MATHTMATICAL Vi

M E TH O D S mtanveer8689@gmail.com

0316-7017457




Dedicated

To
My Honorable Teacher

Sir Muhammad Awais Aun

&
My Parents

Collected by: Muhammad Saleem ! Composed by: Muzammil Tanveer




Lecture # 01
Differential equations:

Many physical phenomena are described by a function whose value at a given
point depends on its value at neighboring points. The equation determining this
function thus contains derivatives of the function such as first derivative to
indicate the slope at a point, a second derivative to indicate the curvature and so
on. Such an equation is called a differential equation. Familiar physical
situations that are described by differential equations are the flow of a fluid, the
vibrations of a drum head and the dissipation of heat in a material.

An equation containing / involving one or more derivatives of an unknown
function is called a differential equation. There are two basic types of
differential equations

(1)  Ordinary differential equations (ODEs)
(11)  Partial differential equations (PDEs)

They are distinguished by the number of independent variables that enter / are
involved in the equation. A differential equation for a function of a single
independent variable contains only ordinary derivatives of the function and is
called an ordinary differential equation. For a function of two or more
independent variables, a partial differential equation expresses a relation among
partial derivatives of that function.

The general form of an ODE for a function y of an independent variable can be
written in terms of F of the arguments x and y together with the derivatives of y
as:

F(x,y,y',y”,....):() (1)
Where prime stands for derivatives of y w.r.t x i.e.

dy . _d’ . _d'y

dx’

Order: The order of a differential equation is the order of the highest
derivative appearing as an argument of the equation. For example, the most
general form of a first order ordinary differential equation is
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F(x,y,y')zo (2)

The general form of an nth-order ordinary differential equation is there given by
the expression:

F(x,y,y',y”,....y(")):O (3)

If the function F in (3) is a polynomial in the highest order derivative of y
appearing in the argument list, then the degree of the differential equation is the
power to which the highest derivative raided i.e. the degree of the polynomial.
An equation is said to be linear if F is first degree in y and in each of the
derivatives appearing as an argument of F.

The general form of a linear nth order ordinary differential equation is

dny dn—ly dZy dy
a,(x) S+, (1) T et s (1) S () 4 (x) = £ () (4)
Where f(x) and the coefficients a,(x),a,(x),.....,a, (x) are known functions.

Examples: Consider the following ODEs:

d’y dy

W +y—ean(x)$(l— 2)=0 _(z)
d’y 1dy g

72 +xdx+ =0 (zz)

dy\ | dy

(aj +x$+y=() _(lll)

In equation (1), € is a constant. This equation (Van der Pol equation) is of

second order and of first degree. This is a non-linear equation because of the
d
term: & yz.
x

(An equation that not linear is called a non-linear equation) i.e.
2

7 J; + %sm v =0 is a non-linear equation? Equation (ii) is a particular case of
X
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Bessel’s equation and is seen to be a linear second order ODE. Equation (ii1) is
of first order and second degree is there is a nonlinear equation.

Solution of a Differential Equation:

A function y = g(x) is called a solution of a given nth order ODE (4) on some
interval (say) a <x <b if g(x) is defined and n times differentiable throughout

that interval and is such that the equation becomes an identity when y and its

(n) (n)

derivatives y,y",...y" are replaced by g.g ,....g"" respectively.

Equation (4) is called homogeneous if f(x) = 0. Otherwise it is called non-
homogeneous.

Linearly Independent Functions and the Wronskian:

Two functions fi(x) and f5(x) are said to linearly dependent on an interval I =
[a,b] if there exist two constants ¢; and ¢, not both zero such that

lel(X) + szz(X) i 0 (1)
Forallx e |

Two functions fj(x) and f>(x) are said to linearly independent on an interval
I =[a,b] if there exist no linear combination of the two functions that vanishes
over the interval i.e. if the only choice of constants c¢; and c, that satisfies

cifi(x) + cfa(x) =0 over the interval c; =0 and ¢, =0
Criterion for Linear Independent Functions:

The idea of linearly independent functions can be extended to any number of
functions. Consider a set of n functions { f, f5,.....f,} over an interval. These

functions satisfy the following relation.

cf,+e,f,+...t+c, f, =0 (1)

For the constants ¢, , k=1,2,3,....n

To find a way of identifying linearly independent of the above set of functions,
suppose that these functions form a set of linearly dependent set over the
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interval. So there exist a set of constants ¢, , k = 1,2,3,....n such that the relation
(1) is satisfied. It is also supposed that each these functions can be differentiated
n—1 times with respect to x. Equation (1) is satisfied over the entire in question
and the functions have the required number of derivatives. So up to n—1
derivatives of the above equation may be taken to obtain the n—1 equation as:

k k k
(Thy dhy e dlisg (2)-(nm)

. a
dx " dx

Fork=1,2,3,...n—1

Thus Equations (1)—(n) form a system of n linearly homogeneous equations for
the constants ci. For these equations to have a solution with not all of the ci
being equal to zero, the determinant of the matrix of coefficients must vanish:

f](l) fz(l) e f(l)
=0
fl("—l) fz("—l) W f("—l)

This determinant is called Wronskian of the functions. fi and is denoted by

W(fisforonf,) P60

VI R

fl(l) fz(l) o fn(l)
w (fl, Soseennn £, ) =

];1(”—1)'][2("-1) _' .' _. fn(’;-l)

Since the vanishing of W ( f;, f,......f, ) is a necessary condition for the

functions fi to be linearly dependent, then the sufficient condition for the
functions to be linearly independent is that the Wronskian is non-vanishing.
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E.g, the sufficient condition for linearly independence of two non-zero function
fi & f, takes the following form: W ( f,,1,)= f,/ = /; /,#0.

IfW(f.1,)=fi.f, — 1, f,=0 then it implies

A = A = f, =cf, This shows that f; is proportional to f; . f; and f, are
VI
linearly dependent. Consider the functions f,=e ™, f,=¢" and f,=¢"". The

Wronskian is

W (S forfs)=|-e " e 2™ |=6e" %0 This shows that function are
e—x ex 462X

linearly independent.
General Solution:

A solution of a differential equation of nth order (linear or not) is called a
general solution if it contains n arbitrary independent constants. Here
independence means that the solution cannot be reduced to a form containing
less than n arbitrary constants. If definite values are assigned to the n constants,
then the solution so obtained is called a particular solution of that equation. A

set of n linearly independent solutions f,(x), f,(x),....f, (x) of the linear

homogenous equation.

n n-1 d2
a,(x) dxa’} +a,  (x) dx”‘Jl} +..+a, (x)g);+ a, (x)—y+ a,(x)y=0

On an interval is called a basis or a fundamental system of solutions of (1) on

the interval. If f, f,,.....f, is such a basis then the expression
y(x) =c /| (x) +c,f, (x) +...+c, f (x) is a general solution of (1).

Consider the functions f; = e**, f, = cosx , f3 = sinx which are solutions of the
equation y —2y +y —2y=0.1ts general solution is
y(x)=A4e’" + Bcosx + Csinx . Because f; = ¢, f, = cosx , f3 = sinx are

linearly independent as
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e?” cOoS Xx sin x

W(fl,fgafS): 2’ —sinx cosx [=5e* #0

4e** —cosx —sinx

Auxiliary Conditions:

Consider an nth order linear differential equation

dn dn—l d2 d
a, (x) dxi/ +a,, (x) dx”): +..+a, (x) de; +a, (x)d—z+ a, (x)y = f(y)__(l)

The functions q, ()c),a1 (x),a2 (x),...,an (x) are called the coefficient functions

of the differential equation and are generally assumed to be continuous in the
interval (a,b) and a,(x) is not identically zero therein. In most of application, the
unknown function, y in (1) must satisfy certain restraints called auxiliary
conditions. The number of these conditions is equal to the order of the
differential equation. When the conditions are satisfied at a single point, they
are called initial conditions whereas they are specified at different points they
are called boundary conditions. The problem of solving the equation (1) subject
to initial condition is called the initial value problem. The problem of solving
the equation (1) under boundary conditions is termed as the boundary value
problem.

A mathematical problem is properly posed (well posed) if it satisfies the
following conditions:

1. Existance: There is at least one solution
2. Uniqueness: There is at most one solution
3. Stability: The solution depends continuously on the boundary data

Separated and Mixed Boundary Conditions:
Consider a second order ordinary differential equation
a,(x)y +a,(x)y +a,(x)y=r(x) (1)
With typical boundary conditions having the general form
ayy(a)+a,y (a)=a ___ (2a)
a,y(b)+ayy ()= ___ (2b)

7

Collected by: Muhammad Saleem Composed by: Muzammil Tanveer




aij’s ,o.,P are constants where the most boundary conditions arising in practice
are special cases of (2). These conditions are unmixed or separated boundary
conditions because the first conditions is specified only at the end point x = a
and the second only at the end point x=b.

More general form of the boundary conditions is
a“y(a)+alzy'(a)+b“y(b)+b12y'(b):a _(3a)
a21y(b)+azzy'(b)+b21y(a)+b22y'(a):ﬂ (3b)

The equation (1) is said to be homogeneous if f(x)= 0. Otherwise it is called
non-homogeneous. When a=p=0 , the boundary conditions are called
homogeneous. All other specifications of the differential equations or boundary
conditions are called non-homogeneous.

Boundary Value Problems:

A boundary value problem is written as:

The general second order differential equation
a,(x)y +a,(x)y +a,(x)y=r(x) (1)
With unmixed boundary conditions:
a,y(a)+a,y (d)=a __ (2a)
a,y(b)+ay,y (B)=4 __ (2b)

Writing the boundary value problem in the differential operator form as:

d d’
M =a,(x)D* +a,(x)D +a,(x) where D == D* = o

So, equation (1) is written as:
Myl=a,(x)y +a/(x)y +a,(x)y=f(x)
Similarly, boundary operators B, and B, are introduced by

Bl[)’]: a”y(a)+a12y'(a)M
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B, [y] = azly(b) +a,y (b)
In terms of these operators, the above boundary value can be expressed as
Mly]=1(x).Bly]=a B[y]= 5
Definition: An operator M is said to be linear if and only if
Mlef (1) + e (2] =eM [ £ (x)]+ Mg (x)]
Where f(x) and g(x) are given functions c; and ¢, are any constants.
Abel’s Formula:

If y; and y; are linearly independent solutions of the second order ODE:
y +a(x)y +a,(x)y=0 (1)

on some interval, where a;(x) and ay(x) are continuous show that the Wronskian

W(y1,y2) satisfies for some constant , C, W(y1,y2) =C exp[—a J. a, (x)dx]

Proof:

Since y; and y; are solutions of (1) then
yln +a1(x)y1'+a0(x)y1=0 (2)
y, +a (x)y; +a, (x)y2 =0 (3)

Multiply (2) by y2(x) and (3) by yi(x) and subtract we get

ylnyz + al(x)yl‘y2 +a, (x)le/2 =0

iyz”y1 ial(x)yz'y1 + ao(x)yzy1 =0

1=y v e () (v -y )=0 (4)
S AW o
Now W (y,,¥,) =y, =y, and PR LS OP R MR
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Sp, (4) becomes Z—W +a, (x)W =0
X

Integration gives inW + _[a, (x)dx =1InC which implies In(W / C )= —_[a, (x)dx

a(x)dx

W:CefI or W:Cexp[—jal(x)dx}

Question: If y(x) is a non-trivial solution of y" + a,(x)y +a,(x)y =0 show

that its second linearly independent solution y,(x) is given by

exp[—_l.a1 (x)dx]

2
N

b :yl_[ dx

Solution: From Abel’s Formula

w =exp[—_[ a, (x)dx] and W (y,,y,) =y, — »,y, which implies
W = vy, =exp| =[a (x)dx|

Divide this expression by yl2 we get

Yy =W eXp[_J “l(x)dx] d (%J: eXp[_I al(x)dx]

2 = H1J >
N N

Y y12 dx

Integration gives :% = J exp[—_[;lzl (X) dx]dx = y,=y J eXp[_I;il (x)dx] dx
1 1 1

Eigenvalue Problems:
(Eigenfunctions and eigenvalues)

A homogeneous problem consists of a homogeneous differential equation and
homogeneous boundary conditions.

Definition: When a linear operator acts on a function, it transforms the
function into another function that is some scalar multiple of the original
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function. The function is called an eigen or characteristic or proper function and
the scalar is an eigen or characteristic or proper or latent value. For example, if

y = sinfmx) or y = cos(mx) and the differential operator:
d’ d’y . d’y .
.Then =—m’sin(mx) or =—m’cos(mx). Hence sin(mx) or
de dx2 ( ) dx2 ( ) ( )

cos(mx) is an eigen function —nt” is the corresponding eigenvalue. Finding the
eigenfunctions and eigenvalues is called the eigenvalue problem. Frequently the
solutions of a differential equation depend upon a parameter, A which may
assume various values during a given discussion. This parameter can appear in
the coefficients of the differential equations, in the boundary conditions or in
both. For a large class of problems of practical significance, the typical
eigenvalue equation is written in the following form:

M[y]+iy =0 (D

Where M =a,(x)D* +a,(x)D +a,(x)

In the coming problems, A appears in the differential equations but not in the
boundary conditions. The general solution of (1) must depend upon both x and
the parameter. A : if y; and y, constitute linearly independent solutions of (1) the
general solution is written as

y:C1y1<xJ~)+C2y2 (x,/l) (2
Subjecting this solution function to the homogeneous boundary conditions:
Bily]=0 , B:[y] =0 3)

Bl[yl] Bl[yZ]

Leads to a coefficient determinant: A =
B, [yl] B, [yz]

that must also depend upon A in this situation. The basic problem is to
determine all values of A for which A(/i) =0 i.e. determine all values of A for

which the homogeneous BVP (1) and (3) admits non-trivial solutions and then
find the solutions corresponding to those values of A. These special values of A
are called eigenvalues and the corresponding non-trivial solutions are called
eigenfunctions.
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The general problem described here is called an eigenfunctions or Sturm-
Liouville problem. Some special eigenvalue equations are the followings:

(1) y +Ay=0 (Helmholtz equation)
(2) (1 -x° )y” —2xy +Ay=0 (Legendre equation)
3) X’y +xy + (lxz —v? )y =0 (Bessel equation)
4) (1 -x° )y” —(1-x)y +Ay=0 (Laguerre equation)
(5) y =2xy +Ay=0 (Hermite equation)
Adjoint Equation:

Consider a second order linear homogeneous differential equation of the form

dzy

+0(x0)Y 4 R(x)y=0 (1)

P(x) e

Where P(x) has a continuous second order derivative, Q(x) has a continuous
first order derivative, R(x) is a continuous and P(x) # 0 on a < x < b. Then the
adjoint equation to the equation (1) is

d’ d
_dxz [P(x)y] __dx [Q(x)y] + R(x)y =0
1.e. after taking the indicated derivatives,

P(x) dz); + [ZP' (x) — Q(x)}— + [P” (x) -0 (x) + R(x)}y =0 (2)

dx

Where the primes denote the differentiation w.r.t x. It is also assumed that in the
adjoint equation (2) each coefficient function is continuous on a < x <b.

Example: Determine the adjoint equation to the following

2
) y dy .
1 X—=—cosx—+(sinx)y=0
@) dx? dx ( )y

Here P(x) =x, Q(x) = —cosx , R(x) = sinx
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2

So adjoint equation is x fle — [2(1) — (—cosx)]% + [0 —sin x + sin x]y =0

d’y dy
= —(2+cosx)—+0y=0
xa’x2 ( x)dx Y
. d’y dy
1 2 —Tx—+8y=0
@) = dx’ xdx Y

P(x)=x?, Q(x)="7x, R(x) =8

2

So adjoint equation is xij Y _ [2(2x) — 7x]% + [2 -7+ 8]y =0

2
X

2
= xzd—f—3xd—y+3y=0
dx dx

Theorem: For the second order linear differential equation

P(x) 22 +0(x) 2 + R(x)y =0

Prove that the adjoint of the adjoint equation is always the original equation.

Proof: The adjoint equation of DE: P(x)fl—z); + Q(x)%+ R(x)y=0 (1)is
x x
P(x) fo +[2P'(x)-Q(X>}%+ [P'(x)-Q(x)+R(x)]y=0 ()

Suppose that

Pl(x)zP(x), Ql(x):2P'(x)—Q(x), Rl(x):P” (x)—Q'(x)+R(x) . S0 (2) 1s

written as

d’y dy

Pl(x) = +Q1(X)E+Rl(x)y=0 3)
The adjoint equation to (3) is
RS2 +[2R () - 0(x) |2 +[F (1)-0 (1) + R () ]y=0 )
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Now Py(x) = P(x)

2P (x) -0, (x) =2P (x) —2P (x) + Q(x) = Q(x) and

Pl” (x) — Q1 (x) +R, (x) =P (x) —2P (x) +0 (x) +P (x) -0 (x) + R(x) = R(x)
Replace these expressions in (4) we obtain

2
P( )Ccll > +Q( )dx (x)yzO which 1s the original

equation.

Self-Adjoint Equation:

A second order linear differential equation P(x )

() +R(x)y=0is

called self-adjoint if it is identical with its adjoint equatlon OR 1s said to be self-
adjoint if its adjoint is the same as original.

Theorem: Consider a second order linear differential equation:

P(x)flT);JrQ(x)%JrR(x) y=0 (1)

Where P(x) has a continuous second order derivative, Q(x) has a continuous
first order derivative, R(x) is a continuous and P(x) # 0 on a < x < b. A
necessary and sufficient condition for the equation (1) to self-adjoint is

Srel=ot) @
ona<x<b.

Proof: By definition the adjoint equation of the equation (1) is

dy

P(x)

Q(x)}£+[Pn(x)—Q'(x)+R(x)}y:0
3)
If the condition (2) is satisfied the P'(x)zQ(x) ,P”(x)zQ'(x) and (3)

becomes as
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+Q(x)%+R(x)y =0

Which is identical with (1). So (3) is the self-adjoint equation.

Conversely, if equations (1) and (3) are identical then

2P (x)=0(x)=0(x) , P (x)-Q (x)+R(x)=R(x)

OR  P(x)=0(x),P (x)-0Q(x)
P'(x)-0(x)=0

0

Integrating which ¢ =0
Hence %[P(x)] = O(x) which is the condition (2).

Corollary: Suppose that the linear second order differential equation:

dzy
dx?

+ Q(x)d—y+ R

P(x) =z

(x)y=0 (1

is the self-adjoint. The DE (1) can be written in the form:

(2)

d dy

E[P(x)a}-R(x) y=0

Proof: Since DE (1) is self-adjoint then P (x)=0(x)

P22 P ()L 1 R(x)y =0
N %{P(x)%}+R(x)y=O (2)
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Self-Adjoint form of a Differential Equation:

A homogeneous second order linear differential equation is said to be in self
adjoint form if and only if the form:

p(x)y”—i-p y+[q +/1r ]y 0 or —[ y] [q +/1r )]yzO

Where p(x) > 0 and r(x) > 0 in (a,b) and p (x) , q(x) and r(x) are all continuous
functions in the interval [a,b].

If the general eigenvalue equation is of the form:
Az(x)y”+A1(x)y'+[A0(x)+/1]y20 (1)

Where Ao(x), Ai(x) & Ax(x) are continuous functions in the interval [a,b] and
A>(x)>0 on the interval [a,b]. This differential equation is not in self-adjoint
form unless Aj(x) = A'x(x). The equation (1) can be converted into self-adjoint
by multiplying throughout by multiplying by the function (x) :%
X

obtaining p(x)y + p(x) A4 (x)y + u(x [AO + l]y =0 (2)
The equation (2) is now in self-adjoint form provided we pick p(x) such that

i (A P () A()
() =) 4= P = D A

Solving this first order differential equation for p(x) we get

p(x)zexp{[ %dx} So, from (2)

p(x)y” +p'(x)y' +[q(x)+/1r(x)]y=0 where

16
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Self-Adjoint Operator:

The differential operator: L :D[ p(x)D]+q(x) is called self-operator where
D =d/dx.

In terms of L, we can express a homogeneous self-adjoint differential equation
in the compact form:

L[y]+/1r(x)y =0
Example: Convert the DE: x’y" +xy + Ay = 0 into self-adjoint form.

Here Ax(x)=x* ,Ai(x)=x

p(x)= eXpD j;i ;dx} —expD dx} = exp[f%dx] = exp|[Inx]=x

—=— hence we get
X

[ ]+/1r y Oor[xy]+ y=0

Symmetric Operator:

A self-adjoint, L is said to be symmetric operator on the interval [a,b] if and
only if

Ib{uL[v]—vL[u]}dx =0 for any functions, u and v having continuous second

order derivatives on the interval and satisfying the prescribed boundary
condition associated with L. Eigenvalue problems for which the operator, L is
symmetric are also referred to as self-adjoint operator but not be a self-adjoint
problem. The symmetry property to the operator is closely related to the kind of
boundary conditions prescribed along with L.

Lagrange’s Identity:

If L = D[p(x)D]+q(x) is self-adjoint and functions, u and v have continuous
second order derivatives on an interval the relation

17
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uL[v]—vL[u] ——[ p(x )(x)] is called the Lagrange’s identity where

W (u,v)=uv —u'v is the Wronskian function of u and v.

Proof: Here
uL[v]=vL[u]=u{D[ p(x)Dv]+q(x)v} -v{D[ p(x) Du]+q(x)u|
=uD| p(x)Dv |+q(x)uv—vD| p(x)Du]-q(x)uv

=uD p(x)Dv: —vD[p(x)Du]

=uD p(x)Dv_ +Du<p(x)Dv) —vD[p(x)Du] —Dv(p(x)Du)

=D p(x)uDv: —D[p(x)vDu]

:D_p(x)(uDv—vDu)]

=D p(x)(uv' — uv)]

D[P (1)(x)] Where D=

Green’s Identity or Green’s formula:

This identity is based on Lagrange’s identity integrating both sides of
Lagrange’s identity,

j {uL[ ] dx jD[p ,v)(x)}dx:p(x)W(u,v)(x)

b

a

Theorem:
A self-adjoint L = D[p(x)D]+q(x) is a symmetric operator on the interval [a,b] if
and only if p(x)W(u,v)(x)Z

conditions associated L and have continuous second order derivative in the
interval [a,b].

=0 u and v satisfy the described boundary

Proof: Suppose that L = D[p(x)D]+q(x) is a symmetric operator on the
interval [a,b] then for any functions u and v
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{uL[v] — vL[u]}dx =0

Q. C— >~

And by Green’s formula

Suppose that

Collected by: Muhammad Saleem

[ 4] [ = [ Lo () o) s

= p(x) (uy)(x),

= p(x)W (wv)(x)[ =0

p(x) (u)(x) =0

J.ab{uL[v] = vL[u]} dx

== p(x)W(u,v)(x)Z =0 which implies

symmetric.

19
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Lecture # 02
Differential Equation (D.E):

An equation involving one dependent variable and its derivative w.r.t one or
more independent variables is called Differential Equation (D.E)

d%y
dx?

+Z4+y=0

Order of D.E:

The highest derivative accruing in the D.E is called the order of D.E.
Degree of D.E:

The power of highest derivative accruing in the D.E is called degree of D.E.
Ordinary D.E (O.D.E):

The differential equation which involves one or more derivative of an unknown
function of a single independent variable is called O.D.E

x%dy + y?dx =0

=
dx x2

Partial D.E (P.D.E):

The D.E which involves derivative of an unknown function of two or more
independent variable is called P.D.E.

3u  0%u ou\? 3 2 _
ﬁ-l_a_yz-l_(g) +4x° +4y“+4z=0

Initial Condition:

To find the solution of a D.E subject to a certain condition if condition is relate
to one value of independent variable y = y, at = x, . Then the condition is
called initial condition or one point boundary condition.

e.g. yoO=1 ., y'o=2 , y"(0)=3
or y2)=2 ., y@=1 y'(2)=0

20
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Boundary Condition:

To find the solution of D.E subject to a certain condition if the condition relate
to two different value of independent variable. Then these problems are called
two point boundary value problem or simply boundary value problem and such
condition is called Boundary condition.

e.g. ylh=2 ., y2)=3
or yo=1 , yn=3 y'(@4)=>5
Examples:

(i) aty= Coyo=1 . y(3)=t

General Solution
y = C1SINX+C,C08X

at  y(0)=1 = 1=¢1(0)+c, = =1
at y(§)=1 = 1=¢ +c, (0) = ¢ =1
= y = sInx + cosx

(i) Z+y=2xe y(-1)=e+3

General solution y=(x%+c)e™™

By putting

et+3=(l+c)e

SRS

e
= l1+=-=1+c = C =§

— (2 13),—=x
= Yy (x +e)e

(ii)) Z=-2 y(3) =4

dx x i
General solution x2+y? = ¢?
By putting

9+16=c? = c?=25
x2+y? =25
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(iv) DY _12y=0 ., y0=2 . Y©0)=6
General solution y= Ae**+Be™3¥
At y(0)=—2 = 2=A+B (D)
Now y' =4Ae** —3Be™3¥
At y'(0)=6 = 6=4A-3B (i)
Multipying (1) by 3 and add in (ii)
-6 =3A+3B
6 =4A-3B
0="7A = A=0
Put in (i) —~ B=-2

= y=-2e73*

d3y d’y dy
(V) x3ﬁ—3x2ﬁ+6xa—6y=0

yQ=0 ,  y@=2 , y"Q@)=6
General solution

y = ¢ xtcyx?+eyxd

At y(2)=0 = 0=c;1t4c,1+8¢c; ...(1)
Now y' =c;+2c,x + 3c3x?

At y'2Q)=2 = 2=ctdcyt12¢5  ...(10)
Now y'" =2c,+6c3x

At y"'(2Q)=6 =  6=2c,+12c3 ...(1ii)
Divide (iii) by2 = 3 =c,+6c;

= ¢, =3 —6c3 putin (ii)

2=c;1t4(3 — 6¢3)+12c5

2=c +12-24c3+12c;

2-12=c¢; — 12¢4

¢1 = 12¢3-10

Put the value of ¢; & ¢, in (1)

0= (12¢c3—-10)+4(3—6¢3)+8c;

0 =24c3-20+12-24c3+8c;

0=-8+8c;

8c3 =8 = =1
c, =3-6(1) = =-3
¢, = 12(1)-10 = =2

= y=2x —3x?+x3

22
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) L2-3% 42y =0 y(0) =0
General solution y=c,e*+c,e?*
At y(0)=0 = 0=ctc,
At y()=1 = 1=ce+c,e?
Multiplying (1) by e and subtract from (i1)

1 =c e +cye?

—0=c,exc,e

1 = c,e? —cye

1= cye(e—1)
- _ 1
€2 e(e-1)
Put in (1) = 0=cit- (61_1)
N _ 1
= e(e-1)
—_ 1 X 1 2x
= Y= e(e-1) e e(e-1)

23
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Lecture # 03
Fourier Transform:

Let f(x) be a real valued function s.t f(x) — 0 as x —=+o0. Then its Fourier
transform is defined as

== | o= Fik)

If fourier transform

S ()]=F(k)

Then its inverse Fourier transform is defined as
_ |
F())=—— | " F(k)dk = F(x
()= j (k) (x)

Question: Fourier transformation of Ne ™" ,a >0

Solution:

We know 1 /()= [ & /(e = F (b

o0
ox 2
Ie’ Ne ™ dx

—00

ﬁH
q

];;- ]ieaxzﬂlocdx

&‘

7(ax27ikx)dx (1)

N,

Ja ) \2da ) \2Ja

{25 ]-{]

Let axz—ikx:(\/gx)z_zx\/g[zik j{ ik jz_( ik jz

24
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ik

2

Put z=\/ax—

]
dz= Jadx = dx=——dz
Ja

N =
LS (x)]= e et
Question: Fourier transform

f)=1 if |x|<a
f(x)=0 if |x| >a

Solution: We know

(== [ & (s
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= %{ ]{ e™ f(x)dx + _T e™ f(x)dx + Teikxf(x)dx}
T| 2% -a a

:ﬁjeﬂ”‘f(x)dx  F(0)=0 for —oo—>—a &a—>

i

2 elka _ ika
- ark ( 2i j

2 sin Ka
2 K

Attenuation Property:
Question:
If Fourier transform }[f(x)] = F(k) then {{e **f(x)] = F(k-ia)

Solution:

e f(x)] = ﬁ j ™ e™ f(x)dx
:ﬁzeﬁwﬂ £ (x)dx

1 I ikx—iax
- [ e f(x)dx

\/__[O e TN £ (x)dx

= F(k-ia)
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Shifting property:

uestion: If Fourier transform [f(x)]= F(k) theni[f(x-a)] = e *?F
Questi f i fi [f(x)]= F(k) then[f(x-a)] = e"*F(k)

Solution:
f (= [ ¢ £
Var 2,
f(x) replacing by f(x-a)
f(x— a)]=ﬁjjjoeikxf(x —a)dx

Putx-a=z=x=zt+a

dx=dz inR.H.S

0

1 ik(z+a
-~ [ " f(2)dz
J. lkz+ika)f(z)dz

lkZ tkaf(z)dz

Il
9= ﬁ
q
é'—aS

e ]Oe”fz f(z)dz

Var 2,
Hf(x—a)l=e" F(k)

Question:

If Fourier transform 1[f(x)] = F(k) then }[f(x+a)] = e "*%F(k)

Solution:

T[f(x)]zﬁ [ e fxd
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f(x) replacing by f(x+a)
et a)]Zﬁ]ie’“f(x + a)dx

Putxta=z=x=1z-a

dx=dz 1inR.H.S

1 T ik(z—a
:—27T_J‘ek( ' f(2)dz

1 5 (ikz—ika)
=—— e z)dz
: j f(2)

e“e™ f(z)dz

Il
N
a‘ N
é‘—oS

_e™ T ¢* £(2)dz

N2 2,

{f(x+a)]=e™ F(k)

Even, Odd function:

A real valued function f(x), a <x <b is said to be even if {f(-x) = f(x). It is said
to be odd if f(-x) = -f(x).

e.g. Even function = x?2 , cosx

And Odd function = x3 , x° , sinx
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Lecture # 04

2
—ax

Question: Find the Fourier transform of g(x)=e *" cos fx
Solution: We know

™ g(x)dx

el |

2
“e ™ cos fdx

L.

1 ) I eiﬂx +e—iﬂx
= el e o — dx
Al (5

. 1 J.(eikxe—ax ifx +e e ax* —iﬂx)dx

2\2rx

= e e Py + o’ oo g
ot
T

Put f(x)=e™

ot 1 T ik ifx T ik —ifx
_—25{:[06 f(x)e dx+:[oe f(x)e dx}

117 S s
=% [O Y f (x)dx + —= 5 L 4 f(x)dx}
:% e f()+ e f)]

Z%[F(k —i(iB))+ F(k=i(=ip)) ] [ f(x)|=F(k—ia)
:%[F(k «B)+F(k=if)] ()

Where F(k)=1 f(x)]:ﬁ [ ™ fx)dx
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1 7, 2
F(k)=——= | ™ e dx
\/27r_‘[0
I 17 : I
F(k)= e 4« e e ™ dx=——e 4
N2« \/272_'[0 N2«
1 _(k+pB)’
F(k+ p)= e 4
p \N2a
1 —(kK*+*+2kp) 1 -(K*+8%) -k
— e 4da — e 4a e 2a
\N2a \N2a
1 ~(k-p)’
= Fk-p)= e 4

1 -(K*+8*) kB
= e 4o . e 4o _eZa

V2a V2o

Put these values in (1)

1 1 —(F+p*) kB 1 —(K*+p*) kB
— e 4a e 2c + e 4a .620:

2| J2a N2a
. —kB kB
| T 2 42

L
T[g(x)]—me cosh[zaj

Fourier Sine Transform:

Let f(x) 1s define for x > 0. The Fourier sine transform of f(x) is denoted by

1s[f(x)] or F;(k) and defined as

15[f(x)] = Fs(k) = \/%Tf (x)sin(kx)dx 5 (k>0)
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Inverse Fourier:

The function f(x) is called inverse Fourier sine transform of F;(k) and it is also
denoted by F; (k) and is defined as

Fi(k) = ﬁ?ﬂ(k)sin(loc)dx
4 0

Question: Find Fourier sine transform f(x) = %

Solution: By definition

E®) = | 2] rsinenas

= \E j 1 Mo £
Ty X

Putkx=y = 1%
x Yy
dy
kdx = dy :>dx=7
Ty
_ z]fsinyd
Ty Y

2 V4 % sin Vd
:\/:.—: _ °e j ydy = —
T 2 2 y 2

0
Question: Find Fourier Sine Transform
f(x)=e 3%+ e~

Solution:  We know that

E®) = 2] rsinenas
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_ ET(W + e )sin(kr)dx

%

_ \E ﬁe“ sin(kx)dx + ]Oe“x sin(kx)dx}
T

0 0

ax

- [ sin(bx)dx =—— (asin(bx) — beos(bx))
a

+b°

e

e " ) * ~4x ' w
S [{9 yE (=3sin(kx) — l’ccos(kx)}O - {4 e (—4sin(kx) — l’ccos(kx)}O ]

2 1 1
_‘\/;HO_%/{Z (_k)}+{0_16+k2 (_k)H
R0 =2t e

7|9+ k 16 + k&

Question: Find Fourier sine transform

e ™ x<0

—X

e x>0

f@%exm‘ﬂm={

Solution: We know

F(k) = \/%T f(x)sin(o)dx = = \/%Te sin(kor)dx

0

= \/ZI e " sin(kx)dx because x <0 not found
T

0

21 e°

=l (—sin(loc)—kcos(kx))‘:}by formula
|1+
2[ 1 2k

i ;_O_sz(o_k)} - \/;nkz
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Question: Find Fourier sine transform

sinx O<x<a

f(x):{o x>0

Solution:

We know F, (k)= \/ET f(x)sin(kx)dx
4 0

=,[— j S (x)sin(kx)dx + T f(x) sin(kx)dx}

_ |2 j sin(kx)sinxdx—i—O}
0

= l\/zj2sin(kx) sin xdx
2Ny

© 2sinasin f=cos(a — ) —cos(a + f3)

N | —
SHES

sm(k—l)x N s1n(k+1)x
k-1 |, k+1 |,

_(m_oj_(w_oj
k-1 k+1

[ sin(k —a _sin(k+ l)a:|

N | —
N |

N |~
N |

k-1 k+1
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Lecture # 05
Fourier Transformation Derivatives of a function:

Let f(x) be a function

1[f(x)]=ﬁ j ™ f(x)dx

T[f'(x)]zﬁ j ™ £'(x)dx

_ J;? {e’k" | - j ik e™ f(x)dx}

1 154
ﬁ{o —ik L e f(x)dx}
:(—ik)ﬁ_]iem f(x)dx

S ()] = (=ik)[f (x)]
Similarly, Y ()] =(=ik) 3} f(x)]

/" ()] =(=ik)" 3 f ()]
Example:
Find Fourier Y +y=f(x)
Solution:

My 1+ 1=/ ()]
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(k) ¥ y] + (=ik) 3[y]= F(k)
WYk + (=ik)]= F(k)

__ F(k)
W= G

Taking inverse Fourier on both sides

F(k)

1%
LI LG 9 R
Y ox Iw ¢ Tt

Question: P.=4,
#(x,0)=f(x)
¢.(x,0)=0
$.4. — 0 Asx —> +o

Solution:

o] = 4]
¢ty | = 1 22
:|'|: axz (Xa t)i| - :}l: 6t2 (Xa t):|

(k) 3[4(x,0)] = 57 (3 (x,0)]
Suppose 1[ ¢(X,t)]=&(k,t) ...(1)
(~ik)’ gk t>—6—2<75<k D)
’ _81‘2 D)
— i $(k t)-é—ziﬁ(k )
’ _8[2 )

& - =
—3 k1) + K (k1) =0
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62
(§+k j¢(k £)=0

2
57+k2 =0 & ¢(k,t)#0

2
aatz _k2:l~2k2
LI
ot

P(k,t)= Axos(kt) + Bsin(kt)  ...(ii)

(1) P(x,0)=f(x)
¢(x,0)]=1 f(0)]
Pk, 0)=F (k)  ..(iii)
(2) $,(x,0)=0
1¢(x,0)]=0

]: ¢(x,0):‘=0
83 [4(x,0)]=0
§¢(x 0=0  ..3v)

Now put t =0 in (i1) and compare with (iii)
#(k,0)=4
A=F(k) oncomparing
Now diff. (i1) partially w.r.t ‘t’

% #(x,0) = — Ak sin(kt) + Bk cos(kt)

Put t = 0 and compare with (iv)
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0
< (k,0)= Bk
at( )

Bk=0

B=0

Put the value of A and B in (1) we have
Pk, t) =F (k) cos(kt)

 @(x,t)]= F(k)cos(kt)

Taking inverse Fourier on both sides

o(x,1) :% T e ™ F(k)cos(kt)dk
T —00
¢xx = ¢t

Question:

#(x,0)=¢" ,a>0

9,9 = 0A4sx —> £

Solution:

o1 = t[4]
1{ t)} _ 1[% )}

- (k) Ypx.0] =

0’¢
a 2

% Ho(x,0)]

2 _ 9 S
—k* p(x,0)] = 5 i 4(x,0)]
Suppose 1 (x,t)]=@(k.1)

—H&wﬁzg&hn
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0~ 27 B
5¢(k’t) +k”@g(k,t)=0

o N\
(5+k )gé(k,t)—O

2iKr=0 & P (k,t)#0
ot

gz_k2

ot

d(k,0)=Ae™™"  ..(ii)

Given condition

Px.0)=e
H4(x.0)]= 1[5“*2]

4a

é(k,O):f/Z ...(iii)

P(k,0)= 4

_K?
4a

A= on comparing
\2a

_K?

%

(i) = g_b(k,t):% et

2
*kzt ,Ki
4a

1[¢<k,r>]=eﬁ By (1)

Taking inverse Fourier on both sides

7k2t7K72
1 o e e 4a
xXt)=——=|¢e" dk
$en) = et e
1 % PN S
x,t)= e 4a dk
Px0) = j
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Assignment: -
#(x,0)=f(x)
¢,(x,0)=g(x)

0.¢.,0,. — 0Asx —> Foo

Solution:

1 [¢xxxx] =1 [¢n]

AN I e
1'|: a)‘:4 (X> t):| - :}l: atz (X> t):|

2

() [px0)] = 57 1[6x.0)]

Ep.0] = -1 dix0]
Suppose ’f[(;ﬁ(x,t)]zgﬁ(k,t) (i)

47 _6_2_

k ¢(k9t)_at2 ¢(k:t)
a—zEﬁ(k £)—k* g(k,t)=0
ot e

G TR
[E—k ]¢(k,z)_o

2

y—k“ =0 & ¢(k,)=0

8_2 =i
o’

9 _ip
ot
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Pk, t)=Ae™ "+ Be ™" (i)
Given condition

#(x,0)= £ (x)
1 8(,0)]=3[f(x)]
Gk, 0)=F (k)  ..(iii)

Put t =0 in (i1) and compare with (iii)

P(k,0)=A+ B
A+B=F(k) ...1iv) oncomparing

() ¢,(x,0)=g(x)
14,(x,0)]=g(x)]
0
1[5¢(x,0)}—G(k)
0
aiwuﬁﬂ4ﬂm
a P -
> d(x,0)=G(k) ...(v)
Now diff. (i1) partially w.r.t ‘t’
é%g&gjzk2A&%—k2Be“’
Put t = 0 and compare with (v)

a_ 2 2
bk t)=kA-K*B
at¢5( )

k*’A—k*B = G(k) on comparing
k*(A4-B) = G(k)

Gk

(4-B) =5

(V)
Adding (iv) and (iv)

40
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G(k)

2A=F(k)+

1 [ G(k)}
2 i

Subtracting (iv) and (vi)

G(k)

{

Put the value of A and B in (ii)

G(k) }

i ¥ G(k) G(k)
k= P+ SR Lo L gy - SW v

G(k) G(k)
Hetk0l= [F(k) } 2[ ke }

Taking inverse Fourier on both sides

[p(k.0)]= ;ﬂ Oj;e { {F(k) G(k)}e {

41
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Lecture # 06
Fourier Cosine Transformation:
Let f(x) is define for all x > 0. The Fourier cosine transformation of f(x) is

denoted by F. and define as F. {f(x)} :j f(x)cos(sx)dx  ;(s>0)
0
Inverse Fourier Cosine Transformation:
It is denoted as F.'{F, (s)}and define as F'{F (s)}= LJ.Fc(s) cos(sx)ds
N2

. ) . ) ) COS X ; 0<x<a
Question: Find Fourier cosine transformation of f(x)= 0

; xX>a

Solution: By definition of Fourier cosine transformation

FAS(x)} =] f (x)cos(sv)dx
:jf(x)cos(sx)dx+ Tf(x) cos(sx)dx

cosx cos(sx)dx

O ey

:%J.Zcosx cos (sx)dx

0
. 2cos Acos B=cos(A4 + B)+ cos(A—B)

:%I(cos(x +sx)+cos(x — Sx))dx

a

:%J‘(cos(sx +x)—cos(sx — x))dx

0

42
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J.cos (s + 1) xdx — J. cos(s — l)xdx}
0 0

1| sin(s + x| sin(s — x|
2| s+l |, s-1 |
_l_sin(s +Da  sin(s—1a
21 s+1 s—1
Question:
X ; O<x<l1
f(x)=42-1 ; I<x<?2
0 ;x>2
Solution:

By definition of Fourier cosine transformation

FAf(x)} =If(x) cos (sx)dx +‘2[f(x) cos (sx)dx + Tf(x) cos (sx)dx

1 2

F{f(x)} :_[xcos(sx)dx +J.(2 —x)cos(sx)dx +0

0

=1+, ()]
1 xsin(sx) 1
I, :Ixcos(sx)dx = -
0 S 0
. 1
1= sin(s) N cos(zsx)
s s o
I= sin(s) N cosz(s)
S S
s sin(s) + cos(s)
I =

S

2
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(2 —x)sin(sx)
s

B j- sin(sx) (1)dx
s

1 1

I :I(2 — x)cos(sx)dx =

2
S S | 1

, _sinGs) { cos(sx) J

_—sin(s) cos(2s) N cos(s)

5= s s’ s’
—ssin(s) —cos(2s) + cos(s)
1, = >

s
By putting these values in (1)

F ()= S sin(S)SJzr cos(s) LTS sin(s) — coSs2(2 s) + cos(s)

s sin(s) + cos(s) —ssin(s) —cos(2s) + cos(s)

2
S

F(s)=

F(s)= 2cos(S)S—2 cos(2s)

Question: f(x)=e > +e™

Solution: By definition of Fourier cosine transformation

FAS(x)} = f (x)cos(sv)dx

0

F{f(x)} :J.e_“ cos (sx)dx + Te““‘ cos (sx)dx

0 0

ax

j e cos(bx)dx = ——— (acosbx + bsin bx)
a +b

0 0

(—3cos(sx) + ssin(sx))| + " e+ > (—4cos(sx) + ssin(sx))
0 § 0

-3x —4x

F A0} =

e
9+ s?

44
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&) -3(0)
—3c0s(s5.90) + s8In(s.00)) —
" ( (is.00) (5.00)) 5

Fif(x)}= (—3cos(s.0) + ssin(s.0))

+ 57

(=) -4(0)
-6 > (=4 c0s(s.0) + s5in(s.0)) — ¢ ~(—4c0s(5.0) + 55in(5.0))
16 +s 16+s
=0- ! (-3+0)+0- 1 (—4+0)
9+ s’ 16 + s°
3 4

= +
9+s* 16+s°
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Lecture # 07
Laplace Transformation:

Let f(t) be a function define for t > 0. The Laplace transformation of f(t) is
denoted by L[f(t)] or ]A”(s) and defined as

0

LIFO) = [e [ (0)dt =F(s)

0
Question: Find Laplace transformation of f(t) = ", n > —1

Solution:

L[t"]= J' et dt
0

X
Let st=x =>t=—
s

=

S

e fe( 2] %
L[z]_je (Sj 1

0

L= e S
0 s 8

! Tex x"dx

n+l
S 0

L[t"]=

I'(n+1)

L[t"]=—— wIT(n+l)= Ie_xx”dx
0

vy = Lt 1 - T(1) =1

S S

* L[t = does not exist asn > —1

46
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) :F(%):ﬁz\/z 1l =
O A== == STy =z

Question: f(r)=e"

Solution: L[e"]= je’”e“tdt

0

0

_ Ie_SHatdf
0
0

= J.ef(H)tdt
0
1 e—(s—a)l £°
—(s—a)|,
N ¢ -1
—(s—a)
at 1
L[e"]= , S>a
s—a
k E[e—at] — 1
s+a
1
*Lle*]=
[e)=-—
Question: f(7)=sinat
Solution: L[sinat]= je’” sinat dt
0
'.'je“x sinbxdx=———[asinbx —bcosbx|
a +b
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—st

e . £
= ()2—2[—ss1nat— acosat]0
—s)" +a

1

2 2
S +a

—0—

[0~a]

L[sinat] =———
s*+a

*L[sin4t]=— v
ST+

Question: f(f)=cosat

Solution: L[cosat]= j e " cosatdt
0

ax

'.'Ie”cosbxdx: > 2[acosbx+bsinbx]
a +b

—st

e . 0
= (_S)Q—Jraz[—scosa‘w a smat]0

[—s+0]
s +a

Question: f(¢)=sinhat

Solution: L[sinhat] = J.e_‘“ sinh at dt
0

®© at __-at
~fe (i}h
7 2
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=— J.e_”e‘”dt - Je_S’e_”tdt }
0 0

RIS }
2ls—a s+a

_s+a—s+a}

* L[sinh3(] = —

s°—9

Question: f(¢#)=coshat

Solution: L[coshat]= Ie’” coshat dt
0

© at —at
:jeiﬁ i dt
7 2

1 Te”e‘”dt + Te”e‘”dt }
2 0 0

1] 1 1 }
=— +
2|ls—a s+a
_l_s+a+s—a
2l s -d°
_l_ 2s }
2| s*—a’
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Shifting Property:

Let

then

S

57 =16

*L[cosh4t]=

LIf()]=F(s)

Lle“f(t)]=F (s - a)

0

Lle"f(t)] = j e e f(t)dt

0

0

Lle“f(t)] = je f(@t)dt

0

- Te(”)t f(0)dt

0

Lle“f()]=F(s—a) - j e £(t)dt=F(s)

0

*Lle”f(t)]=F(s +a)

Laplace transformation of derivative of function of f(t):

As

Collected by: Muhammad Saleem

o0

L[f(t)] = je F(t)dt

(=}

0

clrm]=[ef

0

= @] - [ 0

0

=[0- £ (] +s[e f(t)dt

0
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LI f®)|=sL[f®]- f(0)
LI ®]=sL[ f®]- 10
L f @0 ]=s[sL[F®]- ()]~ £ (0)

LI ]=sLLf®]-s£©0)- £'(0)

LI O]=s"L[fO]-5""F0) =" (©0)— f"(0)

Derivative of Laplace transformation:

As

Collected by: Muhammad Saleem

LIfO]=[e" f()dt =F(s)

F(s)= Te‘”f(t)dt

0

0

=[S

O

~ [0 rr

= (_1)]3 e 't f(t)dt

=(-DL[ /)]

dF

Lo
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d’F “d
N R
D e

0

= (—1)2Te”t2 dt
=(-DL[7f (0]

Ll f@]=(-1) ‘jisf

nd"'F
Lit"f() |=(-1
(0= 25
Question: L[ sint]=?
Solution: ~ Here f(t) = sint
F(s)= L|sint|=
(s) [smt] N
»d’F

L[tz sint]: (—1) E

52

Collected by: Muhammad Saleem

Composed by: Muzammil Tanveer




1y (_2)[(s2 +1) 1-s52(s? + 1).2?

) (52 +1)4

=(-1)"(-2)(s* + 1)[M]

(s2 -1—1)3

(-1 (-2) ”SZ}
[(s2 + 1)

E[f sinz‘]:(—l)2 [2(3S—2_1)]

(s2 + 1)3
Unit function:

The unit function is defined as

H(t-a)=0 ; t<a
H(t-a)=1 ; t<a
Proof:
F(s)= Te“” f(t)dt
F(s)= je“ f(t)dt + Te“ f(t)dt
F(s)= _Te_”H(t —a)dt + Te_”H(t —a)dt
F(s)=0+ Te_‘” (1)dt
F(s)= [ ~  F=2 —o0- ( ¢’ J e’
—s —s s
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Lecture # 08

Theorem:

Let L[ f(t)]=F(s)

then E[H(t—a)f(t—a)] :e_“sF(s)

Where H(t-a)=0 ;t<a & H(t-a)=1;t>a

Solution:

C[H(t-a)f(i-a)] =Ie‘”H(t—a)f(t—a)dt

=j£e_‘“H(t—a)f(t—a)dt+Te_”H(t—a)f(t—a)dt

=O+Te_”f(t—a)dt

Put z=t-a =t=z+a
dz=dt
:Ie”(z”)f(z)dz

=e “F(s) proved

Collected by: Muhammad Saleem

whent=o ,z=wo
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d’y  dy ,
—4== 43y =cosat 0)=1, y(0)=0
o2 A Ty y»(0)=1, y(0)

Question:

Solution: By applying Laplace transform on both side

2
E{dy— ﬂ+3y}:£[cosat]

> dt

d’y dy} S s
L —4L|— |+3L|y|= =

{dtz} {dt " [y] sS+a’ ﬁ[cosat] sS+a’
SZL',[y]—S)/(O)—y'(O)—4S£[y]+4y(0)+3£',[y]:Szj_a2
Sz,C[y]—S—O—4s£[y]-+—4+3£[y]:S2j_a2

2 _4s+3)L[y]=s—4+——
(s S+ ) [y] s +S2+a2
E[y]: s—4 N s )

(s2 —4S+3) (sz +a2)(s2 —4S+3)

Now by partial fraction

s—4 A B

(s—l)(s—S) S—1+ s—3

S—4=A(S—3)+B(s—1)
Puts-1=0 =s=1
1—4=A(1—3)+B(1—1)

—3=-24

= A=g
2

Puts-3=0 =s=3
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3-4=4(3-3)+B(3-1)

~1=2B
= B:—l
2
s-4 3 1 a4 4 whereoc——oz——l
(s=1)(s=3) 2(s-1) 2(s-3) (s-1) (s-3) )
Now
s C D Es+F

(F+a)(5 —as+3) s-1 53 5+a
s=C(s*+a*)(s=3)+D(s* +a’ ) (s —1)+(Es+ F)(s—1)(s - 3)
Puts—1=0 =s=1
1=C(1 +a”)(1-3)

-1

C:2(a2+1)

Puts—3=0 =s=3

3=d(d’ +3%)(3-1)

2(a” +9)
s=C(s3+a2s—332—3a2)+d(s3+a2s—32—a2)+ES3—4Es2+3ES+FS2—4FS+3F

By comparing coefficient of s’

0=C+D+E

=-C-D
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e 1 3 3

2(a’+1) 2(a*+9)

P a’+9-3a"-3  -2a+6 3-a’

2(a” +1)(a’ +9)  2(a* +1)(a’ +9) (@’ +1)(a’+9)

By comparing coefficient of s°
0=-3C-D—-4E+F

F=3C+D+4E

B3 3 43-a%)
2(a2+1) 2(a2+9> (a2+1)<a2+9)

F=

f -3(a* +9)+3(a’ +1)+8(3-a*)
2(a” +1)(a* +9)

-} —27-3a* +3+3a’> +24 -84’
- 2(a2 +1)(a2 +9)

—4a’
S Py Py
(3_02) ~4a’
Es+F _ (a2 +1)(a2 +9) - (az +1)(a2 +9)
s +ab s +a’
(S—az)s 4a.a

(32 +a2)(a2 +1)(a2 +9) (s2 +a2)(a2 +1)((12 +9)

> Composed by: Muzammil Tanveer




(3—a2) B 4a

Ve o @ -0) T @)@ +9)
s _ -1 N 3 g S _3 a
(sz+a2)(s2—4s+3) 2(a2+1)(s—1) 2(a2+9)(s—3) (s2+a2) (S2+a2)

s % . a . oas Pa
(S2+a2)<s2—4s+3) (s=1) (s-3) (S2+a2) (Sz+a2)

-1
Where o, =———, a, =
Co2(@?+1)” " 2(a’+9)
Put these values in (i)
E[y]:al— &G % A o as Pa

(s=1) (s=3) (s-1) (s-3) (s2+a2) (s2+a2)

el ety ety el e

_ o 3t t 3t B .
y=a —ae’ +ae +a,e’ +acosat— fsinat

Put the values of @, ,,a;,0,,a, 3

y AV O S SN B (3_a2) cosat — sin at
20 2 2d+1)  2(d+9) (o +1)(a+9) (a* +1)(a* +9)

is required answer.

Question: %+aw:H(t—l) w(0)=1

Solution: By applying Laplace on both sides

E[%Jraw}:E[H(z‘—l) ]
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dw

sﬁ[w] —w(0)+ aE[w] =
s

(S+a)E[w]—1:

(S+a)£[w]:1+

1

£ @] acfn]-

=S

e

S

=S

—S

e

S

-

e

S

—S

e

E[w]z

(sta) s(sta)

_®

1 A B
== As L[ H (- —a)]=e“F
s(s+a) s+s+a i [ (1=a)s(r a)] e r(s)
I:A(s+a)+B(s) L ¢ ,a=1
s
Puts=0 1
S(0)=—
1=4(a) §
e
— A:l L | =H(t-1)(1)
a
Puts+a=0 =>s=-a
1=B(-
( a) < ,a=1
| s+a
= B=—— 1
¢ f()=——
1 1 1 T
S(S+a):;_ a(s+a —0 fon 1 e
s+a
1 —s —s
L[w]= TR Here t = t—1
s+a as a(s+a)
L H(—1)e
s+a
Collected by: Muhammad Saleem  *° Composec




Elﬁ[w]ﬁl{ L e ¢ }

S+a as a(s+a)

w=£‘1[ 1 }lﬁ-‘ ¢ | Llp e
Ss+a a S a (S-i—d)

w=e" + lH(z -1)- lH(t —1)e ™
a a

is the required answer.
Question: —+x—=0 ;o w(x,0)=0, w(0,t)=t

Solution:  Apply Laplace transform on both sides

c a_WHa_W}:z[o]
| Ox ot

c_aw}mc[a—w}:c[o]

ox ot

ai/;[w(x,t)] + x[sL'w(x,t) —w(x, 0)] =0
X

a—ax/:[w(x, t)] + x[sﬁw(x, t)] =0

Say E[W(x,t)] = w(x,s)

—w(x,s) + xsv_v(x,s) =0

ox
9 S (x,s)=—xsw(x,5)
ox
GTW =—XxsOx
w

On integrating both sides
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In w= —%S-FA(S)

2
TS
e 2

w

52
-

e 2 _eA(S)

= |
I

XZ

e B(s) _ (i)

" B(s)=e"" = constant

w

Given that
w(x,0)=0 & w(0,t) =t
L] w(x,0)|=£[0] & L w(0,6)]=L][1]
w(x,0)=0 & w(0,s) =i2

an = v_v(x,s) e 2 .B(s)
Putx=0

lz = B(s)
s

Put in (1)

E[w(x, z‘)] = Size_xzs E[w(x,t)] = v_v(x,s)

wx,t)=L" {%ezs} AsL[H(t—a)f(t—a)]=e“F(s)
s

2 5 2 1
W:H(t_%]f[t—%] a:_%,f(s)=s—2

1s the required answer
q o)
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Lecture # 09

. ow L, 0w
uestion: —=c¢"——
Q ox* or’

Boundary condition w(0,t) = f{(t)

lim w(x,t) =0

X—>0

Initial condition w(x,O) =0, %(x,O) =0

Solution: Apply Laplace transform on both sides

2 2
C avf =L af
ox ot

2 ettt kb o

By Initial condition

%Zﬁ[w(x, t)] =c [szﬁ[w(x,t)]—o — O]

aa—;ﬁ[w(x,t)] =c’ SZE[w(x, t)]

Say E[w(x, t)] = w(x,s) (1)
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2
a_zz

?—C S
X

a—ax =*cs
;v(x,s) =A(s)e™ + B(s)e ™ (i)
Now by boundary condition
w(0,t) = f(t)
Applying Laplace transformation
L w(0,6)|=L[f(®)]

w(0,s)=F(s) (i)

Put x =0 in (ii) and compare with (i)
w(x,0)= A(s)e’ + B(s)e™
F(s)=A(s)+B(s)  __ (iv)

lim w(x,t) =0

Applying Laplace Transformation

lim £[ w(x,t) | = £[0]

X—>0

limv_v(x,s) =0 (Y

X—>0

Apply lim on eq (ii) and compare with (v)

limw(x,s) =lim A(s)e" +lim B(s)e "

0=A(s)e” + B(s)e™
0=A(s)e” + BO
= A(s)=0
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Put in (iv)

F(s) =0+ B(s)

Put these values in (ii)
w(x,5)=(0)e™ + F(s)e™
w(x,s)=F(s)e™

From eq (i)

L] w(x,t)]=F(s)e™™
LL]w(x,t)|=LF(s)e™
w(x,t)=H(t-ex) f(t - cx)

E[H(t—a)f(t —a)] =e “F(s)

64
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Lecture # 10

Question: Find Laplace transform of

¢lt = a2¢xx - g

Boundary Condition $(0,¢)=0, limg, (x,¢)=0

Initial Condition ¢(x,0) =0, ¢ (x,O) =0
Solution: Apply Laplace transform

L[¢,)=L]a’s, |- L[g]

{780 )

gL[1]

P[p(e)]-59(x0)-0,(5.0) =0 L [ p(x.1)] -2

By initial condition

Pe[p(e0)]-5(0)-0=a" T £[p(x)]-2

Se[ge)]=o* S elo(en)])-

2 82 2
a §£[¢(x,t):|—s L[gb(x,t)]:
let L[g(x,t)]=px,s)

a’ a—zgﬁ(x, S)— SZ;Z(X, s) = -4
ox s

This is non-homogenous equation

Collected by: Muhammad Saleem  ©

S
g
S

g

S
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For complementary solution we have

)

¢.(x,s)= de +Be o

For particular solution

(az 0’ _sz]gl,(X,t):g
N

o

212 2\ 7 _g
(aD s)¢p(x,t) I

_ B 1 g
¢p(x’t)_ (azDz _Sz)'s
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P(x,0) =4, (x, )+, (x,1)

&(x, t) = Ae* +Be « —

“.|oq

)
Now by boundary condition
$(0,£)=0

£[4(0.1) ]=£[0]

$(0,5)=0 _®

Put x =0 in (1) and compare with (2)

#0,5)=A+B-E

3
s

- A+B-£ =0 (*)
S

Now limg,_ (x,t)=0

X—>0

lim £ ¢, (x,1) | =L£[0]

X—>00

limg, (x,5)=0 )

X—>0

Diff. eq (1) w.r.t x and applying lim and compare with (3)

#.(x,5) = 2 de” —ZBe
a a

lim¢_x(x,s) = iAe;x -0

X—>0 a

0=24e" -0 = A=0
a

Put A=01n (*)
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3

A

B-£-0 = B=%
S

Put the value of A and B in Eq (1)

pxs)=5e =5

A

S

qm&ngéf—i

3

=]

L7L[g(x,0)]=L" {% e_ix} - L7 {%}
S S

[¢<X,t)]=g{H (f—ﬂ%}—g% L[ H(t-a) f(1-a)]=F(s)e™ &L[1"]=—2

n+l
Question: Find Laplace transform of

¢ _0o¢
ox* ot

Boundary Condition ¢(O, t) =1= ¢(1, t)
Initial Condition ¢(x, 0) =1+sin (72')(?)

Solution: Apply Laplace transform

A 5]-%]
%22 L[ $(x1)]= L[ $(x1)]-$(x,0)

By putting initial condition
&2 p(e0)] =5 p(x)] -1 -sin(xx)
let L[g(x,t)]=px,s)
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2

%CE(X’ s) = sg(x, s)—1-— sin(ﬁx)

0’ - .
(ax_z - sj¢(x, s) =—1—sin(7x)

For complementary solution we have

62

o 570
82
o

X

For particular solution

[(%22 - sj@(x, 8) =—1—sin(7x)

(D2 — s)g?ﬁp (x,8) =—1—sinzx

,(x,s) = (Dz _S).(—l—sinﬂx)
N L
9,(x,8) = (D2 —s)< 1)+ (D2 —s)( sin 77x)
5,055 =— L _(sinzx)

NEE)

% Composed by: Muzammil Tanveer
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(ZP(X,S) =l(1+D—2+..J(1)+ 21 (sin7x)

s s 7 +s
4 (x,9)=2(1+0)+ —(sinzx)
u S 7t +s
- 1 sinzx
P,(x,8)=—+—
s T +s

gZ(x, s) = ¢_c(x, s)+ @(x, S)

- 1 sin(zx
d(x,8) = A" + Be " 4~ 4+ 2( )
N T-+Ss

(@)
Now by boundary condition

$(0,¢)=1

£[p(0)]=[1

1 .
¢(O,S):— —(11)
S
Put x =0 in (i) and compare with (i1)
- 1
#(0,s)=A+B+—
s

:>1:A+B+l
S S

= A+B=0
— A=-B (iii)
Now ¢(1,t) =1

£lp(10)]=£[1

¢(1,s):§ ()
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Put x =1 in eq (1) and compare with (iv)

é(l,s) = Ade" +Be™ +l
s

l:Aeﬁ +Be Y +l
s s

Ae” +Be™ =0
PutA=-B

—Beﬁ + Be‘ﬁ =0

(—e& vl )B =0

= B=0
= A=0

Put in (1)

N—

sin(7x

- 1
¢(X,S):—+ B
A /A S

sin(ﬂx)

LM@JH:§+

2
T+Ss

1 . sin (7x)
s

LL[px,0)]=L"

2
To+Ss

hes

l}_ﬁ_{smz(ﬂx)
7+

ey

LL[px,0)]=L"

sin (7x)

¢(X,t)=1+£_l|: 5

wTo+s
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Lecture # 11

Bessel Equation and Bessel Functions:

Bessel equation is an important equation in applied mathematics and is given by
X’y +xy + (x2 —vz)y: 0 ()

Where the perimeter v (neu) is a given number and it is assumed to be real and
non-negative from Frobenius method. Its solution is supposed to be in the
power series from

= i c x"" (i)

m=0

Substituting this expression and its derivatives into Bessel’s equation we get the
following

xz(gcmxm“J +x(ZC x" J (" —v )(ime j:

0

m=0

2[Sameromsre e S mene o S v S o

Cm[(m+r)2—(m+r)+(m+r J m+r+z 2

M

0

iCm[ (m+r) —Vz]x”’” +§:me’"”+2 =0 (iii)
m=0

m=0

3
I

From equation (ii) is an identity in x and true for every value of x. So, put
the coefficient of term involving the smallest power of x" =0 so eq (iii)
becomes

G [ =vi]=0
C,#0 , r’—v’=0

r==xv
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The roots are 1, =v and r, =—v asolution is determined from (iii)

|:m+7‘ _V2:| m+r+ZC m+r+2

=0 m=0

MS

3

Replace m by m — 2 in 2™ term

[ (m+r) — Vz}x’"” + i C ,x"" =0 (iv)
m=0

Put r=v in eq(iv)

C, [(m+v —V] ’"”+Z

Ms

m=0

Ms

3
I
(=]

M

C, [m2 +v: =2my —v? } X"+ Z C, ,x

0

3
I

C,[m(m+2v)]+C,,=0 __ (v)
Putm=1

Gl1(1+2v)]+C, =0

C(1+2v)+C =0

C(1+2v)=0 - C,=0
Put m=3
G[3(3+2v)]+C,, =0
C,3(3+2v)+C =0
C.3(3+2v)=0 (=0
C,=0 and3(3+2v)#0
It follows that C, =C, =C, =...=C,, , =0

From eq (v) we have
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C = (_I)Cm—z

" m(m+2v)
Replace m by 2m
_ (_l)czm—z
" 2m(2m+2v)
(_l)czm—z .
C. =—_"J)2m2
o 2’m(m+v) — )

This determine the coefficient C,,C,,C,... sufficiently C, is arbitrary suppose it
is given as

C, = _ (vid)

Where |(v +1) is a gamma function and |(«) is defined by integral

(@)=["e"t"dt (@>0) __(viii)

(a+1)=af(a)

[(k+1)=k! , k=0,1,2,

From eq (vi)

(1)

) =m v a|(a)=|(a+1)
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(-1) I

“221(2+v) 21 12)

4

C = (_1)2
ooy 13
Its genera form is C, = (-1
2m —
22" m! (m +v+ 1)

Eq (11) y (x)

o0
m+r
S,
m=0

(%)

o0
r m
X E C, x
m=0

Putr=v = y(x)zxviCm x"
m=0

1

y(x)=x"|C,+Cx' + Cyx* + Cpx° +}

»(x)

x" [CO +Cx” +Cxt + Cx® + J

»(x)

o0
v 2m
x E C,, x
m=0

[ _1 m
y(x):xv ( ) x2m
w0 22 m! (m+v+1)

J(x)= L)@ ()

m=o m! (m+v+l

This solution is known as the Bessel function of first kind with order v and
denoted by J, (x) 1.e. replace v by —v in (ix)
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If v is not an integer a general solution of Bessel’s equation for all x # 0 1s
given by

y(x) =aJ, (x) +a,J , (x)

The integral value of v is mostly denoted by n
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Lecture # 12

Prove that d

dx[ ﬂ/‘]( ):' X Jv+1( )

m! (m+v+1)

d » -1 m+l amt2-1
dx[ J" ] ( ) :

o0
z 2m+v 1

o _1\" 2m+v
Proof: As we know that Z - ( 1) *
m=0 2 I’I‘l+V
i N _i_ N © (_1)”’ x2m+v
dx |:x JV (X)i| dx _x ’; 22m+v m! (m+v+1)]
dr ., ~ d . )m 2m
Elix J, (X)} a Z 4 S m]
dr _, 7 (—l)m 2m x*"!
—n J s
pe ARSI Mmoo omeorey
dr _, £ (—l)m 2m x>
J,
dx[ x )] ;;22”’+Vm DY (m+v+1)
Replace m by m+1

(_1)””1 x2m+l

m!

%[x_VJV (x)] = i

m=-1

22m+v71

(m+1+v+1)

i

T(m+1-1)| (m+1+v+1)

( 1)m+1 2+

( 1+v+1+1)

2m+v+1
m=0

1 M = = P

0 22m+v+1

m!‘ (m+v+1+1)
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. . © _1 m x2m+v+1
E * JV (x) - Z 2m+v+1( )
o 2 m!| (m+v+1+1)

—|xJ, (x) [==x"J,

p Vil (x) proved
e L _

Question: Find the value of J, (x)

Solution: As %[wv )]=xd(x) ()
And %[X_VJV ()] == (x) (i)
From (i) X (x)+vxTT (x) =X, (x)
A DR AN AT
From (ii) X, (x)—vx T (x)=—x"",,, ()
53 () =T (x) ()

Adding (ii1) and (iv)

Subtracting (iv) and (iii)

Parametric Bessel functions:
The differential equation is x°y" + xy + ( X —v? ) y=0 _ (i)

is called the Parametric Bessel equation
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Transforming the independent variable for Bessel Function:

Let zZ=Ax
a _
dx
b _dv &
dx dz dx
b
dx dz

4840t
dx*  dx\ dx dx Iz

2 2
d g’:i%(gd_yj:ig(gd_y):%d put in(i)
dx dz dx\ dz dz dz

<

2
xzﬂzd—f+xﬂﬂ+(zz—vz)y=0

dz dz
2
22%+Z%+(22—V2)y=0 (ii)

This shows that J, (Z) is the solution of (ii) which shows that J, (lx) is the

solution of (1).
Property No. 1

Orthogonality of Bessel functions:
If 2 and 4 be the roots of J, (x) =0 then show that [ x.J, (2x), (4x)dx=0
Proof: Consider the parametric equation
Y e (v )y=0 (i)
Let y (x)=J,(Ax) , y,(x)=J, (ux)

xzy;+xyi+(/12x2 —Vz)y1 =0 _(ii)
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xzy;+xy'2+(y2x2—vz)y220 _(iii)
Multiplying equation (ii) by y, and (iii) by y; and subtracting
X0y, 00, + Ay, = vy, =0

X’y y 2,y 12Xy y, TV, =0

X (3 y = v05 )+ x(33n =3 ) +(A = 1)y, =0
x(3 v, =305 )+ (33 =y )+ (A = 17 ) x,,=0
= (17 =2 )y, =x(1y, =y )+ (33, - 39,)

= (17 -2 )xpp,= %[X(y{yz -y) |

| x(0y, = 3,) |ax

1

(12 =22) [ vy v =x(33, —33) |

AOROOED

(" =2)

_[ Xy, dx =

»(x)=AJ, (Ax) = y,(1)= A, (4)
vy ()= ud, (ux) = v, (1) = pJ, (#)

AL (), (1) =, (1), (2)
(- 2)

Let A and p be the roots of boundary equation A4J, (x)+ BJ, (x)

1
Putin (iv) = IO Xy, dx =

)

0

Then AJ,(A)+BJ,(A)=0  __ (vi)
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AJ, (u)+ B, (1)=0  __ (vii)
Multiplying (vi) by J, () and (vii) by J, (1) and subtracting

AJ,(4)J, (1) +BJ,(A)J, (1) =0

—AJ, (u)J, ()£ BT, (1)J,(A)=0
)= (1)7,(2))

B(J, (1), (u 0

Putin (v) = _[le‘]v (Ax)J, (px)dx =(L=O

,tl2 . 22)
This shows that J, (ix) and J, ( ,ux) are orthogonal

Property No. 2:
Prove that [ 2 (Ax)dx :l{/j (/1)+(1—V—EJJV2(/1)}
2 A
Proof: Consider the parametric Bessel equation
xzy“+xy'+</12x2—v2)y=0 _(z)

Let y(x)=J,(Ax) , y,(x)=J,(ux) be the solution of differential

equation (i). Then we have

IoliV (Ax)J, (ux)dx = V

Put = 2 = [, (1)1, () ds _ i 2D (A () = (1), (2) (9)
o Vv v U2 (/12

By L-Hospital rule

OO VAT SRV S IA
oV A 2u
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1 (AL (2) = 2, ()5 (A) =, (2),(4)

I] xJ? (Ax)dx =
0 22

A, (A)=2Ad,(2)J, (2) =, (A) . (2) )
21 — (i)

[ 22 (Ax)dix =
From Bessel equation
Xy (v )y=0 (i)
Put y=J,(x) in(iii)
T (x)+xJ, (x)+(x* =v?)J, (x)=0  Putx=21
AT (A)+ A, (A)+(A =v?)J, (4)=0

J:(/i):;—zl[ljv' (A)+(22 =), (2) ]

Put in (i)

Jx 7 (Ax)d —iw;(ﬂ)mu){;a(z)(1”-}4(@)}4(@)];(1)}

[ s = 2.0y (1101 1= 1. -2, 21012
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Lecture # 13

Some Results:

x"J (x)+ nx " (x)=—x"J,,(x)
+x " J, (x)+ﬁ']n (x) =T (x) __(B)
x
Adding (A) and (B)
2J,(x)=J,,(x)=J,., (x)

50 =5 [T x) ] (©)

Subtracting (B) from (A)

%Jn(x): J o (2)+ (%)
J,(x)=[J, () +J,.(x)] ___(D)

2n
Hankel Transformation:

The infinite Hankel transform of function f(x) (0 < x <o0) is defined as
H{f(x)} = _[wa(x) x J,(sx)dx

is denoted by £ (s) i.e. H{f(x)} = f(s) where J,(sx) is a Bessel function of

first kind with order n.
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If f (s) is the Hankel transformation of the order ‘n’ of the function f(x) then
[7(s)] is denoted by £ (s)

1e. j f Sx dx {f(x),n} =7n(s)

Properties of Hankel transformation:

Linearity property:

Let f(x) and g(x) be two function and a,b are scalar’s then
H{af (x)+bg(x),n} = (af (x)+bg(x) )x J,(sx)dx
H{af (x)+bg(x),n}= [ (af (x)xJ, (sx)+bg(x)xJ, (sx)) dx
H{af (x)+bg(x j f(x)xd, (sx dx+bj x)xJ, (sx)dx

H{af(x)erg(x),n} = aH{f(x),n} +bH{g(x),n}

Scaling Property:
1 —(s
H - 72
(=72
Since H{f(ax)} = _[:f(ax) xJ, (Sx)dx
Put ax=z
=z/a
dx=1/a dz

H{f (ax)} :%_[wa(z) zJ, (%Zjdz

Replacing z by x
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Hanker transformation of the derivation of the function f(x).

Theorem: Let E(S) be the Hankel transformation of {f(x) , n} with order ‘n’
then show that

|

(S) = %{(n o )7n+l (S) B (n + 1)7;1—1 (S)}

Proof: By definition of Hankel transformation we have

~

(s) :IOmf(x) x J,(sx)dx

7,,(5) =f(x)xJ, (Sx)‘: —Iooof(x)[Jn (sx)+xJ, (sx)s}dx

o0

j;(s) :O—IO f(x)[Jn(Sx)+(sx)J,;(Sx)]dx _(1)

We know that
T, (3)+ 2, (1) =, (%)
Multiply by x xJ, (x)+nJ,(x)=xJ,_(x)
xJ,(x)=xJ, ,(x)-nJ,(x)
Replace x by (sx)

(sx)J,; (Sx)z(sx)Jn_l(sx)—an (Sx)
Adding J, (sx) on both sides
J, (sx) + (sx)J,; (sx)+ = (Sx)Jn_l (Sx)— nJ, (sx) +J, (sx)
J, (sx) + (sx)J;, (sx) = (S)C)JVH (Sx)+ (1 - n)Jn (sx) _(2)
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By putting the value of (2) in (1) we have
J. f ) (1 n (Sx)]dx _(3)
We know that J,(x)= %[JM (x)+ (%) ]

Replace x by sx

By putting the value of (4) in (3) we have

[ f(x){(sx)J,,l(sx)+(1—”){;_x

7i(s) = J;”(sx)f(x)}n1<sx>+“2‘n")fn1<sx>+(1;n”)fm<sx>}dx

7)== ] om0 (2520 o)+ L)

2n

T(5)=-J; (5110 (o0 E520, as

i 2n 2n

7(s) =-2i[ [ (n+1) £ (x) ., (sx)dx+ [ (1-n) f(x)xJnl(sx)dx}

n

E(S)zzi[—(n +1)I:f(x)xJn_l(sx)dx—(l—n)I:f(x)xJn_l(sx)dxJ

n

J(8) =5 (=) T ()= (n+ ), (5) ]
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Theorem: Show that

2| = 2(n*=3)— -1—
:;_n Z—_i_lfn—z(s)_ (2 )fn(s)_n fn+2(S)

£(s)

Proof: We know that

Similarly,

L) =5 (=1 ()= () () | (B)

Replace n by n+1 in (A) we have

foa(5) =gy e (5) = (14 DF(5)]

ml(s):f{(#ms)—(””)7,1(@}

2 n+1)

Replace n by n—1 in (A) we have
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Z(S) :i[n(n—l)7n+z(s)_{(n—l)(n+2) .\ (n+1)(n—2)}7n(s)+ n(n+1)7n_2(s) (©)

n+l1 n—1

(n—l)(n+2)+(n+l)(n—2) (n—l)z(n+2)+(n+l)2(n—2)

n+l n—1 (n+1)(n—1)

_(n2—2n+1)(n+2)+(n2+2n+1)(n—2)

2
n —

_n3+2n2—2n2—4n+n+2+n3—2n2+2n2—4n+n—2_2n3—6n

n*—1 n* -1
_ 27/1(712 —3)
o oni-
Put in (C)
7 —j—;[”((,jj))ms)—2”,(1?_’13)‘ (5)+ 2t 2(s>]

Question: Find the Hankel transformation of f'(s) when f(x)= € in=1

X

Solution: We know that

Z(S) :i[(n - 1)7n+1 (S) - (n + 1)7;1—1 (S) ]

2n

n=1 E(s)=%[0—2?n—1(s)]
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Lecture # 14

Theorem: Show that J'e‘“" Jo(sx)dx = !
0 S2+a2
Proof: 0 g d 1 ““i(_l e 2mal
. '([e O(SX) x-z[e mZOW 7 X
_ S _l)m S e ax _2m
_,;) m!m!(aj _([e Xy

:i(_;);lgjm (2m+1) '.'Ie_222md2= (2m+1)
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0 1 S2 7%
2|)‘e_‘”‘JO(Sx)dx:; 1+?j
0 e 1 2+ 2 7%
2[e 0(sx)dx=; a a2S j

Question: Find the Hankel transformation of

H{f" (x)+%f'(x)—’;—zf(x)}=?
Solution: H{f(x)} = Jowf(x) x J,(sx)dx
H{f(x)} :J.:f(x) x J,(sx)dx

H{f(x)} = f'(x)xJn (Sx)‘: —J:f'(x) %(x J, (sx))dx
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H{f =0- J.f (sx)+xJ( ))dx

I [f (sx)+s/ (x )xJ,;(sx)}dx

We know that

J,(x) satisfies the Bessel equation

x’y +xy+(x n)

jy ,
L)oo

L) (x )]+[x_”_jJn(x):o Replace y by J, (x)

xy +y +(

dx X

92

Collected by: Muhammad Saleem Composed by: Muzammil Tanveer




2
%[st,,y (sx)}+ [S —};—ijn (sx)=0 Replace x by sx

2

ﬁ[wﬂ'(sx)]{sx —”—jJﬂ (sx)=0

sdx SX
4y ()][_jj () (i)

By putting the value of (ii) in (1)

H{f } s[7f(x [sx+—2j , (sx) dx

1

x (Sx)dx

——SJ‘ f sx dx+nJ. f

b | —szH{f(x)} + nzj.owf(x)%Jn (sx)dx

=-s"H{f(x)}+n’H {%zx)}
H{f() ffc)} zﬂ{f)ff)} SHAS (x))

Parseval Theorem:
If j_‘(s)and g(s) are two Hankel transformation of f(x) and g(x) then

Ifxf<x>g<x>dx= 757 (s) g(s)ds

Proof: Let J. f(x (sx)dx = {f(x)} =f(s)
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J.:g(x) x Jn(sx)dsz{g(x)} =g(s)

[, () e(s)ds= (s ()] (3) 1, (o)

_[:7(s)§(s)ds = Ig(x)X-f(x)dx

.[0007<S)§(S)d5 i ]:Xf(x)g(x)dx

Question: Find the Hankel Transformation of

1 if O<x<a
f(x){o if x>a

H{f(x); n=0} =?

Solution: H{f<x);n:0}:J:f(x)x-]()(SX)dx
= [ £ (x) Ty (sx)dv+ [ f ()0, (sx)d
=I0a1.xJ0(Sx)dx+O

= I:XJO (Sx)dx _(z)

We know that

%[xn‘]n (x):| =x"J,, (x)
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n=1 % le(x)]szO(x)

Replace x by sx
%[stl(sx)] = sxJ, (sv)
%[le(sx)] = s, (sx)
L, (53)] = 5, (5)
() =L, (5%)]
Putin) = H{F (x)in =0} =< [/ [, (5x)
H{f (x)in =0} =~ [ (s2)]]
H{f (x)in=0} =~[aJ(sa)~0]
H{f (x)in =0} =2, (sa)

Question: Show that I e ™ xJ, (sx)dx =
0

o0
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Put ax=z = dx=dz/a

0 _1\" 2m
_ Z ( 1) ﬁ J.e—zZZm-H dZ
. 2) 4

[l
Nk
—~
=L
N
3
| ©a
(3]
3
~~
.}
3
+
&}
N

1 6(sY 1 120 (s)
a0 s g
a 4\a) 212016\ a

) ) B

Eq (1) =
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Solution:

As we prove

Collected by: Muhammad Saleem

1 K
— 1_|_ _
a a
1 s? 7
:—2 1+—2
a a
_3
1 a’ +s? %
a’ a’
1 a’ %
a’\ a® +s*
1 a’ a

:IOQO e “J, (Sx)dx - a_[: xe “J, (Sx)dx} _(z)
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Ie‘“xJO(sx)dxz 1

0 524'612
Ie_“xlo(sx)dxz S a2 5
0 a +s )

Put in (1)

S

3/2
(s2 +a2)

S =38

xe ™ J,(sx)dx =
Differential formula of Hankel transformation:

H, {x"l (x“’f(x))y} =?
Solution: H, {x"_l (xl_”f(x))v} = I:x"_l (xl_"f(x))'xJn (sx)dx

) e e A2 ESRACI

o0

=x"J, (sx)x™"f(x) . jowxl_”f(x)di[x” J, (Sx)}dx

X

=0- Iowxl_"f(x)i[x” J, (Sx)} dx

dx

%[x" J, (x)} =x"J,_,(x)

Replace x by sx
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By putting value
= —Iowxl_”f(x)sx” J, i (sx)dx
= —Sjowf(x)xJn_] (sx)dx
H, {x”_1 (xl_”f(x))‘} S=SHY {f(x)}

Question: H, {x’” (x””f(x))v} =7

Solution: H, {x”1 (x”"f(x))v} = J‘:x*"*l (x”"f(x))nyn (isx)dx

S L EAC

0 11 1

=x"J (sx).x“"f(x):)o - J.: x“"f(x)i[x_" J, (Sx)]dx

dx

=0- I: x”"f(x)i[x_" J, (sx)]dx

dx

d

E[x‘" J, (x)} =—x"J, ., (x)
Replace x by sx
d

—[(sx)_n J, (Sx)J =—(sx) " J ., (sx)

dsx
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By putting value
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Lecture # 15

Question: Find Hankel transformation of

S (%)=

x" O0<x<a ;n=0
0 x>a

Solution: We know that
H{F ()= [ F(x)0d, (5x)
H{f(x)y =], f(x)xJ, (sx)dx+[" f(x)xJ, (sx)dx
H{f(x)}=[ x"xJ, (sx)dx+0

H{f(x)} = J-:x”+l J,(sx)dx (i)

%[x" J, (x)} =x"J,_,(x)

Replace n by n+1

%[xnﬂ Jn+l (x” . xn+l Jn (x)

Replace x by sx
d

—[(sx)n+1 J . (Sx)} = (Sx)n+1 J, (Sx)

dsx

Sn+1 d

—[(x)"+1 J (sx)} =s""x" T (Sx)

s dx

ldi[x"” J (Sx)] =x""1J, (sx)
s dx

Put in (1)

H{f(x)} ljai[x"“ J (sx)]dx

s70 dx
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H{f(x)} :TJM(S")

Green’s Identity or Green’s formula:

This identity is based on Lagrange’s identity integrating both sides of
Lagrange’s identity,

I 1t} [ DL s )0 = a9 1))

b

a

Theorem:

A self-adjoint L = D[p(x)D]+q(X) is a symmetric operator on the interval [a,b] if
and only if p(x)W(u,v)(x)E =0 u and v satisfy the described boundary
conditions associated L and have continuous second order derivative in the

interval [a,b].

Proof: Suppose that L = D[p(x)D]+q(x) is a symmetric operator on the
interval [a,b] then for any functions u and v

{uL[v] — vL[u]}dx =0

Q C— >~

And by Green’s formula

[ e[} = L () ) 1)

b

= p(x) (u.v)(x)

= p(x)W (u.v)(x)

a

" 20

a

Consider that
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Lb{uL[v] — vL[u]} dx

b

=0 which  implies L s

a

= p(x) (u.v)(x)

symmetric.

Green’s functions and their applications:

The sudden excitation to a system denoted by d,(t) , has a non-zero value over
the short interval of time: a —¢ <1 < a + ¢ but is otherwise zero. The total
impulse (force times duration) imparted to the system is thus defined by

0 a+e
(t)dt= [ d,(t)dt,(¢>0)
Let us idealize the function, da(t) by requiring it to act over shorter and shorter

interval of time allowing €—0. Although the interval about t = a is shrinking to
zero, we still want I = 1.

ie. L L[ g ()t =1
e—>0 &0

We can use the result to this limit process to define an “idealized” unit impulse
function, o (t—a) which has the property of imparting a unit impulse to the

system at time t = a but being zero for other values of t. The defining properties
of this function are, therefore,

§(t—a)=0,t¢a
[o(t-a)a=1

Green’s function for boundary value problems:
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The general boundary value problem is characterized by

M[y]=F(x),a<x<b,
B[y]=a,y(a)+a,y(a)=a (1)
B,[y]=ayy(a)+ay,y (a)=p
Where the differential operator M 1s defined by

M= A0 4 ()L 4 (x)

For developing a Green’s function for this problem, it is preferred to the
differential equation in self-adjoint form. To do so, multiply the differential
equation by the function: u(x)= p(x)/ 4,(x) where

p(x):expj.%dx (2)

)

So, the problem (1) assumes the form:

Lly]=/(x),a<x<b, (3)
Blyl=a,B,=[y]=8
Where f(x):p(x)F(x)/Az.q(x) :p(x)AO(x)/A2(x)

d

L= 0 [rat) @)
Suppose that the solution of (3) has the general form:
Y=Yy ty,
Where y,, satisfies the boundary value problem:
L[y]=0 (5)
Bly]=a.B,=[y]=5
And y, is a solution of
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Lly]=f(x) (6)
B[y]=0,8,=[y]=0
The general solution of (5) is
i = (x)+ ey (%) (7)

Where y,(x)& y,(x) are linearly independent solutions of the homogeneous

differential equation. The constants c¢; & ¢, are determined by imposing the non-
homogeneous boundary conditions. Consider the problem (6). Suppose that the
solution of (6) can be expressed in the integral form as:

b

v, ==[g(x.5)f (s)ds (8)

a

Where g(x,s) is the Green’s function to be defined. The minus sign in (8) is

chosen such that g(x,s) will have the proper physical interpretation. Applying
the differential operator, L to both sides if (8), assuming commutativity of L
with integration, we find that

L[yp} :L{—i‘g(x,s)f(s)ds} :—_I.L[g(x,s)]f(s)ds

Now it is argued that y  is indeed a solution of the differential equation in (6),

then the right-hand side of this last expression must equal f(x). This will happen
provided

L[g]=—5(x—s) a<x<b (9)
Where o (x — s) 1s the Dirac delta function.

In order to determine the unique solution, g(x,s), it is also found conditions
other than (9) that contribute to its definition. Let us impose the homogenous
boundary conditions in (6) on the solution (8), which leads to

Bl[yp}:—])'Bl[g]f(s)ds =0

105

Collected by: Muhammad Saleem Composed by: Muzammil Tanveer




B2[yp] =—iBz[g]f(s)ds =0

Because f(x) can be almost any function, these relations are possible if
B[g]=0, B,[g]=0 (10)

Hence the Green’s function, we are seeking a solution of the boundary value
problem:

L[g]:—é'(x—s) a<x<b

B[g]=0, B,[g]=0 (11)
Where s 1s fixed and a <x <b.

This problem is similar to that described by (6). Only the forcing function in
(11) is a delta function rather than an arbitrary function, f(x). This means that
solving the problem for g(x,s) is simpler than solving the corresponding
problem of y and once the Green’s functions has been found for a particular
operator, L and set of boundary conditions, it may be used for solving (6) any
number of times where only the function, f(x) changes from problem to
problem. It is the feature of Green’s function that makes it most useful in
applications.

The presence of delta function in (9) shows the peculiar behavior of g(x,s) in the
vicinity of x—s.

To investigate this behavior, form (8), we have

5 () ={els"s) el ()

Where

+)_ Lim yp(S+8) ’ yp(s,):

yp(s x>0

Because the solution of a differential equation must be a continuous function,
the left-hand side of the above expression vanishes and since f(x) is arbitrary,
we deduce that
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g(s*,s):g(sf,s) (12)
Which implies that g(x,s) is continuous at x = s.

Next the behavior of the derivative of g(x,s) at x = s is investigated. Integrate
both sides (9) with respect to x from x=s tox=s" i.e.

From the continuity of both q(x) and g(x,s) at x =s, it follows that the integral
on the left hand side of this expression is zero. Also, using the integral property
of the delta function and the fact that p(x) is continuous and non-zero on [a,b]
the last expression reduces to

Lim p(x) og(x,s)  Lim og(x,s)

x—s" ox _x—>s_p(x) ox

=-1

. Lim () Lim 0g(x,s)  Lim (x)x Lim 0g(x,s)

=1
x—s"  Ox XS xX—>s  Ox

= p(s*)x

Lim ag(x,s)_p(s)x Lim 8g(x,s):_1

x—>s"  Ox xX—>s  Ox

= p(s)x Lim 6g(x’s)—p(s)>< Lim 9g(x,s)

- =—] (13)
x—>s"  Ox XS ox
= p(s) Lim 8g(x,s)_ Lim 0g(x,s) _q
P x—>st  Ox xX—>s  Ox
jag(x,s)‘ _ -1
ox ) p(s)
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Where the continuity of q(x) has been used at x = s.

This results (13) suggest that x =s, the derivative of g(x,s) has a jump
discontinuity of magnitude, 1/p(x).

Def. The Green’s function, g(x,s) associated with the boundary value problem:
L[y]zf(x) ,a<x<b,
Bly]=a,B,=[y]=p

Where L= (e a()

is a function satisfying the following conditions: (a < x <b)

(a) L{g]=-6(x—5s) (a<x<b), (s fixed )
(b) Bl[g]zo, Bz[g]:()

(c) g(s*,s):g(s’,s)

) 6g(x,s) o -1

ox

Based on this definition of Green’s function, an explicit formula for the Greens’
functions, can be constructed. It 1s observed from (a) that if either x <sor x >s
then L[g] = 0 from the definition of the delta function. Next if z; and z, are
solutions of the homogeneous differential equation, L[g] = 0 such a way that

Bl[g]:O, Bz[g]:O (14)
From conditions (a) and (b) it follows that Green’s functions has the form:

u(s)z(x), x<s

g(x,s)—{ (15)

v(s)z,(x), x>s

Where u and v are functions to be determined. Imposing conditions (c) and (d),
the unknown functions u & v must be chosen such that

v(s)22 (s) —u(s)z1 (s) =0
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V(S)Zz(S)—u(S)Zi(S)=p(S) (16)
The simultaneous solution of (16) yields
u(s)=- % (5)
TOTZERY .
(s) = ———2)

p(s)W(z.2,)
Where W (z,z,)=zz, —z,z, is the Wronskian function.

Result: It is a curious fact that if y; , y» are any solutions of the same
homogeneous differential equation, the p(x)W(yi,y2) is a constant number.

Proof: Lety; & y» be two solutions of

L eaty=0 )
Then @D |ram=0 @
%{p(ﬂ%}q(ﬂyz =0 (3)

Multiplying (2) by y» and (3) by y;

Al d
yzg_p(X)i}Lq(x)ylyz =0

dl @, 4 @} 0
72 dx{p(x) dx} . dx [p(x) dx

d dy, d dy,

- =1 - —2Z =0
= dx [p(x) dx yz} dx [p(x) dx yl}
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d dy,  dy )
- A -0
dﬂpﬁ{dx% dx )|
d|[ dy,  dy j
- — —_— Y, —— =0
dx _p( )( de ' dx & i

Integrating

C

4 Dy Ay
dx {p(x)( dx . dx yzﬂ
d
=P (3.2,)(x) ] =¢
X
Thus since z; & z, are two such solutions, we can write
p(s)W(z,2,)(s)=p(x)W (2,2,)(x) = ¢
And the Green’s function in (15) takes the form:

Z2\N)5) (x)2(s) a<x<s
b

7 )0 .

Or equivalently

, A<S<X

()2 (%)
N (19)

#5105,

c

, x<s<b

Because C is constant, it follows from inspection of (19) that Green’s function
is symmetric in X & s i.e.,

g(x,8) = g(s.x)
Question: Construct the Green’s function associated with boundary value
problem; y +k’y=F(x); 0<x<1l,y(0)=a ,y(1)=8

Solution: y +k’y=F(x)
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The auxiliary equation

2
%W:o
X

d? )
a2 r
45

X

Y. =c,coskx +c,sinkx
Let y, =coskx ,y,=sinkx

In order to construct solution z; and z, they are assumed to be some linear
combination of y; and y, , written as

z, = ¢, coskx + ¢, sin kx (i)
By applying first boundary condition y(0) =0

O=01+0:>(31:0

Put in (1)
z, =c,sinkx
Take c¢; =1
z, =sinkx
Again z,=dcoskx+d,sinkx (i)
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By applying second boundary condition y(1) =0

= 0=d,cosk+d,smk

g —Zheosk
sink
Put in (i) z, =d, coskx + (M jsin x
sink
. d, sink cos kx — d, cos k sin kx
2 sink
d .. |
z,= [sink cos kx — cos k sin kx|

sink

& 9 sink(1-x)

sink

Take 4 =1

sink

z, =sink(1-x)

Now c¢ determined as

_(1) sin kx sink(1—x)
€= k coskx —kcosk(l—x)

¢ =—ksinkxcosk(1—x)—kcoskxsink(1-x)
c= —k[sinkxcosk(l —x)+coshkxsink (1— x)]

c= —k[sink(erl—x)]
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c=—ksink

Now green function

——ZI(X)ZZ(S) T a<x<s
g(x,s)= ¢
ale)anx) o,
C 9
_sinkx.sink(l—s)
g(x S): —ksink
’ _sinkx.sink(l—x)
—ksink ’
sinkx.sink (1-s)
g(x S)= ksink
’ sinkx.sink (1-x)
ksink ’

; 0<x<s

; O0<x<s

Question: Use the method of Green’s function to solve. Construct the Green’s

function associated with boundary value problem;

y +y=sinx ; O<x<% , ¥(0)=1 ,y(%):—l

Solution: ¥y +y=sinx
d’y :
+ y=sinx
dx’ 4

For particular solution

dZ
(y-l—ljy:O

The auxiliary equation

2
d—2+1:0
dx

113

Collected by: Muhammad Saleem

Composed by: Muzammil Tanveer




L

dx’

d_ +i

dx

Yy =€, COSX + ¢, Sinx .y, = particular solution

Put y(0) =1
l=ci+0=c =1
Put y(n/2) = -1
-1=0+co=>c=-1
= y, =cosx—sinx
Let y,=cosx ,y,=sinx

In order to construct solution z; and z, they are assumed to be some linear
combination of y; and y; , written as

zy=¢cosx+csiny (i)
By applying first boundary condition y(0) =0
0=ci+0 = ¢ =0
Put in (1)
zZ,=c,sinx
Takec, =1
Similarly, z,=dcosx+d,sinx ___ (ii)
By applying second boundary condition y(n/2) =0
= 0=0+d, = d,=0
Put in (ii) z, =d, cosx

Take d, =1
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Z, =COSX

Now c¢ determined as

sinx COSXx

cosx —sinx

c=-sin*x—cos’x = —(sin2 x +cos’ x) =-1

Now green function

——ZI(X)ZZ(S) a<x<s
g(x,s)= §
——ZI(S)ZZ(X) : s<x<b
c 2
_sinx.cos(s) CO<r<s
_ -1 ’
g(xs)= sins.cos(x) T
—'_—1 : sSx<E
sin(x).cos(s) ; 0<x<s
g(x9)= sin(s).cos(x) ; s£x<%

Now for y, we have Y, = —J.abg(x,s)f(s)ds
v :_{ong(x,s)f(s)ds+I}g(x,s)f(s)ds}

y = _[ [sin(x)cos(s)sin(s)ds + j}sin(s)cos(x)sin(s)ds}
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2

0

coS2s

v, = __Sjn_()c)joxzsin(s)cos(s)ds + cos(x)j}sinz (s)ds}

“sin(2s)ds + cos(x) j}[mjds}

2

&
0

COSX S_Sin(ZS) %
2 2

X

2{5-3--=)

2 2

sin (x)

Collected by: Muhammad Saleem

) T X
(Sln X)+—COSX——COSX+
4 2

Y sm(x)(l—cos2xj+cosx 7T x+sin(2x)
Vo= ] 2 |2 2

cosx sin (2x)}
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