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Introduction

We begin our study of algebraic structures by investigating sets associated with single
operations that satisfy certain reasonable axioms; that is, we want to define an operation on a set in a
way that will generalized familiar structures as the integers Z together with the single operation of
adding or invertible 2x2 matrices together with the single operation of matrix multiplication. The
integers and the 2x2 matrices, together with their respective single operations, are examples of
algebraic structures known as groups.

Group theory is a branch of pure mathematics. The theory of groups occupies a central
position in mathematics. Modern group theory arose from an attempt to find the roots of polynomial in
term of its coefficients. Groups now play a central role in such areas as coding theory, counting , and the
study of symmetries; many areas of biology, chemistry and physics have benefited from group theory.

1.1 Binary Operation

A binary operation * on a set S is a function mapping SxS into S. For each (a,b) € S X S, we will
denote the element = ((a, b)) of Sby a * b.

1.1.1 Examples

Our usual addition + is a binary operation on the set R. Our usual multiplication is a different binary
operation on R. In this example, we could replace R by any of the sets C,Z, Rt or Z*.

Let M(R) be the set of all matrices with real entries. The usual matrix addition + is not a binary
operation on the set since A + B is not defined for an ordered pair (4, B) of matrices having
different number of rows or of columns.

Let * be a binary on S and let H be a subset of S. The subset H is closed under «if for all a,b € H
we also have a *x b € H. In this case, the binary operation on H given by restricting * to H is the
induced operation of * on H.

Properties

Identity element is unique. That is, a binary operation (S,*) has at most one identity element.
Inverse element is unique.



Note: Remember that in an attempt to define a binary operation * on a set S we must sure that

i. Exactly one element is assigned to each possible ordered pair of element of S,
iil. For each ordered pair of element of S, the element is assigned to it is againin S.

Example

i. Let S be the set consisting of 20 people, no two of whom are of the same height. Define * by
a * b = ¢, where c is the tallest person among the 20 in S. This is a perfectly good binary operation
on the set, although not a particularly interesting one.

iii. Let S be the set consisting of 20 people, no two of whom are of the same height. Define * by
a*b = c, where c is the shortest person in S who is taller than both a and b. This * is not
everywhere defined, since if either a or b is the tallest person in the set, a * b is not determined.

ii. OnZ" letaxb= %. Since for 1 x 3 is not in Z*. That is, the element assigned is not again in Z*.

Thus * is not a binary operation on Z*, since Z* is not closed under *.

1.2 Groups

A pair (G, *) where G is a non-empty set and ‘*™ a binary operation in G is a group if and

only if:
i. The binary operation * closed, i.e.,
axb=b *xa ,Nab€eG

ii. The binary operation * is associative, i.e.,

(axb)*xc=ax(bxc),Va,b,ceG
iii.  Thereis anidentity elemente € G suchthatforalla € G

axe=exa=a

iv. For each a € G thereis an element a’ € G such that
a*xa =a xa=e
a’ is called the inverse of a in G and iis denoted by a 1.

Properties of a Group Let G be a group, then following are the some important properties of
G;

a) Cancelation law holds in G. Thatis, a * b = a x c implies b = ¢, and b xa = ¢ * a implies b = ¢ for
alla,b,c € G.
b) Identity element is unique.
c) Inverse of an element is unique.
d (@) l=a,Va€eaG. e) (ab) ' =b"1la!
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Note: The identity element and inverse of each element are unique in a group.

> Historical Note

There are three historical roots of the development of abstract group theory evident in the mathematical
literature of the nineteenth century: the theory of algebraic equations, number theory and geometry. All
three of these areas used group theoretic methods of reasoning, although the methods were considerably
more explicit in the first area than in the two.

One of the central themes of geometry in the nineteenth century was the search of invariants under
various types geometric transformations. Gradually attention became focused on the transformations
themselves, which in many cases can be thought of as elements of groups.

In number theory, already in the eighteenth century Leonhard Euler had considered the remainders on
division of power a" by fixed prime p. These remainders have “group” properties. Similarly, Carl F. Gauss,
in his Disquisitiones Arithmeticae (1800), dealt extensively with quadratic forms ax? + 2bxy + cy?, and
in particular showed that equivalence classes of these forms under composition possessed what amounted
to group properties.

Finally, the theory of algebraic equations provided the most explicit prefiguring of the group concept.
Joseph-Louis Lagrange (1736 — 1813) in fact initiated the study of permutations of the roots of an
equation as a tool for solving it. These permutations, of course, were ultimately considered as elements of
a group.

It was Walter von Dyck (1856 —1934) and Heinrich Weber (1842 — 1913) who is 1882 were able
independently to combine the three roots and give clear definitions of the notion of an abstract group.

Torsion Free And Mixed Group

A group in which every element except the identity element e has infinite order is
known as torsion free (a-periodic or locally infinite). A group having elements both of finite as well as
infinite order is called a mixed group.

Semigroup And Monoid

A set with an associative binary operation is called a semigroup. A semigroup that
has an identity element for the binary operation is called monoid.

Note that every group is both a semigroup and a monoid.

Abelian Group

A group G is abelian if its binary operation is commutative. That is,let (G, *) be a
group. Let, b € G, then G is called an abelian group iff
ax*b=bx*a

1.2.1 Examples

a. The familiar additive properties of integers and of rationals, real and complex numbers show that
Z,Q, R and C under addition abelian groups.




b. The set Z* under addition is not a group. There is no identity element for +in Z™.

c. The set Z* under multiplication is not a group. There is an identity 1, but no inverse of 3.
The familiar multiplicative properties of rational, real and complex numbers show that the sets Q™
and R* of positive numbers and the sets Q*, R* and C* of nonzero numbers under multiplication
are abelian groups.

e. The setM,,«,(R) of all m X n matrices under addition is a group. The m X n matrix with all entries
zero is the identity matrix. This group is abelian.

f. The set M,,(R) of all n X n matrices under matrix multiplication is not a group. The n X n matrix
with all entries zero has no inverse.

g. The set of all real-valued functions with domain R under function addition is an abelian group.

> Historical Note

Commutative groups are called abelian in honor of the Norwegian mathematician Niels Henrik Abel
(1802 — 1829). Abel was interested in the question of solvability of polynomial equations. In a paper
written in 1828, he proved that if all the roots of such an equation can be expressed as rational
functions f, g, ..., h of one of them, say x, and if for any two of these roots, f(x) and g(x), the relation
f(g(x)) = g(f(x)) always holds, then the equation is solvable by radicals. Abel showed that each of
these functions in fact permutes the roots of the equation; hence, these functions are elements of the
group of permutations of the roots. It was this property of commutativity in these permutation groups
associated with solvable equations that led Camille Jordan in his 1870 treatise on algebra to name such
groups abelian; the name since then has been applied to commutative groups in general.

1.2.2 Example Let * be defined on Q* bya xb = %. Then (a * b) * ¢ = %* c= %, and

. . ab abc
likewise a * (b * ¢) = ax— ==

SOLUTION et « defined on Q* by b = @

2

Closed property.

b
Fora,b € Q* , we have a*bz%

Thus closed property holds.

Associative property.
Fora,b,c € Q" ,
ab abc 1 abc

b = — =— X == —
(@xb)rec="rrc=—xy=

b+ o) bc 1Xabc abc
* * = k — = — —_——
¢ A= T T,

Thus associative law holds.

Identity.

. b
Giventhataxb = a?




Let e € Q" , since
axe=e*xa=a
ae
Now axe=-—

ax2
=>a*2=7=a

L 2Xa
Similarly 2xa= - =a

Thus e = 2 is the identity element.

Inverse.
Fora € Q* ,since
axa =a *xa=e

By computing
. ad
* = —
ax*a >
4 ax4
ax—= =2
a 2Xa
Similarly
4
—x(q = 2
a

!

4, . . . .
=a =—is the inverse of a. Hence inverse of each element exists. Thus (Q* ,x) is a group.

1.2.3 Example Show that the subset S of M,,(R) consisting of all invertible n X n matrices under

matrix multiplication is a group.

Solution we start by showing that S is closed under matrix multiplication. Let A and B in S so that
both A1 and B! exists such that A4~ = BB™1 = I, , then

(AB)(AB)™ = (AB)(B'A™1) = A(BB™1)A™! =ALA™' =1,
So that AB is invertible, consequently is also in S.

Since matrix multiplication is associative and I,, acts as the identity element, since each element of S has
an inverse (by definition). We see that S is indeed a group. This group is not commutative, it is our first
example of non abelian group.

Group of Mobius Transformation

Let CU{o} be the extended complex plane. Consider the set M of all
mappings.

U : CU {0} — C U {co} defined by



u@@ = cz+d

and a, b, ¢, d are themselves complex numbers. Multiplication of mappings in M is their successive

application. The mapping

[: CU {0} — C U {00} given by

[(z) =z Vz€E CU {0}

b
,cZz+d+0,z€CU {0}

Is the identity element of M. Also for each p in M, its inverse is the mapping

f : CU{oo} — C U {oo} given by

dz—>b

IZ - 7
H() —cz+a

Hence M is called the group of mobius transformation.

This group is closely related to the groups

M :{(a b) |a,b,c,d €Candad —bc #0

c d
And M*={(Z Z) |a,b,c,dE(Candad—bc=1}.

Under matrix multiplication.

1.3 Definitions

Order of a Group

The number of elements in a group is called the order of a group and is

denoted by |G].

Order of an element

Let a be any element of a group G. A non-zero positive integer n is called the

order of a if a™ = e and n is the least such integer.

Periodic Group

A group all of whose elements are of finite order is called a periodic group. A finite group

is obviously periodic.

Finite and Infinite Group
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A group G is said to be finite if G consists of the finite number of elements. A group G is
said to be an infinite group if G consists of the infinite number of elements.

1.3.1 Examples

. Lletz= {..,—3,-2,-1,0,+1,+2,+43, ... } is a group under addition, then
|Z| = coandfor2 € Z, |2| = 0.

li. LetG=1{1-1,4—i} then |G| = 4.
1.3.2 Example Prove that (Z,,@®) is a group.

Proof let  Z,=1{0123,..,n—1}

a) Llet aabeZ,,thena+b€eZ,ifa+b<nandif a+ b =n then after dividing a + b by n the
remainder is less than n and so belongs to Z,. i.e., the binary operation @ is defined.

b) The binary operation @ is associative in general.

c) 0 € Z,isanidentity element.

d) Fora € Z,,n — aistheinverse of a. i.e.,

a+n—a=n=0

All conditions are satisfied. Hence Z, under modulo addition @ is a group. This group under
modulo addition @ is also an abelian group.

Cayley Table: itis often convenient to describe a group in terms of an addition or multiplication
table. Such a table is called cayley table.

1.3.3 Example Let G = {1,—1,4,—i} be a group under multiplication, then the cayley table is
given by

1 i | -4 -1 1
-1 | -1 1 1 -1

Klien’s Four-Group: The Klien four-group is group with four elements, in which each element is

self-inverse. it was named Vierergruppe (four-group) by Felix Klien in 1884. It is also called the Klien
group. it is dnoted by the letter V or K, and is given by

K, ={e,a,b,c}.

Where a? = b? = ¢? = (ab)? = e,and



The Klien four-group is not cyclic and it is an abelian group. The Cayley’s table for K, is given by

X e a b c
e e a b c
a a e c b
b b c e a
c c b a e

It can be described as the symmetric group of a non-square rectangle (with the three non-identity
elements being horizontal and vertical reflection and 180- degree rotation). There are five subgroups of
K, of order 1,2 and 4. These are

H; = {e}
H, = {e, a} , H, = {e, c}
Hy ={e,b} , Hs=K,
Properties

a) Every non-identity element is of order 2.

b) Any two of the three non-identity element generates the third one.
c) Itis the smallest non-cyclic group.

d) All proper subgroups of K, are cyclic.

Involution Anelement x of order 2in a group G is called an involution.
1.3.4 Theorem Every group of even order has at least one involution.

Proof LletGbea group of order 2n. Let
A={x€G: x*=¢}, B={yeG: y>+e}.
Then, we have
AUB=G and ANB=20
If B = @ then G = A.So G contains an involution. Now let B # @ and let y € B. Then, as

yi+e,yl+y



But since (y~1)? # e so that y~! € B. So for each y € B there exists y~! € B. Thus the number of

elements in B is even. Since the order of G is even and
|G| = |A| + |B]|

So the number of elements in A is also even. Since e? = e,e € A,A # @. Hence |A| = 2. Thus 4 and
also G contains an involution.

1.3.5 Theorem ina group if every non-identity element is of order 2, then prove that the group

is abelian.

Proof letGbea group and a € G, a # e such that

Let,y € G ,thenxy = (xy)™! =y 1x7! = yx.

So G is abelian.

1.4 Subgroup

If a subset H of a group G is closed under the binary operation defined on G and if H
with the induced operation of G is itself a group, then H is called a subgroup of G and is denoted
byH=<GorG > H.

OR

A subset H of a group G is called a subgroup of G if and only if H is itself a group under the same binary
operation defined on G.

1.4.1 Remark Every group G has a subgroup G itself and the identity {e}, where e is the identity

element. The subgroup G itself is the proper subgroup and the identity element e is called trivial
subgroup of G. All other subgroup of G are called the non-trivial subgroup of G.

1.4.2 Examples

I.  (Z +)isasubgroup of (Q,+) and (Q,+) is a subgroup of (R, +).
ii. The set Q* under multiplication is a subgroup of R™ under the algebraic operation multiplication.

fii. The nth root of unity in C,, form a subgroup U,, of the group C* of non-zero complex numbers under
the algebraic operation multiplication.

1.4.3 Theorem a non-empty subset H of a group G is a subgroup of G if and only if for any pair
ofa,beEH ,ab '€eH;a#b+e.



Proof Suppose that H is a subgroup of a group G, then (H,*) is a group.

Thereforeif b€ H ,b-' € H=>a,b-' € Handab ' € H (closed property)
Conversely , suppose that fora,b € H, ab™! € H.
To prove H is a subgroup,puth=a=>a,a € H=>aa ' € H=>e € H.
= identity element exists.
Now,let e beE H=>e b 'le H=>eb 'eH=>b1€H.
= inverse of each element exists in H.
Again, leta,b€H = a b leH
= ab™H)leH
= ab€eH
Thus H is closed under the induced algebraic operation. The associative law holds in H as it holds in G.

Therefore H is a subgroup.

1.4.4 Theorem Prove that the intersection of family of subgroups of a group G is a subgroup of
G.

Proof Let{H,},c; be afamily of subgroups of G.we have to show that H = N,¢; H, is a subgroup of
G.

Leta,b € H,then a,b € H, for each a € I. Since H, is a subgroup of G,so ab~! € H, for each a € I.

Therefore,

ab~' e ﬂHa =H

a€l

= H is a subgroup of G. Hence the intersection of family of subgroups of G is a subgroup of G.

1.4.5 Theorem The union H U K of two subgroups H, K of a group G is a subgroup of G if and
only if either H € K or K € H.

Proof Suppose that either H € K or K € H. We have to show that H U K is a subgroup of G.
Now, HUK=H - K€ H

HUK=K +w HCK
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Thus H U K is a subgroup of G as H, K are subgroups of G.

Conversely, suppose that H U K is a subgroup of G. To prove either H € K or K € H, suppose on
contrary that

HLK,K<H
Let a € H\K,b € K\H.Since,b € H UK , therefore

ab e HUK - HUK isasubgroup

=either ab € H or ab € K. Suppose that b € H, then

b =a"'(ab) €H ~ H isa subgroup
Similarly, suppose b € K, then

a = (ab)b~! €K * K isasubgroup

This is contradiction to our supposition so either H € K or K € H.

1.4.6 Theorem show that Zp has no proper subgroup if P is a prime number.

Proof Asnumber of subgroups of Zp is the same as the number of distinct divisors of P which are 1

and P itself. Hence the number of distinct subgroups of Zp are two {1} and Zp itself. Thus the number
of proper subgroups is zero (no proper subgroup), as we can say that Zp has no proper subgroup.

1.4.7 Theorem Let G be an abelian group and H be the set consisting of the elements of finite
orderin G. Then H is a subgroup of G.

Proof et a,b € H, then there exist integers m, n such that
a™ = b" = e, (eistheidentity of H)
So (ab)™ = ab.ab.ab ...ab (mn times)
=q™. pm™
=(@™)".(b")" =et.e™
=e
= ab has finite order, so ab € H.

Also, if b € H and b™ = e, then

11



(b H"=b"1b1.b71 ..b' (ntimes)
=b"=0B")""=(e)=e

= b~ € H. Hence H is a subgroup of G.

1.5 Cyclic Group

A group G is said to be cyclic if and only qAQWD if it generates by a single
element. i.e., a group G is cyclic if there is some element a € G that generates G. If G is finite cyclic
group of order n, then

G=<a:a*=e>.

If an element of G is the generator of G then its inverse is also the generator of G.

1.5.1 Examples

i. A group G = {1,—1,4,—4} is cyclic group as < 4 > is its generator.

ii. A group Zs = {0,1,2,3,4} under modulo addition is cyclic group. Since every element of Zs is in the
power of a single element that is 1. Therefore 1 is the generator of Zs.

fii. Aset{1,—1}isa cyclic group under multiplication.

iV. The group Z under addition is a cyclic group. Both 1 and —1 are generators of this group, and they
are the only generators. Also, for n € Z*, the group Z,, under addition modulo n is cyclic. If n > 1,
then both 1 and n — 1 are generators, but there may be others.

1.5.2 Theorem Every cyclic group is abelian.

Proof LetGbea cyclic group and let a be a generator of G.

Let,y € G, then there exist integers m and n such that

Now xy =ama" = a"™" = g™ = q"a™ = yx

So G is abelian.

1.5.3 Theorem Every subgroup of a cyclic group is cyclic.
Proof LetGbe cyclic group generated by a. Let H be a subgroup of G and k be the least positive
integer such that ak € H. We have to prove that H is generated by a*.

For this, let = a™ € H ,V m > k, then there exist integers q and r such that
12



m=kq+r,0<r<k
= a"=adkM +q"
= (a")d.a"
=a™. (a1 =a"

Sine a™ and (a¥)~9 are in H. Therefore, a” € H. But since k is the smallest integer for which a* € H
andr < k,soak € His possible only if r = 0. But if r = 0, then

m = qk
= q"=qdk
= a"=(@)€eH
= a is the generator of H.

Hence H is cyclic subgroup of G.

Division algorithm for Z itmisa positive integer and n is any integer such that n > m, then there
exist unique integer g and r such that

n=mq+r , 0<r<m
Where q is the quotient and 7 is the remainder when n divided by m.

1.54 Corollary The subgroups of Z under addition are precisely the groups nZ under addition for

n € Z. This corollary gives the greatest common divisors of two positive integers r and s.

Greatest Common Divisor Let r and s be two positive integers. The positive generator d of the
cyclic group G = {nr + ms | n,m € Z} under addition is the greatest common divisor of r and s. We write
d = gcdify, s). If two positive integers are relatively prime then their greatest common divisor is 1.

Note: ifrand s are relatively prime and if r divides ms, then r must divide m.

Question Find the greatest common divisor of 42 and 72.

Solution The positive divisors of 42 are 1,2,3,6,7,21,42. The positive divisors of 72 are

1,2,3,4,6,8,9,12,18,24,36,72. This implies that the greatest common divisor of 42 and 72 is 6.
i.e., gcd(42,72) = 6.

d =nr+ms
6 = (72)(6) + (42)(-5)

=>n=6, m=-5

13




1.5.5 Theorem Let G be a cyclic group of order n. Then G contains one and only one subgroup of
order d if and only if d|n.

Proof Let G be a cyclic group generated by a € G such that a™ = e. Suppose that d > 0 divides n,
then n = kd for some integer k. So

a" =a* = (a")l eH

> H={d" k=1}
= (@ ik="

is a subgroup of order d. To prove H is unique subgroup of order d in G, let K be another subgroup of
order d in G and generated by a!, 1 > 0. then

(@)= ad=e
So ndivides Id. Thus ld = rn for some integer r. But n = kd.
= ld =rkd
= l=rk
=>a =a*=(@) eH
Therefore K € H. Since H and K are subgroups of G having same order,so H = K.
=there is one and only one subgroup of order d in G.

Conversely, suppose that H is a subgroup of order d. Then d being the order of subgroup divides the
order of group G i.e., d|n.

1.5.6 Theorem LetG be a cyclic group of generated by a,

a) If G is of finite order n then an element aX € G is a generator of G if and only if k and n are
relatively prime.
b) If G is of infinite order, then a and a~! are the only generator of G.

Proof

a) LetG =< a: a™ = e > be afinite cyclic group. Consider k and n are relatively prime, then there
exist integers p and q such that
kp+ng=1 —(A)
Let H be a subgroup generated by a*. Now will prove that H = G.
From (A), we have

akp +nqg — al

14



= ak?.a" =q
= (@)P.(@")! =a
= (@)P.(e)=a
= (@)Y =a
Since (a*)? is an element of H.Soa € H
Also a € G, therefore H = G.
= G is generated by a¥.
Conversely, suppose a¥ is the generator of G, so for some integer p we have
(@) = a
akr = a
= glt-l=¢
Son|kp — 1, because n is the least such integer. So there exist integer g such that
= kp—1=nq
>kp-ng=1
= k and n are relatively prime.

b) Let G =< a > be an infinite cyclic group. Let a” is also the generator of G. Then, there exist an
integer p such that
(ak)p =a

= agrl=¢
=>kp—1=0o0rkp—1+0.
If ko — 1 # 0, then order of G is finite, which is contradiction. Therefore kp —1 =0
= kp=1

Since k and p are integers. Therefore, either k =p =1 or k =p = —1 ie., a and a~! are the only
generators.

Exponent Let G be a group of order n. If the order of its generator is n then G has exponent n.i.e.,, a" = e
for somea € G.

1.5.7 Theorem an abelian group G of order n is cyclic if and only if it has exponent n.

15




Proof letG =<a: a" = e >bea cyclic group, then clearly G has an exponent n.

Conversely, suppose that G is an abelian group of order n and has exponent n. We have to show that G
is cyclic.

First we show that for any a, b € G of order p and q respectively with (p, q) = 1, the order or ab is pq.
Let the order of ab is k, then we have
(ab)* = e = ak. b*
= ak=b*=c (say)
Let m be the order of c. Then m divides the order of a and b.
Som|(p,q).since (p,q) =1, m = 1. Hence ¢ = e so that
ak=pk =e
But then p|k, q|k. Hence pq|k. Also
(ab)P? = (aP)?.(b9)P = e
Hence k|pgq. thus
k =pq v (ab)k =e
= the order of ab is pq.
Next let x be an element of maximal order in G so that
=e
We show that for each y € G, y™ = e.

Since G is finite, let k be the order of y, and

ai ,az

k=p'p, ...pf’ , m:pflpzﬁ2 ...pfs

Wherea; 20,6 =20,1<i<r,1<j<s.Ify™ # ethen k does not divide m. So for some i,a; > p;.

suppose that i = 1, so that ay > f;.

Take
x, _ xpfl , y, _ yptzzz.__p;xr
’ B2 B
Then (x)P2"Ps" =y =

16



and (y’)pfl = ypllllpgz---?’fr = yk =e
Since (pi‘l,pgz ...pfs) =1,

X'y has order pfl pgz pfs > m. This contradicts our choice of x. Hence y™ = ¢, so that m is the
exponent of G. But then m = n. Thus x has order n in ¢ which also has order n. Hence G is cyclic group
generated by x.

1.5.8 PfOpOSitiOﬂ Let G be a cyclic group of order n and suppose that a is a generator

for G. Then ak = e if and only if n divides k.

Proof First suppose that a* = e. By the division algorithm,k = nq + r where 0 < r < n. Hence,

ak = gt = (@")9.a" =e.a" = a”
a =e vak=e
Since n is the least such integer for which a™ = e, r < n. So it is possible only if r = 0.
=k =nq
This implies that n|k.

Conversely, if n divides k, then k = nq for some integer q. Consequently, we have

ak=a" =(@" ) =e

Corollary If a is a generator of a finite cyclic group G of order n, then the other generators of G are the
elements of the form a’, where r is relatively prime to n.

1.5.9 Example Find all the subgroups of Z;5 = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}.

Solution The number 2 is the generates a subgroup consists of 9 number of elements.
<2>={0,24,6810,12,14,16}

by using previous corollary the elements 1,5,7,11,13,17 are all the generators of Z;g and

h = 1,2,4,5,7,8 are all those elements which are relatively prime to 9,so h2 = 2,4,8,10,14,16.

The element 6 of < 2 > generates a subgroup {0,6,12} and 12 also is the generator of this subgroup.

We have thus found all subgroups generated by 0,1,2,4,5,6,7,8,10,11,12,13,14,16,17. this leaves just

3,9 and 15.
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Since the element 3 generates a subgroup consisting of 6 elements,
<3>=1{03,6912,15}

Therefore, 15 = 5.3 also generates a subgroup of order 6, as 5 and 6 are relatively prime.

Finally, <9 > ={0,9}.

1.5.10 Theorem Every non-identity element in an infinite cyclic group is of infinite order.

Proof Let 6 =< a > be an infinite cyclic group. Let a* € G, m # 0 such that |a*| is finite.

i.e (@)™ = e for some integer m.
=am =e

This implies |a]| is finite, which is contradiction to that G is infinite. Hence order of a is infinite.

1.5.11 Theorem A non-trivial subgroup of an infinite cyclic group is an infinite cyclic.

Proof Let G =< a > be an infinite cyclic group and H be a non-trivial subgroup of G.

Since H is cyclic, so that H =< a¥ > for some integer k > 0 (the subgroup of an infinite cyclic group is
cyclic). By theorem (every non-identity element of an infinite cyclic group is of infinite order) |a¥| is
infinite. Hence H is an infinite cyclic subgroup of G.

Definition Let G be a group and let a; € G for i € I. The smallest subgroup of G containing {a; : i € I}is

the subgroup generated by {a; : i € I}. If this subgroup is all of G, then {a; : i € I} generates G and the
a; are generators of G. If there is a finite set {a; : i € I} that generates G, then G is finitely generated.

Question Find the generators of a finite cyclic group of order 12.

Solution LetG =< a >bea cyclic group of order 12, then

3

G ={a,a%ad’ ..,a"% = e}

To find the generators of G, the smallest subgroup of G generated by a* , k €U (12). Where
u(12) ={1,5,7,11},i.ea,a®,a’,a'’.

But since 1,5,7,,11 are relatively prime to 12. Therefore a, a®, a’,all are the generators of G.

1.6 Cosets

Let H be a subgroup of a group G which may be finite or infinite. We exhibit two

partitions of G by two equivalence relation (left ~; and right ~z) on G.
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Let H be a subgroup of a group G then the subset aH = {ah : h € H,a € G} of G is the left cosets of H
containing a, while the subset Ha = {ha : h € H, a € G} is the right cosets of H containing a.

1.6.1 Example Exhibit the left and right cosets 3Z of Z.

Solution etz = {....,—3,-2,-1,0,1,2,3, ... } be a group. Since 3Z is a subgroup of Z and
3Z=1{...,—9,—6,-3,0,3,6,9, ...}

Now the left cosets 3Z are
0+3Z={..,—9,—-6,-3,0,3,6,9, ...}
1+3Z2={..,—-8,-5,-2,14,7,10, ...}
2+3Z={..,—7,—4,-1,25,8,11, ...}
3+3Z=¢{..,—9,—6,-3,0,3,6,9, ... }

=>3+3Z=3Z

It is clear that there are three left cosets we are found do exhaust. So they constitute the partition of Z
into the left cosets of 3Z. Since Z is abelian, therefore there left cosets 3 4+ 37Z and the right cosets
3Z + 3 are the same. Since the partition of Z into the right cosets of 3Z is the same.

Equivalence Relation:
a) Reflexive: Leta € Gthenaa™! =e,e € H.since H is a subgroup thus a ~; a.
b) Symmetric: Suppose a ~, b then a~'h € H. Since H is a subgroup of G, therefore (a='bh)~! isin H and
hence b ~; a.
c) Transitive: Leta ~, band b ~, cthena™'bh € Hand b~'c € H. Since H is a subgroup, therefore
(@ b)) =at(bbHc=alceH
Hence a ~; c.
The equivalence relation is used for the partition of a group.

Note Every left and right cosets of a subgroup H of a group G has the same number of elements.

1.6.2 Theorem A non-empty subset H of a group G is a subgroup of G ifand only if HH™! € H.

Proof Suppose that H is a subgroup. Then
HH ' ={ab™!:a,b € H} € H (by closure law)
=> HH 1 cH.

Conversely, suppose that HH™! = {ab™! : a,b € H} € H, then ab™! € H. So by theorem ( a non-
empty subset H of a group G is a subgroup of G if and only if, for any paira,b € H,ab~' € H)H is a
subgroup.
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Permutable The two subgroups H and K of a group G are said to be permutable if and only if for any

x € H and y € K there exist x € H and y' € H such that
xy = y' x .ie.,HK = KH

1.6.3 Theorem Let H and K be subgroups of a group G. The product HK of H and K is a
subgroup of G if amd only if H and K are permutable.

Proof Let H and K be permutable. Then, for any h € H and k € K, there existh' € Hand k' € K
such that

hk =k'h
To prove HK is a subgroup, let x,y € HK and = hk,y = h{k;. Then
xy~! = hk.(hik;)™?

= hkk, th, 7!

= hkzhl_l , kkl_1 =k, € K ** Kis a subgroup

=hh'k,  HK = KH

= hzlkzl , hh' = hzl € H ~ Hisasubgroup.
Hence xy~! € HK and HK is a subgroup.
Conversely, suppose that HK is a subgroup. To prove HK = KH,let hk € HK,h € H, k € K. Then

(hk)™' € HK < HK is a subgroup

Now (k) '=k'h'=k'h €eKH,k =k*€K,h =h"'eH
Hence HK € KH.

Also for any kh € KH being the product of two elements ek and he of the subgroup HK, is in HK, so
that KH € HK.

By combining the two inclusion relation we have

HK = KH.

Index of subgroup: The number of distinct left or right cosets of a subgroup H of a group G is
called the index of a subgroup and is denoted by [G: H].

1.7 Lagrange’s Theorem

Let H be a subgroup of a finite group G. Then the order and index of H divides the order of G.
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Proof LetGbea group of order n and H be a subgroup of order m in G. Let Q) be the collection of all

left cosetsof Hin G. i.e.,
Q=aHUa,HU ..UaH (kistheindex of subgroup)
= Uli(=1 a;H
First we will show that Q is a partition of G.

Let a; € G, then a, =ae€qH, - e€H

k

:aiEUaiH

i=1
=> GC< (O

Also each a;H is a subset of G, therefore

By combining the two inclusion we get
G=Q
Now, let aH and bH are distinct left cosets and x € aHNbH, then
x = ahy = bh, forsome hy,h, € H
= a = bhyhy * = bhs, hy = hyhy ' €H
Now let ah € aH, then
ah = bh3h € bH
= aH S bH (1)
Similarly,
= b =bhh, " =bh',h =h,h; ' €H
Now let bh € bH, then
bh = ah'h € bH

= bH C aH (2)
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From (1) and (2), we have
aH = bH

Contradicting the fact that aH and bH are distinct left cosets. Thus aHNbH = @. This implies that Q
defines a partition of G.

= |G| = |layH| + lazH| + -+ |axH|  (A)
To find the number of elements in each coset we define a mapping ¢: H — a;H by
p(h)=ah, heH

For hi,h, EH

@(hy) = @(hy)

= a;hy = a;hy

= h=h
= ( isone one.
Also for each a;h € a;H there exist h € H such that ¢ (h) = a;h. So ¢ is onto.
Hence the number of elements in H and a;H is the same for = 1,2, ..., k.
Since H has m elements, therefore a; H has m elements.
So from equ. (A), we have

n=m+m+--+m (ktimes)
=>n=km

= k|n and m|n. That is, the order and index of a subgroup divides the order of group.

Corollary
a) Two left or right cosets of a subgroup H in a group G are either identical or disjoint.
b) Every element of G belong to one and only one left or right coset of H.

1.7.1 Theorem Every group whose order is prime number is necessarily cyclic.

Proof LetG bea group of order p where p is a prime number and a € G be a non-identity element.

Then the order m of the cyclic group H generated by a is a factor of p. As# e, m # 1 andsom = p.

Thus H coincides with G. Therefore G is cyclic.
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RELATIONS BETWEEN GROUPS

2.1 Definitions

Normalizers

Let X be an arbitrary subset of a group G. The set of those elements of G which permute
with X is called normalizer of X in G and is denoted by N; (X). That s :

Ne(X)={a€G:aX =Xa}.
Centralizers

The centralizers of a subset X in a group G is the set of those elements of G which are
permutable with every element of X. It is denoted by C; (X). That is:

C;(X)={a€eG:ax =xa,Vx € X}.

The centralizer of the whole group G is called the centre of G.

Centre Of A Group

The centre of a group G is the set of those elements of G which commute with
every element of G. the centre of G is denote by {(G). That is:

{((G)={aeG:ag =gaV gEG}

The centre of a group G is its subgroup.

Examples

a) The centre of the quaternion group Qg = {+1, i, +j, +k}is +1.

b) The centre of the groups Z, Q, R and C of integers, rational, real and of complex numbers under
their usual addition are the corresponding groups themselves.

2.1.1 Theorem The normalizer N;(X) of a subset X of a group G is a subgroup of G.

Proof Leta b € N;(X). Then

aX = Xaand bX = Xb
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Now
bX = Xb
= b~ bXb™' = b~1Xbb™' = b~1X
= b~1X = Xp~1
= b~! € N;(X). Hence
(@b DX =ab'X) =aXb™") = (aX)b~! = X(ab™ 1)

Therefore ab™! € N;(X). So N;(X) is a subgroup.

2.1.2 Theorem The centralizer C; (X) of a subset X in a group G is a subgroup of G.

Proof Leta b e C;(X). Then

ax = xa and bx = xb
Now
= b lbxb~! =b71xbb™! = b lx
= b~lx = xb™1
= b~! € C;(X).Hence
(ab™Hx =alb'x) = alxb™) = (ax)b™! = x(ab™1)

Therefore ab~! € C;(X). So C ;(X) is a subgroup.

2.1.3 Theorem LetG bea group and X be a non-empty subset of G. Then prove that
{(G)cC;,(X) S N;(X) cq.
Proof Aswe have already prove that
()G, C;X)SG Ns(X) G (A)
Now it is sufficient to prove that
{(6) € Cc(X) € Ng(X)
Let y € {(G), then

yx =xy ,Vx,y€G
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>yx=xy Vx€X ~XCG
= y€e(X)
= ¢(6) < G (X) (i)
Now, let y € C;(X). Then
yx =xy ,Vx€X
As yX ={yx: x € X}
={xy: x € X}
= Xy
= y€N;(X)
= C(X) € N (X) (ii)
From (i) and (ii), we have
{(G) € C(X) € Ng(X)
By equ. (A), we have

{(G)cC;,(X) S N;(X) cq.

2.1.4 Question et G =< a,b:a* = b? = (ab)? = 1 > be the dihedral group of order 8. Its

elements are {1, a, a? a3, b, ab,a’b, a®b}. The two non-empty sets of G are given below

i X;={1,a%
i. X,={1,aad?%a%}.

Find the {(G), centralizers of X;, X, and normalizers of X;, X, in G.
Solution Given that
(ab)? =1
= (ab) = (ab)™!

= ab=b1qg7!

a*=1-~a!=a3
And “b?=1~b"1l=p
= ab = ba?



Moreover
aba = b,ba? = a’b, ba = a3b.

i. NowletX; ={1,a?}. Then
{(6) = {1}

Because there is only the identity element {1} of G which commute with every element of G.
Now we are to find the C; (X7). Since

1a® = a?1 = a® =dad?

3 3

aa’ =a’a >a®=a
a’a’? = a*a® 2 a*=a*=1
ala’? =a’a® sa=a
ba? = a’b = ba® = ba®
aba? = a’ab = a®b = a®b
a’ba’ = a’a’b=>b=">b
a’ba® = a’a®b = ab = ab.
Hence C; (X;) = {1,a,a?, a3, b, ab, a?b,a3b}.
Now we are to find N (X;). Since
X, = X1 X, =X,
aX; = {a,a%} = Xja
a’X, = {a% 1} = X,a?
a’X, ={a a} = X,a®
bX, = {b,ba?} = {b,a’b} = X,b
Similarly ab, a’b,a’b permute with X;. So
N;(X;) = {1,a,a? a3 b,ab,a’b, a’b}.
= C;(X;) = Ng(X1) = G.
i. X,={1,aad?%a%.
Solution Do it by yourself.
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2.2 Homomorphism

Let (G, -) and (H ,*) be two groups. A mapping ¢ : G — H is said to be
homomorphism if

px-y) =) * ()

for x,y € G. The range of ¢ in H is called the homomorphic image of ¢.

Endomorphism: Let (G ,*) be a group. A homomorphism ¢ : G — G is called endomorphism.

2.2.1 Example Let (R, +) and (R, *) be two groups and ¢ : R — R’ be a mapping defined by
@(x) = e* , x € R. Show that ¢ is homomorphism.

Solution Letx,y € R, then

px+y)=e*"

X

=e .ey

=)o)

= ¢ is homomorphism.

2.2.2 Theorem The homomorphic image of a cyclic group is cyclic.

Proof LetGbea cyclic group generated by a € G. Let ¢(G) be a homomorphic image of G under a

homomorphism of ¢.
We show that ¢ (G) is cyclic. Take, ¢(x) = b
Let € @(G), then there is an element a* € G such that
x = p(a*)
=¢p(a.a..a) (k times)
= @(a). ¢(a) ...p(a) - @ ishomomorphism

=b.b..b (k times)

So ¢(G) is generated by b. Therefore the homomorphic image of a cyclic group is cyclic.

2.2.3 Corollary Let ¢ : G — G be a homomorphism of G into G, where G and G are groups. Then
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i.  The image of the identity of G is the identity element in ¢ (G).
ii. Theimage of the inverse g~! of g € G is the inverse of the image. Thatis, (g~ 1) = [@(g)]~ .

2.3 Monomorphism

Let (G, -) and (H ,*) be two groups. A mapping ¢ : G — H is said to be
monomorphism if

a) ¢ is homomorphism.
b) ¢ isinjective.

2.4 Epimorphism

Let (G, -) and (H ,*) be two groups. A mapping ¢ : G — H is said to be
epimorphism if

a) ¢ is homomorphism.
b) @ is surjective. i.e., for all b € H, there is an element a € G such that ¢(a) = b.

2.4.1 Example Let (Z,+) and ({1, —1} ,") be two groups. Define a mapping ¢ : Z — {1,—1} by
p(x) =1 ,ifniseven
p(x) = —1 ,ifnisodd

Prove that ¢ is homomorphism and hence epimorphism.

Proof There are two cases.

Case-1. When n is even.
Let x,y € Z, then

px*xy) =@ +y)

= @) - o)
= ¢ is homomorphism.
Case-2. When nis odd.

px*xy) =@k +y)
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=1

=—-1--1

=) - 0k)
= ¢ is homomorphism.

@ is surjective: since for every y € {1, —1} there exist a pre-image ¢ (y) € Z such that ¢(y) = y.
Hence ¢ is epimorphism.

Endomorphism

Let (G ,*) be a group. A homomorphism ¢ : G — G is called endomorphism.

2.5 Isomorphism

Let (G, -) and (H ,*) be two groups. A mapping ¢ : G — H is said to be
isomorphism if

a) ¢ is homomorphism.
b) ¢ isinjective.
c) ¢ issurjective.

The isomorphism between two groups is denoted by " = ".i.e., the isomorphism between G and H is
denoted by G = H.

2.5.1 Example Let (Z,+) and (E , +) be two groups under addition. Then the mapping
@ : Z — E defined by ¢(n) = 2n is isomorphism.

Solution Let ny,ny € Z, then
oy +ny) = 2(ny +ny)
=2n; +2n,
=) +on2)
= ¢ is homomorphism.
Now we prove @ is injective.
Let p(n) =pny), Vn,n €L
= 2ny = 2ny

$2n1_2n2=0
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= 2(7’11 _nz) =0

Butsince2 #0,son; —n, =0

= @ isinjective.

Also @ is surjective (onto), for 2n € E , there exist a pre-image n € Z such that ¢(n) = 2n. Hence ¢ is
isomorphism.

2.5.2 Example Let (R*,) and (R, +) be two groups, then the mapping ¢ : R* — R defined by

¢ (x) = logx is isomorphism.
Solution Letx,y € RY, then
@(x - y) =log(xy)

=logx + logy

= @) +9)
= ¢ is homomorphism.
Now we prove ¢ is injective. Let

p() =), Vx,y ERT
= logx = logy

By taking anti-log both sides, we get

= ¢ isinjective.

@ is isomorphism. Thatis Rt = R.

Kernel of @ Let (G, -)and (H ,x) be two groups. Let ¢ : G — H be a homomorphism of group.

The set of those elements of G which are mapped on the identity e of H is called the kernel of ¢ and is
denoted by Ker ¢. Thus

Kero={keG: @(k)=ce}.

Embedding: An embedding of a group G into a group G is simply a monomorphism of G into G'.in other
words, if G is embedded in a group G' then G contains a subgroup H isomorphicto G.
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Cayley’s Theorem
Statement: Any group G can be embedded in a group of bijective mappings of a certain set.

Proof: LetG bea group. For each g € G, define a mapping ¢ ,:G — G by
pg(x) = gx , Vx€EQG.

To prove @, is a bijective mapping, let

Pg(x) = @4 (y)

= gx = gy (left cancelation law)

=> x=y
= @4 is one-one.
Also @, is onto because each y € G is the image of g 'y EG.
= @gisa bejective mapping.
Now, put

P = {py : g € G}
Let @y, ¢, € @y. Thenforany x € G
(@0 )@ =0y (0, () = 0y (g'x) = gg'x = 9, (X), ¥ g, €G.
Hence
Pg- Py = Pgq € Pg.

Implies that, @ is a subgroup of the group of all bijective mappings of the set G, as ¢, for e € G is the
identity element and for each g € G, @ -1 is the inverse of ¢, € @¢.

Now we show that G is isomorphic to @. For this, define a mapping ¥: G — @, by
Y(g@) =9y VJEG.

To prove i is one-one, let
Y(g) =v¥(92) 91,92 €EG

= (pgl = (sz
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= Pgy-Pg,71 = Pe
> Qg1 = Pe , (Pg is closed)
=  gi1g:1=e¢
= 91 = 92
= 1) is one-one.
Also 1 is onto because each ¢, € @ is the image of g € G.
Moreover if g1, g, € G, then
Y(9192) = @g,4,
= Pg1- Py2
= ¥(g1)-¥(g2)
So that ¥ is homomorphism.

Hence G is isomorphic to ®,. Therefore G is embedded in a group of all bijective mappings of a set
namely G.

Corollary: Every finite group of order n can be embedded in a group of bijective mappings of a set
consisting of n elements.

2.6 Conjugacy Relation In Groups

Let G be a group. For any a € G, the element gag™?, g € G is called the conjugate
or transform of a by g.

Two elements a, b € G are said to be conjugate if and only if there exists an element g € G such that

b=gag™
2.6.1 Theorem Tthe relation of conjugacy between elements of a group is an equivalence relation.

Proof Let us denote the relation of conjugacy between elements of a group by R. then

i.  Reflexive: R is reflexive i.e aRa because the identity element e € G and
eae™! = aq.
ii. Symmetric: R is symmetric because if aRb for a, b € G, then there exists g € G such that
b =gag™!
=a= (g Db(gH™"
So that bRa.
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Transitive: Let aRb and bRc, then there exists g, g € G such that

b=gagt,c=gbg "
Now

7 1_1 T _ 1_1 T 7 _
c=gbg  =ggagTlg T =(ggalg 9’
Thus aRc, so R is transitive.
Hence R is an equivalence relation in G.

Conjugacy Class

An equivalence class determined by the conjugacy relation between elements in G
is called conjugacy class. A conjugacy class consisting of elements conjugate to an element a of G is
denoted by C,,.

Self Conjugate

An element a € G is called self conjugate if for any g € G, a = gag™!. This element is also
called a central element.

2.6.2 Theorem The number of elements in a conjugacy class C, of an element a in a group G is

equal to the index of its normalizer in G. Thus

1Cal =1G : No(x)].

Proof Let G be group and a € G. Let C, be the conjugacy class of G containing a. Let N = N;(a) i.e
the normalizer of a in G. Let Q be the collection of right cosets of normalizer.
We have to show that number of elements in () is equal to the number of elements in C,.
Define a mapping ¢: Q — C, by
o(Ng) =g~ 'ag, g €G.
@ is well defined.
Let
Ng:Ng’ ,g,g'EG

= N=Ng g

> gglen wifa € HthenaH = H
> ggl=n (sayn € N)
> g=ng
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Now

1

g9 'ag = (ng)'a(ng)
= (g7'n Ha(ng)
=g '(n"tan)g
=g lag “nlan=a
= ¢(Ng) = (Ng)
= @ is well defined.

ii.  ¢@isone-one.

Let
o(Ng) = p(Ng)
= g 'ag =g 'ag
>  g(g 'aghg =a
>(@gHalgg ) =a
= glg_l EN
= g' € Ng
But g' € Ng'.
= Ng' € Ng
Similarly
Ng < Ng'

Thus Ng = Ng/. So @ is one-one.

iii.  Also @ isonto because each g lag € C, is the image of a right coset Ng.

Hence @ is bijective.

Consequently the sets  and C, have the same number of elements. Therefore the number of elements
in C, is equal to the index of the normalize of a. That is

1Cal = 1G = Ng ()]
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Corollary:

® |et G be afinite group and a € G. Then the number elements in the conjugacy class C, divides the order of
G.

® The number of elements in a conjugacy class of an element in a group is finite if and only if the index of the
normalizer of that element is finite.

Conjugate Subgroup

Let G be a group and H be a subgroup of G. Then for each g € G, the
set

K=gHg ' ={ghg ':h € H}
is a subgroup of G and it is called a conjugate subgroup of G.

A conjugacy class of a subgroup H is a collection of all subgroups of G which are conjugate to H.

2.6.3 Theorem Any two conjugate subgroups of a group G are isomorphic.

Proof Let H, K are two conjugate subgroups of G. Then for some g € G
K=gHg™L
The mapping ¢: H — K is given by ¢(h) = ghg™' € K. Then
@ is obviously well-defined.
i.  @isone-one.
Let
@(h) = @(hy), hi,hy €H
= ghig™" = ghyg™"
= hy = hy
ii.  Also g isonto because each ghg™! € K is the image of h € H.
So ¢ is bijective. Now we will show that ¢ is homomorphism.
Let hi,h, € H, then
@(hihy) = ghihag™!

= ghig~'ghyg™*
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= @(hihy) = @(hy) . @(hy).

Hence H and K are isomorphic.

Note: Two conjugate subgroups of a group have the same order.

2.7 Double cosets

Let H, K be two subgroups of a group G and a be an arbitrary element of G. Then the set
HaK = {hak : h € H, k € K}

is called a double coset in G modulo (H, K) determine by a.

2.7.1 Theorem Let H, K be two subgroups of a group G. Then the collection  of all double cosets
HaK, a € G is a partition of G.

Proof Let H, K be two subgroups of a group G and {2 be the collection of all double cosets aK,a € G.

We have to show that Q defines a partition of G. For this we will show that

i UaEG HaK =G
i. HaKnHDbK = Q.

First we will prove U, HaK = G. Let a € G, then
a = eae € HaK
= a € HaK

= a € Ugeg HaK

= G € Ugeqg HaK (i)
But
Ugeg HaK € G (ii)
From (i) and (ii), we have
Ugeg HaK =G.

Now we will prove that HaK N HbK = @. Let HaK and HbK be distinct double cosets in G and suppose
that x € HaK N HbK # Q.

= x€HaK , x € HbK

> X = hlakl , X = hzbkz
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Where hq,h, € H ,k{,k;, E Kand a,b € G.

= hyak, = hybk,

= a=nhy ‘hybkyk, ! (iii)
Now, lety € HakK.

= y = hzak; ,h3 €H k3 EK
From equ. (iii), we have

y = hshy " hobkaky " ks

> y = hybk,

Where hy = hsh; ‘h, € H and ky = koky “k3 € K.

= y € HbK

= HaK € HbK (A)
Similarly
HbK € HaK (B)
From (A) and (B), we have
HaK = HbK

This is contradiction to our supposition. Hence HaK and HbK are disjoint i.e HaK N HbK = @.
Therefore the double cosets of G modulo (H, K) define a partition of G.

Complexes In A Group: An arbitrary subset X of a group G is called a complex in G. For two

complexes X and Y in G we define their product as a complex XY given by
XY={xy:xeX,yeY}

2.7.2 Theorem et A and B be finite subgroups of a group G. Then the complex AB contains

exactly mn/q, where m, n and q are respectively the orders of A, Band Q = AN B.

Proof since Q is the intersection of the subgroups A and B of a group G. Therefore Q is also a
subgroup of G.

Since A and B are finite subgroups of G, therefore the order g of Q and the index r = n/q in B is finite.
Let B = Uj_; Qb; be a right coset decomposition of B. Then only one b; = e and b; € Q for i > 1 so
that the set Qb; # Q. Also
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r

AB:AUQbi

i=1
= Uj=1 4Qb; (A)
Since @ is the subgroup of A. Therefore
AQ ={Ax:x € Q} = A.
So equ. (A) becomes
AB = Uj_, Ab;

As b; € B and b; € Q, which shows that b; € A fori > 1, the cosets Ab;,i = 1,2, ...,r, are all distinct.
Each of these cosets contains exactly m elements and there are r such cosets.

= |Abs| + |Aby| + -+ + |Ab, |

= rl|A|

= |AB| =";—”.

Hence the complex AB contains exactly ";—n elements.
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Normal Subgroups And Factor Groups

3.1 Normal Subgroups

A subgroup H of a group G is said to be normal if it coincides with all its conjugate subgroups in
G.Thus H is normal in G if and only if

gHg™'=H ,Vge€G.
Itis denoted by H = G.

Every group G has at least two normal subgroups namely the identity {e} and the group G itself. The
normal subgroups which are different from these two subgroups are called proper normal subgroups.
All the subgroups of an abelian group are normal. The non-abelian groups all of whose subgroups are
normal are called Hamiltonian Groups.

3.1.1 Examples

a) The group Q = {+£1, +i, 1j, +k} of quaternions is such that it is non-abelian but every subgroup of
Q is normal.
b) The centre of any group is normal. Since {(G) = {a € G : ag = ga,V g € G}, therefore

95(@)g ' ={a€G:gag™' =a,VgeEG)

> Historical Note

Normal subgroups were introduced by Evarsite Galois in 1831 as a tool for deciding whether a given
polynomial equation was solvable by radicals. Galois noted that a subgroup H of a group G of permutations
induced two decompositions of G into what we call left cosets and right cosets. If the two decompositions
coincide, that is, if left cosets are the same as the right cosets, Galois called the decomposition proper.
Thus a subgroup giving a proper decomposition is what we call normal subgroup. Galois stated that if the
group of permutations of the roots of an equation has a proper decomposition, then one can solve the
given equation if one can first solve an equation corresponding to the subgroup H and then an equation
corresponding to the cosets.

One of the main and fundamental properties of normal subgroups is that the give rise to quotient groups.
Groups which have no proper normal subgroups are known as simple groups. Finite simple groups have
now been all classified. All the finite simple groups are now known their determination was completed in
1980's. This classification is one of the greatest achievements in mathematics.

The classification of finite simple groups ahs two aspects. One is the listing of all such groups and the other
is the verification that every finite simple group is included in the list.

3.1.2 Theorem ifH s the subgroup of a group G, then the following statements are equivalent;
a) H isanormal subgroup of G.
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b) The normalizer of H in G is the whole G. Thatis, N;(H) = G.
c) gi=Hg ,VgeQaG.
d ghg'€H ,heH,geG.

Proof (a)implies (b).
Assume that H is normal subgroup of G. Then
gHg™'=H ,Vge€eG.

= gH=Hg Vgea

= g € N;(H)
= G S N;(H) (i)
But N;(H) € G (ii)
From (i) and (i), we have
Ng(H) = G.

(b) implies (c).
Suppose that N;(H) = G. Then
Ne(H) ={gH =Hg : g € G}
= gH=Hg ,VgeEaG.
(c) implies (d).
Suppose that gH = Hg ,V g € G. Then, for given any h € H there exists h' € H such that
gh=h'g VgeEG
=> ghg'=h €H.
= ghg lE€H.
(d) implies (a).
Suppose that ghg ! € H ,h € H,g € G. Then
ghg™' =h" €H.
Hence gHg™! = {ghg™':h € H} S H forall g € G. Alsoforany h € H

h= (g9 Hhr(gg™)
40



=g(g~ hg)g™"
=gh'g'e gHg™! wg'hg=h€H
HcgHg!
Therefore gHg™! = H. Hence H is normal subgroup.
3.1.3 Theorem leta be an element of order 2 in a group G. Then
H=<a:a*=1>
isnormalin G ifand only if a € {(G).
Proof Aswe know that H is normal if and onlyifforany g € G,
gH = Hg
= gle,a} ={e,alg
= 19,94} = {g,ag}
= ga=ag VgeEG

Soa € {(G).

3.1.4 Theorem Let G and H are two groups and @: G — H is a homomorphism. Then kerg is a

normal subgroup.
Proof Let a,b € kerg, then

pl@=1Iy , b)) =1y

To prove ker is a subgroup we show that ab~! € ker¢g. Now

plab™) = p(@ep™) 2 @ is homomorphism
= (@) ()™ (™) = (pb) ™!
= Iy(I)™
=1

= ab~! € kerg. So ker¢ is a subgroup.

Now we have to show that ker¢ is a normal subgroup. Let k € ker¢. To prove g 'kg € kerg , g € G

(g7 kg) = (g DK p(g9)
a1



= (@' 9(@)

= (e o

=p(gg™H @ is homomorphism
= ¢(e)

=1y

Hence g~'kg € kerq , g € G. Thus kerg is a normal subgroup.

3.1.5 Theorem if H,K are normal subgroups of a group G with H N K = {e}. Show that every
element of H commute with every elementof K.i.e, hk = kh ,h € H ,k € K.

Proofroreachhe H ,k € K we have to show that hk = kh.

For this consider an element hkh~'k~1. Since H is a normal subgroup of G. Therefore
kh k™' €eH ,h"'€eH ,keK<SG
= hkh 'k ) eH, hh leH *+ H is a subgroup.
= hkh 'k~ € H. (i)
Also K is a normal subgroup of G. Therefore
hkh™* €K ,ke K,heHCG
= (hkh™ Dk 'eK,kk1eK + K is a subgroup
= hkh k™' e K. (i)
From (i) and (ii), we have
hkh k"' e HnK
But since H N K = {e}.
= hkh™lkl=e¢
=> hk = kh.

Hence every element of H commute with every element of K.

3.1.5 Theorem Let G be an abelian group. Then each subgroup of G is normal in G.

Proof Let H be a subgroup of G. We have to show that H is normal in G.
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Since G is abelian. Soab = ba ,V a,b € G.
= ah=ha ,VhEH,geG
= h=a'ha€eH
= a'ha€eH

Hence H is a normal subgroup of G.
3.1.6 Theorem Every subgroup of index 2 in a group G is a normal subgroup.
OR
Let G be a group and H be a subgroup of index 2. Then H is a normal subgroup of G.
Proof Let H be a subgroup of index 2. Then H has two distinct left and right cosets in G.

One of the left coset is H = eH ,e € G and the other left coset is aH ,a € G. Similarly one of the right
coset is H = He and the other right coset is Ha ,a € G.

By Lagrange’s theorem (all the left and right cosets defines a partition).

G=eHUaH = HeUHa

And eHNnaH =HenNHa=0
= aH = Ha
= ah=h'a ,h,h' €H
= h=a'haeH

Hencea 'h'ae H ,h' € H,a € G.Thus H isnormal in G.

Corollary: If H, K are normal subgroups of G. Then HK is a normal subgroup of G.

3.2 Factor Group OR Quotient Group

Let H be a normal subgroup of a group G and consider the collection Q of all left
cosetsof aH of H, a € G.

i.eQ=%={aH: a € G}
is called a factor group of G by H. Define a multiplication in Q by

aH.bH = abH, For aH,bH € Q
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3.2.1 Theorem prove that a factor group Q = % = {aH : a € G} form a group.

Proof since the factor groupis Q = % = {aH : a € G}. We define a multiplication in Q by

aH.bH = abH ,aH,bH € Q and a,b € G.
First we check the multiplication is well-defined. For ah; € aH ,bh, € bH, we have
ahq bhy, = a(hq b) h;

= a(bh3)h, «“ Hisnormal +~aH =Ha ,hz; €EH

= abhsh,

= abh, € abH , where hy = hgh, € H
= aH.bH = abH. Hence multiplication is well-defined.
Now we have to show that Q forms a group.

a) Qisclosed because aH.bH = abH € Q.
b) Q is associative because

(aH.bH).cH = abH.cH
= abcH
= aH.bcH
= aH.(bH.cH).
c) H isthe identity of Q because
aH.H = aH.eH = aeH = aH
And H.aH = eH.aH = eaH = aH.
d) Since G is group, therefore for each a € G there exists a=! € G such that
aH.a™'H =aa™'H=eH =H
And a'H.aH =aa 'H =eH =H.

So Q contains inverse of each left coset. Hence Q = % = {aH : a € G} form a group.

3.2.2 Theorem Let H be a normal subgroup of a group G and ¢:G — % is a mapping given by
¢(a) = aH ,V a € G.Then ¢ is epimorphism and kerg = H.

44



Proof the mapping ¢: G — % is defined by

pla)=aH,Va€eG

First we will show that ¢ is well-defined. Let

a=>b
= aH =bH
= ¢(a) = ¢(b)

Implies that @ is well-defined.

Now we have to show that ¢ is epimorphism. For this we have to show that ¢ is homomorphism and
surjective.

@ is surjective because for each H € % isthe imageofa € G.Alsofora,b € G
¢(a).p(b) = aH.bH
= abH

@(ab)

Implies that ¢ is homomorphism. Hence ¢ is epimorphism.
To prove kerep = H,leta € H € G. Then
p(a) = aH
=H ~ Hisasubgroupanda € H,aH = H

Since H is the identity of quotient group % Therefore a € kere.

= H C kerg (i)
Let a € kerg, then
p(a) =H
= aH =H
= a€EH (H is a subgroup)
= kerp € H (ii)

From (i) and (ii), we have
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kerp = H.
Quaternion Group: The quaternion group Qg is a non-abelian group of order 8, isomorphic to
the certain eight elements subset of the quaternions under multiplication. It is given by
Q8 = {ill iil i_]l ik}-

Where i? = j? = k? = —1, and

ij=k=—j.i
jk=i=—kj
k.i=j=—ik.

Since i.j # j.i, therefore it is non-abelian. There are 6 subgroups of Qg of order 1,2,4 and 8. These are

I-I1 = {1} , H4 = {ill i]}
Hy={1,-1} , Hs={t11tk)
H3 = {#1,+i} , He ={%1,+i, %j +k} = Qg

All these subgroups are cyclic and abelian. The Cayley’s table for Qg is given by

X 1 —1 i —i j —j k | —k
1 1 —1 i —i j —j k| —k
—1 —1 1 —i i —j j —k | k
i i —i —1 1 k —k — |
—i —i i 1 —1 —k k i | =i
j j —j —k k —1 1 i | —i
—Jj —J j k —k 1 -1 —i i
k k —k j —j —i i -1 1
—k —k k —j j i —i 1 -1
Properties

a) The quaternion group Qg has the same order as the dihedral group
D, =<a,b:a* = b? = (ab)? =1 >.
b) Every subgroup of Qg is a normal subgroup.
c) The center and the commutator subgroup of Qg is the subgroup {1, —1}.

{1Q_81} is isomorphic to the Klien four group Kj.

d) The factor group
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3.3 The Isomorphism Theorems

Although it is not evident at first, factor groups correspond exactly to
homomorphic images, and we can use factor group to study homomorphism. We already know that
every group homomorphism ¢: G — H we can associate a normal subgroup of G, ker¢. The converse is
also true; that is, every normal subgroup of a group G gives rise to homomorphism of groups.

The following theorems describe the relationship between homomorphisms, normal subgroups and the
factor groups.

3.3.1 First Isomorphism Theorem

Let p: G — G bean epimorphism from G to G . Then:

a) The K = ker¢ is a normal subgroup of G.
b) The factor group % is isomorphic to G.

c) Asubgroup H of G isnormalin G if and only if its inverse image H = (p_l(H’) is normal in G.
d) There is one-one correspondence between the subgroups of G and those subgroups of G which
contain kerg.

Proof the mapping ¢: G — G' is given by

p(g) =g ,ForalleG,g €G
a) If Kisthe kernel of ¢ and kq, k, € K then
o) = plk;) = e and ok, ™) = (p(k)) " = e
Now
(p(klkz_l) = (p(kl).(p(kz_l) “* @ is homomorphism
= @(k1). (p(k)) ™"

! !

=e.e
=¢

= klkz_l € K. So K is a subgroup.

Now we have to show that K is a normal subgroup of G. Since for each k € K and g € G we have

p(gkg™) = p(@ekK)p(g™) = ¢ ishomomorphism

= p(g).€". (p(g)™"
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= ¢(9). (p(g)™

7

=e
Thus gkg™! € K foreach k € K and g € G. Hence K is a normal subgroup of G.
b) Define a mapping Y : % — G by

Y(gK) =g =¢(g) ,gKE€Z g €G.
To prove 1 is isomorphism, first we will prove that 1 is well-defined.

For g:K, g,K € %and 91, 92> € G. Let

91K = g2K
= K =g17"g.K
= 917'92 €K
— (g g) =€ K is kernel of ¢
= 9@ D.elg)=¢ @ is homomorphism

= (@) olg) =€
= »(g91) = ¢(g2)
= Y(g1K) = Y (g2K).

Hence vy is well-defined.

For each g K, g,K € % Let

Y(g:1K) = ¥(g2K)
= »(g1) = ¢(g2)
= (p(@)Lolg) =€

= o(g D.olg)=¢

= o(gi g =¢ * @ is homomorphism
= g1 19, €K = K is kernel of ¢

= K =g17'9,K

= 91K = g:K.
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Therefore ¥ is one-one (injective).

Also 1) is onto (surjective) because each g’ = ¢(g) € G is the image of gK € %

Now, to prove ¥ is homomorphism, let g; K, g, K € % Then

V(91K 9:K) = ¥(919:K)
= ¢(9192)
= ¢(g1).9(g92) * @ is homomorphism
= 9(9:1K).¥(g2K)
= 1 is homomorphism.

. . . G :
Hence v is an isomorphism between e and G .

c) Suppose that H'is anormal subgroup of G and

H=¢ '(H)={@h)=h :heGh €eH}.
To prove H is normal in G, Consider an element ghg ™!, for h € H and g € G. Now

p(ghg™) = p(g). p(h). (g™ ")

= o(g). o). (p(g) "t €H
= p(ghg ™) eH =+ H' is normal subgroup

Hence ghg™' € H foreach g € G, h € H and so H is normal subgroup of G.
Conversely, suppose that H = (p_l(H') is normal in G. To prove H'is normalin G , consider an element
g'h'g'_l,for h"€eH andg €G'.
Since 9(H) = H, let g € G, h € H are the pre-images of heH, g' € G . Then

|
ghyg

(). o). (p(g)~!

o(@).-o(M).0(g™h)

= @(ghg™)
Since H is normal in G, ghg™! € H. Therefore
o(ghg™) € p(H) =H
= ¢(ghg™) €H
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Hence H isnormalin G .

d) Let Q be the collection of subgroups of G containing K and w be the collection of all subgroups of

’

G .
Define a mappinga : Q@ — w by
a(H) =H = @(H) ,whereH € Qand H = ¢(H) € w.
Now, for H{, H, € Q, let
a(H,) = a(H,)
= o(H,) = p(H).
Let H; = ¢ 1(H'), then H; € H because H = ¢~ 1(H'). Next let h € H, then
h=¢'(h)
=> @) =h" = o(hy) v a(H) =H = (H)
= ¢(h) = ¢(h1)
= ¢(hy 'h) =e
>h 'heKcH
= henhKCcH
= H < H
= H=H,.
Similarly H = H,. Hence « is injective.

Also « is surjective because each H € wisthe image of H € () and therefore «a bijective. Hence there is
a one-one correspondence between the subgroups of G containing K and the subgroups of G .

. . . G
Define the natural or canonical homomorphism y : G — e by

u(g) = gK ,g €G.
Then u is an epimorphism of G to % Moreover the mapping i : % — G defined by

Y(@K) =g =¢(g) g €G

is a homomorphism. Since the product of two homomorphisms is again a homomorphism, we have
@ = pu.
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Mathematician often use diagrams called commutative diagrams to describe such relations. The
following diagram “commutes” since ¢ = Yu

x|

Note: There is a one-one correspondence between the normal subgroup of a group and the number of
homomorphisms of that group.

Example let G be a cyclic group with generator g. Define a mapping @ : Z — G by
pn)=9g" ,nez,gea.
Then ¢ is surjective and homomorphism since form,n € Z
pm+n) =g+ = g".g" = p(m).pn)
Clearly ¢ is onto because each g" € G is the image of n € Z.if |g| = m, then g™ =e.
Hence kerg =m Z and
Z

kerp ~— mZ
On the other hand if the order of g is infinite, then kergp = 0 and ¢ is an isomorphism of G and Z.
Hence, two cyclic groups are isomorphic exactly when they have the same order. Up to isomorphism,
the only cyclic groups are Z and Z".

3.3.2 Second Isomorphism Theorem

~

Let H be a subgroup and K be a normal subgroup of a group G, then;

a) HK isasubgroup of G,
b) H N K isnormalin H, and

HK H
o X

K HNK
Proof

a) Toprove HK is a subgroup of G. Let x1,x, € HK, then
x1 = h{ky , x = hyk, forhy,h, € Hand kq,k, € K.
Now x126, 70 = (hakey) (haky)™!
= hikiky, thy, 7!
= h1k3h2_1 klkz_1 = k3 € K is a subgroup
=hy (hz_lhz) k3hz_1
= (hih, ") (hy kshy ™) € HK
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because hlhz_1 € Hand h, k3hz_1 € K (K is normal subgroup of G).
= x;x, ! € HK
Hence HK is a subgroup of G.
b) Toprove HN K isnormalinH,letx€ HNK i.e(x € H,x € K)and h € H. Then
= hxh ' € K~ Kisanormal subgroupandh € H € G
Also hxh~*€ H - Hisasubgroupandx,h € H.
s> hxh ' €eHNK

Hence H N K is a normal subgroup of H.

H
HnK’

c) Toprove % = define a mapping ¢ : H — HK—K by
@(h) =hkK ,he H k€K
= hK + Kisasubgroup and kK =K,k € K
Then ¢ is obviously well-defined. Also ¢ is onto because each hK € b;(—K is the image of h € H. Moreover,
@(hihy) = hihoK
= h K. h)K
= @(hy).o(hy)
= ¢ is homomorphism.

Hence ¢ is an epimorphism.

Now, by first isomorphism theorem

HK H

~

K " kerg

To prove kero = HN K, let h € kerg, then
@(h) = K , where K is the identity of quotient group
=>hK =K
=>h€eK,heH

=>heEHNK ,>keroSHNK

52



Conversely,letx e HNK

=> x€H,xeK

Since p(x) = xK
= o) =K
= x €Ekerep K isthe identity of quotient group.

=> HNK C kerg

=>HNK = kerg

HK H
HnK'

I

Hence

al

3.3.3 Third Isomorphism Theorem
Let H,K be normal subgroups of a group G and H € K. Then
(G/H)/(K/H) = G/K.
Proof since H, K are normal subgroups of G and H € K. Therefore H is normal in K.

To prove g is normal in %, consider the element (gH)kH(gH) ™!, for gH € % and kH € %
Now (gH)kH(gH)™! = gHkH (g 'H)
= gkHg 'H
= gkg~'H (by multiplication of quotient group)

= gkg™'H € g » Kisnormalin G

. K. . G
= . Thatis, —is normal in —.
H H

| =

&

=D

To prove (G/H)/(K/H) = G /K. Define a mapping ¢ : % —>%by

9(gH) = gK ,g € G.
Then ¢ is obviously well-defined. Also ¢ is surjective because each gK E% is the image of gH € %
Moreover, for g1H, g, H € %
9(g1Hg,H) = ¢(g19:H)

= 192K
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= 91K. 9K

= ¢(g:H).p(g.H)

= ¢ is homomorphism. Hence ¢ is an epimorphism.
Now, by first isomorphism theorem

(G/H)/kerp = G/K.

To prove kerp = %, let gH € kerg then

@(gH) = K , where K is the identity of quotient group.

> gK =K
> ge€eK

=>gHE%

= kerp C

= | =

K
Conversely, let kH € m then

@(kH) = kK
=K

= kH € kerg

From (i) and (ii), we have

Hence

(i)

~ k € K is a subgroup

~ K is the identity of quotient group.

(ii)

(G/H)/(K/H) = G/K.

3.4 Automorphism

Let G be a group. Then a mapping a : G — G is called an automorphism if and only if

a) «ais bijective,
b) al(g1g2) = algy).alg:) .V 91,9; €G.
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The set of all automorphism of G is usually denoted by A(G) or Aut(G).

3.4.1 Theorem The set A(G) of all automorphism of G form a group.

Proof Let G be group and A(G) be the set of all automorphism of G. We have to show that A(G)
forms a group.

Let , f € A(G). Then the product Sa of bijective mapping a and S is also bijective. Moreover, for
91,92 €G

Balg192) = B(a(g192))
= B(a(g1). a(g2)) * q is an automorphism
= B(a(g1).B(alg)  + Bisanautomorphism
= (Ba)(g1)- (Ba)(g2) , ¥V 91,92 €G
= fa € A(G).
Thus A(G) is closed under the usual multiplication of mappings.

Also the associative law holds in A(G). It follows from the associativity of mappings of a set.
The identity mapping I: G — G is defined by

Ig)=9.9€G
is bijective. Moreover, for g;,g, € G
1(9192) = 9192
=1(g1).1(92)-
= I is homomorphism.
Also al(g) = aol(g) = a(1(g)) = a(g)
and la(g) = loa(g) = I(a(g)) = a(g)
Hence [ is the identity in A(G).

Now we have to show that for each a € A(G) there exist a=! € A(G). Since a bijective, so a1 is
also bijective (inverse of bijective mappings is also bijective). Also for all g;,g, € G
a'(g192) = a1 (1(g192))
= a1 (1(g1).1(g2))
a~'(aa"'(g1). aa™"(g2))
a ta(a'(g1).-a7*(g2)))  * aisan homomorphism
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= (e ') (a7 (g)-a71(g2))
=a(g1)-a (g2)

Hence a1 is homomorphism. Thus a™! € A(G).

Therefore A(G) forms a group.

3.4.2 Inner And Outer Automorphism
Let a be a fixed element of G then the mapping I,: G — G given by
1,(g) =aga! ,g€G

is called an inner automorphism of G. The set of all inner automorphism of G is denoted by I(G). For
a,beG

Io-1p, = I, [(bgb™)]
= a(bgh ™ )a™!
= (ab)g(ab)™!

LI, =1,.

An automorphism of G which is not an inner automorphism is called an oiter automorphism of G. Every
automorphism of an abelian group except the identity automorphism is an outer automorphism.

3.4.3 Theorem Let G be a group. The mapping ¢ : G — G defined by

p@=g" ,9€G

is an automorphism if and only if G is abelian.
Proof Suppose that G is abelian. Then, for g{,g, € G

9192 = 9291-

Define a mapping ¢ : G — G by

p@=g" ,g€aq.

Then pg) =g17", 9(g2) =g27"
Now 0(9192) = (9192)7"
=991
=g, g7} " G is abelian

= ¢(91)-9(g2)
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= ¢ is homomorphism. Also ¢ is bijective (Do it).
Hence ¢ is an automorphism.
Conversely, let ¢ : G — G given by

p@=g" ,9€G

be an automorphism. Then, for g,g, € G

?(9192) = (9192)7"

=g "o (i)
Also ?(g192) = 9(g1)-9(g2) @ ishomomorphism
=919 (ii)
From (i) and (ii), we have
g g =g g

= (9192) 7 = (9291) 7! or 9192 = 9201 . 91,92 €G

Hence G is abelian.

3.4.4 Theorem The set 1(G) of all inner automorphism of a group G is a normal subgroup of
A(G).

Proof First we will show that 1(G) is a subgroup of A(G). Let1,,I, € I(G), then
1,(g) = aga' ,I,(g) =bgb~! forallg €G

And I,-1(g) = b 'gh

Also

I.1,-1(g) = I,(b~'gb)

=bb lghb l =g
=1.(g9)
= I = ()"
Now Io. 1,-1(g) = I, (b~ " gb)
=a(b lgb)a?!
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= (ab™")g(ba™)
= (ab™)g(ab™")™"
=1,-1(g) €1(G) ,forallg € G.
Hence I(G) is a subgroup of A(G).
To prove I(G) is a normal subgroup of A(G). Let I, € I(G) and @ € A(G), then
(alya™)(g) = al,(a™(9))

= a(a(@ ™ (g)a™)

a(a).a(a"1(g)).a(a™) * @ is homomorphism
= a(a).aa"1(g). (a(a))™?
= a(a)g(a(a@)™
=Ilo)(9) €IG) ,VgEG

Therefore I(G) is a normal subgroup of A(G).

3.4.5 Theorem Let {(G) be the centre and I(G) be the inner automorphism of a group G. Then

G ~
Z(—G)=I(G).

Proof Definea mapping ¢ : G — I(G) by
pl@) =1, ,a €QG.
First we will show that ¢ is well-defined. For a, b € G, let
a=b = b l=qat
> ag = bg
= aga~! = bga™!
= aga ! =bgb~!
= I, =1,
Then @ is surjective because each I, € I(G) is the image of a € G. Moreover, fora,b € G
@(ab) = Iy
=1,.1,
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= ¢(a). p(b)
Hence ¢ is homomorphism. Thus ¢ is epimorphism.

By First Isomorphism Theorem

=]
kerp ©

Now we have to show that
{(G) = kero
Let z € kerg, then
p(z) =1, , by definition of ¢
=1, ,byassumptionthat z € ker¢g
= L,(g) = 1. (9)
= zgz_1 =g
>  zg=gz
= z € {(G)
= kergp € {(G) (i)
Conversely, let z € {(G). Then
@(z) =1, , by definition of @
=zg9z"" = gzz~' = g = I,(9)
= 1,(g) = L.(9) vz €{(G) ~zg =gz
=> Z € kero
= {(G) S kerg (ii)
From (i) and (ii), we have {(G) = ker¢.

G ~
Hence = 1(G).

Complete Group: if the centre {(G) of a group G is trevial and very automorphism of G is an inner
automorphism, G is called a complete group.
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3.4.6 Conjugation as an Automorphism
Let G be a group, a € G. Define a mapping I, : G — G by

1,(g) = aga™! , forallg €G.
Then I, is an automorphism.

Proof First we will show that I, is bijective. For g1, g2 € G, let

Iy (gl) = I (gZ)

1 1

= aga”! =agya”

N _ -1 -1
g1 =atag,ata

= g1 = 92

= [, is one-one.
Also I, is onto because each a~!ga € G is the image of g € G under I,.

iie, I,(alga) = a(a 'ga)a = (aa ) g(aa™?t) = g.
Hence I, is bijective.

Now we have to show that I, is homomorphism. For g;, g, € G, let

1,(9192) = ag1g,a™!

=ag, a‘lagz a~l

= (agia M (agza™)
=1,(91).1,(g2)

= [, is an homomorphism.

Thus I, € A(G). That s, I, is an automorphism.

3.5 Commutator

Let G be a group and a, b € G. Then the element
x =aba 1p~!

Is called the commutator of a, b and it is denoted by [a, b].

60



3.5.1 Theorem et G be a group. Then for a, b, ¢ € G, the following commutator identities hold in

G;

a) [b,a] =[a,b]™!

b) [ab,c] = [b,c]%[a,c]

¢) [a, bc] = [a, b][a,c]’

d) [a, b~ '] =[b,al’” and[a ,b] = [b,a]® .
Proof

a) Since [b,a] = bab~'a~!. Now
[a,b][b,a] = (aba™ b~ 1) (bab~la™)
= (aba )(b7'bh)(ab'a™1)
= (ab)(a'a)(b~ta™h)
= (ab)(ab)™

=e
= [b,a] = [a,b] .

b) Fora,b,c € G,
[ab,c] = abc(ab) 'c!
= abch™la"tc™!
=abch™ (ctc)a"lct
=a(bch™*cVa(aca=tc™h)
= a[b,cla [a, ]
= [ab,c] = [b,c]%*[a,c].

c
) [a, bc] = abca™t(bc)™t
= abca 'c71h7!
= aba taca lc71h7!
= (aba 'b™Y)b(aca 'c )b!
= [a, bc] = [a,b][a,c]”.
d)

[a,b~ ] =abla (b~ 1)1
=ablalb
= b 1(bab ta )b
=b~'[b,al(bH)7!
= [a,b71] = [b,a]’"".
and [a~1,b] = [b,a]® . (do it yourself).
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Note:

a. Agroup G abelian if and only if for any two elements a, b € G, [a, b] = e.
b. The product of two commutators may not b a commutator.

Derived Group OR Commutator Subgroup: Let G be a group and G’ be a subgroup

of G. Then G is said to be a commutator subgroup, if it is generated by a set of commutators of G.

3.5.2 Theorem let G be a group. Then

a) the derived group G’ is normal subgroup of G,

b) the factor group % is abelian,

c) if Kisanormalsubgroup of G such that EK is abelian then G € K.

Proof

a) SinceG is generated by the commutators [a, b],a,b € G. To prove G’ is normal in G, consider
gla,blg™! = g(aba b g™t , for [a,b] € G and g € G
=gag~'.gbg~'.ga"'g . gb”'g™!
= gag~'.gbg™".(gag)™". (gbg)™!
= a9b9(a9) 1 (b9)! a9 = gag~!is the conjugate of a
=[a9,b9] €G ,forallg€G
= gla,blg ' €G

Hence G is a normal subgroup of G.

b) Let aG ,bG € %, a, b € G, then
[aG',bG'] = aG bG (aG)1(bG')!
=aG bG a 16 b71G

= (aba‘lb_l)G' (by quotient multiplication)
=G v [a,b] € G’
=identity of factor group.

G . .
Hence the factor group o is abelian.

c) Let K be a normal subgroup of G such that % is abelian and K, bK € EK Then
[ak, bK] = aKbK(aK)~1(bK)™1
= aKbKa 'Kb1K
= (aba™'h VK
=[a,b]JK =K %is abelian

Hence [a, b] € K. Butsince [a,b] € G . Therefore G’ € K.
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Product Of Groups

4.1 Direct Product

If G and H are two groups (finite or infinite). Then the direct product of G and H is a
new group, denoted by G X H and is defined by

GxH={(y)lxe€G,yeH}.
The group operation defined is multiplication. Let a,b € G and x,y € H, then
(a,b).(x,y) = (a.x,b.y).

Itis also called the external direct product.

Properties

a) Identity: The direct product G X H has an identity element, namely {e,e,}, where e; € G and
e, EH.

b) Inverse: The inverse of each element (x,y) € G X His (x™1,y™1), wherex™! € G and y~! € H.

c) Associativity: The associative law holds in G X H. That s, for (x1,y1), (x2,¥2), (x3,¥3) € G X H

((x1,¥1). (x2,¥2)). (x3, y3) = (x1, ¥1). ((x2, ¥2)- (X3, ¥3)).
4.1.1 Example

Let G = Z under addition, H = {£+1, +i} under multiplication be two groups. Then the direct product of
Gand H is

GxH={(xy)|x€eZy==x1or+i}.
Now to identify the group operation, let (6, —1), (—3,i) € G X H. Then
(6,-1).(-3,i) = (6 —3,—1.0)
(because Z under addition is a group and {£1, +i} under multiplication is a group)
= (3, —10).
The identity elementis (0,1), because
(7,-0.(01)=(7+0,—-i.1) ,(7,-i))€EGxXH

= (7,—i) = (0,1).(7,—0)
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Let (13, —i) € G x H, then
(13, —0).(=13,i) = (13 — 13,—i.0)

=(0,1) = (—13,i).(13,-i)
= (—13,i) € G x H is an inverse. Hence inverse of each element of G X H exists.
Also, for (6,—1), (=3,1), (12,1) € G x H

(6,-1).((-3,1.(12,1)) = (6, -1). (=3 + 12,i.1)

= (6,—1).(9,0)

=(6+9,—1.0)

= (15, i)
and ((6,~-1).(=3,1)).(12,1) = (6 — 3,—1.9).(12,1)

= (3,—0).(12,1)

= (3+12,-i.1)

= (15,—i)

= (6,—1).((=3,D.(12,1)) = ((6,-1).(-3,1).(12,1)

Hence the associative law holds in G X H.

Internal Direct Product: let G be group and H, K be two subgroups of G. Then G is said to be
internal direct product of H, K if and only if
a) Gisgeneratedby H, K,

b) H, K are normal subgroups of G,
c¢) HnK = {e}istheidentityinG.

Note: we can take the direct product of finitely or infinitely many groups. For example, if G{, G5, ..., G, are n
groups. Then the direct product

n
l_IGi:G].XGZX"'XGn
i=1

is finite. Butif G; for all i = 1,2, ...is infinite, then the direct product is also infinite.

4.1.2 Theorem Let G be a direct product of its two normal subgroups H, K with H N K = {e} and
G = HK. Then

i. Each element of H is permutable with every element of K. i.e, hk = kh ,forallh € H k € K
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ii. Every element of G is uniquely expressible as g = hk,forallh € H,k € K
ii. G=HXK.

Proof

i. Leth € H,k € K and consider the commutator hkkh™1k™1. Then
hkh='k=' = (hkh ™Yk ' e K (K is normal in G)
= h(kh 'k ) eH (H isnormslin G)
= hkh 'kl e HNK
But since H N K = {e}.
= hkh™ 'kl =e
= hk = kh
Hence each element of H is permutable with every element of K.

ii.  Since G is generated by its subgroups H, K. Let
g = hlkl y 9= hzkz for hl,hz € H,kl,kz eEK

= hlkl = hzkz
= hz_lhl = kzkl_l € H,K

= h, 'hy EHNK

= h, 'hy=e

= hy = h, = h € H (say)
Also kzkl_l EHNK

= kzkl_l =e
= ki =k, =k € K (say)
=  hky =hyk, =hk

Hence every g € G is uniquely expressible as g = hk, forallh € H, k € K.
iii. ToproveG = H X K. Define a mappinge : G — H X K by
o(g) =(hk),geG,(hk)€HXK.
First we will show that ¢ is well-defined. For g{, g, € G, let
g1 = 92
= hiki = hyk, © G =HK



= (h, k1) = (hz, k2)
= ¢(91) = ¢(92)
= ¢ is well-defined.
For one-one, let
¢(91) = ¢(g2)
= (h1, k1) = (hz, k2)
>h =hy, ,ki=k
=  hiky = hk,
= 91 = 92 v G =HK
= ( is one-one.
Also ¢ is onto because each (h, k) € H X K is the image of g € G under ¢.
Now for g{,g, € G
®(91-92) = @(hiks. hyk;)
= @(hy(k1hy)k2)
= @(hihy. kiky) “ hk =kh
= (h1hy, k1 k)
= (h1,k1). (ha, k)
= ¢(g1)-9(g2)

Hence ¢ is homomorphism. Thus G = H X K.

4.1.3 Theorem if 6 = Hx K and {(G),{(H),C(K) are the centre of G,H and K respectively,
then

{(6) = {(H) x {(K).
Proof 1o prove ¢(6) = ¢(H) x {(K). Letx € {(H) x {(K), then
X = 212, ,where z; € {(H) and z, € {(K)
let g € G, then g = hk, for h € H ,k € K (by theorem 4.1.2(ii)). Now

xg = z1Z,hk
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Now, let a € {(G), then

And

leta=h'k ,h' € H,k' € K. Then

And

but since ah = ha

Also

and

= z1(z; W)k “ hk = kh
= (z1h)(22k)
= h(z1k)z, = hkz,z,

= xg = gx

=> x€{(G)

= {(H) x{(K) < ¢(6)

ag =ga,forg € G
=>ah=ha,heHCG

ak =kak€EK<SG

ah=h'kh=h(k'h) =hhk - hk = kh

ha = hh'k'

= h' hk' = hh'k

= hh=hh (right cancelation law)

=> K €{(H).

ak = h'k'k
ka =kh'k' = (kh)k' = h'kk' - hk = kh

>hk'k=hkk ~ak = ka

!

> kk=kk (left cancelation law)

> k' elK)
=> h'k' € (H) x{(K)
=

a € ¢(H) x {(K)

= {(6) < {(H) x {(K) (ii)

From (i) and (ii), we have {(G) = {(H) x {(K).
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= H.

=19

4.1.4 Theorem Let G = H x K. Then the factor group

Proof the factor group
G
v ={9K: g€ G}
= = {hkK = hK,h € H}

To prove % = H. Define a mapping ¢ : % — H by
9(gK) = ¢(hK) = h.
First we will show that ¢ is well-defined. For g; K, g, K € %, let
91K = g:K
= hiK = h,K
= h, 'mK=K
= hz_lhl EK
But also hz_lhl EH.
=>h, 'hy EHNK
= h T lh=e
= hy = hy
= @(hK) = ¢(h;K)
= ¢ is well-defined.
For one-one, let
(M K) = ¢(hK)
= hy =h,
= hiK = hK

= ¢ is one-one.

vHNK = {e}

Also ¢ is onto because each h € H is the image of gK € % Moreover, for g1 K, g, K € %

0(g1K9:K) = p(h1KhyK)
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= @(h1h;K)
= hyh,
= @(hK). p(h2K)

= H.

SIS

Hence ¢ is homomorphism. Thus
4.1.5 Theorem Let G = H x K and H; be a normal subgroup of H. Then H; is normal in G.

Proof since 6 = H x K, therefore foreach g € G
g = hk.
To prove Hj is normal in G. Consider an element gh, g~ !, for each hy € H,, g € G. Then
ghig™" = (hk)hy (hk) ™!
= hkh k™ 1h™1
= h(kh))k 1h™1 “ hk = kh
= hhy(kk~1H)h™1
= hhyh~! € H; * Hy is normal in H
= gh,g~! € H;.
Hence H; is normalin G.

4.1.6 Theorem Let H,K be cyclic groups of order m,n respectively, where m,n are relatively

prime. Then H X K is a cyclic group of order mn.
Proof Let=<a:a™ =¢ >, K=<b:b" =e>.letG =H X K,then abisanelementof H X K.

Also (ab)k = akb* = e if and only if m|k, n|k. But since (m,n) = 1, therefore mn|k. Moreover
(ab)mn = g™Mpmn = (am)n(bn)m —ee—=c¢e
Hence ab has order mn. As H X K has mn elements.

=G =<ab:(ab)™ =e>

Hence G is cyclic group of order mn.
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