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Lecture # 01

Recommended Book:

Introduction to Statistical theory part-II by Sher M. Chaudhary
Some Basic Definitions:

Population:

The population is the totality of the observation in which we are concerned. A
population can either be finite or infinite.

Size of population:

The number of observations in a population is said to be the size of population
denoted by N.

Sample:

The subset of population is called sample.

Sampling:

It is a statistically technique which is used to collect information and on the basic

of this information. We form inferences (results) about the characteristics of the
population.

Examples:

(1)  The number of cards in a deck.

(11))  The height of residence in a certain city.

(i11) The number of students in mathematics department.
(iv)  The population of all points on a line.

(v)  The number of germs on the body of sick patient.

Remark:

(1), (i1) and (ii1) are examples of finite population while (iv) and (v) are examples
of infinite population.
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Sampling unit:
An individual member of the population is called sampling unit or simple unit.

A sampling unit from which information is required, may be a college
student, and animal, or tree, a business etc.

A set of ‘n’ sampling units selected from a given population is called a sample of
size ‘n’ and process of selecting a sample is called sampling.

Random sample:

It is defined as a subset of the statistical population in which each of the member of
the subset has equal probability when it is selected.

Parameter:

A numerical value such as mean, median and standard deviation calculated from
the population is said to be parameter of the population.

Statistics:

A numerical value such as mean, median and standard deviation calculated from a
sample is called statistics.

Note:

The parameter has fixed value i.e. it is constant and it is denoted by a Greek letter
1,0 for the population mean and standard deviation of the population, while on the
other hand the statistics varies from sample to sample of the same population and
denoted by 4,0, for sample mean and standard deviation of the sample.

Sampling distribution:

The sampling distribution of the statistics depend on the size of the sample and
sampling.

Sampling with replacement and without replacement:

If we select a sample from a population, observed and then returned again to the
population before selecting the next sample. In this case the size of population
remains same while on the other hand when we select a sample, observed it and
not returned to the population before select the other sample. In this case the size
of the population step by step decrease.
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*Theorem:

The mean of the sampling distribution of X is denoted by 4 is equal to the
population mean p. OR Show that g = u

Proof: Let X,X,,....X, be a random sample of size ‘n’. It is selected from the
population with mean

We know that X =

,LJX:%[E(XI)+E( +.+E(X,)] (i)

As the sample which is selected as random sample. So, the random variables are

independent.
E(X)=E(X,)=..=E(X,)=p
Put in (1) = ,Lzle[y+y+...+y]
n

My = l[zw] =u  Hence proved.
n
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Theorem:

Let a random sample of size ‘n’ is drawn from an infinite population or with
replacement from a finite population.

The standard deviation of the sampling distribution of X is equal to the population

standard deviation divided by positive square root of the sample size i.e. &, = T .
n

Proof:

Let X,,X,,...X, be arandom sample selected from the population with standard
deviation O

n

2.4

We know that X =i

n

Taking variance on both side

5 =L2[Var(X1)+ Var(X,)+...+ Var(Xn)}_(i)

X
n

As the sample which is selected as random sample. So, the random variables are
independent.

Var(X,)=Var(X,)=..=Var(X,)=6"
. 1
Put in (i) — 5§:?[52+52+...+52]
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Note:

If the size of the population is N and size of sample is n then N” is used to form
samples with replacement and combination C used to form samples without

replacement.
Question:
Suppose that the population consist of five numbers 1,2,3,4,5. Draw all possible

: . : o
sample with replacement of size 2 and also verify that 4= and 6, =—.

Jn
Solution: As given N=5 ,n=2
sample = N" = 5% =25 and these are
(1,1) (1,2) (1,3) (1,4) (1,5)
2,1)(2,2) (2,3) (2,4) (2,5)
3,1)(3,2) (3,3) (3.4) (3.,5)
(4,1)(4,2) (43) (4,4) (4.5
(5,1)(5,2) (5,3) (5.4) (5.5)
The corresponding means are 1,15,2,25,3
1.5,2,25,3,35
2,25,3,35,4
25,3,35,4,45
3,35,4,45,5
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2X
N

Population mean = y =
Sample mean = g, = ZY .f(f)

(X —p)

Population standard deviation = J = N

Sample standard deviation = o = \/ZF f(}) _(Z} -f(}))z

X £(%) Xf (%) X X f(x)
1 1/25 1/25 1 1/25
1.5 2/25 3/25 2.25 4.5/25
2 3/25 6/25 4 12/25
2.5 4/25 10/25 6.25 25/25
3 5/25 15/25 9 45/25
3.5 4/25 14/25 12.25 49/25
4 3/25 12/25 16 48/25
4.5 2/25 9/25 20.25 40.5/25
5 1/25 5/25 25 25/25
75/25=3 250/25=10

DX 1+2+3+4+5 15
11’[:—: :—:3
N 5 5

y§=ZY.f(Y)=3
= U=l

\/(1—3)%(2—3)2 +(3-3) +(4-3) +(5-3)

5
5:\/?:\/5
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5 =+10-3* =410-9 =1

Question:

Suppose that a population consist of four numbers such as 3,7,9,15. Draw all
o

possible sample with replacement of size 2 and verify that 4= and &, = ﬁ
Solution:
Asgiven N=4 ,n=2
sample = N" = 4% =16 and these are
(3,3),(3,7,3,9),(3,15)
(7,3), (7,7 ,(7,9),(7,15)
(9,3),(9,7),09,9), (9,15)
(15,3) (15,7), (15,9), (15,15)
There corresponding means are
3,5,6,9
5,7,8,11
6,8,9,12
9,11,12,15

Population mean = x =

> X
N
Sample mean = g = ZY .f(f)
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DX —p)

Population standard deviation = 6 = N

Sample standard deviation = o = \/Z? f(}) _(Z} -f(}))z

X X)) | w X /(%)
3 1/16 3/16 9 9/16
5 2/16 10/16 25 50/16
6 2/16 12/16 36 72/16
7 1/16 7/16 49 49/16
8 2/16 16/16 64 128/16
9 3/16 27/16 81 243/16
11 2/16 22/16 121 242/16
12 2/16 24/16 144 288/16
15 1/16 15/16 225 225/16
136/16 =8.5 1306/16 = 81.625

DX 3+7+9+15 34

= 8.5
=N 4 4
py=> X .f(X)=85
— U=l
2 2 2 2
52\/(3—8.5) +(7-85) +(9-8.5) +(15-8.5) :ﬁ:m
4 4
5. =\[81.625(8.5)" =/81.625—72.25 =3.062
o
O =—
Y
4.33
3.062 =——
2
= 3.062 =3.062
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Lecture # 02

Question: Draw all possible sample of size 2 with replacement from a population
consisting of 3,6,9,12,15 from the sampling distribution of sample means and
verify the results

(1) pz=up
) 5
(i) o;= 7

Solution: Here N=5,n=2

sample=N"=5" =25

9

DX, 34649412415
#TTN 5

5:\/2()(,. ) :\/(39)2 +(6-9) +(9-9) +(12-9) +(15-9)’
N 5
5=+18=32
(3,3),(3,6) ,(3,9) ,(3,12), (3,15)
(6,3), (6,6) ,(6,9) ,(6,12), (6,15)
9,3),(9,6) ,(9,9) ,(9,12), (9,15)
(12,3),(12,6) ,(12,9) ,(12,12), (12,15)
(15,3),(15,6) ,(15,9) ,(15,12), (15,15)
There corresponding means
3,4.5,6,7.5,9
4.5,6,7.5,9,10.5
6,7.5,9,10.5,12
7.5,9,10.5,12,13.5
9,10.5,12,12.5,15
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— - v _ =2 (=
X /(¥) x/(X) X X f(X)
3 1/25 3/25 9 9/25
45 2/25 9/25 2025 40.5/25
6 3/25 18/25 36 108/25
75 4/25 30/25 56.25 225/25
9 5/25 45/25 81 405/25
10.5 4/25 42/25 110.25 441/25
12 3/25 36/25 144 432/25
13.5 2/25 27/25 182.25 364.5/25
15 1/25 15/25 225 225/25
225/25=9 2250/25=90
yy=2f.f()()=9
— M=l
- _ —\\2
Se =X f(X)~(XTX .£(X)) =90-(9)" =90 -81 =
)
Fa)Y il
*n
3= M2 _ 3
2
5.=6
Theorem:

If a random sample of size ‘n’ is taken from a finite population without
replacement of size ‘N’ then the standard deviation of sample distribution is X is

O |N—-n
0, =—F

Jn\ N-1

Solution: Let X, X,,.....X, be a random variable of a finite population with size

N and standard deviation o .

11
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We know that

In general
5:=£(F (%) 52 = E(7)-(£(T)]
Zn:Xl. ? B Zn:Xz’ B Now
SmE|Emu | A= E(X) s e p(w))
n : - £ - 2XE(X)+(E(X))
B S
52 =E| = . :E(_Z)—E(ZYE(Y))Jr(E(}))Z
Matk - £() 227 (0)+{ (7))

52:%5: ZlXi_leuj len (_) o (_ 2 )
I ~£(x%)-2(E(¥)) +(£(¥)

2 _ 12N

O =—F ;(Xi—ﬂ)j 52 = E(_z)—(E(}))z

52:%]5 Z(Xi_ﬂ)zj --E(;Z(X,.—u)I:E Z(Xf—ﬂ)zj

5§:%E (X, —u) +0 Z‘:n ".g:n(n_l)

1 . N In general
o = B (X —p) +;(X,~ -u)(X, —ﬂ)J (i(x.—u)jz ;{j(x_u)z}

n

B =8 and B ¥, 1)=

Put in (1)
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5tk SO s (-0, )| )

But

—5?

i=l

In tensor 51,1_ - {1

33000 | <£{ S -

i=1

if =)

0 if i#j

|
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(< L =6°
52 =— 252+ZN_J

n

n

5 1 5 _52 n N
o, =—5| no +n(n—1) N1 =n,Z=n(n—1)

52 _5_2(N—1—n+1j
n N-1

0'(N-n
5
n\N-1

Question: Draw all possible sample of size 2 without replacement from a
population consisting 3,6,9,12,15 from a sampling distribution of sample mean and
verify the result.

() py=p
. _ 0 |N-n
(i1) 5)(_\/; N1

Solution: Here N=5,n=2

sample "C,=°C, =10

9

DX, 34649412415
Y 5

5:\/2()(,.#)2 :\/(39)2+(69)2+(99)2+(129)2+(159)2

N 5

— 5=+/18=32
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Samples: (3,6),(3,9),(3,12),(3,15),(6,9),(6,12),(6,15),(9,12),(9,15),(12,15)

There corresponding means

4.5,6,7.5,9,7.5,9,10.5,10.5,12,13.5

_ — — (= _ —2 [ —

X /(%) Xf(X) X X f(x)

4.5 1/10 4.5/10 20.25 20.25/10

6 1/10 6/10 36 36/10

7.5 2/10 15/10 56.25 112.5/10

9 2/10 18/10 81 162/10

10.5 2/10 21/10 110.25 220.5/10

12 1/10 12/10 144 144/10
90/10=9 877.75/10 =87.775

=2 X f(X)=9

— U=y

:\/ZF.f(Y)—(ZY.f(Y))Z —\/87.775—81=2.60288

O |IN—n

TN

2.60288 = 3\/_‘/

2.60288 =

m

2.60288 =2.598
26=2.6

5 [Non
Jn\ N-1
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Question: Suppose that a population consist of 5 number i.e. 4,8,12,16,20. Draw
all possible sample of size 3

(a) With replacement
(b) Without replacement

And verify the results

(1) Hy=H ,5}:

(i)  pp=u, Og=—F
Solution: Here N=5,n=3
sample =N" =5 =125

DX, 4+8+12+16+20
N 5

5:\/2()(,.—#)2 :\/(4—12)2+(8—12)2+(12—12)2+(16—12)2+(2O—12)2 o esess

N 5

4,4,4),(4,4,8).(4,4,12),(4,4,16),(4,4,20),(4.,8,4),(4.8,8),(4,8,12),(4.8,16),(4,8,20),
4,12,4),(4,12,8),(4,12,12),(4,12,16),(4,12,20),(4,16,4),(4,16,8),(4,16,12),(4,16,16),
4,16,20),(4,20,4),(4,20,8),(4,20,12),(4,20,16),(4,20,20),

8,4,4),(8,4,8),(8,4,12),(8,4,16),(8,4,20),(8,8,4),(8,8,8),(8,8,12),(8,8,16),(8,8,20),

(
(
(
(
(8,12,4),(8,12,8),(8,12,12),(8,12,16),(8,12,20),(8,16,4),(8,16,8),(8,16,12),(8,16,16),
(8,16,20),(8,20,4),(8,20,8),(8,20,12),(8,20,16),(8,20,20),

(12,4,4),(12,4,8),(12,4,12),(12,4,16),(12,4,20),(8,8,4),(12,8,8),(12,8,12),(12,8,16),(12,8,20),
(12,12,4),(12,12,8),(12,12,12),(12,12,16),(12,12,20),(8,16,4),(12,16,8),(12,16,12),(12,16,16),
(

12,16,20),(12,20,4),(12,20,8),(12,20,12),(12,20,16),(12,20,20),
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16,4,4),(16,4,8),(16,4,12),(16,4,16),(16,4,20),(16,8,4),(16,8,8),(16,8,12),(16,8,16),(16,8,20),
16,12,4),(16,12,8),(16,12,12),(16,12,16),(16,12,20),(16,16,4),(16,16,8),(16,16,12),(16,16,16),

16,16,20),(16,20,4),(16,20,8),(16,20,12),(16,20,16),(16,20,20),

(
(
(
(20,4,4),(20,4,8),(20,4,12),(20,4,16),(20,4,20),(20,8,4),(20,8,8),(20,8,12),(20,8,16),(20,8,20),
(20,12,4),(20,12,8),(20,12,12),(20,12,16),(20,12,20),(20,16,4),(20,16,8),(20,16,12),(20,16,16),
(

20,16,20),(20,20,4),(20,20,8),(20,20,12),(20,20,16),(20,20,20)

These corresponding means
4,5.3,6.67,8,9.33,5.3,6.67, 8,9.33, 10.67,

6.67, 8, 9.33, 10.67, 12, 8, 9.33, 10.67, 12, 13.33,
9.33,10.67, 12, 13.33, 14.67

5.3,6.67, 8,9.33,10.67,6.67, 8,9.33, 10.67, 12,
8,933,10.67, 12, 13.33,9.33, 10.67, 12, 13.33, 14.67,
10.67, 12, 13.33, 14.67, 16,

6.67, 8, 9.33, 10.67, 12, 8, 9.33, 10.67, 12, 13.33
9.33,10.67, 12, 13.33, 14.67, 10.67, 12, 13.33, 14.67, 16,
12, 13.33, 14.67, 16, 17.33

8,9.33,10.67, 12, 13.33,9.33, 10.67, 12, 13.33, 14.67,
10.67, 12, 13.33, 14.67, 16, 12, 13.33, 14.67, 16,17.33,
13.33, 14.67, 16, 17.33, 18.67

9.33,10.67, 12, 13.33, 14.67, 10.67, 12, 13.33, 14.67, 16,
12, 13.33, 14.67, 16, 17.33, 13.33, 14.67, 16, 17.33, 18.67,
14.67, 16, 17.33, 18.67, 20
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x| &) x/(X) X X /(%)
4 1/125 4/125 16 16/125
5.3 3/125 15.9/125 28.09 84.27/125
6.67 6/125 40.02/125 44.4889 266.93/125
8 10/125 80/125 64 640/125
9.33 15/125 139.95/125 87.0489 1305.73/125
10.67 18/125 192.06/125 113.8489 2049.28/125
12 19/125 228/125 144 2736/125
13.33 18/125 239.94/125 177.6889 3198.4/125
14.67 15/125 220.05/125 215.2089 3228.13/125
16 10/125 160/125 256 2560/125
17.33 6/125 130.98/125 300.3289 1801.97/125
18.67 3/125 56.01/125 348.5689 1045.71/125
20 1/125 20/125 400 400/125
1499.91/125=11.999 19332.42/125=154.66

py=> X .f(X)=11.99~12

— M =H

5. = \/Z? f(X)-(Xx .f(}))2 = J154.66 — 144 = 3.26497

5. =

Sl

(V)]

5.6568

3.26497 = =3.2659

&

= &5 %
(c) Without replacement
sample "C, =°C, =10
(4,8,12),(4,8,16),(4,8,20),(4,12,16),(4,12,20),(4,16,20),(8,12,16),(8,12,20),(8,16,20),(12,16,20)
There corresponding means 8, 9.33, 10.67, 10.67, 12, 13.33, 12, 13.33, 14.67, 16
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X £(%) Xf (%) ¥ X f(x)
8 1/10 8/10 64 64/10
9.33 1/10 9.33/10 87.0489 87.0489/10
10.67 2/10 21.34/10 113.85 227.698/10
12 2/10 24/10 144 288/10
13.33 2/10 26.66/10 177.69 355.38/10
14.67 1/10 14.67/10 215.21 215.21/10
16 1/10 16/10 256 256/10
120/10 =12 1493.777/10 = 149.3777

py=> X .f(X)=12

= M= U

5. = \/ZF S(X)-(Xx.f Y))2 —149.3777 144 =2.319

X

18
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Lecture # 03

Statistical Inference:

The process of drawing the inferences (result of conclusion) about a population on
the basis of information contained in a sample taken from a population is called
Statistical Inference.

The major part statistical inference is divided into two areas

(1)  Estimation
(i1))  Testing of hypothesis

The process of making judgement about a population parametric is called statistical
estimation or simply estimation. There are two types of estimation

(1)  Point estimation
(1)  Interval estimation

OR A rough calculation of the value, number, quantity or extent of something.
Point Estimation:

An estimation of a population parameter given by a single number is called point
estimation.

Interval estimation:

An estimation of a population parameter given by a two number between which the
parameter may be considered to lie is called an interval estimation.

Example: If we say a distance in measured as 5.28m, we are giving a point
estimate.

If on the other hand we say that the distance is 5.28 £ 0.03 m (i.e. the distance lies
between 5.25 and 5.31m), we are giving an interval estimation.

Point Estimator:

A statistic which is used to estimate a parameter is called point estimator.

1.e. E(}) = u . Here, X isa point estimator.

19
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Good point estimator:

If E (Y) = u and Let X =3 and u =3 then X is called good point estimator.

Criteria for Good point estimator:

For a good point estimator, the following condition will be satisfied

(i)  Unbiasedness
(1i1))  Consistency
(111) Efficiency
(iv)  Sufficiency

Unbiasedness:

An estimator is called unbiasedness is its expected value is equal to the
corresponding population parameter otherwise it is called biased.

Suppose that 0 is an arbitrary estimator and for population parameter. It is denoted

by 0 , then according to the definition of unbiasedness.

We can write E (@’) =6

Here 0 = parameter & 6 = statistics
There arise three cases
i F (4A9) —60=0 , the unbiased
(1) E(g’) —-0>0 , +ve unbiased
(ii1) E(@) —-0<0 , —ve unbiased

Examples:
1. X is unbiased estimator of a population mean pi.e. E (Y) =u

. X is unbiased estimator of a Bernoulli distribution parameter P i.e. E(F(j =P

2
3. X is unbiased estimator of a normal distribution parameter ()
4. X is unbiased estimator of a Poisson distribution A.

20
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Theorem:

Show that the sample mean X is an unbiased estimator of a population mean L.

Proof:

Let X,,X,,....X, be arandom sample of size n from the population with mean u

n

S,
i=1

We know that X =i

n

Taking expected value on both side

E(X) :%E(}(1 + X, ot X))

E(f)z%[E(Xl)JrE( +.+E(X,)] (i)

As the random variables X, + X, +....+ X, are independent.

E(X))=E(X,)=..=E(X,)=pu

Put in (1) = E(Y):l[y+,u+...+,u]
n
E(Y):%[n,u]

E (X ) =1 Hence proved.

21
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Theorem:

n—1

Show that E(SZ) =(
n

2 . .
j§ where S° is a sample variance of a random sample

of size n and &7 is a variance of population.
Proof:

. 2 .
The sample variance S~ can be written as

$(0-%)

SZ — _i=l
n
1 —\2 —\2 —\2
s? :;[(XI—X) (X, -X) +.+ (X, - X) }
1 —. - —
E(Sz)zz[E(Xl ~X) +E(X,~X) +..+E(X, —X)Z} (i)
Consider X -X=X -+ —
n
YTt X X —m X,
: n
— 1
Xl—Xzz[(n—l)Xl—Xz—....—Xn]
Adding and subtracting (n—1)u
Xl—Yz%[(n—l))(l—X2—....—Xn+(n—1)y—(n—l)y]

X, _f:%[(m)(xl )= Xyt (n=1) ]

X, —fﬁ[(n—l)()ﬁ — )= (X, = ) = (X, = pt) == (X, — 1)

(n—l),u:,u+y+...+y(n—l)times

22

Collected by: Muhammad Saleem Composed by: Muzammil Tanveer




Taking square on both sides

(2= X) =5 [(r=1)(X = )= (X = )= (X = ) == (X, = 0) |

(X] —)_()2 2%[(11—1)2 (X, —,u)2 +(X, —y)z +( X, —y)z +ot (X, —y)z — 2 product terming}

Since the variables X, X,,.....X, are independent. So, the expected values of that

product term will be zero and we have the result as under
E(x,-X) =i[(n—1)2E(X1 —p) +E(X = )+ E(X - 1)+ A E(X, 1)

2
n

E(X1 —)_()2 =%[(n—1)2 5+ +0 +....+52}
E(X,-X) =%[(n—1)252 H(n-1)5]

E(x,-X) =%[(n—l)(n—1+1)5z}

E(Xl —)_()2 :lz[(n—l).n.é‘z} =n—_152

n n

Similarly, for k

n n |
1 n—1
E(S*)=—|(n-1)6" = E(S%)= jé‘z roved
)=o) = a(s)=( Y
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Lecture # 04

Theorem: If X and S* are sample mean and sample variance defined as

n

ZXi i(Xz _)?)2
}: i=1 §2 — izl
n ’ n

show that E(Sz) #6°

from a population of variance 6” mean p , then

Proof: Let X ,X,,.....X, be a random sample of size n.

3 (X, - X)?

As we know that §? =-=!

n

Taking expected value on both side of the above equation.

E(Sz)ziE(Zn:(Xi —X)zj

i=1

E(S?) :%E(i(){f +X —2X,.)‘()j

i=1

E(s?) :%E(ZXI? +FZ—2)?ZXJ

E(SZ):lE

(ZXI.Z +nF—2n?j X =4
n

E(Sz)iE(ZXZ —nFj
E(S%)= %{ZE()&)— nE(F)} ()

Now &2 = E(?)—(E(Y))Z

24
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5 =E(X7)- sz
= E(X°)= 62+ 2
Also 5*=E(X*)-(E(X))
8 =E(X*)- 4
E(X*)=58"+"
Similarly, E(X])=8"+

Since X,,X,,.....X, be arandom variable. Put these values in (1)
1 n
E(S*)=—E| Y (8> + 1’ )—n(52 + 155
(57) =28 3307 a0)-n(o 12
2

E(Sz):lE{n(ézﬂﬁ)n(%qﬂﬂﬂ 5= =

n
E(Sz):lE[n52 +nu’—o° —nyz}
n

E(Sz)zlE[na2 -5%]

n

25
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Theorem: Show that sis an unbiased estimator of S* i.e. = E(sz) =52

Proof: Let X,X,,.....X, be a random sample of size n.

Z(Xi o )?)2
As we know that  s* ==

n—1

Taking expected value on both side of the above equation.

E(s?) =LE(Z(XI. —X)zj

n—1

(n—l)E(S2)=ELZ:(X,~ —)_(ﬂt—u)z}

(n—l)E(Sz)zE{Z((X[ —u)—(X - ﬂ))z}

i=1

(n—1)E(s*)= E[an{(xi — i) + (X =) =2(X, - u)(X —,u)}}

i=1

(=) () 5| S~ +(F -3 2K~ (5, - )

i=1 i=l i=1

(n—l)E(Sz) :E{Zn:(Xl. —,u)2 +I’l()?—/,l)2 —Zn()_(—,u)z}

i=1

(-1E(*)= | 308, -] ~n(X |

i=1
(n=1)E(8?)=E| (X, = )" + (X, = 1) +.o4 (X, = )" =n(X = )"
As X,X,,....X, be arandom variable. So,
(n=1)E(s’)=E(X, - u) + E(X, - p) +..+ E(X, - ) —nE(X - i)’

(n-1)E(s*)=0>+5"+5"+..+ 8" =&,

26
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(n-1)E(s*)=0>+5"+5"+..+ 8" - &5,

(n—l)E(Sz)=n§2—n%2 5)(:%
(11—1)E(S2)2n52 -5
(n—l)E(sz):é‘z(n—l)

= E(sz):52

Theorem: If s is the variance of random sample size ‘n’ then we can also write
as

2

nZXf—(ZXJ
2 _ =l i=l
il n(n—-1)

2 3 (X, - X)?

Proof: As we know that 7=

n—1

(X, + X -2X, X)

S2 — _i=l

n—1

32Xy x,

i=1 i=1

n
> X+ X
g2 ==l

n—1

ZXi2+nY2—2nY2 ZXl.
§2 = il oo izl - Y
n—1 n

n
2 -2
> X -nX
g2 ==l

n—1

27
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i=1 n ZXzz A .
§2 = _ =l n
n—1 n—1
2
ZXz—[Zle ny X} (ij
S2 i=1 — i=1
n—1 n(n 1)

Question: Suppose that a population consist five numbers such that 2,4,6,8,10.
Draw all possible samples of size 2 with replacement then verify the following
results.

@) E(X)=u
(i) E(S%)=0°
(i) E(s*)=0
Solution: Here N=5,n=35
5
ZI:X" 2+4+6+8+10

Sample = 5% =25 = i= = =6
p H N 5

52\/;()(1'_“)2 :\/(2—6)2+(4—6)2+(6—6)2+(8—6)2+(10—6)2 i

N 5
= 5°=8
(2,2),(2,4).(2,6).(2.8),(2,10),
(4,2),(4,4).(4.6).(4.8),(4,10),
Now samples (6,2),(6,4).(6,6).(6,8),(6,10),
(8,2).(8,4).(8,6).(8.8),(8,10)
(10,2),(10,4),(10,6),(10,8),(10,10)
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There corresponding means are 2,3,4,5,6

3,4,5,6,7
4,5,6,7,8
5,6,7,8,9
6,7,8,9,10
— ~ e e _ -2 -
x | /(x) X7 () X X7x)
2 1/25 2125 4 4/25
3 2125 6/25 9 18/25
4 3/25 12/25 16 48/25
5 4/25 20/25 25 100/25
6 5/25 30/25 36 180/25
7 4/25 28125 49 196/25
8 3/25 24/25 64 192/25
9 2125 18/25 81 162/25
10 1/25 10/25 100 100/25
— () 150 1000 _
ZXf(X):2—5:6 > X f(X)= 40

= E(Y):y
> (X, - XY
Also S* =+
n
(X, - X)
And s° =+
n—1

29
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— (X, - X (X, - X)?
Sample X g2 ;( ' ) 2 ;( ’ )
n n—1
2 2 2 2
22 , (2-2) +(2-2) _ (-2 +(2-2)
2 2-1
2 2 2 2
04 ; (2-3) +(4-3) _ (2-3°+(4-3)
2 2-1
2 2 2 2
2.6 . (2-4) +(6-4) _ (2-4) +(6-4) _,
2 2-1
(2,8) 5 9 18
(2,10) 6 16 32
(4,2) 3 1 2
(4.4) 4 0 0
(4,6) 5 1 2
(4,8) 6 4 8
(4,10) 7 9 18
(6,2) 4 4 8
(6,4) 5 1 2
(6,6) 6 0 0
(6,8) 7 1 2
(6,10) 8 4 8
(8,2) 5 9 18
(8,4) 6 4 8
(8,6) 7 1 2
(8,8) 8 0 0
(8,10) 9 1 2
(10,2) 6 16 32
(10,4) 7 9 18
(10,6) 8 4 8
(10,8) 9 1 2
(10,10) 10 0 0
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S? f Szf s? S s
0 5 0 0 5 0
1 8 8 2 8 16
4 6 24 8 6 48
9 4 36 18 4 72
16 2 32 32 2 64
D =25 8f=100 D f=25]> =200
As we know that
2
E(SZ):ZS J_100_,
D25
= E(S2)¢§2
2
Also E(S2)= ZS /. _ 200 =8
df 25
= E(S2)=52

Question: Suppose that a population consist five numbers such that 2,4,6,8,10.
Draw all possible samples of size 3 with replacement then verify the following
results.

@) E(X)=u
(i) E(S%)=0o°
(i) E(s*)=0

Solution: Here N=5,n=35

5

> X

= ' 2+4+6+8+10
N 5

Samples = 5° = 125 U= 6
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5:JZ(X . J(z 6)' +(4-6)"+(6-6)' +(8-6) +(10-6)' _ ¢

N 5 )
= &5°=8
Samples
(2,2,2),(2,2,4),(2,2,6),(2.,2,8),(2,2,10),(2,4,2),(2,4,4),(2,4,6),(2,4,8),(2,4,10)
2,6,2),(2,6,4),(2,6,6),(2,6,8).(2,6,10),(2,8,2),(2.8,4),(2,8,6).(2.8,8),(2.8,10)

2,10,2),(2,10,4),(2,10,6),(2,10,8),(2,10,10)

o =
[
o O
”l\)
\/
v
S~
o 2
—_ &
N N
S 3
N
— &
S o
p—
e 2
N~
\/o\
—
o
o>
o0
VO\
—_
(@) WY
(@)
[
o/—\
—
OO\
~— 00
[\
N—
—
(@)
o0
N
i
—
(@)
0
(@)
e
—
(@)
0
0
N—
—_
(@)
o0
p—
(@)
N—

—~
o0
N

\®]
~—

—
o0
o

N~
~

g
o0
o

(@)}
~—

—_

o0

\S]

o0
~—

—~

o0
[\
[um—
S
~

g

o0

N

\S]
~—

—~

o0

AN

N
~—

—~

o0

N

N
~

—~~

o0

N

oo
~

—~~

o0
N
[—y
S
~

(
,(10,2,4),(10,2,6) (10,2,8),(10,2,1o),(1o,4,2),(10,4,4),(10,4,6),(10,4,8),(10,4,10)
10,6,2),(10,6,4),(10,6,6),(10,6,8),(10,6,10),(10,8,2),(10,8,4),(10,8,6),(10,8,8),(10,8,10)
10,10,2),(10,10,4),(10,10,6),(10,10,8),(10,10,10)
Their corresponding means are 2,2.67,3.33,4,4.67,2.67,3.33,4,4.67,5.33
3.33,4,4.67,5.33,6,4,4.67,5.33,6,6.67
4.67,5.33,6,6.67,7.33
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2.67,3.33,4,4.67,5.33,3.33,4,4.67,5.33,6

4,4.67,5.33,6,6.67,4.67,5.33,6,6.67,7.33

5.33,6,6.67,7.33,8
3.33,4,4.67,5.33,6,4,4.67,5.33,6,6.67

4.67,5.33,6,6.67,7.33,5.33,6,6.67,7.33,8

6,6.67,7.33,8,8.67

4,4.67,5.33,6,6.67,4.67,5.33,6,6.67,7.33
5.33,6,6.67,7.33,8,6,6.67,7.33,8,8.67
6.67,7.33,8,8.67,9.33

4.67,5.33,6,6.67,7.33,5.33,6,6.67,7.33,8
6,6.67,7.33,8,8.67,6.67,7.33,8,8.67,9.33

7.33,8,8.67,9.33,10

X /(X) Xr(¥)
2 1/125 2/125
2.67 3/125 8.01/125
3.33 6/125 19.98/125
4 10/125 40/125
4.67 15/125 70.05/125
5.33 18/125 95.94/125
6 19/125 114/125
6.67 18/125 120.06/125
7.33 15/125 109.95/125
8 10/125 80/125
8.67 6/125 52.02/125
9.33 3/125 27.99/125
10 1/125 10/125
750 _
X1 (X)=
Y Xf(X)=6=E(X) :>E(X)=y
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n

_ X -X) (X, - X)
Sample X § ;‘( ) § = ; =)
n n—1
(2-2) +(2-2) +(2-2)’ (2-2) +(2-2)" +(2-2)
(2,2,2) 2 —0 ~0
3 3-1
224) | 2.67 0.8889 1.33
(2,2,6) | 3.33 3.56 5.33
(2,2.8) 4 8 12
(2,2,10) | 4.67 14.22 21.33
(2,42) | 2.67 0.8889 1.33
2,44) | 333 0.8889 1.33
(2.4.6) 4 2.67 4
(2,48) | 4.67 6.22 9.33
(2,4,10) | 5.33 11.56 17.33
(2,6,2) | 3.33 3.56 5.33
(2,6,4) 4 2.67 4
(2,6,6) | 4.67 3.56 5.33
(2,6,8) | 533 6.22 9.33
(2,6,10) 6 10.67 16
(2,8,2) 4 8 12
(2.84) | 4.67 6.22 9.33
(2,8,6) | 5.33 6.22 9.33
(2,8.8) 6 8 12
(2,8,10) | 6.67 11.56 17.33
(2,102) | 4.67 1422 21.33
(2,10,4) | 5.33 11.56 17.33
(2,10,6) 6 10.67 16
(2,10,8) | 6.67 11.56 17.33
(2,10,10) | 7.33 14.22 21.33

Collected by: Muhammad Saleem

34

Composed by: Muzammil Tanveer




n

n

v\ 2 v\ 2
Sample X g2 ;(X’ ) E ;‘(X’ %)
n n—1
(4,2,2) 2.67 0.8889 1.33
(4,24) 3.33 0.8889 1.33
(4,2,8) 4.67 6.22 9.33
(4,2,10) 5.33 11.56 17.33
(4,4,2) 3.33 0.8889 1.33
(4,44 4 0 0
(4,4,6) 4.67 0.8889 1.33
(4,4,8) 5.33 3.56 5.33
(4,4,10) 6 8 12
(4,6,4) 4.67 0.8889 1.33
(4,6,6) 5.33 0.8889 1.33
(4,6,8) 6 2.67 4
(4,6,10) 6.67 6.22 9.33
(4,8,2) 4.67 6.22 9.33
(4,8,4) 5.33 3.56 5.33
(4,8,6) 6 2.67 4
(4,8,8) 6.67 3.56 5.33
(4,8,10) 7.33 6.22 9.33
(4,10,2) 5.33 11.56 17.33
(4,10.4) 6 8 12
(4,10,6) 6.67 6.22 9.33
(4,10,8) 7.33 6.22 9.33
(4,10,10) 8 8 12
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v \2 v \2
Sample X § ;(X’ ) 2 = i N
n n—1
(622) | 3.33 3.56 5.33
6.2.4) | 4 267 4
(62.6) | 4.67 3.56 533
(6,2,8) 5.33 6.22 9.33
(62.10) | 6 10.67 16
642) | 4 2.67 4
(6,4,4) 4.67 0.8889 1.33
(6,4,6) 5.33 0.8889 1.33
648) | 6 2.67 4
(6,4,10) | 6.67 6.22 9.33
(6,62) | 4.67 3.56 533
(6,6,4) 5.33 0.8889 1.33
(6,6,6) | 6 0 0
(6,6,8) 6.67 0.8889 1.33
(6.6.10) | 733 3.56 5.33
(6,8,2) 5.33 6.22 9.33
6.84) | 6 2.67 4
(6,8,6) 6.67 0.8889 1.33
(6,8,8) 7.33 0.8889 1.33
(6.8.10) | 8 267 4
6.102) | 6 10.67 16
(6,104) | 6.67 6.22 9.33
(6.10,6) | 733 3.56 533
(6,10,8) | 8 2.67 4
(6,10,10)| 8.67 3.56 5.33
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T2 N2
Sample X g2 ;(Xl ) 2 ;(Xl )
n n—1
(8,2,2) 4 8 12
(8,2,4) 4.67 6.22 9.33
(8,2,6) 5.33 6.22 9.33
(8,2,8) 6 8 12
(8,2,10) 6.67 11.56 17.33
(8,4,2) 4.67 6.22 9.33
(8,4.4) 5.33 3.56 5.33
(8,4,6) 6 2.67 4
(8,4,8) 6.67 3.56 5.33
(8,4,10) 7.33 6.22 9.33
(8,6,2) 5.33 6.22 9.33
(8,6,4) 6 2.67 4
(8,6,6) 6.67 0.8889 1.33
(8,6,8) 7.33 0.8889 1.33
(8,6,10) 8 2.67 4
(8,8,2) 6 8 12
(8,8,4) 6.67 3.56 5.33
(8,8,6) 7.33 0.8889 1.33
(8,8,8) 8 0 0
(8,8,10) 8.67 0.8889 1.33
(8,10,2) 6.67 11.56 17.33
(8,10,4) 7.33 6.22 9.33
(8,10,6) 8 2.67 4
(8,10,8) 8.67 0.8889 1.33
(8,10,10) | 9.33 0.8889 1.33
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v\2 v \2
Sample X g2 — ;‘(X’ X R (X =X)
n n—1
(10,2,2) 4.67 14.22 21.33
(10,2,4) 5.33 11.56 17.33
(10,2,6) 6 10.67 16
(10,2,8) 6.67 11.56 17.33
(10,2,10) | 7.33 14.22 21.33
(10,4,2) 5.33 11.56 17.33
(10,4,4) 6 8 12
(10,4,6) 6.67 6.22 9.33
(10,4,8) 7.33 6.22 9.33
(10,4,10) 8 8 12
(10,6,2) 6 10.67 16
(10,6,4) 6.67 6.22 9.33
(10,6,6) 7.33 3.56 5.33
(10,6,8) 8 2.67 4
(10,6,10) | 8.67 3.56 5.33
(10,8,2) 6.67 11.56 17.33
(10,8,4) 7.33 6.22 9.33
(10,8,6) 8 2.67 4
(10,8,8) 8.67 0.8889 1.33
(10,8,10) | 9.33 0.8889 1.33
(10,10,2) | 7.33 14.22 21.33
(10,10,4) 8 8 12
(10,10,6) | 8.67 3.56 5.33
(10,10,8) | 9.33 0.8889 1.33
(10,10,10) 10 0 0
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Collected by: Muhammad Saleem

S? f S*f s> f s’ f
0 5 0 0 |5 0
0.8889 24 21.3336 1.33 |24 31.92

2.67 18 48.06 4 |18 72
3.56 18 64.08 533 |18 95.94
6.22 24 149.28 9.33 |24 223.94
8 12 96 12 |12 144
10.67 6 64.02 16 | 6 96
11.56 12 138.72 17.33 | 12 207.96
14.22 6 85.35 2133 6 127.98
D [=125|> 85 =666.8136 D s f=999.72
As we know that
S2
E(s?)= D S f _666.8136 _ .,
S f 125
= E(Sz) #0°
2
Also E(Sz) = ZS f = 999.72 =7.99=§
> f 125
= E(sz) =0’

39

Composed by: Muzammil Tanveer




Lecture # 05

Question: If X is a random variable has binomial distribution, then show that the

: X . . : s
proportional — is an unbiased estimator of parameter ‘p’.
n

Solution: Here we have to show that

As we know that binomial distribution

E(X)=np
X) 1
= E(;)—;E(X)
o)
n n

-2}

Question: Suppose that sample mean X of a sample from population is an
unbiased estimator of ‘0’ if X has density function

Solution: Here we have to show that

E(X)=0

As we know that

E(X)=py

Also E(X):,u

Collected by: Muhammad Saleem 40 Composed by: Muzammil Tanveer




= E(X)=E(X)
= WeshowE(X)=z9

Now by definition of continuous random variable

1 eig C’oeig
E(X):E Xj —!_—lldx
L 9 0 9 .

E(X)——H{e: —eo}——H[O—l]—H

E(X): 0=E(Y) proved

41
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Question: Suppose that a population of five numbers such that 1,3,5,7,9. Draw

all possible sample of size 2 with replacement and without replacement. Then
verify the following results

@) E(X)=u
(i) E(S%)=0°
(i) E(s*)=0

Solution: Here N=5,n=2

S
>,
= ' 1+3+5+7+9

Samples = 52 =25
N 5

5

T

5:\/;@"“)2 _\/(1-5)2+(3_5)2+(5_5)2+(7_5)2+(9-5)2 i

~ —
= 5°=8

Samples

There corresponding means are 1,2,3,4,5
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1v\2 1v\2
Sample X g2 — ;(X’ X 2 ;(X’ X
n n—1

(L1) 1 0 0
(1,3) 2 1 2
(1.5 3 4 8
(1,7) 4 9 18
(1,9) 5 16 32
3.1 2 1 2
(3.3) 3 0 0
(3.5 4 1 2
(3.7) 5 4 8
(3.9) 6 9 18
(5.1) 3 4 8
(5.3) 4 1 2
(5.5 5 0 0
(5.7) 6 1 2
(5.9) 7 4 8
(7.1) 4 9 18
(7.3) 5 4 8
(7.5 6 1 2
(7.7) 7 0 0
(7.9) 8 I 2
(9.1) 5 16 32
(9.3) 6 9 18
(9.5 7 4 8
(9.7) 8 1 2
(9.9) 9 0 0

s? f S’f s S s'f

5 0 0 |5 0

1 8 8 2 |8 16

4 6 24 8 |6 48

9 4 36 18 | 4 72

16 2 32 32 |2 64

Y f=25| >.8*f=100 D s =200
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X f(%) X/ (%)
1 1/25 1/25
2 2/25 4/25
3 3/25 9/25
4 4/25 16/25
5 5/25 25/25
6 4/25 24/25
7 3/25 21/25
8 2/25 16/25
9 1/25 9/25
— i~ 125
> Xf(X) =5

> Xf(X)=5=E(x)

= E(X)=pu

E(S)= 25/ _100_, g

Yf 25

= E(Sz);ztd2

_28S 200
505

= E(sz):52

8

Also E(sz)

Now without replacement:
Sample "C, =>C, =10

Samples: (1,3),(1,5),(1,7),(1,9),(3,5),(3,7),(3,9),(5,7),(5,9),(7,9)
Their corresponding means are

2,3,4,5,4,5,6,6,7,8
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x | ) X7 ()
2 1/10 2/10
3 1/10 3/10
4 2/10 8/10
5 2/10 10/10
6 2/10 12/10
7 1/10 7/10
8 1/10 8/10
— (). 50
> Xf(X) =5
Y Xf(X)=5=E(X)
= E(X)=pu
v \2 v \2
Sample X § ;(X’ .) 2= iZ—I:(Xl o)
n n—1
(1,3) 2 I 1
(1,5) 3 4 8
(1.7) 4 9 I8
(1.9) 5 16 32
(3.5) 4 1 2
(3.7) 5 4 8
(3.9) 6 9 18
(5.7) 6 1 2
(5.9) 7 4 8
(7.9) 8 1 2
s? f S’ f s S s'f
1 4 4 2 |4 8
4 3 12 8 |3 24
4 2 18 18 |2 36
16 1 16 32 |1 32
> f=10 D §*f=50 D s f =100
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For without replacement
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Lecture # 06

Normal Distribution density function N(u,5%):

2 1 _%x;ﬂ
f(x,é‘):me ( j

Range —0o <x < o0

Now for N(0,0)

629

e

Theorem: Let X, X,,X,,...X berandom sample of size ‘n’ form a normal

2
distribution N(0,0) then show that Z L is an unbiased estimator of parameter 0.
n

Proof: As we have u =0 and 6> = 0 . So, normal distribution density function can
be defined as

Here we have to show that

i=1

n

E =0
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E(Xz) = _]ixz 217n9 e_;?dx
2 0 2 1 _;% [ 2 1 _;*;
E(X ):_J;x 2”08 dx+_([x 27[(98 dx
E(Xz): 21;;9 j;xz e_;‘gabc+:.§x2 e_%dx _(A)

2

0 X
.
Now Ix e 20dx
—00

Here it is along the negative region. We will put x = —u = x* = u?
dx=—du

Uu—->woasx—>—-0 and u—->0asx—0

x? 0 u

j).xz e 2dx =J.u2 e 20 (—du)

2

Replace u by x

o0 _x2

=_[x2 e 2dx

0

Put in (A)

E(Xz): ! sz e_;‘gdersz e_%dx

270 | 7
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Here in the square brackets it is the area under the normal curve with p =0 and
8% = 0 so its area is always unity.

o0 1 _x2
:>2E|;me 20dx =1
:>E(X2):0
:>E(Xi2):0 " No change

Because R.H.S is independent w.r.t index ‘1’
IS Ny
Now = E| =) X} |==E| ) X
nio n i=1

1 1
E(;;Xf] ~ ;E(Xf + X 4.+ X))
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E[l X?] =1E(X12 + X 4.+ X))
n’ n

(L5 () (2 ()

E(li)(f]:l[9+6’+9+...+9]

ns n

1 |
E| =) X |=—[no
()t
E(lznl)(f}e
n i
Efficiency:

It is possible that a parameter has more than one estimator. So, from these
estimators only one estimator will be efficient as compare to the others.

Consider 6, and 6, are the two estimators of a same parameter 0, then if their

variance 6, i.e. Var(6,) is less than Var(d, ) then 6, is more efficient than 6, .

It means that efficiency is a comparison of the variances of the estimators. It can
also be written as

Var(é;)

Efficiency = E = —
Var(@l)

is the ratio of the measure of a relative efficiency of aw.r.t é; :
If E <1 then 6, is more efficient than 6,

Var(/;)

Var(a) <!
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= Var(@) < Var(é)

If E> 1 then alis more efficient than é’; .

)

)

Var( 2)

Var(a) 7!

~

= Var(@l) < Var(@)

If 6 is the biased estimator of the parameter 0 then to check the efficiency of
biased estimator, we make the efficiency comparison on the basis of mean square
error instead of variance written as

A ~ N 2
Mean Square Error & = MSE(8) = E[@ — 0]

- E(@—E(@))2 n E(E(é) - 49)2 n 2E(@—E(@))(E(@) - 9)
:E(é)—E(@?))2 HE(E(@?)—&?)2 +0
= Var(0) +(Biased)’

1.e. Mean Square Error of @ is equal to the variance of the estimator plus squared
biased.

Note: An estimator which has less error then it will be more efficient as compared
to the other.
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Example: Suppose that X, X,, X, are the random sample of size 3 from a

population with mean u and variance 8°. Also consider the following two
estimators of the mean p
X, +X,+X X, +2X,+ X,

T= 1 2 3,T=
1 3 2 4

Find which estimator 1s more efficient.

Solution: First of all, we check the unbiasedness of T; and T.

B(n)= 5K e () £ )+ (1)

E(y;)_E(X”X +Xj_—[E )+2E(X,)+E(X,)]

B(T,) =5 L+ 200+ ] =40

E(T)=u
So T; and T, are the unbiased estimator of mean p.

Now we have to find their variance.

Var(Tl) =Var

(X1+X2+X3j=—[1/ar +Var(X2)+Var(X3)]

Var(T,) %[52 +057+6” ] =é(352)

2

Var(Tl) =—

X, +251(2 + X, j :_[Va,, )+ 4Var(X,)+Var(X,)]

Var(Tz)zVar(
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Var(T,) = %[52 +407+5% |= %(652)

Var(T,)= %52

3

2
var(r,) g% 9
E= -8 25
Var(T) & 8
3

T, is more efficient than T,.

Example: Suppose that X, X, X,, X, be a random sample of size 4 from a
N ( 105" ) A person wishes to estimate the mean by using either of the following
two estimators of mean L.
T:X1+X2+X3+X4 T=X1+3X2+2X3+X4
1 > T2
4 7

First of all, we check the unbiasedness of T and T,.

E(]]):E(X1+XZZX3+X4 j:%[E(Xl)+E(X2)+E(X3)+E(X4)}

E(Tz)zE(X‘ 3%, “;2)(3 +X“j:%[E(X1)+3E(X2)+2E(X3)+E(X4)}

1 1
E(Tz)=7[,u+3,u+2,u+,u]=7(7,u)

E(L)=u

So T; and T, are the unbiased estimator of mean p.
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Now we have to find their variance.

X+ X, + X, + X,

Var(T]):Var( jz—[Var +Var(X2)+Var(X3)+Var(X4)]

4
Var(T,) =—[52+52+52+52]_ (452)
52
Var(];):?
Var(T,) = Var(Xl +34, —;2X3 +X4j=—[Var )+ War(X,)+4Var(X;)+ Var(X4)]

Var(T,) =%[52 +95% +45° + 57 | =$(1552)

1565
49

Var(T)

252
Var(T,) _ 49 _ 60
E= _49 0,
Var(m) & 4
4

T, is more efficient than T,.

= estimator T, is preferred.
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Lecture # 07

Consistency:

An estimator is said to be consistence if the sample statistics to be used as
estimator becomes closer and closer to the population being estimated as the
sample size ‘n’ increase.

Notes: A consistent estimator may or may not be unbiased.

Criteria for consistency:

If 6 be a sample statistic and 6 be population parameter then 6 is a consistent
estimator of 0 if the following condition holds

Variance(g’) —>0 when n— o

Question: Show that X is a consistent estimator of mean p.

Solution: We know that the variance of sample mean

o

5} :ﬁ

2

5=

n
. 2
= Var(X) =2
n

Taking Limit n — oo on the both side of above expression
- 2
Lim Var(X) = Lim 5—

—0 n—o N

Lim Var(X)=35".Lim [lj =5%(0)

n

n—>0 n—>0

Lim Var(}) =0

n—»0

Hence the X is a consistent estimator of mean L.

Collected by: Muhammad Saleem > Composed by: Muzammil Tanveer




Question: If a random variable X is a binomial distribution b(x ; x ,p) then show

. X : : .
that the sample proportion — is unbiased and consistent estimator of parameter p.
n

Solution: We know that E(X) =np

We have to show that FE (gj =p
n

Now E[%j - %E(X) = %(np) =p

Also Var(X) =npq

Now Var(ij:LVar(X):Lz(npq):ﬂ
n

2
n n n

Taking Limit n — oo on the both side of above expression

Lim Var(zj =Lim Pq

n—o0 n n—wo N

Lim Var(ijzpq Lim (lj
n—>0 I’l n—>0 n

Lim Var(ij = pq(O) =0
n

n—>0

X . : : :
Hence, — is unbiased and consistent estimator of parameter p.
n

Question: Show that the sample mean X of random sample of size n from a
density function

is an unbiased and consistent estimator of parameter 0.
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Solution: First we show that E (X ) =0

As we know that E(X): f

E(X)= J‘x%ea dx

—00

0 x © X
E(X)= J x%eg dx + Jx%ee dx
0

—00

1 e_% °°e_g
E(X):E )C_—l —_([_—lldx
L 9 0 9 .

E(X):—H{e: —eo}z—H[O—l]:H
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2

Now Var(X)=E(X*)-(E(X))

E(Xz)— j‘xzéeadansz e%dx
—o0 0

E(Xz) = —{0 - 2Txegdx}
0
E(Xz) = 2Txe_;dx
0
E(Xz) = —26?Ixe; (—%) dx
—Te;dx]

0 0

E(Xz) = —2:9[er
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E(X*)=-20 0-¢" :—29[9(e-°°—e°)]

E(Xx*)=-20[0(0-1)]=26"
= Var(X)=26"-(0) =20" -6’
= Var(X)=6’
= Var(X)=0=6"

2
:Var(X)z@zzéiz%

Taking Limit n — o on the both side of above expression

2
Lim Var(X) =Lim —

n—o0 n—o N

Lim Var(X) =06 Lim (lj
n

n—0 n—>0

Lim Var(X) = 52(0) =0

n—>o0

Hence the density function is an unbiased and consistent estimator of parameter 0.
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Lecture # 08

Sufficiency:

An estimator 6 is said to be a sufficient estimator of 0 if @ has all information
relevant to parameter 0.

OR

An estimator 1s said to be a sufficient, if the statistics used an estimator uses all the
information i.e. contain in the sample. Any statistics i.e. not computed from all
values in the sample is not a sufficient estimator.

Example 1:

The sample mean X is a sufficient estimator of w. This implies that X contains all
the information in the sample relative to the estimation of the population parameter
u and no other estimator such as the sample median, mode etc. calculated from
same sample can add any information concerning L.

Example 2:

The sample proportion P is also a sufficient estimator of the population proportion
P.

Neyman-Fisher Factorization Criterion for sufficiency:

If X,,X,,X,,..X, be arandom sample of a random variable X, whose distribution

depends on the unknown values of the parameter 6 then 6 is said to be the
sufficient estimator of 0 iff

F(x,%,,%5,..%,,0) = [(%,,0).1(x,,0)...f (x,.0)
f(x,%,,..x,,0) = g(é,é’).h(xl,xz,...xn)

Where g(@,@) is a function depends on the estimators 6 and 0. Where

h(x,,X,,...x, ) does not depends on 6.
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Question: Let X,,X,,... X, be a random sample from a density function
f(x,p)=px"";0<x<1,p>0. Then show that the product x,.x,...x, be a
sufficient estimator of parameter p.

Solution: As the joint probability function is defined by
F (gt ) = £ (30 0)of (00 f (5,.D)
f(xl,xz,...xn,p) :px{”_l.pr_z...px,f_”
£yt p) = 0" (%000, )
£ G gsentyy ) = 0" (5,530, Y (22yex, )
£ (st 0) =2 (%, p) R (3,3,..%, )

Where g(x,,p)=p"(%.x,...x, )p
1

h(x,.x,...x, ) = (x,.2,...x, )71 :m
172 "n

As the given joint probability function is factorized into two function therefore
Neyman-Fisher Factorization criteria is satisfied which implies x,.x,...x, 1s a

sufficient estimator of parameter p.

Question: Let X,,X,,...X be arandom sample of a binomial density function

f(x,p)=p"(1-p)

parameter p.

. x=0,1 Then show that le. be a sufficient estimator of

i=1

Solution: As the joint probability function is defined by
f (%3, p) = f(x,p).f (%3, 2)..f (%,.P)

[ (%5503, p) = P (1= p) " .p= (1= p) " p™(1=p) ™
(5%, p) = p7 (1= p) 71
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Where g(le ,p) p-
h(xl.xz...xn) =1
As the given joint probability function is factorized into two function therefore

Neyman-Fisher factorization criteria is satisfied which implies le. is a sufficient
i=l
estimator of parameter p.
Question: Let X,,X,,... X be a random sample from a density function
1 Seuy . : :
fxpu)= NG e? — o0 < x <oo Then show that le. be a sufficient estimator
V4

i=l

of parameter .
Solution: As the joint probability function is defined as
F (X%, 1) = f (1, p2)-f (30 1) o f (3, 10)

1 e 1 eea) 1 xay
f(xl,xz,...xn,,u)=ﬁe2 2 .

F (%t t1) = [—

" _ZIZ(X =2 ;)
f(x“xzjmxn,ﬂ):(ﬁj :

1 i Zx +n,u 2y2x
S (x,%550%,, 12) (ﬁ) J

j —ZI{W zysz [Z]

N

.6 =n

1
f(xl’ n’lll (f
f(Xl,Xz, nnu le,,u) XXy )
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where g(zxmu) _ (%j” e_zl['wz—zyii:xi]
7
h(x,.x,...x,) = e;][ZX?]

As the given joint probability function is factorized into two function. Therefore,
Neyman-Fisher factorization criteria is satisfied.

which implies le. is a sufficient estimator of parameter L.

i=1
Question: Let X,,X,,...X  be a random sample from a Poisson density function

f(x,A)=e"2" ;x=0,1 Then show that le. be a sufficient estimator of
i=1

parameter A.

Solution: As the joint probability function is defined by
f(x,xp,x,,2) = f(x,4).f (%, 4)../ (x,,2)
f(x,%,,.x, )= A" e " A% e " A"

n

Xi

F(x,%,.x,,A)=e™A7 .1

f(xl,xz,...xn,/l) = g(le.,/I)h(xl.xz...xn)

Where g(le.,/l) =e ™A
h(x,.x,..x,) =1
As the given joint probability function is factorized into two function therefore
Neyman-Fisher factorization criteria is satisfied which implies le. is a sufficient

i=l
estimator of parameter A .
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Question: Let X,,X,,... X be a random sample from a density function

f (x,@) = %eg ;0 < x < oo Then show that le. be a sufficient estimator of

i=l

parameter 6.

Solution: As the joint probability function is defined by
f(xl,xz,...xn,ﬁ) =f(xl,49).f(x2,t9)...f(xn,49)

f(x,%,,..x,,0)=—e? —e? ..—e?

h(xl.xz...xn) =1
As the given joint probability function is factorized into two function therefore

Neyman-Fisher factorization criteria is satisfied which implies le. is a sufficient

i=1

estimator of parameter 6.
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Lecture 09

Methods of point estimator:

A point estimator of a parameter can be obtained by several methods by we shall
consider the following three methods only

(1)  The method of Maximum likelihood estimator.
(i)  The method of moments (introduced in 18" century, it is oldest method)
(111) The method of least squares

The method of Maximum likelihood estimator:

In general, it was introduced in the early 20™ century and it was given by Ronald
A. Fisher (1890-1962). The method is very useful in the early age of life.

Likelihood function:

Let X,X,,...X, be arandom sample from a distribution having probability
function. Probability density function of X,X,,..X 1s

L(0,x,%,,..x,)=L(0)=1(0.x,).f(0,x,)...f (0,x,)

Probability density function of unknown parameter ‘6’ is called a likelihood
function of the sample and its mathematical form is given above.

Maximum likelihood Estimator:
The value of the parameter ‘0’ that maximize the likelihood function

L(0,x,,x,,..x,)=L(8) is called a maximum likelihood estimator of the parameter

‘0’ and it is denoted by 6. As to find the maximum likelihood estimator we take a
first derivative of likelihood function and setting it against zero. As a result, we
obtain a single value and that value we replace in the second derivative of
likelihood function. That value is called stationary value of the function and if its
value is less than zero then likelihood function at that value is maximum.
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Question: For a binomial population the sample proportion is the Maximum
likelihood estimator (MLE) of the population parameter p.

Solution: As the likelihood function of given sample is

Taking In on both sides

(et} =1 "]y

n(1(p)) = 1o +1n1-p)”

1n(L(p))zln(Zj+xln p+(n=x)n(1-p)

DIff wrt p
I R e
o5 lip)
Put %L( p)=0

x—xp—np+xp=0

X=np
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Lp) (L(p))
C(p) (L) __x  n-sx
L(p) (L(p)) P (-p)

Putpz%

L"(p)_(L'(p))ZZ_ X  n-x
L(p)  (L(p)) (x)z (1_)2
L'(p) (L(p)) _ #  n-x
L(p) (L(p)) (”—zx)2

Pp) (KW # w_ramx)-rs

L(p) (L(p))2 X n—x (n—x)x
L"(p) ~ (L'(p))2 _ 1+ X —n’x
W)y o
L(p) (L) -,
Lp) (L(p)) (-

:%;(L(p))<0

Collected by: Muhammad Saleem
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The likelihood function attains its maximum value at p = x/n. Therefore, the

maximum likelihood estimator (MLE) for parameter p is p = X or ;9 =2
n

Question: Suppose that X is a Bernoulli’s random variable with parameter ‘p’
given a random sample of X. Then find the Maximum likelihood estimator (MLE)
of parameter p.

Solution: As the likelihood function of given sample is

L(p)=p*(1-p)

Taking In on both sides
In(Z(p))=In| p*(1-p)" |
ln(L(p)) =Inp* +In(1 —p)l_x

ln(L(p)) =xlnp+(1-x)In(1-p)

1-x

Diff, w.r.t ‘p’
i’((ﬁ))zx%+(l—x) (l_lp)(—l)
5l —o
Put %L@):O

x=xp—p+xp=0
pP=x
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Again diff. equation (i) w.r.t ‘p’

S )

The likelihood function attains its maximum value at p = x. Therefore, the

maximum likelihood estimator (MLE) for parameter pis p = X or ;9 =X
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Lecture # 10

Question: Suppose that X is a Bernoulli random variable with parameter p given
a random sample of n observation of X then find the Maximum Likelihood
Estimator (MLE) of parameter p.

Solution: As the likelihood function of given sample is
L(p)=p'(1-p)"

L(p,xl,xz,...xn) =L(p) =L(xl,p).L(xz,p)...L(xn,p)

L(p)=pT (1-p)" %"

Taking In on both sides
ln(L(p)) = lnp"z-‘:)q +In(1- p)nN_,Z:;‘xi

In(L(p))= le In p +(n —Z%]ln(l—P)

Diff. w.r.t ‘p’
Lp)_ n X l+ n— n X L -
L(p) & " p ( Zl ’](1—1?)( !
L(p): Hx,._n—;xl (i)
L(p) p (-p)
Put %L(p)zo
IZ;:XI n—gxl
p (1-p) -0
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(1_p)§xi —p(n —inj

=0
p(1-p)
Zn:xl. —pix[ —pn+pixi =0
i=1 i=1 i=1
n Zn:xi
ZJci—pn=0:> p=-
i=l n

Again diff. equation (i) w.r.t ‘p’

c 0 g (L5 Ly

L(p) (L(p))
B e ke
L2
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He likelihood function attains its maximum value at p =-=— Therefore, the MLE

n

i=1

for parameter pis p =

Question: Let X,,X,,...X  be a random sample from the Poisson distribution

-1
e A"

x!

f(x,4)= Find the MLE of 4

Solution: As the likelihood function of given sample is

L(l,xl,xz,...xn) :L(ﬂ,) :f(l,xl).f(ﬂ,,xz)...f(l,xn)
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_e‘%x‘ e A et A

x,! x,! x,!

L(2)

X
e—nﬂl -1

xloxlxlix!

L(2)=
Taking In on both side

X;
e—"iﬂ/ i=1

xl.xtxlox!

In L(ﬂ.):ln

InL(2)= lnLe"ﬂﬂ.” )— In[x!. x,.x0x, 1]

In L(A)=Ine™ + ln/?,'z:‘:% —In[x!. x, x|

In L(A)=-nd+ ixl. InA—Infx,!. x,!.x0..x,!]

i=1

Diff. w.r.t ‘A’
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n

2

n
= nA= le.
i=1 n

Diff. Eq (1) w.r.t ‘A’

2
=

12

n

in

i=1
n

Therefore, the MLE for parameter A is A=
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Question: Suppose that X is a random variable with density function
f(x,0)=6e where 6 >0, x > 0. What is the MLE for 6 based the sample

variable on n observation.
Solution: L(H,x],xz,...xn) = L(H) = f(H,xl ).f(@,xz)...f(ﬁ,xn)
L(0)=0e""".0e™" . .0 "

n
—gle-

L(0)=0"e

Taking In on both side
—6’ixi
InL(6)=In| 0" =

—Hix,

InL(0)=In@" +Ine *
In L(6) nln6’+( QZx]hle

In L(0) :nlnﬁ—ﬁixi

i=1
Diff. w.r.t ‘0’
L)

L(6) :%_;x" —)

d noo
Put —L(0)=0 = ==Y x,=0
utd@ ( ) = P ;xl

n-— Hzn:xl.
i=1 — 0
%

= n= Hzn:xl.
i=1
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Diff. Eq (i) w.r.t ‘0’

L) (L) _-n

L(0) (L(e)) O

Put 0 =—
L'(0) (L(9) _ -
L) (z(o)) 2
3

The likelihood function has maximum value at 6 = ni . Therefore, the MLE for

in
i=1

.~ n
parameter 0 is 6 =——

Z X
i=1
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Lecture # 11

Normal distribution:

A continuous random variable having bell-shaped curve is called a Normal random

variable. A normal random variable X with mean p and variance 6~ has the
density function written as

1{x5#j2

;—00 < X < 00

(x /"52) \/—5
Theorem:

Show that area under the normal curve and above the X-axis is always one. OR If
f(x) is a density function from a normal distribution then show that

o0

If(x)dle

—00

Proof: As given f(x) is a density function froma N (x, 100" ) . So,

_J;f dx \/%5 _[ 67 B (z)

—00

X—p

Put =t = X—-u=0ot

dx=0dt & t—> 100 as x >t

Put in (i) = [ f(x o2 sd
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[°e) -1,
7t . .
As j e? dt 1s an even function. So,

—00

112 © -1,

Te_z dt=2J‘ezt dt
—00 0

[ £(x)de= - Ie?”m @)

—00

) 1
Again put Etz =z =>t"=2z

= Ji =2z

= dz =tdt

_%_ dz
t 2z

z—>0ast—>0

= dt

Z—>©0 ast—> oo

Putin (i1) = Tf(x)dxz 2 Te_zj;i

0

-1

:[of(x)dxz\/z_\/z!e_z.zzdz

T.

A N2
2

T 2 |1 T 1
dx=——|— - |e .z?dz=|—
If(x) X I 12 _([e z2dz 5

T 1 1
;[f(x)dx:ﬁ.\/; E:\/;

0

j f(x)dx=1 Hence proved.

—00
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Theorem:

Show that the parameter u and §° are the mean and variance of a normal
distribution.

Proof: First we prove E(X) = p and then Var(x) = &~
(i)  As we know that

E(X):\/%é‘_jx.e2

Putx;’uzt = x—u=8t = x=pu+5t

dx=0dt & t—towo as x >t
1 —1

Putin (i) = E(X) Jz_aj (u+6t)e? Sdt
7Z- —00
) —12 l
E(X )_2;|:/JJ.82 dt+5_[te dt}
T
1 7 3 e
:,UT_[e dt + _[tez dt
T —0 —0
1 T o5
2—.[62 dt =1
72-—00

E(X):y—\/j_ﬁ e%l2 =y—\/§—”[e_w—e%]
E(X):,u—Ozy
= E(X)=pu
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(11) Var(X)zj(x—y) f(x)dx
Var(X) = T (x —,u)2 ! .e_zl[x_‘;ljzdx
’, 278
Var(X)z 1 ]g(x—y)z.el(x;ljzdx (z)
2752
Pt H ot = x—u=5t
dx=0dt & t— 1o as x —> o

Putin (1) = Var(X) =

o0 -1,

[ (61) €2 sar

—0

1
N2 O

2 0 —1[2
Var(X)=\/2_ J-z‘ze7 dt
T —00
o T 2
Var(X)z\/z_ It.ez Ldt
T —o0
_o% % Zp
Var(X)z\/z_ Itez .(—t)dt
T —00
-5 “lp ° -l
Var( X )= te? —le? dt
ar( ) \/ﬂ e B _we
~52 °
Var(X):T{O— e’ dt}
T —00
or T 2
Var(X)= 2 dt
ar( ) \/Z_J;e
I/czr()()zé'z.lzé'2
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Moment generating function: (m.g.f)

The m.g.f of X with respect to origin is

The m.g.f of X with respect to mean p is
M, (1)= E(")

Question: Find the moment generating function (m.g.f) of a normal distribution
about a mean ‘p’.

Solution: As the m.g.f about mean p and normal distribution is

M, ()= E(e")
M, (t) 3 T " 7#) .#e;(?fdx

t(x—ﬂ)—%(%)z i

© 1
—2[252t(x—,u)—(x—,u)2}
M”(t):\/ﬂé‘_v[oew dx
1 7 S ewy20%(n)]
M”(t):\/ﬂé‘_v[oew X

L

Mﬂ(t): s .’.8252

|:(x—/1)2—252t(x—/1)+(52t)2—(52t)2:‘ "
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My(t):\/g5 X
_ _S2
w ()-8 ‘;) O . o(x-u)-5 =52
= dx=0dz

=z —> 100 as x > 1

Properties of Normal distribution:

The Normal distribution has the following properties

(1)
(ii)

(iii)
(iv)

Collected by: Muhammad Saleem

The curve is symmetric about the vertical axis through the mean p.
The mode is a point on horizontal axis where the curve is maximum at
X = W.

The total area under the normal curve and above the horizontal axis is
always one.

The normal curve approaches the horizontal axis when we proceed in
either side of mean .
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Lecture # 12
The Chi-Square y* Distribution:

e Degree of freedom:

The difference between the number of independent observations in a sample and
number of populations to be estimated from a sample is called a degree of freedom.

e Chi-Square random variable:

Let z,,z,,...,z, are independent normally distribution random variables with mean

u and variance 6. Then

n n

p-ge-5[5n]

i =l i=1

is called a Chi-square y” random variable with n—1 degree of freedom.

e Chi-Square distribution:
The density function or distribution of Chi-square is defined as

f(;(z)z nl (;(z)g_le_g where 0 < y* <o
22

¥
2
Theorem: Show that the density function of Chi-square is

2
n, —x

F(2)= =) e

Proof: As we know that the Chi-square random variable is
=2z
i=1
And the moment generating function of Chi-Square is written as
M,y (1)=E(e")
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M,(0)=TTE(e")  _(4)
i=1
As we know that

—00

As we know that z; are independent normally distributed random variable. So, if
nw=0and & = I the normal distribution can be written as

84
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Let I-2 zZ=V
2
I-a dz =dv
2
dz = 2 dv
1-2¢

yv—>tooasz—>tw

Using these substitutions in (C) we get

E(e’z" ) ﬁ Le ~ v (D)
As the integral function is even. So,
je‘”z dv =2!e‘” dv
—00 0
. 2\ _ 1 < 2
Equation (D) = E(et )—m%([e dv (E)

Let v =x :>v=\/;

= a’v:ﬂ

NES

x—=>0 asv—>0 and x> asv—-> o
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0

Equation (E) = E(¢)= — Jﬁ 2fe 2@%
B(e7)-— HT :Te—ax.xn—ldx
)i e

E(e”"2 ) =

Using (F) in (A) , we get

; 1
M,(1)=
1= (1 21)2
1
M,(t)= - G
2
!
=1
2

As we know that the distribution of Gamma function is

Q

b1 (z)- r]ﬂ” W)
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Comparing (G) in (i1)
=a=%, p=n/2

Now the distribution of y* can be written as i.e. using the value of ‘a’ and ‘p’ in
equation (1)

1 4 =

f(;(z)=2gﬁ.e2(z2)z

Properties of Chi-square distribution:

(1)  The mean of Chi-square distribution ‘n’ (degree of freedom).
(1))  The variance of Chi-square distribution is ‘2n’.

(i11) The mode of Chi-square distribution is ‘n—2’.

(iv) The total area of y* is always 1.

Question: If X and Y are any two Chi-square variances with n; and n; are the
degree of freedom. Then show that X+Y is also a Chi-square random variable with
degree of freedom ‘n;+ny’.

Solution: As we know that the moment generating function is Chi-square is

-n

o, (1) E(e) ~(1-20)F
My ()=E(e")=(1-2) >
Now M, (t)= E(er(X+Y)) _ E(erxw)

Now MX+Y(f)=E(€tX.€tY)=E<e’X).E(e’Y)
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My (6)=(1-20)> (1-2¢) >

—n,

hom

M, (t)=(1-2t)2 2

M, (1) =(-2) "5
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Lecture # 13

Question: Show that the mean and variance of y~ distribution is ‘n’ and ‘2n’
respectively.

Solution: As we know that the density function of y” is

no L E
f(Z )_ZZP'
2

Put y*=x and A=

0

E(X)= A{@j[gﬂj s 1] Te—“"x"—ldx =a"[n
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Now Vazriazrwe()():E(Xz)—(E(X))2 _(1)

o]

E(X?)= A{Gj S > 2] 2 [exldy =a [

0
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E(Xz)zn(n+2):n2 +2n
Put the value of E(X”) and E(X ) in(i)
Var(X)=n*+2n—(n)
Var(X)=n*+2n—n’
Var(X)=2n
T-Distribution:

Let ‘z’ be a standard normal random variable and ‘v’ be a )(2 random variable,

then if ‘n’ is the degree of freedom and ‘z’ and ‘v’ are independent random
variables we can define ‘T’ random variable as

I
\F
n

And its distribution (density function) can be written as

‘n+1

h(t) =2 {Hﬁ}wj

91
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'n+1

n+l

Béﬁmw Iz
[mln

As Beta functionis S (m,n)= —
m+n

h(t)=

n+l

1 £’ 7(7]
e IW{”J

272

; —0<[f<

Theorem: Show that the Area under the normal T-distribution is 1 (unity).

Proof: As we know that

n+l

1 ol 7(7)
e IJA“J

272

Here we have to prove that .[ h (f )dl‘ =1

—00
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Let x:L = dt:\/;dx

Jn
X—> 1o as t —> 1o

n+l

Th(t)dt:AT [1+x2]‘( : jﬁdx

Th(r)dr:AJZT ! [M)dx

" ‘°°(1+x2) 2

As the given function is even function. So,

Th(t)dtzzAx/ZT 1

- 0 (1 +x° )(nzﬂj

dx

Letv= >
1+x

1+xZ=l = xzzl—lzl_—v = Xx= L=
v 1% 1% v
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vo>lasx—0

V—>0 as X —> 0

0

| h(t)dtzZA\/Zj(v)(TJLZ_—vlz i]dv

—0

s
2

T NSNS T
Lh(t)dt:A\/Zg(v)(zj ST dv
K 1 n—“—2+l 1
_jwh(z)dr:AJZ!(v)z L=y

[ty (ZEMW(;,;} = (25[
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jh(l‘)dtzl Proved

Properties of T-distribution:

(1)  The T-distribution like a normal distribution has a bell-shaped; uni model
and symmetric around the mean (u=0).

(1i1)  In T-distribution, the number of degrees of freedom is the function of
size. The shape of T-distribution curve is changed, when we changed the
number of degrees of freedom. It means that we can obtain a family of T-
distribution curve according to the degree of freedom.

(i11)  For a very small number of degrees of freedom, the curve of T-
distribution become flatter and flatter. It means that the T-distribution
approaches the normal distribution as the sample size increases without
limits.

(iv) The T-distribution has variance more than one but the normal distribution
has variance one.

(v)  The mean and variance of T-distribution is zero and n/n—2 respectively
where n > 2.

F-Distribution:

Let u and v be any two independent random variables having ;(2 distribution with
n; and n, are degree of freedom, then the ‘F’ random variable can be defined as

And its distribution or density function defined as

n

no+n,(n|? S
w0
/)= e

i

— = 1+

212

n 2
n2

h( :0< f <o
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Ao
h(f)= 2 o 0<f<w
CR I ST
ﬂ(z’z '(+an

Properties of F-distribution:

(i)  The random variable of F-distribution takes a non-negative value.

(1)  The range of F-distribution is 0 to .

(i11)) The shape of F-distribution curve is non-symmetrical and skewed to the
right, but when the degree of freedom n; and n, increases then the curve
of F-distribution becomes symmetrical.

nz(n —2)

2\t 7
nl(n2 +2)

(iv) The F-distribution has a unique mode at the value 31, > =2

and it is always less than unity.

n
(v)  The mean and variance of F-distribution 1s ﬁ yny>2
n, —

2n (n1 +n, —2)
n(n,—2) (n,—4)

and ; 1, >4
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