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INTRODUCTION 

As time goes on, nearly every field of human endeavor is marked by changes which can be 

considered as correction or extension. Thus, the changes in the evolving history of political and 

military events are always chaotic; there is no way to predict the rise of a Genghis Khan, for 

example, or the consequences of the short-lived Mongol Empire. 

Other changes are a matter of fashion and subjective opinion. The cave-paintings of 25,000 

years ago are generally considered great art, and while art has continuously—even 

chaotically—changed in the subsequent millennia, there are elements of greatness in all the 

fashions. Similarly, each society considers its own ways natural and rational, and finds the ways 

of other societies to be odd, laughable, or repulsive. But only among the sciences is there true 

progress; only there is the record one of continuous advance toward ever greater heights. And 

yet, among most branches of science, the process of progress is one of both correction and 

extension. 

 Aristotle, one of the greatest minds ever to contemplate physical laws, was quite wrong in his 

views on falling bodies and had to be corrected by Galileo in the 1590s. 

 Galen, the greatest of ancient physicians, was not allowed to study human cadavers and was 

quite wrong in his anatomical and physiological conclusions. He had to be corrected by Vesalius 

in 1543 and Harvey in 1628. 

 Even Newton, the greatest of all scientists, was wrong in his view of the nature of light, of the 

achromaticity of lenses, and missed the existence of spectral lines. His masterpiece, the laws of 

motion and the theory of universal gravitation, had to be modified by Einstein in 1916. 

Now we can see what makes mathematics unique.  

Only in mathematics is there no significant correction—only extension. Once the Greeks had 

developed the deductive method, they were correct in what they did, correct for all time. 

 Euclid was incomplete and his work has been extended enormously, but it has not had to be 

corrected. His theorems are, every one of them, valid to this day. 

Ptolemy may have developed an erroneous picture of the planetary system, but the system of 

trigonometry he worked out to help him with his calculations remains correct forever.  

Each great mathematician adds to what came previously, but nothing needs to be uprooted. 

The contemplation of the various steps by which mankind has come into possession of the vast 

stock of mathematical knowledge can hardly fail to interest the mathematician. He takes pride 
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in the fact that his science, more than any other, is an exact science, and that hardly anything 

ever done in mathematics has proved to be useless. The chemist smiles at the childish efforts of 

alchemists, but the mathematician finds the geometry of the Greeks and the arithmetic of the 

Hindoos as useful and admirable as any research of to-day. He is pleased to notice that though, 

in course of its development, mathematics has had periods of slow growth, yet in the main it 

has been pre-eminently a progressive science. 

The history of mathematics may be instructive as well as agreeable; it may not only remind us 

of what we have, but may also teach us how to increase our store. Says De Morgan, “The early 

history of the mind of men with regard to mathematics leads us to point out our own errors; 

and in this respect it is well to pay attention to the history of mathematics." It warns us against 

hasty conclusions; it points out the importance of a good notation upon the progress of the 

science; it discourages excessive specialization on the part of investigators, by showing how 

apparently distinct branches have been found to possess unexpected connecting links; it saves 

the student from wasting time and energy upon problems which were, perhaps, solved long 

since; it discourages him from attacking an unsolved problem by the same method which has 

led other mathematicians to failure; it teaches that fortifications can be taken in other ways 

than by direct attack, that when repulsed from a direct assault it is well to reconnoiter and 

occupy the surrounding ground and to discover the secret paths by which the apparently 

unconquerable position can be taken. 

 The importance of this strategic rule may be emphasized by citing a case in which it has been 

violated. An untold amount of intellectual energy has been expended on the quadrature of the 

circle, yet no conquest has been made by direct assault. The circle-squarers have existed in 

crowds ever since the period of Archimedes. After innumerable failures to solve the problem at 

a time, even, when investigators possessed that most powerful tool, the differential calculus, 

persons versed in mathematics dropped the subject, while those who still persisted were 

completely ignorant of its history and generally misunderstood the conditions of the problem. 

Our problem," says De Morgan, is to square the circle with the old allowance of means: Euclid's 

postulates and nothing more. We cannot remember an instance in which a question to be 

solved by a definite method was tried by the best heads, and answered at last, by that method, 

after thousands of complete failures." But progress was made on this problem by approaching 

it from a different direction and by newly discovered paths. Lambert proved in 1761 that the 

ratio of the circumference of a circle to its diameter is incommensurable. Some years ago, 

Lindemann demonstrated that this ratio is also transcendental and that the quadrature of the 

circle, by means of the ruler and compass only, is impossible. He thus showed by actual proof 

that which keen-minded mathematicians had long suspected; namely, that the great army of 

circle-squarers have, for two thousand years, been assaulting a fortification which is as 

indestructible as the firmament of heaven. 
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Another reason for the desirability of historical study is the value of historical knowledge to the 

teacher of mathematics. The interest which pupils take in their studies may be greatly increased 

if the solution of problems and the cold logic of geometrical demonstrations are interspersed 

with historical remarks and anecdotes. A class in arithmetic will be pleased to hear about the 

Hindoos and their invention of the “Arabic notation"; they will marvel at the thousands of years 

which elapsed before people had even thought of introducing into the numeral notation that 

Columbus-egg _ the zero; they will  find it astounding that it should have taken so long to invent 

a notation which they themselves can now learn in a month. After the pupils have learned how 

to bisect a given angle, surprise them by telling of the many futile attempts which have been 

made to solve, by elementary geometry, the apparently very simple problem of the trisection of 

an angle. When they know how to construct a square whose area is double the area of a given 

square, tell them about the duplication of the cube _ how the wrath of Apollo could be 

appeased only by the construction of a cubical altar double the given altar, and how 

mathematicians long wrestled with this problem. After the class have exhausted their energies 

on the theorem of the right triangle, tell them the legend about its discoverer _ how 

Pythagoras, jubilant over his great accomplishment, sacrificed a hecatomb to the Muses who 

inspired him. When the value of mathematical training is called in question, quote the 

inscription over the entrance into the academy of Plato, the philosopher: 

”Let no one who is unacquainted with geometry enter here." 

Students in analytical geometry should know something of Descartes, and, after taking up the 

differential and integral calculus, they should become familiar with the parts that Newton, 

Leibniz, and Lagrange played in creating that science. In his historical talk it is possible for the 

teacher to make it plain to the student that mathematics is not a dead science, but a living one 

in which steady progress is made.  

The history of mathematics is important also as a valuable contribution to the history of 

civilization. Human progress is closely identified with scientific thought. Mathematical and 

physical researches are a reliable record of intellectual progress. The history of mathematics is 

one of the large windows through which the philosophic eye looks into past ages and traces the 

line of intellectual development. 
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ANCIENT EGYPT 

Sesostris . . . made a division of the soil of Egypt among the inhabitants. . . . If the river carried 

away any portion of a man’s lot, . . .the king sent persons to examine, and determine by 

measurement the exact extent of the loss. . . . From this practice, I think, geometry first came to 

be known in Egypt, whence it passed into Greece. 

Herodotus 

THE ERA AND THE SOURCES 

About 450 BCE, Herodotus, the inveterate Greek traveler and narrative historian, visited Egypt. 

He viewed ancient monuments, interviewed priests, and observed the majesty of the Nile and 

the achievements of those working along its banks. His resulting account would become a 

cornerstone for the narrative of Egypt’s ancient history. When it came to mathematics, he held 

that geometry had originated in Egypt, for he believed that the subject had arisen there from 

the practical need for resurveying after the annual flooding of the river valley. A century later, 

the philosopher Aristotle speculated on the same subject and attributed the Egyptians’ pursuit 

of geometry to the existence of a priestly leisure class. 

 The debate, extending well beyond the confines of Egypt, about whether to credit progress in 

mathematics to the practical men (the surveyors, or “rope-stretchers” or to the contemplative 

elements of society “the priests and the philosophers” has continued to our times. As we shall 

see, the history of mathematics displays a constant interplay between these two types of 

contributors. 

In attempting to piece together the history of mathematics in ancient Egypt, scholars until the 

nineteenth century encountered two major obstacles. The first was the inability to read the 

source materials that existed. The second was the scarcity of such materials. 

For more than thirty-five centuries, inscriptions used hieroglyphic writing, with variations from 

purely ideographic to the smoother hieratic and eventually the still more flowing demotic 

forms. After the third century CE, when they were replaced by Coptic and eventually 

supplanted by Arabic, knowledge of hieroglyphs faded.  

The breakthrough that enabled modern scholars to decipher the ancient texts came early in the 

nineteenth century when the French scholar Jean-Francois Champollion, working with 

multilingual tablets, was able to slowly translate a number of hieroglyphs. These studies were 

supplemented by those of other scholars, including the British physicist Thomas Young, who 

were intrigued by the Rosetta Stone, a tri-lingual basalt slab with inscriptions in hieroglyphic, 
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demotic, and Greek writings that had been found by members of Napoleon’s Egyptian 

expedition in 1799.  

By 1822, Champollion was able to announce a substantive portion of his translations in a 

famous letter sent to the Academy of Sciences in Paris, and by the time of his death in 1832, he 

had published a grammar textbook and the beginning of a dictionary. 

Although these early studies of hieroglyphic texts shed some light on Egyptian numeration, they 

still produced no purely mathematical materials. This situation changed in the second half of 

the nineteenth century.  

We abstain from introducing additional Greek opinion regarding Egyptian mathematics, or from 

indulging in wild conjectures. We rest our account on documentary evidence. A hieratic 

papyrus, included in the Rhind collection of the British Museum, was deciphered by Eisenlohr in 

1877, and found to be a mathematical manual containing problems in arithmetic and geometry. 

It was written by Ahmes sometime before 1700 b.c., and was founded on an older work 

believed by Birch to date back as far as 3400 b.c.! This curious papyrus _ the most ancient 

mathematical handbook known to us_ puts us at once in contact with the mathematical 

thought in Egypt of three or  five thousand years ago. It is entitled “Directions for obtaining the 

Knowledge of all Dark Things." We see from it that the Egyptians cared but little for theoretical 

results. Theorems are not found in it at all. It contains” hardly any general rules of procedure, 

but chiefly mere statements of results intended possibly to be explained by a teacher to his 

pupils."  In 1858, the Scottish antiquary Henry Rhind purchased a papyrus roll in Luxor that is 

about one foot high and some eighteen feet long. Except for a few fragments in the Brooklyn 

Museum, this papyrus is now in the British Museum. It is known as the Rhind or the Ahmes 

Papyrus, in honor of the scribe by whose hand it had been copied in about 1650 BCE. The scribe 

tells us that the material is derived from a prototype from the Middle Kingdom of about 2000 

to 1800 BCE. Written in the hieratic script, it became the major source of our knowledge of 

ancient Egyptian mathematics.  

Another important papyrus, known as the Golenishchev or Moscow Papyrus, was purchased in 

1893 and is now in the Pushkin Museum of Fine Arts in Moscow. It, too, is about eighteen feet 

long but is only one-fourth as wide as the Ahmes Papyrus. It was written less carefully than the 

work of Ahmes was, by an unknown scribe of circa. 1890 BCE. It contains twenty-five examples, 

mostly from practical life and not differing greatly from those of Ahmes, except for two that will 

be discussed further on.  
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Yet another twelfth-dynasty papyrus, the Kahun, is now in London; a Berlin papyrus is of the 

same period. Other, somewhat earlier, materials are two wooden tablets from Akhmim of 

about 2000 BCE and a leather roll containing a list of fractions. Most of this material was 

deciphered with in a hundred years of Champollion’s death. There is a striking degree of 

coincidence between certain aspects of the earliest known inscriptions and the few 

mathematical texts of the Middle Kingdom that constitute our known source material. 

POSSIBLE SHORT QUESTIONS: 

i. Write an ancient Egypt saying about origination of Geometry in Egypt. 

ii. How does geometry come into picture in Egypt? 

iii. Write the role of mathematics between two type of contributors i.e. Surveyor /Rope 

stretcher and the Priest/ the Philosophers. 

iv. Write two major obstacles/problems to collect material in Egyptian math’s history. 

v. Write the role of Jean Prancois Champollin regarding Egyptian math’s history. 

vi. What was Rosetta Stone. Who found it? 

vii. Who was the Rhind (the Ahmes)? 

viii. Note on the Rhind Papyrus (the Ahmes Papyrus)? 

ix. Write the title of Ahmes’s Papyrus. 

x. Note on the Moscow Papyrus (the Goleneshchev)? 

xi. Name few documets of Egyptian mathematics history. 

LONG QUESTIONS: 

1) Briefly describe about the era and the sources of ancient Egypt. 

2) Write a brief note on The Ahmes (the Rhind) and The Ahmes Papyrus. 
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NUMBERS AND FRACTIONS 

An insight into Egyptian methods of numeration was obtained through the ingenious 

deciphering of the hieroglyphics by Champollion, Young, and their successors.  

The symbols used were the following:  for 1,  for 10,   for 100,                  

for 1000,  for 10; 000,  for 100; 000,  for 1; 000; 000, 

for 10; 000; 000.  The symbol  for 1 represents a vertical staff  for 10; 000 a 

pointing  finger                            for 100; 000 a burbot    for 1; 000; 000, a man in 

astonishment .                    The significance of the remaining symbols is very doubtful. 

The writing of numbers with these hieroglyphics was very cumbrous. The unit symbol of each 

order was repeated as many times as there were units in that order. The principle employed 

was the additive. Thus, 23 was written  . 

A single vertical stroke represented a unit, an inverted wicket was used for 10, a snare 

somewhat resembling a capital C stood for 100, a lotus flower for 1,000, a bent finger for 

10,000, a tadpole for 100,000, and a kneeling figure, apparently Heh, the god of the Unending, 

for 1,000,000. Through repetition of these symbols, the number 12,345, for example, would 

appear as 
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Sometimes the smaller digits were placed on the left, and other times the digits were arranged 

vertically. The symbols themselves were occasionally reversed in orientation, so that the snare 

might be convex toward either the right or the left. 

Besides the hieroglyphics, Egypt possesses the hieratic and demotic writings, but for want of 

space we pass them by. 

The more cursive hieratic script used by Ahmes was suitably adapted to the use of pen and ink 

on prepared papyrus leaves. Numeration remained decimal, but the tedious repetitive principle 

of hieroglyphic numeration was replaced by the introduction of ciphers or special signs to 

represent digits and multiples of powers of 10. The number 4, for example, usually was no 

longer represented by four vertical strokes but by a horizontal bar, and 7 is not written as seven 

strokes but as a single cipher  resembling a sickle. The hieroglyphic form for the number 

28 was    the hieratic form was simply  . Note that the cipher  for the 

smaller digit 8 (or two 4s) appears on the left, rather than on the right. 

Herodotus makes an important statement concerning the mode of computing among the 

Egyptians. He says that they; 

“calculate with pebbles by moving the hand from right to left, while the Hellenes move it from 

left to right." 

Herein we recognize again that instrumental method of figuring so extensively used by peoples 

of antiquity.  

The Egyptians used the decimal scale. Since, in figuring, they moved their hands horizontally, it 

seems probable that they used ciphering- boards with vertical columns. In each column there 

must have been not more than nine pebbles, for ten pebbles would be equal to one pebble in 

the column next to the left. 
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The Ahmes papyrus contains interesting information on the way in which the Egyptians 

employed fractions. Their methods of operation were, of course, radically different from ours. 

Fractions were a subject of very great difficulty with the ancients. Simultaneous changes in both 

numerator and denominator were usually avoided. In manipulating fractions the Babylonians 

kept the denominators (60) constant. The Romans likewise kept them constant, but equal to 

12. The Egyptians and Greeks, on the other hand, kept the numerators constant, and dealt with 

variable denominators. Ahmes used the term “fraction" in a restricted sense, for he applied it 

only to unit-fractions, or fractions having unity for the numerator. It was designated by writing 

the denominator and then placing over it a dot. Fractional values which could not be expressed 

by any one unit-fraction were expressed as the sum of two or more of them. Thus, he wrote 
 

 

 

  
 

in place of 
 

 
 . The first important problem naturally arising was, 

HOW TO REPRESENT ANY FRACTIONAL VALUE AS THE SUM OF UNIT-FRACTIONS. 

This was solved by aid of a table, given in the papyrus, in which all fractions of the form 
 

    
  

(where n designates successively all the numbers up to 49) are reduced to the sum of unit-

fractions. Thus, 
 

 
 

 

 
 

 

  
   and  

 

  
 

 

  
 

 

   
. When, by whom, and how this table was calculated, 

we do not know. Probably it was compiled empirically at different times, by different persons. It 

will be seen that by repeated application of this table, a fraction whose numerator exceeds two 

can be expressed in the desired form, provided that there is a fraction in the table having the 

same denominator that it has. Take, for example, the problem, to divide 5 by 21. In the first 

place, 5 = 1 + 2 + 2. From the table we get 
 

  
 

 

  
 

 

  
 then 
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)  
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The papyrus contains problems in which it is required that fractions be raised by addition or 

multiplication to given whole numbers or to other fractions. For example, it is required to 

increase 
 

 
 
 

 
 

 

  
 

 

  
 

 

  
 to 1  The common denominator taken appears to be 45, for the numbers 

are stated as   
 

 
   

 

 
 
 

 
   

 

 
   

 

 
   The sum of these is   

 

 
 
 

 
 
 

 
 forty-fifths. Add to this 

 

 
 

 

  
 

and the sum is 
 

 
   Add 

 

 
  and we have 1. Hence the quantity to be added to the given fraction is 

 

 
 
 

 
 

 

  
 

Having finished the subject of fractions, Ahmes proceeds to the solution of equations of one 

unknown quantity. The unknown quantity is called `hau' or heap. Thus the problem, “heap, its 
 

 
, its whole , its make 19” i.e. 

 

 
      in this case , the solution is as follows:                              

  

 
    ; 

 

 
  

 

 

 

 
 ;     
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Egyptian inscriptions indicate familiarity with large numbers at an early date. A museum at 

Oxford has a royal mace more than 5,000 years old, on which a record of 120,000 prisoners and 

1,422,000 captive goats appears. These figures may have been exaggerated, but from other 

considerations it is clear that the Egyptians were commendably accurate in counting and 

measuring. The construction of the Egyptian solar calendar is an outstanding early example of 

observation, measurement, and counting. The pyramids are another famous instance; they 

exhibit such a high degree of precision in construction and orientation that ill-founded legends 

have grown up around them. 

The principle of cipherization, introduced by the Egyptians some 4,000 years ago and used in 

the Ahmes Papyrus, represented an important contribution to numeration, and it is one of the 

factors that makes our own system in use today the effective instrument that it is. Egyptian 

hieroglyphic inscriptions have a special notation for unit fractions—that is, fractions with unit 

numerators. The reciprocal of any integer was indicated simply by placing over the notation for 

the integer an elongated oval sign. The fraction 
 

 
 thus appeared as  and 

 

  
 was 

written as  . In the hieratic notation, appearing in papyri, the elongated oval is replaced 

by a dot, which is placed over the cipher for the corresponding integer (or over the right-hand 

cipher in the case of the reciprocal of a multi digit number). In the Ahmes Papyrus, for example, 

the fraction 
 

 
 appears as  , and 

 

  
  is written as  . Such unit fractions were freely 

handled in Ahmes’s day, but the general fraction seems to have been an enigma to the 

Egyptians. They felt comfortable with the fraction 
 

 
  For which they had a special hieratic sign

;    occasionally, they used special signs for fractions of the form 
 

   
, the complements of 

the unit fractions. 

To the fraction 
 

 
, the Egyptians assigned a special role in arithmetic processes, so that in finding 

one-third of a number, they first found two-thirds of it and subsequently took half of the result! 

They knew and used the fact that two-thirds of the unit fraction 
 

 
 is the sum of the two unit 

fractions 
 

  
and 

 

  
; they were also aware that double the unit fraction 

 

  
 is the unit fraction 

 

 
.  
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Yet it looks as though, apart from the fraction 
 

 
, the Egyptians regarded the general proper 

rational fraction of the form 
 

 
 not as an elementary “thing” but as part of an uncompleted 

process. 

 Where today we think of 
 

 
 as a single irreducible fraction, Egyptian scribes thought of it as 

reducible to the sum of three unit fractions, 
 

 
  

 

 
  and 

 

  
 

To facilitate the reduction of “mixed” proper fractions to the sum of unit fractions, the Ahmes 

Papyrus opens with a table expressing 
 

 
 as a sum of unit fractions for all odd values of n from 5 

to 101.  

The equivalent of 
 

 
  is given as

 

 
  

 

  
  and 

 

  
is written as 

 

 
 and 

 

  
  and 

 

  
  is expressed as 

 

  
 and 

 

  
. The last item in the table decomposes 

 

   
 into  

 

   
 and 

 

   
 and  

 

   
 and 

 

   
.  

It is not clear why one form of decomposition was preferred to another of the indefinitely many 

that are possible. This last entry certainly exemplifies the Egyptian prepossession for halving 

and taking a third; 

 it is not at all clear to us why the decomposition 
 

 
 

 

 
 

 

  
 

 

  
 

 

     
 is better than 

 

 
 

 

 
. 

Perhaps one of the objects of the 
 

 
 decomposition was to arrive at unit fractions smaller than 

 

 
. 

Certain passages indicate that the Egyptians had some appreciation of general rules and 

methods above and beyond the specific case at hand, and this represents an important step in 

the development of mathematics. 
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POSSIBLE SHORT QUESTIONS: 

i. What type of symbols were used in Ancient Egypt for 

1,10,100,1000,10,000,100000,100000,10000000 etc? 

ii. Besides the hieroglyphics, Egypt possesses the other  writings, name them. 

iii. Write the difference between hieroglyphics, the hieratic and demotic languages. 

iv. Shortly note on instrumental method of fingering. 

v. Shortly note on Ahmes’s Papyrus. 

vi. Shortly note on Ahmes’s view about fraction. 

vii. Who adapted the use of pen and ink on prepared papyrus leaves? 

viii. Shortly note on Egyptian’s  view about fraction and compare with other civilizations. 

ix. How to represent any fractional value as the sum of unit-fractions? 

x. The papyrus contains problems in which it is required that fractions be raised by 

addition or multiplication to given whole numbers or to other fractions. Explain with 

example. 

xi. Define heap. 

xii. Write the number 12,345 in Egyptians symbols. 

xiii. The Egyptians were commendably accurate in counting and measurement. Would 

you give an example? 

xiv. What is meant by Cipher? 

xv. Write the principle of Cipherization. 

xvi. Exemplify the Egyptian prepossession for halving and taking a third with example. 

xvii. Write the importance of fraction 
 

 
 regarding reduction of fractions. 

LONG QUESTIONS: 

1) Briefly describe about the numbers and fractions in ancient Egypt. 

2) How to represent any fractional value as the sum of unit-fractions in ancient Egypt? 

3) Briefly describe about Egyptian Hieroglyphics system of symbols with examples. 
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ARITHMETIC OPERATIONS 

The Ahmes papyrus doubtless represents the most advanced attainments of the Egyptians in 

arithmetic and geometry. It is remarkable that they should have reached so great prociency in 

mathematics at so remote a period of antiquity. But  strange, indeed, is the fact that, during the 

next two thousand years, they should have made no progress whatsoever in it. The conclusion 

forces itself upon us, that they resemble the Chinese in the stationary character, not only of 

their government, but also of their learning. All the knowledge of geometry which they 

possessed when Greek scholars visited them, six centuries B.C., was doubtless known to them 

two thousand years earlier, when they built those stupendous and gigantic structures the 

pyramids. An explanation for this stagnation of learning has been sought in the fact that their 

early discoveries in mathematics and medicine had the misfortune of being entered upon their 

sacred books and that, in after ages, it was considered heretical to augment or modify anything 

therein. Thus the books themselves closed the gates to progress. 

The principal defect of Egyptian arithmetic was the lack of a simple, comprehensive symbolism   

a defect which not even the Greeks were able to remove. 

The 2/n table in the Ahmes Papyrus is followed by a short n/10 table for n from 1 to 9, the 

fractions again being expressed in terms of the favorites—unit fractions and the fraction 
 

 
 

for example, the fraction 
 

  
 is broken into 

 

  
 and 

 

 
 and 

 

 
.  

Ahmes had begun his work with the assurance that it would provide a “complete and thorough 

study of all things . . . and the knowledge of all secrets,” and therefore the main portion of the 

material, following the 
 

 
 and 

 

  
 tables, consists of eighty-four widely assorted problems. The 

first six of these require the division of one or two or six or seven or eight or nine loaves of 

bread among ten men, and the scribe makes use of the 
 

  
 table that he has just given.                        

In the first problem, the scribe goes to considerable trouble to show that it is correct to give to 

each of the ten men one tenth of a loaf! 

If one man receives 
 

  
 of a loaf, two men will receive

 

  
 or 

 

 
 and four men will receive

 

 
 of a loaf 

or 
 

 
 

 

  
  of a loaf. Hence, eight men will receive 

 

 
 

 

  
  of a loaf or 

 

 
 

 

  
 

 

  
  of a loaf, and 

eight men plus two men will receive 
 

 
 

 

 
 

 

  
 

 

  
  or a whole loaf. 
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Ahmes seems to have had a kind of equivalent to our least common multiple, which enabled 

him to complete the proof. In the division of seven loaves among ten men, the scribe might 

have chosen 
 

 
 

 

 
  of a loaf for each, but the predilection for

 

 
 led him instead to 

 

 
 and 

 

  
 of a 

loaf for each. 

The fundamental arithmetic operation in Egypt was addition, and our operations of 

multiplication and division were performed in Ahmes’s day through successive doubling, or 

“duplation.” Our own word “multiplication,” or manifold, is, in fact, suggestive of the Egyptian 

process. 

A multiplication of, say, 69 by 19 would be performed by adding 69 to itself to obtain 138, then 

adding this to itself to reach 276, applying duplation again to get 552, and once more to obtain 

1104, which is, ofcourse, 16 times 69. Inasmuch as 19 = 16 + 2 + 1, the result of multiplying 69 

by 19 is 1104 + 138 + 69, that is, 1311. 

Occasionally, a multiplication by 10 was also used, for this was a natural concomitant of the 

decimal hieroglyphic notation. Multiplication of combinations of unit fractions was also a part 

of Egyptian arithmetic. 

Problem 13 in the Ahmes Papyrus, for example, asks for the product of 
 

  
 

 

   
 and   

 

 
 

 

 
 

the result is correctly found to be 
 

 
 

For division, the duplation process is reversed, and the divisor, instead of the multiplicand, is 

successively doubled. That the Egyptians had developed a high degree of artistry in applying the 

duplation process and the unit fraction concept is apparent from the calculations in the 

problems of Ahmes.  

Problem 70 calls for the quotient when 100 is divided by     
 

 
 

 

 
 

 

 
                                                  

the result,    
 

 
 

 

  
 

 

   
, is obtained as follows. Doubling the divisor successively, we first 

obtain    
 

 
 

 

 
  then    

 

 
  and finally 63, which is 8 times the divisor.                      

Moreover, 
 

 
  of the divisor is known to be   

 

 
.  Hence, the divisor when multiplied by 8+ 4 + 

 

 
 

will total 9934, which is 
 

 
  short of the product 100 that is desired.    

 Here a clever adjustment was made. In as much as 8 times the divisor is 63, it follows 

that the divisor when multiplied by 
 

  
 will produce 

 

 
.                    

From the 
 

 
 table, one knows that 

 

  
 

 

  
 

 

  
  hence, the desired quotient is    

 

 
 

 

  
 

 

   
. 

Incidentally, this procedure makes use of a commutative principle in multiplication, with which 

the Egyptians evidently were familiar. 
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Many of Ahmes’s problems show knowledge of manipulations of proportions equivalent to the 

“rule of three.” 

 Problem 72 calls for the number of loaves of bread of “strength” 45, which are equivalent to 

100 loaves of “strength” 10, and the solution is given as 
   

  
   , or 450 loaves.  

In bread and beer problems, the “strength,” or pesu, is the reciprocal of the grain density, 

being the quotient of the number of loaves or units of volume divided by the amount of grain.  

Bread and beer problems are numerous in the Ahmes Papyrus. Problem 63, for example, 

requires the division of 700 loaves of bread among four recipients if the amounts they are to 

receive are in the continued proportion 2/3 :1/2 :1/3 :1/4. The solution is found by taking the 

ratio of 700 to the sum of the fractions in the proportion.  

In this case, the quotient of 700 divided by  
 

 
 is found by multiplying 700 by the reciprocal of 

the divisor, which is 
 

 
 

 

  
 . The result is 400; by taking 2/3 and 1/2 and 1/3 and 1/4 of this, the 

required shares of bread are found. 

 

POSSIBLE SHORT QUESTIONS: 

i. Write The principal defect of Egyptian arithmetic. 

ii. Shortly note on the 
 

 
 and 

 

  
 tables. 

iii. Name few fundamental arithmetic operation in Egypt. 

iv. How did multiplication and division were perform in Ahmes’s  day’s? 

v. Note on Problem 13. 

vi. Note on Problem 70. 

vii. Note on Problem 72. 

viii. Note on Problem 63. 

ix. Note on bread and beer problems 

 LONG QUESTIONS: 

1) Briefly describe about arithmetic operations in ancient Egypt. 

2) Note on bread and beer problems 

 

 

 



17 
 

MUHAMMAD USMAN HAMID (0323-6032785) 

‘‘HEAP’’ PROBLEMS 

The Egyptian problems so far described are best classified as arithmetic, but there are others 

that fall into a class to which the term “algebraic” is appropriately applied. These do not 

concern specific concrete objects, such as bread and beer, nor do they call for operations on 

known numbers. Instead, they require the equivalent of solutions of linear equations of the 

form x + ax + b or x + ax + bx =c, where a and b and c are known and x is unknown. The 

unknown is referred to as “aha,” ‘hue’  or  “heap”.  

Problem 24,  for instance, calls for the value of heap if heap and 1 7 of heap is 19. 

 The solution given by Ahmes is not that of modern textbooks but is characteristic of a 

procedure now known as the “method of false position,” or the “rule of false.” A specific value, 

most likely a false one, is assumed for heap, and the operations indicated on the left-hand side 

of the equality sign are performed on this assumed number. The result of these operations is 

then compared with the result desired, and by the use of proportions the correct answer is 

found. In problem 24, the tentative value of the unknown is taken as 7, so that x + 
 

 
  is 8, 

instead of  the desired answer, which was 19. Inasmuch as     
 

 
 

 

 
     , one must 

multiply 7 by   
 

 
 

 

 
  to obtain the correct heap; 

 Ahmes found the answer to be    
 

 
 

 

 
. Ahmes then “checked” his result by showing that if 

to    
 

 
 

 

 
  one adds 

 

 
  of this (which is   

 

 
 

 

 
 ), one does indeed obtain 19. 

Here we see another significant step in the development of mathematics, for the check is a 

simple instance of a proof.  Although the method of false position was generally used by 

Ahmes, there is one problem (Problem 30) in which   
 

 
  

 

 
  

 

 
     is solved by 

factoring the left-hand side of the equation and dividing 37 by   
 

 
 

 

 
 

 

 
 the result being 

   
 

  
 

 

   
 

 

   
  

Many of the “aha” calculations in the Rhind (Ahmes) Papyrus appear to be practice exercises 

for young students. Although a large proportion of them are of a practical nature, in some 

places the scribe seemed to have had puzzles or mathematical recreations in mind.  

Thus, Problem 79 cites only  

“seven houses, 49 cats, 343 mice, 2401 ears of spelt, 16807 hekats.”  
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It is presumed that the scribe was dealing with a problem, perhaps quite well known, where in 

each of seven houses there are seven cats, each of which eats seven mice, each of which would 

have eaten seven ears of grain, each of which would have produced seven measures of grain. 

The problem evidently called not for the practical answer, which would be the number of 

measures of grain that were saved, but for the impractical sum of the numbers of houses, cats, 

mice, ears of spelt, and measures of grain. This bit of fun in the Ahmes Papyrus seems to be a 

forerunner of our familiar nursery rhyme: 

As I was going to St. Ives, 

I met a man with seven wives; 

Every wife had seven sacks, 

Every sack had seven cats, 

Every cat had seven kits, 

Kits, cats, sacks, and wives, 

How many were going to St. Ives? 

 

POSSIBLE SHORT QUESTIONS: 

i. Define “Heap”. Also write other names for the term ‘heap’. 

ii. Note on problem 24. 

iii. Note on problem 30. 

iv. In the Rhind (Ahmes) Papyrus what type of heap problems appeared? 

v. Note on problem 79. 

vi. Would you write a rhyme of modern age which relate with problem 79? 

 LONG QUESTIONS: 

1) Briefly describe about Heap Problems in ancient Egypt. 
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GEOMETRIC PROBLEMS: The word “Geometry” is derived by ancient Greek, (Geo mean Earth, 

Metron mean measurement) is a branch of mathematics concerned with knowledge dealing 

with spatial relationships, for example, geometrical shapes, relative position of geometrical 

figures and the properties of space. A mathematician who work in the field of geometry is 

called a geometer. 

BEGINNING: In the beginning geometry was a collection of rules for computing lengths, areas 

and volumes. Many were crude approximation derived by trial and error. This body of 

knowledge developed and used in construction, navigation and surveying by the Babylonian 

and Egyptians was passed to the Greeks. The Greek historian Herodotus (5th century BC) credits 

the Egyptians with having originated the subject, but there is much evidence that the 

Babylonian, the Hindu civilization and the Chinese knew much of what was passed along the 

Egyptians. 

Though there is great difference of opinion regarding the antiquity of Egyptian civilization, yet 

all authorities agree in the statement that, however far back they go, they find no uncivilized 

state of society. Menes, the  first king, changes the course of the Nile, makes a great reservoir, 

and builds the temple of Phthah at Memphis." The Egyptians built the pyramids at a very early 

period. Surely a people engaging in enterprises of such magnitude must have known something 

of mathematics at least of practical mathematics. 

All Greek writers are unanimous in ascribing, without tenvy, to Egypt the priority of invention in 

the mathematical sciences.  Plato in Phadrus says:  

“At the Egyptian city of Naucratis there was a famous old god whose name was Theuth; the 

birdwhich is called the Ibis was sacred to him, and he was the inventor of many arts, such as 

arithmetic and calculation and geometry and astronomy and draughts and dice, but his great 

discovery was the use of letters." 

Aristotle says that mathematics had its birth in Egypt, because there the priestly class had the 

leisure needful for the study of it. Geometry, in particular, is said by Herodotus, Diodorus, 

Diogenes Laertius, Iamblichus, and other ancient writers to have originated in Egypt. In 

Herodotus we find this (II. c. 109): They said also that 

“this king [Sesostris] divided the land among all Egyptians so as to give each one a quadrangle 

of equal size and to draw from each his revenues, by imposing a tax to be levied yearly. But 

everyone from whose part the river tore away anything, had to go to him and notify what had 

happened; he then sent the overseers, who had to measure out by how much the land had 

become smaller, in order that the owner might pay on what was left, in proportion to the entire 

tax imposed. In this way, it appears to me, geometry originated, which passed thence to 

Hellas."  
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Some problems in this papyrus seem to imply a rudimentary knowledge of proportion. 

The base-lines of the pyramids run north and south, and east and west, but probably only the 

lines running north and south were determined by astronomical observations. This, coupled 

with the fact that the word harpedonapte, applied to Egyptian geometers, means “ rope-

stretchers," would point to the conclusion that the Egyptian, like the Indian and Chinese 

geometers, constructed a right triangle upon a given line, by stretching around three pegs a 

rope consisting of three parts in the ratios 3 : 4 : 5, and thus forming a right triangle. 

 If this explanation is correct, then the Egyptians were familiar, 2000 years B.C., with the well-

known property of the right triangle, for the special case at least when the sides are in the ratio 

3 : 4 : 5. 

On the walls of the celebrated temple of Horus at Edfu have been found hieroglyphics, written 

about 100 b.c., which enumerate the pieces of land owned by the priesthood, and give their 

areas. The area of any quadrilateral, however irregular, is there found by the formula 
   

 
 
   

 
 

Thus, for a quadrangle whose opposite sides are 5 and 8, 20 and 15, is given the area 113
 

 

 

 
 

The incorrect formula of Ahmes of 3000 years B.C. yield generally closer approximations than 

those of the Edfu inscriptions, written 200 years after Euclid! 

The fact that the geometry of the Egyptians consists chiefly of constructions, goes far to explain 

certain of its great defects. The Egyptians failed in two essential points without which a science 

of geometry, in the true sense of the word, cannot exist. In the first place, they failed to 

construct a rigorously logical system of geometry, resting upon a few axioms and postulates. A 

great many of their rules, especially those in solid geometry, had probably not been proved at 

all, but were known to be true merely from observation or as matters of fact. The second great 

defect was their inability to bring the numerous special cases under a more general view, and 

thereby to arrive at broader and more fundamental theorems. Some of the simplest 

geometrical truths were divided into numberless special cases of which each was supposed to 

require separate treatment. 

In geometry the forte of the Egyptians lay in making constructions and determining areas. The 

area of an isosceles triangle, of which the sides measure 10 ruths and the base 4 ruths, was 

erroneously given as 20 square ruths, or half the product of the base by one side.  

The area of an isosceles trapezoid is found, similarly, by multiplying half the sum of the parallel 

sides by one of the non-parallel sides.  
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The area of a circle is found by deducting from the diameter 
 

 
 of its length and squaring the 

remainder. Here is taken     
  

 
                  a very fair approximation. 

The papyrus explains also such problems as these, ”To mark out in the field a right triangle 

whose sides are 10 and 4 units; or a trapezoid whose parallel sides are 6 and 4, and the non-

parallel sides each 20 units. 

It is often said that the ancient Egyptians were familiar with the Pythagorean theorem, but 

there is no hint of this in the papyri that have come down to us. There are nevertheless some 

geometric problems in the Ahmes Papyrus. 

Problem 51 of Ahmes shows that the area of an isosceles triangle was found by taking half of 

what we would call the base and multiplying this by the altitude. Ahmes justified his method of 

finding the area by suggesting that the isosceles triangle can be thought of as two right 

triangles, one of which can be shifted in position, so that together the two triangles form a 

rectangle.  

The isosceles trapezoid is  similarly handled in Problem 52, in which the larger base of a 

trapezoid is 6, the smaller base is 4, and the distance between them is 20. Taking 12 of the sum 

of the bases, “so as to make a rectangle,” Ahmes multiplied this by 20 to find the area. 

In transformations such as these, in which isosceles triangles and trapezoids are converted into 

rectangles, we may see the beginnings of a theory of congruence and the idea of proof in 

geometry, but there is no evidence that the Egyptians carried such work further. Instead, their 

geometry lacks a clear-cut distinction between relationships that are exact and those that are 

only approximations. A surviving deed from Edfu, dating from a period some 1,500 years after 

Ahmes, gives examples of triangles, trapezoids, rectangles, and more general quadrilaterals. 

The rule for finding the area of the general quadrilateral is to take the product of the arithmetic 

means of the opposite sides. Inaccurate though the rule is, the author of the deed deduced 

from it a corollary—that the area of a triangle is half of the sum of two sides multiplied by half 

of the third side. This is a striking instance of the search for relationships among geometric 

figures, as well as an early use of the zero concept as a replacement for a magnitude in 

The Egyptian rule for finding the area of a circle has long been regarded as one of the 

outstanding achievements of the time. In Problem 50, the scribe Ahmes assumed that the area 

of a circular field with a diameter of 9 units is the same as the area of a square with a side of 8 

units. 

 If we compare this assumption with the modern formula A = πr2, we find the Egyptian rule to 

be equivalent to giving π a value of about  
 

 
  a commendably close approximation, but here 

Available at http://www.mathcity.org
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again we miss any hint that Ahmes was aware that the areas of his circle and square were not 

exactly equal.  

It is possible that Problem 48 gives a hint to the way in which the Egyptians were led to their 

area of the circle. In this problem, the scribe formed an octagon from a square having sides of 9 

units by trisecting the sides and cutting off the four corner isosceles triangles, each having an 

area of 41 2 units. The area of the octagon, which does not differ greatly from that of a circle 

inscribed within the square, is 63 units, which is not far removed from the area of a square with 

8 units on a side.  

That the number 4(
 

 
)2 did indeed play a role comparable to our constant π seems to be 

confirmed by the Egyptian rule for the circumference of a circle, according to which the ratio of 

the area of a circle to the circumference is the same as the ratio of the area of the 

circumscribed square to its perimeter. This observation represents a geometric relationship of 

far greater precision and mathematical significance than the relatively good approximation for 

π.  

Degree of accuracy in approximation is not a good measure of either mathematical or 

architectural achievement, and we should not over emphasize this aspect of Egyptian work. 

Recognition by the Egyptians of interrelationships among geometric figures, on the other hand, 

has too often been overlooked, and yet it is here that they came closest in attitude to their 

successors, the Greeks. No theorem or formal proof is known in Egyptian mathematics, but 

some of the geometric comparisons made in the Nile Valley, such as those on the perimeters 

and the areas of circles and squares, are among the first exact statements in history concerning 

curvilinear figures. 

The value of 
  

 
  is often used today for π; but we must recall that Ahmes’s value for π is about 

3
 

 
   not 3 

 

 
. That Ahmes’s value was also used by other Egyptians is confirmed in a papyrus roll 

from the twelfth dynasty (the Kahun Papyrus), in which the volume of a cylinder is found by 

multiplying the height by the area of the base, the base being determined according to Ahmes’s 

rule.  

Associated with Problem 14 in the Moscow Papyrus is a figure that looks like an isosceles 

trapezoid (see Fig), 
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Reproduction (top) of a portion of the Moscow Papyrus, showing the problem of the 

volume of a frustum of a square pyramid, together with hieroglyphic transcription 

(below) 

 

but the calculations associated with it indicate that a frustum of a square pyramid is intended. 

Above and below the figure are signs for 2 and 4, respectively, and within the figure are the 

hieratic symbols for 6 and 56. The directions alongside make it clear that the problem calls for 

the volume of a frustum of a square pyramid 6 units high if the edges of the upper and lower 
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bases are 2 and 4 units, respectively. The scribe directs one to square the numbers 2 and 4 and 

to add to the sum of these squares the product of 2 and 4, the result being 28. This result is 

then multiplied by a third of 6, and the scribe concludes with the words “See, it is 56; you have 

found it correctly.” That is, the volume of the frustum has been calculated in accordance with 

the modern formula V = h(a2+ ab + b2 ) /3, where h is the altitude and a and b are the sides of 

the square bases. Nowhere is this formula written out, but in substance it evidently was known 

to the Egyptians. If, as in the deed from Edfu, one takes b = 0, the formula reduces to the 

familiar formula, one-third the base times the altitude, for the volume of a pyramid.  

How these results were arrived at by the Egyptians is not known. An empirical origin for the 

rule on the volume of a pyramid seems to be a possibility, but not for the volume of the 

frustum. For the latter, a theoretical basis seems more likely, and it has been suggested that the 

Egyptians may have proceeded here as they did in the cases of the isosceles triangle and the 

isosceles trapezoid—they may mentally have broken the frustum into parallelepipeds, prisms, 

and pyramids. On replacing the pyramids and the prisms by equal rectangular blocks, a 

plausible grouping of the blocks leads to the Egyptian formula. One could, for example, have 

begun with a pyramid having a square base and with the vertex directly over one of the base 

vertices. An obvious decomposition of the frustum would be to break it into four parts as in 

Figure (below)  a rectangular parallelepiped having a volume b2h, two triangular prisms, each 

with a volume of              , and a pyramid of volume (a - b)2h / 3. The prisms can be 

combined into a rectangular parallelepiped with dimensions b and a - b and h; and the pyramid 

can be thought of as a rectangular parallelepiped with dimensions a - b and a - b and h / 3. On 

cutting up the tallest parallelepipeds so that all altitudes are h / 3, one can easily arrange the 

slabs so as to form three layers, each of altitude h / 3, and having cross-sectional areas of a2and 

ab and b2 , respectively. 
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Problem 10 in the Moscow Papyrus presents a more difficult question of interpretation than 

does Problem 14. Here the scribe asks for the surface area of what looks like a basket with a 

diameter of 4
 

 
. He proceeds as though he were using the equivalent of a formula                              

  (  
 

 
)
 
        where x is 4

 

 
, obtaining an answer of 32 units. Inasmuch as (  

 

 
)
 

is the 

Egyptian approximation of π/4, the answer 32 would correspond to the surface of a hemisphere 

of diameter4
 

 
, and this was the interpretation given to the problem in 1930. Such a result, 

antedating the oldest known calculation of a hemispherical surface by some 1,500 years, would 

have been amazing, and it seems, in fact, to have been too good to be true. Later analysis 

indicates that the “basket” may have been a roof—somewhat like that of a Quonset hut in the 

shape of a half-cylinder of diameter 4
 

 
 and length 4

 

 
. The calculation in this case calls for 

nothing beyond knowledge of the length of a semicircle, and the obscurity of the text makes it 

admissible to offer still more primitive interpretations, including the possibility that the 

calculation is only a rough estimate of the area of a domelike barn roof. In any case, we seem to 

have here an early estimation of a curvilinear surface area. 
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POSSIBLE SHORT QUESTIONS: 

i. Shortly note on the term ‘Geometry’. 

ii. Shortly note on the beginning of  ‘Geometry’. 

iii. Ancient Egyptians must have known something of mathematics at least of 

practical mathematics. Could you explain it with some example? 

iv. Aristotle says that mathematics had its birth in Egypt, on what bases? 

v. Name few historians who said that geometry originated in Egypt. 

vi. Herodotus, said the Geometry originated in Egypt. On what bases? Quote its 

saying. 

vii. The Egyptians were familiar, 2000 years B.C., with the well-known property of 

the right triangle. Is it true? 

viii. The geometry of the Egyptians consists certain defects. Note on them. 

ix. Write the views of Egyptians about area. 

x. How did Egyptians find the  area of isosceles triangle? 

xi. How did Egyptians find the  area of isosceles trapezoid? 

xii. How did Egyptians find the  area of circle? 

xiii. It is often said that the ancient Egyptians were familiar with the Pythagorean 

theorem. Is it true? 

xiv. Note on Problem 51. Or  write Ahmes method to find the area of an isosceles 

triangle. 

xv. Note on Problem 52. Or  write Ahmes method to find the area of an isosceles 

trapezoid. 

xvi. Note on Problem 50. Or  write Ahmes method to find the area of an circle. 

xvii. Write edfu corollary and its importance. 

xviii. About relationships, what was the concept of Egytians? 

xix. Write the rule for finding the area of the general quadrilateral in Egypt era. 

xx. Note on Problem 48. 

xxi. Write the role of 4(
 

 
)2in Egyptian mathematics. 

xxii. What were the concept of Egyptians about Degree of accuracy or about Angles? 

xxiii. Write the Ahmes’s value for π. 

xxiv. Note on Problem 14. 

xxv. Note on problem 10. 

LONG QUESTIONS: 

1) Briefly describe about Geometrical concepts in ancient Egypt. 

 

Available at http://www.mathcity.org
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SLOPE PROBLEMS 

In the construction of the pyramids, it had been essential to maintain a uniform slope for the 

faces, and it may have been this concern that led the Egyptians to introduce a concept 

equivalent to the cotangent of an angle. In modern technology, it is customary to measure the 

steepness of a straight line through the ratio of the “rise” to the “run.” In Egypt, it was 

customary to use the reciprocal of this ratio. There, the word “seqt” meant the horizontal 

departure of an oblique line from the vertical axis for every unit change in the height. The seqt 

thus corresponded, except for the units of measurement, to the batter used today by architects 

to describe the inward slope of a masonry wall or pier. The vertical unit of length was the cubit, 

but in measuring the horizontal distance, the unit used was the “hand,” of which there were 

seven in a cubit. Hence, the seqt of the face of a pyramid was the ratio of run to rise, the former 

measured in hands, the latter in cubits.  

In Problem 56 of the Ahmes Papyrus, one is asked to find the seqt of a pyramid that is 250 ells 

or cubits high and has a square base 360 ells on a side. The scribe first divided 360 by 2 and 

then divided the result by 250, obtaining 
 

 
 

 

 
 

 

  
 in ells. Multiplying the result by 7, he gave 

the seqt as 5 
 

  
 in hands per ell. In other pyramid problems in the Ahmes Papyrus, the seqt 

turns out to be 5
 

 
, agreeing somewhat better with that of the great Cheops Pyramid, 440 ells 

wide and 280 high, the seqt being 5
 

 
 hands per ell. 

 

POSSIBLE SHORT QUESTIONS: 

i. How did Egyptian introduce about cotangent of an angle or Slope? 

ii. In modern age we measure the steepness of a straight line through the ratio of 

the “rise” to the “run.” How did Egyptian measure? 

iii. What is meant by the word seqt? 

iv. Note on Problem 56. 

LONG QUESTIONS: 

1) Briefly describe about Slope concepts in ancient Egypt. 

 

 

 



28 
 

MUHAMMAD USMAN HAMID (0323-6032785) 

END WORDS ABOUT EGYPTIAN HISTORY 

The knowledge indicated in extant Egyptian papyri is mostly of a practical nature, and 

calculation was the chief element in the questions. Where some theoretical elements appear to 

enter, the purpose may have been to facilitate technique. Even the once-vaunted Egyptian 

geometry turns out to have been mainly a branch of applied arithmetic. Where elementary 

congruence relations enter, the motive seems to be to provide mensurational devices. The 

rules of calculation concern specific concrete cases only. The Ahmes and Moscow papyri, our 

two chief sources of information, may have been only manuals intended for students, but they 

nevertheless indicate the direction and tendencies in Egyptian mathematical instruction. 

Further evidence provided by inscriptions on monuments, fragments of other mathematical 

papyri, and documents from related scientific fields serves to confirm the general impression. It 

is true that our two chief mathematical papyri are from a relatively early period, a thousand 

years before the rise of Greek mathematics, but Egyptian mathematics seems to have remained 

remarkably uniform throughout its long history. It was at all stages built around the operation 

of addition, a disadvantage that gave to Egyptian computation a peculiar primitivity, combined 

with occasionally astonishing complexity. 

     The fertile Nile Valley has been described as the world’s largest oasis in the world’s 

largest desert. Watered by one of the most gentlemanly of rivers and geographically shielded to 

a great extent from foreign invasion, it was a haven for peace-loving people who pursued, to a 

large extent, a calm and unchallenged way of life. Love of the beneficent gods, respect for 

tradition, and preoccupation with death and the needs of the dead all encouraged a high 

degree of stagnation. Geometry may have been a gift of the Nile, as Herodotus believed, but 

the available evidence suggests that Egyptians used the gift but did little to expand it. The 

mathematics of Ahmes was that of his ancestors and of his descendants. For more progressive 

mathematical achievements, one must look to the more turbulent river valley known as 

Mesopotamia.  
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BABYLONIAN (MESOPOTAMIAN) 

How much is one god beyond the other god? 

An Old Babylonian astronomical text 

THE ERA AND THE SOURCES 

The fourth millennium before our era was a period of remarkable cultural development, 

bringing with it the use of writing, the wheel, and metals. As in Egypt during the first dynasty, 

which began toward the end of this extra-ordinary millennium, so also in the Mesopotamian 

Valley there was at the time a high order of civilization. There the Sumerians had built homes 

and temples decorated with artistic pottery and mosaics in geometric patterns. Powerful rulers 

united the local principalities into an empire that completed vast public works, such as a system 

of canals to irrigate the land and control flooding between the Tigris and Euphrates rivers, 

where the overflow of the rivers was not predictable, as was the inundation of the Nile Valley. 

The cuneiform pattern of writing that the Sumerians had developed during the fourth 

millennium probably antedates the Egyptian hieroglyphic system. 

The Mesopotamian civilizations of antiquity are often referred to as Babylonian, 

although such a designation is not strictly correct. The city of  Babylon was not at first, nor was 

it always at later periods, the center of the culture associated with the two rivers, but 

convention has sanctioned the informal use of the name “Babylonian” for the region during the 

interval From about 2000 to roughly 600 BCE. When in 538 BCE Babylon fell to Cyrus of Persia, 

the city was spared, but the Babylonian Empire had come to an end.                                     

“Babylonian” mathematics, however, continued through the Seleucid period in Syria almost to 

the dawn of Christianity. 

Then, as today, the Land of the Two Rivers was open to invasions from many directions, 

making the Fertile Crescent a battlefield with frequently changing hegemony. One of the most 

significant of the invasions was that by the Semitic Akkadians under Sargon I (ca. 2276 2221 

BCE), or Sargon the Great. He established an empire that extended from the Persian Gulf in the 

south to the Black Sea in the north, and from the steppes of Persia in the east to the 

Mediterranean Sea in the west. Under Sargon, the invaders began a gradual absorption of the 

indigenous Sumerian culture, including the cuneiform script. Later invasions and revolts 

brought various racial strains— Ammorites, Kassites, Elamites, Hittites, Assyrians, Medes, 

Persians, and others—to political power at one time or another in the valley, but there 

remained in the area a sufficiently high degree of cultural unity to justify referring to the 

civilization simply as Mesopotamian. In particular, the use of cuneiform script formed a strong 

bond. 
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Laws, tax accounts, stories, school lessons, personal letters—these and many other records 

were impressed on soft clay tablets with styluses, and the tablets were then baked in the hot 

sun or in ovens. Such written documents were far less vulnerable to the ravages of time than 

were Egyptian papyri; hence, as much larger body of evidence about Mesopotamian 

mathematics is available today than exists about the Nilotic system. From one locality aLONG, 

the site of ancient Nippur, we have some 50,000 tablets. The university libraries at Columbia, 

Pennsylvania, and Yale, among others, have large collections of ancient tablets from 

Mesopotamia, some of them mathematical. Despite the availability of documents, however, it 

was the Egyptian hieroglyphic, rather than the Babylonian cuneiform, that was first deciphered 

in modern times. The German philologist F.W.Grotefend had made some progress in the 

reading of Babylonian script early in the nineteenth century, but only during the second quarter 

of the twentieth century did substantial accounts of Mesopotamian mathematics begin to 

appear in histories of antiquity. 

POSSIBLE SHORT QUESTIONS: 

i. Write the time period of Babylonian Era. 

ii. How did Babylonian save their records? 

iii. In which institutes mostly material (mathematical) of Babylonian era saved? 

iv. In 9th century who tried to read Babylonian Script? 

LONG QUESTIONS: 

1) Briefly describe about era and the sources of Babylonian histry of 

mathematics. 

CUNEIFORM WRITING 

The fertile valley of the Euphrates and Tigris was one of the primeval seats of human society. 

Authentic history of the peoples inhabiting this region begins only with the foundation, in 

Chaldaea and Babylonia, of a united kingdom out of the previously disunited tribes. Much light 

has been thrown on their history by the discovery of the art of reading the cuneiform or 

wedge-shaped system of writing.  

In the study of Babylonian mathematics we begin with the notation of numbers. A vertical 

wedge  stood for 1, while the characters  and  signified 10 and 100 respectively. 

Grotefend believes the character for 10 originally to have been the picture of two hands, as 

held in prayer, the palms being pressed together, the fingers close to each other, but the 

thumbs thrust out. In the Babylonian notation two principals were employed _ the additive and 

multiplicative. Numbers below 100 were expressed by symbols whose respective values had to 
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be added. Thus,  stood for 2,  for 3,  for 4,  for 23,   for 30. Here 

the symbols of higher order appear always to the left of those of lower order. In writing the 

hundreds, on the other hand, a smaller symbol was placed to the left of the 100, and was, in 

that case, to be multiplied by 100. Thus,  signified 10 times 100, or 1000. But this 

symbol for 1000 was itself taken for a new unit, which could take smaller coefficients to its left. 

Thus,  denoted, not 20 times 100, but 10 times 1000. Of the largest numbers 

written in cuneiform symbols, which have hitherto been found, none go as high as a million.  

The early use of writing in Mesopotamia is attested to by hundreds of clay tablets found in Uruk 

and dating from about 5,000 years ago. By this time, picture writing had reached the point 

where conventionalized stylized forms were used for many things:  for water,  

for eye, and combinations of these to indicate weeping. Gradually, the number of signs became 

smaller, so that of some 2,000 Sumerian signs originally used, only a third remained by the time 

of the Akkadian conquest. Primitive drawings gave way to combinations of wedges: water 

became  and eye  . At first, the scribe wrote from top to bottom in columns 

from right to left; later, for convenience, the table was rotated counterclockwise through 90 , 

and the scribe wrote from left to right in horizontal rows from top to bottom. The stylus, which 

formerly had been a triangular prism, was replaced by a right circular cylinder—or, rather, two 

cylinders of unequal radius. During the earlier days of the Sumerian civilization, the end of the 

stylus was pressed into the clay vertically to represent 10 units and obliquely to represent a 

unit, using the smaller stylus; similarly, an oblique impression with the larger stylus indicated 60 

units and a vertical impression indicated 3,600 units. Combinations of these were used to 

represent intermediate numbers. 

POSSIBLE SHORT QUESTIONS: 

i. What is Cuneiform Writing? 

ii. Babylonian used special symbol for 10. Write it.  Write Grotefend belief about it. 

iii. In the Babylonian notation two principals were employed. Name them. 

iv. Write the Babylonian notation for 1,2,3,4,23 and 30 etc. 

v. How did Babylonian represent intermediate numbers? 

LONG QUESTIONS: 

1) Briefly describe about the Cuneiform Writing of Babylonian history of mathematics. 



32 
 

MUHAMMAD USMAN HAMID (0323-6032785) 

SEXAGESIMALS 

As the Akkadians adopted the Sumerian form of writing, lexicons were compiled giving 

equivalents in the two tongues, and forms of words and numerals became less varied. 

Thousands of tablets from about the time of the Hammurabi dynasty (ca. 1800 1600 BCE) 

illustrate a number system that had become well established. The decimal system, common to 

most civilizations, both ancient and modern, had been submerged in Mesopotamia under a 

notation that made fundamental the base 60. Much has been written about the motives behind 

this change; it has been suggested that astronomical considerations may have been 

instrumental or that the sexagesimal scheme might have been the natural combination of two 

earlier schemes, one decimal and the other using the base 6. It appears more likely, however, 

that the base 60 was consciously adopted and legalized in the interests of metrology, for a 

magnitude of 60 units can be sub- divided easily into halves, thirds, fourths, fifths, sixths, 

tenths, twelfths, fifteenths, twentieths, and thirtieths, thus affording ten possible sub-divisions. 

Whatever the origin, the sexagesimal system of numeration has enjoyed a remarkably long life, 

for remnants survive, unfortunately for consistency, even to this day in units of time and angle 

measure, despite the fundamentally decimal form of mathematics in our society. 

What led to the invention of the sexagesimal system? Why was it that 60 parts were selected? 

To this we have no positive answer. Ten was chosen, in the decimal system, because it 

represents the number of  fingers. But nothing of the human body could have suggested 60.    

Cantor offers the following theory: At first the Babylonians reckoned the year at 360 days. This 

led to the division of the circle into 360 degrees, each degree representing the daily amount of 

the supposed yearly revolution of the sun around the earth. Now they were, very probably, 

familiar with the fact that the radius can be applied to its circumference as a chord 6 times, and 

that each of these chords subtends an arc measuring exactly 60 degrees. Fixing their attention 

upon these degrees, the division into 60 parts may have suggested itself to them. Thus, when 

greater precision necessitated a subdivision of the degree, it was partitioned into 60 minutes. In 

this way the sexagesimal notation may have originated. The division of the day into 24 hours, 

and of the hour into minutes and seconds on the scale of 60, is due to the Babylonians. 

POSSIBLE SHORT QUESTIONS: 

i. What is Sexagesimal system? 

ii. What led to the invention of the sexagesimal system? This question have no 

exact answer but regarding this Cantor offered a theory. Write that. 

LONG QUESTIONS: 

1) Briefly describe about the Sexagesimal system of Babylonian history of mathematics. 
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POSITIONAL NUMERATION 

Babylonian cuneiform numeration, for smaller whole numbers, proceeded along the same lines 

as did the Egyptian hieroglyphic, with repetitions of the symbols for units and tens. Where the 

Egyptian architect, carving on stone, might write 59 as  , the Mesopotamian 

scribe could similarly represent the same number on a clay tablet through fourteen wedge-

shaped marks—five broad sideways wedges or “angle-brackets,” each representing 10 units, 

and nine thin vertical wedges, each standing for a unit, all juxtaposed in a neat group as 

 . Beyond the number 59, however, the Egyptian and Babylonian systems 

differed markedly. Perhaps it was the inflexibility of the Mesopotamian writing materials, 

possibly it was a flash of imaginative insight that made the Babylonians realize that their two 

symbols for units and tens sufficed for the representation of any integer, however large, 

without excessive repetitiveness. This was made possible through their invention, some 4,000 

years ago, of the positional notation—the same principle that accounts for the effectiveness of 

our present numeral forms. That is, the ancient Babylonians saw that their symbols could be 

assigned values that depend on their relative positions in the representation of a number. Our 

number 222 makes use of the same cipher three times, but with a different meaning each time. 

Once it represents two units, the second time it means two 10s, and finally it stands for two 

100s (that is, twice the square of the base 10). In a precisely analogous way, the Babylonians 

made multiple use of such a symbol as  . When they wrote  

clearly separating the three groups of two wedges each, they understood the right-hand group 

to mean two units, the next group to mean twice their base, 60, and the left-hand group to 

signify twice the square of their base. This numeral, therefore, denoted 2(60)2 + 2(60) + 2                  

(or 7,322 in our notation). 

A wealth of primary material exists concerning Mesopotamian mathematics, but, oddly 

enough, most of it comes from two periods widely separated in time. There is an abundance of 

tablets from the first few hundred years of the second millennium BCE (the Old Babylonian 

age), and many tablets have also been found dating from the last few centuries of the first 

millennium BCE (the Seleucid period). Most of the important contributions to mathematics will 

be found to go back to the earlier period, but one contribution is not in evidence until almost 

300 BCE. The Babylonians seem at first to have had no clear way in which to indicate an 
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“empty” position—that is, they did not have a zero symbol, although they sometimes left a 

space where a zero was intended. This meant that their forms for the numbers 122 and 7,202 

looked very much alike, for  might mean either 2(60) + 2 or 2(60)2 + 2. Context in 

many cases could be relied on to relieve some of the ambiguity, but the lack of a zero symbol, 

such as enables us to distinguish at a glance between 22 and 202, must have been quite 

inconvenient. 

By about the time of the conquest by Alexander the Great, however, a special sign, 

consisting of two small wedges placed obliquely, was invented to serve as a placeholder where 

a numeral was missing. From that time on, as long as cuneiform was used, the number 

 ,or 2(60)2 + 0(60) + 2, was readily distinguishable from ,    or 

2(60) + 2.  The Babylonian zero symbol apparently did not end all ambiguity, for the sign seems 

to have been used for intermediate empty positions only. There are no extant tablets in which 

the zero sign appears in a terminal position. This means that the Babylonians in antiquity never 

achieved an absolute positional system. Position was only relative; hence, the symbol  

 could represent 2 (60) + 2  or 2(60)2 + 2(60) or 2(60)3 + 2(60)2 or any one of 

indefinitely many other numbers in which two successive positions are involved. 

POSSIBLE SHORT QUESTIONS: 

i. Write the symbolic representation of 59 in Egyptian mathematics as well as 

Babylonian times. 

ii. Write special symbol for 59 in Babylonian mathematics history. 

iii. Is the zero symbol presented in Babylonian mathematics? 

iv. Since Babyloinians had no symbiol for zero then what did they use for value 

having zero magnitude? 

v. Write 2(60)2 + 0(60) + 2 in Babylonian symbols. 

vi. Shortly note on Posintional system of Babylonians. As they have no absolute 

positional system. 

LONG QUESTIONS: 

1) Briefly describe about the Positional numeration of Babylonian history of 

mathematics. 
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SEXAGESIMAL FRACTIONS 

Had Mesopotamian mathematics, like that of the Nile Valley, been based on the addition of 

integers and unit fractions, the invention of the positional notation would not have been 

greatly significant at the time. It is not much more difficult to write 98,765 in hieroglyphic 

notation than in cuneiform, and the latter is definitely more difficult to write than the same 

number in hieratic script. The secret of the superiority of Babylonian mathematics over that of 

the Egyptians lies in the fact that those who lived “between the two rivers” took the most 

felicitous step of extending the principle of position to cover fractions as well as whole 

numbers. That is, the notation  was used not only for 2(60) + 2, but also for 2+ 2(60) 

or for 2(60) + 2(60)2 or for other fractional forms involving two successive positions. This meant 

that the Babylonians had at their command the computational power that the modern decimal 

fractional notation affords us today. For the Babylonian scholar, as for the modern engineer, 

the addition or the multiplication of 23.45 and 9.876 was essentially no more difficult than was 

the addition or the multiplication of the whole numbers 2,345 and 9,876, and the 

Mesopotamians were quick to exploit this important discovery. 

POSSIBLE SHORT QUESTIONS: 

i. Write the superiority of Babylonian mathematics over Egyptian mathematics. 

ii. On what mathematical concept, Babylonian had at their command? 

LONG QUESTIONS: 

1) Briefly describe about the Positional numeration of Babylonian history of 

mathematics. 

APPROXIMATIONS 

An Old Babylonian tablet from the Yale Collection (No. 7289) includes the calculation of the 

square root of 2 to three sexagesimal places, the answer being written  . In 

modern characters, this number can be appropriately written as 1;24,51,10, where a semicolon 

is used to separate the integral and fractional parts, and a comma is used as a separatrix for the 

sexagesimal positions. This form will generally be used throughout this chapter to designate 

numbers in sexagesimal notation. Translating this notation into decimal form, we have 

1+24(60)+51(60)2+10(60)3 . This Babylonian value for √   is equal to approximately 1.414222, 

differing by about 0.000008 from the true value. Accuracy in approximations was relatively easy 

for the Babylonians to achieve with their fractional notation, which was rarely equaled until the 

time of the Renaissance. 
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The effectiveness of Babylonian computation did not result from their system of numeration 

aLONG. Mesopotamian mathematicians were skillful in developing algorithmic procedures, 

among which was a square-root process often ascribed to later men. It is sometimes attributed 

to the Greek scholar Archytas (428 365 BCE) or to Heron of Alexandria (ca. 100 CE); 

occasionally, one finds it called Newton’s algorithm. This Babylonian procedure is as simple as it 

is effective. Let x = √  be the root desired, and let a1 be a first approximation to this root; let a 

second approximation be found from the equation b1 = a/a1.If a1 is too small, then b1 is too 

large, and vice versa. Hence, the arithmetic mean a2 = 
 

 
 (a1 + b1) is a plusible next 

approximation. Inasmuch as a2 is always too large, the next approximation, b2 = a/a2, will be too 

small, and one takes the arithmetic mean a3 = 
 

 
 (a2 + b2) to obtain a still better result; the 

procedure can be continued indefinitely. The value of √  on Yale Tablet 7289 will be found to 

be that of a3,where a1 = 1;30. In the Babylonian square-root algorithm, one finds an iterative 

procedure that could have put the mathematicians of the time in touch with infinite processes, 

but scholars of that era did not pursue the implications of such problems. 

The algorithm just described is equivalent to a two-term approximation to the binomial series, 

a case with which the Babylonians were familiar. If √     is desired, the approximation a1 = a 

leads to b1 = (a2+b)/a and a2 = (a1+b1)/2 = a+ b /(2a), which is in agree ment with the first two 

terms in the expansion of (a2 + b)1/2 and provides an approximation found in Old Babylonian 

texts. 

POSSIBLE SHORT QUESTIONS: 

i. Write the symbolic representation of √  in Babylonian symbols. 

ii. Write the sexagesimal representation of √  in Babylonian symbols. 

iii. In modern mathematics Which symbol is used to separate the integral and 

fractional parts? Show with example. 

iv. In modern mathematics Which symbol is used as a separatrix for the sexagesimal 

positions? Show with example. 

v. Explain Newton’s algorithm with example in Babylonian mathematics history. 

vi. Write the Babylonian Procedure to find Square root. Or write Babylonian Square 

root method. 

LONG QUESTIONS: 

1) Briefly describe about the Approximation concept of Babylonian history of 

mathematics. 
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TABLES 

A substantial proportion of the cuneiform tablets that have been unearthed are “table texts,” 

including multiplication tables, tables of reciprocals, and tables of squares and cubes and of 

square and cube roots written, of course, in cuneiform sexagesimals. One of these, for example, 

carries the equivalents of the entries shown in the following table: 

 

The product of elements in the same line is in all cases 60, the Babylonian number base, and 

the table apparently was thought of as a table of reciprocals. The sixth line, for example, 

denotes that the reciprocal of 8 is 7/60+ 30/ (60)2 . It will be noted that the reciprocals of 7 and 

11 are missing from the table, because the reciprocals of such “irregular” numbers are 

nonterminating sexagesimals, just as in our decimal system the reciprocals of 3, 6, 7, and 9 are 

infinite when expanded decimally. Again, the Babylonians were faced with the problem of 

infinity, but they did not consider it systematically. At one point, however, a Mesopotamian 

scribe seems to give upper and lower bounds for the reciprocal of the irregular number 7, 

placing it between 0;8,34,16,59 and 0;8,34,18. 

  It is clear that the fundamental arithmetic operations were handled by the Babylonians 

in a manner not unlike that which would be employed today, and with comparable facility. 

Division was not carried out by the clumsy duplication method of the Egyptians, but through an 

easy multiplication of the dividend by the reciprocal of the divisor, using the appropriate items 

in the table texts. Just as today the quotient of 34 divided by 5 is easily found by multiplying 34 

by 2 and shifting the decimal point, so in antiquity the same division problem was carried out 

by finding the product of 34 by 12 and shifting one sexagesimal place to obtain 6
  

  
. Tables of 

reciprocals in general furnished reciprocals only of “regular” integers—that is, those that can be 

written as products of twos, threes, and fives—although there are a few exceptions. One table 

text includes the approximations 
 

  
 = ;1,1,1 and 

 

  
 = ;0,59,0,59. Here we have sexagesimal 

analogues of our decimal expressions 
 

 
 = .11 ̅ and 

 

  
 =.09  ̅̅̅̅ , unit fractions in which the 
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denominator is one more or one less than the base, but it appears again that the Babylonians 

did not notice, or at least did not regard as significant, the infinite periodic expansions in this 

connection.  

One finds among the Old Babylonian tablets some table texts containing successive powers of a 

given number, analogous to our modern tables of logarithms or, more properly speaking, of 

antilogarithms.Exponential (or logarithmic) tables have been found in which the first ten 

powers are listed for the bases 9 and 16 and 1,40 and 3,45 (all perfect squares). The question 

raised in a problem text asking to what power a certain number must be raised in order to yield 

a given number is equivalent to our question “What is the logarithm of the given number in a 

system with a certain number as base?” The chief differences between the ancient tables and 

our own, apart from matters of language and notation, are that no single number was 

systematically used as a base in various connections and that the gaps between entries in the 

ancient tables are far larger than in our tables. Then, too, their “logarithm tables” were not 

used for general purposes of calculation, but rather to solve certain very specific questions. 

            Despite the large gaps in their exponential tables, Babylonian mathematicians did not 

hesitate to interpolate by proportional parts to approximate intermediate values. Linear 

interpolation seems to have been a commonplace procedure in ancient Mesopotamia, and the 

positional notation lent itself conveniently to the rule of three. A clear instance of the practical 

use of interpolation within exponential tables is seen in a problem text that asks how long it will 

take money to double at 20 percent annually; the answer given is 3;47,13,20. It seems to be 

quite clear that the scribe used linear interpolation between the values for (1;12)3 and (1;12)4 , 

following the compound interest formula a= P(1+r)n , where r is 20 percent, or 
  

  
, and reading 

values from an exponential table with powers of 1;12. 

POSSIBLE SHORT QUESTIONS: 

i. Shortly describe Babylonia table concept by using an example. 

ii. How did the Babylonians form there tables? 

iii. Division method of Babylonia was quite different the Egyptians. Explain it using 

an example. 

iv. Write the chief differences between the ancient tables and modern tables. 

LONG QUESTIONS: 

1) Briefly describe about the Table concept of Babylonian history of 

mathematics. 
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EQUATIONS 

One table for which the Babylonians found considerable use is a tabulation of the values 

of n3 + n2 for integral values of n, a table essential in Babylonian algebra; this subject reached a 

considerably higher level in Mesopotamia than in Egypt. Many problem texts from the Old 

Babylonian period show that the solution of the complete three-term quadratic equation 

afforded the Babylonians no serious difficulty, for flexible algebraic operations had been 

developed. They could transpose terms in an equation by adding equals to equals, and they 

could multiply both sides by like quantities to remove fractions or to eliminate factors. By 

adding 4ab to (a-b)2 they could obtain (a+b)2 ,forthey were familiar with many simple forms of 

factoring. They did not use letters for unknown quantities, for the alphabet had not yet been 

invented, but words such as “length,” “breadth,” “area,” and “volume” served effectively in this 

capacity. That these words may well have been used in a very abstract sense is suggested by 

the fact that the Babylonians had no qualms about adding a “length” to an “area” or an “area” 

to a “volume.” Egyptian algebra had been much concerned with linear equations, but the 

Babylonians evidently found these too elementary for much attention. In one problem, the 

weight x of a stone is called for if  (x+
 

 
)+ 

 

  
 (x+

 

 
)  is one mina; the answer is simply given as 

48;7,30 gin, where 60 gin make a mina. In another problem in an Old Babylonian text, we find 

two simultaneous linear equations in two unknown quantities, called respectively the “first 

silver ring” and the “second silver ring.” If we call these x and y in our notation, the equations 

are                and                . The answer is expressed laconically in terms of 

the rule   
 

 
 

  

    
 

 

  
    and 

 

  
 

 

    
 

 

  
 

In another pair of equations, part of the method of solution is included in the text. Here 
 

 
 width + length = 7 hands,and length + width = 10 hands. The solution is first found by 

replacing each “hand” with 5 “fingers” and then noticing that a width of 20 fingers and a length 

of 30 fingers will satisfy both equations. Following this, however, the solution is found by an 

alternative method equivalent to an elimination through combination. Expressing all 

dimensions in terms of hands, and letting the length and the width be x and y, respectively, the 

equations become y + 4x = 28 and x + y = 10. Subtracting the second equation from the first, 

one has the result 3x = 18; hence, x = 6 hands, or 30 fingers, and y = 20 fingers. 

POSSIBLE SHORT QUESTIONS: 

i. Did Babylonian use letters for unknown quantities? 

LONG QUESTIONS: 

1) Briefly describe about the equation concept of Babylonian history of 

mathematics. 
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QUADRATIC EQUATIONS 

The solution of a three-term quadratic equation seems to have exceeded by far the algebraic 

capabilities of the Egyptians, but Otto Neugebauer in 1930 disclosed that such equations had 

been handled effectively by the Babylonians in some of the oldest problem texts. For instance, 

one problem calls for the side of a square if the area less the side is 14,30. The solution of this 

problem, equivalent to solving x2 – x = 870, is expressed as follows: 

Take half of 1, which is 0;30, and multiply 0;30 by 0;30, which is 0;15; add this to 14,30 to get 

l4,30;15. This is the square of 29;30. Now add 0;30 to 29;30, and the result is 30, the side of the 

square. 

The Babylonian solution is, of course, exactly equivalent to the formula x =  √(
 

 
)
 

 +q + 
 

 
  for a 

root of the equation x2 – px= q, which is the quadratic formula that is familiar to high school 

students of today. In another text, the equation 1x2 + 7x = 6;15 was reduced by the Babylonians 

to the standard type x2 + px = q by first multiplying through by 11 to obtain    

(11x)2 + 7(11x) = 1,8;45. This is a quadratic in normal form in the unknown quantity y = 11x, and 

the solution for y is easily obtained by the familiar rule y =  √(
 

 
)
 

 +q - 
 

 
  , from which the value 

of x is then determined. This solution is remarkable as an instance of the use of algebraic 

transformations.  

Until modern times, there was no thought of solving a quadratic equation of the form                            

x2 + px + q = 0, where p and q are positive, for the equation has no positive root. Consequently, 

quadratic equations in ancient and medieval times and even in the early modern period were 

classified under three types: 

1. x2 + px + q = 0 2. x2 =  px + q  3. x2 + q = px  

All three types are found in Old Babylonian texts of some 4,000 years ago. The first two types 

are illustrated by the problems given previously; the third type appears frequently in problem 

texts, where it is treated as equivalent to the simultaneous system x + y = p, xy = q. So 

numerous are problems in which one is asked to find two numbers when given their product 

and either their sum or their difference that these seem to have constituted for the ancients, 

both Babylonian and Greek, a sort of “normal form” to which quadratics were reduced. Then, 

by transforming the simultaneous equations xy = a and x   y = b into the pair of linear 

equations x   y = b and x   y =  √     4a ; the values of x and y are found through an addition 
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and a subtraction. A Yale cuneiform tablet, for example, asks for the solution of the system              

x + y = 6;30 and xy = 7;30. The instructions of the scribe are essentially as follows. First find 

From the last two equations, it is obvious that x

 

and y = 1
 

 
. Because the quantities x and y enter symmetrically in the given conditional 

equations, it is possible to interpret the values of x and y as the two roots of the quadratic 

equation x2 + 7;30 = 6;30x. Another Babylonian text calls for a number that when added to its 

reciprocal becomes 2;0,0,33,20. This leads to a quadratic of type 3, and again we have two 

solutions, 1;0,45 and 0;59,15,33,20. 

POSSIBLE SHORT QUESTIONS: 

i. solve the side of a square if the area less the side is 14,30.Or equivalently solve 

x2 – x = 870 in Babylonian style. 

ii. Write Babylonian formula to find the solution of quadratic equation. 

iii. In ancient and medieval times and even in the early modern period quadratic 

equations were classified under three types. Write the types. 

LONG QUESTIONS: 

1) Briefly describe about quadratic equation concept of Babylonian history of 

mathematics. 

 

Available at http://www.mathcity.org
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CUBIC EQUATIONS 

The Babylonian reduction of a quadratic equation of the form ax2 + bx = c to the normal form  

y2 + by = ac through the substitution y = ax shows the extraordinary degree of flexibility in 

Mesopotamian algebra. There is no record in Egypt of the solution of a cubic equation, but 

among the Babylonians there are many instances of this. 

Pure cubics, such as x3 = 0;7,30, were solved by direct reference to tables of cubes and cube 

roots, where the solution x = 0;30 was read off. Linear interpolation within the tables was used 

to find approximations for values not listed in the tables. Mixed cubics in the standard form           

x3 + x2 = a were solved similarly by reference to the available tables, which listed values of the 

combination n3 + n2 for integral values of n from 1 to 30. With the help of these tables, they 

easily read off that the solution, for example, of x3+ x2 = 4,12 is equal to 6. For still more general 

cases of equations of the third degree, such as 144x3 + 12x2 = 21, the Babylonians used their 

method of substitution. Multiplying both sides by 12 and using y = 12x, the equation becomes 

y3 + y2  = 4,12, from which y is found to be equal to 6, hence x is just 
 

 
 or 0;30. Cubics of the 

form ax3 + bx2 = c are reducible to the Babylonian normal form by multiplying through by a2 / b3 

to obtain (ax / b)3 1(ax / b)2 = ca2/ b3 , a cubic of standard type in the unknown quantity ax / b. 

Reading off from the tables the value of this unknown quantity, the value of x is determined. 

Whether the Babylonians were able to reduce the general four- term cubic, ax3 + bx2 + ex = d, 

to their normal form is not known. It is not too unlikely that they could reduce it, as is indicated 

by the fact that a solution of a quadratic suffices to carry the four-term equation to the three-

term form px3+ qx2  = r, from which, as we have seen, the normal form is readily obtained.   

 There is, however, no evidence now available to suggest that the Mesopotamian 

mathematicians actually carried out such a reduction of the general cubic equation. With 

modern symbolism, it is a simple matter to see that (ax)3 + (ax)2  = b is essentially the same type 

of equation as y3 + y2 = b, but to recognize this without our notation is an achievement of far 

greater significance for the development of mathematics than even the vaunted positional 

principle in arithmetic that we owe to the same civilization. Babylonian algebra had reached 

such an extraordinary level of abstraction that the equations ax4 + bx2 = c and ax8 + bx4 = c were 

recognized as nothing worse than quadratic equations in disguise.i.e., quadratics in x2 and x4 

POSSIBLE SHORT QUESTIONS: 

i. Did the Egyptian have an idea about Cubic equation?  

ii. Shortly note on reduction of cubic equations in Baylonian times with examples. 

LONG QUESTIONS: 

1) Briefly describe about cubic equation concept of Babylonian history of mathematics. 
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MEASUREMENTS: PYTHAGOREAN TRIADS 

The algebraic achievements of the Babylonians are admirable, but the motives behind this work 

are not easy to understand. It has commonly been supposed that virtually all pre-Hellenic 

science and mathematics were purely utilitarian, but what sort of real-life situation in ancient 

Babylon could possibly lead to problems involving the sum of a number and its reciprocal or a 

difference between an area and a length? If utility was the motive, then the cult of immediacy 

was less strong than it is now, for direct connections between purpose and practice in 

Babylonian mathematics are far from apparent. That there may well have been toleration for, if 

not encouragement of,mathematics for its own sake is suggested by a tablet (No.322) in the 

Plimpton Collection at Columbia University. The tablet dates from the Old Babylonian period 

(ca. 1900 1600 BCE), and the tabulations it contains could easily be interpreted as a record of 

business accounts. Analysis, however, shows that it has deep mathematical significance in the 

theory of numbers and that it was perhaps related to a kind of proto-trigonometry. Plimpton 

322 was part of a larger tablet, as is illustrated by the break along the left-hand edge, and the 

remaining portion contains four columns of numbers arranged in fifteen horizontal rows. The 

right-hand column contains the digits from 1 to 15, and, evidently, its purpose was simply to 

identify in order the items in the other three columns, arranged as follows: 

 

The tablet is not in such excellent condition that all of the numbers can still be read, but the 

clearly discernible pattern of construction in the table made it possible to determine from the 

context the few items that were missing because of small fractures. To understand what the 

entries in the table probably meant to the Babylonians, consider the right triangle ABC (Fig) 
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If the numbers in the second and third columns (from left to right) are thought of as the sides a 

and c, respectively, of the right triangle, then the first, or left-hand, column contains in each 

case the square of the ratio of c to b. The left-hand column, therefore, is a short table of values 

of sec2 A, but we must not assume that the Babylonians were familiar with our secant concept. 

Neither the Egyptians nor the Babylonians introduced a measure of angles in the modern sense. 

Nevertheless, the rows of numbers in Plimpton 322 are not arranged in haphazard fashion, as a 

superficial glance might imply. If the first comma in column one (on the left) is replaced by a 

semicolon, it is obvious that the numbers in this column decrease steadily from top to bottom. 

Moreover, the first number is quite close to sec2 450, and the last number in the column is 

approximately sec2 310 , with the intervening numbers close to the values of sec2 A as A 

decreases by degrees from 450 to 310. This arrangement obviously is not the result of chance 

aLONG. Not only was the arrangement carefully thought out, but the dimensions of the triangle 

were also derived according to a rule. Those who constructed the table evidently began with 

two regular sexagesimal integers, which we shall call p and q, with p > q, and then formed the 

triple of numbers p2- q2 and 2pq and p2 + q2 . The three integers thus obtained are easily seen 

to form a Pythagorean triple, in which the square of the largest is equal to the sum of the 

squares of the other two. Hence, these numbers can be used as the dimensions of the right 

triangle ABC, with a= p2 - q2 and b = 2pq and c = p2 + q2 . Restricting themselves to values of p 

less than 60 and to corresponding values of q such that 1< p/q<1 + √  , that is, to right triangles 

for which a < b, the Babylonians presumably found that there were just 38 possible pairs of 

values of p and q satisfying the conditions, and for these they apparently formed the 38 

corresponding Pythagorean triples. Only the first 15, arranged in descending order for the ratio 

( p2 + q2 )/2pq, are included in the table on the tablet, but it is likely that the scribe had 

intended to continue the table on the other side of the tablet. It has also been suggested that 
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the portion of Plimpton 322 that has broken off from the left side contained four additional 

columns, in which were tabulated the values of p and q and 2pq and what we should now call 

tan2 A. 

The Plimpton Tablet 322 might give the impression that it is an exercise in the theory of 

numbers, but it is likely that this aspect of the subject was merely ancillary to the problem of 

measuring the areas of squares on the sides of a right triangle.  

                                             
The Babylonians disliked working with the reciprocals of irregular numbers, for these could not 

be expressed exactly in finite sexagesimal fractions. Hence, they were interested in values of p 

and q that should give them regular integers for the sides of right triangles of varying shapes, 

from the isosceles right triangle down to one with a small value for the ratio a / b.                              

For example, the numbers in the first row are found by starting with p = 12 and q = 5, with the 

corresponding values a = 119 and b = 120 and c = 169. The values of a and c are precisely those 

in the second and third positions from the left in the first row on the Plimpton tablet; the ratio 

c2 / b2 = 28561 / 14400 is the number 1;59,0,15 that appears in the first position in this row. 

The same relationship is found in the other fourteen rows; the Babylonians carried out the 

work so accurately that the ratio c2 /b2 in the tenth row is expressed as a fraction with eight 

sexagesimal places, equivalent to about fourteen decimal places in our notation.  

So much of Babylonian mathematics is bound up with tables of reciprocals that it is not 

surprising to find that the items in Plimpton 322 are related to reciprocal relationships. If a= 1, 

then 1 = (c + b)(c - b), so that c + b and c - b are reciprocals. If one starts with c+ b = n, where n 

is any regular sexagesimal, then c – b = 1/n; hence, a = 1 and b = 
 

 
(n - 

 

 
) and c  = 

 

 
(n + 

 

 
) are a 
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Pythagorean fraction triple, which can easily be converted to a Pythagorean integer triple by 

multiplying each of the three by 2n. All triples in the Plimpton tablet are easily calculated by this 

device. 

The account of Babylonian algebra that we have given is representative of their work, 

but it is not intended to be exhaustive. There are in the Babylonian tablets many other things, 

although none so striking as those the Plimpton Tablet 322; as in this case, many are still open 

to multiple interpretations. For instance, in one tablet the geometric progression 

1+2+22+…….+29 is summed, and in another the sum of the series of squares 12+22+32+……..+102 

is found. One wonders whether the Babylonians knew the general formulas for the sum of a 

geometric progression and the sum of the first n perfect squares. It is quite possible that they 

did, and it has been conjectured that they were aware that the sum of the first n perfect cubes 

is equal to the square of the sum of the first n integers. Nevertheless, it must be borne in mind 

that tablets from Mesopotamia resemble Egyptian papyri in that only specific cases are given, 

with no general formulations. 

POSSIBLE SHORT QUESTIONS: 

i. Note on Pathgorian Triads. 

ii. Note on Plimpton 322. Write also its time. 

iii. To understand what the entries in the table Plimpton 322 probably meant to the 

Babylonians, could you give an example? 

iv. The Babylonians disliked working with the reciprocals of irregular numbers, is it 

true? What was there there area of interest? Examplify. 

v. How did triples in the Plimpton tablet calculated? 

vi. Did the Babylonians aware about geometric progression? If yes then write any 

Geometric Progression. 

vii. Did the Babylonians aware about the sum of the first n perfect cubes? And how 

did they tackle about it? 

LONG QUESTIONS: 

1) Briefly describe about measurement concept of Babylonian history of mathematics. 

2) Briefly note on Plimpton 322 (The Babylonian Tablet) 
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POLYGONAL AREAS 

It used to be held that the Babylonians were better in algebra than were the Egyptians, but that 

they had contributed less to geometry.The first half of this statement is clearly substantiated by 

what we have learned in previous paragraphs; attempts to bolster the second half of the 

comparison generally are limited to the measure of the circle or to the volume of the frustum of 

a pyramid. In the Mesopotamian Valley, the area of a circle was generally found by taking three 

times the square of the radius, and in accuracy this falls considerably below the Egyptian 

measure. Yet the counting of decimal places in the approximations for π is scarcely an 

appropriate measure of the geometric stature of a civilization, and a twentieth-century 

discovery has effectively nullified even this weak argument.  

In 1936, a group of mathematical tablets was unearthed at Susa, a couple of hundred 

miles from Babylon, and these include significant geometric results. True to the Mesopotamian 

penchant for making tables and lists, one tablet in the Susa group compares the areas and the 

squares of the sides of the regular polygons of three, four, five, six, and seven sides. The ratio of 

the area of the pentagon, for example, to the square on the side of the pentagon is given as 

1;40, a value that is correct to two significant figures. For the hexagon and the heptagon, the 

ratios are expressed as 2;37,30 and 3;41, respectively. In the same tablet, the scribe gives 

0;57,36 as the ratio of the perimeter of the regular hexagon to the circumference of the 

circumscribed circle, and from this, we can readily conclude that the Babylonian scribe had 

adopted 3;7,30, or 3
 

 
,as an approximation for π. This is at least as good as the value adopted in 

Egypt. Moreover, we see it in a more sophisticated context than in Egypt, for the tablet from 

Susa is a good example of the systematic comparison of geometric figures. One is almost 

tempted to see in it the genuine origin of geometry, but it is important to note that it was not 

so much the geometric context that interested the Babylonians as the numerical 

approximations that they used in mensuration. Geometry for them was not a mathematical 

discipline in our sense, but a sort of applied algebra or arithmetic in which numbers are 

attached to figures. 

There is some disagreement as to whether the Babylonians were familiar with the 

concept of similar figures, although this appears to be likely. The similarity of all circles seems to 

have been taken for granted in Mesopotamia, as it had been in Egypt, and the many problems 

on triangle measure in cuneiform tablets seem to imply a concept of similarity. A tablet in the 

Baghdad Museum has a right triangle ABC (Fig) with sides a = 60 and b = 45 and c = 75, and it is 

subdivided into four smaller right triangles, ACD, CDE, DEF,and EFB.  
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The areas of these four triangles are then given as 8,6 and 5,11;2,24 and 3,19;3,56,9,36 and 

5,53;53,39,50,24, respectively. From these values, the scribe computed the length of AD as 27, 

apparently using a sort of “similarity formula” equivalent to our theorem that areas of similar 

figures are to each other as squares on corresponding sides. The lengths of CD and BD are 

found to be 36 and 48, respectively, and through an application of the “similarity formula” to 

triangles BCD and DCE, the length of CE is found to be 21;36. The text breaks off in the middle 

of the calculation of DE. 

POSSIBLE SHORT QUESTIONS: 

i. The Babylonians were better in algebra than were the Egyptians, but that they 

had contributed less to geometry. Would you explain it? 

ii. How did Mesopotamian (Babylonian) measure the area of circle? 

iii. Note on Susa Tablet by Baylonian. Why this table is named by Susa? When did it 

discovered? 

iv. Write Babylonian approximation for π. 

v. How did they think about Geometry (Babylonians)? 

vi. Whether the Babylonians were familiar with the concept of similar figures or 

not? 

LONG QUESTIONS: 

1) Briefly describe about  polygonal area concept of Babylonian history of 

mathematics. 
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GEOMETRY AS APPLIED ARITHMETIC 

In geometry the Babylonians accomplished almost nothing. Besides the division of the 

circumference into 6 parts by its radius, and into 360 degrees, they had some knowledge of 

geometrical figures, such as the triangle and quadrangle,which they used in their auguries. Like 

the Hebrews (1 Kin. 7:23), they took   = 3. Of geometrical demonstrations there is, of course, no 

trace. “As a rule, in the Oriental mind the intuitive powers eclipse the severely rational and 

logical." 

Measurement was the keynote of algebraic geometry in the Mesopotamian Valley, but a major 

flaw, as in Egyptian geometry, was that the distinction between exact and approximate 

measures was not made clear. The area of a quadrilateral was found by taking the product of 

the arithmetic means of the pairs of opposite sides, with no warning that this is in most cases 

only a crude approximation. Again, the volume of a frustum of a cone or a pyramid was 

sometimes found by taking the arithmetic mean of the upper and lower bases and multiplying 

by the height; sometimes, for a frustum of a square pyramid with areas a2 and b2 for the lower 

and upper bases, the formula 

   (
   

 
)
 

    

was applied. For the latter, however, the Babylonians also used a rule equivalent to 

   [(
   

 
)
 

 
 

 
(
   

 
)
 

]     

a formula that is correct and reduces to the one used by the Egyptians. It is not known whether 

Egyptian and Babylonian results were always independently discovered, but in any case, the 

latter were definitely more extensive than the former, in both geometry and algebra. The 

Pythagorean theorem, for example, does not appear in any form in surviving documents from 

Egypt, but tablets even from the Old Babylonian period show that in Mesopotamia the theorem 

was widely used. A cuneiform text from the Yale Collection, for example, contains a diagram of 

a square and its diagonals in which the number 30 is written along one side and the numbers 

42;25,35 and 1;24,51,10 appear along a diagonal. The last number obviously is the ratio of the 

lengths of the diagonal and a side, and this is so accurately expressed that it agrees with √  to 

within about a millionth. The accuracy of the result was made possible by knowledge of the 

Pythagorean theorem. Sometimes, in less precise computations, the Babylonians used 1;25 as a 

rough-and-ready approximation to this ratio. Of more significance than the precision of the 

values, however, is the implication that the diagonal of any square could be found by 

multiplying the side by √ . Thus, there seems to have been some awareness of general 

principles, despite the fact that these are exclusively expressed in special cases. 
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Babylonian recognition of the Pythagorean theorem was by no means limited to the case of a 

right isosceles triangle. In one Old Babylonian problem text, a ladder or a beam of length 0;30 

stands against a wall; the question is, how far will the lower end move out from the wall if the 

upper end slips down a distance of 0;6 units? The answer is correctly found by use of the 

Pythagorean theorem. Fifteen hundred years later, similar problems, some with new twists, 

were still being solved in the Mesopotamian Valley. A Seleucid tablet, for example, proposes 

the following problem. A reed stands against a wall. If the top slides down 3 units when the 

lower end slides away 9 units, how long is the reed? The answer is given correctly as 15 units. 

Ancient cuneiform problem texts provide a wealth of exercises in what we might call 

geometry, but which the Babylonians probably thought of as applied arithmetic. A typical 

inheritance problem calls for the partition of a right-triangular property among six brothers. 

The area is given as 11,22,30 and one of the sides is 6,30; the dividing lines are to be 

equidistant and parallel to the other side of the triangle. One is asked to find the difference in 

the allotments. Another text gives the bases of an isosceles trapezoid as 50 and 40 units and 

the length of the sides as 30; the altitude and the area are required    

 (van der Waerden 1963, pp. 76 77). 

The ancient Babylonians were aware of other important geometricrelationships.Like the 

Egyptians, they knew that the altitude in an isosceles triangle bisects the base. Hence, given the 

length of a chord in a circle of known radius, they were able to find the apothem. Unlike the 

Egyptians, they were familiar with the fact that an angle inscribed in a semicircle is a right 

angle, a proposition generally known as the Theorem of Thales, despite the fact that Thales 

lived more than a millennium after the Babylonians had begun to use it. This misnaming of a 

well-known theorem in geometry is symptomatic of the difficulty in assessing the influence of 

pre-Hellenic mathematics on later cultures. Cuneiform tablets had a permanence that could not 

be matched by documents from other civilizations, for papyrus and parchment do not so easily 

survive the ravages of time. Moreover, cuneiform texts continued to be recorded down to the 

dawn of the Christian era, but were they read by neighboring civilizations, especially the 

Greeks? The center of mathematical development was shifting from the Mesopotamian Valley 

to the Greek world half a dozen centuries before the beginning of our era, but reconstructions 

of early Greek mathematics are rendered hazardous by the fact that there are virtually no 

extant mathematical documents from the pre-Hellenistic period. It is important, therefore, to 

keep in mind the general characteristics of Egyptian and Babylonian mathematics so as to be 

able to make at least plausible conjectures concerning analogies that may be apparent between 

pre-Hellenic contributions and the activities and attitudes of later peoples. 
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There is a lack of explicit statements of rules and of clear-cut distinctions between exact and 

approximate results. The omission in the tables of cases involving irregular sexagesimals seems 

to imply some recognition of such distinctions, but neither the Egyptians nor the Babylonians 

appear to have raised the question of when the area of a quadrilateral (or of a circle) is found 

exactly and when only approximately. Questions about the solvability or unsolvability of a 

problem do not seem to have been raised, nor was there any investigation into the nature of 

proof. The word “proof” means various things at different levels and ages; hence, it is 

hazardous to assert categorically that pre-Hellenic peoples had no concept of proof, nor any 

feeling of the need for proof. There are hints that these people were occasionally aware that 

certain area and volume methods could be justified through a reduction to simpler area and 

volume problems. Moreover, pre-Hellenic scribes not infrequently checked or “proved” their 

divisions by multiplication; occasionally, they verified the procedure in a problem through a 

substitution that verified the correctness of the answer. Nevertheless, there are no explicit 

statements from the pre-Hellenic period that would indicate a felt need for proofs or a concern 

for questions of logical principles. In Mesopotamian problems, the words “length” and “width” 

should perhaps be interpreted much as we interpret the letters x and y,for the writers of 

cuneiform tablets may well have moved on from specific instances to general abstractions. How 

else does one explain the addition of a length to an area? In Egypt also, the use of the word for 

quantity is not incompatible with an abstract interpretation such as we read into it today. In 

addition, there were in Egypt and Babylonia problems that have the earmarks of recreational 

mathematics. If a problem calls for a sum of cats and measures of grain, or of a length and an 

area, one cannot deny to the perpetrator either a modicum of levity or a feeling for abstraction. 

Of course, much of pre-Hellenic mathematics was practical, but surely not all of it. In the 

practice of computation, which stretched over a couple of millennia, the schools of scribes used 

plenty of exercise material, often, perhaps, simply as good clean fun. 

POSSIBLE SHORT QUESTIONS: 

i. How did they think about Geometry (Babylonians)? 

ii. Write the major flaw (Problem) in Babylonian measurement system. 

iii. How did the Babylonian find the area of a quadrilateral? 

iv. How did the Babylonian find the area of a frustum of a cone or a pyramid? 

v. The Pythagorean theorem did not used by Egypt, but did Babylonian use it? 

vi. Both Babylonian and Egyptians were lack of explicit statements of rules and of 

clear-cut distinctions between exact and approximate results. Is it true?  

LONG QUESTIONS: 

1) Briefly describe about Geometrical concept of Babylonian history of 

mathematics. 
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ANCIENT AND MEDIEVAL INDIA (THE HINDOOS) 

A mixture of pearl shells and sour dates . . . or of costly crystal and common pebbles. 

Al Biruni’s India 

EARLY MATHEMATICS IN INDIA (HISTORICAL BACKGROUND) 

Despite developppping quite independently of chinese (and probably also of Babylonian 

mathematics) some mathematical discoveries were made at a very early time in india. Before 

Perso – Arabic mathematicians, work on mathematics was started in india. Brahmi numerals 

are the basis of the system predate the common era. Brahmi and Karosthi numerals were used 

in Mauriya Empire period, both appearing on 3rd century BC edicts of Ashok Budhist used the 

symbol 1,4,6 around 300 BC. They were also familiar with 2,4,6,7 and 9. The Brahmi numerals 

were the ancestor of Hindu – Arabic Glyphics 1 to 9. 10,20,30 numerals were also in their 

counting.The actual numeral system, including positional notation and use of zero, is in 

principle independent of the glyphs used and significantly younger than the Brahmi numerals. 

 The development of positional decimal system takes its origin in Hindu mathematics 

during the Gupta Period. Around 500 BC Aryabhatya mark zero and Brahmasphuta Siddhanta 

explained mathematical role of zero. The Sansikrat translation of Prakrit preserve positional use 

of zero. These indian developments were take up in Islamic mathematics in 8th century as 

recoreded in Al – Qifti’s Chronolgy of the Scholars ( early 13th century) 

Archaeological excavations at Mohenjo Daro and Harappa give evidenceof an old and 

highly cultured civilization in the Indus Valley during the era of the Egyptian pyramid builders 

(ca. 2650 BCE), but we have no Indian mathematical documents from that age. There is 

evidence of structured systems of weights and measures, and samples of decimal-based 

numeration have been found. During this period and succeeding centuries, however, major 

movements and conquests of people occurred on the Indian subcontinent. Many of the 

languages and the dialects that evolved as a result have not been deciphered. It is therefore 

difficult at this stage to plot a time-space chart of mathematical activities for this vast area. The 

linguistic challenges are compounded by the fact that the earliest known Indian language 

samples were part of an oral tradition, rather than a written one. Nevertheless, Vedic Sanskrit, 

the language in 186 question, presents us with the earliest concrete information about 

ancientIndian mathematical concepts. The Vedas, groups of ancient, essentially religious texts, 

include references to large numbers and decimal systems. Especially interesting are 

dimensions, shapes, and proportions given for bricks used in the construction of ritual fire 

altars. India, like Egypt, had its “rope-stretchers,” and the sparse geometric lore acquired in 



61 
 

MUHAMMAD USMAN HAMID (0323-6032785) 

connection with the laying out of temples and the measurement and construction of altars took 

the form of a body of knowledge known as the Sulbasutras, or “rules of the cord.” Sulba(or 

sulva) refers to cords used for measurements, and sutra means a book of rules or aphorisms 

relating to a ritual or a science. The stretching of ropes is strikingly reminiscent of the origin of 

Egyptian geometry, and its association with temple functions reminds one of the possible ritual 

origin of mathematics. Yet, the difficulty of dating the rules is also matched by doubt 

concerning the influence the Egyptians had on later Hindu mathematicians. Evenmore so than 

in the case of China, there is a striking lack of continuity of tradition in the mathematics of 

India. 

POSSIBLE SHORT QUESTIONS: 

i. What type of numerals were the ancestor of Hindu – Arabic Glyphics? 

ii. In whose time period indian positional mathematical system developed? 

iii. Who introduced zero. And who explained the mathematical role of zero? 

iv. When did indian mathematical knowledge entered in Muslim mathematic 

world? Or when did Muslims know about indian working about mathematics? 

v. Shortly note on SalbaSatras (SalvsaSatras) 

LONG QUESTIONS: 

1) Briefly describe about Early mathematics in india or Historical Background of Indian 

mathematics. 

THE SULBASUTRAS: 

As early as 8th century BCE, long before Pythagoras, a text known as SulbaSatras 

(SulvaSatras) listed simple Pythagorian Triples(Triads), Pythagorian theorem is also stated for 

square and rectangle in this text. Sulvastras also contain Geometrical calculations of linear 

equations. It also gives square root of 2 obtained by adding   
 

 
 

 

   
 

 

      
 which the 

value of 1.4142156 correct to 5 decimal places. 

There are a number of Sulbasutras; the major extant ones, all in verse, are associated 

with the names of Baudhayama, Manava, Katyayana, and the best-known, Apastamba. They 

may date from the first half of the first millennium BCE, although earlier and later dates have 

been suggested as well. We find rules for the construction of right angles by means of triples of 

cords the lengths of which form “Pythagorean” triads, such as 3, 4, and 5; or 5, 12, and 13; or 8, 

15, and 17; or 12, 35, and 37. Although Mesopotamian influence in the Sulbasutras is not 

unlikely, we know of no conclusive evidence for or against this. Apastamba knew that the 

square on the diagonal of a rectangle is equal to the sum of the squares on the two adjacent 

sides. Less easily explained is another rule given by Apastamba—one that strongly resembles 
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some of the geometric algebra in Book II of Euclid’s Elements. To construct a square equal in 

area to the rectangle ABCD (Fig),  

lay off the shorter sides on the longer, so that AF = AB = BE = CD, and draw HG bisecting 

segments CE and DF;extend EF to K, GH to L,and AB to M so that FK = HL = FH = AM, and draw 

LKM. Now construct a rectangle with a diagonal equal to LG and with a shorter side HFE. Then, 

the longer side of this rectangle is the side of the square desired. There are also rules for 

transforming rectilinear into curvilinear shapes and vice versa. So conjectural are the origin and 

the period of the Sulbasutras that we cannot tell whether the rules are related to early Egyptian 

surveying or to the later Greek problem of altar doubling. 

POSSIBLE SHORT QUESTIONS: 

i. Shortly note on SalvaSatras text. 

ii. What type of concepts were include (discussed) in SalbaStras? 

LONG QUESTIONS: 

1) Briefly describe about The Salbastras of indian mathematics. 

THE SIDDHANTAS 

There are references to arithmetic and geometric series in Vedic literature that purport to go 

back to 2000 BCE, but no contemporary documents from India are available to confirm this. It 

has also been claimed that the first recognition of incommensurables is to be found in India 

during the Sulbasutra period, but such claims are not well substantiated. The period of the 

Sulbasutras was followed by the age of the Siddhantas, or systems (of astronomy). Five 

different versions of the Siddhantas are known by the names: Paulisha Siddhanta, Surya 

Siddhanta, Vasisishta Siddhanta, Paitamaha Siddhanta, and Romanka Siddhanta. Of these, the 

Surya Siddhanta (System of the Sun), written about 400 CE, is the only one that seems to be 

completely extant. According to the text, written in epic stanzas, it is the work of Surya, the Sun 

God. The main astronomical doctrines are evidently Greek, but with the retention of 

considerable old Hindu folklore. The Paulisha Siddhanta, which dates from about 380 CE, was 

summarized by the Hindu mathematician Varahamihira (fl. 505 CE), who also listed the other 

four Siddhantas. It was referred to frequently by the Arabic scholar al-Biruni, who suggested a 
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Greek origin or influence. Later writers report that the Siddhantas were in substantial 

agreement on substance, only the phraseology varied; hence, we can assume that the others, 

such as the Surya Siddhanta, were compendia of astronomy comprising cryptic rules in Sanskrit 

verse, with little explanation and without proof. 

It is generally agreed that the Siddhantas stem from the late fourth or the early fifth 

century, but there is sharp disagreement about the origin of the knowledge that they contain. 

Indian scholars insist on the originality and independence of the authors, whereas Western 

writers are inclined to see definite signs of Greek influence. It is not unlikely, for example, that 

the Paulisha Siddhanta was derived in considerable measure from the work of the astrologer 

Paul, who lived in Alexandria shortly before the presumed date of composition of the 

Siddhantas. (Al-Biruni, in fact, explicitly attributes this Siddhanta to Paul of Alexandria.) This 

would account in a simple manner for the obvious similarities between portions of the 

Siddhantas and the trigonometry and the astronomy of Ptolemy. The Paulisha Siddhanta, for 

example, uses the value 3 
   

    
 for π, which is in essential agreement with the Ptolemaic 

sexagesimal value 3;8,30.  

Even if Indian authors did acquire their knowledge of trigonometry from the 

cosmopolitan Hellenism at Alexandria, the material in their hands took on a significantly new 

form. Whereas the trigonometry of Ptolemy had been based on the functional relationship 

between the chords of a circle and the central angles they subtend, the writers of the 

Siddhantas converted this to a study of the correspondence between half of a chord of a circle 

and half of the angle subtended at the center by the whole chord. Thus was born, apparently in 

India, the predecessor of the modern trigonometric function known as the sine of an angle, 

and the introduction of the sine function represents the chief contribution of the Siddhantas 

to the history of mathematics. It was through the Indians, and not the Greeks, that our use of 

the half chord has been derived, and our word “sine,” through misadventure in translation 

(see further on), has descended from the Sanskrit name jiva. 

POSSIBLE SHORT QUESTIONS: 

i. Shortly note on The Siddhantas. 

ii. What is mean by The Siddhantas? 

iii. Name five different versions of the Siddhantas. 

iv. Shortly write about the concept of Sine function in indian text. 

v. Write The Paulisha Siddhanta’s value for ‘Pi’. 

LONG QUESTIONS: 

1) Briefly describe about The Siddhantas of indian mathematics. 
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ARYABHATA 

During the sixth century, shortly after the composition of the Siddhantas, there lived two Indian 

mathematicians who are known to have written books on the same type of material. The older 

and more important of the two was Aryabhata, whose best-known work, written around 499 CE 

and titled Aryabhatiya, is a slim volume, written in verse, covering astronomy and mathematics. 

The names of several Hindu mathematicians before this time are known, but nothing of their 

work has been preserved beyond a few fragments. In this respect, then, the position of the 

Aryabhatiya of Aryabhata in India is somewhat akin to that of the Elements of Euclid in Greece 

some eight centuries earlier. Both are summaries of earlier developments, compiled by a single 

author. There are, however, more striking differences than similarities between the two works. 

The Elements is a well-ordered synthesis of pure mathematics with a high degree of 

abstraction, a clear logical structure, and an obvious pedagogical inclination; the Aryabhatiya is 

a brief descriptive work, in 123 metrical stanzas, intended to supplement rules of calculation 

used in astronomy and mensurational mathematics, with no appearance of deductive 

methodology. About a third of the work is on ganitapada, or mathematics. This section opens 

with the names of the powers of 10 up to the tenth place and then proceeds to give 

instructions for square and cube roots of integers. Rules of mensuration follow, about half of 

which are erroneous. The area of a triangle is correctly given as half the product of the base and 

altitude, but the volume of a pyramid is also taken to be half of the product of the base and the 

altitude. The area of a circle is found correctly as the product of the circumference and half of 

the diameter, but the volume of a sphere is incorrectly stated to be the product of the area of a 

great circle and the square root of this area. Again, in the calculation of areas of quadrilaterals, 

correct and incorrect rules appear side by side. The area of a trapezoid is expressed as half of 

the sum of the parallel sides multiplied by the perpendicular between them, but then follows 

the incomprehensible assertion that the area of any plane figure is found by determining two 

sides and multiplying them. One statement in the Aryabhatiya to which Indian scholars have 

pointed with pride is as follows: 

Add 4 to 100, multiply by 8, and add 62,000. The result is approximately the circumference of a 

circle of which the diameter is 20,000. (Clark 1930, p. 28) 

Here we see the equivalent of 3.1416 for π, but it should be recalled that this is essentially the 

value Ptolemy had used. The likelihood that Aryabhata here was influenced by Greek 

predecessors is strengthened by his adoption of the myriad, 10,000, as the number of units in 

the radius. A typical portion of the Aryabhatiya is that involving arithmetic progressions, which 

contains arbitrary rules for finding the sum of the terms in a progression and for determining 

the number of terms in a progression when given the first term, the common difference, and 
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the sum of the terms. The first rule had long been known by earlier writers. The second is a 

curiously complicated bit of exposition: 

Multiply the sum of the progression by eight times the common difference, add the square of 

the difference between twice the first term, and the common difference, take the square root of 

this, subtract twice the first term, divide by the common difference, add one, divide by two. The 

result will be the number of terms. 

Here, as elsewhere in the Aryabhatiya, no motivation or justification is given for the rule. It was 

probably arrived at through a solution of a quadratic equation, knowledge of which might have 

come from Mesopotamia or Greece. Following some complicated problems on compound 

interest (that is, geometric progressions), the author turns, in flowery language, to the very 

elementary problem of finding the fourth term in a simple proportion: 

In the rule of three multiply the fruit by the desire and divide by the measure. The result will be 

the fruit of the desire. 

This, of course, is the familiar rule that if a/b = c/x, then x = bc / a, where a is the “measure,” b 

the “fruit,” c the “desire,” and x the “fruit of the desire.” The work of Aryabhata is indeed a 

potpourri of the simple and the complex, the correct and the incorrect. The Arabic scholar          

al- Biruni, half a millennium later, characterized Indian mathematics as a mixture of common 

pebbles and costly crystals, a description quite appropriate to Aryabhatiya. 

POSSIBLE SHORT QUESTIONS: 

i. Shortly note on Aryabhatiya and who wrote it? 

ii. Write the statement quoted in the Aryabhatiya about circumference of a circle. 

iii. Write the statement for finding the sum of the terms in a progression and for 

determining the number of terms in a progression discussed in Aryabhatiya. 

iv. In Aryabhatiya the writer use the flowery language to present geometric 

progressions. Could you write it? 

LONG QUESTIONS: 

1) Briefly describe about Aryabhatiya of indian mathematics. 
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NUMERALS 

Despite developppping quite independently of chinese (and probably also of Babylonian 

mathematics) some mathematical discoveries were made at a very early time in india. Before 

Perso – Arabic mathematicians, work on mathematics was started in india. Brahmi numerals 

are the basis of the system predate the common era. Brahmi and Karosthi numerals were used 

in Mauriya Empire period, both appearing on 3rd century BC edicts of Ashok Budhist used the 

symbol 1,4,6 around 300 BC. They were also familiar with 2,4,6,7 and 9. The Brahmi numerals 

were the ancestor of Hindu – Arabic Glyphics 1 to 9. 10,20,30 numerals were also in their 

counting.The actual numeral system, including positional notation and use of zero, is in 

principle independent of the glyphs used and significantly younger than the Brahmi numerals. 

 The development of positional decimal system takes its origin in Hindu mathematics 

during the Gupta Period. Around 500 BC Aryabhatya mark zero and Brahmasphuta Siddhanta 

explained mathematical role of zero. The Sansikrat translation of Prakrit preserve positional use 

of zero. These indian developments were take up in Islamic mathematics in 8th century as 

recoreded in Al – Qifti’s Chronolgy of the Scholars ( early 13th century) 

The second half of the Aryabhatiya is on the reckoning of time and on spherical 

trigonometry; here we note an element that would leave a permanent impression on the 

mathematics of later generations—the decimal place-value numeration. It is not known just 

how Aryabhata carried out his calculations, but his phrase “from place to place each is ten 

times the preceding” is an indication that the application of the principle of position was in his 

mind. “Local value” had been an essential part of Babylonian numeration, and perhaps the 

Hindus were becoming aware of its applicability to the decimal notation for integers in use in 

India. The development of numerical notations in India seems to have followed about the same 

pattern found in Greece. Inscriptions from the earliest period at Mohenjo Daro show at first 

simple vertical strokes, arranged into groups, but by the time of Asoka (third century BCE) a 

system resembling the Herodianic was in use. In the newer scheme the repetitive principle was 

continued, but new symbols of higher order were adopted for 4, 10, 20, and 100. This so-called 

Karosthi script then gradually gave way to another notation, known as the Brahmi characters, 

which resembled the alphabetic cipherization in the Greek Ionian system; one wonders 

whether it was only a coincidence that the change in India took place shortly after the period 

when in Greece the Herodianic numerals were displaced by the Ionian. 

From the Brahmi ciphered numerals to our present-day notation for integers, two short 

steps are needed. The first is a recognition that through the use of the positional principle, the 

ciphers for the first nine units can also serve as the ciphers for the corresponding multiples of 

10 or equally well as ciphers for the corresponding multiples of any power of 10. This 

recognition would make superfluous all of the Brahmi ciphers beyond the first nine. It is not 
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known when the reduction to nine ciphers occurred, and it is likely that the transition to the 

more economical notation was made only gradually. It appears from extant evidence that the 

change took place in India, but the source of the inspiration for the change is uncertain. 

Possibly, the so-called Hindu numerals were the result of internal development aLONG; perhaps 

they developed first along the western interface between India and Persia, where 

remembrance of the Babylonian positional notation may have led to modification of the Brahmi 

system. It is possible that the newer system arose along the eastern interface with China, where 

the pseu-dopositional rod numerals may have suggested the reduction to nine ciphers. There is 

also a theory that this reduction may first have been made at Alexandria within the Greek 

alphabetic system and that subsequently the idea spread to India. During the later Alexandrian 

period, the earlier Greek habit of writing common fractions with the numerator beneath the 

denominator was reversed, and it is this form that was adopted by the Hindus, without the bar 

between the two. Unfortunately, the Hindus did not apply the new numeration for integers to 

the realm of decimal fractions; hence, the chief potential advantage of the change from Ionian 

notation was lost. 

The earliest specific reference to the Hindu numerals is found in 662 in the writings of 

Severus Sebokt, a Syrian bishop. After Justinian closed the Athenian philosophical schools, 

some of the scholars moved to Syria, where they established centers of Greek learning. Sebokt 

evidently felt piqued by the disdain for non-Greek learning expressed by some associates; 

hence, he found it expedient to remind those who spoke Greek that “there are also others who 

know something.” To illustrate his point, he called attention to the Hindus and their “subtle 

discoveries in astronomy,” especially “their valuable methods of calculation, and their 

computing that surpasses description. I wish only to say that this computation is done by means 

of nine signs” (Smith 1958, Vol. I, p. 167). That the numerals had been in use for some time is 

indicated by the fact that they occur on an Indian plate of the year 595 CE, where the date 346 

is written in decimal place value notation. 

POSSIBLE SHORT QUESTIONS: 

i. Shortly note on Numeral concept of indian mathematics. 

LONG QUESTIONS: 

1) Briefly describe about Numeral concept of indian mathematics. 
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THE SYMBOL FOR ZERO 

The ancient Hindu Symbol of a circle with a dot in the middle, known as bindu or bindhu, 

symbolizing the void and the negation of the self, was probably instrumental in the use of a 

circle as a representation of  the concept of zero. 

 

 

 

 

Around 500 BC Aryabhatya mark zero and Brahmasphuta Siddhanta explained mathematical 

role of zero. The Sansikrat translation of Prakrit preserve positional use of zero.Brahmagupta 

established the basic mathematical rules dealing with zero. e.g. 1 + 0 = 1, 1 – 0 = 1, 1× 0 = 0       

It should be remarked that the reference to nine symbols, rather than ten, implies that the 

Hindus evidently had not yet taken the second step in the transition to the modern system of 

numeration—the introduction of a notation for a missing position—that is, a zero symbol. The 

history of mathematics holds many anomalies, and not the least of these is the fact that “the 

earliest undoubted occurrence of a zero in India is in an inscription of 876” (Smith 1958, Vol. II, 

p. 69)—that is, more than two centuries after the first reference to the other nine numerals. It 

is not even established that the number zero (as distinct from a symbol for an empty position) 

arose in conjunction with the other nine Hindu numerals. It is quite possible that zero 

originated in the Greek world, perhaps at Alexandria, and that it was transmitted to India after 

the decimal posi- tional system had been established there.  

The history of the zero placeholder in positional notation is further complicated by the 

fact that the concept appeared independently, well before the days of Columbus, in the 

western as well as the eastern hemisphere. 

 With the introduction, in the Hindu notation, of the tenth numeral, a round goose egg 

for zero, the modern system of numeration for integers was completed. Although the medieval 

Hindu forms of the ten numerals differ considerably from those in use today, the principles of 

the system were established. The new numeration, which we generally call the Hindu system, is 

merely a new combination of three basic principles, all of ancient origin: (1) a decimal base; (2) 

a positional notation; and (3) a ciphered form for each of the ten numerals. Not one of these 

three was originally devised by the Hindus, but it presumably is due to them that the three 

were first linked to form the modern system of numeration.  
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It may be well to say a word about the form of the Hindu symbol for zero—which is also ours. It 

was once assumed that the round form originally stemmed from the Greek letter omicron, the 

initial letter in the word “ouden,” or “empty,” but recent investigations seem to believe such an 

origin. Although the symbol for an empty position in some of the extant versions of Ptolemy’s 

tables of chords does seem to resemble an omicron, the early zero symbols in Greek 

sexagesimal fractions are round forms variously embellished and differing markedly from a 

simple goose egg. Moreover, when in the fifteenth century in the Byzantine Empire a decimal 

positional system was fashioned out of the old alphabetic numerals by dropping the last 

eighteen letters and adding a zero symbol to the first nine letters, the zero sign took forms 

quite unlike an omicron. Sometimes it resembled an inverted form of our small letter h; other 

times, it appeared as a dot. 

POSSIBLE SHORT QUESTIONS: 

i. Who introduced zero. And who explained the mathematical role of zero? 

ii. Write the indian symbol for zero. 

iii. Write three basic principles of modern numeral system  

(also called Hindu system). 

iv. Greek also use zero symbol. Write about it. 

v. Write a short comparison about the concept regarding zero in Indian history and 

Greek history. 

LONG QUESTIONS: 

1) Briefly describe about Zero concept of indian mathematics. 

TRIGONOMETRY 

The development of our system of notation for integers was one of the two most influential 

contributions of India to the history of mathematics. The other was the introduction of an 

equivalent of the sine function in trigonometry to replace the Greek tables of chords. The 

earliest tables of the sine relationship that have survived are those in the Siddhantas and the 

Aryabhatiya. Here the sines of angles up to 900 are given for twenty-four equal intervals of 3
  

 
 

each. In order to express arc length and sine length in terms of the same unit, the radius was 

taken as 3,438 and the circumference as                . This implies a value of π agreeing 

to four significant figures with that of Ptolemy. In another connection, Aryabhata used the 

value √   for π, which appeared so frequently in India that it is sometimes known as the Hindu 

value. 
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 For the sine of 3
  

 
, the Siddhantas and the Aryabhatiya took the number of units in the 

arc—that is, 60 × 3
 

 
 or 225. In modern language, the sine of a small angle is very nearly equal to 

the radian measure of the angle (which is virtually what the Hindus were using). For further 

items in the sine table, the Hindus used a recursion formula that may be expressed as follows. If 

the nth sine in the sequence from n = 1to n = 24 is designated as Sn and if the sum of the first n 

sines is Sn ,then Sn+1 =  Sn + S1 - Sn / S1. From this rule, one easily deduces that Sin7
 

 
  = 449,               

Sin 11
  

 
 = 671, Sin150 = 890, and so on,upto Sin900 = 3,438—the values listed in the table in the 

Siddhantas and the Aryabhatiya. Moreover, the table also includes values for what we call the 

versed sine of the angle (that is,          in modern trigonometry or 3,438             in 

Hindu trigonometry) from vers 3
  

 
 = 7 to vers 900 = 3,438. If we divide the items in the table by 

3,438, the results are found to be in close agreement with the corresponding values in modern 

trigonometric tables (Smith 1958, Vol. II). 

POSSIBLE SHORT QUESTIONS: 

i. Define trigonometry. 

ii. Write Ariyabhatiya value for ‘Pi’. 

LONG QUESTIONS: 

1) Briefly describe about Trigonometry concept of indian mathematics. 

MULTIPLICATION         

 Trigonometry was evidently a useful and accurate tool in astronomy. How the Indians 

arrived at results such as the recursion formula is uncertain, but it has been suggested that an 

intuitive approach to difference equations and interpolation may have prompted such rules. 

Indian mathematics is frequently described as “intuitive,” in contrast to the stern rationalism of 

Greek geometry. Although in Indian trigonometry there is evidence of Greek influence, the 

Indians seem to have had no occasion to borrow Greek geometry, concerned as they were with 

simple mensurational rules. Of the classical geometric problems or the study of curves other 

than the circle, there is little evidence in India, and even the conic sections seem to have been 

overlooked by the Indians, as by the Chinese. Hindu mathematicians were instead fascinated by 

work with numbers, whether it involved the ordinary arithmetic operations or the solution of 

determinate or indeterminate equations. Addition and multiplication were carried out in India 

much as they are by us today, except that the Indians seem at first to have preferred to write 

numbers with the smaller units on the left, hence to work from left to right, using small 

blackboards with white removable paint or a board covered with sand or flour. Among the 

devices used for multiplication was one that is known under various names:  
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lattice multiplication, gelosia multiplication, or cell or grating or quadrilateral multiplication. 

The scheme behind this is readily recognized in two examples. In the first example (Fig.), 

 

 the number 456 is multiplied by 34. The multiplicand has been written above the lattice and 

the multiplier appears to the left, with the partial products occupying the square cells. Digits in 

the diagonal rows are added, and the product 15,504 is read off at the bottom and the right. To 

indicate that other arrangements are possible, a second example is given in second Fig, in 

which the multiplicand 537 is placed at the top, the multiplier 24 is on the right, and the 

product 12,888 appears to the left and along the bottom. Still other modifications are easily 

devised. In fundamental principle, gelosia multiplication is, of course, the same as our own, the 

cell arrangement being merely a convenient device for relieving the mental concentration 

called for in “carrying over” from place to place the 10s arising in the partial products. The only 

“carrying” required in lattice multiplication is in the final additions along the diagonals. 

POSSIBLE SHORT QUESTIONS: 

i. Write the writing pattern regarding numbers in indian mathematics. 

ii. Discuss few multiplication method in indian mathematics with example. 

iii. Which indian multiplication method is same as our own method? 

LONG QUESTIONS: 

1) Briefly describe about Multiplication concept of indian mathematics. 

LONG DIVISION          

 It is not known when or where gelosia multiplication arose, but India seems to be the 

most likely source. It was used there at least by the twelfth century, and from India, it seems to 

have been carried to China and Arabia. From the Arabs, it passed over to Italy in the fourteenth 

and fifteenth centuries, where the name gelosia was attached to it because of the resemblance 

to gratings placed on windows in Venice and elsewhere. (The current word “jalousie” seems to 

stem from the Italian gelosia and is used for Venetian blinds in France, Germany, Holland, and 

Russia.) The Arabs (and, through them, the later Europeans) appear to have adopted most of 

their arithmetic devices from the Hindus, so it is likely that the pattern of long division known as 
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the “scratch method” or the “galley method” (from its resemblance to a boat) also came from 

India. (See the following illustration.) 

  

Galley division, sixteenth century. From an unpublished manuscript of a Venetian monk. The title of the work is 

“Opus Arithmetica D. Honorati veneti monachj coenobij S. Lauretig.” From Mr. Plimpton’s library. 

To illustrate the method, let it be required to divide 44,977 by 382. In Fig.  
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we give the modern method, in Fig the galley method. The latter closely parallels the former, 

except that the dividend appears in the middle, for subtractions are performed by canceling 

digits and placing differences above, rather than below, the minuends. Hence, the remainder, 

283, appears above and to the right, rather than below. The process in Fig. is easy to follow if 

we note that the digits in a given subtrahend, such as 2,674, or in a given difference, such as 

2,957, are not necessarily all in the same row and that subtrahends are written below the 

middle and differences above the middle. Position in a column is significant, but not position in 

a row. The determination of roots of numbers probably followed a somewhat similar “galley” 

pattern, cou pled in the later years with the binomial theorem in “Pascal triangle” form, but 

Indian writers did not provide explanations for their calculations or proofs for their statements. 

It is possible that Babylonian and 

 

Chinese influences played a role in the problem of evolution or root extraction. It is often said 

that the “proof by nines,” or the “casting out of nines,” is a Hindu invention, but it appears that 

the Greeks knew earlier of this property, without using it extensively, and that the method 

came into common use only with the Arabs of the eleventh century. 

POSSIBLE SHORT QUESTIONS: 

i. Note on gelosia multiplication method. 

ii. Note on the “scratch method” or the “galley method”. 

iii. Divide 44,977 by 382 using Galley method. 

LONG QUESTIONS: 

1) Briefly describe about Long division concept of indian mathematics. 
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BRAHMAGUPTA 

The last few paragraphs may leave the unwarranted impression that there was a uniformity in 

Hindu mathematics, for we have frequently localized developments as merely “of Indian 

origin,” without specifying the period. The trouble is that there is a high degree of uncertainty 

in Hindu chronology. Material in the important Bakshali manuscript, containing an anonymous 

arithmetic, is supposed by some to date from the third or fourth century, by others from the 

sixth century, and by others from the eighth or ninth century or later, and there is a suggestion 

that it may not even be of Hindu origin. We have placed the work of Aryabhata around the year 

500 CE, but there were two mathematicians named Aryabhata, and we cannot with certainty 

ascribe results to our Aryabhata, the elder. Hindu mathematics presents more historical 

problems than does Greek mathematics, for Indian authors referred to predecessors 

infrequently, and they exhibited surprising independence in mathematical approach. Thus, it is 

that Brahmagupta (fl. 628 CE), who lived in Central India somewhat more than a century after 

Aryabhata, has little in common with his predecessor, who had lived in eastern India. 

Brahmagupta mentions two values of π—the “practical value” 3 and the “neat value”                      

√   —but not the more accurate value of Aryabhata; in the trigonometry of his best-known 

work, the Brahmasphuta Siddhanta, he adopted a radius of 3,270, instead of Aryabhata’s 3,438. 

In one respect, he does resemble his predecessor—in the juxtaposition of good and bad results. 

He found the “gross” area of an isosceles triangle by multiplying half of the base by one of the 

equal sides; for the scalene triangle with base fourteen and sides thirteen and fifteen, he found 

the “gross area” by multiplying half of the base by the arithmetic mean of the other sides. In 

finding the “exact” area, he used the Archimedean-Heronian formula. For the radius of the 

circle circumscribed about a triangle, he gave the equivalent of the correct trigonometric result 

    
 

      
  

 

      
    

 

      
, but this, of course, is only a reformulation of a result known to 

Ptolemy in the language of chords. Perhaps the most beautiful result in Brahmagupta’s work is 

the generalization of “Heron’s” formula in finding the area of a quadrilateral. This formula, 

  √                     

where a, b, c, d are the sides and s is the semiperimeter, still bears his name, but the glory of his 

achievement is dimmed by failure to remark that the formula is correct only in the case of a 

cyclic quadrilateral. The correct formula for an arbitrary quadrilateral is 

  √                               

where α is half of the sum of two opposite angles. As a rule for the “gross” area of a 

quadrilateral, Brahmagupta gave the pre-Hellenic formula, the product of the arithmetic means 

of the opposite sides. For the quadrilateral with sides a = 25, b = 25, c = 25, d = 39, for example, 

he found a “gross” area of 800. 
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POSSIBLE SHORT QUESTIONS: 

i. Note on Brahmagupta. 

ii. Write few working of Brahmagupta. 

iii. Brahmagupta mentions two values of π write that . 

iv. Write Brahmagupta area of isosceles triangle as well as scalene triangle. 

v. Write Hero (“Heron’s” ) formula. 

vi. Write Brahmagupta formula to find area of quadrilateral. 

vii. Write The correct formula for an arbitrary quadrilateral also mention the failure 

of Brahmagupta formula to find area of quadrilateral. 

LONG QUESTIONS: Briefly describe about Brahmagupta of indian mathematics. 

 

BRAHMAGUPTA’S FORMULA: Brahmagupta’s contributions to algebra are of a higher order 

than are his rules of mensuration, for here we find general solutions of quadratic equations, 

including two roots even in cases in which one of them is negative.The systematized arithmetic 

of negative numbers and zero is, in fact, first found in his work. The equivalents of rules on 

negative magnitudes were known through the Greek geometric theorems on subtraction, such 

as                          –         , but the Indians converted these into numerical 

rules on positive and negative numbers. Moreover, although the Greeks had a concept of 

nothingness, they never interpreted this as a number, as did the Indians. Yet here again 

Brahmagupta spoiled matters somewhat by asserting that          , and on the touchy 

matter of      , for a  0, he did not commit himself: 

Positive divided by positive, or negative by negative, is affirmative. Cipher divided by cipher is 

naught. Positive divided by negative is negative. Negative divided by affirmative is negative. 

Positive or negative divided by cipher is a fraction with that for denominator.                              

(Colebrook 1817, Vol. I) 

It should also be mentioned that the Hindus, unlike the Greeks, regarded irrational roots of 

numbers as numbers. This was of enormous help in algebra, and Indian mathematicians have 

been much praised for taking this step. We have seen the lack of nice distinction on the part of 

Hindu mathematicians between exact and inexact results, and it was only natural that they 

should not have taken seriously the difference between commensurable and incommensurable 

magnitudes. For them, there was no impediment to the acceptance of irrational numbers, and 

later generations uncritically followed their lead until in the nineteenth-century 

mathematicians established the real number system on a sound basis. 
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Indian mathematics was, as we have said, a mixture of good and bad. But some of the 

good was superlatively good, and here Brahmagupta deserves high praise. Hindu algebra is 

especially noteworthy in its development of indeterminate analysis, to which Brahmagupta 

made several contributions. For one thing, in his work we find a rule for the formation of 

Pythagorean triads expressed in the form  
 

 
(

  

   
)  

 

 
(

  

   
) , but this is only a modified form of 

the old Babylonian rule, with which he may have become familiar. Brahmagupta’s area formula 

for a quadrilateral, mentioned previously, was used by him in conjunction with the formulas 

√
              

       
 and √

              

       
 for the diagonals to find quadrilaterals whose sides, 

diagonals, and areas are all rational. Among them was the quadrilateral with sides a = 52,              

b = 25, c = 39, d = 60, and diagonals 63 and 56. Brahmagupta gave the “gross” area as 1; 933
 

 
 

despite the fact that his formula provides the exact area, 1,764 in this case. 

POSSIBLE SHORT QUESTIONS: 

i. Write Brahmagupta’s contributions to algebra. 

ii. Write Brahmagupta’s comment about division. 

iii. did indian was a concept of distinction between exact and inexact results, 

between commensurable and incommensurable magnitudes, between rational 

and irrational numbers? 

iv. Write Brahmagupta’s area formula for a quadrilateral. 

LONG QUESTIONS: Briefly describe about Brahmagupta’s  formulae of indian mathematics. 

INDETERMINATE EQUATIONS Like many of his countrymen, Brahmagupta evidently 

loved mathematics for its own sake, for no practical-minded engineer would raise questions 

such as those Brahmagupta asked about quadrilaterals. One admires his mathematical attitude 

evenmorewhen one finds that he was apparently the first one to give a general solution of the 

linear Diophantine equation          where a, b, and c are integers. For this equation to 

have integral solutions, the greatest common divisor of a and b must divide c, and Brahmagupta 

knew that if a and b are relatively prime, all solutions of the equation are given by     

         , where m is an arbitrary integer.He also suggested theDiophantine quadratic 

equation x2 = 1 + py2, which was mistakenly named for John Pell (1611 1685) but first appeared 

in the Archimedean cattle problem. The Pell equation was solved for some cases by 

Brahmagupta’s countryman Bhaskara (1114 ca. 1185). It is greatly to the credit of Brahmagupta 

that he gave all integral solutions of the Linear Diophantine equation,whereas Diophantus 

himself had been satisfied to give one particular solution of an indeterminate equation. In as 

much as Brahmagupta used some of the same examples as Diophantus, we see again the 
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likelihood of Greek influence in India—or the possibility that they both made use of a common 

source, possibly from Babylonia. It is also interesting to note that the algebra of Brahmagupta, 

like that of Diophantus, was syncopated. Addition was indicated by juxtaposition, subtraction 

by placing a dot over the subtrahend, and division by placing the divisor below the dividend, as 

in our fractional notation but without the bar. The operations of multiplication and evolution 

(the taking of roots), as well as unknown quantities, were represented by abbreviations of 

appropriate words. 

POSSIBLE SHORT QUESTIONS: 

i. Who was the first one to give a general solution of the linear Diophantine 

equation? 

ii. Write the Pell equation. And who tried to solve it? 

iii. Write Brahmagupta’s algebraic operations. 

LONG QUESTIONS: Briefly note on intermediate equations in indian mathematics. 

MANTRAS WORKING (POWER OF TEN) Mantras from early Vedic period (before 1000 BCE) 

invoke power of ten from a hundred all the way upto a trillion and provide use of arithmetic 

operations i.e. addition, subtraction, multiplication etc. a 4th century CE Sansikrit text report 

Buddha enumerating numbers upto 1053 over and above these values upto number 10421.           

They also estimated that there are 1080 atoms in univers. 

BHASKARA 

Bhaskara II, who lived in the 12th century, was one of the most accomplished of all Indians. He 

explained the operation of division by zero. He noticed that dividing 1 into two pieces yiedls a 

half, so   
 

 
   etc. so dividing 1 by smaller and smaller numbers (fractions) yield a large 

number. Ultimately dividing 1 into pieces of zero size yields infinite many pieces, indicating that 

     . Bhaskara also contributed to solution of quadratic, cubic equations. He also work 

on analysis of spherical trigonometry. 

 India produced a number of later medieval mathematicians, but we shall describe the 

work of only one of these—Bhaskara, the leading mathematician of the twelfth century. It was 

he who filled some of the gaps in Brahmagupta’s work, as by giving a general solution of the 

Pell equation and by considering the problem of division by zero. Aristotle had once remarked 

that there is no ratio by which a number such as 4 exceeds the number zero, but the arithmetic 

of zero had not been part of Greek mathematics, and Brahmagupta had been noncommittal on 

the division of a number other than zero by the number zero. It is therefore in Bhaskara’s              

Vija-Ganita that we find the first statement that such a quotient is infinite. 
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Statement: Dividend 3. Divisor 0. Quotient the fraction 3/0. This fraction of which the 

denominator is cipher, is termed an infinite quantity. In this quantity consisting of that which 

has cipher for a divisor, there is no alteration, though many be inserted or extracted; as no 

change takes place in the infinite and immutable God. 

This statement sounds promising, but a lack of clear understanding of the situation is suggested 

by Bhaskara’s further assertion that 
 

 
       .      

 Bhaskara was one of the last significant medieval mathematicians from India, and his 

work represents the culmination of earlier Hindu contributions. In his best-known treatise, the 

Lilavati, he compiled problems from Brahmagupta and others, adding new observations of his 

own. The very title of this book may be taken to indicate the uneven quality of Indian thought, 

for the name in the title is that of Bhaskara’s daughter, who, according to legend, lost the 

opportunity to marry because of her father’s confidence in his astrological predictions. 

Bhaskara had calculated that his daughter might propitiously marry only at one particular hour 

on a given day. On what was to have been her wedding day, the eager girl was bending over the 

water clock, as the hour for the marriage approached, when a pearl from her headdress fell, 

quite unnoticed, and stopped the outflow of water. Before the mishap was noted, the 

propitious hour had passed. To console the unhappy girl, the father gave her name to the book 

we are describing. 

POSSIBLE SHORT QUESTIONS: 

i. Note on Bhaskara and his workings. 

ii. Write Bhaskara’s contribution in indian mathematics. 

iii. Write the time period of  Bhaskara in indian mathematics. 

iv. Write the concept of indians (Bhaskara’s)  regarding divisor as zero in division. 

v. Who was the Lilavatti? 

vi. Write the story described in legend relating to Lilavatti. 

vii. Write the name of Bhaskara’s book. 

LONG QUESTIONS: 

 Briefly describe about Bhaskara of indian mathematics. 
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THE LILAVATI 

The Lilavati, like the Vija-Ganita, contains numerous problems dealing with favorite Hindu 

topics: linear and quadratic equations, both determinate and indeterminate; simple 

mensuration; arithmetic and geometric progressions; surds; Pythagorean triads; and others. 

The “broken bamboo” problem, popular in China (and also included by Brahmagupta), appears 

in the following form: if a bamboo 32 cubits high is broken by the wind so that the tip meets the 

ground 16 cubits from the base, at what height above the ground was it broken? Also making 

use of the Pythagorean theorem is the following problem: A peacock is perched a top a pillar at 

the base of which is a snake’s hole. Seeing the snake at a distance from the pillar, which is three 

times the height of the pillar, the peacock pounces on the snake in a straight line before it can 

reach its hole. If the peacock and the snake have gone equal distances, how many cubits from 

the hole do they meet? 

These two problems well illustrate the heterogeneous nature of the Lilavati, for despite 

their apparent similarity and the fact that only a single answer is required, one of the problems 

is determinate and the other is indeterminate. In the treating of the circle and the sphere, the 

Lilavati also fails to distinguish between exact and approximate statements. The area of the 

circle is correctly given as one-quarter the circumference multiplied by the diameter and the 

volume of the sphere as one-sixth the product of the surface area and the diameter, but for the 

ratio of circumference to diameter in a circle, Bhaskara suggests either 3,927 to 1,250 or the 

“gross” value 
  

 
. The former is equivalent to the ratio mentioned, but not used, by Aryabhata. 

There is no hint in Bhaskara or other Hindu writers that they were aware that all ratios that had 

been proposed were only approximations. Yet, Bhaskara severely condemns his predecessors 

for using the formulas of Brahmagupta for the area and the diagonals of a general quadrilateral, 

because he saw that a quadrilateral is not uniquely determined by its sides. Evidently, he did 

not realize that the formulas are indeed exact for all cyclic quadrilaterals. 

Many of Bhaskara’s problems in the Lilavati and the Vija-Ganita were evidently derived 

from earlier Hindu sources; hence, it is no surprise to note that the author is at his best in 

dealing with indeterminate analysis. In connection with the Pell equation, x2 = 1 + py2, proposed 

earlier by Brahmagupta, Bhaskara gave particular solutions for the five cases p = 8, 11, 32, 61, 

and 67. For x2 = 1 + 61y2 , for example, he gave the solution x = 1,776,319,049 and                          

                 This is an impressive feat in calculation, and its verification aLONG will tax 

the efforts of the reader.                          

Bhaskara’s books are replete with other instances of Diophantine problems. 
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POSSIBLE SHORT QUESTIONS: 

i. Write the topics discussed in Lilavatti. 

ii. Describe The “broken bamboo” problem. 

iii. Write the defect of Lilavatti. 

iv. Name two books of old indian mathematics. 

LONG QUESTIONS: 

1) Briefly note on Lilavatti of indian mathematics. 

 

MADHAVA AND THE KERALESE SCHOOL 

Beginning in the late fourteenth century, a group of mathematicians emerged along the 

southwestern coast of India and came to be known as members of the “Keralese School,” 

named after their geographic location of Kerala. The group appears to have started under the 

leadership of Madhava, who is best known for his expansion of the power series for sines and 

cosines that is usually named after Newton and the series for 
 

 
  credited to Leibniz. Among his 

other contributions are a computation of π that is accurate to eleven decimal places, 

computation of the circumference of a circle using polygons, and expansion of the arctangent 

series usually attributed to James Gregory, as well as various other series expansions and 

astronomical applications. 

Few of Madhava’s original verses have been documented; most of his work has come 

down to us through descriptions and references by his students and other later members of the 

Keralese school. The Keralese school, with its astonishing achievements in series expansions 

and geometric, arithmetic, and trigonometric procedures, as well as astronomical observations, 

has inspired considerable speculation concerning transmission and influence. Until now, there 

is inadequate documentation to support any of the related major conjectures. There is, 

however, a great deal to be learned from recent translations of these and prior texts. (We have 

given only a few examples of results usually associated with the seventeenth-century giants of 

western Europe. For samples of translations providing a closer appreciation of the nature of the 

mathematical issues found in the ancient and medieval Sanskrit texts, the reader is referred to 

Plofker 2009.) 

POSSIBLE SHORT QUESTIONS: 

i. Note on Keralese School. Also shortly describe about Madhava. 

LONG QUESTIONS: Briefly describe about Madhava And The Keralese School. 
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SUMMARY ABOUT THE HINDOOS. (FROM A HISTORY OF MATHEMATICS BY FLORIAN CAJORI) 

The first people who distinguished themselves in mathematical research, after the time of the 

ancient Greeks, belonged, like them, to the Aryan race. It was, however, not a European, but an 

Asiatic nation, and had its seat in far-off India.  

Unlike the Greek, Indian society was fixed into castes. The only castes enjoying the privilege and 

leisure for advanced study and thinking were the Brahmins, whose prime business was religion 

and philosophy, and the Kshatriyas, who attended to war and government.  

 Very striking was the difference in the bent of mind of the Hindoo and Greek; for, while 

the Greek mind was pre-eminently geometrical, the Indian was first of all arithmetical. The 

Hindoo dealt with number, the Greek with form. Numerical symbolism, the science of numbers, 

and algebra attained in India far greater perfection than they had previously reached in Greece. 

On the other hand, we believe that there was little or no geometry in India of which the source 

may not be traced back to Greece. Hindoo trigonometry might possibly be mentioned as an 

exception, but it rested on arithmetic more than on geometry. 

This is shown plainly by the Greek origin of some of the technical terms used by the 

Hindoos. Hindoo astronomy was influenced by Greek astronomy. Most of the geometrical 

knowledge which they possessed is traceable to Alexandria and to the writings of Heron in 

particular. In algebra there was, probably, a mutual giving and receiving. We suspect that 

Diophantus got the first glimpses of algebraic knowledge from India. On the other hand, 

evidences have been found of Greek algebra among the Brahmins. The earliest knowledge of 

algebra in India may possibly have been of Babylonian origin. When we consider that Hindoo 

scientists looked upon arithmetic and algebra merely as tools useful in astronomical research, 

there appears deep irony in the fact that these secondary branches were after all the only ones 

in which they won real distinction, while in their pet science of astronomy they displayed an 

inaptitude to observe, to collect facts, and to make inductive investigations. 

We shall now proceed to enumerate the names of the leading Hindoo mathematicians, 

and then to review briefly Indian mathematics. We shall consider the science only in its 

complete state, for our data are not sufficient to trace the history of the development of 

methods. Of the great Indian mathematicians, or rather, astronomers, for India had no 

mathematicians proper, Aryabhatta is the earliest. He was born 476 A.D., at Pataliputra, on the 

upper Ganges. His celebrity rests on a work entitled Aryabhattiyam, of which the third chapter 

is devoted to mathematics. About one hundred years later, mathematics in India reached the 

highest mark. At that time flourished Brahmagupta (born 598). In 628 he wrote his Brahma-

sphuta-siddhanta (“The Revised System of Brahma"), of which the twelfth and eighteenth 

chapters belong to mathematics. To the fourth or fifth century belongs an anonymous 
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astronomical work, called Surya-siddhanta (“Knowledge from the Sun"), which by native 

authorities was ranked second only to the Brahma-siddhanta, but is of interest to us merely as 

furnishing evidence that Greek science influenced Indian science even before the time of 

Aryabhatta. The following centuries produced only two names of importance; namely, 

Cridhara,who wrote a Ganita-sara (“Quintessence of Calculation"),and Padmanabha, the 

author of an algebra. The science seems to have made but little progress at this time; for a work 

entitled Siddhantaciromani (“Diadem of an Astronomical System"), written by Bhaskara Acarya 

in 1150, stands little higher than that of Brahmagupta, written over 500 years earlier. The two 

most important mathematical chapters in this work are the Lilavati (“the beautiful," i.e. the 

noble science) and Viga-ganita (“root-extraction"), devoted to arithmetic and algebra. From 

now on, the Hindoos in the Brahmin schools seemed to content themselves with studying the 

masterpieces of their predecessors. Scientific intelligence decreases continually, and in modern 

times a very deficient Arabic work of the sixteenth century has been held in great authority.  

The mathematical chapters of the Brahma-siddhanta and Siddhantaciromani were 

translated into English by H. T. Colebrooke, London, 1817. The Surya-siddhanta was translated 

by  E. Burgess, and annotated by W. D. Whitney, New Haven, Conn., 1860. 

The grandest achievement of the Hindoos and the one which, of all mathematical inventions, 

has contributed most to the general progress of intelligence, is the invention of the principle of 

position in writing numbers. Generally we speak of our notation as the”Arabic" notation, but it 

should be called the “Hindoo" notation, for the Arabs borrowed it from the Hindoos. That the 

invention of this notation was not so easy as we might suppose at first thought, may be inferred 

from the fact that, of other nations, not even the keen-minded Greeks possessed one like it. We 

inquire, who invented this ideal symbolism, and when? But we know neither the inventor nor 

the time of invention. That our system of notation is of Indian origin is the only point of which 

we are certain.The nine figures for writing the units are supposed to have been introduced 

earliest, and the sign of zero and the principle of position to be of later origin. This view 

receives support from the fact that on the island of Ceylon a notation resembling the Hindoo, 

but without the zero has been preserved. We know that Buddhism and Indian culture were 

transplanted to Ceylon about the third century after Christ, and that this culture remained 

stationary there, while it made progress on the continent. It seems highly probable, then, that 

the numerals of Ceylon are the old, imperfect numerals of India. In Ceylon, nine figures were 

used for the units, nine others for the tens, one for 100, and also one for 1000. These 20 

characters enabled them to write all the numbers up to 9999. Thus, 8725 would have been 

written with six signs, representing the following numbers: 8, 1000, 7, 100, 20, 5. These 

Singhalesian signs, like the old Hindoo numerals, are supposed originally to have been the 

initial letters of the corresponding numeral adjectives. There is a marked resemblance between 

the notation of Ceylon and the one used by Aryabhatta in the first chapter of his work, and 
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there only. Although the zero and the principle of position were unknown to the scholars of 

Ceylon, they were probably known to Aryabhatta; for, in the second chapter, he gives directions 

for extracting the square and cube roots, which seem to indicate a knowledge of them. It would 

appear that the zero and the accompanying principle of position were introduced about the 

time of Aryabhatta. These are the inventions which give the Hindoo system its great superiority, 

its admirable perfection. 

There appear to have been several notations in use in different parts of India, which differed, 

not in principle, but merely in the forms of the signs employed. Of interest is also a symbolical 

system of position, in which the figures generally were not expressed by numerical adjectives, 

but by objects suggesting the particular numbers in question. Thus, for 1 were used the words 

moon, Brahma, Creator, or form; for 4, the words Veda, (because it is divided into four parts) or 

ocean, etc. The following example, taken from the Suryasiddhanta, illustrates the idea. The 

number 1; 577; 917; 828 is expressed from right to left as follows: Vasu (a class of 8 gods) + two 

+ eight + mountains (the 7 mountain-chains) + form + digits (the 9 digits) + seven + mountains + 

lunar days (half of which equal 15). The use of such notations made it possible to represent a 

number in several different ways. This greatly facilitated the framing of verses containing 

arithmetical rules or scientific constants, which could thus be more easily remembered. 

At an early period the Hindoos exhibited great skill in calculating, even with large 

numbers. Thus, they tell us of an examination to which Buddha, the reformer of the Indian 

religion, had to submit, when a youth, in order to win the maiden he loved. In arithmetic, after 

having astonished his examiners by naming all the periods of numbers up to the 53d, he was 

asked whether he could determine the number of primary atoms which, when placed one 

against the other, would form a line one mile in length. Buddha found the required answer in 

this way: 7 primary atoms make a very minute grain of dust, 7 of these make a minute grain of 

dust, 7 of these a grain of dust whirled up by the wind, and so on. Thus he proceeded, step by 

step, until he finally reached the length of a mile. The multiplication of all the factors gave for 

the multitude of primary atoms in a mile a number consisting of 15 digits. This problem reminds 

one of the `Sand-Counter' of Archimedes. 

After the numerical symbolism had been perfected, figuring was made much easier. Many of 

the Indian modes of operation differ from ours. The Hindoos were generally inclined to follow 

the motion from left to right, as in writing. Thus, they added the left-hand columns first, and 

made the necessary corrections as they proceeded. For instance, they would have added 254 

and 663 thus: 2 + 6 = 8, 5 + 6 = 11, which changes 8 into 9, 4 + 3 = 7. Hence the sum 917. In 

subtraction they had two methods. Thus in 821   348 they would say, 8 from 11 = 3, 4 from               

11 = 7, 3 from 7 = 4. Or they would say, 8 from 11 = 3, 5 from 12 = 7, 4 from 8 = 4. In 

multiplication of a number by another of only one digit, say 569 by 5, they generally said,             
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55 = 25, 56 = 30, which changes 25 into 28, 59 = 45, hence the 0 must be increased by 4. The 

product is 2845. In the multiplication with each other of many-figured numbers, they first 

multiplied, in the manner just indicated, with the left-hand digit of the multiplier, which was 

written above the multiplicand, and placed the product above the multiplier. On multiplying 

with the next digit of the multiplier, the product was not placed in a new row, as with us, but 

the  first product obtained was corrected, as the process continued, by erasing, whenever 

necessary, the old digits, and replacing them by new ones, until finally the whole product was 

obtained. We who possess the modern luxuries of pencil and paper, would  not be likely to fall 

in love with this Hindoo method. But the Indians wrote “with a cane-pen upon a small 

blackboard with a white, thinly liquid paint which made marks that could be easily erased, or 

upon a white tablet, less than a foot square, strewn with red  our, on which they wrote the  

figures with a small stick, so that the figures appeared white on a red ground."  Since the digits 

had to be quite large to be distinctly legible, and since the boards were small, it was desirable 

to have a method which would not require much space. Such a one was the above method of 

multiplication. Figures could be easily erased and replaced by others without sacrificing 

neatness. But the Hindoos had also other ways of multiplying, of which we mention the 

following: The tablet was divided into squares like a chess-board. Diagonals were also drawn, as 

seen in the figure.    

The multiplication of 12   735 = 8820 is exhibited in the adjoining diagram. The manuscripts 

extant give no information of how divisions were executed. The correctness of their additions, 

subtractions, and multiplications was tested “by excess of 9's." In writing fractions, the 

numerator was placed above the denominator, but no line was drawn between them.  

We shall now proceed to the consideration of some arithmetical problems and the 

Indian modes of solution. A favorite method was that of inversion. With laconic brevity, 

Aryabhatta describes it thus: “Multiplication becomes division, division becomes multiplication; 

what was gain becomes loss, what loss, gain; inversion." Quite different from this quotation in 

style is the following problem from Aryabhatta, which illustrates the method: “Beautiful maiden 

with beaming eyes, tell me, as thou understandst the right method of inversion, which is the 

number which multiplied by 3, then increased by 
 

 
 of the product, divided by 7, diminished by 

 

 
 

of the quotient, multiplied by itself, diminished by 52, the square root extracted, addition of 8, 

and division by 10, gives the number 2?" The process consists in beginning with 2 and working 

backwards. Thus, (2.10 - 8)2 + 52 = 196, √        , and 14.
 

 
 7.

 

 
  3 = 28, the answer. 
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Here is another example taken from Lilavati, a chapter in Bhaskara's great work:”The 

square root of half the number of bees in a swarm has  own out upon a jessamine-bush, 
 

 
 of the 

whole swarm has remained behind; one female bee flies about a male that is buzzing within a 

lotus-ower into which he was allured in the night by its sweet odour, but is now imprisoned in 

it. Tell me the number of bees." Answer, 72. 

The pleasing poetic garb in which all arithmetical problems are clothed is due to the 

Indian practice of writing all school- books in verse, and especially to the fact that these 

problems, propounded as puzzles, were a favourite social amusement. Says Brahmagupta: 

“These problems are proposed simply for pleasure; the wise man can invent a thousand others, 

or he can solve the problems of others by the rules given here. As the sun eclipses the stars by 

his brilliancy, so the man of knowledge will eclipse the fame of others in assemblies of the 

people if he proposes algebraic problems, and still more if he solves them." 

The Hindoos solved problems in interest, discount, partnership, alligation, summation of 

arithmetical and geometric series, devised rules for determining the numbers of combinations 

and permutations, and invented magic squares. It may here be added that chess, the 

profoundest of all games, had its origin in India. 

The Hindoos made frequent use of the “rule of three," and also of the method of “falsa positio," 

which is almost identical with that of the “tentative assumption" of Diophantus. These and 

other rules were applied to a large number of problems. 

Passing now to algebra, we shall first take up the symbols of operation. Addition was indicated 

simply by juxtaposition as in Diophantine algebra; subtraction, by placing a dot over the 

subtrahend; multiplication, by putting after the factors, bha, the abbreviation of the word 

bhavita, “the product"; division, by placing the divisor beneath the dividend; squareroot, by 

writing ka, from the word karana (irrational), before the quantity. The unknown quantity was 

called by Brahmagupta yavattavat (quantum tantum). When several unknown quantities 

occurred, he gave, unlike Diophantus, to each a distinct name and symbol. The first unknown 

was designated by the general term “unknown quantity." The rest were distinguished by names 

of colours, as the black, blue, yellow, red, or green unknown. The initial syllable of each word 

constituted the symbol for the respective unknown quantity.                  

Thus y ̂ meant x; k ̂  (from kalaka = black)meant y; y ̂k ̂bha, “x times y"; ka 15 ka 10, 

: √   √  ." 
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The Indians were the first to recognise the existence of absolutely negative quantities. They 

brought out the difference between positive and negative quantities by attaching to the one 

the idea of `possession,' to the other that of `debts.' The conception also of opposite directions 

on a line, as an interpretation of + and   quantities, was not foreign to them. They advanced 

beyond Diophantus in observing that a quadratic has always two roots. Thus Bhaskara gives               

x = 50 and x =  5 for the roots of x2  - 45x = 250. “But," says he, “the second value is in this case 

not to be taken, for it is inadequate; people do not approve of negative roots." Commentators 

speak of this as if negative roots were seen, but not admitted. 

Another important generalisation, says Hankel, was this, that the Hindoos never 

connected their arithmetical operations to rational numbers. For instance, Bhaskara showed 

how, by the formula  

the square root of the sum of rational and irrational numbers could be found. The Hindoos 

never discerned the dividing line between numbers and magnitudes, set up by the Greeks, 

which, though the product of a scientific spirit, greatly retarded the progress of mathematics. 

They passed from magnitudes to numbers and from numbers to magnitudes without 

anticipating that gap which to a sharply discriminating mind exists between the continuous and 

discontinuous. Yet by doing so the Indians greatly aided the general progress of mathematics. 

“Indeed, if one understands by algebra the application of arithmetical operations to complex 

magnitudes of all sorts, whether rational or irrational numbers or space magnitudes, then the 

learned Brahmins of Hindostan are the real inventors of algebra." 

Let us now examine more closely the Indian algebra. In extracting the square and cube roots 

they used the formulas (a+b)2 = a2 +2ab+b2 and (a+b)3 = a3 +3a2b+3ab2 +b3. In this connection 

Aryabhatta speaks of dividing a number into periods of two and three digits. From this we infer 

that the principle of position and the zero in the numeral notation were already known to him. 

In figuring with zeros, a statement of Bhaskara is interesting. A fraction whose denominator is 

zero, says he, admits of no alteration, though much be added or subtracted. Indeed, in the 

same way, no change takes place in the in finite and immutable Deity when worlds are 

destroyed or created, even though numerous orders of beings be taken up or brought forth. 

Though in this he apparently evinces clear mathematical notions, yet in other places he makes a 

complete failure in figuring with fractions of zero denominator. 
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In the Hindoo solutions of determinate equations, Cantor thinks he can see traces of 

Diophantine methods. Some technical terms betray their Greek origin. Even if it be true that the 

Indians borrowed from the Greeks, they deserve great credit for improving and generalising the 

solutions of linear and quadratic equations. Bhaskara advances far beyond the Greeks and even 

beyond Brahmagupta when he says that “the square of a positive, as also of a negative number, 

is positive; that the square root of a positive number is twofold, positive and negative. There is 

no square root of a negative number, for it is not a square." Of equations of higher degrees, the 

Indians succeeded in solving only some special cases in which both sides of the equation could 

be made perfect powers by the addition of certain terms to each. 

Incomparably greater progress than in the solution of determinate equations was made 

by the Hindoos in the treatment of indeterminate equations. Indeterminate analysis was a 

subject to which the Hindoo mind showed a happy adaptation. We have seen that this very 

subject was a favourite with Diophantus, and that his ingenuity was almost inexhaustible in 

devising solutions for particular cases. But the glory of having invented general methods in this 

most subtle branch of mathematics belongs to the Indians. The Hindoo indeterminate analysis 

differs from the Greek not only in method, but also in aim. The object of the former was to find 

all possible integral solutions. Greek analysis, on the other hand, demanded not necessarily 

integral, but simply rational answers. Diophantus was content with a single solution; the 

Hindoos endeavoured to find all solutions possible. Aryabhatta gives solutions in integers to 

linear equations of the form ax + by = c, where a, b, c are integers. The rule employed is called 

the pulveriser. For this, as for most other rules, the Indians give no proof. Their solution is 

essentially the same as the one of Euler. Euler's process of reducing 
 

 
 to a continued fraction 

amounts to the same as the Hindoo process of finding the greatest common divisor of a and b 

by division. This is frequently called the Diophantine method. Hankel protests against this 

name, on the ground that Diophantus not only never knew the method, but did not even aim at 

solutions purely integral. These equations probably grew out of problems in astronomy. They 

were applied, for instance, to determine the time when a certain constellation of the planets 

would occur in the heavens. Passing by the subject of linear equations with more than two 

unknown quantities, we come to indeterminate quadratic equations. In the solution of xy = 

ax+by+c, they applied the method re-invented later by Euler, of decomposing (ab + c) into the 

product of two integers    and of placing x = m + b and y = n + a. 

Remarkable is the Hindoo solution of the quadratic equation cy2 = ax2+b. With great 

keenness of intellect they recognized in the special case y2 = ax2 + 1 a fundamental problem in 

indeterminate quadratics. They solved it by the cyclic method. “It consists," says De Morgan, “in 

a rule for finding an indefinite number of solutions of y2 = ax2 + 1 (a being an integer which is 

not a square), by means of one solution given or found, and of feeling for one solution by 

making a solution of y2 = ax2 + b give a solution of y2 = ax2 + b2. It amounts to the following 
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theorem: If p and q be one set of values of x and y in y2 = ax2 + b and p’ and q’ the same or 

another set, then qp + pq’ and pp’ + qq’ are values of x and y in y2 = ax2 + b2. From this it is 

obvious that one solution of y2 = ax2 + 1 may be made to give any number, and that if, taking b 

at pleasure, y2 = ax2 + b2 can be solved so that x and y are divisible by b, then one preliminary 

solution of y2 = ax2 + 1 can be found. Another mode of trying for solutions is a combination of 

the preceding with the cuttaca (pulveriser)." These calculations were used in astronomy. 

Hindoo geometry is far inferior to the Greek. In it are found no definitions, no 

postulates, no axioms, no logical chain of reasoning or rigid form of demonstration, as with 

Euclid. Each theorem stands by itself as an independent truth. Like the early Egyptian, it is 

empirical. Thus, in the proof of the theorem of the right triangle, Bhaskara draws the right 

triangle four times in the square of the hypotenuse, so that in the middle there remains a 

square whose side equals the difference between the two sides of the right triangl

  

Arranging this square and the four triangles in a different way, they are seen, together, 

to make up the sum of the square of the two sides. “Behold!" says Bhaskara, without adding 

another word of explanation. Bretschneider conjectures that the Pythagorean proof was 

substantially the same as this. In another place, Bhaskara gives a second demonstration of this 

theorem by drawing from the vertex of the right angle a perpendicular to the hypotenuse, and 

comparing the two triangles thus obtained with the given triangle to which they are similar. 

This proof was unknown in Europe till Wallis rediscovered it. The Brahmins never inquired into 

the properties of figures. They considered only metrical relations applicable in practical life. In 

the Greek sense, the Brahmins never had a science of geometry. Of interest is the formula given 

by Brahmagupta for the area of a triangle in terms of its sides. In the great work attributed to 

Heron the Elder this formula is first found. Whether the Indians themselves invented it, or 

whether they borrowed it from Heron, is a disputed question. Several theorems are given by 

Brahmagupta on quadrilaterals which are true only of those which can be inscribed on a circle, 

a limitation which he omits to state. Among these is the proposition of Ptolemus, that the 

product of the diagonals is equal to the sum of the products of the opposite sides. The Hindoos 

were familiar with the calculation of the areas of circles and their segments, of the length of 

chords and perimeters of regular inscribed polygons. An old Indian tradition makes   = 3,                 

also = √  ; but Aryabhatta gives the value 
     

     
 . Bhaskara gives two values, the “accurate” 

    

    
 , and the “inaccurate” Archimedean value, 

  

 
 .  
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Greater taste than for geometry was shown by the Hindoos for trigonometry. Like the 

Babylonians and Greeks, they divided the circle into quadrants, each quadrant into 90 degrees 

and 5400 minutes. The whole circle was therefore made up of 21; 600 equal parts. From 

Bhaskara's `accurate' value for    it was found that the radius contained 3438 of these circular 

parts. This last step was not Grecian. The Greeks might have had scruples about taking a part of 

a curve as the measure of a straight line. Each quadrant was divided into 24 equal parts, so that 

each part embraced 225 units of the whole circumference, and corresponds to 3
 

 
 degrees. 

Notable is the fact that the Indians never reckoned, like the Greeks, with the whole chord of 

double the arc, but always with the sine (joa) and versed sine. Their mode of calculating tables 

was theoretically very simple. The sine of 900 was equal to the radius, or 3438; the sine of 300  

was evidently half that, or 1719. Applying the formula sin2a + cos2a = r2, they obtained                   

sin 450 = √
  

 
 = 2431. Substituting for cos a its equal sin(90 - a), and making a = 60 , they 

obtained sin 600 = 
√   

 
 = 2978. With the sines of 90, 60, 45, and 30 as starting-points, they 

reckoned the sines of half the angles by the formula ver sin2a = 2 sin2 a, thus obtaining the 

sines of 220 30’ , 11015’ , 70 30’ , 3045’ . They now figured out the sines of the complements of 

these angles, namely, the sines of 860 15’ , 820 30’ , 780 45’ , 750 , 670 30’ ; then they calculated 

the sines of half these angles; then of their complements; then, again, of half their 

complements; and so on. By this very simple process they got the sines of angles at intervals of 

30 45’ . In this table they discovered the unique law that if a, b, c be three successive arcs such 

that a - b = b -  c = 30 45’ , then sin a - sin b = (sin b -  sin c) -   
    

   
 . This formula was afterwards 

used whenever a re-calculation of tables had to be made. No Indian trigonometrical treatise on 

the triangle is extant. In astronomy they solved plane and spherical right triangles.  

It is remarkable to what extent Indian mathematics enters into the science of our time. 

Both the form and the spirit of the arithmetic and algebra of modern times are essentially 

Indian and not Grecian. Think of that most perfect of mathematical symbolisms _ the Hindoo 

notation, think of the Indian arithmetical operations nearly as perfect as our own, think of their 

elegant algebraical methods, and then judge whether the Brahmins on the banks of the Ganges 

are not entitled to some credit. Unfortunately, some of the most brilliant of Hindoo discoveries 

in indeterminate analysis reached Europe too late to exert the influence they would have 

exerted, had they come two or three centuries earlier. 
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THE ISLAMIC HEGEMONY 

Ah, but my Computations, People say, Have squared the Year to human Compass, eh?                             

If so, by striking from the Calendar Unborn To-morrow, and dead Yesterday.                                                    

Omar Khayyam (Rubaiyat in the FitzGerald version) 

ARABIC CONQUESTS 

One of the most transformative developments affecting mathematics in the Middle Ages was 

the remarkable spread of Islam.Within one century from 622 CE, the year of the Prophet 

Muhammad’s (S.A.W) Hegira, Islam  had expanded  from Arabia to Persia, to North Africa, and 

to Spain.At the time that Brahmagupta was writing, the Sabean Empire of Arabia Felix had 

fallen, and the peninsula was in a severe crisis. It was inhabited largely by desert nomads, 

known as Bedouins, who could neither read nor write. Among them was the prophet 

Muhammad (S.A.W), born in Macca in about 570. During his journeys, Muhammed (S.A.W)  

came in contact with Jews and Christians, and the amalgam of religious feelings that were 

raised in his mind led to the belief that he was the apostle of God sent to lead his people. For 

some ten years, he preached at Macca but in 622, faced by a plot on his life, he accepted an 

invitation to Madina. This “flight,” known as the Hegira, marked the beginning of the 

Muhammadan era—one that was to exert a strong influence on the development of 

mathematics. Muhammad (S.A.W)  now became a military, as well as a religious, leader. Ten 

years later, he had established a Muhammadan state, with its center at Macca, within which 

Jews and Christians, being also mono-theistic, were afforded protection and freedom of 

worship.Being a Muslim state and Civilization, mathematics was need of the day. In muslim 

state there was a need to measure the Ushra, Zakat, Ghanaem, dayt, legacy,ownership etc so in 

this way mathematics was a religios need for the muslims. This is also a need of the present day 

for the muslims. In 632, while planning to move against the Byzantine Empire, Muhammad 

(S.A.W)  died in Madina. His sudden death in no way impeded the expansion of the Islamic 

state, for his followers overran neighboring territories with astonishing rapidity. Within a few 

years, Damascus and Jerusalem and much of the Mesopotamian Valley fell to the conquerors; 

by 641, Alexandria, which for many years had been the mathematical center of the world, was 

captured. As happens so often in these conquests, the books in the library were burned. The 

extent of the damage done at that time is unclear; it has been assumed that following 

depredations by earlier military and religious fanatics and long ages of sheer neglect, there may 

have been relatively few books left to fuel the flames in the library that had once been the 

greatest in the world. 
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For more than a century, the Arab conquerors fought among themselves and with their 

enemies, until by about 750 the warlike spirit subsided. By this time, a schism had arisen 

between the western Arabs in Morocco and the eastern Arabs, who, under the caliph al-

Mansur, had established a new capital at Baghdad, a city that was shortly to become the new 

center for mathematics. Yet the caliph at Baghdad could not even command the allegiance of 

all Moslems in the eastern half of his empire, although his name appeared on coins of the realm 

and was included in the prayers of his “subjects.” The unity of the Arab world, in other words, 

was more economic and religious than it was political. Arabic was not necessarily the common 

language, although it was a kind of lingua franca for intellectuals. Hence, it may be more 

appropriate to speak of the culture as Islamic, rather than Arabic, although we shall use the 

terms more or less interchangeably. 

During the first century of the Arabic conquests, there had been political and intellectual 

confusion, and possibly this accounts for the difficulty in localizing the origin of the modern 

system of numeration. The Arabs were at first without known intellectual interest, and they had 

little culture, beyond a language, to impose on the peoples they conquered. In this respect, we 

see a repetition of the situation when Rome conquered Greece, of which it was said that in a 

cultural sense, captive Greece took captive the captor Rome. By about 750 CE,the Arabs were 

ready to have history repeat itself, for the conquerors became eager to absorb the learning of 

the civilizations they had overrun. We learn that by the 770s, an astronomical-mathematical 

work known to the Arabs as the Sindhind was brought to Baghdad. A few years later, perhaps 

about 775, this Siddhanta was translated into Arabic, and it was not long afterward (ca. 780) 

that Ptolemy’s astrological Tetrabiblos was translated into Arabic from the Greek. Alchemy and 

astrology were among the first studies to appeal to the dawning intellectual interests of the 

conquerors. The “Arabic miracle” lies not so much in the rapidity with which the political 

empire rose, as in the alacrity with which, their tastes once aroused, the Arabs absorbed the 

learning of their neighbors. 

POSSIBLE SHORT QUESTIONS: 

i. What were the need of mathematics for Muslims on religious basis? 
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THE HOUSE OF WISDOM (BAIT AL-HIKMA) 

The first century of the Muslim Empire had been devoid of scientific achievement. To Baghdad 

at that time were called scholars from Syria, Iran, and Mesopotamia, including Jews and 

Nestorian Christians; under three great Abbasid patrons of learning—al-Mansur, Haroun al-

Rasheed, and al-Mamun—the city became a new Alexandria. During the reign of the second of 

these caliphs, familiar to us today through the Arabian Nights, part of Euclid was translated. It 

was during the caliphate of al-Mamun (809 - 833), however, that the Arabs fully indulged their 

passion for translation. The caliph is said to have had a dream in which Aristotle appeared, and 

as a consequence al-Mamun determined to have Arabic versions made of all of the Greek works 

he could lay his hands on, including Ptolemy’s Almagest and a complete version of Euclid’s 

Elements. From the Byzantine Empire, with which the Arabs maintained an uneasy peace, 

Greek manuscripts were obtained through treaties. Al-Mamun established in Baghdad a “House 

of Wisdom” (Bait al-hikma) comparable to the ancient Museum in Alexandria. Major emphasis 

from its beginning was placed on translations, initially from Persian to Arabic, later from 

Sanskrit and Greek.Gradually, the House of Wisdom included a collection of ancient 

manuscripts, obtained largely from Byzantine sources. Finally, an observatory was added to the 

institutional holdings. Among the mathematicians and astronomers there, we note Mohammed 

ibn Musa al-Khwarizmi, whose name, like that of Euclid, was later to become a household word 

in Western Europe. Others active in the ninth century of translation were the brothers Banu 

Musa, al Kindi, and Thabit ibn Qurra. By the thirteenth century, during the Mongol invasion of 

Baghdad, the library of the House of Wisdomwas destroyed; this time, we are told, books were 

not burned but thrown into the river, which was equally effective because water quickly 

washed out the ink. 

POSSIBLE SHORT QUESTIONS: 

i. Note on The House of Wisdom. Who established it. 

ii. What was the main purpose of The House of Wisdom? 

iii. Who destroyed The House of Wisdom? 

iv. Write few ancient Muslim translators. 

LONG QUESTIONS:  

Briefly describe about The House of Wisdom of Muslim Civilization. 
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ABU ABDULLAH MUHAMMAD IBN MUSA AL-KHWARIZMI  

The father of Algebra Abu Abdullah Muhammad ibn Musa al-Khwarizmi (780 - 850)  was born in 

the middle east. Muhammad ibn Musa al-Khwarizmi (ca. 780 ca. 850) wrote more than half a 

dozen astronomical and mathematical works, of which the earliest were probably based on the 

Sindhind. Besides astronomical tables and treatises on the astrolabe and the sundial, al-

Khwarizmi wrote two books on arithmetic and algebra that played very important roles in the 

history of mathematics. One of these survives only in a unique copy of a Latin translation with 

the title De numero indorum, the original Arabic version having since been lost. In this work, 

based presumably on an Arabic translation of Brahmagupta, al-Khwarizmi gave so full an 

account of the Hindu numerals that he is probably responsible for the widespread but false 

impression that our system of numeration is Arabic in origin. Al-Khwarizmi made no claim to 

originality in connection with the system, the Hindu source of which he assumed as a matter of 

course, but when Latin translations of his work subsequently appeared in Europe, cursory 

readers began to attribute not only the book but also the numeration to the author. The new 

notation came to be known as that of al-Khwarizmi or, more carelessly, algorismi; ultimately, 

the scheme of numeration that made use of the Hindu numerals came to be called simply 

“algorism” or “algorithm,” a word that, originally derived from the name al-Khwarizmi, now 

means, more generally, any peculiar rule of procedure or operation—such as the Euclidean 

method for finding the greatest common divisor. 

AL-KHWARIZMI WORKS 

Al-khwarizmi’s working in many field is given as follows; 

i. Astronomy 

ii. Calendar 

iii. Arithmetic 

iv. Algebra 

Al-khwarizmi introduced many of the invensions of mathematics to the people of that age. 

Most of the Al-khwarizmi’s working in the field of astronomy. He wrote about a hundred 

astronomical tables. One of these “Zij Al Sindhind ہند(( زیج السند  ”. He also wrote geogerophy text 

“Kitab Surat al Ard کتاب صورت الارض((  ”. Al-khwarizmi calculated the interval between Jewish era and 

Selucdid era with began oct 1, 312 BC.Al-khwarizmi’s arithmetic treatises was possibly entitled 

“Kitab-al-Iam-Wal-Tafriq be – Hisab-al-Hind. )یام والتفریق الہند  ”)کتاب الا

POSSIBLE SHORT QUESTIONS: 

i. Note on Alkhawaizmi. Name + date of birth and death+ place.etc. 

ii. What is Algorism, Algorithm? 

iii. Name few books of Alkhawarizm and their description. 
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AL-JABR 

One of the earliest Islamic Algebra texts written about 825 CE by Al Khawarizmi was 

entitled by “Al kitab Al Mukhtasar al Jabar wal Muqabalah لکتاب المختصر  The book of  ا وال وابلہ()ا

restring and balancing. The term Al Jabar can be translated as “restoring and refers to operation 

of Transposing a subtracted quantity on one sied of an equation to the other side where it 

became an added quantity. e.g. 

                                            

The term Al Muqabalah can be translated as “comparing and refers to the reduction of positive 

terms by subtracting equal amount from both sides of equations. e.g. 

                        

 Through his arithmetic, al-Khwarizmi’s name has become a common English word; 

through the title of his most important book, Hisob al-jabr wa’l muqabalah, he has supplied us 

with an even more popular household term. From this title has come the word “algebra,” for it 

is from this book that Europe later learned the branch of mathematics bearing this name. 

Neither al-Khwarizmi nor other Arabic scholars made use of syncopation or of negative 

numbers.  

The Al-jabr has come down to us in two versions, Latin and Arabic, but in the Latin 

translation, Liber algebrae et al mucabala, a considerable portion of the Arabic draft is missing. 

The Latin, for example, has no preface, perhaps because the author’s preface in Arabic gave 

fulsome praise to Muhammad (S.A.W), the prophet, and to al-Mamun, “the Commander of the 

Faithful.” Al-Khwarizmi wrote that the latter had encouraged him to 

compose a short work on Calculating by (the rules of) Completion and Reduction, confining it to 

what is easiest and most useful in arithmetic, such as men constantly require in cases of 

inheritance, legacies, partitions, lawsuits, and trade, and in all their dealings with one another, 

or where the measuring of lands, the digging of canals, geometrical computation, and other 

objects of various sorts and kinds are concerned (Karpinski 1915, p. 96). 

It is not certain just what the terms al-jabr and muqabalah mean, but the usual interpretation is 

similar to that implied in the previous translation. The word “al-jabr” presumably meant 

something like “restoration” or “completion” and seems to refer to the transposition of 

subtracted terms to the other side of an equation; the word “muqabalah” is said to refer to 

“reduction” or “balancing”—that is, the cancellation of like terms on opposite sides of the 

equation. Arabic influence in Spain long after the time of al-Khwarizmi is found in Don Quixote, 

where the word “algebrista” is used for a bone-setter, that is, a “restorer.” 
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POSSIBLE SHORT QUESTIONS: 

i. What is meant by Al Jabar and Al Muqabalah? 

LONG QUESTIONS:  

1) Briefly describe about The working of Al Khawarizmi. 

2) Note on Al kitab Al Mukhtasar al Jabar wal Muqabalah. 

QUADRATIC EQUATIONS 

The Latin translation of al-Khwarizmi’s Algebra opens with a brief introductory statement of the 

positional principle for numbers and then proceeds to the solution, in six short chapters, of the 

six types of equations made up of the three kinds of quantities: roots, squares, and numbers 

(i.e., x, x2 , and numbers). Chapter I, in three short paragraphs, covers the case of squares equal 

to roots, expressed in modern notation as x2 = 5x, x2/3 = 4x,and 5x2  = 10x, giving the answers         

x = 5, x = 12, and x = 2, respectively. (The root x = 0 was not recognized.) Chapter II covers the 

case of squares equal to numbers, and Chapter III solves the case of roots equal to numbers, 

again with three illustrations per chapter to cover the cases in which the coefficient of the 

variable term is equal to, more than, or less than 1. Chapters IV, V, and VI are more interesting, 

for they cover in turn the three classical cases of three-term quadratic equations: 

 (1) squares and roots equal to numbers,  

(2) squares and numbers equal to roots, and  

(3) roots and numbers equal to squares. 

 The solutions are “cookbook” rules for “completing the square” applied to specific instances. 

Chapter IV, for example, includes the three illustrations  x2 + 10x = 39, 2x2 + 10x = 48,                       

and 
 

 
x2 + 5x = 28. In each case, only the positive answer is given. In Chapter V, only a single 

example, x2 + 21 = 10x,is used,but both roots,3 and 7,are given, corresponding to the rule 

    √     . Al-Khwarizmi here calls attention to the fact that what we designate as the 

discriminant must be positive: 

You ought to understand also that when you take the half of the roots in this form of equation 

and then multiply the half by itself; if that which proceeds or results from the multiplication is 

less than the units above-mentioned as accompanying the square, you have an equation. 
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In Chapter VI, the author again uses only a single example, 3x + 4 = x2 , for whenever the 

coefficient of x2 is not unity, the author reminds us to divide first by this coefficient (as in 

Chapter IV). Once more, the steps in completing the square are meticulously indicated, without 

justification, the procedure being equivalent to the solution   
 

 
 √( 

 

 
)
 

   . Again, only 

one root is given, for the other is negative. 

The six cases of equations given previously exhaust all possibilities for linear and quadratic 

equations having a positive root. The arbitrariness of the rules and the strictly numerical form 

of the six chapters remind us of ancient Babylonian andmedieval Indianmathematics. The 

exclusion of indeterminate analysis, a favorite Hindu topic, and the avoidance of any 

syncopation, such as is found in Brahmagupta, might suggest Mesopota- mia as more likely a 

source than India. As we read beyond the sixth chapter, however, an entirely new light is 

thrown on the question. Al-Khwarizmi continues: 

We have said enough so far as numbers are concerned, about the six types of equations. Now, 

however, it is necessary that we should demonstrate geometrically the truth of the same 

problemswhichwe have explained in numbers. 

POSSIBLE SHORT QUESTIONS: 

i. In Al Khawarizmi’s book (Latin version ) how many chapters included? 

ii. Describe about chapter division for topics. 

LONG QUESTIONS:  

Briefly describe about The working of Al Khawarizmi  on Quadratic equations. 

GEOMETRIC FOUNDATION 

To find Circumference al-Khwarizmi  provides three rules with the diameter ‘d’ and Periphery 

‘P’ ( outer limit or edge of an area ) and the approximate valued of   
 

 
 

Thus   
 

 
 

   
 

 
 

 
         or    

 

 
 

  √    

 
         or    

 

 
 

  
      

     

 
        

The Algebra of al-Khwarizmi betrays unmistakable Hellenic elements, but the first geometric 

demonstrations have little in common with classical Greek mathematics. For the equation                   

x2 + 10x = 39, al-Khwarizmi drew a square, ab, to represent x2 , and on the four sides of this 

square he placed rectangles c, d, e, and f, each 2
 

 
 units wide. To complete the larger square, 

one must add the four small corner squares (dotted in Fig.) 
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each of which has an area of 6
 

 
 units. Hence, to “complete the square” we add 4 times 61 4 

units, or 25 units, thus obtaining a square of total area 39 + 25 = 64 units (as is clear from the 

right-hand side of the given equation). The side of the large square must therefore be 8 units, 

from which we subtract 2 times 2
 

 
, or 5, units to find that x = 3, thus proving that the answer 

found in Chapter IV is correct. 

The geometric proofs for Chapters V and VI are somewhat more involved. For the 

equation x2 + 21 = 10x, the author draws the square “ab” to represent x2 and the rectangle bg 

to represent 21 units. Then the large rectangle, comprising the square and the rectangle bg, 

must have an area equal to 10x, so that the side ag or hd must be 10 units. If, then, one bisects 

hd at e, draws et perpendicular to hd, extends te to c so that tc = tg, and completes the squares 

tclg and cmne (Fig.), 

 

the area tb is equal to the area md. But the square tl is 25, and the gnomon tenmlg is 21 

(because the gnomon is equal to the rectangle bg). Hence, the square nc is 4, and its side ec is 

2. Inasmuch as ec = be, and because he = 5, we see that x = hb = 5 - 2 or 3, which proves that 

the arithmetic solution given in Chapter V is correct. A modified diagram is given for the root              

x = 5 + 2 = 7, and an analogous type of figure is used to justify geometrically the result found 

algebraically in Chapter VI. 

POSSIBLE SHORT QUESTIONS: 

i. Write Al Khawarizmi’s method to find circumference. 

ii. Write geometrical description for quadratic equations according to Al 

Khawarizmi. 
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ALGEBRAIC PROBLEMS (Just Read) 

The Algebra of al-Khwarizmi contains more than the solution of equations, material that 

occupies about the first half. There are, for example, rules for operations on binomial 

expressions, including products such as (10 + 2)(10 - 1) and (10 + x)(10 - x). Although the Arabs 

rejected negative roots and absolute negative magnitudes, they were familiar with the rules 

governing what are now known as signed numbers. There are also alternative geometric proofs 

of some of the author’s six cases of equations. Finally, the Algebra includes a wide variety of 

problems illustrating the six chapters or cases. As an illustration of the fifth , for example,                

al-Khwarizmi asks for the division of 10 into two parts in such a way that “the sum of the 

products obtained by multiplying each part by itself is equal to fifty eight.” The extant Arabic 

version, unlike the Latin, also includes an extended discussion of inheritance problems, such as 

the following: 

A man dies, leaving two sons behind him, and bequeathing one-third of his capital to a stranger. 

He leaves ten dirhems of property and a claim of ten dirhems upon one of the sons. 

The answer is not what one would expect, for the stranger gets only 5 dirhems. According to 

Arabic law, a son who owes to the estate of his father an amount greater than the son’s portion 

of the estate retains the whole sum that he owes, one part being regarded as his share of the 

estate and the remainder as a gift from his father. To some extent, it seems to have been the 

complicated nature of laws governing inheritance that encouraged the study of algebra in 

Arabia. 

A PROBLEM FROM HERON (Just Read) 

A few of al-Khwarizmi’s problems give rather clear evidence of Arabic dependence on the 

Babylonian-Heronian stream of mathematics. One of them presumably was taken directly from 

Heron, for the figure and the dimensions are the same. Within an isosceles triangle having sides 

of 10 yards and a base of 12 yards (Fig.), 
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 A square is to be inscribed, and the side of this square is called for. The author of the Algebra 

first finds through the Pythagorean theorem that the altitude of the triangle is 8 yards, so that 

the area of the triangle is 48 square yards. Calling the side of the square the “thing,” he notes 

that the square of the “thing” will be found by taking from the area of the large triangle the 

areas of the three small triangles lying outside the square but inside the large triangle. The sum 

of the areas of the two lower small triangles he knows to be the product of the “thing” by 6 less 

half of the “thing,” and the area of the upper small triangle is the product of 8 less the “thing” 

by half of the “thing.”Hence, he is led to the obvious conclusion that the “thing” is 4
 

 
 yards—

the side of the square. The chief difference between the form of this problem in Heron and that 

of al- Khwarizmi is that Heron had expressed the answer in terms of unit fractions as 4
 

 

 

 

 

  
 . 

The similarities are so much more pronounced than the differences that we may take this case 

as confirmation of the general axiom that continuity in the history of mathematics is the rule, 

rather than the exception.Where a discontinuity seems to arise, we should first consider the 

possibility that the apparent saltus may be explained by the loss of intervening documents. 

‘ABD AL-HAMID IBN-TURK (JUST READ) 

The Algebra of al-Khwarizmi is usually regarded as the first work on the subject, but a 

publication in Turkey raises some question about this. A manuscript of a work by ‘Abd-al-Hamid 

ibn-Turk, titled “Logical Necessities in Mixed Equations,” was part of a book on Al-jabr wa’l 

muqabalah, which was evidently very much the same as that by al-Khwarizmi and was 

published at about the same time—possibly even earlier. The surviving chapters on “Logical 

Necessities” give precisely the same type of geometric demonstration as al- Khwarizmi’s 

Algebra and in one case the same illustrative example, x2 + 21 = 10x. In one respect, ‘Abd al-

Hamid’s exposition is more thorough than that of al-Khwarizmi for he gives geometric figures to 

prove that if the discriminant is negative, a quadratic equation has no solution. Similarities in 

the work of the two men and the systematic organization found in them seem to indicate that 

algebra in their day was not so recent a development as has usually been assumed. When 

textbooks with a conventional and well-ordered exposition appear simultaneously, a subject is 

likely to be considerably beyond the formative stage. Successors of al-Khwarizmi were able to 

say, once a problem had been reduced to the form of an equation, “Operate according to the 

rules of algebra and almucabala.” In any case, the survival of al-Khwarizmi’s Algebra can be 

taken to indicate that it was one of the better textbooks typical of Arabic algebra of the time. It 

was to algebra what Euclid’s Elements was to geometry—the best elementary exposition 

available until modern times—but al-Khwarizmi’s work had a serious deficiency that had to be 

removed before it could effectively serve its purpose in the modern world: a symbolic notation 

had to be developed to replace the rhetorical form. This step the Arabs never took, except for 

the replacement of number words by number signs. 
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THABIT IBN-QURRA  (ٰثابت ابن قری) 

The ninth century was a glorious one in mathematical transmission and discovery. It produced 

not only al-Khwarizmi in the first half of the century, but also Thabit ibn-Qurra (826 - 901)  some 

auther write (836 - 901) in the second half. Thabit, a Sabean, was born in Harran, the ancient 

Mesopotamian city that is located in present-day southeastern Turkey and once lay along one 

of the notable trade routes of the region. He died in Baghdad. Thabit, trilingual since his youth, 

came to the attention of one of the Musa brothers, who encouraged him to come to Baghdad 

to study with his brothers in the House of Wisdom. Thabit became proficient in medicine, as 

well as in mathematics and astronomy, and, when appointed court astronomer by the caliph of 

Baghdad, established a tradition of translations, especially from Greek and Syriac. To him we 

owe an immense debt for translations into Arabic of works by Euclid, Archimedes, Apollonius, 

Ptolemy, and Eutocius. Had it not been for Thabit’s efforts, the number of Greek mathematical 

works extant today would be smaller. For example, we should have only the first four, rather 

than the first seven, books of Apollonius’s Conics. 

CONTRIBUTIONS AND ACHEIVEMENTS: 

He is created with dozen of treatises, covering a wide range of fields and topics. He developed a 

theory about trepidation and oscillation of the equinoctial (equal of day and night) points, of 

which many scholars debated in the Middle Ages. 

 According to Copernicus, Thabit determined the length of Sidereal Year as 365 days, 6 

hours, 9 minutes and 12 seconds ( an error of 2 seconds) . He observe the condition of 

equilibrium of bodies, beams and leavers. He also wrote on Philosophical and Cosmological 

topics, questioning some of the fundamentals of the Aristotelian Cosmos ( Outer Space). Thabit 

and his grandson Ibrahim ibn Sinan studied the curves which are needed for making sundials 

(device to measure time) that is commendable and is a great source of inspiration for the 

learners. 

Moreover, Thabit had so thoroughly mastered the content of the classics he translated that he 

suggested modifications and generalizations. To him is due a remarkable formula for amicable 

numbers: if p, q,and r are prime numbers, and if they are of the form p = 3.2n -1, q = 2n-1 -1, and 

r = 2n-2 -1, then 2npq and 2nr are amicable numbers, for each is equal to the sum of the proper 

divisors of the other. Like Pappus, Thabit also gave a generalization of the Pythagorean theorem 

that is applicable to all triangles, whether right or scalene. If from vertex A of any triangle ABC 

one draws lines inter- secting BC in points B’ and C;  such that angles AB’B and AC’C are each 

equal to angle A (Fig. 11.4) 
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 Then   ̅̅ ̅̅     ̅̅ ̅̅     ̅̅ ̅̅ (   ̅̅ ̅̅ ̅     ̅̅ ̅̅̅): 

Thabit gave no proof of the theorem, but this is easily supplied through theorems on similar 

triangles. Alternative proofs of the Pythagorean theorem, works on parabolic and paraboloidal 

segments, a discussion of magic squares, angle trisections, and new astronomical theories are 

among Thabit’s further contributions to scholarship. Thabit boldly added a ninth sphere to the 

eight previously assumed in simplified versions of Aristotelian-Ptolemaic astronomy, and 

instead of the Hipparchan precession of the equinoxes in one direction or sense only, Thabit 

proposed a “trepidation of the equinoxes” in a reciprocating type of motion. 

POSSIBLE SHORT QUESTIONS: 

i. Shortly note on Thabit ibn-Qurra . 

ii. Shortly note on working of Thabit ibn-Qurra. 

iii. Write the length of Sidereal Year according to Thabit ibn-Qurra. 

LONG QUESTIONS:  Briefly describe about The working of Thabit ibn-Qurra. 

NUMERALS 

The Abbasides at Bagdad encouraged the introduction of the sciences by inviting able 

specialists to their court, irrespective of nationality or religious belief. Medicine and astronomy 

were their favourite sciences. Thus Haroun-al-Raschid, the most distinguished Saracen ruler, 

drew Indian physicians to Bagdad. In the year 772 there came to the court of Caliph Almansur a 

Hindoo astronomer with astronomical tables which were ordered to be translated into Arabic. 

These tables, known by the Arabs as the Sindhind, and probably taken from the Brahma sphuta 

siddhanta of Brahmagupta, stood in great authority. They contained the important Hindoo 

table of sines. Doubtless at this time, and along with these astronomical tables, the Hindoo 

numerals, with the zero and the principle of position, were introduced among the Saracens. 

Before the time of Muhammad (S.A.W) the Arabs had no numerals. Numbers were written out 

in words.Gradually it became the practice to employ the 28 Arabic letters of the alphabet for 

numerals, in analogy to the Greek system. This notation was in turn superseded by the Hindoo 

notation, which quite early was adopted by merchants, and also by writers on arithmetic. 
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As regards the form of the so-called Arabic numerals, the statement of the Arabic writer 

Albiruni (died 1039), who spent many years in India, is of interest. He says that the shape of the 

numerals, as also of the letters in India, differed in different localities, and that the Arabs 

selected from the various forms the most suitable. An Arabian astronomer says there was 

among people much difference in the use of symbols, especially of those for 5, 6, 7, and 8. The 

symbols used by the Arabs can be traced back to the tenth century. We find material 

differences between those used by the Saracens in the East and those used in the West. But 

most surprising is the fact that the symbols of both the East and of the West Arabs deviate so 

extraordinarily from the Hindoo Devanagari numerals (= divine numerals) of to-day, and that 

they resemble much more closely the apices of the Roman writer Boethius. This strange 

similarity on the one hand, and dissimilarity on the other, is difficult to explain. The most 

plausible theory is the one of Woepcke: 

 (1) that about the second century after Christ, before the zero had been invented, the Indian 

numerals were brought to Alexandria, whence they spread to Rome and also to West Africa;  

(2) that in the eighth century, after the notation in India had been already much modified and 

perfected by the invention of the zero, the Arabs at Bagdad got it from the Hindoos;  

(3) that the Arabs of the West borrowed the Columbus-egg, the zero, from those in the East, 

but retained the old forms of the nine numerals, if for no other reason, simply to be contrary to 

their political enemies of the East;  

(4) that the old forms were remembered by the West-Arabs to be of Indian origin, and were 

hence called Gubar-numerals (= dust-numerals, in memory of the Brahmin practice of 

reckoning on tablets strewn with dust or sand;  

(5) that, since the eighth century, the numerals in India underwent further changes, and 

assumed the greatly modified  forms of the modern Devanagari-numerals.  

Within the confines of the Arabic empire lived peoples of very varied ethnic 

backgrounds: Syrian, Greek, Egyptian, Persian, Turkish, and many others. Most of them shared 

a common faith, Islam, although Christians and Jews were tolerated; very many shared a 

common language, Arabic, although Greek and Hebrew were sometimes used.There was 

considerable factionalism at all times, and it sometimes erupted into conflict. Thabit himself 

had grown up in a pro-Greek community, which opposed him for his pro-Arabic sympathies. 

Cultural differences occasionally became quite apparent, as in the works of the tenth- and 

eleventh-century scholars Abu’l-Wefa (940 998) and al-Karkhi (or al-Karagi, ca. 1029). In some 

of their works, they used the Hindu numerals, which had reached Arabia through the 

astronomical Sindhind; at other times, they adopted the Greek alphabetic pattern of 

numeration (with, of course, Arabic equivalents for the Greek letters). Ultimately, the superior 
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Hindu numerals won out, but even within the circle of those who used the Indian numeration, 

the forms of the numerals differed considerably. Variations had obviously been prevalent in 

India, but in Arabia variants were so striking that there are 

 

Genealogy of our digits. Following Karl Menninger, Zahlwort und Ziffer (Go ¨ ttingen: Vanderhoeck & 

Ruprecht 1957 1958, 2 vols.), Vol. II, p. 233 

theories suggesting entirely different origins for forms used in the eastern and western halves 

of the Arabic world. Perhaps the numerals of the Saracens in the east came directly from India, 

while the numerals of the Moors in the west were derived from Greek or Roman forms.More 

likely, the variants were the result of gradual changes taking place in space and time, for the 

Arabic numerals of today are strikingly different from the modern Devanagari (or “divine”) 

numerals still in use in India. After all, it is the principles within the system of numeration that 

are important, rather than the specific forms of the numerals. Our numerals are often known as 

Arabic, despite the fact that they bear little resemblance to those now in use in Egypt, Iraq, 

Syria, Arabia, Iran, and other lands within the Islamic culture—that is, the forms 
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  We call our numerals Arabic because the principles in the two systems are 

the same and because our forms may have been derived from the Arabic. Yet the principles 

behind the Arabic numerals presumably were derived from India; hence, it is better to call ours 

the Hindu or the Hindu-Arabic system (see the illustration above).  

As in numeration, there was competition between systems of Greek and Indian origin, 

so also in astronomical calculations there were at first in Arabia two types of trigonometry—the 

Greek geometry of chords, as found in the Almagest, and the Hindu tables of sines, as derived 

through the Sindhind. Here, too, the conflict resulted in triumph for the Hindu aspect, and most 

Arabic trigonometry was ultimately built on the sine function. It was, in fact, again through the 

Arabs, rather than directly from the Hindus, that this trigonometry of the sine reached Europe.  

Sometimes attempts are made to attribute the functions tangent, cotangent, secant, 

and cosecant to specific times and even to specific individuals, but this cannot be done with any 

assurance. In India and Arabia, there had been a general theory of shadow lengths, as related to 

a unit of length or gnomon, for varying solar altitudes. There was no one standard unit of length 

for the staff or the gnomon used, although a hand span or a man’s height was frequently 

adopted. The horizontal shadow, for a vertical gnomon of given length, was what we call the 

cotangent of the angle of elevation of the sun. The “reverse shadow”—that is, the shadow cast 

on a vertical wall by a stick or a gnomon projecting horizontally from the wall—was what we 

know as the tangent of the solar elevation. The “hypotenuse of the shadow”—that is, the 

distance from the tip of the gnomon to the tip of the shadow—was the equivalent of the 

cosecant function, and the “hypotenuse of the reverse shadow” played the role of our secant. 

This shadow tradition seems to have been well established in Asia by the time of Thabit ibn-

Qurra, but values of the hypotenuse (secant or cosecant) were seldom tabulated. 

POSSIBLE SHORT QUESTIONS: 

i. Define numeral. 

ii. Shortly note on Arab’s numerals. 

iii. Before establishling the Arabic letters (28) how did Arabs wrote numerals? 

iv. write about numeral changings from time to time regarding muslim history. 

v. Why we call our number “the Hindoo or Hindoo – Arabic system”? 

vi. Write short camparison of Arabic geometry for different civilizations. 

LONG QUESTIONS:   

Briefly note on Arab’s numerals. 
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TENTH- AND ELEVENTH-CENTURY HIGHLIGHTS (JUST READ) 

With Abu’l-Wefa, trigonometry assumes amore systematic forminwhich such theorems as 

double and half-angle formulas are proved.Although the Hindu sine function had displaced the 

Greek chord, it was nevertheless the Almagest of Ptolemy that motivated the logical 

arrangement of trigono- metric results. The law of sines had been known to Ptolemy in essence 

and is implied in the work of Brahmagupta, but it is frequently attributed to Abu’l-Wefa and his 

contemporary Abu Nasr Mensur because of their clear-cut formulation of the law for spherical 

triangles. Abu’l-Wefa also made up a new sine table for angles differing by 
 

 
  , using the 

equivalent of eight decimal places. In addition, he contributed a table of tangents and made use 

of all six of the common trigonometric functions, together with relations among them, but his 

use of the new functions seems not to have been widely followed in the medieval period. 

Abu’l-Wefa was a capable algebraist, as well as a trigonometer. He commented on al-

Khwarizmi’s Algebra and translated from the Greek one of the last great classics—the 

Arithmetica of Diophantus. His successor al-Karkhi evidently used this translation to become an 

Arabic disciple of Diophantus—but without Diophantine analysis! That is, al-Karkhi was 

concerned with the algebra of al-Khwarizmi, rather than with the indeterminate analysis of the 

Hindus, but like Diophantus (and unlike al-Khwarizmi), he did not limit himself to quadratic 

equations—despite the fact that he followed the Arabic custom of giving geometric proofs for 

quadratics. In particular, to al-Karkhi is attributed the first numerical solution of equations of 

the form ax2n + bxn = c (only equations with positive roots were considered), where the 

Diophantine restriction to rational numbers was abandoned. It was in just this direction, toward 

the algebraic solution (in terms of radicals) of equations of more than the second degree, that 

the early developments in mathematics in the Renaissance were destined to take place. The 

time of al-Karkhi—the early eleventh century—was a brilliant era in the history of Arabic 

learning, and a number of his contemporaries deserve brief mention—brief not because they 

were less capable, but because they were not primarily mathematicians. 

Ibn-Sina (980 1037), better known to the West as Avicenna, was the foremost scholar 

and scientist in Islam, but in his encyclopedic interests, mathematics played a smaller role than 

medicine and philosophy. He made a translation of Euclid and explained the casting-out of 

nines (which consequently is sometimes unwarrantedly attributed to him), but he is better 

remembered for his application of mathematics to astronomy and physics. 

As Avicenna reconciled Greek learning with Muslim thought, so his contemporary al-

Biruni (973 1048)made the Arabs—hence, us—familiar with Hindu mathematics and culture 

through his well-known book titled India. An indefatigable traveler and a critical thinker, he 

gave a sympathetic but candid account, including full descriptions of the Siddhantas and the 
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positional principle of numeration. It is he who told us that Archimedes was familiar with 

Heron’s formula and gave a proof of this and of Brahmagupta’s formula, correctly insisting that 

the latter applies only to a cyclic quadrilateral. In inscribing a nonagon in a circle, al-Biruni 

reduced the problem, through the trigonometric formula for cos 3θ, to solving the equation              

x3  = 1 + 3x, and for this, he gave the approximate solution in sexagesimal fractions as 

1;52,15,17,13—equivalent to more than six-place accuracy. Al-Biruni also gave us, in a chapter 

on gnomon lengths, an account of the Hindu shadow reckoning. The boldness of his thought is 

illustrated by his discussion of whether the earth rotates on its axis, a question to which he did 

not give an answer. (Earlier, Aryabhata seems to have suggested a rotating earth at the center 

of space.) 

Al-Biruni also contributed to physics, especially through studies in specific gravity and 

the causes of artesian wells, but as a physicist and a mathematician he was excelled by ibn-al-

Haitham (ca. 965 1039), known to the West as Alhazen. The most important treatise written by 

Alhazen was the Treasury of Optics, a book that was inspired by work of Ptolemy on reflection 

and refraction and that in turn inspired scientists of medieval and early modern Europe. Among 

the questions that Alhazen considered were the structure of the eye, the apparent increase in 

the size of the moon when near the horizon, and an estimate, from the observation that 

twilight lasts until the sun is 190 below the horizon, of the height of the atmosphere. The 

problem of finding the point on a spherical mirror at which light from a source will be reflected 

to the eye of an observer is known to this day as “Alhazen’s problem.” It is a “solid problem” in 

the old Greek sense, solvable by conic sections, a subject with which Alhazen was quite familiar. 

He extended Archimedes’ results on conoids by finding the volume generated by revolving 

about the tangent at the vertex the area bounded by a parabolic arc and the axis and an 

ordinate of the parabola. 

OMAR KHAYYAM  (JUST READ) 

Arabic mathematics can with some propriety be divided into four parts:  

(1) an arithmetic presumably derived from India and based on the principle of position;  

(2) an algebra that, although from Greek, Hindu, and Babylonian sources, nevertheless in 

Muslim hands assumed a characteristically new and systematic form; 

(3) a trigonometry the substance of which came chiefly from Greece but to which the Arabs 

applied the Hindu form and added new functions and formulas;  

 (4) a geometry that came from Greece but to which the Arabs contributed generalizations here 

and there. There was a significant contribution about a century after Alhazen by a man who in 

the East is known as a scientist but whom the West recalls as one of the greatest Persian poets.  
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 Omar Khayyam (ca. 1050 1123), the “tent-maker,” wrote an Algebra that went beyond 

that of al-Khwarizmi to include equations of the third degree. Like his Arabic predecessors, 

Omar Khayyam provided both arithmetic and geometric solutions for quadratic equations; for 

general cubic equations, he believed (mistakenly, as the sixteenth century later showed), 

arithmetic solutions were impossible; hence, he gave only geometric solutions. The scheme of 

using intersecting conics to solve cubics had been used earlier by Menaechmus, Archimedes, 

and Alhazen, but Omar Khayyamtook the praiseworthy step of generalizing themethod to cover 

all third-degree equations (having positive roots). When in an earlier work he came across a 

cubic equation, he specifically remarked, “This cannot be solved by plane geometry [i.e., using 

straightedge and compasses only] since it has a cube in it. For the solution we need conic 

sections” (Amir-Moez 1963, p. 328).For equations of a higher degree than three, Omar 

Khayyam evidently did not envision similar geometric methods, for space does not contain 

more than three dimensions, “what is called square-square by algebraists in continuous 

magnitude is a theoretical fact. It does not exist in reality in any way.” The procedure that Omar 

Khayyam so tortuously—and so proudly applied to cubic equations can be stated with far 

greater succinctness in modern notation and concepts as follows. Let the cubic be 

x3+ax2+b2x+c3=0. Then, if for x2 in this equation we substitute 2py, we obtain (recalling that x3 

=x2. x)the result 2pxy+2apy+b2x+c3=0. Because the resulting equation represents a hyperbola, 

and the equality x2=2py used in the substitution represents a parabola, it is clear that if the 

hyperbola and the parabola are sketched on the same set of coordinate axes, then the 

abscissas of the points of intersection of the two curves will be the roots of the cubic equation. 

Obviously, many other pairs of conic sections can be used in a similar way to solve the cubic. 

Our exposition of Omar Khayyam’s work does not do justice to his genius, for, lacking 

the concept of negative coefficients, he had to break the problem into many separate cases 

according as the parameters a, b, c are positive, negative, or zero.Moreover, he had to 

specifically identify his conic sections for each case, for the concept of a general parameterwas 

not at hand in his day.Not all roots of a given cubic equationwere given, for he did not accept 

the appropriateness of negative roots and did not note all intersections of the conic sections. It 

should also be mentioned that in the earlier Greek geometric solutions of cubic equations, the 

coefficients had been line segments, whereas in the work of Omar Khayyam they were specific 

numbers. One of the most fruitful contributions of Arabic eclecticism was the tendency to close 

the gap between numerical and geometric algebra.The decisive step in this direction came 

much later with Descartes, but Omar Khayyam was moving in this direction when he wrote, 

“Who-ever thinks algebra is a trick in obtaining unknowns has thought it in vain. No attention 

should be paid to the fact that algebra and geometry are different in appearance. Algebras are 

geometric facts which are proved.” In replacing Euclid’s theory of proportions with a numerical 

approach, he came close to a definition of the irrational and struggledwith the concept of real 

number in general. 
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In his Algebra, Omar Khayyam wrote that elsewhere he had set forth a rule that he had 

discovered for finding fourth, fifth, sixth, and higher powers of a binomial, but such a work is 

not extant. It is presumed that he was referring to the Pascal triangle arrangement, one that 

seems to have appeared in China at about the same time. Such a coincidence is not easy to 

explain, but until further evidence is available, independence of discovery is to be assumed. 

Intercommunication between Arabia and China was not extensive at that time, but there was a 

silk route connecting China with Persia, and information might have trickled along it. 

THE PARALLEL POSTULATE (Just read) 

Islamic mathematicians were clearly more attracted to algebra and trigonometry than to 

geometry, but one aspect of geometry held a special fascination for them—the proof of Euclid’s 

fifth postulate. Even among the Greeks, the attempt to prove the postulate had become 

virtually a “fourth famous problem of geometry,” and several Muslim mathematicians 

continued the effort. Alhazen had begun with a trirectangular quadrilateral (sometimes known 

as “Lambert’s quadrangle” in recognition of efforts in the eighteenth century) and thought that 

he had proved that the fourth anglemust also be a right angle. From this “theorem” on the 

quadrilateral, the fifth postulate can easily be shown to follow. In his “proof,”Alhazen had 

assumed that the locus of a point that moves so as to remain equidistant from a given line is 

necessarily a line parallel to the given line—an assumption shown in modern times to be 

equivalent to Euclid’s postulate. Omar Khayyam criticized Alhazen’s proof on the ground that 

Aristotle had condemned the use of motion in geometry. Omar Khayyam then began with a 

quadrilateral the two sides of which are equal and are both perpendicular to the base (usually 

known as a “Saccheri quadrilateral,” again in recognition of eighteenth-century efforts), and he 

asked about the other (upper) angles of the quadrilateral, which necessarily are equal to each 

other. There are, of course, three possibilities. The angles may be (1) acute, (2) right, or (3) 

obtuse. The first and third possibilities Omar Khayyam ruled out on the basis of a principle, 

which he attributed to Aristotle, that two converging lines must intersect—again, an 

assumption equivalent to Euclid’s parallel postulate. 
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NASIR AL- DIN AL – TUSI (الدین طوسی  (نصیر

When Omar Khayyam died in 1123, Islamic science was in a state of decline, but Muslim 

contributions did not come to a sudden stop with his death. Both in the thirteenth century and 

again in the fifteenth century, we find an Islamic mathematician of note. At Maragha, for 

example, Nasir al-Din (Eddin) al-Tusi (1201 1274), an astronomer to Hulagu Khan, a grandson of 

the conqueror Genghis Khan and a brother of Kublai Khan, continued efforts to prove the 

parallel postulate, starting from the usual three hypotheses on a Saccheri quadrilateral. His 

“proof” depends on the following hypothesis, again equivalent to Euclid’s: 

If a line u is perpendicular to a line w at A, and if line v is oblique to w at 3, then the 

perpendiculars drawn from u upon v are less than AB on the side on which v makes an acute 

angle with w and greater on the side on which v makes an obtuse angle with w. 

The views of al -Tusi, the last in the sequence of three Arabic precursors of non-Euclidean 

geometry, were translated and published by John Wallis in the seventeenth century. It appears 

that this work was the starting point for the developments by Saccheri in the first third of the 

eighteenth century. 

Continuing the work of Abu’l-Wefa, al-Tusi was responsible for the first systematic 

treatise on plane and spherical trigonometry, treating the material as an independent subject in 

its own right and not simply as the handmaid of astronomy, as had been the case in Greece and 

India. The six usual trigonometric functions are used, and rules for solving the various cases of 

plane and spherical triangles are given. Unfortunately, the work of al-Tusi had limited influence, 

inasmuch as it did not become well known in Europe. In astronomy, however, al-Tusi made a 

contribution that may have come to the attention of Copernicus. The Arabs had adopted 

theories of both Aristotle and Ptolemy for the heavens; noticing elements of conflict between 

the cosmologies, they sought to reconcile and refine them. In this connection, al-Tusi observed 

that a combination of two uniform circular motions in the usual epicyclic construction can 

produce a reciprocating rectilinear motion. That is, if a point moves with uniform circular 

motion clockwise around the epicycle, while the center of the epicycle moves counterclockwise 

with half of this speed along an equal deferent circle, the point will describe a straight-line 

segment. (In other words, if a circle rolls without slipping along the inside of a circle whose 

diameter is twice as great, the locus of a point on the circumference of the smaller circle will be 

a diameter of the larger circle.) This “theorem of Nasir Eddin” became known to, or was 

rediscovered by, Nicholas Copernicus and Jerome Cardan in the sixteenth century. 
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AL-KASHI (JUST READ) 

The mathematics of Islam continued to decline after al-Tusi, but our account of the Muslim 

contribution would not be adequate without reference to the work of a figure in the early 

fifteenth century. Jamshid al-Kashi (ca. 1380 1429) found a patron in the prince Ulugh Beg, who 

was a grandson of the Mongol conqueror Tamerlane. In Samarkand, where he held his court, 

Ulugh Beg had built an observatory and established a center of learning, and al-Kashi joined the 

group of scientists gathered there. In numerous works, written in Persian and Arabic, al-Kashi 

contributed to mathematics and astronomy. He also produced a major textbook for the use of 

students in Samarkand, which provided an introduction to arithmetic, algebra, and their 

applications to architecture, surveying, commerce, and other interest areas. His computational 

skills appear to have been unequalled. Noteworthy is the accuracy of his computations, 

especially in connection with the solution of equations by a special case of Horner’s method, 

derived perhaps from the Chinese. From China, too, al-Kashi may have taken the practice of 

using decimal fractions. Al-Kashi is an important figure in the history of decimal fractions, and 

he realized the significance of his contribution in this respect, regarding himself as the inventor 

of decimal fractions. Although to some extent he had had precursors, he was perhaps the first 

user of sexagesimal fractions to suggest that decimals are just as convenient for problems 

requiring many-place accuracy. Nevertheless, in his systematic computations of roots, he 

continued to make use of sexagesimals. In illustrating his method for finding the nth root of a 

number, he took the sixth root of the sexagesimal                                This was a 

prodigious feat of computation, using the steps that we follow in Horner’s method—locating 

the root, diminishing the roots, and stretching or multiplying the roots—and using a pattern 

similar to our synthetic division. Al-Kashi evidently delighted in long calculations, and he was 

justifiably proud of his approximation of π, which was more accurate than any of the values 

given by his predecessors. He expressed his value of 2π in both sexagesimal and decimal forms. 

The former—6;16,59,28,34,51,46,15,50— is more reminiscent of the past, and the latter, 

6.2831853071795865, in a sense presaged the future use of decimal fractions. No 

mathematician approached the accuracy in this tour de force of computation until the late 

sixteenth century. His computational skills appear to have been at the basis of the table of sines 

produced at the Samarkand observatory. In al-Kashi, the binomial theorem in “Pascal triangle” 

form again appears, just about a century after its publication in China and about a century 

before it was printed in European books. 

The number of significant Islamic contributors to mathematics before al-Kashi was 

considerably larger than our exposition would suggest, for we have concentrated only on major 

figures, but after al-Kashi the number is negligible. It was very fortunate indeed that when 

Arabic learning began to decline, scholarship in Europe was on the upgrade and was prepared 

to accept the intellectual legacy bequeathed by earlier ages. 
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WHAT IS MATHEMATICS - AN OVERVIEW 

Mathematics is based on deductive reasoning though man's first experience with mathematics 

was of an inductive nature. This  means that the foundation of mathematics is the study of 

some logical and philosophical notions. We elaborate in simple terms  that the deductive 

system involves four things: 

 (1) A set of primitive undefined terms;  

(2) Definitions evolved from the undefined terms;  

(3) Axioms or postulates; (4) Theorems and their proofs.  

We also include some historical remarks on the  nature of mathematics.  

KEYWORDS : Mathematics Education, Deductive Reasoning, Inductive Reasoning, Primitive 

Undefined Terms, Axioms, Theorem,   Direct Proof, Indirect Proof, Platonism, Formalism  

 INTRODUCTION  

Mathematics is not only concerned with everyday problems,  but also with using 

imagination, intuition and reasoning to  find new ideas and to solve puzzling problems. One 

method  used by mathematicians in discovering new ideas is  to  perform experiments. This is 

called the "experimental  method" or "inductive reasoning". When a scientist  takes a  large 

number of careful observations and from them  infers  some probable results or when he 

repeats an experiment  many times and from these data arrives at some probable  conclusion, 

he is using inductive reasoning. That is to say,  from a large number of specific cases he obtains 

a  single general inference.  The other method is based on reasoning rather than  on  

experiments or observations. This is called "deductive  reasoning". When a mathematician 

begins with a set  of  acceptable conditions, called the hypothesis and by a series  of logical 

implications reaches a valid conclusion, he  employs deductive reasoning. The major difference 

in the  two methods is implied in the two words: “probable” with  respect to inductive 

reasoning and `valid' relative to  deductive reasoning. For example, if we perform an  

experiment successfully say a thousand times, then  another  twenty successful trails would 

lend credence to the result, but  we have no assurance whatever that the experiment will not  

fall on the very next trail. On the other hand in a deductive  system, once we accept the 

hypothesis, the validity of our  conclusion is inevitable provided each implication  in the  

reasoning process is a logical consequence of what  which  proceeds it. Here "consistency" of a 

logical system means  that no theorem of the system contradicts another and  "validity" means 

that the system's rules of proof never allow  a false inference from true premises.  
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DEDUCTIVE REASONING  SYSTEM: As mentioned above, mathematics is based on deductive 

reasoning though man's first experience with mathematics  was of an inductive nature. The 

ancient Egyptians and  Babylonians developed many mathematical ideas through  observation 

and experimentation and made use of this  mathematics in their daily life. Then the Greeks 

became interested in philosophy and logic and placed a great emphasis on reasoning. For 

example, in Geometry, the  axiomatic development was first developed by them from  500 to 

300 BC, and was described in detail by Euclid around  300 BC. They accepted a few most basic 

mathematical  assumptions and used them to prove deductively most of the  geometric facts 

we know today. Our high school geometry is  an excellent example of a deductive system. 

Recall that in the  study of geometry, we began with a set of undefined terms,  such as point, 

line etc. We then made some definitions, for  example, those of angle, parallel lines, 

perpendicular lines,  triangle etc. Next, we listed a number of statements  concerning these 

undefined and defined terms which  we  accepted to be true without proof; these assumptions 

we  called, axioms or postulates. Finally, we were able to prove a  considerable number of 

propositions or theorems by  deductive reasoning.  In summary, we observe that the study of 

foundations of  mathematics involves an abstract deductive system consisting of:  

1. A set of primitive undefined terms;  2. Definitions evolved from the undefined terms;  

3. Axioms or postulates;  4. Theorems and their proofs.  

We now discuss each of them as follow.  

UNDEFINED TERMS 

 To build a mathematical system  based on logic, the mathematician begins by using 

some  words to express their ideas, such as `number' or a `point'.  These words are undefined 

and are sometimes called  `primitive terms'. These words usually have some meaning  because 

of experience we have had with them. It may seem  strange that in mathematics, a field with 

which precision and  accuracy are commonly associated, we do not (and cannot)  `start from 

scratch' but find it necessary to begin with a set of  undefined terms. Why do we not start with 

precise  definitions? An attempt to define any of the fundamental  undefined terms, such as 

point, set, number or element  demonstrate that we are soon led to what is referred to as  

‘circular reasoning’. For example, let us try to define `point'.  What is a `point'? A point is a 

position at which something  exists. But what is meant by position? The location of an  object, 

naturally. But what does location of an object imply: a  point. So we are back where we started. 

In a like manner, an  attempt to define any of the other undefined terms  of  mathematics 

would also result in circular reasoning. Hence, it  should now be clear that the use of primitive 

terms is  indispensable because they serve as the foundation  upon  which the system rests.  For 

obvious reasons, the primitive terms, a mathematician  chooses must be simple in form and as 

Available at http://www.mathcity.org
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small in number as  possible. They usually appeal to the intuition, more or less,  but it is 

important to distinguish the intuitive ideas behind  them and the part they play in the theory. It 

is not completely  true to say that a primitive term has no formal meaning. It  may have content 

because of the logical position we put in it.  

DEFINITIONS: : A definition, Bertrand Russell says, is a  declaration that a certain newly 

introduced term or  combination of terms is to mean the same as a certain other  combination 

of terms, of which the meaning is already  known. It assigns a meaning to a term by means of 

primitive  terms and terms already defined.  It is to be observed that although we employ 

definitions, yet “definitions" does not appear among our primitive ideas  because, strictly 

speaking, the definitions are no part of our  subject. Practically, of course, if we introduce no 

definitions,  our formulae would very soon become so lengthy, as  to be  unimaginable.  In spite 

of the fact that definitions are theoretically  superfluous, it is nevertheless true, that they often 

convey  more important information than is contained in the  proposition in which they are 

used. Definitions clarify and  simplify expressions. We need to define our terms so that we  can 

use short names for complex ideas. Also definitions  contain an analysis of a common idea and 

can, therefore,  classify, that we wish to single out quadrilaterals with  opposite parallel sides. 

We may do this by means of a  definition: "a parallelogram is a quadrilateral whose opposite  

sides are parallel". If we assume in this definition that  `quadrilateral', `opposite sides' and 

`parallel' have been  defined previously, then what we have done is to define the  class of 

parallelograms.  

AXIOMS AND POSTULATES:  At the start of every  mathematical theory (such as Real Numbers 

System, Group  Theory, Topology, Quantum Mechanics), some kinds of  foundations are 

needed. For this purpose, a set of  independent fundamental statements is asserted. These  

assertions are called axioms and postulates. Both the axioms  and the postulates have their 

roots in antiquity. To quote  Aristotle, "Every demonstrative science must start  from  

indemonstrable principles. Otherwise, the steps of  demonstration would be endless". Both the 

axioms and the  postulates presumably are principles, so clearly true that we  accept them 

without a corresponding proof. In Euclid's time  (300 BC), axioms referred specifically to an 

assumption in  geometry. Today the distinction is disregarded and both terms  are used 

interchangeably.  The axioms of a mathematical theory are usually stipulated at  the beginning 

of the theory, immediately after announcing  the primitive terms. These terms are the bricks 

with which we  build up these axioms. The axioms may contain such  statements as: "Things 

equal to the same thing are  equal to  one another". "Every line is a set of points". They are  

necessary if we are to avoid an infinite regression which  would certainly result if we only 

accepted what we  could  prove. Once the axioms have been chosen, we become more  severe 

about the subsequent propositions.  
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THEOREMS AND THEIR PROOFS: 

 A `theorem' is a  statement whose truth is established by formal proof. The  bulk of any branch 

of mathematics consists of the collection  of theorems that pertain to that particular area. 

Much of the  beauty of mathematics lies in the sequential development of  the subject through 

the proofs of its theorems. A `proof' is a  chain of reasoning that succeeded in establishing a  

conclusion by showing that it follows logically from  premises that already are known to be 

true. In proving a  theorem, we may use our undefined and defined terms, and  our axioms and 

of course any theorem we prove, the more  knowledge we have at our disposal to prove 

additional  theorems. In any mathematical theory, to prove the  first  theorem, A (say), the only 

arguments that can be used are the  axioms. And to prove a second theorem, B (say), we may 

use  the axioms and Theorem A and similarly for the subsequent  theorems. Hence we state the 

principle: "a proof  demonstrates the validity of a proposition using an argument  based entirely 

on the axioms and the previously established  theorems".  

KINDS OF PROOFS: 

There are two kinds of proof: direct proof  and indirect proof. Most theorems have the form "a 

statement  p implies another statement q". To demonstrate such a  statement we proceed with 

an assumption usually called the  hypothesis in the following ways:  

Assert p (i.e. suppose p is given). From this we construct a  demonstration that ends with the 

statement q.  

This program makes up what we called a "direct proof".  The `indirect proof', also called "proof 

by contradiction"  (reductio ad absurdum, in Latin), depends essentially on the  notion of 

negation. This idea can be stated in the  following form:  

"To prove the Theorem A indirectly, we affirm its negation.  From this we construct an 

argument that concludes with the  negation of a result already known to be true. This is a  

legitimate proof of Theorem A".  

TRUTH OF ASSERTIONS:  

We have spoken of the truth of certain  assertions. What does the word `truth' mean in this 

context?  A proposition is true if it can be proved by means  of the  axioms and theorems 

proved previously. Notice that  a  theorem may be true in one theory but false in another; it all  

depends on the initial axioms. In "plane geometry", the  statement that the sum of the angles 

of a triangle is two right  angles is true, but it is no longer true in "Riemannian  geometry". In 

"classical mechanics" mass is indestructible,  but in "quantum theory", a mass can be destroyed 

and replaced by energy.  
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SOME REMARKS AND QUOTES  

A.  The above described Deductive System is also called  Formalism. In fact, there are two 

dominant schools of  thought about the nature of Mathematics: one is the  Platonist or Realist 

(deriving from Plato) and the other is  Formalist. The Platonists believe that mathematical 

objects  exist independent of us and inhabit a world of their own.  They are not invented by us 

but rather discovered.  Formalists on the other hand believe that there are no such  things as 

mathematical objects. Mathematics consists of  definitions, axioms and theorems invented by  

mathematicians and have no meaning in themselves  except that which we ascribe to them. 

This school of  thought was introduced by David Hilbert in 1921.  During the 1920's shock waves 

had run through the  science of physics, because of Heisenberg's Uncertainty  Principle 

(introduced first by the German physicist Werner  Heisenberg in 1927). This principle states that 

you can  never simultaneously know the exact position and the  exact speed of an object. In 

1931, a 25 year old Austrian  mathematician Kurt Gödel shocked the worlds of  mathematics 

and philosophy by showing that there are  mathematical truths which simply cannot be proved.  

Kurt Gödel (1906-1978) was regarded as a brilliant  mathematician and perhaps the greatest 

logician since  Aristotle. His famous “incompleteness theorem” was  a  fundamental result 

about axiomatic systems, showing that  in any axiomatic mathematical system, there are  

propositions that cannot be proved or disproved within the  axioms of the system. In particular 

the consistency of the  axioms cannot be proved. This ended a hundred years of  attempts to 

establish axioms which would put the whole of  mathematics on an axiomatic basis. These 

included some  major attempts by several logicians and mathematicians of  that time (such as 

Germans' Richard Dedekind (1831-1916), Georg Cantor (1845-1918), Friedrich Frege (1848-

1925), David Hilbert (1862-1943), Ernst Zermelo (1871-1953), Italian's Giuseppe Peano (1858-

1932), ), Dutch  L.E.J. Brouwer (1881-1966), British Bertrand Russell  (1872-1970)).   

B. Gödel's results did not destroy the fundamental idea of  formalism, but it did demonstrate 

that any system would  have to be more comprehensive than that envisaged by   International 

Journal of Mathematics and Computational Science Vol. 1, No. 3, 2015, pp. 98-101  101  Hilbert 

and others. In fact, these results were a landmark  in 20th-century mathematics, showing that 

mathematics is  not a finished object, as had been believed. It also implies  that a computer can 

never be programmed to answer all  mathematical questions. Among physicists, Gödel is  

known as the man who proved that time travel to the past  was possible under Einstein's 

equations.   

C. Mathematics may be defined as the subject in which we  never know what we are talking 

about, nor whether what  we are saying is true – (Bertrand Russell, Mysticism and  Logic (1917)  

D.  "Obvious" is the most dangerous word in mathematics  (E.T. Bell, 1883-1960).  



116 
 

MUHAMMAD USMAN HAMID (0323-6032785) 

E. To arrive at the simplest truth, as Newton knew and  practiced, requires years of 

contemplation. Not activity.  Not reasoning. Not calculating. Not busy behaviour of any  kind. 

Not reading. Not talking. Not making an effort. Not  thinking. Simply bearing in mind what it is 

one needs to  know. (George Spencer Brown, 1923)  

F. Pure mathematics is on the whole distinctly more useful  than applied. For what is useful 

above all is technique, and  mathematical technique is taught mainly through pure  

mathematics. (G.H. Hardy, 1877-1947)  

G. As one ancient stated, teaching is not a matter of pouring  knowledge from one mind into 

another as one pours water  from one glass into another. It is more like one candle igniting 

another. Each candle burns with its own fuel.   

H.  For more than two thousand years some familiarity with  mathematics has been regarded as 

an indispensable part of  the intellectual equipment of every cultured person. Today  the 

traditional place of mathematics in education is in  grave danger. (Richard Courant and Herbert 

Robbins)  

GEOMETRY 

The word “Geometry” is derived by ancient Greek, (Geo mean Earth, Metron mean 

measurement) is a branch of mathematics concerned with knowledge dealing with spatial 

relationships, for example, geometrical shapes, relative position of geometrical figures and the 

properties of space. A mathematician who work in the field of geometry is called a geometer. 

BEGINNING: In the beginning geometry was a collection of rules for computing lengths, areas 

and volumes. Many were crude approximation derived by trial and error. This body of 

knowledge developed and used in construction, navigation and surveying by the Babylonian 

and Egyptians was passed to the Greeks. The Greek historian Herodotus (5th century BC) credits 

the Egyptians with having originated the subject, but there is much evidence that the 

Babylonian, the Hindu civilization and the Chinese knew much of what was passed along the 

Egyptians. 

CLASSICAL GREEK GEOMETRY: Classical geometry was focused in compass and strategic 

construction. Geometry was revolutionized by Euclid who introduced mathematical rigor and 

axiomatic methods still in used today. His book ‘The Element’ is a best known source for his 

work.  
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CONTRIBUTION OF DIFFERENT CIVILIZATIONS 

BABYLONIANS GEOMETRY 

Babylonians were able to compute areas of rectangles, right and isosceles triangles, trapozides 

and circles. They computed the area of a circle as the square of the circumference divided by 

twelve. The Babylonians were also responsible for dividing the circumference of a circle in to 

360 equal parts. They also used the Pythagorian Theorem. 

EGYPTIANS GEOMETRY 

The Egyptinas were not nearly as inventive as the Babylonians but they were extensive user of 

mathematics, especially geometry. They were extremely accurate in their constructions, making 

the right angles in the Great Pyramid of Giza to maintain high level accuracy. They computed 

the area of a circle to be the square of 8/9 of the diameter. 

EARLY GREEK GEOMETRY 

The ancient knowledge of geometry was passed on to the Greeks.                                                    

Thales of Miletus (624 – 547 BC)  developed the first logical geometry. Orderly development of 

theorems by proof was the distinctive characteristic of Greek mathematics was new. This 

mathematics of Thales was continued over the next two centuries by Pythagoras of Samos           

(569 – 475 BC)  and his disciples. 

EUCLIDEAN GEOMETRY: Euclidean Geometry is a mathematical well known system attributed 

to the Greek mathematician Euclid of Alexandria. The study of plane and solid figures on the 

basis of axioms and theorems employed by Euclid. Euclid’s text Elements was the first 

systematic discussion of geometry. It has been one of the most influential book in history, as 

much for its method as for its mathematical content. The method consists of assuming a small 

set of intuitively appealing axioms, and then proving many others prospositions from those 

axioms. Although many of Euclid’s results had been stated by earlier Greek mathematics, 

Ecuclid was the first to show how these prospositions could be fitted together into a 

comprehensive deductive and logical system.  

DIFFERENTIAL GEOMETRY 

Differential Geometry has been of increasing importance to mathematical physics due to 

Einstein’s general relativity postulation that the universe is curved. Contemporary differential 

geometry is intrinsic, meaning that the spaces it considers are smooth manifolds whose 

geometric structure is governed by a Riemannian metric, which determines how distances are 

measured near each point.  
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TOPOLOGY AND GEOMETRY 

The field of Topology, which saw massive development in the 20th century, is in a technical 

sense a type of transformation geometry, in which transformations are homeomorphisms. This 

has often been expressed in the form of the dictum ‘ topology is rubber sheet geometry’. 

ALGEBRAIC GEOMETRY 

The field of Algebraic Geometry is the modern incarnation of the Cartesian geometry of 

coordinates. This led to the introduction of schemes and greater emphasis on topological 

methods, including various chorology theories. The study of low dimensional algebraic 

verieties, algebraic curve, algebraic surfaces and algebraic verieties of dimensions 3 (algebraic 

three fold), has been far advanced. Gr ̈bner basis theory and real algebraic geometry are 

among more applied subfields of modern algebraic geometry. Arithmetic geometry is an active 

field combininig algebraic geometry and number theory. Other direction of research involve 

moduli spaces and complex geometry. Algebra – geometric methods are commonly applied in 

string and brain theory. 

AREA 

Area is the quantity that expresses  the extent of two dimensional figure or shape, or planar 

lamina, in the plane. Surface area is its analog on the two dimensional surface of a three 

dimensional object. Area can be understood as the amount of material with a given thickness 

that would be necessary to fashion a model fo the shape, or the amount of paint necessary to 

cover the surface with a single coat. It is the two – dimensional analog of the length of a curve   

( a one dimensional concept )  or the volume of a solid. The area of a shape can be measured by 

comparing the shape to squares of a fixed size. In the International System of Units (SI System) , 

the standard unit of area is the square meter (  ), which is the area of a squre whose sides are 

one meter long. A shape with an area of three square meters would have the same area as 

three such squares. In mathematics, the unit square si defined to have area one, and the area 

of any other shape or surface is a dimensionless real number. 

 Area plays an important role in modern mathematics. In addition to its obvious 

importance in geometry and calculus, area is related to the definition of determinants in linear 

algebra, is a basic property of surface in differential geometry. In analysis, the area of a subset 

of a plane is defined using Lebesgue measure, though not every subset is measureable. In 

general, area in higher mathematics is seen as a special case of volume for two dimensional 

regions. It can be defined through the use of axioms, defining it as a function of a collection of 

certain plane figures to the set of real numbers. It can be proved that such a function exists. 
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AREA CONCEPT IN GREEK: Calculation of area dates back 5th century BCE, since area of a disk 

was studied by Ancient Greeks. However in modern times, area is computed using methods of 

integral calculus and real analysis. Hippocrates (بقراط) of Chios was the first to show that the area 

of a disk ( the region enclosed by a circle ) is proportional to the square of its diameter, as part 

of his quadrature (ویے کا فاصلہ  of the lune of Hippocrates, but did not identify the constant of (زا

proportionality. Eudoxus of Cnidus, also in 5th century, also found that the area of a disk is 

proportional to its raduius squared. Archimeds used tools of Euclidean geometry to show that 

the area inside a circle is equal to that of a right triangle whose base has the length of the 

circle’s circumference and whose height equals to the circle’s radius, in his book Measurement 

of a Circle. Swiss scientist John Heinrich Lambort in 1761 proved that  , the ratio of circle’s area 

to its squared radius, is irrational. Heron (Hero) of Alexandria found formula for the area of a 

triangle in terms of its sides, and a proof can be found in his book, Metrica, written about 60 

CE. In the  7th century CE, Brahmagupta developed a formula, for the area of a cyclic 

quadrilateral in a circle in terms of its sides. In 1842 the German mathematicians Carl Anton 

and George Chritian independently found a formula, for the area of any quadrilateral. 

CIRCLE AREA: In the 5th century BCE, Hippocrates (بقراط) of Chios was the first to show that the 

area of a disk ( the region enclosed by a circle ) is proportional to the square of its diameter, as 

part of his quadrature (ویے کا فاصلہ  of the lune of Hippocrates, but did not identify the constant of (زا

proportionality. Eudoxus of Cnidus, also in 5th century, also found that the area of a disk is 

proportional to its raduius squared. 

TRIANGLE AREA: Heron (Hero) of Alexandria found formula for the area of a triangle in terms of 

its sides, and a proof can be found in his book, Metrica, written about 60 CE. It has been 

suggested that Archimedes knew the formula over two centuries earlier. And since Metrica is a 

collection of mathematical knowledge available in the ancient world,it is possible that the 

formula predates the reference given in that work. 

QUADRILITERAL  AREA: in the 7th century CE,  Brahmagupta developed a formula 

(Brahmagupta’s  formula), for the area of a cyclic quadrilateral in a circle in terms of its sides. In 

1842 the German mathematicians Carl Anton Brettschneider and Karl George Chritian von 

Staudt independently found a formula, known as Brettschneider’s formula for the area of any 

quadrilateral. 

GENERAL POLYGON  AREA: The development of Cartesian Coordinates by Rene Descartes in 

17th century allowed the development of the Surveyor’s Formula for the area of any Polygon 

with know vertex location by Gauss in the 19th century. 
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ANALYSIS 

Analysis is the branch of mathematics dealing with limits and related theories, such as 

differentiation, integration, measure, infinite series and analytic functions. These theories are 

usually studied in the context of real and complex numbers and functions. Analysis evolved 

from calculus, which involves the elementary concepts and techniques of analysis. It may be 

distinguished from geometry, however it can be applied to any space of mathematical objects 

that has a definition of nearness or specific distances between objects. 

 Mathematical analysis formally developed in the 17th century during the scientific 

revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in 

analysis were implicitly present in the early days of ancient Greek mathematics. The modern 

foundations of mathematical analysis were established in 17th century in Europe. Descarts and 

Fermat independently developed analytic Geometry and a few decay later Newton and Leibnitz 

independently developed infinitesimal calculus, which grew with the stimulus applied work that 

continued through the 18th century, into analysis topics such as the calculus of variations, ODE’s 

and PDE’s, Fourier analysis and generating functions. The last third of century saw the 

arithmetization of analysis by Weierstrass, who thought that geometric reasoning was 

inherently misleading and introduced the “epsilon – delta” definition of limit. Instead Cauchy 

formulated calculus in terms of geometric ideas and infinitesimal. He also introduced the 

concept of the Cauchy sequence and started the Formal Theory of complex analysis.  

The historical origin of calculus (analysis) can be found in attempts to calculating the 

spatial quantities such as the length of the curved line or the area enclosed by a curve. The area 

inside a curve, for instance, is of direct interest in land measurement, but the same technique 

also determines the mass of a uniform sheet of material bounded by some choosen curve or 

the quantity of paint needed to cover an irregularly shaped surface. Similarly the mathematical 

technique for finding a tangent line to a curve at a given point can also be used to calculated 

the steepness of a curved hill or the angle through which a boat must turn to avoid a collision. 

Less directly, it is related to the extremely important question of the calculation of instataneous 

velocity of Other instantaneous rates of change, such as the cooling of a warm object in a cold 

room or the propagation of a disease organism through a human population. Analysis came 

into being because many aspects of the natural world can profitably be considered as being 

continuous at least to an excellent degree of approximation. This article beings with a brief 

introduction to the historical background of analysis and to basic concepts such as number 

system, functions, continuity, infinite series, and limits, all of which are necessary for the 

understanding of analysis.   
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THE CONCEPT OF LIMITS 

The definition of the limits as we know it has a long and deep history. One could argue that the 

informal idea of a limits starts with the ancient Greeks in Zenu’s paradox and the Achilles and 

the tortoise. This paradox cause uproar in the mathematics community at the time, and the 

concept of limits were left alone until Network and Leibnitz around. Before that in the late 17th 

century both Network and Leibnitz had a conception of limiting process which is the core nation 

of a limit. Neither of them gave it any sort of formulization the way weierstrass did, it is 

definitely clear that the modern conception of limit depends fundamentally on the nation of 

function it can be said that the modern nation of function starts with Newton Leibnitz and is 

formulize a bit after weierstrass, probably with cantor.  

According to Eli Maor’s: “The facts on file: calculus handbook”, the origins of concept of limits 

are attributed to Eudoxus of Cinidus (370 BCE), who formulated a principle known as the 

method of exhaustion: 

“If from any magnitude there be subtracted a part nit less than its half. From the remainder 

another past not less than its half, and so on, there will at length remain a magnitude less than 

any pre-assigned magnitude of the same kids” (Eudoxus) 

The doctrine of limits is sometimes claimed to have replaced that of infinitesimals when 

analysis was rigorized in the 19th century: while it is true that cantor, Dedekind and weierstrass 

attempted to eliminate infinitesimal from analysis, the history of the limits concept is most 

complex. Newton had explicitly written that his ultimate ratios were not actually ratios but, 

rather, limits of prime ratios. Infect the sources of a rigorous notion of limits are considerably 

older than the 19th Century. In the concept of Leibnitzian Mathematics the limits of       as  x 

 xo  can be viewed as the “ assignable part” of   (x0 + dx) where dx is an “inassignable” 

infinitesimal  increment. 

                Historical roots of limit notion are not as ancient as historical roots of infinitesimal 

methods. T.Wallis (1616-1703), in his Arithmetic Infinitorum (1655) introduced an arithmetical 

concept of the limit f a function. The number whose difference from the function can be lower 

than any given quantity M. Kline underlines the “Its formulation is still vague but there is the 

correct idea”. (Kline, 1972), as regard this Wallis vague formulation. 

  In Mathematics the concepts of limit formally expresses the notion of 

arbitrary closeness. That is a limits is a value that a variable quantity approaches as closely as 

one desires. The operations of differentiation and integration from calculus are both based on 

the theory of limits. The theory of limit is based on a particular property of real numbers , 
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namely that between two real numbers, no matter how close together they are, there is always 

another one between any two real numbers, they are always infinity many more. 

Nearness is key to understanding limits: only after nearness is defined does a limit acquire an 

exact meaning. Relevantly, a neighborhood of points near Neighborhoods are definitive 

components of infinite limits of a sequence.  

 Archimedes first developed the idea of limits to measure curved figures and 

the volume of sphere in the third century BC. By carving these figures into small pieces that can 

be approximated then increasing the numbers of pieces can be approximated, then increasing 

the numbers of prices, the limit of the sum of prices can give the desired quantity. Archimedes 

thesis the method was lost until 1906, when mathematicians discovered the Archimedes came 

close to discovering infinitesimal calculus.  As Archimedes work was unknown until the 20th 

century other developed the modern mathematical concept of limits.Englishman Sir Isaac 

Newton and German Gottfried Wilhelm von Leibnitz independently developed the general 

principles of calculus (of theory of limits) in the 17th century.  

HISTORY OF CALCULUS 

Caculus is the mathematical study of contiunuos change in the same way that geometry is study 

of shapes and algebra is study of generalization of arithmetical operation. 

History: Calculus known in its early history as infinitesimal calculus which is focused on limits, 

functions, derivatives, integrals and infinite series. 

Ancient Calculus: the ancient period introduced some of ideas that led to integral calculus but 

these ideas were not in systematic way. In Egyptian Moscow Papyrus (1820 BC) calculations of 

volume and area can  be found but they are in concerete form. Indians (8th century BC) had a 

long history of trigonometry. They gave different methods of differentiation of some 

trigonometric functions. Babylonians may discovered the trapezoidal rule which doing 

astronomical observation of Jupiter. Greek mathematics found the concept of area and volume 

i.e. Method of Exhaustion used by Eudoxus (408 – 355 BC). In 4th century AD in China Liu Hui 

reinvented this method to find area of circle. Democrats was the first person using the division 

of object into an infinite number of cross sections at the same time. Zeno of Elea discredited 

infinitesimal by his paradoxes. Archimedes invented heuristic method i.e. The Quadrature of 

Parabola. He was the first to find the tangent to a curve other than a circle. In the 17th century 

European mathematicians Isaac Barrow, Rene Descartes, Blasé Pascat and Fermet discussed the 

idea of derivative. In the mid of 17th century Newton and Leibnitz independently discovered 

calculus. Newton’s idea about calculus based on Fermet’s work. 
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NEWTON’S CONTRIBUTION IN CALCULUS 

Full name: Sir Isaac Newton and born in England on January 4,1643. He is credited as one of th 

greatest minds of the 17th century scientific revolution with discoveries in optics, motion and 

mathematics. He lived with his grandmother, graduated from Cambridge’s University. He 

started his training as the chosen heir of Isaac Barrow in Cambridge. 

Work: He derived the three law of motion which form basic principles of modern physics. He 

discovered Binomial Theorem in 1664 which describe the algebraic expression of power of a 

binomial. He developed Approximation method (Newton’s method) to find roots of function. 

He was the first person who used infinted power series. He gave the  method of Fluixion during 

the Plague Year (1665 – 1666). His initially work was to find a slope at any point on a curve. He 

calculated the derivative in order to find slope. He called this metho “method of Fluixion” here 

is the word Fluxion means flow a latin word. 

 He then established the opposite of differentiation i.e. integration which is 

called Method of Fluents. Newton also gave the 1st Fundamental theorem of Calculus which 

based on the concept of integration and stated as ; 

If a function is integrated and then differentiated the original function can be obtained because 

differentiation and integration are inverse functions. 

Symbol: For derivative he used the notation  ̇  ̈ and for integration he used  ̅       x   

In 1671 he wrote The Principia his famous book. This book published in 1687. In this book he 

defined Fluxional Calculus. He was best know master of Royal Mint (1699). He was the 

President of Royal Society (1703). He was the first Scientist that is ever to be knighted in 1705. 

He died in March 1727. For Newton the calculus was Geometrical while Leibniz look it towards 

Analysis. 

LEIBNIZ CONTRIBUTION IN CALCULUS 

Full name: Gotfried Wilhelm von Leibniz and born in Germany on July 1, 1646. He was a 

Polymith and interested in mataphysics, law, economics, politics, logic and mathematics. He 

died in November 14,1716. He discovered a method of arranging linear equations into array 

now called Matrix. He introduced ‘Leibniz Wheel’. He also introduced notion of self – similarity 

and Principle of continuity which was called Topology, his best known quote was 

“The Best of All Possible Worlds” 

Available at http://www.mathcity.org
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Work: He developed the binary system. In 1673 he introduced the calculating machine in which 

binary system was used. It can do         or even calculate extract roots. He developed 

calculus in 1674. And published his views in 1684. 

Symbol: For derivative he used the notation 
  

  
 and for integration he used  .                                       

He also gave the product rule of differentiation which is 
 

  
*         

 

   
+   

       

  
  

 

   
 

He also contributed in method of solving differential equations for example as follows; 

 Determination of rate of decay i.e.      
   

 Projection of population growth i.e.           

 Calculation of interest i.e.           

His work with integration can be applied in determining the followings; 

 Displacement   Force   Work.

His best contribution was discovery of the Fundamental Principle of Infinitesimal Calculus. His 

notations was easily to use so was adopted universly. 

Contraversy: Newton’s concepts based on limits and concerete reality while Leibniz focused on 

infinite and abstract of calculus.For Newton the calculus was Geometrical while Leibniz look it 

towards Analysis. Newton did not published his fidings until 1687 while he recorded his 

discoveries in 1675. In 1699 The Royal Academy gave full credit to Newton for his discoveries in 

Calculus while charged Leibniz for plagiarizing Newton’s work. In 1715 Royal Society handed 

down its decision and gave credit to both Newton and Leibniz for their great development in 

Calculus. Leibniz was very conscious about the importance of good notation and put a lot of 

thoughts into the symbols he used. While the Newton gave no importance to this thing. 

Consequently, much of the notations that is used in calculus today is due to Leibniz. 

In their development of calculus both Newton and Leibniz used infinitesimal quantities that are 

infinitely small and yet  non – zero of course, such infinitesimal do not really exist but Newton 

and Leibniz found it convenient to use thes quantities in their computations and their 

derivation of results. Lord Bishop Barkley made serious criticism of the calculus referring to 

infinitesimal as the Ghosts of departed quatities. Barkley’s Criticism were well found and 

important in that they focused the attention of mathematicians on a logical clearification of the 

calculus. It was to be over 100 years, however, before calculus was to be made rigorous. 

Ultimately Cauchy, Weierstrass and Reimann reformulated calculus in terms of limits rather 

than infinitesimal. The development of calculus can roughly be described in three periods, that 

are Anticipation, Development and Rigorization. 
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In the Anticipation stage techniques were being used by mathematicians that involved process 

to find areas under curves or maximize quantities. 

 In the Development stage Newton and Leibniz created the foundations of calculus and 

brought all of these techniques together under the umbrella of the derivatives and integrals. 

However, their methods were not always logical sound and it took mathematicans a long time 

during the Rigorization stage to justify them and calculus on a sound mathematical foundation. 

GAUSS’S CONTRIBUTION IN CALCULUS 

Carl Friedrich Gauss was arguably the greatest mathematician who ever lived. He was born 

April 30, 1777, in Brunswick, Germany. His father was a laborer. Gauss mother, though 

illiterate, was more perceptive. 

Gauss’s mathematical genius was first apparent when, at the age of three, he detected 

an error in his father’s computation. This is especially impressive in light of the fact that he had 

never been taught arithmetic. At the age of ten, he among his teacher by mentally calculating 

the sum of all numbers from 1 to 100. Gauss explained that he had noticed a pattern that 

suggested a formula; in any event , he arrived almost instantly at the correct answer.               

(Larson calculus , Calculus 10e) 

Gauss entered Brunswick College carolinum in 1792. At the academy Gauss 

independently discovers Bode’s law , the binomial theorem and the arithmetic geometric mean, 

as well as law of quadratic reciprocity and the prime number theorem. Gauss constructed a 

regular 17-gon by ruler and compasses and was published as Section VII of Gauss’s famous 

work, Disquisitions’ Arithmetical. He published this book in the summer of 1801 there were 

seven section, but last section devoted to number theory in 1809, a major two volume treatise 

on the motion of celertial bodies . In the first volume he discussed differential equations, conic 

section, elliptic orbits, while the second volume was about planet’s orbit. 

The later work was inspired by geodesic problems and was principally concerned with potential 

theory. In fact, Gauss found himself more and more interested in geodesy in the 1820’s. From 

the early 1800’s Gauss’s had an interest in the question of the possible existence of a non - 

Euclidean geometry. In a book review in 1816 he discussed proofs which deduced the axiom of 

parallels from the other Euclidean axioms, suggesting that he believed in the existence of non-

Euclidean geometry, although he was rather vague. 
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 Gauss work in analysis , numerical analysis , vector calculus and calculus of variations: 

 Gaussian quadrature  Gauss’s -Hermit quadrature 

 Gauss’s -Kroners quadrature formula 

 Gauss’s -Jacobi quadrature 

 Gauss’s criterion 

 Gauss’s -Newton algorithm 

 Gauss’s -Legendre algorithm 

 Gauss’s complex multiplication algorithm 

 Gauss’s theorem (divergence theorem) 

 Gauss’s pseudospectral method 

 Complex analysis and Convex analysis 

 Gauss’s -Lucas theorem  Gauss’s continued fraction 

 Gauss’s hypergeometric theorem 

 (http://www.history.mcs.st_andrews.ac.uk/Biographies/Gauss.html) 

ARCHIMEDIAN’S GEOMETRY 

Archimedes (287 BC – 212 BC) was born in the city of Syracuse in Italy. His father Phidias was an 

astronomer and good mathematician. He belonged to a noble family. He went to Egypt for 

study in Alexendria university. After completing study he became a good inventer and 

mathematician. 

 He solved many problems about physics. 

 He worked on the new crown of king to check it purely golden of having a mixing of 

silver metal. 

 He invented Pully, Fulkrum and Lever. All three are still popular. He said  

“give me space to stand and a long lever and fulcrum, I will  move the Earth” 

BETTLE’S INVENTIONS 

 When a war held among Rome and Carthage before 3rd Century BC, the Archimedes city 

became Hub or Bettle Field. The king of Syracuse felt danger and join one of them 

against other one to survive. After it, king asked Archimedes to invent weapons.  

 Archimedes invent machines to throwing huge stones upto huge distances. 

 He also invent Catapullit 

 but unfortunately, the city of Archimedes was occupied by Carthage and one day the 

general of Carthage demanded Archimedes by a Soldier but Archimedes deny him to go 

there because he was busy in some mathematical problem solving. The Soldier had killed 

Archimedes. The tomb shape of Archimedes grave was a Sphere that was circumscribed by 

a cylinder. 

http://www.history.mcs.st_andrews.ac.uk/Biographies/Gauss.html
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GEOMETRY SKILLS 

Archimedes worked on mediums of different geometries for light passing 

 He gave relationship between volume of surface area of sphere and their 

circumscribing cyliders. 

 He found area of circle by putting one polygon inside and one outside the circle. He 

firsts enclosed the circle in a triangle, then in a square, then in a pentagon or 

hexagon etc. each time approximating the area became more closely. Method is 

called Exhausion method. 

 He found approximating value of   as 
  

 
        and  

   

  
        

 He calculated the volume of sphere by slicing it into a series of cylinders and adding 

up the volumes of all cylinders. He observed that thinner the slices exact results are 

produced. 

 He formulated area of parabolic curved segment which is equals to 
 

 
                                       

 He found area of circumscribing cylinder (including two bases)        

 He found volume of circumscribing cylinder       

 He fond area of sphere        

 He fond volume of sphere 
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HELLINISTIC MATHEMATICS ; EUCLID 

The story of axiomatic geometry begins with Euclid, the most famous mathematician in history. 

He is often reffered to as ‘Father of Geometry”. We know essentially nothing about Euclid’s life, 

save that he was a Greek who lived and worked in Alexandria, Egypt, around 300 BCE. His best 

known work is the Elements , a thirteen-volume treatise that organized and systematized 

essentially all of the knowledge of geometry and number theory that had been developed in 

the Western world upto that time. 

POSTULATES: It is in the postulates that the great genius of Euclid’s achievement becomes 

evident. Although mathematicians before Euclid had provided proofs of some isolated 

geometric facts (for example, the Pythagorean theorem was probably proved at least two 

hundred years before Euclid’s time), it was apparently Euclid who first conceived the idea of 

arranging all the proofs in a strict logical sequence. Euclid realized that not every geometric fact 

can be proved, because every proof must rely on some prior geometric knowledge; thus any 

attempt to prove everything is doomed to circularity. He knew, therefore, that it was necessary 

to begin by accepting some facts without proof. He chose to begin by postulating five simple 

geometric statements: 

Euclid’s Postulate 1: It is possible to draw a straight line from any point to any point. 

Euclid’s Postulate 2: It is possible To produce a finite straight line continuously in a straight line. 

Euclid’s Postulate 3: It is possible To describe a circle with any center and distance. 

Euclid’s Postulate 4: All right angles are equal to one another. 

Euclid’s Postulate 5: If a straight line falling on two straight lines make the interior angles on 

the same side less than two right angles, the two straight lines, if produced indefinitely, meet 

on that side on which are the angles less than the two right angles. 

COMMON NOTIONS (Axioms): Following his five postulates, Euclid states five “common 

notions,” which are also meant to be self-evident facts that are to be accepted without proof: 

Common Notion 1: Things which are equal to the same thing are also equal to one another. 

Common Notion 2: If equals be added to equals, the wholes are equal. 

Common Notion 3: If equals be subtracted from equals, the remainders are equal. 

Common Notion 4: Things which coincide with one another are equal to one another. 

Common Notion 5: The whole is greater than the part. 
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PROPOSITIONS: Euclid refers to every mathematical statement that he proves as a proposition. 

This is somewhat different from the usual practice in modern mathematical writing, where a 

result to be proved might be called a theorem (an important result, usually one that requires a 

relatively lengthy or difficult proof); a proposition (an interesting result that requires proof but 

is usually not important enough to be called a theorem); a corollary (an interesting result that 

follows from a previous theorem with little or no extra effort); or a lemma (a preliminary result 

that is not particularly interesting in its own right but is needed to prove another theorem or 

proposition). Even though Euclid’s results are all called propositions, the first thing one notices 

when looking through them is that, like the postulates, they are of two distinct types. Some 

propositions describe constructions of certain geometric configurations. Other propositions 

(traditionally called theorems) assert that certain relationships always hold in geometric 

configurations of a given type.  

Here are the statements of Euclid’s first three propositions:                                                             

Euclid’s Proposition I.1. On a given finite straight line to construct an equilateral triangle. 

Euclid’s Proposition I.2. To place a straight line equal to a given straight line with one end at a 

given point. 

Euclid’s Proposition I.3. Given two unequal straight lines, to cut off from the greater a straight 

line equal to the less. 

AL TUSSI WORKING ON EUCLID AXIOM 

When Omar Khayyam died in 1123, Islamic science was in a state of decline, but Muslim 

contributions did not come to a sudden stop with his death. Both in the thirteenth century and 

again in the fifteenth century, we find an Islamic mathematician of note. At Maragha, for 

example, Nasir al-Din (Eddin) al-Tusi (1201 1274), an astronomer to Hulagu Khan, a grandson of 

the conqueror Genghis Khan and a brother of Kublai Khan, continued efforts to prove the 

parallel postulate, starting from the usual three hypotheses on a Saccheri quadrilateral. His 

“proof” depends on the following hypothesis, again equivalent to Euclid’s: 

If a line u is perpendicular to a line w at A, and if line v is oblique to w at 3, then the 

perpendiculars drawn from u upon v are less than AB on the side on which v makes an acute 

angle with w and greater on the side on which v makes an obtuse angle with w. 

The views of al -Tusi, the last in the sequence of three Arabic precursors of non-Euclidean 

geometry, were translated and published by John Wallis in the seventeenth century. It appears 

that this work was the starting point for the developments by Saccheri in the first third of the 

eighteenth century. 
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For the first time in  the world Nasir al-Din who introduced trigonometry as a  separate science. He also 

wrote on binomial coefficients which  are introduced by pascal. The paper in Mathematics, namely:  

i. Al Mukhtasar bi jami al-Hisab Takht wal Turab (an overview of the entire calculation with table 

and earth)  

ii. Kitab al jabr wal muqabala (treatise of algebra)  

iii. Al-ul-Mudua proposal (treatise of Euclid's postulates)  

iv. Qawaid al-Handasa (rules of geometry)  

v. Kitab al tajrid fi ilm al-mantiq (overview of logic)  

vi. Kitab shakl al-qatta (treatise of quadriteral ) 

vii. Kitab Shikl al-Qita (treatise of rectangular area)  

THE RESEARCH RESULT : The fifth postulate of five postulates Euclid be a  contradiction because the fifth  

postulate actually not a  postulate but a theorem that requires proof in Euclidean  geometry. Nasir al-

Din took part there. He also proved the fifth  postulate actually is a theorem in Euclidean geometry.  

 

 

PREHISTORIC MATHEMATICS  

Our prehistoric ancestors would have had a general sensibility about amounts and would have 

instinctively know the difference between , say, one and two antilopes. But the intellectual leap 

from the concerete idea of two things to the invension of a symbol or word for the abstract 

idea of ‘two’ took many ages to come about. Even today there are isolated hunter gatherer 

tribes in Amizonia which only have words for ‘one’ ‘two’ and ‘many’and other which only have 

words for number upto five. In the absence of settled agricultural and trade, there is a little 

need for a formal system of numbers. 

 Early man kept track of regular occurences such as the phases of the moon and the 

seasons.some of the very ealiest evidence of mankind thinking about numbers is from notched 

bones in Africa dating back to 35,000 to 20,000 years ago. But this is really mere counting and 

tallying rather than mathematics as such. In the very beginning , human life was simple. An 

early ancient herdsman compared sheep (or cattle) of his herd with a pile of stones when the 

herd left for grazing and again on its return for missing animals. In the earliest system probably 

the vertical strokes or bars such as I,II,III etc. were used for the numbers 1,2,3….. the symbol 

‘IIIII’ was used by many people including the ancient Egyptians for the number of finger of one 

hand. 
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Historically, finger counting, or the practice of counting by fives and tens, seems to have come 

later than counter-casting by twos and threes, yet the quinary and decimal systems almost 

invariably displaced the binary and ternary schemes. A study of several hundred tribes among 

the American Indians, for example, showed that almost one-third used a decimal base, and 

about another third had adopted a quinary or a quinary-decimal system; fewer than a third had 

a binary scheme, and those using a ternary system constituted less than 1 percent of the 

group.The vigesimal system, with the number 20 as a base, occurred in about 10 percent of the 

tribes. 

 Mathematics proper initially developes largely as a response to Bureacratic needs when 

civilizations settled and developed agriculture – for the measurements of plots of lands,  the 

taxation of the individuals etc, and this first occurred in the Summariyand and Babylonian 

Civilzations of the Mesopotamia (roughly , modern Iraq) and in Ancient Egypt.  

ANCIENT EGYPT: An insight into Egyptian methods of numeration was obtained through the 

ingenious deciphering of the hieroglyphics by Champollion, Young, and their successors.  

The symbols used were the following:  for 1,  for 10,   for 100,                  

for 1000,  for 10; 000,  for 100; 000,  for 1; 000; 000, 

for 10; 000; 000.  The symbol  for 1 represents a vertical staff  for 10; 000 a 

pointing  finger  for 100; 000 a burbot   for 1; 000; 000, a man in astonishment 

.   The significance of the remaining symbols is very doubtful. The writing of numbers 

with these hieroglyphics was very cumbrous. The unit symbol of each order was repeated as 

many times as there were units in that order. The principle employed was the additive. Thus, 23 

was written 
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  .                   

A single vertical stroke represented a unit, an inverted wicket was used for 10, a snare 

somewhat resembling a capital C stood for 100, a lotus flower for 1,000, a bent finger for 

10,000, a tadpole for 100,000, and a kneeling figure, apparently Heh, the god of the Unending, 

for 1,000,000. Through repetition of these symbols, the number 12,345, for example, would 

appear as

 

Besides the hieroglyphics, Egypt possesses the hieratic and demotic writings, but for want of 

space we pass them by. 

The more cursive hieratic script used by Ahmes was suitably adapted to the use of pen and ink 

on prepared papyrus leaves. Numeration remained decimal, but the tedious repetitive principle 

of hieroglyphic numeration was replaced by the introduction of ciphers or special signs to 

represent digits and multiples of powers of 10. The number 4, for example, usually was no 

longer represented by four vertical strokes but by a horizontal bar, and 7 is not written as seven 

strokes but as a single cipher  resembling a sickle. The hieroglyphic form for the number 

28 was    the hieratic form was simply  . Note that the cipher  for the 

smaller digit 8 (or two 4s) appears on the left, rather than on the right. 

 ‘‘HEAP’’ PROBLEMS: The Egyptian problems so far described are best classified as arithmetic, 

but there are others that fall into a class to which the term “algebraic” is appropriately applied. 

These do not concern specific concrete objects, such as bread and beer, nor do they call for 

operations on known numbers. Instead, they require the equivalent of solutions of linear 

equations of the form x + ax + b or x + ax + bx =c, where a and b and c are known and x is  

BEGINNING OF GEOMETRY: In the beginning geometry was a collection of rules for computing 

lengths, areas and volumes. Many were crude approximation derived by trial and error. This 

body of knowledge developed and used in construction, navigation and surveying by the 

Babylonian and Egyptians was passed to the Greeks. The Greek historian Herodotus (5th century 

BC) credits the Egyptians with having originated the subject, but there is much evidence that 

the Babylonian, the Hindu civilization and the Chinese knew much of what was passed along 

the Egyptians. 
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BABYLONIANS: 

The fertile valley of the Euphrates and Tigris was one of the primeval seats of human society. 

Authentic history of the peoples inhabiting this region begins only with the foundation, in 

Chaldaea and Babylonia, of a united kingdom out of the previously disunited tribes. Much light 

has been thrown on their history by the discovery of the art of reading the cuneiform or 

wedge-shaped system of writing.  

In the study of Babylonian mathematics we begin with the notation of numbers. A vertical 

wedge  stood for 1, while the characters  and  signified 10 and 100 respectively. 

Grotefend believes the character for 10 originally to have been the picture of two hands, as 

held in prayer, the palms being pressed together, the fingers close to each other, but the 

thumbs thrust out. In the Babylonian notation two principals were employed _ the additive and 

multiplicative. Numbers below 100 were expressed by symbols whose respective values had to 

be added. Thus,  stood for 2,  for 3,  for 4,  for 23,   for 30. Here 

the symbols of higher order appear always to the left of those of lower order. In writing the 

hundreds, on the other hand, a smaller symbol was placed to the left of the 100, and was, in 

that case, to be multiplied by 100. Thus,  signified 10 times 100, or 1000. But this 

symbol for 1000 was itself taken for a new unit, which could take smaller coefficients to its left. 

Thus,  denoted, not 20 times 100, but 10 times 1000. Of the largest numbers 

written in cuneiform symbols, which have hitherto been found, none go as high as a million. 

They aslo introduced the concept of Sexagesimals positons. 

HISTORICAL BACKGROUND OF INDIANS 

Despite developppping quite independently of chinese (and probably also of Babylonian 

mathematics) some mathematical discoveries were made at a very early time in india. Before 

Perso – Arabic mathematicians, work on mathematics was started in india. Brahmi numerals 

are the basis of the system predate the common era. Brahmi and Karosthi numerals were used 

in Mauriya Empire period, both appearing on 3rd century BC edicts of Ashok Budhist used the 

symbol 1,4,6 around 300 BC. They were also familiar with 2,4,6,7 and 9. The Brahmi numerals 

were the ancestor of Hindu – Arabic Glyphics 1 to 9. 10,20,30 numerals were also in their 

counting.The actual numeral system, including positional notation and use of zero, is in 

principle independent of the glyphs used and significantly younger than the Brahmi numerals. 
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 The development of positional decimal system takes its origin in Hindu mathematics 

during the Gupta Period. Around 500 BC Aryabhatya mark zero and Brahmasphuta Siddhanta 

explained mathematical role of zero. The Sansikrat translation of Prakrit preserve positional use 

of zero. These indian developments were take up in Islamic mathematics in 8th century as 

recoreded in Al – Qifti’s Chronolgy of the Scholars ( early 13th century). The ancient Hindu 

Symbol of a circle with a dot in the middle, known as bindu or bindhu, symbolizing the void and 

the negation of the self, was probably instrumental in the use of a circle as a representation of  

the concept of zero. 

 

 

 

 

Around 500 BC Aryabhatya mark zero and Brahmasphuta Siddhanta explained mathematical 

role of zero. The Sansikrat translation of Prakrit preserve positional use of zero. And continuing 

the Historic Journey many other Civilizations play their role in the improvement of 

mathematical concepts some of them as follows; 

 The Muslims 

 The Chinese 

 The Summariyans 

 The Greeks 

BABYLONIAN NUMERALS 
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EGYPTIAN NUMERALS 

 
 

MAYA NUMERALS 
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Second symbol known as “Aleph” 
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(07-12-9102حرفِ آخر )  

ور جہاں تک ہوسکے دوسروں کےلیے آسانیاں پیدا کریں۔  خوش رہیں خوشیاں بانٹیں ا

 آپ 
ٰ

ے۔ )امٰین(اللہ تعالٰ ز ور خوشیوں سے نوا کو زندگی کے ہر موڑ پر کامیابیوں ا  
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