sin2 φ

)
=

m

2

(
a2ω2 cos2 ωt+ φ̇2l2 + 2aωφ̇l cosωt cosφ

)
And the Lagrangian is

L = K − U

=
mφ̇2l2

2
+
ma2ω2

2
cos2 ωt+maωφ̇l cosωt cosφ+mgl cosφ

Now cos2 ωt can be written as

cos2 ωt =
1

2
(1 + cos2ωt)

=
d

dt

(
t

2
+
sin2ωt

4ω

)
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Also consider

d

dt
(sinφ cosωt) = −ω sinωt sinφ+ φ̇ cosωt cosφ

then

φ̇ cosωtcosφ =
d

dt
(sinφ cosωt) + ω sinωt sinφ

then Lagrangian becomes

L =
mφ̇2l2

2
+
ma2ω2

2

d

dt

(
t

2
+
sin2ωt

4ω

)
+mgl cosφ

+ mlaω

(
d

dt
(sinφ cosωt) + ω sinωt sinφ

)
=

mφ̇2l2

2
+mgl cosφ+mlaω2 sinωt sinφ

+
ma2ω2

2

d

dt

(
t

2
+

sin 2ωt

4ω

)
+mlaω

d

dt
(sinφ cosωt)

Which is of the form

L′ = L+
d

dt
f(φ, t)

Since Lagrangian remains invariant if we add or subtract d
dtf(q, t). So omitting total deriva-

tives we have

L =
mφ̇2l2

2
+mgl cosφ+mlaω2 sinωt sinφ

Here q = lφ is the only generalized coordinates. So equation of motion is

∂L

∂(lφ)
− d

dt

(
∂L

∂(lφ̇)

)
= 0 (9.4.2)

∂L

∂(lφ)
=

1

l

∂L

∂(φ)

=
1

l
[mgl(− sinφ) +mlaω2 sinωt cosφ]

= m[g(− sinφ) + aω2 sinωt cosφ](
∂L

∂(lφ̇)

)
=

1

l

(
∂L

∂(φ̇)

)
=

1

l
[ml2φ̇]

d

dt

(
∂L

∂(lφ̇)

)
= mlφ̈
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Using above results in (9.4.2), the equation of motion is

mlφ̈ = maω2 sinωt cosφ−mg(sinφ) (9.4.3)

comparing (9.4.3) with (9.3.3) we have

f = maω2 sinωt cosφ (9.4.4)

Next comparing (9.4.4) with (9.3.2), the coefficients are

f1 = 0 and f2 = maω2 cosφ

f2
2 = m2a2ω4 cos2 φ

f2 =
1

2
f2

1 =
1

2
m2a2ω4 cos2 φ

Using (9.3.20) the effective potential energy is

Ueff = −mgl cosφ+
1

4mω2
m2a2ω4 cos2 φ

Ueff = mgl

(
− cosφ+

a2ω2

4gl
cos2 φ

)
(9.4.5)

The dimensionless potential energy function denoted by Ũeff is

Ũeff =
Ueff
mgl

=

(
− cosφ+

a2ω2

4gl
cos2 φ

)
(9.4.6)

Stability
The positions of stable equilibrium correspond to the minima of Ueff in [−π, π]. The first
step is to differentiate (9.4.5) with respect to φ.

dUeff
dφ

= mgl

(
sinφ− 2a2ω2

4gl
sinφ cosφ

)
= mgl sinφ

(
1− a2ω2

2gl
cosφ

)
(9.4.7)

To find the critical points we have
dUeff
dφ = 0, which means

mgl sinφ

(
1− a2ω2

2gl
cosφ

)
= 0

Since m 6= 0, g 6= 0 and l 6= 0. That means

sinφ = 0

or (
1− a2ω2

2gl
cosφ

)
= 0
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First consider

sinφ = 0

⇒ φ = 0 , π

Next consider

1− a2ω2

2gl
cosφ = 0

a2ω2

2gl
cosφ = 1

cosφ =
2gl

a2ω2

φ = ± arccos

(
2gl

a2ω2

)

For minimization we must have

d2Ueff
dφ2

> 0 at 0, π and ± arccos

(
2gl

a2ω2

)
Differentiate (9.4.7) with respect to φ

d2Ueff
dφ2

= mgl(cosφ− a2ω2

2gl
cos2φ) (9.4.8)

(1) Stability at φ = 0

The system at φ = 0 is stable if Ueff is minimum at φ = 0. This minimum exist if

d2Ueff
dφ2

|φ=0 > 0

Since cos(0) = 1

⇒ mgl

(
1− a2ω2

2gl

)
> 0

or (
1− a2ω2

2gl

)
> 0

a2ω2

2gl
< 1

It means

a2ω2 < 2gl

If a2ω2 < 2gl the position φ = 0 is stable. It means the the position φ = 0 is conditionally
stable.
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(2) Stability at φ = π

The system at φ = π is stable if Ueff is minimum at φ = π. This minimum exist if

d2Ueff
dφ2

|φ=π > 0

Since cos(π) = −1

⇒ mgl

(
−1− a2ω2

2gl

)
> 0

−
(

1 +
a2ω2

2gl

)
> 0

Which is impossible, hence the system is unstable φ = π.

(3) Stability at φ = ± arccos
(

2gl
a2ω2

)
we can write (9.4.13) as

d2Ueff
dφ2

= mgl

(
cosφ− a2ω2

2gl
(2cos2φ− 1)

)
(9.4.9)

Since cosφ = 2gl
a2ω2 then (9.4.9) can be written as

= mgl

(
2gl

a2ω2
− a2ω2

2gl
(2

4g2l2

a4ω4
− 1)

)
= mgl

(
2gl

a2ω2
− 4gl

a2ω2
+ 2

a2ω2

2gl

)
for minimization of effective potential energy function, we must have

mgl

(
−2gl

a2ω2
+
a2ω2

2gl

)
> 0

or (
−2gl

a2ω2
+
a2ω2

2gl

)
> 0

a2ω2

2gl
>

2gl

a2ω2

It means that
a2ω2 > 2gl

Hence if a2ω2 > 2gl the position given by cosφ = 2gl
a2ω2 is stable. It is also conditional stable

position.
All these stable points are shown in Fig. 9.3.
We can write the summery as:
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Figure 9.3: Stable points with horizontal oscillation.

(1) If a2ω2 < 2gl , the position φ = 0 is stable.
(

Graphically the minimization of Ueff at

φ = 0 is shown in Fig. 9.4 (a)
)

.

(2) The position φ = π is unstable.

(3) If a2ω2 > 2gl the position given by cosφ = 2gl
a2ω2 is stable.

(
Graphically the minimiza-

tion of Ueff at φ = ± arccos
(

2gl
a2ω2

)
shown in Fig. 9.4 (b)

)
.

9.4.2 Vertical Modulation with Harmonic Force

Consider a bob of mass m is attached with a massless string of length l and is free to
oscillate. Let it make an angle φ with the vertical. If g is the gravitational acceleration,

then its natural frequency is ω0 =
√

g
l . Its potential energy function is same as above, hence

given by (9.4.1). An external force sinωt of high frequency with amplitude a is applied at
the pivot point to have vertical modulation, as shown in Fig. 9.5. Then at any time the
position of the particle is

x = l sinφ

y = l cosφ+ a sinωt

We can write down the equation of motion of the above system by finding Euler-Lagrange
equations. The time independent potential energy function is given by (9.4.1), so we need
to find its kinetic energy only. For this the velocity components are

ẋ = φ̇l cosφ

ẏ = −φ̇l sinφ+ aω cosωt
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Then the kinetic energy is

K =
1

2
m
(
ẋ2 + ẏ2

)
=

m

2

(
φ̇2l2 cos2 φ+ φ̇2l2 sin2 φ+ a2ω2 cos2 ωt− 2φ̇laω sinφ cosωt

)
=

m

2

(
φ̇2l2 + a2ω2 cos2 ωt− 2φ̇laω sinφ cosωt

)
And the Lagrangian is

L = K − U

=
m

2
φ̇2l2 +

m

2
a2ω2 d

dt

(
t

2
+
sin2ωt

4ω

)
+mlaω

(
ω cosφ sinωt+

d

dt
(cosωt cosφ)

)
+ mglcosφ− mga

ω

d

dt
(sinωt)

Omitting total derivative

L =
m

2
φ̇2l2 +mlaω2 cosφ sinωt+mgl cosφ

Here lφ is the only generalized coordinate

∂L

∂lφ
=

1

l

∂L

∂φ

=
1

l

(
−mlaω2 sinφ sinωt−mgl sinφ

)
=

(
−maω2 sinφ sinωt−mg sinφ

)
∂L

∂lφ̇
=

∂L

l∂φ̇

=
1

l
mφ̇l2 = mlφ̇

d

dt

(
∂L

∂lφ̇

)
= mlφ̈

Hence the equation of motion is

mlφ̈ = −maω2 sinφ sinωt−mg sinφ (9.4.10)

comparing it with Eq. (9.3.3) the external force acting on the bob is

f = −maω2 sinφ sinωt

Now comparing it with Eq. (9.3.2)

f1 = 0 and f2 = −maω2 sinφ

f2
2 = m2a2ω4 sin2 φ
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By using Eq. (9.3.20) the ”effective potential energy” is

Ueff = mgl

(
− cosφ+

a2ω2

4gl
sin2 φ

)
Ũeff =

(
− cosφ+

a2ω2

4gl
sin2 φ

)
(9.4.11)

Stability
The positions of stable equilibrium correspond to the minima of Ueff in [−π, π]. The first
step is to differentiate (9.4.5) with respect to φ.

dUeff
dφ

= mgl

(
sinφ+

2a2ω2

4gl
sinφcosφ

)
(9.4.12)

= mgl sinφ

(
1 +

a2ω2

2gl
cosφ

)
To find the critical points we have

dUeff
dφ = 0, which means

mglsinφ

(
1 +

a2ω2

2gl
cosφ

)
= 0

Since m 6= 0, g 6= 0 and l 6= 0. That means

sinφ

(
1 +

a2ω2

2gl
cosφ

)
= 0

so we have

sinφ = 0

or (
1 +

a2ω2

2gl
cosφ

)
= 0

First consider

sinφ = 0

⇒ φ = 0 , π

Next consider

1 +
a2ω2

2gl
cosφ = 0

a2ω2

2gl
cosφ = −1

cosφ = − 2gl

a2ω2
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and

φ = ± arccos

(
− 2gl

a2ω2

)
For minimization we must have

d2Ueff
dφ2

> 0 at 0, π and ± arccos

(
− 2gl

a2ω2

)
Differentiate (9.4.12) with respect to φ

d2Ueff
dφ2

= mgl

(
cosφ+

a2ω2

2gl
cos 2φ

)
(9.4.13)

(1) Stability at φ = 0

The system at φ = 0 is stable if Ueff is minimum at φ = 0. This minimum exist if

d2Ueff
dφ2

|φ=0 > 0

Since cos(0) = 1

⇒ mgl

(
1 +

a2ω2

2gl

)
> 0 always > 0

It means the position φ = 0 (vertically downward position) is always stable.

(2) Stability at φ = π

The system at φ = π is stable if Ueff is minimum at φ = π. This minimum exist if

d2Ueff
dφ2

|φ=π > 0

Since cos(π) = −1

⇒ mgl

(
−1 +

a2ω2

2gl

)
> 0(

−1 +
a2ω2

2gl

)
> 0

It means that
a2ω2 > 2gl

Hence if a2ω2 > 2gl the position given by φ = π is stable. It is conditional stable position.
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(3) Stability at φ = ± arccos
(

2gl
a2ω2

)
For cosφ = − 2gl

a2ω2

d2Ueff
dφ2

= mgl

(
−2gl

a2ω2
+
a2ω2

2gl

(
2 · 4g2l2

a4ω4
− 1

))
= mgl

(
2gl

a2ω2
− 1

)
Now | cosφ |= 2gl

a2ω2 < 1

then we have
d2Ueff
dφ2

< 0

so the position given by cosφ = −2gl
a2ω2 is not stable.

All these stable points are shown in Fig. 9.6.
We can write the summery as:

(1) the position φ = 0(vertically downward position) is always stable.
(

Graphically min-

imization of Ueff at φ = 0 is shown in Fig. 9.7 (a)
)

.

(2) If a2ω2 > 2gl then φ = π (vertically upward position) is also stable.
(

Graphically

minimization of Ueff at φ = π is shown in Fig. 9.7 (b)
)

(3) the position given by cosφ = −2gl
a2ω2 is unstable.



9.5 Motion in a Rapidly Oscillating Field under Arbitrary Periodic Force with Zero Mean239

9.5 Motion in a Rapidly Oscillating Field under Arbitrary

Periodic Force with Zero Mean

In 2009, I and Borisenok (My PhD advisor) studied the motion of a particle in a rapidly
oscillating field under an arbitrary periodic force with zero mean. In this motion external
harmonic force is replaced with an arbitrary force extended in Fourier Series. It means a
nonlinear force may be replaced by a linear one. Let’s discuss the one-dimensional motion
of a classical particle of mass m under a force due to time-independent potential U(x)

F1 =
−dU
dx

(9.5.1)

and a fast oscillating periodic force with zero mean. The Fourier expansion of this periodic
force is

f(x, t) =

∞∑
k=1

[
ak(x) cos(kωt) + bk(x) sin(kωt)

]
, (9.5.2)

The system has time period TU due to force F1, so may oscillate due to this force with
frequency ωU = 1

TU
and T is the time period due the force F2, and oscillation due to this

force is ω = 1
T . The fast oscillation means the frequency ω � ωU . The coefficients ak and bk

are functions of co-ordinates only given by (9.5.3) and (9.5.4) respectively.

ak(x) =
2

T

∫ T

0
f(x, t) cos kωt dt ; (9.5.3)

bk(x) =
2

T

∫ T

0
f(x, t) sin kωt dt . (9.5.4)

The equation of the particle motion is:

mẍ = −dU(x)

dx
+ f(x, t) . (9.5.5)

We present the movement as a slow path and at the same time execute fast but small
oscillations of frequency ω about the path: x(t) = X(t) + ξ(t), where ξ(t) corresponds to
these small oscillations. The mean value of the function ξ(t) over its period T is zero, and
the function X(t) changes only slightly in that time. Denoting this average by a bar, we
therefore have x̄ = X(t). Now Taylor’s expansion in powers of ξ up to the first order term
provides us:

dU

dx
=
dU

dX
+ ξ

d2U

dX2
. (9.5.6)

Substituting (9.5.6) in (9.5.5) we have:

mẌ +mξ̈ = − dU
dX
− ξ d

2U

dX2
+ f(X, t) + ξ

df

dX
. (9.5.7)



240 9 Small Oscillation

This equation involves both fast and slow terms, which must evidently be separately equal.
For the fast term we can put simply

mξ̈ = f(X, t) (9.5.8)

and the slow term with small oscillations is

mẌ = − dU
dX
− ξ d

2U

dX2
+ ξ

df

dX
.

Integrating (9.5.8) with the function f given by (9.5.2) and regarding X as a constant, we
get

ξ = − 1

mω2

∞∑
k=1

1

k2

(
ak cos kωt+ bk sin kωt

)
Next we average equation (9.5.7) with respect to the time interval [0, T ]: Since ξ̄ = 0 and
f̄ = 0,

mẌ = − dU
dX

+ ξ
df

dX
(9.5.9)

and

df

dX
=
∞∑
k=1

(
ák cos kωt+ b́k sin kωt

)
,

where ák = dak/dX and b́k = dbk/dX. Then we apply the time averaging:

ξ · df
dX

= − 1

mω2

∞∑
k,j=1

[
akáj
k2
· cos kωt cos jωt+

+
bkáj
k2
· sin kωt cos jωt+

ak b́j
k2
· cos kωt sin jωt+

+
bk b́j
k2
· sin kωt sin jωt

]
.

Since

sin kωt cos jωt = cos kωt sin jωt = 0 ; (9.5.10)

and

cos kωt cos jωt = sin kωt sin jωt =

 0 k 6= j

1
2 k = j

(9.5.11)
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then we have

ξ · df
dX

= − 1

4mω2

∞∑
k=1

1

k2

(
da2

k

dX
+
db2k
dX

)
. (9.5.12)

Substituting (9.5.12) in (9.5.9),

mẌ = − dU
dX
− 1

4mω2

∞∑
k=1

1

k2

d(a2
k + b2k)

dX
. (9.5.13)

Eq.(9.5.13) involves only the function X(t). It can be written as

mẌ = −
dUeff
dX

,

where the effective potential energy is defined as

Ueff = U +
1

4mω2

∞∑
k=1

(
a2
k + b2k

)
k2

. (9.5.14)

If ak, bk = 0 for any k ≥ 2, (9.5.14) coincides with (9.3.20). It means that (9.3.20) is a
particular case of (9.5.14). So we can call it generalized averaging method in a rapidly
oscillating field under arbitrary periodic force with zero mean. If a system is modulated
by a periodic force with zero mean with high frequency, then it is stabilized by minimizing
(9.5.14).

9.5.1 Stabilization of Modulated Pendulum with Harmonic Force

Consider a bob of mass m is attached with a massless string of length l and is free to
oscillate. Let it make an angle φ with the vertical. If g is the gravitational acceleration,

then its natural frequency is ω0 =
√

g
l . Its potential energy function is

U = −mgy = −mgl cosφ

An external harmonic force of high frequency given by (9.5.15)

f(t) = sinωt if 0 ≤ t < T ; (9.5.15)

and shown in Fig. 9.8. The Fourier expansion of (9.5.15) is given by (9.5.16)

f = mω2 cosφ
∞∑
k=1

[
ak(x) cos(kωt) + bk(x) sin(kωt)

]
(9.5.16)

This force is applied at the pivot point to have a horizontal modulation, as shown in Fig.
(9.5.1). Since the first Fourier coefficient is
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a0(x) =
2

T

∫ T

0
f(x, t) dt (9.5.17)

Hence the zero meaning f = 0 is equivalent to show a0 = 0. The first Fourier coefficient of
(9.5.15) is

a0 =
2

T

∫ T

0
sinωt dt

Using (9.5.10) we have

a0 = 0 (9.5.18)

Hence the mean value of f is zero. The other Fourier coefficients are given by (9.3.3)

ak =
2

T

∫ T

0
sinωt cos kωt dt

Using (9.5.11) we have

ak = 0

The other fourier coefficient is

bk =
2

T

∫ T

0
sinωt sin kωt dt

Again using (9.5.11) we have the result for k = 1 only

b1 =
2

T

∫ T

0
sin2 ωt dt

= 1 (9.5.19)

Hence with Fourier coefficient

bk = mω2 cosφ (9.5.20)

the force acting on the particle is

f = mω2 cosφ sin(ωt) (9.5.21)

Using (9.5.14) the effective potential energy is

Ueff = mgl

(
− cosφ+

ω2

4gl
cos2 φ

)
.

Which is same as given by (9.4.5) with a = 1. Hence the stability of extremum positions
φ = 0 , π , ± arccos 2gl/ω2 is as following.

(1) If ω2 < 2gl , the downward position φ = 0 is stable.

(2) The Vertically upward position φ = π is unstable.

(3) If ω2 > 2gl the position given by cosφ = 2gl
ω2 is stable.

The stable points with horizontal modulation are shown in Fig. 9.10. The same we will
observe for vertical modulation.
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9.5.2 Stabilization of Modulated Pendulum with Linear Force

The potential energy function of a periodic force with zero mean can be calculated using
(9.5.14). Here the nonlinear force (harmonic force) is replaced with some linear force. For
horizontal modulation, then the net acting force is

f(t) = mω2 cosφ ·R(t, n) ,

where the function R is T -periodic R(t + T, n) ≡ R(t, n). Let’s introduce the triangular
shape linear force:Rs(t) given by (10.3.2)

RS(t) =


4t
T if 0 ≤ t < T

4 ;

4
T

(
T
2 − t

)
if T

4 ≤ t <
3T
4 ;

4(t−T )
T if 3T

4 ≤ t < T .

(9.5.22)

and is shown in Fig. (9.11)

9.5.3 Horizontal Modulation

For horizontal modulation, the force acting on the particle is

f(t) = mω2 cosφ ·RS(t, n)

Then by (10.33)Fourier coefficient a0 of (10.3.2) is:

a0 =
2

T

[∫ T
4

0

4t

T
dt+

∫ 3T
4

T
4

4

T

(
T

2
− t
)
dt+

∫ T

3T
4

4(t− T )

T
dt

]

=
2

T

[
4

T

t2

2

∣∣∣T4
0

+ 2t
∣∣∣ 3T4
T
4

− 4

T

t2

2

∣∣∣ 3T4
T
4

+
4

T

t2

2

∣∣∣T
3T
4

− 4t
∣∣∣T
3T
4

]

=
2

T

[
T

8
+

3T

2
− T

2
− 9T

8
+
T

8
+ 2T − 9T

8
− 4T + 3T

]
= 0 (9.5.23)

Whic is equivalent to show that R̄s = 0, and we can proceed further. The other Fourier
coefficients are given by Eq.(9.3.3)

ak =
2

T

∫ T

0
RS(t) cos kωt dt
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by using Eq. (9.5.11) we have

ak =
2

T

[∫ T
4

0

4t

T
cos kωtdt+

∫ 3T
4

T
4

4

T

(
T

2
− t
)

cos kωtdt+

∫ T

3T
4

4(t− T )

T
cos kωtdt

]

=
2

T

[
4

T

(
t sin kωt

kω
+

cos kωt

k2ω2

) ∣∣∣T4
0

+ 2
sin kωt

kω

∣∣∣ 3T4
T
4

− 4

T

(
t sin kωt

kω
+

cos kωt

k2ω2

) ∣∣∣ 3T4
T
4

]

+
2

T

[
4

T

(
t sin kωt

kω
+

cos kωt

k2ω2

) ∣∣∣T
3T
4

− 4
sin kωt

kω

∣∣∣T
3T
4

]

=
2

T

[
4

T

(
T

4

sin kω T4
kω

+
cos kω T4
k2ω2

)
+

2

kω

(
sin kω

3T

4
− sin kω

T

4

)]

− 2

T

4

T

[(
3T

4

sin kω 3T
4

kω
− T

4

sin kω T4
kω

)
+

(
cos kω 3T

4 − cos kω T4
k2ω2

)]

+
2

T

4

T

[(
T

sin kωT

kω
− 3T

4

sin kω 3T
4

kω

)
+

(
cos kωT − cos kω 3T

4

k2ω2

)]

− 2

T
4

[
sin kωT − sin kω 3T

4

kω

]

=
2

T

[
8

T

cos kω T4
k2ω2

− 4

Tk2ω2
− 8

T

cos kω 3T
4

k2ω2
+

4

T

cos kωT

k2ω2

]

using T = 2π
ω , we have

ak = 0 (9.5.24)

The other fourier coefficient is

bk =
2

T

∫ T

0
RS(t) sin kωt dt

by using Eq. (9.5.11) we have

bk =
2

T

[∫ T
4

0

4t

T
sin kωtdt+

∫ 3T
4

T
4

4

T

(
T

2
− t
)

sin kωtdt+

∫ T

3T
4

4(t− T )

T
sin kωtdt

]

=
2

T

[
4

T

(
−t cos kωt

kω
+

sin kωt

k2ω2

) ∣∣∣T4
0

+ 2
− cos kωt

kω

∣∣∣ 3T4
T
4

− 4

T

(
−t cos kωt

kω
+

sin kωt

k2ω2

) ∣∣∣ 3T4
T
4

]

+
2

T

[
4

T

(
−t cos kωt

kω
+

sin kωt

k2ω2

) ∣∣∣T
3T
4

+ 4
cos kωt

kω

∣∣∣T
3T
4

]



9.5 Motion in a Rapidly Oscillating Field under Arbitrary Periodic Force with Zero Mean245

=
2

T

[
4

T

(
−T

4

cos kω T4
kω

+
sin kω T4
k2ω2

)
+

2

kω

(
− cos kω

3T

4
+ cos kω

T

4

)]

+
2

T

4

T

[(
3T

4

cos kω 3T
4

kω
− T

4

cos kω T4
kω

)
−

(
sin kω 3T

4 − sin kω T4
k2ω2

)]

+
2

T

4

T

[(
−T cos kωT

kω
− 3T

4

cos kω 3T
4

kω

)
+

(
sin kωT − sin kω 3T

4

k2ω2

)]

− 8

T

[
cos kωT − cos kω 3T

4

kω

]
using T = 2π

ω , we have

bk =
8

k2π2

[
sin k

π

2

]
when k is even, bk = 0
for odd bk can be written as;

b2j+1 =
8

π2

(−1)j

(2j + 1)2

bk = mω2 cosφ
8

π2

(−1)j

(2j + 1)2
(9.5.25)

Then the force acting on the particle is

RS(t) = mω2 cosφ
8

π2

∞∑
j=0

(−1)j

(2j + 1)2
sin

(
2π(2j + 1)t

T

)
.

For horizontal modulation, the effective potential energy is

Ueff = U +mω2 cos2 φ · 1

4

(
8

π2

)2 ∞∑
j=0

1

(2j + 1)6

= U +
π2

60
mω2 cos2 φ

which has extremum at φ = 0 , π , ± arccos 30gl/ω2π2.
Stability We see that

(1) The downward point φ = 0 is stable if ω2 < 3.0396gl.

(2) Vertically upward point φ = π is not a stable.

(3) The point given by cosφ = 3.0396gl/ω2 is stable if ω2 > 3.0396gl .
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9.5.4 Rectangular Shape Force

Here we introduce rectangular shape periodic force:Rl(t) given by

Rl(t) =

 1 0 ≤ t ≤ T
2

−1 T
2 ≤ t ≤ T

(9.5.26)

This force also satisfy the property R̄l = 0 as the Fourier coefficient a0 = 0. For horizontal
modulation, the force acting on the particle is

f(t) = mω2 cosφ ·Rl(t, n) ,

Then by Fourier expansion in the place of (9.5.26) we get:

ak = 0 (9.5.27)

bk = mω2 cosφ
4

(2k − 1)π
(9.5.28)

with the force acting on the particle is

RL(t) = mω2 cosφ
4

π

∞∑
k=0

1

(2k − 1)
sin(2k − 1)ωt

For horizontal modulation, the effective potential energy is

Ueff = U +mω2 cos2 φ · 1

4

(
16

π2

)2 ∞∑
k=0

1

(2k − 1)4

= U + 0.4112mω2 cos2 φ

which has extremum at φ = 0 , π , ± arccos 1.2159gl/ω2.
Stability We see that

(1) The downward point φ = 0 is stable if ω2 < 1.2159gl .

(2) Vertically upward point φ = π is not a stable.

(3) The point given by cosφ = 1.2159gl/ω2 is stable if ω2 > 1.2159gl .

For horizontal modulation the the stability results at nontrivial positions are summarized in
table 9.1. At nontrivial positions, we see that when we apply external triangular type force,
whose area under the curve is less as compared to area under sine curve, we stabilize the
pendulum with relatively high frequency, as compared to external sine force. And when we
apply external rectangular linear force, whose area under the curve is more as compared to
area under sine curve. Hence we can stabilize the pendulum with relatively low frequency
as compared to external sine force.
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Table 9.1: Stability Conditions for Horizontal Modulation.

Force Type Trivial Stability Non-trivial Stability
position condition position condition

sin 0 ω2 < 2gl ± arccos 2gl/ω2 ω2 > 2gl

triangular 0 ω2 < 3.0396gl ± arccos 3.0396gl/ω2 ω2 > 3.0396gl

rectangular 0 ω2 < 1.2159gl ± arccos 1.2159gl/ω2 ω2 > 1.2159gl

9.5.5 Stabilization of Vertical Oscillations

The same effect we observe for vertical modulation :
The force acting on the particle for external harmonic force is

f = mω2 sinφ · sinωt . (9.5.29)

Here the vertical downward position φ = 0 is always stable, the inverse point φ = π is
stable under the condition ω2 > 2gl .
In place of external harmonic force, we use an arbitrary periodic force. Then the force
acting on the particle is

f = mω2 sinφ ·R(t, n) ,

where R(t, n) represents an arbitrary periodic force.
For vertical modulation the point φ = 0 is always stable while for upper point φ = π we

reproduce conditions as:

Stability Conditions for Vertical Oscillation

Force Type Position Stability Position Stability

condition condition

sin 0 always π ω2 > 2gl

triangular 0 always π ω2 > 3.0396gl

rectangular 0 always π ω2 > 1.2159gl

These stable positions are illustrated in the Fig (9.13) as:
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Exercise

1. Discuss the stability of a pendulum in the following cases using 9.4

(a) Modulation with a high frequency horizontal small oscillating cosωt external
force.

(b) Modulation with a high frequency vertical small oscillating cosωt external force.

2. Discuss the stability of a modulated pendulum with a high frequency horizontal small
oscillating following external force using 9.5.14

(a) f(t) = cosωt

(b)

f(t) =


4t
T if 0 ≤ t < T

4 ;

4
T

(
T
2 − t

)
if T

4 ≤ t <
3T
4 ;

4(t−T )
T if 3T

4 ≤ t < T

(c)

f(t) =



1
2 if 0 ≤ t < 1

6T ;

1 if 1
6T ≤ t <

1
3T ;

1
2 if 1

3T ≤ t <
1
2T ;

−1
2 if 1

2T ≤ t <
2
3T ;

−1 if 2
3T ≤ t <

5
6T ;

−1
2 if 5

6T ≤ t < T

(d)

f(t) =



8t
T if 0 ≤ t < T

8 ;

1 if T
8 ≤ t <

3T
8 ;

8
T

(
T
2 − t

)
if 3T

8 ≤ t <
5T
8 ;

−1 if 5T
8 ≤ t <

7T
8 ;

8(t−T )
T if 7T

8 ≤ t < T

(e)

f(t) =


8t
T if 0 ≤ t < 3T

8 ;

8
T

(
T
2 − t

)
if 3T

8 ≤ t <
5T
8 ;

8(t−T )
T if 5T

8 ≤ t < T
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(f)

f(t, n) =

 1 0 ≤ t < τ

−(n− 1) τ ≤ t < T , n > 1 ∈ Z.

3. Discuss the stability of a modulated pendulum with a high frequency vertical small
oscillating following external force using 9.5.14

(a) f(t) = cosωt

(b)

f(t) =


4t
T if 0 ≤ t < T

4 ;

4
T

(
T
2 − t

)
if T

4 ≤ t <
3T
4 ;

4(t−T )
T if 3T

4 ≤ t < T

(c)

f(t) =



1
2 if 0 ≤ t < 1

6T ;

1 if 1
6T ≤ t <

1
3T ;

1
2 if 1

3T ≤ t <
1
2T ;

−1
2 if 1

2T ≤ t <
2
3T ;

−1 if 2
3T ≤ t <

5
6T ;

−1
2 if 5

6T ≤ t < T

(d)

f(t) =



8t
T if 0 ≤ t < T

8 ;

1 if T
8 ≤ t <

3T
8 ;

8
T

(
T
2 − t

)
if 3T

8 ≤ t <
5T
8 ;

−1 if 5T
8 ≤ t <

7T
8 ;

8(t−T )
T if 7T

8 ≤ t < T

(e)

f(t) =


8t
T if 0 ≤ t < 3T

8 ;

8
T

(
T
2 − t

)
if 3T

8 ≤ t <
5T
8 ;

8(t−T )
T if 5T

8 ≤ t < T



250 9 Small Oscillation

(f)

f(t, n) =

 1 0 ≤ t < τ

−(n− 1) τ ≤ t < T , n > 1 ∈ Z.
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Figure 9.4: (a): Stable point φ = 0 of Kapitza Pendulum with Horizontal Oscillation under
the condition ω2 < 2gl
(b): Stable points given by cosφ = 2gl

ω2 of Kapitza Pendulum with Horizontal Oscillation
under the condition ω2 > 2gl



252 9 Small Oscillation

Figure 9.5: Vertically modulated Pendulum with sin force

Figure 9.6: Stable positions for vertical oscillation
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Figure 9.7: (a): Stable point φ = 0 of Kapitza Pendulum with vertical Oscillation
(b): Stable points given by φ = π of Kapitza Pendulum with Vertical Oscillation under the
condition ω2 > 2gl
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Figure 9.8: Sin type Signal

Figure 9.9: Horizontally modulated Pendulum with sin force
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Figure 9.10: Stable points with horizontal oscillation.

Figure 9.11: Saw type pulses



256 9 Small Oscillation

Figure 9.12: Kapitza Pendulum with Vertical Oscillation

Figure 9.13: Stable positions with Vertical Oscillation
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Figure 9.14: (a): Stable point φ = 0 of Kapitza Pendulum with Horizontal Oscillation under
the condition ω2 < 1.2159gl
(b): Stable points given by cosφ = 1.2159gl

ω2 of Kapitza Pendulum with Horizontal Oscillation
under the condition ω2 > Sngl
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Figure 9.15: (a): Stable point φ = 0 of Kapitza Pendulum with vertical Oscillation
(b): Stable points given by φ = π of Kapitza Pendulum with Vertical Oscillation under the
condition ω2 > Sngl



Chapter 10

Rotation and Rigid Bodies

Rotation is very common in our daily life. We can see it in fan, clock (with needles), swing,
merry go round, speedometer and dvd in use. In rotation the orientation of a point or line
is fixed, if a point is fixed, we say rotation is about a point and if a line is fixed, we say
rotation is about a line. The line is known as the axis of rotation. In rotation the angular
displacement is called angle of rotation. For example, if we move our arm, we have rotation
about our shoulder (may be consider as a point) and if we close or open the door, there is
rotation about fixed side, can be regarded as the axis of rotation. In chapter 5, we have
already discussed angular motion. In this chapter, we will discuss some particular aspects
of rotation in 2− space (Rotation around origin) and rotation in 3− space (Rotation about
an axis passing through origin). First consider rotation in 2− space.

10.1 Rotations in 2− space (Rotation about point)

In plane, the mathematics of rotations is fairly trivial. Any rotation takes place around a
fixed point, and is uniquely characterized by its direction cosines. Here we will consider xy
plane and fixed point as origin.
Note: The rotation of a vector around origin in xy plane is linear transformation but other
than origin is not.

10.1.1 Rotation of a vector about origin

Consider xy − coordinate system. Let A(x, y) be a point having radius r and making an
angle φ with x− axis. Then

x = r cosφ (10.1.1)

y = r sinφ (10.1.2)

259
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Let the vector ~OA rotates about origin O making an angle θ, known as angle of rotation.
The new position B(x

′
, y

′
) of A makes an angle θ + φ with x− axis. Then

x
′

= r cos (θ + φ) (10.1.3)

y
′

= r sin (θ + φ) (10.1.4)

using trigonometric results we have

x
′

= r (cos θ cosφ− sin θ sinφ) (10.1.5)

y
′

= r (sin θ cosφ+ cos θ sinφ) (10.1.6)

Using (10.1.1) and (10.1.2), (10.1.5) and (10.1.6) can be written as

x
′

= x cos θ − y sin θ (10.1.7)

y
′

= x sin θ + y cos θ (10.1.8)

(10.1.7) and (10.1.8) give the coordinates of a point after a rotation θ about origin. Above
equations in matrix form can be written as x

′

y
′

 =

 cos θ − sin θ

sin θ cos θ

 x

y

 (10.1.9)

Here R =

 cos θ − sin θ

sin θ cos θ

 is known as rotational matrix. Its action on the coordinates

is:  x
′

y
′

 =

 l11 l12

l21 l22

 x

y

 (10.1.10)

Where lij are direction cosines which define the orientation of the rigid body.

Let ~x =

 x
′

y
′

 and ~X =

 x

y

, then (10.2.1) can be written as

~x = R ~X (10.1.11)



10.1 Rotations in 2− space (Rotation about point) 261

(10.1.11) is known as vector equation. It gives the relation how the rotational matrix R
connects the vectors ~x and ~X. The inverse transformation of (10.1.9) is x

y

 =

 cosφ sinφ

− sinφ cosφ

 x
′

y
′

 (10.1.12)

If the coordinates of a point are given before rotation, we will use (10.1.9) to calculate its
coordinates after rotation, and if we are given coordinates of a point after rotation, we will
use (10.1.12) to calculate its coordinates before rotation.
From above discussion a general result can be stated as:
If the rotation about origin is anticlockwise, then coordinates of a point can be calculated by
using (10.1.9) and if the rotation about origin is clockwise, then coordinates of a point can
be calculated by using (10.1.12)

Example 10.1.1. Let a point (2, 4) is rotated about the origin through an angle of θ = 30◦.

Find its new coordinates.

Solution Here the rotation is anticlockwise, so we will use (10.1.7) and (10.1.8) to find
new coordinates of A. Given A = (2, 4) and θ = 30◦ so x = 2 and y = 4, then

cos θ = cos 30 =

√
3

2
(10.1.13)

and

sin θ = sin 30 =
1

2
(10.1.14)

we obtain

x
′

= 2

(√
3

2

)
− 4

(
1

2

)

y
′

= 2

(
1

2

)
+ 4

(√
3

2

)

Thus, the new coordinates are

x
′

=
√

3− 2

y
′

= 1 + 2
√

3

In other words we can say that the point after rotation is
(√

3− 2, 1 + 2
√

3
)
' (−0.3, 4.5).
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Figure 10.1: Rotation of coordinate axes

10.1.2 Rotation of Coordinate Axes

Consider xy−coordinate system. Let it be fixed. Let P (x, y) be a point whose distance
from O is r and makes an angle α with Ox−axis. This can be viewed as in Fig 10.1. Then
polar coordinates of P are

x = r cosα (10.1.15)

y = r sinα (10.1.16)

Introduce another x
′
y
′−coordinate system with same origin O. Let it be rotatable. Initially

both system coincides (see Fig. 10.1 ). Let it be rotated in anticlockwise direction about
the origin through an angle φ relative to xy−coordinate system. This rotation is shown
in Fig. 10.2. As r be the distance from the common origin O to the point P , and let r
makes an angle θ with Ox

′−axis as shown in Fig. 10.3. Then coordinates of P relative to
x

′
y
′−coordinate system can be written as

x
′

= r cos θ (10.1.17)

y
′

= r sin θ (10.1.18)

From Fig. 10.3, θ can be written as

θ = α− φ

It follows that

x
′

= r cos (α− φ) (10.1.19)

y
′

= r sin (α− φ) (10.1.20)

using trigonometric results we have

x
′

= r (cosα cosφ+ sinα sinφ) (10.1.21)

y
′

= r (sinα cosφ− cosα sinφ) (10.1.22)
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Figure 10.2: Rotation of coordinate axes

Using (10.1.15) and (10.1.16), (10.1.21) and (10.1.22) can be written as

x
′

= x cosφ+ y sinφ (10.1.23)

y
′

= −x sinφ+ y cosφ (10.1.24)

The above system in matrix form can be written as x
′

y
′

 =

 cosφ sinφ

− sinφ cosφ

 x

y

 (10.1.25)

Its inverse transformation can be given as x

y

 =

 cosφ − sinφ

sinφ cosφ

 x
′

y
′

 (10.1.26)

Here we observe that there is same coordinate transformation or rotational matrix when a
point has anticlockwise rotation about origin and coordinate axes have clockwise rotation
about origin.

Example 10.1.2. If the coordinate axes are rotated about the origin through an angle of

θ = 30◦. Find new coordinates of a point A = (2, 4).

Solution Here the rotation is anticlockwise, so we will use (10.1.25) to find new coor-
dinates of A. Given A = (2, 4) and θ = 30◦ so x = 2 and y = 4, then

cos θ = cos 30 =

√
3

2
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Figure 10.3: Rotation of coordinate axes

and

sin θ = sin 30 =
1

2

we obtain

x
′

= 2

(√
3

2

)
+ 4

(
1

2

)

y
′

= −2

(
1

2

)
+ 4

(√
3

2

)
Thus, the new coordinates are

x
′

=
√

3 + 2

y
′

= −1 + 2
√

3

In other words we can say that the point after rotation is
(√

3 + 2,−1 + 2
√

3
)
' (3.7, 2.5).

If the equation of a curve is given before rotation, then equation (10.1.25) will give coor-
dinates of fixed system in terms of rotatable system. Using this transformation the curve
after rotation can be easily calculated. The equation (10.1.26) is inverse transformation of
equation (10.1.25). It gives coordinates of rotatable system in terms of fixed system.

Example 10.1.3. Suppose that the axes of an x́ý−coordinate system are rotated through

an angle of θ = 45 to obtain an xy−coordinate system. Find the equation of the curve

x́2 − x́ý + ý2 − 6 = 0 (10.1.27)
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in xy−coordinates.

Solution Here we have θ = 45◦, then

cos θ = cos 45 =
1√
2

and

sin θ = sin 45 =
1√
2

Using the rotation equations in (10.1.7) and (10.1.8), we obtain

x
′

=

(
x√
2

)
−
(
y√
2

)
y
′

=

(
x√
2

)
+

(
y√
2

)
Substituting these into equation (10.1.28) yields(

x√
2
− y√

2

)2

−
(
x√
2
− y√

2

)(
x√
2

+
y√
2

)
+

(
x√
2

+
y√
2

)2

− 6 = 0

x2

12
+
y2

4
= 1 (10.1.28)

Example 10.1.4. Suppose that the axes of an xy−coordinate system are rotated through

an angle of θ. to obtain an x́ý−coordinate system. Find the equation of the curve

x2 + y2 = a2 (10.1.29)

in x́ý−coordinates.

Solution Since we have given equation of a circle before rotation, so will will use inverse
transformation

x = x́ cos θ + ý sin θ

y = −x́ sin θ + ý cos θ

in given equation.

x2 + y2 = a2

(x́ cos θ + ý sin θ)2 + (−x́ sin θ + ý cos θ)2 = a2(
x́2 cos2 θ + ý2 sin2 θ + 2x́ý cos θ sin θ

)
+
(
x́2 sin2 θ + ý2 cos2 θ − 2x́ý cos θ sin θ

)
= a2

x́2
(
cos2 θ + sin2 θ

)
+ ý2

(
sin2 θ + cos2 θ

)
= a2

x́2 + ý2 = a2

It means that x is transformed into x́ and y into ý and the equation of a circle remains
invariant.
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Remark 10.1.1. A circle centred at origin is same after any rotation about the origin.

10.2 Rotational Matrix in 2− space
The direction cosines which define the orientation of the rigid body can be written as a
matrix R = (lij)2×2 known as rotational matrix.

R =

 l11 l12

l21 l22

 (10.2.1)

Rotational matrices are orthogonal (i.e. they preserve lengths and angles), hence if R−1 is
inverse and RT is transpose of R then the criteria for a matrix to be rotational is

a) detR = |R| = +1

b) RRT = RTR = I or R−1 = RT

If any of above conditions violate, the matrix is not rotational matrix.

10.2.1 Construction of Rotational Matrix in 2− space

To construct a rotational matrix, consider xy−coordinate system. Let it be fixed. Introduce
another x

′
y
′−coordinate system with same origin O. Let it be rotatable. Initially both

system coincides (see Fig. 10.4 ). Let x
′
y
′−coordinate system is rotated in anticlockwise

Figure 10.4: Rotation of coordinate axes

direction about the origin through an angle θ relative to xy−coordinate system. This
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Figure 10.5: Rotation of coordinate axes

rotation is shown in Fig. 10.5. In (10.2.1), lij are cosines of the angles between the axes.
Then rotation matrix can be written as

R =

 cos
(
Ox,Ox

′
)

cos
(
Ox,Oy

′
)

cos
(
Oy,Ox

′
)

cos
(
Oy,Oy

′
) 

In Fig. 10.5, the angles between the axes are as following.

∠
(
Ox

′
, Ox

)
= θ ∠

(
Ox

′
, Oy

)
= 90− θ

∠
(
Oy

′
, Ox

)
= 90 + θ ∠

(
Oy

′
, Oy

)
= θ

Then the rotational matrix is

R =

 cos (θ) cos (90 + θ)

cos (90− θ) cos (θ)


=

 cos θ − sin θ

sin θ cos θ


Example 10.2.1. Determine whether the following matrices are rotational matrices.

1) A =


√

3
2 −1

2

1
2

√
3

2



2) B =

 1 −2

1
2 1


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3) C =

 3 1

5 2


Solution For a rotational matrix we have to show

a) |R| = 1

b) RRT = RTR = I or R−1 = RT

1) The determinant of A is

|A| =

∣∣∣∣∣∣
√

3
2 −1

2

1
2

√
3

2

∣∣∣∣∣∣ = 3
4 + 1

4 = 1

The transpose of A is AT =

 √
3

2
1
2

−1
2

√
3

2

 Next AAT is

AAT =

 √
3

2 −1
2

1
2

√
3

2

 √
3

2
1
2

−1
2

√
3

2


=

 3
4 + 1

4

√
3

4 −
√

3
4√

3
4 −

√
3

4
3
4 + 1

4

 =

 1 0

0 1


= I

As both conditions are satisfied, the matrix A is rotational matrix.

2) The determinant of B is

|B| =

∣∣∣∣∣∣ 1 −2

1
2 1

∣∣∣∣∣∣ = 1 + 1 = 2

As |B| 6= 1, hence B is not rotational matrix.

3) The determinant of C is

|C| =

∣∣∣∣∣∣ 3 1

5 2

∣∣∣∣∣∣ = 6− 5 = 1
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The transpose of C is CT =

 3 5

1 2

 Next CCT is

CCT =

 3 1

5 2

 3 5

1 2


=

 9 + 1 15 + 2

15 + 2 25 + 4

 =

 10 17

17 29


6= I

As one of the conditions is not satisfied, the matrix C is not rotational matrix.

10.3 Rotations in 3− space
Most people have played with spinning tops, and know that their dynamics is very rich. The
subject is of considerable practical importance, say to spacecraft designers. To understand it
we must understand the concept of rotations in three dimensional space, and we will discuss
it in this section. The axis of rotation may be coordinate axis or other than coordinate axis.

10.3.1 Position of a Rigid Body in 3− space

Let us take a regular trihedral OX1X2X3, fixed in space. Introduce another regular trihedral
O

′
x1x2x3, fixed in the rigid body with O

′
as origin of the rigid body. Both trihedral are

right-handed. The position of the body is completely determined by giving the coordinates
ξ1ξ2ξ3 with respect to origin O

′
and by direction cosines of the axes O

′
x1x2x3 relative to

the axes OX1X2X3. If lij ; i, j = 1, 2, 3 is the cosines of the angle between O
′
xi and OXj .

If αij ; i, j = 1, 2, 3 are the angle between O
′
xi and OXj Then lij = cosαij ; i, j = 1, 2, 3

From these nine direction cosines only three are independent, as they are connected by six
orthogonality conditions which can be written as

lkilkj = likljk = δij ; i, j, k = 1, 2, 3. (10.3.1)

Where δij is the Kronecker δ−symbol, defined by

δij =

 1 if i = j ;

0 if i 6= j ; i, j = 1, 2, 3.
(10.3.2)

10.3.2 Rotational Matrix in 3− space

The direction cosines which define the orientation of the rigid body can be written as a
matrix R = (lij)3×3.
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Figure 10.6: Position of a body

R =


l11 l12 l13

l21 l22 l23

l31 l32 l33


in other words

R =


cos
(
OX1, O

′
x1

)
cos
(
OX1, O

′
x2

)
cos
(
OX1, O

′
x3

)
cos
(
OX2, O

′
x1

)
cos
(
OX2, O

′
x2

)
cos
(
OX2, O

′
x3

)
cos
(
OX3, O

′
x1

)
cos
(
OX3, O

′
x2

)
cos
(
OX3, O

′
x3

)


Determinant of the matrix R denoted by |R| is the volume of the rectangular parallelepiped
whose sides have unit length and lie along the axes of the trihedral O

′
x1x2x3. Since both

the trihedral are right-handed, so this volume is +1

|R| = +1 (10.3.3)

The matrixR is called rotational matrix. IfRT denotes the transpose ofR, the orthogonality
conditions (10.3.1) show that

RRT = RTR = I (10.3.4)
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I3×3 is unit matrix. It follows that

RT = R−1 (10.3.5)

(10.3.4) and (10.3.5) confirm that the rotational matrix R is a proper orthogonal matrix.
For next discussion, we consider O and O

′
coincide, then rotational matrix is

R =


cos (∠X1Ox1) cos (∠X1Ox2) cos (∠X1Ox3)

cos (∠X2Ox1) cos (∠X2Ox2) cos (∠X2Ox3)

cos (∠X3Ox1) cos (∠X3Ox2) cos (∠X3Ox3)



Figure 10.7: Both systems coincides

Example 10.3.1. Determine whether the following matrix is rotational matrix.

A =


1
2 −3

4

√
3

4

3
4

5
8

√
3

8

−
√

3
4

√
3

8
7
8


Solution For a rotational matrix we have to show

a) |R| = 1

b) RRT = RTR = I or R−1 = RT

a) The determinant of A is
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|A| =

∣∣∣∣∣∣∣∣
1
2 −3

4

√
3

4

3
4

5
8

√
3

8

−
√

3
4

√
3

8
7
8

∣∣∣∣∣∣∣∣
=

1

2

(
35

64
− 3

64

)
+

3

4

(
21

32
+

3

32

)
+

√
3

4

(
3
√

3

32
+

5
√

3

32

)
=

1

4
+

9

16
+

3

16
= 1

The transpose of A is

AT =


1
2

3
4 −

√
3

4

−3
4

5
8

√
3

8√
3

4

√
3

8
7
8


Next AAT is

AAT =


1
2 −3

4

√
3

4

3
4

5
8

√
3

8

−
√

3
4

√
3

8
7
8




1
2

3
4 −

√
3

4

−3
4

5
8

√
3

8√
3

4

√
3

8
7
8



=


1
4 + 9

16 + 3
16

3
8 −

15
32 + 3

32 −
√

3
8 −

3
√

3
32 + 7

√
3

32

3
8 −

15
32 + 3

32
9
16 + 25

64 + 3
64 −3

√
3

16 + 5
√

3
64 + 7

√
3

64

−
√

3
8 −

3
√

3
32 + 7

√
3

32 −3
√

3
16 + 5

√
3

64 + 7
√

3
64

3
16 + 3

64 + 49
64



=


1 0 0

0 1 0

0 0 1


= I

As both conditions are satisfied, the matrix A is rotational matrix.

10.4 Rotation about Coordinate axis in 3− space
If axis of rotation is one of the coordinate axes, then we have some special rotational matrix.

10.4.1 Rotational Matrix when Rotation is about x3 axis

If axis of rotation is x3 axis, then it coincides with X3 axis. If the rotation of θ radian is
made about x3 in anticlockwise direction, then the angles between axes are
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Figure 10.8: Rotation about X3

∠X1Ox1 = θ, ∠X2Ox1 = π
2 − θ, ∠X3Ox1 = π

2
∠X1Ox2 = π

2 + θ, ∠X2Ox2 = θ, ∠X3Ox2 = π
2 ,

∠X1Ox3 = π
2 , ∠X2Ox3 = π

2 , ∠X3Ox3 = 0
and the rotational matrix is:

R =


cos θ cos

(
π
2 + θ

)
cos
(
π
2

)
cos
(
π
2 − θ

)
cos θ cos

(
π
2

)
cos
(
π
2

)
cos
(
π
2

)
cos (0)


on simplification we can write

R =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (10.4.1)

If the rotation is in clockwise direction, the rotational matrix is

R =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1


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10.4.2 Rotation about x1 axis

Similarly if the rotation is about x1 axis, then the rotational matrix is

R =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ


10.4.3 Rotation about x2 axis

Similarly if the rotation is about x2 axis, then the rotational matrix is

R =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


Example 10.4.1. Find rotational matrix if a rotation of angle π

6 radian is made about

〈0, 0, 1〉 axis in counter clockwise direction.

Solution Here the axis of rotation is x3 axis, to find rotational matrix we can use
(10.4.1) with θ = π

6

R =


cos(π6 ) − sin(π6 ) 0

sin(π6 ) cos(π6 ) 0

0 0 1



=


√

3
2 −1

2 0

1
2

√
3

2 0

0 0 1


10.5 Angle and axis of Rotation

The angle of rotation can be measured by the trace of rotational matrix. If the rotation
is about x3 axis, then trace is

Tr(R) = cos θ + cos θ + 1

= 2 cos θ + 1

θ = arccos

(
Tr(R)− 1

2

)
(10.5.1)

(10.5.1) gives the angle of rotation for any axis of rotation.
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10.5.1 Axis of Rotation

If we consider an arbitrary axis of rotation and let P be a point on the axis of rotation.
Then its position relative to RHRTS OX1X2X3 is P (X1, X2, X3) and its position relative
to RHRTS O

′
x1x2x3 is P (x1, x2, x3). Since on rotational axis, both axes have the same

coordinates. So we have

P (X1, X2, X3) = P (x1, x2, x3)

Let the position vector of P is

~X = (x1, x2, x3)T (10.5.2)

Then the vector equation (10.1.11) can be written as

~X = R ~X (10.5.3)

with R3×3 rotational matrix. Consequently we have:
x1

x2

x2

 =


l11 l12 l13

l21 l22 l23

l31 l32 l33




x1

x2

x3

 (10.5.4)

Solving (10.5.4), we have the vector (10.5.2), known as the axis of rotation.

Example 10.5.1. For rotational matrix

A =


1
2 −3

4

√
3

4

3
4

5
8

√
3

8

−
√

3
4

√
3

8
7
8


determine angle and axis of rotation.

Solution Angle of rotation can be determined by using equation (10.5.1). Trace of R is

Tr(R) =
1

2
+

5

8
+

7

8
=

16

8
= 2

Let θ be the angle of rotation then

θ = arccos

(
2− 1

2

)
=

1

2

=
π

3
or

π

3
+ 2nπ
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Let P = (x, y, z), be a point on the axis of rotation, then its position vector relative to
origin is: ~x = (x, y, z)T then the vector equation (10.5.4), becomes

x

y

z

 =


1
2 −3

4

√
3

4

3
4

5
8

√
3

8

−
√

3
4

√
3

8
7
8




x

y

z


and the system of equations is

x =
1

2
x− 3

4
y +

3

4
z

y =
3

4
x+

5

8
y − 3

8
z

z = −3

4
x+

3

8
y +

7

8
z

This system can be rearranged as:

2x+ 3y −
√

3z = 0

6x− 3y +
√

3z = 0

2
√

3x−
√

3y + z = 0

This system reduces to

x = 0

3y −
√

3z = 0

The above system is in reduced Echelon form with x = 0 and z as free variable. Set z = 1,
we have y = 1√

3
.

Hence the axis of rotation is x =
(

0, 1√
3
, 1
)T

and the unit vector along the axis of rotation

is x̂ =
〈

0, 1
2 ,
√

3
2

〉
.

Normal vector indicates that axis of rotation lies in yz plane. More information about its
direction can be calculated as

tan θ =
z

y
=

√
3/2

1/2
=
√

3

and

θ =
π

3

Hence axis of rotation passing through origin lies in the yz− plane and is inclined at an
angle of θ = π

3 to the positive y − axis.
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10.6 Euler’s Angles (φ, θ and ψ)

These angles are generated in the above rotations, considering one after the other. The
first rotation is counterclockwise through an angle φ radian about x3 axis which initially
coincides with X3 axis. This rotation takes place in x1x2 plane, then the rotational matrix
is

Rφ =


cosφ − sinφ 0

sinφ cosφ 0

0 0 1


After first rotation the coordinate system Ox1x2x3 transform to Ox

′
1x

′
2x

′
3 and the vector

Figure 10.9: First Rotation

equation (10.1.11) can be written as

~x′ = Rφ~x (10.6.1)

The next rotation is counterclockwise through an angle θ radian about x
′
1 axis. This rotation

takes place in x
′
2x

′
3 plane,then the rotational matrix is

Rθ =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ


After second rotation the coordinate system Ox

′
1x

′
2x

′
3 transform to Ox

′′
1x

′′
2x

′′
3 and the vector



278 10 Rotation and Rigid Bodies

Figure 10.10: Second Rotation

equation is

~x′′ = Rθ
~x′ (10.6.2)

The next rotation is counterclockwise through an angle ψ radian about x
′′
3 axis. This

rotation takes place in x
′′
1x

′′
2 plane, then the rotational matrix is

Rψ =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1


After third rotation the coordinate system Ox

′′
1x

′′
2x

′′
3 transform to Ox

′′′
1 x

′′′
2 x

′′′
3 and the vector

equation is

~x′′′ = Rψ
~x′′ (10.6.3)

After these three rotations, the coordinate system Ox1x2x3 transform to Ox
′′′
1 x

′′′
2 x

′′′
3 and

the complete transformation is given by backward substitution (10.6.3→ 10.6.2→ 10.6.1)

~x′′′ = Rψ
~x′′ = RψRθ

~x′

= RψRθRφ~x (10.6.4)

And the rotational matrix is

R = RψRθRφ (10.6.5)
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Figure 10.11: Third Rotation

R =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1




1 0 0

0 cos θ − sin θ

0 sin θ cos θ




cosφ − sinφ 0

sinφ cosφ 0

0 0 1



=


cosψ cosφ− cos θ sinφ sinψ − cosψ sinφ− cos θ cosφ sinψ sin θ sinψ

sinψ cosφ− cos θ cosψ sinφ − sinφ sinψ + cos θ cosφ cosψ − sin θ cosψ

sin θ sinφ sin θ cosφ cos θ


The lines common to the planes x1x2 plane and x

′′′

1 x
′′′

2 planes is called the line of nodes.

10.7 Rotation about arbitrary axis in 3− space

Let a rigid body rotates about an arbitrary axis OC passing through origin O. Let n̂ be the unit

vector in this direction. Let P (initial position) be a fixed point in the body having position vector

~r. Let it makes angle φ with OC axis.

~OP = ~r (10.7.1)
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Let the point P has anticlockwise rotation of angle θ, then Q be its new (final) position with position

vector ~r1 and is shown in Fig. 10.12 (a)

~OQ = ~r1 (10.7.2)

By vector addition, the position vector of this new position of the particle is

Figure 10.12: Addition of vectors

~OQ = ~r1 = ~ON + ~NQ (10.7.3)

~ON is along the axis of rotation. To calculate ~NQ, consider right angle triangle NMQ as shown in

Fig. 10.13 (a)

~NQ = ~MN + ~MQ

Then (10.7.3) becomes

~r1 = ~ON + ~NM + ~MQ (10.7.4)

(10.7.4) gives the position of the particle after rotation. To calculate ~ON , consider right angle

triangle ONP
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Figure 10.13: Orientation of ~NQ

Figure 10.14: Rotation of a Vector

ON = r cosφ = 1 r cosφ

= ‖ n̂ ‖‖ ~r ‖ cosφ

= n̂ · ~r

~ON can be written as

~ON = (n̂ · ~r) n̂ (10.7.5)

For ~NM and ~MQ, consider right angle triangle NMQ in the circle, we have

NM = NQ cos θ

MQ = NQ sin θ
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Figure 10.15: triangle NMQ

Next NQ = NP (radius of the circle with centre at N) hence above equations can be written as

NM = NP cos θ (10.7.6)

MQ = NP sin θ (10.7.7)

Since ~NM is in the direction of ~NP , so we can write

~NM = ~NP cos θ (10.7.8)

Consider again right angle triangle ONP

Figure 10.16: right angle triangle ONP
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NP = OP sinφ = r sinφ

= 1 r sinφ

= ‖ n̂ ‖‖ ~r ‖ sinφ

= ‖ n̂× ~r ‖ (10.7.9)

Using (10.7.9), (10.7.7) can be written as

MQ = ‖ n̂× ~r ‖ sin θ (10.7.10)

It can be viewed from the Fig. (10.17), MQ is in the direction of n̂× ~r. Let ê be the unit vector in

this direction.

Figure 10.17: Direction of ~MQ

~MQ = ‖ n̂× ~r ‖ ê sin θ

= (n̂× ~r) sin θ (10.7.11)

For ~NP , again consider right angle triangle ONP . Since

~OP = ~ON + ~NP

then ~NP is

~NP = ~OP − ~ON (10.7.12)

Using (10.7.1) and (10.7.5), (10.7.12) can be written as

~NP = ~r − (n̂ · ~r) n̂ (10.7.13)
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Hence (10.7.8) can be written as

~NM = [~r − (n̂ · ~r) n̂] cos θ (10.7.14)

Hence after rotation, the new position of the particle is

~OQ = ~r1 = (n̂ · ~r) n̂+ [~r − (n̂ · ~r) n̂] cos θ + (n̂× ~r) sin θ

= ~r cos θ + (1− cos θ) (n̂ · ~r) n̂+ (n̂× ~r) sin θ (10.7.15)

Which is also known as rotational formula for finite rotations.

If the rotation is clockwise then the rotational formula is

~r1 = ~r cos θ + (1− cos θ) (n̂ · ~r) n̂+ (~r × n̂) sin θ (10.7.16)

This formula can also be written as

~r1 = ~r cos θ + (1− cos θ) (n̂ · ~r) n̂− (n̂× ~r) sin θ

10.7.1 Rotational Matrix when rotation is about arbitrary axis

In this case rotational matrix can be calculated by (10.7.15) into vector equation

~r1 = R~r

where ~r1 is vector after rotation, ~r is vector before rotation and R is rotational matrix. Let

~r = 〈x, y, z〉

n̂ = 〈a, b, c〉, then a2 + b2 + c2 = 1

We will convert all terms on right side of (10.7.15) in matrix form. First consider the term ~r cos θ

~r cos θ = I~r cos θ, where I is identity matrix of order 3× 3

=


1 0 0

0 1 0

0 0 1

~r cos θ

=


cos θ 0 0

0 cos θ 0

0 0 cos θ

~r
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Next consider the term (1− cos θ) (n̂ · ~r) n̂

(1− cos θ) (n̂ · ~r) n̂ = (1− cos θ) (ax+ by + cz)


a

b

c



= (1− cos θ)


a2x+ aby + caz

abx+ b2y + bcz

acx+ bcy + c2z



= (1− cos θ)


a2 ab ac

ab b2 bc

ac bc c2




x

y

x



=


a2 (1− cos θ) ab (1− cos θ) ac (1− cos θ)

ab (1− cos θ) b2 (1− cos θ) bc (1− cos θ)

ac (1− cos θ) bc (1− cos θ) c2 (1− cos θ)

~r

Finally consider the term (n̂× ~r) sin θ

(n̂× ~r) sin θ =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

a b c

x y z

∣∣∣∣∣∣∣∣∣∣
sin θ

= 〈bz − cy, cx− az, ay − bx〉 sin θ

= sin θ


0 −c b

c 0 −a

−b a 0




x

y

x



=


0 −c sin θ b sin θ

c sin θ 0 −a sin θ

−b sin θ a sin θ 0

~r
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substitution all these results in (10.7.15), we have

~r1 =


cos θ 0 0

0 cos θ 0

0 0 cos θ

~r +


a2 (1− cos θ) ab (1− cos θ) ac (1− cos θ)

ab (1− cos θ) b2 (1− cos θ) bc (1− cos θ)

ac (1− cos θ) bc (1− cos θ) c2 (1− cos θ)

~r

+


0 −c sin θ b sin θ

c sin θ 0 −a sin θ

−b sin θ a sin θ 0

~r

=


cos θ + a2 (1− cos θ) ab (1− cos θ)− c sin θ ac (1− cos θ) + b sin θ

ab (1− cos θ) + c sin θ cos θ + b2 (1− cos θ) bc (1− cos θ)− a sin θ

ac (1− cos θ)− b sin θ bc (1− cos θ) + a sin θ cos θ + c2 (1− cos θ)

~r
(10.7.17)

Here

R =


a2 (1− cos θ) + cos θ ab (1− cos θ)− c sin θ ac (1− cos θ) + b sin θ

ab (1− cos θ) + c sin θ b2 (1− cos θ) + cos θ bc (1− cos θ)− a sin θ

ac (1− cos θ)− b sin θ bc (1− cos θ) + a sin θ c2 (1− cos θ) + cos θ


(10.7.18)

is the rotational matrix when rotation is about arbitrary axis.

Example 10.7.1. Find rotational matrix if a rotation of angle θ radian is made about 〈0, 0, 1〉 axis

in counter clockwise direction.

Solution Here the axis of rotation is x3 axis with a = 0, b = 0 and c = 1. To find rotational

matrix we can use (10.7.18)

R =


(0)2 (1− cos θ) + cos θ (0)(0) (1− cos θ)− (1) sin θ (0)(1) (1− cos θ) + (0) sin θ

(0)(0) (1− cos θ) + (1) sin θ (0)2 (1− cos θ) + cos θ (0)(1) (1− cos θ)− (0) sin θ

(0)(1) (1− cos θ)− (0) sin θ (0)(1) (1− cos θ) + (0) sin θ (1)2 (1− cos θ) + cos θ


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then we get

R =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1


Example 10.7.2. A point (2, 1, 1) has rotation of angle θ = π

3 about an axis passing through origin

lying in the yz− plane and is inclined at an angle of π
3 to the positive y − axis. Determine:

a) Its new position after rotation.

b) Its rotational matrix.

Solution

a) The new position of a point after rotation is given by (10.7.15)

~r1 = ~r cos θ + (1− cos θ) (n̂ · ~r) n̂+ (n̂× ~r) sin θ

Consider cartesian coordinate system with O as origin. The position vector of point P (2, 1, 1) is

~r = 〈2, 1, 1〉

Let OC be the axis of rotation making an angle π
3 to the positive y − axis. Accordingly the axis

of rotation lies in yz plane with inclination π
3 with y − axis. All this information is shown in Fig.

10.18 The unit vector along axis of rotation is

n̂ =
〈

0, cos
(π

3

)
, sin

(π
3

)〉
=

〈
0,

1

2
,

√
3

2

〉
The angle of rotation is

θ =
π

3

The trigonometric relations are

cos
(π

3

)
=

1

2

sin
(π

3

)
=

√
3

2

1− cos
(π

3

)
= 1− 1

2
=

1

2
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Figure 10.18: Rotation of a Vector

From given data the term ~r cos θ can be calculated as

~r cos θ = 〈2, 1, 1〉 cos
(π

3

)
= 〈2, 1, 1〉

(
1

2

)
=

〈
1,

1

2
,

1

2

〉

The dot product of n̂ and ~r is

n̂ · ~r =

〈
0,

1

2
,

√
3

2

〉
· 〈2, 1, 1〉

= 0 +
1

2
+

√
3

2
=

1 +
√

3

2

Then the term (1− cos θ) (n̂ · ~r) n̂ is

(1− cos θ) (n̂ · ~r) n̂ =

(
1

2

)(
1 +
√

3

2

)〈
0,

1

2
,

√
3

2

〉

=

〈
0,

1 +
√

3

8
,

3 +
√

3

8

〉
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The cross product of n̂ and ~r is

(n̂× ~r) =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

0 1
2

√
3

2

2 1 1

∣∣∣∣∣∣∣∣∣∣
=

〈
1−
√

3

2
,
√

3,−1

〉
Then the term (n̂× ~r) sin θ is

(n̂× ~r) sin θ =

〈
1−
√

3

2
,
√

3,−1

〉(√
3

2

)

=

〈√
3− 3

4
,

3

2
,−
√

3

2

〉
After rotation the the position vector of Q is

~r1 =

〈
1,

1

2
,

1

2

〉
+

〈
0,

1 +
√

3

8
,

3 +
√

3

8

〉
+

〈√
3− 3

4
,

3

2
,−
√

3

2

〉

=

〈
1 +
√

3

4
,

17 +
√

3

8
,

7− 3
√

3

8

〉

Hence new position of P after rotation is
(

1+
√

3
4 , 17+

√
3

8 , 7−3
√

3
8

)
b) Its rotational matrix is given by (10.7.18)

R =


a2 (1− cos θ) + cos θ ab (1− cos θ)− c sin θ ac (1− cos θ) + b sin θ

ab (1− cos θ) + c sin θ b2 (1− cos θ) + cos θ bc (1− cos θ)− a sin θ

ac (1− cos θ)− b sin θ bc (1− cos θ) + a sin θ c2 (1− cos θ) + cos θ


Here a = 0, b = 1

2 , and c =
√

3
2 , then the rotational matrix is

R =


(0)2

(
1
2

)
+ 1

2 (0)
(

1
2

) (
1
2

)
−
(√

3
2

)(√
3

2

)
(0)
(√

3
2

) (
1
2

)
+
(

1
2

) (√
3

2

)
(0)
(

1
2

) (
1
2

)
+
(√

3
2

)(√
3

2

) (
1
2

)2 ( 1
2

)
+
(

1
2

) (
1
2

) (√
3

2

) (
1
2

)
− (0)

(√
3

2

)
(0)
(√

3
2

) (
1
2

)
−
(

1
2

) (√
3

2

) (
1
2

) (√
3

2

) (
1
2

)
+ (0)

(√
3

2

) (√
3

2

)2 (
1
2

)
+
(

1
2

)


=


1
2 − 3

4

√
3

4

3
4

5
8

√
3

8

−
√

3
4

√
3

8
7
8


As
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a) RRT = RTR = I or R−1 = RT

b) detR = |R| = 1

Hence R is rotational matrix.

10.8 Euler’s Theorem

Next we study Euler’s theorem, was given by Euler in 1776. It has a fundamental importance in the

theory of rotations of a rigid body.

Theorem 10.8.1. The general displacement of a rigid body with one point fixed is a rotation about

some axis.

Proof : Let us take a regular trihedral OX1X2X3, fixed in space. Introduce another regular

trihedral Ox1x2x3, fixed in the rigid body. Initially both systems coincides with O as same origin.

The position of the body is completely determined by giving the coordinates P (X1, X2, X3) with

respect to origin O relative to the axes OX1X2X3, while P (x1, x2, x3) with respect to origin O

relative to the axes Ox1x2x3. If the body undergoes some displacement, then the representation of

Figure 10.19: Position of a body

any point is given by vector equation:

~x = R ~X (10.8.1)
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with ~x is the representation with respect to Ox1x2x3 and ~X is the representation with respect to

OX1X2X3. Here R is a rotational matrix which connects the vectors ~x and ~X.

If the theorem is true, the points on the axis of rotation are unaltered in position. If we consider

~OP = ~x as the axis of rotation, then by the displacement, on the axis of rotation we have:

~x = ~X (10.8.2)

and consequently Eq. (10.8.1) becomes:

Figure 10.20: Rotation about OP

~x = R~x (10.8.3)

Hence Euler’s theorem will be true if it can be shown that thee exist a vector ~x having the same

components in both the systems. Consider the rotational matrix with property |R| = 1, then for

the eigen vector ~x having eigen value λ, the vector equation is:

R~x = λ~x

Equations (10.8.3) and (10.8.4), with orthogonal matrix R specify the physical motion of a rigid

body with one point fixed always has the eigen value λ = 1.

Alternate Approach: Then the characteristic equation with I3×3 unit matrix

|R− λI| = 0
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holds for λ = 1, i.e. we have to show that

|R− I| = 0

This can be shown as follows: Let R
′

is the transpose of R. Consider

R
′
(R− I) = R

′
R−R

′

Since R is orthogonal matrix, then R
′
R = I, so we can write

R
′
(R− I) = I −R

′

= −(R
′
− I)

= −(R− I)
′

Taking determinant on both sides, we have∣∣∣R′
(R− I)

∣∣∣ =
∣∣∣−(R− I)

′
∣∣∣

Since R is rotational matrix, so we have |R| = |R′ | = 1

also
∣∣∣(R− I)

′
∣∣∣ = |R− I|, then above relation may be written as:∣∣∣R′

∣∣∣ |(R− I)| = (−1)3
∣∣∣(R− I)

′
∣∣∣

|(R− I)| = (−1)
∣∣∣(R− I)

′
∣∣∣

|(R− I)| = 0

Hence for eigen value λ = 1, the characteristic equation |R− I| = 0 is satisfied.

10.8.1 Position of the Body after Rotation

If we consider an arbitrary axis of rotation, say ~X = (x1, x2, x3)
T

. Since on rotational axis, both

axes has the same coordinates. This axis can be measured by well known vector equation:

A ~X = λ ~X (10.8.4)

Using Euler’s theorem, we have λ = 1, then Eq. (10.8.4) with A = R becomes:

~X = R ~X
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so we have:


x1

x2

x2

 =


l11 l12 l13

l21 l22 l23

l31 l32 l33




x1

x2

x3


The above system is same as given by (10.5.4) to calculate the axis of rotation.

Example 10.8.1. Determine whether the following matrix is rotational matrix. If yes, find angle

of rotation and axis of rotation.

R =



2
3 − 1

3
2
3

2
3

2
3 − 1

3

− 1
3

2
3

2
3



Solution For a rotational matrix we have to show

a) |R| = 1

b) RRT = RTR = I or R−1 = RT

a) The determinant of R is

|R| =

∣∣∣∣∣∣∣∣∣∣
2
3 − 1

3
2
3

2
3

2
3 − 1

3

− 1
3

2
3

2
3

∣∣∣∣∣∣∣∣∣∣
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Using determinant property, we can write

|R| =
1

33

∣∣∣∣∣∣∣∣∣∣
2 −1 2

2 2 −1

−1 2 2

∣∣∣∣∣∣∣∣∣∣
=

1

27
[2(4 + 2) + (4− 1) + 2(4 + 2)]

= 1

b) The transpose of R is

RT =


2
3

2
3 − 1

3

− 1
3

2
3

2
3

2
3 − 1

3
2
3


Next RRT is

RRT =


2
3 − 1

3
2
3

2
3

2
3 − 1

3

− 1
3

2
3

2
3




2
3

2
3 − 1

3

− 1
3

2
3

2
3

2
3 − 1

3
2
3



=


4
9 + 4

9 + 1
9 − 2

9 + 4
9 −

2
9

4
9 −

2
9 −

2
9

− 2
9 + 4

9 −
2
9

1
9 + 4

9 + 4
9 − 2

9 −
2
9 + 4

9

4
9 −

2
9 −

2
9 − 2

9 −
2
9 + 4

9
4
9 + 1

9 + 4
9



=


1 0 0

0 1 0

0 0 1


= I

As both conditions are satisfied, the matrix R is rotational matrix.

Angle of Rotation: Let θ be the angle of rotation. Then trace of matrix R is:

Tr(R) =
2

3
+

2

3
+

2

3
= 2
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using Eq. (10.5.1), we have

θ = arccos

(
2− 1

2

)
= arccos

(
1

2

)
=

π

3
or
(

2nπ +
π

3

)
(10.8.5)

Axis of Rotation: Let P = (x1, x2, x3), be the position of the particle on the axis of rotation,

Then its position vector is: ~x = (x1, x2, x3)
T

then the vector equation (10.8.3), becomes


x1

x2

x2

 =


2
3 − 1

3
2
3

2
3

2
3 − 1

3

− 1
3

2
3

2
3




x1

x2

x3



x1 =
2

3
x1 −

1

3
x2 +

2

3
x3

x2 =
2

3
x1 +

2

3
x2 −

1

3
x3

x3 = −1

3
x1 +

2

3
x2 +

2

3
x3

This system can be rearranged as:

x1 + x2 − 2x3 = 0

2x1 − x2 − x3 = 0

x1 − 2x2 + x3 = 0

This system reduces to

x1 + x2 − 2x3 = 0

−x2 + x3 = 0

The above system is in reduced Echelon form with x3 as free variable. Set x3 = 1, we have x2 = 1

and x1 = 1.
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Hence the axis of rotation is x = (1, 1, 1)
T

and the unit vector along the axis of rotation is

x̂ =

〈
1√
3
,

1√
3
,

1√
3

〉
= 〈cosα, cosβ, cos γ〉

Where α, β and γ are angles that the axis of rotation makes with coordinate axes. Hence

cosα =
1√
3

and

α = arccos

(
1√
3

)
= β = γ

= 0.955 radian = 54.7◦

The axis of rotation makes an angle of 54.7◦ with all the coordinate axes.

10.9 Dynamics of Rotating Coordinate System

Consider two coordinate systems with common origan O. Let OX1X2X3 be a fixed system and

let Ox1x2x3 is rotating with angular velocity ω about some arbitrary axis passing through origin.

Initially both systems coincides with O as same origin. Let î′ , ĵ′ , k̂′ be unit vectors in fixed system

while î, ĵ, k̂ are unit vectors in rotating system The position of the body is completely determined by

giving the coordinates P (X1, X2, X3) with respect to origin O relative to the axis OX1X2X3, while

P (x1, x2, x3) with respect to origin O relative to the axis Ox1x2x3. Let r be the position vector of

point P then

~r = X1î
′ +X2ĵ

′ +X3k̂
′ (10.9.1)

and

~r = x1î+ x2ĵ + x3k̂ (10.9.2)



10.9 Dynamics of Rotating Coordinate System 297

Figure 10.21: Rotation of coordinate system

The transformation equations from moving system to fixed system can be obtained by taking the

dot product of (10.9.1) and (10.9.2) with î′ , ĵ′ , k̂′ respectively

~r · î′ = X1

~r · ĵ′ = X2 (10.9.3)

~r · k̂′ = X3

~r · î′ = x1î · î′ + x2ĵ · î′ + x3k̂ · î′

~r · ĵ′ = x1î · ĵ′ + x2ĵ · ĵ′ + x3k̂ · ĵ′ (10.9.4)

~r · k̂′ = x1î · k̂′ + x2ĵ · k̂′ + x3k̂ · k̂′

From (10.9.3) and (10.9.4), we can write

X1 = ~r · î′ = x1î · î′ + x2ĵ · î′ + x3k̂ · î′

X2 = ~r · ĵ′ = x1î · ĵ′ + x2ĵ · ĵ′ + x3k̂ · ĵ′ (10.9.5)

X3 = ~r · k̂′ = x1î · k̂′ + x2ĵ · k̂′ + x3k̂ · k̂′

(The equations for inverse transformation can be obtained by taking dot product of (10.9.1) and

(10.9.2) with î, ĵ, k̂)
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x1 = X1î
′ · î+X2ĵ

′ · î+X3k̂
′ · î

x2 = X1î
′ · ĵ +X2ĵ

′ · ĵ +X3k̂
′ · ĵ (10.9.6)

x3 = X1î
′ · k̂ +X2ĵ

′ · k̂ +X3k̂
′ · k̂

The dot products on right hand side of (10.9.5) are simply the cosines of the angles between the

corresponding axes. If the rotation of angle θ is made about x3 axis in anticlockwise direction, the

system will transform as

X1 = x1 cos θ − x2 sin θ + (0)x3

X2 = x1 sin θ + x2 cos θ + (0)x3 (10.9.7)

X3 = (0)x1 + (0)x2 + x3

The linear velocity ~v of a particle having position vector ~r and rotating with angular velocity ~ω

Figure 10.22: Rotation about x3 axis

about the axis passing through the same origin is

~v =
d~r

dt
= ~ω × ~r (10.9.8)
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The velocity with respect to fixed system can be written as(
d~r

dt

)
fix

=

(
d~r

dt

)
rot

(10.9.9)

Here
(
d~r
dt

)
fix

is the velocity of fixed system relative to fixed system and
(
d~r
dt

)
rot

is velocity of rotating

system relative to fixed system. The time derivative of ~r, however will be different in two systems.

In fixed system (
d~r

dt

)
fix

= Ẋ1î
′ + Ẋ2ĵ

′ + Ẋ3k̂
′ (10.9.10)

However, in rotating system the unit vectors are changing in directions, hence their time derivatives

will appear with respect to fixed axis.(
d~r

dt

)
fix

= ẋ1î+ ẋ2ĵ + ẋ3k̂ + x1
dî

dt
+ x2

dĵ

dt
+ x3

dk̂

dt
(10.9.11)

In rotating frame the unit vectors î, ĵ, k̂ are treated as constant unit vectors, then the velocity in

the rotating system is (
d~r

dt

)
rot

= ẋ1î+ ẋ2ĵ + ẋ3k̂ (10.9.12)

Since î, ĵ, k̂ are the unit vectors in a system rotating with angular velocity ω, then (10.9.8) can be

applied as a special case as

dî

dt
= ~ω × î

dĵ

dt
= ~ω × ĵ (10.9.13)

dk̂

dt
= ~ω × k̂

Using (10.9.12) and (10.9.13), (10.9.11) can be write as(
d~r

dt

)
fix

=

(
d~r

dt

)
rot

+ ~ω × ~r (10.9.14)

(10.9.14) can be treated as an operator equation which gives the relation between the time derivative

in the fixed and the rotating coordinate systems.(
d

dt

)
fix

=

(
d

dt

)
rot

+ ~ω× (10.9.15)
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The operator equation (10.9.15) can be operated on any vector. If we denote
(
d~r
dt

)
rot

= ∂~r
∂t (derivative

relative to moving frame) in (10.9.14), then we have

~v =
d~r

dt
=

∂~r

∂t
+ ~ω × ~r (10.9.16)

And the operator equation (10.9.15) becomes

d

dt
=

∂

∂t
+ ~ω× (10.9.17)

If F (x, y, z) be a vector, then

d~F

dt
=

∂ ~F

∂t
+ ~ω × ~F (10.9.18)

is the rate of change of a vector.

10.9.1 Acceleration

We use operator equation (10.9.15) with velocity vector ~v.

~a =
d~v

dt
=
∂~v

∂t
+ ~ω × ~v (10.9.19)

Using (10.9.16), we have

~a =
d

dt

(
∂~r

∂t
+ ~ω × ~r

)
=

∂

∂t

(
∂~r

∂t
+ ~ω × ~r

)
+ ~ω ×

(
∂~r

∂t
+ ~ω × ~r

)
=

∂2~r

∂t2
+
∂~ω

∂t
× ~r + ~ω × ∂~r

∂t
+ ~ω × ∂~r

∂t
+ ~ω × (~ω × ~r)

= ~̈r + ~̇ω × ~r + 2~ω × ~̇r + ~ω (~ω · ~r)− ω2~r (10.9.20)

Corollary 10.9.1. : The angular acceleration is the same in fixed and rotating systems.

Proof : Consider the operator equation (10.9.15) with angular velocity vector ~ω.(
d~ω

dt

)
fix

=

(
d~ω

dt

)
rot

+ ~ω × ~ω

Since ~ω × ~ω = 0, so we have (
d~ω

dt

)
fix

=

(
d~ω

dt

)
rot

(10.9.21)

Hence the angular acceleration is the same in fixed and rotating systems.
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Example 10.9.1. The points (a, 2a,−a), (−a,−a, a) and (a, a, a) of a rigid body have instantaneous

velocities
〈√

3
2 v, 0,

√
3

2 v
〉

,
〈
− 1√

3
v, 0,− 1√

3
v
〉

and
〈

0,− 1√
3
v, 1√

3
v
〉

. Show that the body has the line

through the origin having direction cosines
〈

1√
3
,− 1√

3
,− 1√

3

〉
as instantaneous axis of rotation and

that the magnitude of the angular velocity is 1
2av.

Solution:

Set O as origin in the body. Let A = (a, 2a,−a), B = (−a,−a, a) and C = (a, a, a) be the points of

Figure 10.23: Rigid body with OP as axis of rotation

a rigid body, then their position vectors relative to O are

~rA = 〈a, 2a,−a〉

~rB = 〈−a,−a, a〉

~rC = 〈a, a, a〉

Also let ~vA =
〈√

3
2 v, 0,

√
3

2 v
〉

, ~vB =
〈
− 1√

3
v, 0,− 1√

3
v
〉

and ~vC =
〈

0,− 1√
3
v, 1√

3
v
〉

be the linear

velocities of A,B and C respectively. Let OP be the instantaneous axis of rotation with angular

velocity ω, then

~ω = 〈ω1, ω2, ω3〉

As the linear velocity of A relative to O is ~vA, can be given as

~vA = ~ω × ~rA
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=

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

ω1 ω2 ω3

a 2a −a

∣∣∣∣∣∣∣∣∣∣

= 〈−aω2 − 2aω3, aω1 + aω3, 2aω1 − aω2〉 (10.9.22)

But

vA =

〈√
3

2
v, 0,

√
3

2
v

〉
(10.9.23)

From (10.9.22) and (10.9.23), we can write

−aω2 − 2aω3 =

√
3

2
v (10.9.24)

aω1 + aω3 = 0 (10.9.25)

2aω1 − aω2 =

√
3

2
v (10.9.26)

From (10.9.25), we can write

ω2 = −ω1 (10.9.27)

Similarly the velocity of B relative to O is

~vB = ~ω × ~rB

=

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

ω1 ω2 ω3

−a −a a

∣∣∣∣∣∣∣∣∣∣

= 〈aω2 + aω3,−aω1 − aω3,−aω1 + aω2〉 (10.9.28)

But

vB =

〈
− 1√

3
v, 0,− 1√

3
v

〉
(10.9.29)
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From (10.9.28) and (10.9.29), we can write

aω2 + aω3 = − 1√
3
v (10.9.30)

−aω1 − aω3 = 0 (10.9.31)

−aω1 + aω2 = − 1√
3
v (10.9.32)

From (10.9.31), we can write

ω3 = −ω1 (10.9.33)

Adding (10.9.26) and (10.9.32),we have

ω1 =
1

2a
√

3
v =

1√
3

v

2a
(10.9.34)

From (10.9.27), we have

ω2 = − 1√
3

v

2a
(10.9.35)

and from (10.9.33), we have

ω3 = − 1√
3

v

2a
(10.9.36)

Hence

~ω =

〈
1√
3

v

2a
,− 1√

3

v

2a
,− 1√

3

v

2a

〉
(10.9.37)

=
v

2a

〈
1√
3
,− 1√

3
,− 1√

3

〉
(10.9.38)

Since ∥∥∥∥ 1√
3
,− 1√

3
,− 1√

3

∥∥∥∥ = 1

so we can write

ω =
v

2a
(10.9.39)

Since the points with velocity vector parallel to ~ω lies on the line (axis of rotation). Hence the body

has the line through O with direction cosines
〈

1√
3
,− 1√

3
,− 1√

3

〉
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10.10 Cylindrical Coordinates

Polar coordinates can be extended to three dimensions in a very straightforward manner by adding

the z coordinate. Every point in space is determined by the r and θ coordinates of its projection in

the xy plane, and its z coordinates. Consider Oxyz cartesian coordinate system. Let P (x, y, z) be

a point and |PB| is perpendicular from P on xOy plane. Then

Figure 10.24: Cylindrical Coordinates

∠AOB = θ

| ~OB| = r

| ~PB| = z

Then (r, θ, z) are called the cylindrical polar coordinates of P . Let P varies with time, and

~OP = ~a = ~OB + ~BP

= rr̂ + zẑ

= rr̂ + 0θ̂ + zẑ (10.10.1)



10.11 Spherical Coordinates 305

Where r̂, θ̂, ẑ are unit vectors in the directions of r, θ, z. They constitute a right hand frame for

which

r̂ × θ̂ = ẑ

θ̂ × ẑ = r̂

ẑ × r̂ = θ̂

Since P is in a frame specified by these unit vectors and moving with angular velocity ω along Oz

axis

ω = θ̇ẑ

= 0r̂ + 0θ̂ + θ̇ẑ (10.10.2)

The velocity of P can be given by using operator equation (10.9.15) with position vector ~a.

~v =
d~a

dt
=
∂~a

∂t
+ ~ω × ~a (10.10.3)

Using (10.10.1) and (10.10.2), (10.10.3) can be rewritten as

~v =
∂

∂t

(
rr̂ + 0θ̂ + zẑ

)
+
(

0r̂ + 0θ̂ + θ̇ẑ
)
×
(
rr̂ + 0θ̂ + zẑ

)
=

(
ṙr̂ + 0θ̂ + żẑ

)
+
(

0r̂ + rθ̇θ̂ + 0ẑ
)

=
(
ṙr̂ + rθ̇θ̂ + żẑ

)
(10.10.4)

The acceleration of P can be calculated by using operator equation (10.9.15) with velocity vector ~v.

~a =
∂

∂t

(
ṙr̂ + rθ̇θ̂ + żẑ

)
+
(

0r̂ + 0θ̂ + θ̇ẑ
)
×
(
ṙr̂ + rθ̇θ̂ + żẑ

)
=

[
r̈r̂ +

(
rθ̈ + ṙθ̇

)
θ̂ + z̈ẑ

]
+
(
−rθ̇2r̂ + ṙθ̇θ̂ + 0ẑ

)
=

[(
r̈ − rθ̇2

)
r̂ +

(
rθ̈ + 2ṙθ̇

)
θ̂ + z̈ẑ

]
(10.10.5)

10.11 Spherical Coordinates

In spherical coordinates, we utilize two angles and a distance to specify the position of a particle.

Consider Oxyz cartesian coordinate system. Let P (x, y, z) be a point. The circle in the POZ plane
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Figure 10.25: Spherical Coordinates

having center O and radius r meets the XOY plane in B. Then

∠AOB = φ

∠POZ = θ

OP = r

Then (r, θ, φ) are called the spherical polar coordinates of P . Let P varies with time, and

~OP = ~r

= rr̂ + 0θ̂ + 0ẑ (10.11.1)

Where r̂, θ̂, φ̂ are unit vectors in the directions of r, θ, φ. They constitute a right hand frame for

which

r̂ × θ̂ = φ̂

θ̂ × φ̂ = r̂

φ̂× r̂ = θ̂

In this motion two angles are involved, hence the frame has angular velocity as

ω = φ̇k̂ + θ̇φ̂ (10.11.2)
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Figure 10.26: Spherical Coordinates

The units vectors r̂, θ̂ and k̂ lies in the same plane constituted by r̂ and k̂. The unit vectors r̂ and

θ̂ are at right angles and k̂ makes angles θ with r̂ and π
2 + θ with θ̂ as shown in Fig. 10.27. Then k̂

can be written as

k̂ = cos θr̂ + cos
(π

2
+ θ
)
θ̂

= cos θr̂ − sin θθ̂ (10.11.3)

Figure 10.27: Spherical Coordinates

Using (10.11.3), (10.11.2) can be rewritten as

ω = φ̇ cos θr̂ − φ̇ sin θθ̂ + θ̇φ̂ (10.11.4)

The velocity of P can be given by using operator equation (10.9.15) with position vector ~r given by
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(10.33).

~v =
d~r

dt
=
∂~r

∂t
+ ~ω × ~r (10.11.5)

Using (10.33) and (10.14.10), (10.14.11) can be rewritten as

~v =
∂

∂t

(
rr̂ + 0θ̂ + 0φ̂

)
+
(
φ̇ cos θr̂ − φ̇ sin θθ̂ + θ̇φ̂

)
×
(
rr̂ + 0θ̂ + 0ẑ

)
=

(
ṙr̂ + 0θ̂ + 0φ̂

)
+
(

0r̂ + rθ̇θ̂ + rφ̇ sin θφ̂
)

=
(
ṙr̂ + rθ̇θ̂ + rφ̇ sin θφ̂

)
(10.11.6)

The acceleration of P can be calculated by using operator equation (10.9.15) with velocity vector ~v.

~a =
∂

∂t

(
ṙr̂ + rθ̇θ̂ + rφ̇ sin θφ̂

)
+
(
φ̇ cos θr̂ − φ̇ sin θθ̂ + θ̇φ̂

)
×
(
ṙr̂ + rθ̇θ̂ + rφ̇ sin θφ̂

)
=

[
r̈r̂ +

(
rθ̈ + ṙθ̇

)
θ̂ +

(
rφ̈ sin θ + ṙφ̇ sin θ + rθ̇φ̇ cos θ

)
φ̂
]

+
[(
−rφ̇2 sin2 θ − rθ̇2

)
r̂ +

(
ṙθ̇ − rφ̇2 sin θ cos θ

)
θ̂ +

(
rθ̇φ̇ cos θ + ṙφ̇ sin θ

)
φ̂
]

=
(
r̈ − rθ̇2 − rφ̇2 sin2 θ

)
r̂ +

(
rθ̈ + 2ṙθ̇ − rφ̇2 sin θ cos θ

)
θ̂

+
(

2rθ̇φ̇ cos θ + rφ̈ sin θ + 2ṙφ̇ sin θ
)
φ̂ (10.11.7)
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10.12 Screw Motion

A motion combination of rotation and translation motion is termed as screw motion as illustrated

in Fig. 10.28.

Screw motion consist a of pairs of vectors, such as forces and moments and angular and linear

velocity, that arise in the kinematics and dynamics of rigid bodies. The mathematical framework was

developed by Sir Robert Stawell Ball in 1876 for application in kinematics and statics of mechanisms

(rigid body mechanics).

Figure 10.28: Screw motion

10.12.1 Screw Displacement

A spatial displacement of a rigid body can be defined by a rotation about a line and a translation

along the same line, called a screw displacement. This is known as Chasles’ theorem.

10.13 Chasle’s Theorem

The most general rigid body displacement can be produced by a translation along a line followed

(or preceded) by a rotation about that line.

To establish this result, discovered by Chasles in 1830, we note that the positions in space of any
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three non-collinear points of a rigid body determine the position of the rigid body. Let A,B,C be

any three non-collinear points of the body which are displaced to other positions A1, B2, C2. Thus

the points A,B,C determine the initial position of the body and A1, B2, C2 determine the final

position. This screw displacement takes place in two steps. In first step, the motion is translation,

Figure 10.29: Screw displacement of Rigid body

in which A moves A1, B moves B1 and C moves C1 as shown in Fig. 10.29. In second step, the

motion is rotation about A1 in which B1 moves B2 and C1 moves C2. The point A is called base

point. We can choose any other point as base point. Then the translation will be altered but rotation

will be independent of the choice of base point.

10.14 Fundamental Properties of Screw Motion

A screw is a six-dimensional vector constructed from a pair of three-dimensional vectors, such as

forces and torques and linear and angular velocity, that arise in the study of spatial rigid body

movement. The components of the screw define the Plcker coordinates of a line in space and the

magnitudes of the vector along the line and moment about this line.

10.14.1 Vector Angular Velocity

Let a rigid body rotates about a fixed point O. Let ω be its angular velocity about the instantaneous

axis OC at time t. Let P be a fixed point in the body such that

~OP = ~r (10.14.1)
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Figure 10.30: Rigid body with OC as axis of rotation

making an angle θ with OC axis. Draw a perpendicular PM from P on OC. Then in triangle OPM

PM = r sin θ (10.14.2)

The linear speed in terms of angular speed is

v = ωr (10.14.3)

Where r is the radius of the circle. From Fig 10.30 we can see that the circular path has radius

r sin θ, so the speed of P is

v = ωr sin θ (10.14.4)

(10.14.4) in vector form can be written as

~v = ~ω × ~r (10.14.5)

If in addition, the body as a whole has a constant translation velocity ~v0, then the total linear

velocity of the particle at P is

~v = ~v0 + ~ω × ~r (10.14.6)

Corollary 10.14.1. For a rotating rigid body about a fixed point, prove that

curl(~v) = 2~ω
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Figure 10.31: Rigid body with OC as axis of rotation having translation motion

Solution Consider

~ω = 〈ω1, ω2, ω3〉

and

~r = 〈x1, x2, x3〉

in cartesian coordinate system. Using (10.14.5), we can write

~v = ~ω × ~r =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

ω1 ω2 ω3

x1 x2 x3

∣∣∣∣∣∣∣∣∣∣

= 〈x3ω2 − x2ω3, x1ω3 − x3ω1, x2ω1 − x1ω2〉 (10.14.7)

Next

curl(~v) = ∇× ~v (10.14.8)

Where

∇ =

〈
∂

∂x1
,
∂

∂x2
,
∂

∂x3

〉
(10.14.9)
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is an operator. Using (10.14.7) and (10.14.9), (10.14.8) can be written as

curl (~v) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

î ĵ k̂

∂
∂x1

∂
∂x2

∂
∂x3

x3ω2 − x2ω3 x1ω3 − x3ω1 x2ω1 − x1ω2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

(
∂

∂x2
(x2ω1 − x1ω2)− ∂

∂x3
(x1ω3 − x3ω1)

)
î

+

(
∂

∂x3
(x3ω2 − x2ω1)− ∂

∂x1
(x2ω1 − x1ω2)

)
ĵ

+

(
∂

∂x1
(x1ω3 − x3ω1)− ∂

∂x2
(x3ω2 − x2ω3)

)
k̂

Since x1, x2, x3 are linearly independent, then

∂xi

∂xj
=


1 i = j

0 i 6= j

so we have

curl (~v) = (ω1 + ω1) î+ (ω2 + ω2) ĵ + (ω3 + ω3) k̂

= 2 〈ω1, ω2, ω3〉

= 2~ω

Hence the result.

10.14.2 General Rigid Body Motion as a Screw Motion

In screw motion, the axis of rotation lie in the direction of the translation motion i.e. the linear

velocity v and angular velocity ω has the same direction. Consider a rigid body. Let O be a fixed

point in the rigid body, having velocity v and ω be the instantaneous angular velocity of the body.
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Let OC be the axis of rotation. Let P be another point of the body such that

Figure 10.32: Rigid body with OC as axis of rotation

~OP = ~r

and ~v1 be the velocity of P , then

~v1 = ~v + ~ω × ~r (10.14.10)

Now if we try to find a point P such that ~v1 and ~ω are parallel, then

~ω × ~v1 = 0 (10.14.11)

Taking cross product of (10.14.10) with ~ω, next using (10.14.11), we have

0 = ~ω × ~v + ~ω × (~ω × ~r)

= ~ω × ~v + (~ω · ~r) ~ω − ω2~r

or we can write

ω2~r = ~ω × ~v + (~ω · ~r) ~ω (10.14.12)

If ω 6= 0, then (10.14.12) can be written as

~r =
~ω × ~v
ω2

+ λ~ω (10.14.13)

where λ = (~ω·~r)
ω2 As λ varies, (10.14.13) represents the vector equation of straight line passing

through the point represented by ~r0 = ~ω×~v
ω2 and having the same direction as ~ω. At the particular
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Figure 10.33: Screw motion

instant considered every point on the line (10.14.13), having the velocity parallel to ~ω. Hence the

instantaneous motion of the body is a screw motion about the line. This line is called external axis

or axis of screw. Every point on the axis moves along it and the body turns about the axis.

10.14.3 Pitch of Screw Motion

Since the velocity of P is ~v1 given by (10.14.10). Taking its dot product with ~ω

~ω · ~v1 = ~ω · (~v + ~ω × ~r)

= ~ω · ~v + ~ω · (~ω × ~r)

= ~ω · ~v + 0

and we have

~ω · ~v1 = ~ω · ~v (10.14.14)

Next consider the quantity ~ω· ~v1
ω2 , with the velocity ~v1 is parallel to ~ω. Then

~ω · ~v1

ω2
=

ωv1 cos(0)

ω2

=
v1

ω

=
distance per second

angle per second

or

~ω · ~v1

ω2
=

distance

angle
= distance per unit angle (10.14.15)
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The ratio (10.14.15) is called pitch of the screw, i.e. distance moved by the particle per unit angle.

10.14.4 Finite Rotations are not Commutative

The rotations and other rotational quantities derived from it may also be treated as vector quanti-

ties. The addition of such two vector quantities, should however commutative, but the reality is not

so. Consider two regular trihedral systems with common origin O, one fixed and the other is rotat-

able. Let OX1X2X3, fixed in space and Ox1x2x3 is rotatable. First we made a rotation of θ1 = π
2

about X3 − axis. In this rotation, x3 will remain unchanged, while x1 and x2 will interchange their

positions . Considering the new positions, we made an other rotation of θ2 = π
2 about X2 − axis.

In this rotation, x1 (along X2− axis) will remain unchanged, while x2 and x3 will interchange their

positions (see Fig. 10.34 left side). In this way we complete the operation θ1 + θ2. Next we reverse

the order. First we made a rotation of θ2 = π
2 about X2 − axis. In this rotation, x2 will remain

unchanged, while x1 and x3 will interchange their positions. Considering the new positions, we made

an other rotation of θ1 = π
2 about X3 − axis. In this rotation, x1 (along X3 − axis) will remain

unchanged, while x2 and x3 will interchange their positions (see Fig. 10.34 right side). In this way

we complete the operation θ2 + θ1. Above Fig. 10.34, shows that addition of two finite rotations

θ2 = π
2 & θ2 = π

2 is not commutative. i.e., θ1 + θ2 does not yield the position of the body as by

θ2 + θ1

The body which is subjected to these two finite rotations is not found to be in the same final state.

Hence finite rotations can not be regarded as vector quantities.

10.14.5 Infinitesimal Rotations are Commutative

Consider two regular trihedral systems with common origin O, one fixed and the other is rotatable.

Let OX1X2X3, fixed in space and Ox1x2x3 is rotatable. We made a rotation of a very small angle

about X3 − axis. The axes X1 − axis and X2 − axis moves but maintaining the same direction.

Here θ ≈ 0 so sin θ ≈ θ. Then we shall see that, for very small rotations ∆θ1&∆θ2, the addition will

be commutative. To represent infinitesimal rotation as a vector, we draw a straight line along the

axis of rotation with the properties.
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Figure 10.34: Finite rotations are not commutative

i) the length of which is proportional to the magnitude of the angle of rotation.

ii) the arrowhead points in the direction of advancement of the tip of the righthand screw.

Let O and P are points fixed in a rigid body and

~OP = ~r (10.14.16)

Let the rigid body turns through a small angle ∆θ1 in the positive sense about an axis through O

specified by unit vector â1, then

~ω = ∆θ1â1 (10.14.17)
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Figure 10.35: Infinitesimal rotations

Figure 10.36: Infinitesimal rotations

and the movement of P is given by using (10.14.5) with ω in (10.14.17)

~v = ∆θ1â1 × ~r (10.14.18)

Hence the new position of P relative to O

~r1 = ~r + ∆θ1â1 × ~r (10.14.19)

Now suppose the body rotates through another small angle ∆θ2 in the opposite sense about an axis

through O specified by a unit vector â2. and the movement of P is

~v = ∆θ2â2 × ~r1 (10.14.20)

~r12 = ~r1 + ∆θ2â2 × ~r1 (10.14.21)

= ~r + ∆θ1â1 × ~r + ∆θ2â2 × (~r + ∆θ1â1 × ~r) (10.14.22)
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Since ∆θ1 and ∆θ2 are very small, consider only first order term, we can write

= ~r + (∆θ1â1 + ∆θ2â2)× ~r (10.14.23)

If the operations were performed in the reverse order, the position of P relative to O, considering

only first order term,is

~r21 = ~r + (∆θ2â2 + ∆θ1â1)× ~r (10.14.24)

Thus to first order

~r12 = ~r21 (10.14.25)

Hence for infinitesimal rotations, commutative law holds.

10.14.6 Composition of Angular velocity

If ∆t be the time interval in which these operations take place, the velocity of P relative to O is

lim
∆t→0

~r12 − ~r
∆t

= lim
∆t→0

(
∆θ1

∆t
â1 +

∆θ2

∆t
â2

)
× ~r

=
(
θ̇1â1 + θ̇2â2

)
× ~r

= (~ω1 + ~ω2)× ~r

where ~ω1 = θ̇1â1 vector angular velocity about â1

and ~ω2 = θ̇2â2 vector angular velocity about â2

This result confirms that vector quantities about a point of a rigid body are commutative with

respect to addition, as the other quantities are.
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Exercises

1. consider the point (x, y) = (1, 1) in a frame rotated by 45o counter-clockwise. Find its new

position.

2. Let an xy−coordinate system be obtained by rotating an x́ý−coordinate system through an

angle of θ = 60◦.

(a) Find the xy−coordinates of the point whose x́ý−coordinates are (−2, 6).

(b) Find an equation of the curve
√

3x́ý + ý2 = 6 in xy−coordinates.

3. Let an xy−coordinate system be obtained by rotating an x́ý−coordinate system through an

angle of θ = 30◦.

(a) Find the xy−coordinates of the point whose x́ý−coordinates are
(
1,−
√

3
)
.

(b) Find an equation of the curve 2x́2 + 2
√

3x́ý = 3 in xy−coordinates.

4. Find the angle and axis of rotation corresponding to the following rotational matrices.

(a)



5
2 − 1

2
3
4

2
3

1
2 − 3

4

− 2
3

4
5 − 5

2



(b)



1
5

2
5 − 1

5

− 1
5

3
5 − 2

5

2
5 − 1

5 − 4
5


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(c)



1
4

3
4 − 1

4

3
4 − 1

4
1
4

− 1
4

3
4 − 3

4


5. The points (a, 0, 0),

(
0, a√

3
, 0
)

and (0, 0, 2a) of a rigid body have instantaneous velocities

〈u, 0, 0〉, 〈u, 0, v〉 and
〈
u+ v,

√
3v, v2

〉
respectively, referred to a regular trihedral system. Find

the magnitude and direction of spin of the body and the point at which the certain axis cuts

the xz-plane.
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acceleration, 3, 87, 300

acceleration of gravity, 8

amplitude, 119

angle of projection, 153

angle of rotation, 274, 294

angular acceleration, 83, 89

angular displacement, 81

angular momentum, 207

angular motion, 81

angular velocity, 82

average acceleration, 72

average acceleration in 2 space, 73

average acceleration in 3 space, 73

average velocity, 3, 71

average velocity in 2 space, 71

average velocity in 3 space, 71

axis of rotation, 275, 295

body, 2

center of gravity, 204

central force, 89, 207, 209

Chasle’s theorem, 309

circular helix, 102

circular motion, 6, 84

composition of angular velocity, 319

constant and variable quantities, 12

critical damping, 131

curl, 16

cylindrical coordinates, 304

damped forced oscillatory motion, 147

damped oscillatory motion, 130

direction of motion, 11

displacement, 3, 5, 10, 22, 24, 69

displacement in 2 space, 69

displacement in 3 space, 70

distance, 3, 5, 23

downward motion, 63

dynamics, 1

elliptical trajectories, 213

equilibrium, 111

Euler’s angles, 277

Euler’s theorem, 290

finite rotations, 316

force, 3

forced oscillatory motion, 142

free vertical motion, 46

frequency, 119

graphical methods, 12

gravitational, 209

heavy damping, 132

height of directrix, 160

height of projectile, 162

horizontal component of position, 162, 184

horizontal oscillatory motion, 109

horizontal range, 161, 163, 185, 192, 195

horizontal scalar component of velocity, 72, 156,

190, 194

inertia, 7

infinitesimal rotations, 316

instantaneous acceleration, 4, 11, 72

instantaneous acceleration in 2 space, 73

instantaneous acceleration in 3 space, 74

instantaneous velocity, 4, 10, 71

Kepler’s problem, 203, 204

kinematics, 1
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kinetic energy, 120

kinetics, 1

length, 2

light damping, 131

linear momentum, 3

mass, 3

maximum acceleration, 117

maximum height of projectile, 162

maximum horizontal range, 161, 163, 192

maximum range on an inclined plane, 188

maximum speed, 117

mechanics, 1

motion, 3

motion along a straight line, 9

motion in polar coordinates, 84

motion in radial and transverse plane, 91

motion in tangent and normal plane, 97

motion under central force, 203

Newton’s first law of motion, 7

Newton’s fundamental laws, 7

Newton’s law of gravitation, 8

Newton’s second law of motion, 7, 206

Newton’s third law of motion, 7

one projectile motion, 45

oscillation, 6

parabola of safety, 174

parabolic trajectory, 158

particle, 1

path of a projectile, 154, 177, 196

phase angle, 119

phase constant, 119

phase of motion, 119

pitch of screw motion, 315

planar motion, 207

polar coordinates, 207

position, 3, 112

position vector, 4, 9, 69, 84, 92

potential energy, 120

projectile motion, 153, 177, 193

projectile motion with air resistance, 196

projectile motion with horizontal relative motion,

189

projection velocity, 153

radial and transverse components of acceleration,

94

radial and transverse components of velocity, 92

radial component, 208, 210

random motion, 6

range on an inclined plane, 186

rectilinear motion, 9

relative height of projection, 153

resisted vertical motion, 55

rest, 3

rigid body, 2

rotating coordinate system, 296

rotation, 6, 259, 292

rotation about a line, 6

rotation about a point, 6

rotation of a vector, 279

rotation of axes, 262

rotation of vector, 259

rotational matrix, 270, 278

rotational matrix about arbitrary axis, 284

screw displacement, 309

screw motion, 309, 310, 313

sign of acceleration, 16

sign of velocity, 16

simple harmonic motion, 109, 112, 127

simple pendulum, 105, 128

space, 2

space motion, 269

speed, 3

speeding up, 16

spherical coordinates, 305

spring mass system, 109, 111, 121

statics, 1

time, 3

time of flight, 160, 163, 184, 192, 195

time of flight on an inclined plane, 188

time period, 127
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time-acceleration curve, 15

time-displacement curve, 12

time-velocity curve, 13

trajectory of a projectile, 154, 177

translation, 6

transverse component, 208

two body problem, 204

undamped forced oscillatory motion, 142

uniform acceleration, 3

uniform circular motion, 84, 127

uniform circular motion , 127

uniform speed, 3

uniform velocity, 3

upward motion, 61

vector angular velocity, 310

velocity, 3, 86, 112

vertical component of position, 158, 191

vertical component of position, 163, 184

vertical motion, 45

vertical oscillatory motion, 111

vertical scalar component of velocity, 72, 156,

190, 194
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3 Air resistance motion along vertical line 

4 Rectilinear motion 

5 Rectilinear motion 

6 Tangential And Normal Components Of Velocity And Acceleration 

7 Radial And Transverse Components Of Velocity And Acceleration 

8 Simple Harmonic Motion 

9 Forced Harmonic Motion 

10 Damped Harmonic Motion 

11 Forced and damped Harmonic Motion 

12 Projectile Motion Parabola Of Safety Time Period Maximum Height 

13 Range On The Inclined Plane Maximum Range On Horizontal And Inclined Plane 

14 Projectile Motion With Air Resistance 

15 Motion under central force Elliptic Orbit Under Central Force Planetary Orbits 

16 Motion under central force Kepler’s Law 

17 Motion under central force Apse And Apsidal Distance 

18 Rotation in 2-space, Rotation of coordinate axis, rotational matrix 

19 Rotation in 3-space,  rotational matrix, Eulerian angles 

20 Euler’s Theorem, Angle of rotation and axis of rotation 

21 Rotating coordinate systems 

22 Chasle’s theorem, screw motion 

23 Rotation about arbitrary axis 

24 Position vector after rotation, rotational matrix, Euler's Dynamical Equations 

25 Rotation of coordinate axis 

26 Kinematics in cylindrical coordinates 

27 Kinematics in spherical coordinates 

28 Angular Momentum, Rotational kinetic energy (Mechanics I) 

29 Equi-momental Systems, Momental Ellipsoid  (Mechanics I) 

30 Principle of Gyroscopic Compass (Mechanics I) 
 


