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Lecture Notes on General Topology

Chapter-01

1 Introduction

Topology is the generalization of the Metric Space. The word Topology is composed of two words.

• Top means twisting instruments.

• Logy a Latin word means Analysis.

So, Topology means Twisting Analysis.
Topology is the combination of two main branches of Mathematics,one is Set theory and the other
is Geometry (rubber sheet geometry). We call Set theory is the language of Topology. The course
which we will study is basically known as Point Set Topology or General topology.

To define Topology in an other way is the qualitative geometry. The basic idea is that if one
geometric object can be continuously transformed into another, then the two objects are considered
as topologically same.
e.g. a circle and a square are topologically equivalent.
Physically, a rubber band can be stretched into the form of either a circle or a square. Similarly,
many other shapes can also be viewed as topologically same.
e.g. If we take a piece of rubber and draw a circle on it then stretched it, in usual geometry there
is no change but topologically there happened a change and the circle deform into an ellipse (or
some other shape depending upon the force of stretchness). This is what the rubber sheet geometry
means.
The term used to describe two geometric objects that are topologically equivalent is homeomorphic.
So, in above example the circle and square, circle and ellipse are homeomorphic.
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Definition 1. Suppose that X be a non-empty set and τ be the collection of subsets of X, then τ
is called a topology on X if the following axioms are satisfied.

1. φ and X are in τ .

2. The union of the elements of any sub collection of τ is in τ .

3. The intersection of the elements of any finite sub collection of τ is in τ .

We call the set X together with topology τ is a topological space and denote it (X, τ). The subset
A of X is an open subset of X if A ∈ τ , so we can say that a topological space together with
its subsets are all open, such that X and φ are both open and also the infinite union and finite
intersection of open sets is also open.

Example 1. Let X = {a, b, c}, and consider the collection

τ = {X,φ, {a}, {b, c}}

• X and φ belongs to τ .

• The union of any sub collection of τ belongs to τ .

• The intersection of finite sub collection of τ belongs to τ .

All the three axios are satisfied, hence τ is a topology on X.

Exercise 1. Let X = {a, b, c, d}, make all possible topologies on X.

Example 2. Consider R, the set of real numbers, with

τ = {S ⊆ R : ∀x ∈ S ∃ ε > 0 such that (x− ε, x+ ε) ⊆ S}
Now (R, τ) is a topological space as,

• φ,R ∈ τ trivially.

• Consider the class {Aα}, where α ∈ I such that ∀ α ∈ I we have Aα ∈ τ .
We show that

⋃
α∈I Aα ∈ τ .

For this, let

W =
⋃
α∈I

Aα

Then for all x ∈ W ∃ α ∈ I such that x ∈ Aα. So by hypothesis ∃ ε > 0 such that

(x− ε, x+ ε) ⊆ Aα ⊆ W ⊆ τ

• Let A,B ∈ τ , we show that A
⋂
B ∈ τ .

For this, let x ∈ A
⋂
B, then ∃ εα > 0 and εβ > 0 such that

(x− εα, x+ εα) ⊆ A and (x− εβ, x+ εβ) ⊆ B

Take
ε = min(εα, εβ)

(x− ε, x+ ε) ⊆ A and (x− ε, x+ ε) ⊆ B

⇒ (x− ε, x+ ε) ⊆ A
⋂

B

⇒ A
⋂

B ∈ τ
Hence τ is a topology on R and it is called usual topology on R.
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Example 3. Let X be any set, and P (X) called the power set of X consisting of all subsets of X
is a topology on X. It is called discrete topology.
The collection consisting of the set X and empty set only is also a topology on X, it is called
indiscrete topology or trivial topology.

Example 4. If τ1 and τ2 are two topologies on X then show that τ1
⋂
τ2 is also a topology on X.

Also give an example.
Solution. Let τ1 and τ2 are two topologies on X, we have to show that τ1

⋂
τ2 is also a topology

on X.
For this,

1. Since φ,X ∈ τ1 and φ,X ∈ τ2
⇒ φ,X ∈ τ1

⋂
τ2.

2. Let Gi ∈ τ1
⋂
τ2

⇒ Gi ∈ τ1 and Gi ∈ τ2 respectively.
⇒

⋃
Gi ∈ τ1 and

⋃
Gi ∈ τ2 (∵ τ1 and τ2 are topologies).

⇒
⋃
Gi ∈ τ1

⋂
τ2.

3. Let G1, G2 ∈ τ1
⋂
τ2

⇒ G1, G2 ∈ τ1 and G1, G2 ∈ τ2
⇒ G1

⋂
G2 ∈ τ1 and G1, G2 ∈ τ2, (∵ τ1 and τ2 are topologies)

⇒ G1

⋂
G2 ∈ τ1

⋂
τ2. All the axioms are satisfied, hence intersection of two topologies on X

is also topology on X.

Exercise 2. Give an example of the above example.

Exercise 3. Show by an example that the union of two topologies on a same set X is not a topology
on X.

Definition 2. Let X be non-empty set and the class τ of all those subsets of X whose compliment
is finite together with φ, is a topology on X called the Co-finite topology on X.

Remark 1. Co-finite topology of a finite set is a discrete topology.

Definition 3. Let (X, τ) be a topological space and N be an open set of X, let p ∈ X then N is
called an open Neighborhood of p if p ∈ N . And if p does not belongs to N then the set N\p is
called Deleted open neighborhood of p.

Example 5. Let X{a, b, c} and τ = {φ,X, {a}}.
Since b ∈ X ⇒ X is an open neighborhood of b.
Also a ∈ X ⇒ X, {a} are open neighborhood of a.

Definition 4. Let (X, τ) be a topological space and A ⊂ X. Let p ∈ X, then p is called Limit or
Accumulation Point of A iff for every open set G such that p ∈ G, contains a point of A different
from p.
In other words

(G− {p})
⋂

A 6= φ

Example 6. Let X = {a, b, c, d, e}, and τ = {φ,X, {a}, {c, d}, {a, c, d}, {b, c, d, e}} be a topology on
X. Consider the set A = {a, b, c}, now
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1. a ∈ X, but there is no open set G(say) in X for which we have
(G− {a})

⋂
A 6= φ. Hence a is not a limit point of A.

2. b ∈ X, and since the open set containing b are {b, c, d, e} and X, and each contained a point
of A different from b.

3. c ∈ X, and since the open set containing c are {c, d}, {a, c, d}, {b, c, d, e}
and X, but the open set {c, d} does not contained a point of A different from c.

4. d ∈ X, and since the open set containing d are {c, d}, {a, c, d}, {b, c, d, e}
and X and each contained a point of A different from d.

5. e ∈ X, and since the open set containing e are {b, c, d, e} and X, and each contained a point
of A different from e.

Definition 5. The set of all limit points of A ⊂ X is called the Derived Set of A and is denoted
by A′.

Example 7. In example 6. the derived set is {b, d, e}.

Exercise 4. Let X = {a, b, c}, the collection τ = {φ,X, {a}} is a topology on X and A = {b, c} ⊂
X, find the derived set of A.

Definition 6. Let (X, τ) be a topological space and A ⊂ X, then A is called Closed set of X if
Ac is open.

Remark 2. The empty set φ and the set X are both open and closed.

Example 8. Let X = {a, b, c, d, e}, and τ = {φ,X, {a}, {c, d}, {a, c, d}, {b, c, d, e}} be a topology on
X, then the closed subset of X are
φ,X, {b, c, d, e}, {a, b, e}, {b, e}, {a}.

Example 9. If (X, τ) is a discrete topology then every subset of X is closed because compliment of
all such subsets is open.

Theorem 1. Let X be a topological space. Then the class of closed subsets of X possesses the
following properties.

1. φ and X are closed sets.

2. The intersection of any number of closed sets is closed.

3. The union of any two closed sets is closed.

Proof. 1. Since φ,X ∈ τ and φ and X are both open as well as closed.

2. Let {Ai} be the collection of members of τ then
⋃
iAi ∈ τ .

i.e.
⋃
iAi is open. (union of open sets is open)

Taking complement and using DeMorgan’s Law we get
(
⋃
iAi)

c =
⋂
iA

c
i is closed.

⇒ Ai is open ∀ i.
⇒ Aci is closed ∀ i.
Hence intersection of any number of closed sets is closed.
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3. Let A,B ∈ τ implies A
⋂
B ∈ τ . And since A,B ∈ τ then both A and B are open. Also since

intersection of open sets is also open, so A
⋂
B is open.

⇒ Ac, Bc and (A
⋂
B)c are closed.

(A
⋂

B)c = Ac
⋃

Bc

⇒ Union of any two closed sets is closed in (X, τ).
Hence the class of closed subsets of X possesses all the three properties describe in statement.

Theorem 2. A subset A of a topological space X is closed iff A contains each of its limit point.

Proof. Assume that A is closed, then we are to show that A′ ⊂ A.
Let p be a limit point of A such that p 6∈ A then p ∈ Ac.
But Ac is open since A is closed.
Hence p 6∈ A′ for Ac is open set, such that

p ∈ Ac and Ac
⋂

A = φ

⇒ (Ac − {p})
⋂

A = φ

Which is a contradiction to the fact that p 6∈ A.
Thus A′ ⊂ A if A is closed.
Conversely.
Now assume that A′ ⊂ A, then we are to show that A is closed.
For this, we show that Ac is open.
Let p ∈ Ac then p 6∈ A, so ∃ an open set G such that p ∈ G and

(G− {p})
⋂

A = φ

But p 6∈ A, hence

G
⋂

A = φ

So G ⊂ Ac.
Thus p is an interior point of Ac and so Ac is open.
⇒ A is closed.

Definition 7. Let A be a subset of a topological space X. The closure of A is the intersection of
all closed supersets of A.
i.e. Closure of A is the smallest closed superset of A. Closure of a set A is denoted by Ā.

Example 10. Let X = {a, b, c, d, e}, and τ = {φ,X, {a}, {c, d}, {a, c, d}, {b, c, d, e}} be a topology
on X, find ¯{b}, ¯{a, c}, ¯{b, d}.

Solution 1. Let X = {a, b, c, d, e}, and τ = {φ,X, {a}, {c, d}, {a, c, d}, {b, c, d, e}} be a topology
on X, then the closed subset of X are
φ,X, {b, c, d, e}, {a, b, e}, {b, e}, {a}.

1. For ¯{b}, the closed supersets of {b} are X, {b, c, d, e}, {a, b, e}, {b, e}, now the intersection of
all these closed supersets of {b} is

{b, e}
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2. For ¯{a, c}, the closed supersets of {a, c} is the only X, now the intersection of all these closed
supersets of {a, c} is

X

3. For ¯{b, d}, the closed supersets of {b, d} are X, {b, c, d, e}, now the intersection of all these
closed supersets of {b, d} is

{b, c, d, e}

Theorem 3. Let A be a subset of a topological space X. Then the closure of A is the union of A
and its derived set. i.e.

Ā = A
⋃

A′

Proof. Let x ∈ Ā then x belongs to each closed superset of A, say F . Also we know that

A ⊂ Ā

If x ∈ A then x ∈ A
⋃
A′. If x 6∈ A then we are to show that x ∈ A′.

For this suppose that x 6∈ A′. Then ∃ an open set G containing x such that

(G− {x})
⋂

A = φ

i.e. G
⋂
A= φ

⇒ A ⊂ Gc. Then F is a closed superset of A and then x 6∈ F .
This is a contradiction to the fact that x ∈ Ā. Therefore x ∈ A′.
Hence x ∈ A

⋃
A′. So,

Ā ⊂ A
⋃

A′ (1)

Now let x ∈ A
⋃
A′, then x ∈ A or x ∈ A′.

If x ∈ A then clearly x ∈ Ā. ∵ A ⊂ Ā
If x 6∈ A then x ∈ A′, so we are to show that x ∈ Ā.
i.e. x belongs to each closed superset of A.
Assume that there is a closed superset F of A such that x 6∈ F .
Then x ∈ F c = G (an open set).
Since x ∈ A′, i.e. x is a limit point of A.
So G

⋂
A 6= φ ⇒ F c

⋂
A 6= φ ∵ G = F c

Which is a contradiction to the fact that A ⊂ F .
Accordingly x belongs to each closed superset of A.
So x ∈ Ā, hence

A
⋃

A′ ⊂ Ā (2)

From (1) and (2) we have

Ā = A
⋃

A′

Exercise 5. Let A and B be the subsets of topological space (X, τ), then (A
⋃
B)′ = A′

⋃
B′.

Exercise 6. If A ⊂ B then every limit point of A is also a limit point of B.

Definition 8. Let A ⊂ X and p ∈ X, then p is called Closure Point of A iff p ∈ Ā.
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Remark 3. From Theorem (3) a point p ∈ X is closure point of A ⊂ X iff p ∈ A or p ∈ A′.

Definition 9. A subset A of a topological space X is said to be Dense in X iff Ā = X.

Example 11. Consider the set Q of rational numbers. We know that

R = Q
⋃

Q′ (3)

Where Q′ is the set of irrational numbers. And since in the usual topology of R every real number
a ∈ R is a limit point of Q, i.e. a ∈ Q′.
So

Q̄ = Q
⋃

Q′ (4)

Where Q′ is the set of irrational numbers and also the derived set of Q. Hence from (1) and9 (2)

Q̄ = R

Definition 10. Let A be a subset of a topological space X. A point p ∈ A is called Interior Point
A if there exist an open set G such that p ∈ G which contained in A. i.e.

p ∈ G ⊂ A where G is open.

The set of interior points of A is called the interior of A and is denoted by

int(A) or A◦.

Example 12. Let X = {a, b, c, d, e}, and τ = {φ,X, {a}, {c, d}, {a, c, d},
{b, c, d, e}} be a topology on X and A = {b, c, d} is a subset of X, find A◦.

Solution 2. To find the interior of A, we have to check b, c, d as interior points.

1. Since b ∈ A, and the open subsets containing b are X, and {b, c, d, e}, but b ∈ X 6⊂ A and
also b ∈ {b, c, d, e} 6⊂ A, so b 6∈ A◦.

2. Since c ∈ A, and the open subsets containing c are X, {c, d}, {a, c, d},
and {b, c, d, e}, and since c ∈ {c, d} ⊂ A so c ∈ A◦.

3. Since d ∈ A, and the open subsets containing d are X, {c, d}, {a, c, d},
and {b, c, d, e}, and since d ∈ {c, d} ⊂ A so d ∈ A◦.

Theorem 4. Prove that for any set A and B we have

1. If A ⊂ B then A◦ ⊂ B◦.

2. (A
⋂
B)◦ = A◦

⋂
B◦.

3. A◦
⋃
B◦ ⊂ (A

⋃
B)◦.

Proof. 1. Consider the topology τ on X and let A,B ⊂ X such that A ⊂ B.
We know that A◦ ⊂ A and B◦ ⊂ B, ∵ interior is the largest open set.
⇒ A◦ ⊂ A ⊂ B ⇒ A◦ ⊂ B
⇒ A◦ is an open subset of B. But B◦ is the largest open subset of B
⇒ A◦ ⊂ B◦.
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2. We know that A
⋂
B ⊂ A and also A

⋂
B ⊂ B.

And we know that if A ⊂ B then A◦ ⊂ B◦,
⇒ (A

⋂
B)◦ ⊂ A◦ and (A

⋂
B)◦ ⊂ B◦

⇒ (A
⋂
B)◦ ⊂ A◦

⋂
B◦ (1) Now, A◦ ⊂ A and B◦ ⊂ B

⇒ A◦
⋂
B◦ ⊂ A

⋂
B.

⇒ A◦
⋂
B◦ is an open subset of A

⋂
B, but (A

⋂
B)◦ is the union of all open subsets of A

⋂
B.

⇒ A◦
⋂
B◦ ⊂ (A

⋂
B)◦ (2) From (1) and (2)

A◦
⋂

B◦ = (A
⋂

B)◦

3. We know that
A ⊂ A

⋃
B and B ⊂ A

⋃
B

And we know that if A ⊂ B then A◦ ⊂ B◦.
⇒ A◦ ⊂ (A

⋃
B)◦ and B◦ ⊂ (A

⋃
B)◦

⇒ A◦
⋃
B◦ ⊂ (A

⋃
B)◦.

Proposition 1. Show that the interior of A is the union of all open subsets of A. Furthermore

1. A◦ is open.

2. A◦ is the largest open subset of A, i.e. if G is an open subset of A then G ⊂ A◦ ⊂ A.

3. A is open iff A = A◦.

Proof. Let {Gi} be collection of all open subsets of A. If x ∈ A◦ then by definition X belongs to
an open subset set of A, i.e. there exist i0 such that x ∈ Gi0 .
Since x ∈ Gi0 ⇒ x ∈

⋃
iGi, so

A◦ ⊂
⋃
i

Gi (5)

Now let y ∈
⋃
iGi, then there exist some i0 such that y ∈ Gi0 , where Gi0 ⊂ A

i.e. y ∈ Gi0 ⊂ A (i.e. y is an interior point of A)
⇒ y ∈ A◦

⇒
⋃
i

Gi ⊂ A◦ (6)

From (5) and (6)

A◦ =
⋃
i

Gi

i.e. the interior of A is the union of all open subsets of A.

1. Since A◦ =
⋃
iGi ⇒ A◦ is the union of open sets.

⇒ A◦ is open since it is the union of open sets.

2. If G is an open subset of A then G ∈ {Gi}
⇒ G ⊂

⋃
iGi

⇒ G ⊂ A◦ ∵ A◦ =
⋃
iGi

But A◦ ⊂ A, so
G ⊂ A◦ ⊂ A.
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3. Let A is an open set then we show that A = A◦

Now since A is an open subset of of itself and A◦ is the largest open subset of A

A ⊂ A◦ (7)

But
A◦ ⊂ A (8)

So from (7) and (8)
A = A◦

Now let A = A◦ then we show that A is open.
And since A◦ is open since it is the union of open subsets and also A = A◦

⇒ A is open.

Definition 11. The interior of the compliment of A is called the Exterior of A and is denoted by
ext(A)
i.e. ext(A) = int(Ac).

Definition 12. The set of point which do not belongs to int(A) as well as ext(A) called the
Boundary of a set A and is denoted by b(A).

Example 13. Let X = {a, b, c, d, e}, and τ = {φ,X, {a}, {c, d}, {a, c, d},
{b, c, d, e}} be a topology on X and A = {b, c, d} is a subset of X, find ext(A) and b(A).

Solution 3. Since ext(A) = int(Ac), so Ac = {a, e}. Now we will check a and e as interior points.

1. Since a ∈ Ac and the open set containing a are X, {a}, and {a, c, d}, and a ∈ {a} ⊂ Ac

⇒ a ∈ int(Ac).

2. Since e ∈ Ac and the open set containing e are X, and {b, c, d, e}, but e ∈ X 6⊂ Ac and also
e ∈ {b, c, d, e} 6⊂ Ac.
⇒ e ∈ int(Ac)

So a is the only interior point of Ac.
⇒ int(Ac) = {a} = ext(A).
Now, since the boundary of A consists of all such points which or neither in ext(A) nor in int(A),
so
b(A) = {b, e}.

Example 14. Consider the set Q of rational numbers, find int(Q), ext(Q)
and b(Q).

Solution 4. For int(Q): Let a ∈ Q and consider an open interval (b, c) where b and c are real
numbers such that a ∈ (b, c).
Now, a ∈ (b, c) 6⊂ Q
⇒ a 6∈ int(Q)
And since a was arbitrary element.
⇒ Q has no interior point.
⇒ int(Q) = φ.
For ext(Q): Since ext(Q) = int(Qc) (1) where
Qc is the set of irrational number. Now, let a ∈ Qc be an arbitray element and consider the open
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interval (b, c) where b and c are real numbers such that a ∈ (b, c).
Now a ∈ (b, c) 6⊂ Qc

⇒ a 6∈ int(Qc)
And since a was arbitrary ⇒ Qc has no interior point.

⇒ int(Qc) = φ = ext(Q) using(1)

For b(Q): Since exterior and interior both are empty so all real numbers belongs to the boundary
of Q. i.e.

b(Q) = R

Theorem 5. Show that

1. Ā = A
⋃
b(A).

2. A◦ = A− b(A).

3. A is closed iff b(A) ⊂ A.

4. A is both open and closed iff b(A) = φ.

Proof. 1. To prove Ā = A
⋃
b(A).

R.H.S.
A
⋃
b(A), and by definition of b(A), i.e. b(A) = Ā

⋂
ĀC .

⇒ A
⋃
b(A) = A

⋃
((̄A)

⋂
Āc).

⇒ A
⋃
b(A) = (A

⋃
Ā)

⋂
(A

⋃
Āc), by distributive law.

= Ā
⋃

(A
⋃
Āc) ∵ Ā = A

⋃
Ā

= Ā
⋃
X ∵ X = A

⋃
Āc

= Ā
= L.H.S.

2. To prove that A◦ = A− b(A).
R.H.S.

A− b(A) = A− (Ā
⋂
Āc) ∵ b(A) = (Ā

⋂
Āc)

= A
⋂

(Ā
⋂
Āc)c ∵ A−B = A

⋂
Bc

= A
⋂

(Āc
⋃

( ¯Ac)c) By DeMorgen’s Law.
A− b(A) = (A

⋂
Āc)

⋃
(A

⋂
(Āc)c) (1)

Now
A
⋂

Āc = φ ∵ A ⊂ ā and A
⋂

(Āc)c = A◦

So, (1) becomes

A− b(A) = φ
⋃

A◦ = A◦ = L.H.S

⇒ A− b(A) = A◦

3. Suppose that A is closed then we show that b(A) ⊂ A.
Since A is closed then A = Ā and also Ā = A

⋃
b(A).

Ā = A
⋃
b(A)

A = A
⋃
b(A) ⇒ b(A) ⊂ A.

Now, if b(A) ⊂ A then we show that A is closed.
Since Ā = A

⋃
b(A), and b(A) ⊂ A then

Ā = A

⇒ A is closed.
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4. Case-I: A is open iff b(A) = φ
Suppose that A is open then we show that b(A) = φ.
Since A◦ = A− b(A) and A = A◦

⇒ A◦ = A◦ − b(A)
⇒ b(A) = φ
Now, if b(A) = φ then we show that A is open.
Since A◦ = A− b(A) = A− φ
⇒ A◦ = A
⇒ A is open.
Case-II: A is closed iff b(A) = φ
Suppose that A is closed the we show that b(A)φ.
Since A = Ā ∵ A is closed, and also Ā = A

⋃
b(A)

⇒ Ā = Ā
⋃
b(A)

⇒ b(A) = φ
Now, if b(A) = φ then we show that A is closed.
Since Ā = A

⋃
b(A) ⇒ Ā = A

⋃
φ

⇒ Ā = A
⇒ A is closed.

Note 1. A subset A of a topological space X is said to be nowhere dense in X if the interior of
closure of A is empty. i.e. int(Ā) = φ.

Example 15. Let A = {1, 1
2
, 1
3
, 1
4
, .........} is a subset of R. Prove that A is nowhere dense in R.

Solution:
Let A ⊂ R, where A = {1, 1

2
, 1
3
, 1
4
, .........}, then clearly 0 is the only limit point of A.

⇒ A′ = {0}.
Now, since Ā = A

⋃
A′ = {1, 1

2
, 1
3
, 1
4
, .........}

⋃
{0}

⇒ Ā = {0, 1, 1
2
, 1
3
, 1
4
, .........}.

Now if we take take any element of Ā, e.g. 0 ∈ Ā, then by definition ∃ an open interval (−r, r) such
that 0 ∈ (−r, r) 6⊂ Ā. Similarly, we can check all elements of Ā and we conclude that int(Ā) = φ
So, A is nowhere dense in R

Example 16. Let A = {x : x ∈ Q ∧ 0 < x < 1}, then show that A is nowhere dense in R.
Solution:
Let A = {x : x ∈ Q ∧ 0 < x < 1}, then clearly int(A) = φ
Now,

Ā = A
⋃

A′

⇒ Ā = (0, 1)
⋃
{0, 1}

⇒ Ā = [0, 1]

Now, int(Ā) = int([0, 1]) = (0, 1) 6= φ
⇒ A is not nowhere dense in R.

Definition 13. Let X be a topological space and o ∈ X. A subset N of X is a Neighborhood of
p iff ∃ an open set G such that

p ∈ G ⊂ N

The class of neighborhood of p ∈ X is denoted by Np, and is called Neighborhood System of p.
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Remark 4. The relation ” N is a Neighborhood of a point p ” is the inverse of the relation ” p is
an interior point of p

Example 17. State the neighborhood of a point a, where a ∈ R. And then for a complex number p.
Solution:
Let a be any real number, i.e. a ∈ R. Now for each a ∈ R there exist an open interval (a− δ, a+ δ)
such that

a ∈ (a− δ, a+ δ) ⊂ [a− δ, a+ δ]

So each close interval with center [a− δ, a+ δ] with center a is a neighborhood of a.
And hence the intervals [a− 2δ, a+ 2δ], [a− 3δ, a+ 3δ], ....... are neighborhood of a.
Similarly, if we take a point p on a complex plane R2, then every closed disc

{q ∈ R2 : d(p, q) < δ 6= 0}

with center p is a neighborhood of p, since it contains the open disc with center p.

Proposition 2. 1. Np is not empty and p belongs to each member of Np.

2. The intersection of any two members of Np belongs to lNp.

3. Every superset of a member of Np belongs to Np.

4. Each member N ∈ Np is a superset of a member G ∈ Np where G is a neighborhood of if each
of its points, i.e. G ∈ Nð for every g ∈ G.

Proof. 1. since Np is the class of all neighborhood of p ∈ X. So it cannot be empty and p ∈ N
∀N ∈ Np is obvious by definition.

2. Let
Np = {Gp : p ∈ X ∧GP is n.hood of p}

Let p ∈ Gp and p ∈ Hp then p ∈ Gp

⋂
Hp ⊂ Np.

So it is clear that Gp

⋂
Hp is open or close neighborhood of p according as Gp and Hp is open

or closed respectively.

3. Every superset of each member of Np belongs to Np.
As Gp ⊂ Hp ∈ Np and Hp ⊂ Kp ∈ Np and the largest superset is superset of itself.
i.e. for Kp being largest superset

Kp ⊂ Kp ∈ Np

4. N ∈ Np is a superset of G ∈ Np is clear. As

p ∈ G ⊂ N

and G is a neighborhood of each of its point is clear as

p ∈ G ⊂ G ∀ p ∈ G

⇒ G is a neighborhood of p ∀p ∈ G.
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Definition 14. Let X be a topological space and (a1, a2, a3, .......) be a sequence of points of X,
now this sequence < an > is said to be converges to a point b ∈ X, or in other words b is a limit
point of < an >, i.e.

lim
n→∞

an = b

iff for each open set G containing b ∃ a positive integer n0 ∈ N such that n > n0

⇒ an ∈ G

, i.e. if G contains almost all, i.e. all except a finite number of the terms of the sequence.

Example 18. Let (a1, a2, a3, .......) be a sequence of points in indiscrete topological space (X, τ).
Find out the point b in X such that sequence converges to b.
Solution:
Let (a1, a2, a3, .......) be a sequence of points in indiscrete topological space (X, τ).i.e. τ = {X,φ}.
⇒ X is the only set containing any point b ∈ X. Also X contains every term of the sequence (an).
Hence the sequence (a1, a2, a3, .......) converges to every point b ∈ X.

Definition 15. Let τ1 and τ2 be two topologies on a non-empty set X. Now, suppose that each
member of τ1 is also a member of τ2, i.e.

τ1 ⊂ τ2

Then we say τ1 is Coarser,smaller or weaker than τ2 or τ2 is Finer, longer or smaller than τ1.

Example 19. Let X = {a, b}, and let D = {X,φ, {a}, {b}} be discrete topology, I = {X,φ} be
indiscrete topology and τ = {X,φ, {a}} is any other topology then observe that the topology τ is
coarser than D and finer than I. i.e.

D � τ � I

Definition 16. Let (X, τ) be a topological space and A be any non-empty subset of X. Now,the
collection τA obtained by taking the intersection of A with the members of τ defines a topology on
A, we call this Relative topology on A, and the topological space (A, τA) is called the subspace of
(X, τ).
In other words a subset H of A is τA-open set, i.e.open relative to A, iff ∃ a τ -open subset G of X
such that

H = G
⋂

A

Example 20. Let X = {a, b, c, d, e}, and τ = {φ,X, {a}, {c, d}, {a, c, d},
{b, c, d, e}} be a topology on X and A = {a, d, e} is a subset of X, then find the topology relative to
A.
Solution:
Since τ = {φ,X, {a}, {c, d}, {a, c, d}, {b, c, d, e}} and A = {a, d, e}, now taking the intersection of
A with the members of τ we get
X

⋂
A = A, φ

⋂
A = φ, {a}

⋂
= {a}, {c, d}

⋂
A = {d}, {a, c, d}

⋂
A = {a, d},

{b, c, d, e}
⋂
A = {d, e}

So, we write the resultant in a collection

τA = {A, φ, {a}, {d}, {a, d}, {d, e}, }

and clearly this collection forms a topology on A.
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2 Base for a Topology

2.1 Definition

We can define a Base for a topology in two ways as

1. A Base for a topology τ on X is the class B1 of open subsets of X such that every element
of τ is the union of members of B1.

2. Let X be any set, a basis for a topology τ on X is the class B2 of open subsets of X such
that

(a) For every element x ∈ X there is at least one element in B2 say B1 for which x ∈ B1.

(b) If x belongs to B1 and B2 such that B1, B2 ∈ B2 then ∃ B3 ∈ B2 containing x such that
B3 ⊂ B1

⋂
B2.

If the collection B2 satisfies the above two conditions then we can define a topology τ on X generated
by B2 as follows;
A subset G of X is said to be open in X (i.e. an element of τ) if for every element g ∈ G we have
an element B of B2 such that such that g ∈ B and B ⊂ G.
Note that each basis element is itself an element of τ .
Now we show that the above two definitions for basis of a topology are equivalent.
i.e. We show that the basis define above generates the same topology.
i.e. B1 = B2 For this, we will show that B1 is a subset of B2 and B2 is a subset of B1.
Case-I:
First, we show that B1 ⊂ B2. For this consider an open set G of (X, τ). By 1st definition we have
some elements Ai of B1 such that there union is the entire G. i.e.⋃

i

Ai = G

Hence each Ai is a subset of G.
Now, every point g ∈ G is contained at least one of the Ai’s and so each of them is a subset of G.
As for g ∈ G we have g ∈ {g} ⊂ G.
Finally, since every element of X belongs to at least one element of τ (call it G) (this because of
X ∈ τ) and since G is the union of members of B1, so by above argument there exists an element
of B1 which contained that point and is a subset of G. That is, for some Ai ∈ B1 such that

g ∈ Ai ⊂ G

Hence every such Ai ∈ B1 is an element of B2, and since G was arbitrary so this all holds for all
elements of τ to access all the elements of B1 and so

B1 ⊂ B2 (9)

Case-II:
Now we prove B2 ⊂ B1. For this, suppose that G is an open set and let g ∈ G then by 2nd definition
there exists an element Bi (for some i) of B2 such that g ∈ Bi ⊂ G (for some i). And since g was
arbitrary so this all holds for each g ∈ G.
Now, taking union of all such elements of B2 we get⋃

i

Bi = G for each i
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Hence all such Bi’s satisfy the condition for being in B1 w.r.t the open set G.
And since G was arbitrary, all above holds for every G ∈ τ , and hence we can prove for all elements
of B2. And so every element of B2 is also an element of B1, so

B2 ⊂ B1 (10)

So from (9) and (10) we get

B1 = B2

Example 21. Let X = {a, b, c, d} be a topological space and consider the class

B = {X,φ, {b}, {d}, {b, c}, {a, b}}

of subsets of X, show that B form a base for a topology.
Solution:
Since B = {X,φ, {b}, {d}, {b, c}, {a, b}} be the class of subsets of X. Now taking the union of
members of B we get

τ = {X,φ, {b}, {d}, {b, d}, {b, c}, {a, b}, {a, b, d}, {b, c, d}, {a, b, c}}

which is clearly defines a topology on X generated by the class B and it is called base for τ .

Exercise 7. Apply the 2nd definition on the above example and find the topology.

Remark 5. :

1. The class of all open intervals on the real line R form a base for the usual topology on the real
line.

2. The class of all open discs on the plane R2 form a base for the usual topology on the plane R2.

3. The class of all singletons of a set form a base for the discrete topology.

Theorem 6. Let B be a class of subsets of a non-empty set X. Then B is a base for some topology
on X iff it possesses the following properties.

1. X =
⋃
{B : B ∈ B}

2. For any B1, B2 ∈ B, B1

⋂
B2 is the union of members of B or if x ∈ B1

⋂
B2 then ∃ B3 ∈ B

such that x ∈ B3 ⊂ B1

⋂
B2.

Proof. Suppose that B is the base for some topology τ on X. Since X and φ are open then X is
the union of members of B.
i.e. X =

⋃
{B : B ∈ B}, so (1) is satisfied.

Now let B1, B2 ∈ B, then B1, B2 are open therefore B1

⋂
B2 is also open.

Now, x ∈ B1

⋂
B2, then by definition of base there is B3 ∈ B such that

x ∈ B3 ⊂ B1

⋂
B2

Conversely:
Suppose for a class B of subsets of X condition (1) and (2) holds, then we are to show that B is
the base for some topology on X.
Let τ be the collection of subsets of X obtained by taking union of members of B, we are to show
that τ is a topology.
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1. From (1), X =
⋃
{B : B ∈ B}, and by definition φ is the empty sub-collection of members of

B
i.e. φ =

⋃
{B ∈ B : B ∈ φ ⊂ B}, hence φ ∈ τ .

2. Let Gi be the collection of members of τ then each Gi is the union of members of B. Then⋃
iGi is also the union of members of B.

i.e.
⋃
iGi ∈ τ .

3. Let G,H ∈ τ , then we show that G
⋂
H ∈ τ .

For this, let {Gi : i ∈ I} and {Hj : j ∈ I} be two families of members of B such that

G =
⋃
i

Gi and H =
⋃
j

Hj

Then
G
⋂
H = (

⋃
iGi)

⋃
(
⋃
j Hj)

=
⋃
{Gi

⋂
Hj : i ∈ I ∧ j ∈ I}

By (2), Gi

⋂
Hj is the union of members of B ∀ i, j.

Then G
⋂
H = {Gi

⋂
Hj : i ∈ I ∧ j ∈ I} is also the union of members of B and so belongs to

τ .
Hence τ is a topology on X w.r.t the base B.

Definition 17. Let (X, τ) be a topological space, a class S of open subsets of X, (i.e. S ⊂ τ) is
a subbase for τ on X iff finite intersection of members of S form a base for τ . Then S is called
Subbase for τ .

Example 22. Every open interval (a, b) in the real line R is the intersection of two infinite open
intervals (a,∞) and (−∞, b)

(a, b) = (a,∞)
⋂

(−∞, b)

But the open intervals form a base for the usual topology on R, hence class S of all infinite open
intervals form a subbase.

Example 23. Let X = {a, b, c, d} and S = {{a, b}{b, c}{d}} be the class of subsets of X. Now, by
taking the finite intersection of members of S we have

B = {{a, b}, {b, c}, {d}, {b}, φ,X}, hereX =
⋂
{B : B ∈ φ ⊂ B}

Now we show that B is a base. For this, taking union of members of B we get

τ = {{a, b}, {b, c}, {d}, {b}, φ,X, {a, b, d}, {b, c, d}, {b, d}, {a, b, c}}

which is a topology on X.
So, B is a base for τ and S is the subbase for τ on X.

Theorem 7. Any class A of subsets of a non-empty set X is the subbase for a unique topology τ
on X. i.e. Finite intersection of members of A form a base for a topology τ on X.

Proof. We show that the finite intersection of members of A satisfied the two conditions.
i.e. to be a base for a topology on X.

1. X =
⋃
{B : B ∈ B}
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2. B1

⋂
B2 is the union of members of B for B1, B2 ∈ B

X will be the empty intersection of A and so X ∈ B and so

X =
⋃
{B : B ∈ B}

If B1, B2 ∈ B then B1 and B2 are finite intersection of members of A. So B1

⋂
B2 is also a finite

intersection of members of A and there fore belongs to B.
Accordingly, B is a base for topology τ on X for which A is a subbase.

Theorem 8. Let A be the class of non-empty subsets of X. Then the topology τ on X generated
by A is the intersection of all topologies on X which contains A.

Proof. Let A be collection of subsets of X and {τi} be the class of topologies on X which contained
A, and let

τ
′
=

⋂
i

τi and A ⊂ τ
′

we wish to prove that τ = τ
′
.

Since τ is a topology containing A, and τ
′

is the intersection of all such topologies so we have

τ
′ ⊂ τ (11)

Now suppose
G ∈ τ (12)

then by definition of topology we have

G =
⋃
{Ai1

⋂
Ai2

⋂
.........

⋂
Ain : Aik ∈ A}

But A ⊂ τ
′

⇒ Aik ∈ A ⊂ τ
′

⇒ Aik ∈ τ
′

⇒ {Ai1
⋂
Ai2

⋂
.........

⋂
Ain} ∈ τ

′

⇒ G =
⋃
{Ai1

⋂
Ai2

⋂
.........

⋂
Ain} ∈ τ

′

From (12) and (13)
τ ⊂ τ

′
(13)

From (11) and (14)
τ = τ

′

Definition 18. Let X be a topological space and let p ∈ X. A class Bp of open subsets of X
containing p is called a local base at p iff for each open set G containing p, ∃Gp ∈ Bp such that
p ∈ Gp ⊂ G.

Example 24. Consider the usual topology ??12) on the plane R2, and let p ∈ R2. Then the
collection of all open discs with centered p is a local base at p. Similarly, the class of open intervals
(a− δ, a+ δ) in the real line with centered a ∈ R is a local base at he point a.

Proposition 3. A point p in a topological space X is a limit point of A ⊂ X iff each member of
some local base Bp at p contains a point of A different from p.
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Proof. Suppose that p is a limit point of A, i.e.

(G− {p})
⋂

A 6= φ

where p ∈ G ∈ τ ∀G.
But Bp ⊂ τ , so in particular

(B − {p})
⋂

A 6= φ

for all B ∈ Bp.
Conversely:
Suppose that there is some local base Bp at p such that each member of Bp contains a point of A
different from p. We are to show that p is a limit point.
For this, let G be an open subset of X that contains p. Then ∃B0 ∈ Bp for which p ∈ B0 ⊂ G. But
then

(G− {p})
⋂

A ⊃ (B0 − {p})
⋂

A 6= φ

So (G− {p})
⋂
A 6= φ, which implies that p is a limit point of A.

Theorem 9. Let S be a subbase for a topological space Y . Then a function f : X → Y is continuous
iff the inverse of each member of S is an open subset of X.

Proof. Let S be a subbase for any topology τ ∗ on Y and let for every S ∈ S we have f−1[S] ∈ τ .
We are to show that f is continuous. i.e. for G ∈ τ ∗ ⇒ f−1[G] ∈ τ . Let G ∈ τ ∗ then by definition
of subbase

G =
⋃
i

(Si1 ∩ Si2 ∩ ....... ∩ Sin)

where Sik ∈ S.
Hence f−1[g] = f−1[∪i(Si1 ∩ Si2 ∩ ....... ∩ Sin)]

= ∪if−1[Si1 ∩ Si2 ∩ ....... ∩ Sin ]
= ∪i(f−1[Si1 ] ∩ f−1[Si2 ] ∩ ........ ∩ f−1[Sin ])

But Sik ∈ S ⇒ f−1[Sik ] ∈ τ .
Hence f−1[G] ∈ τ .
Since it is the union of finite intersection of open sets. Accordingly f is continuous.
Conversely
Suppose that f is continuous then the inverse of all open sets including the members of S is open.

Theorem 10. A function f : X → Y is continuous iff the inverse image of every closed subset of
Y is closed in X.

Proof. Suppose f : X → Y is continuous. Let F ⊂ Y be closed. Then F c = Y − F is open in Y .
Since f is continuous so f−1[F c] = f−1[Y − F ] = f−1[Y ]− f−1[F ]
But f−1[Y ] = X, so f−1[F c] = X − f−1[F ] is open in X, which implies that f−1[F ] is closed.
Conversely
Assume that the inverse image of every closed subset of Y is closed in X. We prove that f is
continuous.
Let G ⊂ Y be open then Gc = Y −G is closed and by assumption

f−1[Y −G] = f−1[Y ]− f−1[G] = X − f−1[G]

i.e. X − f−1[G] closed in X.
⇒ f−1[G] is closed in X.
Hence f is continuous.
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