```
Group
             nonempty set G with binary operation *
group if the binary operation * is
associative and
 1) for all aEG, I eEG s.t. axe=exa=a
 2) For each aEG, JaiEG s.t. axa=axa=e
 Examples
    1)- (\mathbb{Z},+), (\mathbb{R},+), (\mathbb{C},+), (\mathbb{Q},+)
            (\mathbb{R}^*,\cdot) , (\mathbb{C}^*,\cdot) , (\mathbb{Q}^*,\cdot).
    2). (Q^{\dagger}, \cdot), (\{1,-1,i,-i\}, \cdot), (\{1,\omega,\omega^2\}, \cdot).
    3). Set M(2,\mathbb{R}) = \{ \begin{bmatrix} \alpha & b \\ c & d \end{bmatrix} : \alpha, b, c, d \in \mathbb{R} \}.
     Then (M(2,\mathbb{R}), +) is group.
     4) Set GL(2,R) = [a b]: a,b,c,d ER 1 ad-bc +0]
         Then (GL(2,\mathbb{R}), \cdot) is group.
    5). Set SL(2,R) = \[ \begin{picture} c & b \\ c & d \end{picture} : \a, b, c, d \in \text{R} \ \ad-bc=1 \end{picture}
          Then (SL(2,\mathbb{R}), \cdot) is a group.
                \mathbb{Z}_{n} = \{0,1,2,...,n-1\} is a group under
        addition modulo n.
    7) U(n) = \{ j \in \mathbb{Z}_n : (j,n) = 1 \} is a group
        under multiplication modulo n.
  T.e., U(10) = {1,3,67,9} is group under multiplication modulo 10.
```

O,	1	3	7	9
1	1	3	7	9
3	3	q	1	7
7	7	1	9	3
9	9	17	3	1

8). The set of complex nth roots of unity
$$\left\{ \left(os\left(\frac{2k\pi}{n} \right) + i sin\left(\frac{2k\pi}{n} \right) : k = 0,1,2,...,n-1 \right\} \right\}$$

is a group under multiplication.

9). The set
$$\mathbb{R}^n = \{(\alpha_1, \alpha_2, ..., \alpha_n) \mid \alpha_i \in \mathbb{R}^n\}$$

is a group under componentwise addition.

Properties of Groups:

- 1)- In a group G, there is only one identity element.
- 2). In a group G, the inverse of an element is unique.
- 3). For group elements a,b, (ab) = b'a'.

Order of a Group:

G is called order of G, denoted by IGI.

Order of an elements.

The order of an element gEG is the smallest positive integer n such that g"=e.

```
Example
       Consider U(15) = {1,2,4,7,8,11,13,14}
 under multiplication modulo 15. The order of group
is 8. Order of each element can be found as
     111 = 1
       2^{4} = 2, 2^{2} = 4, 2^{3} = 8, 2^{4} = 16 = 1
                 121 = 4
                                   AKHTAR ABBAS
       4' = 4, 4^2 = 16 = 1

\Rightarrow |4| = 2
                                   Lecturer (Mathematics)
                                 Govt. Degree College
        7 = 7, 7 = 49 = 4, 7 = 7.7 = 7.4 = 28 = 13
       7^4 = 7.7^3 = 7.13 = 91 = 1
                 => 171 = 4
   Similarly 181 = 4, 111 = 2, 1131 = 4, 1141 = 2.
Examples Every nonzero element of I has infinite order.
Subgroups A subset H of a group G is subgroup
if for any a, b EH, ab'EH. In case of addition
 We denote as H & G.
                                          a-bEH)
 Examples Let G be an Abelian group. Then
          H = {x ∈ G : x= e} ≤ G.
 Example:- Let G be an Abelian group and H, K & G.
  Then HK = {hk:hEH, kEK} \leq G.
 Theorems. Let H,K & G. Then HK & G if and only if HK=KH.
```

```
Cyclic subgroup generated by single element.
       Let a E G, we define a subgroup of
 generated by a as
              <a>= {a" : n∈ Z}
  If G is group under addition, then
             \langle \alpha \rangle = \{ n\alpha : n \in \mathbb{Z} \}.
Example

1) In U(10), (3) = {3,9,7,1} = U(10).
      2) J_n \mathbb{Z}_{10}, \langle 2 \rangle = \{0, 2, 4, 6, 8\}.
      3) In Z, <1>=<-1>= Z.
Center of a group :-
         The center of a group G is defined as
            Z(G) = {a ∈ G; ga = ag, Y g ∈ G}
        Z(G) \leq G.
     If G is Abelian, then Z(G) = G.
     Group G is called centerless if Z(G) = {e}.
Examples
     The center of the quaternion group
            Q= {1,-1, i, -i, j, -j, k,-k}
```

AKHTAR ABBAS
Lecturer (Mathematics)
Govt Degree College
Shah Jewna (Jhang)

Centralizer of an element: (Normalizer of an element). The centralizer of an element $\alpha \in G$ is C(a) = { g ∈ G : ga = ag }. C(a) & G Centralizer of a subgroup The centralizer of a subgroup H of G is C(H) = { g ∈ G : gh=hg, V h∈H}. C(H) < G Normalizer of a subgroup The normalizer of a subgroup H of G is N(H) = { g ∈ G : gH = Hg } N(H) & G. AKHTAR ABBAS Lecturer (Mathematics) Govt Degree College Remark Shah Jewna (Jhang) 1) - 7 C(H) < N(H). 2). H ¢ C(H) but H ⊆ C(C(H)). 3)- for any two subsets (subgroups) H and K of G $H \subseteq C(K) \Leftrightarrow K \subseteq C(H)$ 4)- If G is Abelian, then C(G) = Z(G)=G. 5)- G is Abelian iff C(a)=G YaEG. 6) - $Z(G) = \bigcap_{\alpha \in G} C(\alpha)$. (7). $C(\alpha) = C(\alpha^{-1})$.

Question Let $G = GL(2, \mathbb{R})$.

- (a) Find $C([1 \ 0])$
- (b) Find C([0,1])
- (c) Find Z(G).

Cyclic Groups

A group G is called cyclic if $G=\langle \alpha \rangle$ for some $\alpha \in G$.

Examples

- 1) Z is cyclic. 1 and -1 are generators.
- 2). In is cyclic. 1 is a generator.
- 3)- $\mathbb{Z}_8 = \langle 1 \rangle = \langle 3 \rangle = \langle 5 \rangle = \langle 7 \rangle$.

In general $\mathbb{Z}_n = \langle k \rangle$ where (k,n) = 1.

4)_ $U(10) = \langle 3 \rangle = \langle 7 \rangle$.

For what n, U(n) is cyclic? (Not concentrate more than 2 minutes)

Criterion for a = a.

Let G_1 be a group and $\alpha \in G_1$.

If lat is infinite, then a = a (=> i=j.

If |all is finite, say |a|=n, then a = a \ n \ (i-j).

2)-
$$a=e \Rightarrow |a| k$$
.

3). If
$$|\alpha| = n$$
, then $\langle \alpha^k \rangle = \langle \alpha^{\gcd(n,k)} \rangle$ and $|\alpha^k| = \frac{n}{\gcd(n,k)}$.

4)- If
$$|\alpha| = n$$
, then $|\alpha^i| = |\alpha^j|$ if and only if $\gcd(n,i) = \gcd(n,j)$.

5). If
$$|\alpha| = n$$
, then $\langle \alpha \rangle = \langle \alpha^j \rangle \iff \gcd(n,j) = 1$.

7)- If
$$|\langle \alpha \rangle| = n$$
, then for each positive divisor k of n , $\langle \alpha''^k \rangle$ is unique subgroup of order k . (Discuss \mathbb{Z}_{30} as an example).

8)- For each positive divisor k of n, the set $\langle \frac{n}{k} \rangle$ is the unique subgroup of In of order k.

Euler phi function :

Shah Jewna (Jhang) Let $\phi(1) = 1$ and for any integer >1, we define $\phi(n)$ as the number of positive integers less than n and relatively prime to n.

For a prime p, $\phi(p^n) = p^n - p^{n-1}$.

Theorem Let G be a group of order n. If $d \mid n$, then there are $\phi(d)$ elements of order d.

i.e., \mathbb{Z}_8 , \mathbb{Z}_{640} and \mathbb{Z}_{80000} each have $\phi(8)=4$ elements of order 8.

Theorem:

In a finite group, the number of elements of order d is a multiple of $\phi(d)$.

Properties of $\phi(n)$.

2) - For a prime P,
$$\phi(p^n) = p^n - p^{n-1}$$
.

3) - If m and n are relatively prime, then
$$\phi(mn) = \phi(m) \phi(n)$$
.

4)-
$$\phi(n)=n$$
 $\pi(1-\frac{1}{p})$, where p is prime.

(or)

5)- If
$$n = p_1^{k_1} p_2^{k_2} - p_r^{k_r}$$
 where $p_1 < p_2 < \cdots < p_r$ are

Prime numbers and each k; >1, then

$$\phi(n) = n\left(1 - \frac{1}{P_1}\right)\left(1 - \frac{1}{P_2}\right) - \cdot \cdot \left(1 - \frac{1}{P_r}\right).$$

$$(6)_{-}$$
 $\sum_{d|n} \phi(d) = n$

where the sum is over all positive disors of of n.

Permutation Groups A permutation of a set A is a bijective function from A to A. A permutation group of A is the collection of all permutations of A that forms group under function composition. For example, we define a permutation or of the set {1.2,3,4} by $\alpha(1)=2$, $\alpha(2)=3$, $\alpha(3)=1$, $\alpha(4)=4$ A convenient way is $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$ Consi der. $X = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{pmatrix}$ and $\sigma Y = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{pmatrix}$ then $= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 2 & 4 & 3 \end{pmatrix}$ and $Y \circ = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{pmatrix}$ $= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 1 & 3 & 5 \end{pmatrix}$

0 x \$ x 5.

Hero

Symmetric Group S3:

Let S_3 denote the permutations of $\{1,2,3\}$.

Then S_3 , under function composition, is a group with six elements. The six elements are $\mathcal{E} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad \alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad \alpha^2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix},$

 $\beta = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad \alpha\beta = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad \alpha\beta = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}.$

Here & B & Ba, so that S3 is non-Abelian.

Symmetric Group Sn:

Let $A = \{1, 2, ..., n\}$. The set of all permutations of A is called the symmetric group of degree n and order n!. This group is denoted by S_n . S_n is non-Abelian when $n \ge 3$.

The group S4 has 30 and S5 has 100 subgroups.

Cycle Notation

An expression of the form (a_1, a_2, \ldots, a_m)

where $(\alpha_1, \alpha_2, \dots, \alpha_m) = \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_m \\ \alpha_2 & \alpha_3 & \dots & \alpha_1 \end{pmatrix}$

is called a cycle of length m or an m-cycle. This can also be written as $(\alpha_1 \ \alpha_2 \ \dots \ \alpha_m) = (\alpha_2 \ \alpha_3 \ \dots \ \alpha_m \ \alpha_1)$

= (a3 a4 ... am a4 a2)

and so one

A cycle of length 2 is called a transposition.

Consider the permutation $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 4 & 6 & 5 & 3 \end{pmatrix}$. In cycle notation, we write $\alpha = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 4 & 6 \end{pmatrix} \begin{pmatrix} 5 & 6 \end{pmatrix}$ or simply $\alpha = \begin{pmatrix} 12 \end{pmatrix} \begin{pmatrix} 3 & 4 & 6 \end{pmatrix}$.

Theorems Every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.

2). If the pair of cycles $\alpha = (a_1 a_2 - a_m)$ and $\beta = (b_1 b_2 - b_n)$ have no entries in common, then $\alpha \beta = \beta \alpha$.

(Disjoint cycles commute).

3). The order of a permutation on a finite set written is disjoint cycle form is the least common multiple of the lengths of the cycles.

4). The order of a k-cycle is k.

For example $x = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 7 & 6 & 4 & 5 & 3 \end{pmatrix}$

Then $\alpha = (12)(37)(465)$ AKHTAR ABBAS Lecturer (Mathematics) $|\alpha| = |cm(2,2,3)| = 6$ Govt Degree Cottege Shah Jewna (Jhang)

5). Every permutation in Sn, n>1, is a product of &2-cycles. For example (1632) (457) = (12) (13)(16)(47)(45).

6). If $\mathcal{E} = \beta_1 \beta_2 - \beta_r$, where the β 's are 2-cycles, then r is even.

1). If $\alpha = \beta_1 \beta_2 \dots \beta_r = x_1 x_2 \dots x_s$, where the β 's and γ 's are 2-cycles, then γ and γ are both even or both odd.

Two cycles in Sn are conjugate if and only if they have the same length.

Theorem: Every element of An is a product of 3-cycles, n ≥ 3.

Questions.

1). Express
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 8 & 5 & 6 & 4 & 7 & 1 \end{pmatrix}$$

as a product of disjoint cycles and then as

a product of transpositions.

2). Write all elements of S_4 . Show that S_4 has no elements of order ≥ 5 .

3). Find the order of (1234)(657) in S7.

4). Let $\alpha = (259)(136)$ and $\beta = (157)(2469) \in S_q$ Find $\alpha \circ \beta \circ \alpha'$.

5). Let (1357) and (2 3 68) $\in S_8$. Find $\alpha \in S_8$. Such that $\alpha \circ (1357) \circ \alpha' = (2368)$.

6). Prove that (12 ... n-1 n) = (n n-1 ... 21).

7). Show that the number of distinct cycles of length r in S_n is $(r-1)!C_r = \frac{1}{r} \frac{n!}{(n-r)!}$.

AKHTAR ABBAS Lecturer (Mathematics) Govt Degree College Shah Jewna (Jinang) Let G be a group and H≤G. For any a∈G, We define

and Ha = {ah: h EH} (Left coset of H containing a)

Ha = {ha: h E H} (Right coset of H containing a)

Example L (In general aH # Ha).

(1) Let $G_1 = S_3 = \{I, (123), (132), (12), (23), (13)\}$. and $H = \{I, (13)\}$. Then

H = HI

$$(12) H = \{(12), (12)(13)\} = \{(12), (132)\} = (132) H$$

$$(13) H = \{(13), (13)(13)\} = \{(13), \Gamma\} = H$$

$$(23) H = \{(23), (23)(13)\} = \{(23), (123)\} = (123) H.$$

Distinct cosets of H in G are
H, (12) H, (23) H

(2) Let
$$G = \mathbb{Z}_q = \{0,1,2,3,4,5,6,7,8\}$$

and $H = \{0,3,6\}$

Then cosets of H in G are $0+H=\{0,3,6\}=3+H=6+H.$ $1+H=\{1,4,7\}=4+H=7+H.$ $2+H=\{2,5,8\}=5+H=8+H.$

AKHTAR ABBAS Lecturer (Mathematics) Govt Degree College Shah Jewna (Jhang)

```
Properties of Cosets:
```

Let H≤G and a,b∈G. Then

- a E aH.
- 3). (ab) H = a(bH).
- 4)- aH = bH if and only if a E bH.
- 5)_ aH=bH or aH f) bH = p.
- 6) aH = bH if and only if ab'EH or a'bEH.
- 7)- |aH| = |bH| = |Ha| = |Hb| = |H|.
- 8) all = Ha if and only if 1-1 = al-1a'.
- 9) all & G if and only if a EH.

Question:

Find the cosets of H= {1,15} in G= U(32).

Lagrange's Theorem :-

If G is a finite group and H≤G, then IHI divides IGI.

Index of a subgroup 1-If 1-1 = G, then the number of distinct left (or right) cosets of H in G is called index of 1-1 in G, denoted as [G:H] or [G:H].

```
Consequences of Lagrange's Theorems-
```

1) - If G is a finite group and $H \leq G$, then $[G:H] = \frac{|G|}{|H|}$

2) - If a E G, then lal divides |G|.

3). A group of prime order is cyclic.

(4) In a finite group G, a =e, Va EG.

5) Let a be an integer and p be a prime,

then $\alpha = \alpha \mod p$.

Converse of Lagrange's Theorem_ AKHTAR ABBAS
Lecturer (Mathematics)
Govt. Degree College
Shah Jewna (Jhang)

The converse of Lagrange's Theorem is false.

For example, A4 has no subgroup of order 6, where as $|A_4| = 12$.

where as $|A_4| = 12$.

(A4 is the smallest subgroup for which Lagrange's Theorem is not true).

Theorems for any two subgroups H and K
of a finite group G, | HK| = | HIK|

Example: | HOK|

- 1). Find all right cosets of GZ in Z.
- 2) Let |G| = pq, where p and q are prime integers. Show that every proper subgroup of G is cyclic.
- 3)- Let $H \leq G$. Define a relation \sim on G by for all $a,b \in G$, $a \sim b$ if and only if $b'a \in H$.

 Show that \sim is an equivalence relation on G and the equivalence classes of \sim are the cosets aH, $a \in G$.
 - 4). Let |G| = pq (p > q), where p and q are distinct primes. Show that G has at most one subgroup of order p.
 - 5)- Let G be a finite group and $A, B \leq G$ such that $A \subseteq B$. Prove that [G:A] = [G:B][B:A].
 - 6)- Let |G|=35 and $A,B \leq G$ such that |A|=3 and |B|=7. Show that G=AB.
 - 7)- We define double coset of H and K in a group G as

 I-lak = {hak: hEH, kEK}

 where a EG and H, K = G.

 Prove that | HaK| = | HI | K|

Prove that | HaK | = | HI | K | , Y a E G.

Normal Subgroup

A subgroup N of G is called normal subgroup an= Na, for all a EG.

We denote this by NAG.

Normal Subgroup Test:

A subgroup N of G is normal if and * Nx'EN, Y xEG, or xnxEN YXEG and nEN.

Examples

- 1). Every subgroup of an Abelian group is normal.
- 2) An A Sn for all ne2.
- 3). Every subgroup of index 2 is normal.
- 4). Z(G) 4 G.
- 5): Let Hag and Kag, then HKag.
- 6) If H is a unique subgroup of finite order of G, then H & G.
- 7). SL(2,R) & GL(2,R).

AKHTAR ABBAS Lecturer (Mathematics) 8)- If H, K & G, then HOK & G. Shah Jewna (thang)

9). Let $H \leq G$. Then $\bigcap_{g \in G} g H g \leq G$.

10)- H 4 G if and only if N(H) = G.

1). HO N(H).

Simple Groups A group G is simple if G + fe} and the only normal subgroups of G are fe and G.

Factor Groups

Let G be a group and HAG. The set G/ = {gH: gEG} is a group under the operation (g, H)(g, H) = g, g, H.

This is called factor (quotient) group.

Examples

2). Let
$$G = \mathbb{Z}_{18}$$
 and $H = \langle 6 \rangle = \{0, 6, 12\}$.
Then $G_{H} = \{0+H, 1+H, 2+H, 3+H, 4+H, 5+H\}$.

3). Let $G = U(32) = \{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31\}$ and H = {1, 17} . Then G/H = {H, 3H, 5H, 7H, 9H, 11 H, 13H, 15H}.

In case of finite group
$$G$$
, $\left|\frac{G}{H}\right| = \frac{|G|}{|H|}$

An is simple if $n \ge 5$.

Theorem: For a group G, if G/Z(G) is cyclic, then G is commutative.

Exercises. Let G be a commutative group. Show that G is simple if and only if G is of prime order.

Let H = G. Define a map $\phi: G \to G/H$ by $\phi(\alpha) = \alpha H$ for all $\alpha \in G$.

Then ϕ is a homomorphism from G onto G_H and $Ker \phi = H$. This homomorphism is called the natural homomorphism of G onto G_H .

Examples. Consider S_3 and the normal subgroup $H = \{I, (123), (132)\}$.

Define $\varphi: S_3 \to S_3$ $H \to \{I, (123), (132)\}$ $for all \alpha \in S_3$.

Then ϕ is a homomorphism which is onto and $\ker \phi = H$.

Questions. Determine all homomorphisms from \mathbb{Z}_{12} to \mathbb{Z}_{30} . Sols- Such a homomorphism is completely specified by image of 1. That is, if $1\mapsto a$, then $x\mapsto xa$. Lagrange's theorem requires that |a| divides 30 and also |a| ||1| = 12. So |a| = 1, 2, 3, or 6.

Thus a=0, 15, 10, 20, 5 or 25.

Hence there are six (= gcd(12,30)) homorphisms from \mathbb{Z}_{12} to \mathbb{Z}_{30}

Result: In general, $|H_{om}(\mathbb{Z}_m, \mathbb{Z}_n)| = \gcd(m, n)$

In particular, if (m,n)=1, then $|\operatorname{Hom}(\mathbb{Z}_m,\mathbb{Z}_n)|=1$

Examples. The mapping $\phi: S_n \to \mathbb{Z}_2$ that takes an even permutation to 0 and an odd permutation to 1, is a homomorphism with ker $\phi = A_n$.

Examples of Isomorphisms-

- 1). $U(10) \cong \mathbb{Z}_4$ and $U(5) \cong \mathbb{Z}_4$.
- 2). Any infinite cyclic group is isomorphic to Z and any finite cyclic group is isomorphic to Zn.
- 3)_ U(10) ≠ U(12)

 AKHTAR ABBAS
 Lecturer (Mathematics)
 Govt Degree College
 Shah Jewna (Juang)
- 4)- Let $G = SL(2, \mathbb{R})$. Define a map $\phi : SL(2, \mathbb{R}) \rightarrow SL(2, \mathbb{R})$ by $\phi(A) = MAM'$, for all $A \in SL(2, \mathbb{R})$,
 where M is any fixed 2×2 real matrix with |M| = 1. Then ϕ_M is an isomorphism.

Properties of $\underline{I}_{somorphisms}$ acting on elements:-Suppose that $\phi: G \to G'$ is an isomorphism. Then;

- 1). $\phi(e) = e'$
- 2)- $\phi(g^n) = [\phi(g)]^n$ for all $n \in \mathbb{Z}$ and $g \in G$.
- 3). For any $a, b \in G$, ab = ba if and only if $\phi(a) \phi(b) = \phi(b) \phi(a)$
- 4) $G = \langle \alpha \rangle$ if and only if $G' = \langle \phi(\alpha) \rangle$.
- 5). For all $\alpha \in G$, $|\alpha| = |\phi(\alpha)|$.
- 6). If G is finite, then G and G' have exactly the same number of elements of every order.

Properties of Isomorphisms acting on groups:
Suppose that $\phi: G \to G'$ is an isomorphism. Then

- 1). $\phi': G' \rightarrow G$ is an isomorphism.
- 2). G is Abelian if and only if G' is Abelian.
- 3)- G is cyclic if and only if G' is cyclic.
- 4)- $\phi(z(G)) = Z(G')$.

Cayley's Theorem:

Every group is isomorphic to a group of permutations of its own elements.

 $\left(G = F(G) = \left\{f_{\alpha} : \alpha \in G, f_{\alpha}(b) = \alpha b\right\}$ under $\phi(\alpha) = f_{\alpha}$.

Example Let gcd (IGI, IHI) = 1 then trivial homomorphism is the only homomorphism from G into H.

Example . $(Q, +) \notin (Q^*, .)$

since every nonidentity element of (Q, +) is of infinite order while -1 is a nonidentity element of (Q^*, \cdot) which is of finite order.

Example: $(\mathbb{Z}, +) \neq (\mathbb{Q}, +)$ Since $(\mathbb{Z}, +)$ is cyclic and $(\mathbb{Q}, +)$ is non cyclic.

Prepared by:Akhtar Abbas.

Properties of Homomorphisms

Let $\phi: G \rightarrow G'$ be a homomorphism and $g \in G$.

Then :

- 1) \(\phi(e) = e'
- 2) $\phi(g^n) = [\phi(g)]^n$ for all $n \in \mathbb{Z}$.
- 3). If 181 is finite, then 10(8)1 divides 181.
- 4). Ker \$ 4 G.
- 5). $\phi(a) = \phi(b)$ if and only if a Ker $\phi = b$ Ker ϕ .
- 6). If $\phi(g) = g$, then $\bar{\phi}(g) = \{x \in G : \phi(x) = g\} = g \text{ Ker} \phi$.

Properties of Subgroups under Homomorphisms:

Let $\phi: G \to G'$ be a homomorphism and

H & G. Then;

- 1). $\phi(H) = \{\phi(h) : h \in H\} \leq G'$.
- 2) 9f H is cyclic, then $\phi(H)$ is cyclic.
- 3)- If H is Abelian, then $\phi(H)$ is Abelian.
- 4). If H & G, then \$ (H) \(\phi(G) \).
- 5). If |H|=n, then | P(H) | divides n.
- 6). If |Kerol = n, then of is an n-to-1 mapping from G onto $\phi(G)$.

- 7) If $K \leq G'$, then $\Phi'(K) = \{k \in G : \Phi(k) \in K'\} \leq G$.

 8) If $K \leq G'$, then $\Phi'(K') \leq G$.

 9) If $K \leq G'$, then $\Phi'(K') \leq G$.

 9) If $K \leq G'$, then $\Phi'(K') \leq G$.

 10) If $K \leq G'$, then $\Phi'(K') \leq G$.

 11) If $K \leq G'$, then $\Phi'(K') \leq G$. 9) of is one-one if and only if Ker o = {e}.

Prepared

Homomorphism ...

A map $\phi: G \to G'$ is called homomorphism $\phi(ab) = \phi(a) \phi(b)$ for all $a,b \in G$.

Kernel of a Homomorphism=

Let $\phi: G \to G'$ be a homomorphism. We define $\ker \phi = \{g \in G: \phi(g) = e'\}$.

Examples 1_

1). A map $\phi: GL(2,\mathbb{R}) \to \mathbb{R}^*$, defined by $\phi(A) = |A|$

is a homomorphism with $ker(\phi) = SL(2, \mathbb{R})$

2). The map $\phi: \mathbb{R}^* \longrightarrow \mathbb{R}^*$, defined by $\phi(x) = |x|$

is a homomorphism with kerp = {-1,1}.

3). The map $\phi: \mathbb{Z} \to \mathbb{Z}_n$, defined by $\phi(x) = x \mod n$

is a homomorphism with $\ker \phi = \langle n \rangle$.

Definitions :-

A homomorphism $\phi: G \rightarrow G'$ is called, a:

- i) monomorphism, if \$\phi\$ is onle-one (injective).
- ii) epimorphism, if \$\phi\$ is onto (surjective).
- ii) isomorphism, if \$\phi\$ is one-one and onto (bijective).
- iv) endomorphism, if G = G'.
- v) automorphism, if \$\phi\$ is an isomorphism and G=G'.

```
First Isomorphism Theorem :-
             Let \phi: G \to G' be a homomorphism. Then
                          G_{\text{Ker}\,\phi} \cong \phi(G).
Examples-
                                                                     AKHTAR ABBAS
                       \mathbb{Z}/\mathbb{Z}_n \mathbb{Z}_n.
                                                                     Lecturer (Mathematics)
                                                                     Govt Degree College
                                                                     Shah Jewna (Jhang)
   Second Isomorphism Theorem:
             Let H, K & G with K & G. Then
                             (HOK) = HK
             Consider the group (Z_+) and its subgroups
H= <2> and K= <3>. Then
                    H + K = \langle 2 \rangle + \langle 3 \rangle = \mathbb{Z} and H \cap K = \langle 6 \rangle
      Therefore \frac{\langle 2 \rangle}{\langle 1 \rangle} \approx \frac{\mathbb{Z}}{\langle 3 \rangle}
  Notice that \frac{\langle 2 \rangle}{\langle 6 \rangle} = \{0 + \langle 6 \rangle, 2 + \langle 6 \rangle, 4 + \langle 6 \rangle\}
               \frac{\mathbb{Z}}{\langle 3 \rangle} = \left\{ 0 + \langle 3 \rangle, 1 + \langle 3 \rangle, 2 + \langle 3 \rangle \right\}.
       The mapping \phi: \frac{\langle 2 \rangle}{\langle 6 \rangle} \longrightarrow \frac{\mathbb{Z}}{\langle 3 \rangle}
  defined by \phi(0+\langle 6 \rangle) = 0+\langle 3 \rangle, \phi(2+\langle 6 \rangle) = 2+\langle 3 \rangle.
```

 $\phi(4+\langle 6 \rangle) = 1+\langle 3 \rangle$ is the required isomorphism.

Third Isomorphism Theoremi-

Let H, H, & G with H, & H2. Then

 $\frac{\left(G_{H_{1}}\right)}{\left(H_{2}\right)} \cong \frac{G}{H_{2}}.$

AKHTAR ABBAS Lecturer (Mathematics) Govt Degree College Shah Jewna (Jhang)

Example: Let $G = (\mathbb{Z}, +)$, $H_1 = \langle 6 \rangle$ and $H_2 = \langle 3 \rangle$

 $H_1 \subseteq H_2$ and

 $\frac{G}{H} = \frac{\mathbb{Z}}{(3)} = \{0+\langle 3 \rangle, 1+\langle 3 \rangle, 2+\langle 3 \rangle\}$

 $\frac{G}{H_1} = \frac{\mathbb{Z}}{\langle 6 \rangle} = \left\{ 0 + \langle 6 \rangle, 1 + \langle 6 \rangle, 2 + \langle 6 \rangle, 3 + \langle 6 \rangle, 4 + \langle 6 \rangle, 5 + \langle 6 \rangle \right\}$

 $\frac{H_2}{H} = \frac{\langle 3 \rangle}{\langle 0 \rangle} = \left\{ 0 + \langle 6 \rangle, 3 + \langle 6 \rangle \right\}$

Now $\frac{(G/H_1)}{(H_{2/1})} = \left\{ 0 + \langle 6 \rangle + \frac{\langle 3 \rangle}{\langle 6 \rangle}, 1 + \langle 6 \rangle + \frac{\langle 3 \rangle}{\langle 6 \rangle}, 2 + \langle 6 \rangle + \frac{\langle 3 \rangle}{\langle 6 \rangle} \right\}.$

It is clear that $\frac{\mathbb{Z}}{\langle 3 \rangle} \cong \frac{(4/\langle 6 \rangle)}{(\langle 3 \rangle)}$

Group of automorphisms:

Let G be a group, then the collection of automorphisms of G, Aut (G) is a group under the composition of functions.

Inner automorphisms-

Let G be a group and a EG. We define inner automorphism la: G -> G by la (8) = agai, 4 g \in G. We denote by $I_{nn}(G)$ the set of all inner automorphisms of G.

Inn (G) △ Aut (G)

Theorem: Let G be a group and $H \leq G$. Then $\frac{N(H)}{C(H)} \cong \text{a subgroup of } \text{Aut}(G).$

and $\frac{G}{Z(G)} \cong Inn(G)$.

AKHTAR ABBAS Lecturer (Mathematics) Govt. Degree College Shah Jewna (Jhang)

Exercises !-

- 1) Show that Aut (Zn) = U(n).
- 2). Show that $\left|\operatorname{Aut}(\mathbb{Z}_p)\right| = \phi(p) = p-1$, where p is a prime.
- 3). Show that $Aut(S_3) = I_{nn}(S_3) \cong S_3$.
- 4) Determine Aut (S4).
- 5)- Let G be a cyclic group of order n. Prove that $|Aut(G)| = \phi(n)$.
- 6)- Let G be a group such that $Z(G) = \{e\}$. Prove that $Z(Aut(G)) = \{e\}$.

Characteristic Subgroups-

Let G be a group and $H \subseteq G$. H is called a characteristic subgroup of G if $\phi(H) \subseteq H$, $\forall \phi \in Aut(G)$.

Properties:

- 1). Every characteristic subgroup of G is normal.
- 2). Z(G) is characteristic subgroup of G.
- 3)- Every subgroup of a cyclic group is characteristic. characteristic 4)- The product and intersection of two characteristic subgroups is