Fluid Mechanics II

Muzammil Tanveer mtanveer8689@gmail.com 0316-7017457

Dedicated

To

My Honorable Teacher Dr. Rao Muzamal Hussain

 \&My Parents

Lecture \# 01

Fluid:

A fluid is a substance that deform continuously under the application of sheer stress (tangential stress). No matter how small or large the sheer stress.

Examples: Water, milk, oil, jam, lipstick etc.

Stress:

Forcer per unit area (F/A) is called stress. It is denoted by τ. It has two types
(i) Sheer stress / Tangential stress
(ii) Normal Stress

Sheer stress:

Tangent component of force per unit area is called sheer stress.

Normal stress:

Normal component of force per unit area is called Normal stress.

Types of forces:

There are two types of forces
(i) Surface force
(ii) Body force

Surface force:

All the force acting on the boundaries of medium through direct contact. OR Force per unit area is called surface force.

The surface force is due to the surrounding fluid on the element under consideration.

Examples: pressure, stress etc.
Body force: All the force develops without physical contact. OR Force per unit volume (element of the body) is called body force. The body forces are distributed throughout the volume of the body. Example: gravitational force, magnetic field etc.

Collected by: Muhammad Saleem $\quad{ }^{\circ} \quad$ Composed by: Muzammil Tanveer

Element:

Element is a part of substance that has all the specification of that substance.

Types of fluid:

Newtonian and Non-Newtonian fluid:

If fluid satisfy the Newton's law of viscosity is called Newtonian fluid otherwise called Non-Newtonian fluid.

$$
\begin{array}{r}
\tau \propto \frac{d u}{d y} \\
\tau=\mu \frac{d u}{d y}
\end{array}
$$

Flow:

The quantity of fluid passing through a point per unit time is called flow.

Density:

Mass per unit volume is called density.

Viscosity:

It is the measure of resistance against the motion of fluid. It is denoted by μ. It is also called absolute viscosity and dynamic viscosity.

Kinematic viscosity:

It is the ratio of absolute viscosity to density. It is denoted as $\eta(E t a)$

$$
\eta=\frac{\mu}{\rho}
$$

Compressibility:

Compressibility is the measure of change in fluid w.r.t volume and density under the action of external forces.

Compressible fluid:

A type of fluid in which change occur due to volume and density changes by the action of pressure (temperature) is called compressible fluid.

Examples: gases.

Incompressible fluid:

A type of fluid in which no change occur due to volume and density changes by the action of pressure (temperature) is called incompressible fluid.

Ideal fluid:

A fluid that have zero viscosity and incompressible is called ideal fluid.
*An incompressible and inviscid fluid are called ideal fluid,

Viscous fluid:

Fluid that have non-zero viscosity or finite viscosity and can exert sheer stress on the surface is called viscous fluid or real fluid.

Inviscid fluid:

Fluid having zero viscosity is called inviscid fluid.

Steady flow:

A type of flow in which velocity of any other fluid property does not change with time.

$$
\frac{\partial \rho}{\partial t}=0, \frac{\partial P}{\partial t}=0, \frac{\partial V}{\partial t}=0
$$

Unsteady flow:

A type of flow in which velocity of any other fluid property change with time.

$$
\frac{\partial \rho}{\partial t} \neq 0, \frac{\partial P}{\partial t} \neq 0, \frac{\partial V}{\partial t} \neq 0
$$

Rotational flow:

A type of flow in which fluid particle rotate about their own axis is called rotational or rotating flow.
Collected by: Muhammad Saleem

Irrotational flow:

A type of flow in which fluid particle does not rotate about their own axis is called irrotational flow.

Stream lines:

The imaginary line drawn in the fluid where the velocity along the tangent.

Potential line:

If we draw the line joining the points of equipotential on the adjacent flow lines, we get potential lines.

Laminar and Turbulent flow:

A type of flow in which stream line does not cross each other is called Laminar flow otherwise called turbulent flow.
Muzammil Tanveer

Lecture \# 02

Stream lines:

A curve drawn in the fluid such that tangent to every point of it is in the direction of fluid velocity

Steady flow:

The flow does not change with time.
Stream lines have same pattern at all points.

Unsteady flow:

Flow pattern changes with time. Stream line changes from point to point.

Differential Equations of stream lines:

Since the tangent drawn at every point in the fluid motion is in the direction of its velocity. So,

$$
\begin{gathered}
\mathrm{V} \cup \mathbb{Z} \text { ? } \\
\qquad=x \hat{i}+y \hat{j}+z \hat{k} \\
d \vec{r}=d x \hat{i}+d y \hat{j}+d z \hat{k} \\
\vec{V} \times \frac{d \vec{r}}{d x}=0 \\
\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
u & v & w \\
d x & d y & d z
\end{array}\right|=0 \hat{i}+0 \hat{j}+0 \hat{k} \\
(v d z-w d y) \hat{i}-(u d z-w d x) \hat{j}+(u d y-v d x) \hat{k}=0 \hat{i}+0 \hat{j}+0 \hat{k}
\end{gathered}
$$

By comparing on both sides

Collected by: Muhammad Saleem

$$
\frac{d x}{u}=\frac{d y}{v}=\frac{d z}{w} \text { is the equation of stream line. }
$$

Vortex motion:

The most general displacement of a fluid involves rotation such that the rotational vector (vortex vector or vorticity) $\quad \xi=\nabla \times q \neq 0$ or $\xi=$ Curl $q \neq 0$ where $\xi(X i)$.

Vorticity vector:

Let $\vec{q}=u \hat{i}+v \hat{j}+w \hat{k}$ be the fluid velocity such that $\operatorname{Curl} \vec{q} \neq 0$ then

$$
\xi=\nabla \times \vec{q} \quad \text { vorticity vector }
$$

Let $\xi=\xi_{x} \hat{i}+\xi_{y} \hat{j}+\xi_{z} \hat{k}$ i.e. $\xi_{x}, \xi_{y}, \xi_{z}$ are the cartesian components of $\vec{\xi}$
Then $\xi_{x} \hat{i}+\xi_{y} \hat{j}+\xi_{z} \hat{k}=\operatorname{Curl} \vec{q}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & v & w\end{array}\right|$

$$
\xi_{x} i+\xi_{y} j+\xi_{z} k=\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right) i+\left(\frac{\partial u}{\partial z}=\frac{\partial w}{\partial x}\right) j+\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) k
$$

On comparing

$$
\xi_{x}=\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right), \xi_{y}=\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right), \xi_{z}=\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)
$$

In two dimensions cartesian coordinates vorticity is given as
$\xi_{x} \hat{i}+\xi_{y} \hat{j}+\xi_{z} \hat{k}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & v & 0\end{array}\right| \quad \Rightarrow \quad \xi_{z}=\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) \vec{k}$

In polar coordinates

$$
\xi_{z}=\frac{1}{r} V_{\theta}+\frac{\partial}{\partial r} V_{\theta}-\frac{1}{r} \frac{\partial V_{r}}{\partial \theta}
$$

Vortex line:

Vortex line is a curve in the fluid such that tangent to it at every point is in the direction of vorticity vector.
$\xi=\xi_{x} \hat{i}+\xi_{y} \hat{j}+\xi_{z} \hat{k} \& \vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ be the position vector of the point P on the vortex line.

Then $\vec{\xi} / / d \vec{r}$ i.e $\vec{\xi} \times d \vec{r}=0$

$$
\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\xi_{x} & \xi_{y} & \xi_{z} \\
d x & d y & d x
\end{array}\right|=0 \hat{i}+0 \hat{j}+0 \hat{k}
$$

$\left(\xi_{y} d z-\xi_{z} d y\right)=0, \quad\left(\xi_{x} d z-\xi_{z} d x\right)=0 \quad, \quad\left(\xi_{x} d y-\xi_{y} d x\right)=0$
$\frac{d x}{\xi_{x}}=\frac{d y}{\xi_{y}}=\frac{d z}{\xi_{z}}$ gives the equation of vortex line.

Vortex tube or Vortex filament:

Vortex tube is a bundle of vortex lines. If we draw vortex lines from each point of a closed curve in the fluid, we obtain a tube called a vortex tube.

A vortex tube of infinitesimal cross section is called a vortex filament.

Figure 1 shows the evolution of a vortex tube.
*Note: A vortex line or tube cannot terminate or originate at internal points in a fluid. Only for closed curves. They can terminate on boundaries.
Question: If the velocity components are given as $u=k x, v=0, w=0$
Then show that the motion is not rotational.
Solution: $\mathrm{q}=[\mathrm{u}, \mathrm{v}, \mathrm{w}] \quad \Rightarrow \quad \vec{q}=u \hat{i}+v \hat{j}+w \hat{k}$
Here $\mathrm{u}=\mathrm{kx}, \mathrm{v}=0, \mathrm{w}=0$

$$
\operatorname{Curl} \vec{q}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
k x & 0 & 0
\end{array}\right|=\left(\frac{\partial}{\partial y}(k x)\right) \hat{k}=0
$$

The motion is irrotational.
Question: If $\vec{q}=\left[a x^{2} y t, b y^{2} z t, \mathrm{czt}^{2}\right]$. Find the vorticity vector where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are constants.

Solution: We know that $\xi_{x}, \xi_{y}, \xi_{z}$ are the cartesian components of vorticity vector.

$$
\begin{gathered}
\xi_{x}=\left(\frac{\partial c z t^{2}}{\partial y}-\frac{\partial b y^{2} z t}{\partial z}\right), \xi_{y}=\left(\frac{\partial a x^{2} y t}{\partial z}-\frac{\partial c z t^{2}}{\partial x}\right), \xi_{z}=\left(\frac{\partial b y^{2} z t}{\partial x}-\frac{\partial a x^{2} y t}{\partial y}\right) \\
\xi_{x}=-b y^{2} t, \xi_{y}=0, \xi_{z}=-a x^{2} t
\end{gathered}
$$

The vorticity vector is $\left[-b y^{2} t, 0,-a x^{2} t\right]$

Circulation:

If C is a closed curve, then circulation about C is given by

$$
\Gamma=\oint_{C} \vec{q} \cdot \overrightarrow{d r}=\int_{S} \hat{n} \cdot c u r l q d S=\int_{S} \hat{n} \cdot \vec{\xi} d S=\int_{S} \vec{\xi} d \vec{S}
$$

*The quantity $|\hat{n} \cdot \vec{\xi}| d S$ is called the strength of the vortex tube.

A vortex tube with a unit strength is called a unit vortex tube.

Different types of Vortices:

(i) Forced vortex:

In this type the fluid rotates as a rigid body with constant angular velocity.
(ii) Free cylindrical vortex:

In this type the fluid moves along streamlines which are concentric circles in horizontal planes and there is no variation of total energy with radius.
(iii) Free spiral vortex:

In this type there is a combination the free cylindrical vortex and a source (radial flow).

(iv) Compound vortex:

In this type the fluid rotates as a forced vortex at the centre and as a free vortex.

Vortex pair:

A pair of vortices of equal and opposite strengths is called a vortex pair.

Let K and -K be the strengths of the two vortices at $\mathrm{A}\left(\mathrm{z}=\mathrm{z}_{1}\right)$ and $\mathrm{B}\left(\mathrm{z}=\mathrm{z}_{2}\right)$ respectively. Then the complex potential is

$$
W=i K \log \left(z-z_{1}\right)-i K \log \left(z-z_{2}\right)
$$

The velocity at A is due to the presence of the vortex at B and vice-versa.

Vortex Rows:

When a body moves slowly through a liquid, rows of vortices are sometimes formed. There vortices can, when stable, be photographed.

Here we consider infinite system of parallel line vortices and two-dimensional flow will be presumed throughout.

Lecture \# 03

Flow along a curve:

Let A and B be any two points in the fluid and ABP curve or path joining them lying entirely within the fluid divide the curve ABP into number of small elements.

Let P and P ' be an element of the curve of length Δs.
Let \vec{V} be the velocity vector and \hat{T} is the flow along the element $P P^{\prime}$ is defined as the product of tangential component of velocity vector \vec{V} with the length Δs of the element $P P^{\prime}$.

Flow along $P P^{\prime}=(\vec{V} \cdot \hat{\mathrm{~T}})$
Flow along $A B P=\operatorname{Lim}_{\Delta s \rightarrow 0} \sum(\vec{V} \cdot \hat{\mathrm{~T}}) \Delta s$
Flow along $A B P=\int_{A}^{B}(\vec{V} . \hat{\mathrm{T}}) d s$
If θ is angle between \vec{V} and \hat{T} then equation (i) becomes

$$
\begin{gather*}
\text { Flow along } A B P=\int_{A}^{B}|\vec{V}||\hat{T}| \cos \theta d \theta \\
\text { Flow along } A B P=\int_{A}^{B} V \cos \theta d \theta \quad _\quad \text { (ii) } \tag{ii}\\
\text { Since } \hat{T}=\frac{d r}{d s} \quad \because \text { by differential geometry } \\
\qquad d r=\hat{T} d s \quad
\end{gather*}
$$

Put (iii) in (i)
In general, we can write as

Collected by: Muhammad Saleem

Flow along $A B P=\int_{A}^{B} \vec{V} . d r$

$$
\begin{gather*}
\text { Since } \vec{V}=u \hat{i}+v \hat{j}+w \hat{k} \tag{iv}\\
\begin{array}{c}
\vec{r}
\end{array}=x \hat{i}+y \hat{j}+z \hat{k} \\
d r=d x \hat{i}+d y \hat{j}+d z \hat{k}
\end{gather*}
$$

$$
\vec{V} \cdot d r=u d x+v d y+w d z
$$

Flow along $A B P=\int_{A}^{B} u d x+v d y+w d z$
Question: The velocity components are $u=x^{2} y, v=x^{2}-y^{2}$. Find the flow along $y=3 x^{2}$ and $y=3 x$ where $0 \leq x \leq 1,0 \leq y \leq 3$.

Solution: Given that $u=x^{2} y, v=x^{2}-y^{2}$
(a) $y=3 x^{2} \Rightarrow d y=6 x d x$

$$
\text { Flow along } A B=\int_{A}^{B} \vec{V} \cdot d r
$$

Flow along $A B=\int_{A}^{B} u d x+v d y$
Flow along $A B=\int_{A}^{B}\left\{x^{2} y d x+\left(x^{2}-y^{2}\right) d y\right\}$
Flow along $A B=\int_{A}^{B} x^{2}\left(3 x^{2}\right) d x+\left(x^{2}-9 x^{4}\right)(6 x d x)$
Flow along $A B=\int_{0}^{1} 3 x^{4} d x+\left(6 x^{3}-54 x^{5}\right) d x$
Flow along $A B=\int_{0}^{1}\left(3 x^{4}+6 x^{3}-54 x^{5}\right) d x$
Flow along $A B=\left(3 \frac{x^{5}}{5}+6 \frac{x^{4}}{4}-54 \frac{x^{6}}{6}\right)_{0}^{1}$
Collected by: Muhammad Saleem

Flow along $A B=\left(\frac{3}{5}+\frac{6}{4}-\frac{54}{6}\right)-0=\frac{3}{5}+\frac{3}{2}-9$
Flow along $A B=\frac{6+15-90}{10}=\frac{69}{10}$
(b) $y=3 x \Rightarrow d y=3 d x$

$$
\text { Flow along } A B=\int_{A}^{B} \vec{V} \cdot d r
$$

Flow along $A B=\int_{A}^{B} u d x+v d y$
Flow along $A B=\int_{0}^{1}\left\{x^{2} y d x+\left(x^{2}-y^{2}\right) d y\right\}$
Flow along $A B=\int_{0} x^{2}(3 x) d x+\left(x^{2}-9 x^{2}\right)(3 d x)$
Flow along $A B=\int_{0}^{1}\left(3 x^{3}-24 x^{2}\right) d x$
Flow along $A B=\left(3 \frac{x^{4}}{4}-24 \frac{x^{3}}{3}\right)_{0}^{1}$
Flow along $A B=\left(\frac{3}{4}-\frac{24}{3}\right)-0=\frac{3}{4}-8=\frac{3-32}{4}$
Flow along $A B=\frac{-29}{4}$

Circulation:

The circulation of the fluid along the simple closed curve lying entirely within the fluid is denoted by Γ and is defined as the line integral of tangential component of velocity taken along close curve C.
*Circulation is the measure of rotation of the fluid.
$\Gamma=\oint_{C} \vec{V} \cdot d r=\oint \vec{V} \cdot \hat{T} d s=\oint \vec{V} \cos \theta d s$
Circulation of circuit is equal to the sum of circulation of its sub circuit.

$$
\Gamma C=\Gamma C_{1}+\Gamma C_{2}
$$

From here we can define the relationship between vorticity and circulation as

$$
\begin{gathered}
\Gamma=\oint_{C} \vec{V} \cdot d r=\iint_{S}(\nabla \times \vec{V}) d s \quad \because(\text { By Stoke's Theorem }) \\
\text { where vorticity }=\nabla \times \vec{V}
\end{gathered}
$$

Question: The velocity component for a certain flow field are given by

$$
u=x+y, v=x^{2}-y
$$

Calculate the circulation around the squares enclosed by the lines $\mathrm{x}= \pm 1, \mathrm{y}= \pm 1$
Solution: The square enclosed by the lines $\mathrm{x}= \pm 1, \mathrm{y}= \pm 1$ as shown in figure.

The circulation around this square is given by

$\Gamma=\oint_{A B C D A} \vec{V} \cdot d r=\oint_{A B C D A} u d x+v d y$
$\Gamma=\int(x+y) d x+\left(x^{2}-y\right) d y$
Since $(x+y) d x+\left(x^{2}-y\right) d y=\alpha$
$\Gamma=\int_{A B} \alpha+\int_{B C} \alpha+\int_{C D} \alpha+\int_{D A} \alpha$ \qquad
Circulation around straight-line AB . So, x varies from -1 to 1 .

$$
\begin{gathered}
\Gamma=\int_{A B} \alpha=\int_{A B}(x+y) d x+\left(x^{2}-y\right) d y \\
\because y=-1 \Rightarrow d y=0 \\
=\int_{-1}^{1}(x-1) d x+0=\left|\frac{x^{2}}{2}-x\right|_{-1}^{1} \\
=\left(\frac{1}{2}-1\right)-\left(\frac{1}{2}+1\right)=\frac{-1}{2}-\frac{-3}{2}=-2
\end{gathered}
$$

Collected by: Muhammad Saleem

Circulation along straight-line BC. So, y varies from -1 to 1 .

$$
\begin{gathered}
\Gamma=\int_{B C} \alpha=\int_{B C}(x+y) d x+\left(x^{2}-y\right) d y \\
\because x=1 \Rightarrow d x=0 \\
=\int_{-1}^{1} 0+(1-y) d y=\left|y-\frac{y^{2}}{2}\right|_{-1}^{1} \\
=\left(1-\frac{1}{2}\right)-\left(-1-\frac{1}{2}\right)=\frac{1}{2}+\frac{3}{2}=2
\end{gathered}
$$

Circulation around straight-line CD. So, x varies from 1 to -1 .

$$
\begin{gathered}
\Gamma=\int_{C D} \alpha=\int_{C D}(x+y) d x+\left(x^{2}-y\right) d y \\
\because y=1 \Rightarrow d y=0 \\
=\int_{1}^{-1}(x-1) d x+0=\left|\frac{x^{2}}{2}-x\right|_{1}^{-1} \\
=\left(\frac{1}{2}-1\right)-\left(\frac{1}{2}+1\right)=\frac{-1}{2}-\frac{-3}{2}=-2
\end{gathered}
$$

Circulation along straight-line DA. So, y varies from 1 to -1 .

$$
\begin{gathered}
\Gamma=\int_{D A} \alpha=\int_{D A}(x+y) d x+\left(x^{2}-y\right) d y \\
\because x=-1 \Rightarrow d x=0 \\
=\int_{1}^{-1} 0+(1-y) d y=\left|y-\frac{y^{2}}{2}\right|_{1}^{-1} \\
=\left(-1-\frac{1}{2}\right)-\left(1-\frac{1}{2}\right)=-\frac{3}{2}-\frac{1}{2}=-2
\end{gathered}
$$

Put in (i)

$$
\begin{equation*}
\Gamma=\int_{A B C D A} \vec{V} \cdot d r=-2+2-2-3=-4 \tag{A}
\end{equation*}
$$

\square

Verification: Since $\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=2 x-1$ By stokes theorem

$$
\begin{gather*}
\Gamma=\oint_{C} \vec{V} \cdot d r=\iint_{S}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y \\
\Gamma=\int_{-1}^{1} \int_{-1}^{1}(2 x-1) d x d y=\int_{-1}^{1}\left(2 \frac{x^{2}}{2}-x\right)_{-1}^{1} d y \\
\Gamma=\int_{-1}^{1}\left(x^{2}-x\right)_{-1}^{1} d y=\int_{-1}^{1}(1-1)-(1+1) d y \\
\Gamma=2 \int_{-1}^{1} d y=-2|y|_{-1}^{1}=-2(1+1) \\
\Gamma=-4 \quad(B) \tag{B}
\end{gather*}
$$

From (A) and (B)

$$
\Gamma=\oint_{C} \vec{V} \cdot d r=\iint_{S}(\nabla \times \vec{V}) d s
$$

Question: The circle $u=3 x+y, v=2 x-3 y$ with parametric equation as

$$
x=1+2 \cos \theta, y=6+2 \sin \theta
$$

Calculate the circulation around the circle.
Solution: Given that $u=3 x+y, v=2 x-3 y$

$$
\begin{gathered}
x=1+2 \cos \theta, y=6+2 \sin \theta \\
d x=-2 \sin \theta d \theta, d y=2 \cos \theta d \theta
\end{gathered}
$$

The circulation around the circle is given by

$$
\begin{gathered}
\Gamma=\oint \vec{V} \cdot d r=\int u d x+v d y \\
\Gamma=\int(3 x+y) d x+(2 x-3 y) d y
\end{gathered}
$$

$$
\begin{gathered}
\Gamma=\int_{0}^{2 \pi}(3+6 \cos \theta+6+2 \sin \theta)(-2 \sin \theta d \theta)+(2+4 \cos \theta-18-6 \sin \theta)(2 \cos \theta d \theta) \\
\Gamma=\int_{0}^{2 \pi}(9+6 \cos \theta+2 \sin \theta)(-2 \sin \theta d \theta)+(-16+4 \cos \theta-6 \sin \theta)(2 \cos \theta d \theta) \\
\Gamma=\int_{0}^{2 \pi}\left(-18 \sin \theta-12 \sin \theta \cos \theta-4 \sin ^{2} \theta-32 \cos \theta+8 \cos ^{2} \theta-12 \sin \theta \cos \theta\right) d \theta \\
\Gamma=\int_{0}^{2 \pi}\left(-18 \sin \theta-24 \sin \theta \cos \theta-4 \sin ^{2} \theta-32 \cos \theta+8 \cos ^{2} \theta\right) d \theta \\
\Gamma=\int_{0}^{2 \pi}\left(-18 \sin \theta-12 \sin 2 \theta-4\left(\frac{1-\cos 2 \theta}{2}\right)-32 \cos \theta+8\left(\frac{1+\cos 2 \theta}{2}\right)\right) d \theta \\
\Gamma=\left|-18 \cos \theta-12 \frac{\cos 2 \theta}{2}-2\left(\theta-\frac{\sin 2 \theta}{2}\right)-32 \sin \theta+4\left(\theta+\frac{\sin 2 \theta}{2}\right)\right|_{0}^{2 \pi} \\
\Gamma=\{18+6-2(2 \pi-0)-32(0)+4(2 \pi+0)\}-\{18+6-0-0+0\} \\
\Gamma=18+6-4 \pi+8 \pi-18-6 \\
\mathrm{~V} \| \mathbb{Z}
\end{gathered}
$$

Kelvins Theorem: (For rotation or circulation) or State and prove Kelvins theorem for circulation:

Statement:

For an inviscid (non-viscous) incompressible fluid circulation around any closed curve C moving fluid constants at all times provided that the central forces remain conserved.

Proof:

Let C be the closed curve in fluid such that the curve moves with the fluid so that at all instant circulation consist of same fluid particle. Circulation is defined as

$$
\Gamma=\oint \vec{V} \cdot d r
$$

Collected by: Muhammad Saleem

To prove that circulation is constant it is sufficient to show $\frac{D \Gamma}{D t}=0$
Now

$$
\begin{gather*}
\frac{D \Gamma}{D t}=\frac{D}{D t} \oint \vec{V} \cdot d r=\oint \frac{D}{D t}(\vec{V} \cdot d r) \\
\frac{D \Gamma}{D t}=\oint \vec{V} \cdot \frac{D}{D t}(d t)+d r \cdot \frac{D \vec{V}}{D t} \quad-(i) \tag{i}\\
\text { Since } \frac{D}{D t}(d r)=d\left(\frac{D r}{D t}\right)=d V \quad \because(\text { Bernoulli equation }) \\
\text { Similarly } V \cdot \frac{D}{D t}(d r)=V \cdot d r=\frac{1}{2} d(\vec{V} \cdot \vec{V})=d\left(\frac{1}{2} V^{2}\right) \quad(i \tag{ii}
\end{gather*}
$$

Using equation (ii) in (i)

$$
\begin{equation*}
\frac{D \Gamma}{D t}=\int d\left(\frac{1}{2} V^{2}\right)+d r \cdot \frac{D \vec{V}}{D t} \tag{iii}
\end{equation*}
$$

From Euler's equation of motion

$$
\begin{equation*}
\frac{D V}{D t}=F-\frac{1}{\rho} \nabla P \tag{iv}
\end{equation*}
$$

As we know forces are conservative.

$$
F=-\nabla \Omega \quad(v) \text { Where } \Omega \text { is force potential. }
$$

Using (v) in (iv)

$$
\begin{equation*}
\frac{D V}{D t}=-\nabla \Omega-\frac{1}{\rho} \nabla P \tag{}
\end{equation*}
$$

By taking dot product of equation (vi) with dr

$$
\begin{gathered}
\frac{D V}{D t} \cdot d r=-\nabla \Omega \cdot d r-\frac{1}{\rho} \nabla P \cdot d r \quad(v i i) \\
\Rightarrow \nabla \Omega \cdot d r=\left(\frac{\partial \Omega}{\partial x} \hat{i}+\frac{\partial \Omega}{\partial y} \hat{j}+\frac{\partial \Omega}{\partial z} \hat{k}\right) \cdot(d x \hat{i}+d y \hat{j}+d z \hat{k})
\end{gathered}
$$

Collected by: Muhammad Saleem

$$
\begin{gathered}
\nabla \Omega \cdot d r=\frac{\partial \Omega}{\partial x} d x+\frac{\partial \Omega}{\partial y} d y+\frac{\partial \Omega}{\partial z} d z \\
\nabla \Omega \cdot d r=d \Omega
\end{gathered}
$$

$$
\text { Similarly } \nabla P . \mathrm{dr}=\mathrm{dP}
$$

Equation (vii) becomes

$$
\begin{equation*}
d r \cdot \frac{D V}{D t}=-d \Omega-\frac{1}{\rho} d P d=-d \Omega-d\left(\frac{P}{\rho}\right) \tag{viii}
\end{equation*}
$$

Since fluid is incompressible i.e. $\rho=$ constant
Using equation (viii) in (iii)

$$
\begin{gathered}
\frac{D \Gamma}{D t}=\int\left(d\left(\frac{1}{2} V^{2}\right)-d \Omega-d\left(\frac{P}{\rho}\right)\right) \\
\frac{D \Gamma}{D t}=\int d\left(\frac{1}{2} V^{2}-\Omega-\frac{P}{\rho}\right)
\end{gathered}
$$

Since V, P and ρ are constant. Therefore, their derivative will also zero.

$$
\begin{aligned}
& \mathrm{V} \cup Z \frac{D \Gamma}{D t}=\oint d(\text { constant })=\oint 0=0 \\
& \Rightarrow \Gamma \text { is constant. Hence circulation remains constant. }
\end{aligned}
$$

Lecture \# 04

Remark:

K.E for finite liquid is $K . E=\frac{1}{2} \iint_{S} \rho \phi \frac{\partial \phi}{\partial n} d S$

The velocity potential is $\vec{V}=-\nabla \phi$

$$
\begin{aligned}
& \mathrm{As} \\
& \mathrm{q}=(\mathrm{u}, \mathrm{v}, \mathrm{w}) \\
\Rightarrow \quad & q=-\nabla \phi=u=v=w
\end{aligned}
$$

Acyclic:

Acyclic motion is defined as the irrotational motion in which velocity potential is single valued (as the rectilinear flow of fluid).

Theorem:

Show that acyclic irrotational motion is impossible in a finite volume of fluid bounded by rigid surfaces at rest

OR
In infinite fluid at rest at infinity and bounded internally by rigid bodies at rest.

Proof:

If possible, suppose that acyclic irrotational motion is possible and let ϕ be the velocity potential. Then, K.E. of the fluid is

$$
\begin{array}{r}
K . E=T=\frac{\rho}{2} \iiint_{\tau} \nabla^{2} \phi d \tau \\
\frac{\rho}{2} \iiint_{\tau} \nabla^{2} \phi d \tau=\frac{\rho}{2} \iint_{S} \phi \frac{\partial \phi}{\partial n} d S \tag{i}
\end{array}
$$

Where S is the sum of all the rigid boundaries when τ is finite or the sum of internal rigid boundaries when τ is infinite.
Now, since the boundaries are rigid, then at every point of S, the normal velocity is zero i.e. $\frac{\partial \phi}{\partial n}=0$ \qquad (ii) at each point of S .

Collected by: Muhammad Saleem

From (i) and (ii) we get

$$
\begin{aligned}
& \frac{\rho}{2} \iiint_{\tau} \nabla^{2} \phi d \tau=0 \\
& \Rightarrow \iiint_{\tau} \nabla^{2} \phi d \tau=0 \\
& \Rightarrow \iiint_{\tau} q^{2} d \tau=0 \quad \because q=-\nabla \phi \\
& \Rightarrow q^{2}=0 \\
& \Rightarrow q=0
\end{aligned}
$$

Fluid is at rest. Hence there is no motion of fluid. Hence Acyclic irrotational motion is impossible.

Corollary:

If the solid boundaries in motion are instantaneously brought to rest, show that the motion of the fluid will instantaneously cease to be irrotational.

Proof:

If possible, assume that the motion remains irrotational, then the K.E. is given by

$$
\begin{equation*}
T=\frac{\rho}{2} \iiint_{\tau} q^{2} d \tau=\frac{\rho}{2} \iint_{S} \phi \frac{\partial \phi}{\partial n} d S \tag{i}
\end{equation*}
$$

When the surface S (solid boundary) is brought to rest instantaneously, then $q=0$ at each point of S then

$$
\because q=0 \text { then }-\nabla \phi=0
$$

$$
\Rightarrow \phi=\text { constant at each point of } S \text { and }
$$

$$
\frac{\partial \phi}{\partial n}=0=\text { constant at each point of } \mathrm{S}
$$

Since $\mathrm{q}=0$ in τ i.e. there is no motion. Thus, the motion is no longer irrotational.

Uniqueness Theorem:

If the region occupied by the fluid is finite, then only one irrotational motion of the fluid exists when the boundaries have prescribed velocities.

OR

Show that there cannot be two different forms of acyclic irrotational motion of a given liquid whose boundaries have prescribed velocities.

Proof:

If possible, let ϕ_{1} and ϕ_{2} be two different velocity potentials representing two motions, then

$$
\begin{equation*}
\nabla^{2} \phi_{1}=0=\nabla^{2} \phi_{2} \tag{i}
\end{equation*}
$$

Since the kinetic conditions at the boundaries are satisfied by both flows therefore at each point of S

$$
\begin{array}{r}
\frac{\rho}{2} \iiint_{\tau} q^{2} d \tau=\frac{\rho}{2} \iiint_{\tau} \nabla^{2} \phi d \tau=\frac{\rho}{2} \iint_{S} \phi \frac{\partial \phi}{\partial n} d S \\
\phi_{1} \frac{\partial \phi_{1}}{\partial n}=0 \Rightarrow \frac{\partial \phi_{1}}{\partial n}=0 \quad \text { (ii) } \\
\phi_{2} \frac{\partial \phi_{2}}{\partial n}=0 \Rightarrow \frac{\partial \phi_{2}}{\partial n}=0 \tag{iii}
\end{array}
$$

From (ii) and (iii)

$$
\begin{equation*}
\frac{\partial \phi_{1}}{\partial n}=\frac{\partial \phi_{2}}{\partial n} \tag{iv}
\end{equation*}
$$

\qquad
Let $\phi=\phi_{1}-\phi_{2}$

$$
\nabla^{2} \phi=\nabla^{2} \phi_{1}-\nabla^{2} \phi_{2}
$$

$$
\nabla^{2} \phi=0 \quad \text { at each point of fluid. }
$$

And $\frac{\partial \phi}{\partial n}=\frac{\partial \phi_{1}}{\partial n}-\frac{\partial \phi_{2}}{\partial n}=0$ at each point of S.
$\Rightarrow \phi$ represents a possible irrotational motion.
Also, the K.E given by

$$
\frac{\rho}{2} \iiint_{\tau} q^{2} d \tau=\frac{\rho}{2} \iint_{S} \phi \frac{\partial \phi}{\partial n} d S=0
$$

Since the boundaries are rigid then at every point of S the normal velocity is zero i.e.

$$
\begin{gathered}
\frac{\partial \phi}{\partial n}=0 \\
\Rightarrow q=0 \quad \begin{array}{l}
\text { at each point of fluid } \\
\Rightarrow-\nabla \phi=0
\end{array}
\end{gathered}
$$

Collected by: Muhammad Saleem

$$
\begin{aligned}
& \Rightarrow \nabla \phi=0 \text { at each point of fluid } \\
& \Rightarrow \nabla \phi_{1}-\nabla \phi_{2}=0 \\
& \quad \Rightarrow \nabla \phi_{1}=\nabla \phi_{2}
\end{aligned}
$$

which shows that the motions are the same. (Moreover ϕ is unique apart from an additive constant).

Theorem-II:

If the region occupied by the fluid is infinite and fluid is at rest at infinity, prove that only one irrotational motion is possible when internal boundaries have prescribed velocities.

Proof:

If possible, let there be two irrotational motions given by two different velocity potentials $\phi_{1} \& \phi_{2}$. The conditions on boundaries are

$$
\begin{equation*}
\frac{\partial \phi_{1}}{\partial n}=\frac{\partial \phi_{2}}{\partial n} \tag{i}
\end{equation*}
$$

$$
\text { And } q_{1}=q_{2}=0 \quad ـ \quad(i i) \text { at infinity }
$$

Let us write

$$
\begin{align*}
& \phi=\phi_{1}-\phi_{2} \tag{iii}\\
& \nabla^{2} \phi=\nabla^{2} \phi_{1}-\nabla^{2} \phi_{2}
\end{align*}
$$

\Rightarrow motion given by ϕ is also irrotational.
Further from (iii) we get

$$
\begin{gathered}
\frac{\partial \phi}{\partial n}=\frac{\partial \phi_{1}}{\partial n}-\frac{\partial \phi_{2}}{\partial n}=0 \quad \because \operatorname{from}(i) \\
\Rightarrow q \cdot \hat{n}=0 \\
\Rightarrow q=0 \text { on the surface }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Also } q=-\nabla \phi=-\nabla \phi_{1}+\nabla \phi_{2} \\
& q=-\nabla \phi_{1}-\left(-\nabla \phi_{2}\right) \\
& q=q_{1}-q_{2} \text { at infinity. }
\end{aligned}
$$

Hence, we get $\phi=$ constant

$$
\begin{equation*}
\phi_{1}-\phi_{2}=\text { constant } \tag{iv}
\end{equation*}
$$

\square
$\phi_{1}-\phi_{2}=0 \quad \Rightarrow \phi_{1}=\phi_{2}$
Hence, only one irrotational motion is possible.
Collected by: Muhammad Saleem

Lecture \# 05

Single Infinite Row of vortices:

The complex potential of an infinite row of parallel rectilinear vortices (line vortices) of same strength ' K ' and a distance ' a ' apart. The vortices are placed at points $\mathrm{z}= \pm \mathrm{na} ; \mathrm{n}=0,1,2, \ldots \ldots$, symmetrical about y -axis. The complex potential due to these vortices is

$\mathrm{W}=\mathrm{iK} \log \mathrm{z}+\mathrm{iK} \log (\mathrm{z}-\mathrm{a})+\mathrm{iK} \log (\mathrm{z}-2 \mathrm{a})+\ldots . .+\mathrm{iK} \log (\mathrm{z}-\mathrm{na})+\mathrm{iK} \log (\mathrm{z}+\mathrm{a})$ $+i K \log (z+2 a)+\ldots \ldots+i K \log (z+n a)$

Double Infinite Row of Vortices:

Let us suppose that we have a system consisting of infinite number of vortices each of strength ' K ' evenly placed along a line $A A^{\prime}$ ' parallel to x -axis and another system also consisting of infinite number of vortices each of strength ' -K ' placed similarly along a parallel line $B B^{\prime}$. Let the line midway between these two lines of vortices be taken as the x -axis.

Collected by: Muhammad Saleem

Let one vortex on infinite row $A A^{\prime}$ be at $z=z_{1}$ and one vortex on infinite row $B B^{\prime}$ be at $z=z_{2}$, so that the system consists of vortices K at $z=z_{1} \pm n a$ and vortices ' -K ' at $z=z_{2} \pm n a, \mathrm{n}=1,2, \ldots$
The complex potential of the system is

$$
W=i K \sum_{n=0}^{\infty} \log \left[\frac{\left(z-z_{1}-n a\right)\left(z-z_{1}+n a\right)}{\left(z-z_{2}-n a\right)\left(z-z_{2}+n a\right)}\right]
$$

Velocity potential:

If the flow is irrotational a potential function ϕ can be formulated to represent the velocity field. From vector identity

$$
\nabla \times \nabla \phi=0
$$

The velocity of an irrotational flow can be defined by a potential function so that

$$
\begin{gathered}
V=-\nabla \phi \\
\Rightarrow u=-\frac{\partial \phi}{\partial x}, v=-\frac{\partial \phi}{\partial y}, w=-\frac{\partial \phi}{\partial z}
\end{gathered}
$$

In polar form

$$
V_{r}=-\frac{\partial \phi}{\partial r}, V_{\theta}=-\frac{\partial \phi}{\partial \theta} \quad, V_{z}=-\frac{\partial \phi}{\partial z}
$$

Kinetic Energy of irrotational motion:

Let S be the surface enclosing the volume τ of the fluid then

$$
\begin{array}{r}
K \cdot E=\iiint_{\tau} \frac{1}{2} \rho V^{2} d \tau \\
\because V^{2}=|\vec{V}|^{2}=\vec{V}^{2}=\vec{V} \cdot \vec{V} \\
K \cdot E=\frac{1}{2} \iiint_{\tau} \rho(\vec{V} \cdot \vec{V}) d \tau \tag{i}
\end{array}
$$

Since the flow is irrotational therefore

$$
\begin{gather*}
\vec{V}=-\nabla \phi \\
K . E=\frac{1}{2} \iiint_{\tau} \rho\{(-\nabla \phi) \cdot(-\nabla \phi)\} d \tau \\
K . E=\frac{1}{2} \iiint_{\tau} \rho(\nabla \phi \cdot \nabla \phi) d \tau \quad(i i) \tag{ii}\\
\text { Let } \nabla \cdot(\phi \nabla \phi)=\phi \nabla^{2} \phi+\nabla \phi \cdot \nabla \phi \\
\nabla \cdot(\phi \nabla \phi)=\nabla \phi \cdot \nabla \phi \quad \because \nabla^{2} \phi=0 \\
(i i) \Rightarrow K . E=\frac{1}{2} \iiint_{\tau} \rho \nabla \cdot(\phi \nabla \phi) d \tau \tag{iii}
\end{gather*}
$$

By using the Gauss Divergence theorem

$$
\iiint_{V} \nabla \cdot \vec{A} d V=\iint_{S} \vec{A} \cdot \hat{n} d S
$$

Eq (iii)

$$
\begin{array}{r}
\Rightarrow \quad K \cdot E=\frac{1}{2} \iint_{S} \rho(\phi \nabla \phi \cdot \hat{n}) d S \\
\mathbf{V} \| Z \cdot E=\frac{1}{2} \iint_{S} \rho \phi \frac{\partial \phi}{\partial n} d S
\end{array}
$$

Kelvin's Minimum Energy Theorem:

Statement:

The kinetic energy (K.E) of an irrotational flow for an incompressible fluid occupying the connected region is less than the K.E of any other flow of the fluid having the same normal velocity.

Proof:

Let S be the simply connected region enclosing a volume τ of an incompressible fluid, Let V be the velocity of fluid. Since the flow is irrotational. Therefore,

$$
\vec{V}=-\nabla \phi
$$

Collected by: Muhammad Saleem

From equation of continuity $\quad \frac{D \rho}{D t}+\rho(\nabla \cdot \vec{V})=0$
Since the fluid is incompressible $\quad \Rightarrow \quad \frac{D \rho}{D t}=0$
Eq (i) becomes

$$
\rho(\nabla \cdot \vec{V})=0
$$

$$
\nabla \cdot \vec{V}=0 \quad \text { ___ }(i i)
$$

Let T be the kinetic energy for the flow then

$$
\begin{array}{r}
T=\frac{1}{2} \iiint_{\tau} \rho V^{2} d \tau \\
\because V^{2}=|\vec{V}|^{2}=\vec{V}^{2} \\
T=\frac{\rho}{2} \iiint_{\tau} \vec{V}^{2} d \tau \tag{iiii}
\end{array}
$$

Let T^{\prime} and V^{\prime} be the K.E and velocity of any other flow of the fluid respectively. So, that

$$
\text { Muzam } V^{\prime}=\vec{V}_{+}+\vec{V}_{0}
$$

From equation of continuity

$$
\frac{D \rho}{D t}+\rho\left(\nabla \cdot V^{\prime}\right)=0
$$

Since the fluid is incompressible i.e. $\frac{D \rho}{D t}=0$

$$
\begin{gather*}
\Rightarrow \rho\left(\nabla \cdot V^{\prime}\right)=0 \\
\Rightarrow \nabla \cdot V^{\prime}=0 \\
\Rightarrow \nabla \cdot\left(\vec{V}+\vec{V}_{0}\right)=0 \\
\Rightarrow \nabla \vec{V}+\nabla \vec{V}_{0}=0 \tag{iv}
\end{gather*}
$$

Collected by: Muhammad Saleem

It is also given that the flow has same normal velocity

$$
\begin{gather*}
\vec{V} \cdot \hat{n}=V^{\prime} \cdot \hat{n} \\
\vec{V} \cdot \hat{n}=\left(\vec{V}+\vec{V}_{0}\right) \cdot \hat{n} \\
\vec{V} \cdot \hat{n}=\vec{V} \cdot \hat{n}+\vec{V}_{0} \cdot \hat{n} \\
\vec{V}_{0} \cdot \hat{n}=0 \tag{v}
\end{gather*}
$$

The K.E T^{\prime} of any other flow is

$$
\begin{gathered}
T^{\prime}=\frac{1}{2} \iiint_{\tau} \rho V^{\prime 2} d \tau \\
T^{\prime}=\frac{\rho}{2} \iiint_{\tau}\left(\vec{V}+\vec{V}_{0}\right)^{2} d \tau \\
T^{\prime}=\frac{\rho}{2} \iiint_{\tau}\left(\overrightarrow{V^{2}}+\overrightarrow{V_{0}^{2}}+2 \vec{V} \cdot \vec{V}_{0}\right) d \tau \\
T^{\prime}=\frac{\rho}{2} \iiint_{\tau} \overrightarrow{V^{2}} d \tau+\frac{\rho}{2} \iiint_{\tau} \overrightarrow{V_{0}^{2}} d \tau+\rho \iiint_{\tau}\left(\vec{V} \cdot \overrightarrow{V_{0}}\right) d \tau \\
T^{\prime}=T+T_{0}+\rho \iiint_{\tau}\left(\vec{V} \cdot \overrightarrow{V_{0}}\right) d \tau \quad(v i) \quad \because b y(i i i)
\end{gathered}
$$

Since the flow is irrotational $\quad \vec{V}=-\nabla \phi$

$$
\begin{gather*}
T^{\prime}=T+T_{0}+\rho \iiint_{\tau}\left(-\nabla \phi \cdot \vec{V}_{0}\right) d \tau \\
T^{\prime}=T+T_{0}-\rho \iiint_{\tau}\left(\nabla \phi \cdot \vec{V}_{0}\right) d \tau \tag{vii}\\
\text { Since } \nabla\left(\phi \vec{V}_{0}\right)=\phi \nabla \cdot \vec{V}_{0}+\nabla \phi \cdot \vec{V}_{0} \\
\nabla\left(\phi \vec{V}_{0}\right)-\phi \nabla \cdot \vec{V}_{0}=\nabla \phi \cdot \vec{V}_{0}
\end{gather*}
$$

Collected by: Muhammad Saleem

$$
e q(v i i) \Rightarrow \quad T^{\prime}=T+T_{0}-\rho \iiint_{\tau}\left(\nabla\left(\phi \vec{V}_{0}\right)-\phi \nabla \cdot \vec{V}_{0}\right) d \tau
$$

From Eq (ii)

$$
\nabla \cdot V=0 \Rightarrow \nabla \cdot V_{0}=0
$$

$$
T^{\prime}=T+T_{0}-\rho \iiint_{\tau} \nabla \cdot\left(\phi \vec{V}_{0}\right) d \tau
$$

By using the Gauss Divergence theorem

$$
\begin{gathered}
\iiint_{V} \nabla \cdot \vec{A} d V=\iint_{S} \vec{A} \cdot \hat{n} d S \\
T^{\prime}=T+T_{0}-\rho \iint_{S} \phi \overrightarrow{V_{0}} \cdot \hat{n} d S \\
\text { From eq (v) } \vec{V}_{0} \cdot \hat{n}=0 \\
T^{\prime}=T+T_{0} \\
\Rightarrow T^{\prime}>T \\
\text { Or } T<T^{\prime}
\end{gathered}
$$

Lecture \# 06

Laplace equation:

If fluid is an incompressible and ϕ is a velocity potential then $\nabla^{2} \phi=0$ is called Laplace equation.

Proof:

We know that the standard form of equation of continuity is

$$
\begin{gather*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho V)=0 \tag{i}\\
\text { Since } \frac{D}{D t}=\frac{\partial}{\partial t}+V \cdot \nabla \\
\Rightarrow \frac{D \rho}{D t}=\frac{\partial \rho}{\partial t}+V \cdot(\nabla \rho) \tag{ii}
\end{gather*}
$$

From (i)

$$
\frac{\partial \rho}{\partial t}=-\nabla \cdot(\rho V)
$$

Put in (ii)

$$
\frac{D \rho}{D t}=-\nabla(\rho V)+V .(\nabla \rho)
$$

$$
\begin{gather*}
\frac{D \rho}{D t}=-\{\rho(\nabla \cdot V)+V \cdot(\nabla \rho)\}+V \cdot(\nabla \rho) \\
\frac{D \rho}{D t}=-\rho(\nabla \cdot V)-V \cdot(\nabla \rho)+V \cdot(\nabla \rho) \\
\frac{D \rho}{D t}=-\rho(\nabla \cdot V) \\
\frac{D \rho}{D t}+\rho(\nabla \cdot V)=0 \tag{iii}
\end{gather*}
$$

Since fluid is incompressible $\rho=$ constant.

$$
\Rightarrow \frac{D \rho}{D t}=0
$$

Collected by: Muhammad Saleem

Equation (iii) \Rightarrow

$$
\rho \nabla . V=0
$$

$$
\begin{equation*}
\Rightarrow \nabla \cdot V=0 \tag{iv}
\end{equation*}
$$

Also, flow is irrotational

$$
V=-\nabla \phi
$$

Put in (iv)

$$
\begin{gathered}
\nabla \cdot(-\nabla \phi)=0 \\
-\nabla^{2} \phi=0 \\
\Rightarrow \nabla^{2} \phi=0 \\
\Rightarrow \nabla^{2} \phi=0 \\
\Rightarrow \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 \text { which is required Laplace equation. }
\end{gathered}
$$

Stress:

It is defined as stress in a medium result from forces acting on some portion of medium

$$
\text { stress }=\frac{F}{A}
$$

Normal stress:

$$
\sigma_{n}=\operatorname{Lim}_{\delta A_{n} \rightarrow 0} \frac{\delta F_{n}}{\delta A_{n}}
$$

Tangential stress or sheer stress:

$$
\tau_{n}=\operatorname{Lim}_{\delta A_{n} \rightarrow 0} \frac{\delta F_{t}}{\delta A_{n}}
$$

Let us consider the stress acting on planes whose outward normal are in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions. Then

$$
\sigma_{x x}=\operatorname{Lim}_{\delta A_{x} \rightarrow 0} \frac{\delta F_{x}}{\delta A_{x}}
$$

Collected by: Muhammad Saleem

As we have following sheer stress

$$
\begin{aligned}
& \tau_{x x} \tau_{x y} \tau_{x z} \\
& \tau_{y x} \tau_{y y} \tau_{y z} \\
& \tau_{z x} \tau_{z y} \tau_{z z}
\end{aligned}
$$

Note: (i) We have double subscript notation to label stresses like $\tau_{y x}$ etc.
x denotes the direction in which stress acts and y denotes the plane on which stress acts.
(ii). X-plane = YZ-plane
(iii). Density $=\frac{\text { mass }}{\text { volume }}=\frac{m}{V}$
(iv). By Newton second law

$$
\begin{gathered}
\mathrm{F}=\mathrm{ma} \\
F=m \frac{d V}{d t} \quad \because a=\frac{d V}{d t} \\
\text { if } \rho=m \text { then } F=\rho \frac{d V}{d t}
\end{gathered}
$$

Generalization equation of motion:

Consider a fluid element whose center point is P and stress $\tau_{x_{x}} . \mathrm{P}_{1}$ and P_{2} is its right side and left side corner point respectively.

Length element along X -axis is Δx
Length element along Y -axis is Δy
Length element along Z-axis is Δz
At point $\mathrm{P}_{1} \tau_{x x}+\frac{\partial \tau_{x x}}{\partial x} \cdot \frac{\Delta x}{2}$

Collected by: Muhammad Saleem

At point $\mathrm{P}_{2} \tau_{x x}-\frac{\partial \tau_{x x}}{\partial x} \cdot \frac{\Delta x}{2}$
Consider the X-component of surfaces forces

$$
\begin{align*}
d F_{s x}= & \left(\tau_{x x}+\frac{\partial \tau_{x x}}{\partial x} \cdot \frac{\Delta x}{2}\right) \Delta y \Delta z-\left(\tau_{x x}-\frac{\partial \tau_{x x}}{\partial x} \cdot \frac{\Delta x}{2}\right) \Delta y \Delta z \\
+ & \left(\tau_{y x}+\frac{\partial \tau_{y x}}{\partial y} \cdot \frac{\Delta y}{2}\right) \Delta x \Delta z-\left(\tau_{y x}+\frac{\partial \tau_{y x}}{\partial y} \cdot \frac{\Delta y}{2}\right) \Delta x \Delta z \\
+ & \left(\tau_{z x}+\frac{\partial \tau_{z x}}{\partial z} \cdot \frac{\Delta z}{2}\right) \Delta x \Delta y-\left(\tau_{z x}+\frac{\partial \tau_{z x}}{\partial z} \cdot \frac{\Delta z}{2}\right) \Delta x \Delta y \\
d F_{s x}= & \left(\tau_{x x}+\frac{\partial \tau_{x x}}{\partial x} \cdot \frac{\Delta x}{2}-\tau_{x x}+\frac{\partial \tau_{x x}}{\partial x} \cdot \frac{\Delta x}{2}\right) \Delta y \Delta z \\
& +\left(\tau_{y x}+\frac{\partial \tau_{y x}}{\partial y} \cdot \frac{\Delta y}{2}-\tau_{y x}+\frac{\partial \tau_{y x}}{\partial y} \cdot \frac{\Delta y}{2}\right) \Delta x \Delta z \\
& +\left(\tau_{z x}+\frac{\partial \tau_{z x}}{\partial z} \cdot \frac{\Delta z}{2}-\tau_{z x}+\frac{\partial \tau_{z x}}{\partial z} \cdot \frac{\Delta z}{2}\right) \Delta x \Delta y \\
d F_{s x}= & \left(2 \frac{\partial \tau_{x x}}{\partial x} \cdot \frac{\Delta x}{2}\right) \Delta y \Delta z+\left(2 \frac{\partial \tau_{y x}}{\partial y} \cdot \frac{\Delta y}{2}\right) \Delta x \Delta z+\left(2 \frac{\partial \tau_{z x}}{\partial z} \cdot \frac{\Delta z}{2}\right) \Delta x \Delta y \\
& d F_{s x}=\frac{\partial \tau_{x x}}{\partial x} \Delta x \Delta y \Delta z+\frac{\partial \tau_{y x}}{\partial y} \Delta x \Delta y \Delta z+\frac{\partial \tau_{z x}}{\partial z} \Delta x \Delta y \Delta z \\
& d F_{s x}=\left(\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}\right) \Delta x \Delta y \Delta z \tag{i}
\end{align*}
$$

Now for body forces

$$
d F_{B x}=m g_{x}
$$

Collected by: Muhammad Saleem

Net force along X-component

$$
d F_{x}=d F_{s x}+d F_{B x}
$$

$$
\begin{gathered}
d F_{x}=\left(\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}\right) \Delta x \Delta y \Delta z+m g_{x} \\
\because \Delta V=\Delta x \Delta y \Delta z \\
d F_{x}=\left(\frac{\partial \tau_{x_{x}}}{\partial x}+\frac{\partial \tau_{y_{x}}}{\partial y}+\frac{\partial \tau_{z_{x}}}{\partial z}\right) \Delta V+m g_{x}
\end{gathered}
$$

By Newton second law of motion

$$
\begin{gather*}
d F_{x}=m a_{x} \\
m a_{x}=\left(\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}\right) \Delta V+m g_{x} \tag{ii}
\end{gather*}
$$

$$
\begin{aligned}
& \because \rho=\frac{m}{\Delta V} \Rightarrow m=\rho \Delta V \\
& \rho \Delta V a_{x}=\left(\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}\right) \Delta V+\rho \Delta V g_{x}
\end{aligned}
$$

$$
\text { Since } a=\left(a_{x}, a_{y}, a_{z}\right)=\frac{d V}{d t}=\left(\frac{d u}{d t}, \frac{d v}{d t}, \frac{d w}{d t}\right)
$$

$$
\rho \Delta V \frac{d u}{d t}=\left(\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}\right) \Delta V+\rho \Delta V g_{x}
$$

$\Delta V \neq 0$ because if $\Delta V=0$ then one of our components $\Delta x, \Delta y, \Delta z$ becomes zero and our body can never move. So, $\Delta V \neq 0$ we divide ΔV and ρ

$$
\begin{equation*}
\frac{d u}{d t}=\frac{1}{\rho}\left(\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}\right)+g_{x} \tag{iii}
\end{equation*}
$$

Similarly, for y-direction
Collected by: Muhammad Saleem

$$
\begin{equation*}
\frac{d v}{d t}=\frac{1}{\rho}\left(\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \tau_{y y}}{\partial y}+\frac{\partial \tau_{z y}}{\partial z}\right)+g_{y} \tag{iv}
\end{equation*}
$$

Similarly, for z-direction

$$
\begin{equation*}
\frac{d w}{d t}=\frac{1}{\rho}\left(\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \tau_{z z}}{\partial z}\right)+g_{z} \tag{v}
\end{equation*}
$$

If $u=u(x, y, z, \mathrm{t})$ then

$$
\begin{aligned}
\frac{d u}{d t} & =\frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial t}+\frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial t}+\frac{\partial u}{\partial z} \cdot \frac{\partial z}{\partial t}+\frac{\partial u}{\partial t} \cdot \frac{\partial t}{\partial t} \\
& \Rightarrow \frac{d u}{d t}=\frac{\partial u}{\partial x} u+\frac{\partial u}{\partial y} v+\frac{\partial u}{\partial z} w+\frac{\partial u}{\partial t}
\end{aligned}
$$

Equation (iii) becomes

$$
\begin{equation*}
\frac{\partial u}{\partial x} u+\frac{\partial u}{\partial y} v+\frac{\partial u}{\partial z} w+\frac{\partial u}{\partial t}=\frac{1}{\rho}\left(\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}\right)+g_{x} \tag{vi}
\end{equation*}
$$

Similarly, the equation of motion in $\hat{\jmath}$ and \hat{k} directions are

$$
\begin{align*}
& \frac{\partial v}{\partial x} u+\frac{\partial v}{\partial y} v+\frac{\partial v}{\partial z} w+\frac{\partial v}{\partial t}=\frac{1}{\rho}\left(\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \tau_{y y}}{\partial y}+\frac{\partial \tau_{z z}}{\partial z}\right)+g_{y} \tag{vii}\\
& \frac{\partial w}{\partial x} u+\frac{\partial w}{\partial y} v+\frac{\partial w}{\partial z} w+\frac{\partial w}{\partial t}=\frac{1}{\rho}\left(\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \tau_{z z}}{\partial z}\right)+g_{z} \tag{viii}
\end{align*}
$$

Equation (vi),(vii),(viii) provide the equation of motion of fluid element at $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
Euler equation of motion for in-viscus (real) fluid:
We consider X component of general equation of motion

$$
\begin{equation*}
\rho \frac{\partial u}{\partial t}=\frac{1}{\rho}\left(\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}\right)+g_{x} \tag{i}
\end{equation*}
$$

Collected by: Muhammad Saleem

We may have some assumption

Set-I:

$$
\begin{aligned}
\tau_{x y} & =\tau_{y x}=0 \\
\tau_{y z} & =\tau_{z y}=0 \\
\tau_{x z} & =\tau_{z x}=0
\end{aligned}
$$

Set-II:

$$
\begin{aligned}
& \tau_{x x}=-P+\sigma_{x x} \\
& \tau_{y y}=-P+\sigma_{y y} \\
& \tau_{z z}=-P+\sigma_{z z}
\end{aligned}
$$

Set-III:

$$
\begin{gathered}
\sigma_{x x}=\sigma_{y y}=\sigma_{z z}=0 \\
\text { Diff. set II w.r.t x,y and z } \\
\frac{\partial \tau_{x x}}{\partial x}=-\frac{\partial P}{\partial x}+\frac{\partial}{\partial x}\left(\sigma_{x x}\right)=-\frac{\partial P}{\partial x} \quad \because \sigma_{x x}=0 \\
\frac{\partial \tau_{y y}}{\partial y}=-\frac{\partial P}{\partial y}+\frac{\partial}{\partial y}\left(\sigma_{y y}\right)=-\frac{\partial P}{\partial y} \\
\because \sigma_{y y}=0 \\
\frac{\partial \tau_{z z}}{\partial z}=-\frac{\partial P}{\partial z}+\frac{\partial}{\partial z}\left(\sigma_{z z}\right)=-\frac{\partial P}{\partial z}
\end{gathered} \quad \because \sigma_{z z}=0
$$

Put all these values in (i)

$$
\begin{align*}
& \rho \frac{d u}{d t}=\left(-\frac{\partial P}{\partial x}+0+0\right)+\rho g_{x} \\
& \rho \frac{d u}{d t}=-\frac{\partial P}{\partial x}+\rho g_{x} \quad _\quad(i i) \tag{ii}
\end{align*}
$$

Collected by: Muhammad Saleem

Similarly, for y and z component

$$
\begin{align*}
& \rho \frac{d v}{d t}=-\frac{\partial P}{\partial y}+\rho g_{y} \tag{iii}\\
& \rho \frac{d w}{d t}=-\frac{\partial P}{\partial z}+\rho g_{z} \tag{iv}
\end{align*}
$$

As we know that

$$
\begin{array}{r}
\vec{V}=u \hat{i}+v \hat{j}+w \hat{k} \\
\frac{d \vec{V}}{d t}=\frac{d u}{d t} \hat{i}+\frac{d v}{d t} \hat{j}+\frac{d w}{d t} \hat{k} \\
\text { Multiplying by } \rho \\
\rho \frac{d \vec{V}}{d t}=\rho \frac{d u}{d t} \hat{i}+\rho \frac{d v}{d t} \hat{j}+\rho \frac{d w}{d t} \hat{k} \tag{v}
\end{array}
$$

Put equations (ii),(iii) (iv) in (v)

$$
\begin{gather*}
\rho \frac{d \vec{V}}{d t}=\left(-\frac{\partial P}{\partial x}+\rho g_{x}\right) \hat{i}+\left(-\frac{\partial P}{\partial y}+\rho g_{y}\right) \hat{j}+\left(-\frac{\partial P}{\partial z}+\rho g_{z}\right) \hat{k} \\
\rho \frac{d \vec{V}}{d t}=-\left(\frac{\partial P}{\partial x} \hat{i}+\frac{\partial P}{\partial y} \hat{j}+\frac{\partial P}{\partial z} \hat{k}\right)+\rho\left(g_{x} \hat{i}+g_{y} \hat{j}+g_{z} \hat{k}\right) \\
\rho \frac{d \vec{V}}{d t}=-\nabla P+\rho \vec{g} \quad-\quad(v i) \tag{vi}
\end{gather*}
$$

Since $\frac{d}{d t}$ is a material time derivative, $\frac{d}{d t}=\frac{\partial}{\partial t}+\nabla \cdot V$
Equation (vi) $\Rightarrow \quad \rho\left[\frac{\partial \vec{V}}{\partial t}+(\nabla \cdot \vec{V}) \vec{V}\right]=-\nabla P+\rho \vec{g}$ is the Euler equation of motion.

Lecture \# 07

Bernoulli Equation:

We know that Euler equation of motion is

$$
\begin{equation*}
\rho\left[\frac{\partial \vec{V}}{\partial t}+(\nabla \cdot \vec{V}) \vec{V}\right]=\rho \vec{g}-\nabla P \tag{i}
\end{equation*}
$$

From vector analysis, we know that

$$
\begin{gather*}
\nabla\left(V^{2}\right)=\nabla(\vec{V} \cdot \vec{V})=2(\nabla \cdot \vec{V}) \vec{V}+2 \vec{V} \times(\nabla \times \vec{V}) \\
\nabla(\vec{V} \cdot \vec{V})-2 \vec{V} \times(\nabla \times \vec{V})=2(\nabla \cdot \vec{V}) \vec{V} \\
\Rightarrow(\nabla \cdot \vec{V}) \vec{V}=\frac{1}{2} \nabla(\vec{V} \cdot \vec{V})-\vec{V} \times(\nabla \times \vec{V}) \\
\text { Let } \vec{g}=-g \hat{k}=-g \nabla z \\
\rho\left[\frac{\partial \vec{V}}{\partial t}+\frac{1}{2} \nabla(\vec{V} \cdot \vec{V})-\vec{V} \times(\nabla \times \vec{V})\right]=\rho(-g \nabla z)-\nabla P \\
\rho\left[\frac{\partial \vec{V}}{\partial t}+\frac{1}{2} \nabla(\vec{V} \cdot \vec{V})\right]-\rho[\vec{V} \times(\nabla \times \vec{V})]=-\rho g \nabla z-\nabla P \\
\rho\left[\frac{\partial \vec{V}}{\partial t}+\frac{1}{2} \nabla(\vec{V} \cdot \vec{V})\right]+\rho g \nabla z+\nabla P=\rho[\vec{V} \times(\nabla \times \vec{V})] \\
\text { Divide by } \rho \\
\text { Rearranging } \left.\frac{\partial \vec{V}}{\rho t}+\frac{1}{2} \nabla(\vec{V} \cdot \vec{V})\right]+g \nabla z+\frac{1}{\rho} \nabla P=\vec{V} \times(\nabla \times \vec{V}) \tag{ii}\\
\text { } \frac{1}{\rho}+g \nabla z+\frac{\partial \vec{V}}{\partial t}+\frac{1}{2} \nabla V^{2}=\vec{V} \times(\nabla \times \vec{V})
\end{gather*}
$$

is called the Bernoulli equation for unsteady flow.

Bernoulli Equation for steady flow:

For steady flow $\frac{\partial \vec{V}}{\partial t}=0$
Put in (ii) $\quad \begin{aligned} & \Rightarrow \frac{1}{\rho} \nabla P+g \nabla z+0+\frac{1}{2} \nabla V^{2}=\vec{V} \times(\nabla \times \vec{V}) \\ & \Rightarrow \frac{1}{\rho} \nabla P+g \nabla z+\frac{1}{2} \nabla V^{2}=\vec{V} \times(\nabla \times \vec{V})\end{aligned}$
Taking dot product on both side with ds

$$
\frac{1}{\rho} \nabla P \cdot d s+g \nabla z \cdot d s+\frac{1}{2} \nabla V^{2} \cdot d s=[\vec{V} \times(\nabla \times \vec{V})] \cdot d s
$$

$$
\text { As } \vec{V} \times(\nabla \times \vec{V}) \perp d s \Rightarrow[\vec{V} \times(\nabla \times \vec{V})] \cdot d s=0
$$

$$
\text { Also } \nabla P . d s=d P
$$

$$
\begin{gathered}
\nabla z . d s=d z \\
\nabla V^{2} . d s=d V^{2}
\end{gathered}
$$

Put in (iii)

$$
\frac{1}{\rho} d P+g d z+\frac{1}{2} d V^{2}=0
$$

Now integrate above equation $\int \frac{1}{\rho} d P+\int g d z+\frac{1}{2} \int d V^{2}=\int 0$

$$
\frac{1}{\rho} P+g z+\frac{1}{2} V^{2}=\mathrm{constant}
$$

*This is called Bernoulli equation for in viscous, incompressible, steady and rotational flow along the stream line.
*This equation is also true for both rotational $(\nabla \times \vec{V} \neq 0)$ and irrotational $(\nabla \times \vec{V}=0)$ flow.

Navier-Stokes equation:

As we know that the X -component of general equation of motion is

$$
\begin{equation*}
\rho \frac{\partial u}{\partial t}=\left(\frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{y x}}{\partial y}+\frac{\partial \tau_{z x}}{\partial z}\right)+\rho g_{x} \tag{i}
\end{equation*}
$$

Now we will make following assumptions
Set-I:

$$
\begin{align*}
& \tau_{x y}=\tau_{y x}=\mu\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right) \tag{ii}\\
& \tau_{y z}=\tau_{z y}=\mu\left(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}\right) \tag{iii}\\
& \tau_{z x}=\tau_{x z}=\mu\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right) \tag{iv}
\end{align*}
$$

Set-I:

$$
\begin{gather*}
\tau_{x x}=-P-\frac{2}{3} \nabla \cdot \vec{V}+2 \mu \frac{\partial u}{\partial x} \\
\tau_{y y}=-P-\frac{2}{3} \nabla \cdot \vec{V}+2 \mu \frac{\partial v}{\partial y}-(v) \tag{vi}\\
\tau_{z z}=-P-\frac{2}{3} \nabla \cdot \vec{V}+2 \mu \frac{\partial w}{\partial z}-(v i) \tag{vii}\\
A s \quad \vec{V}=u \hat{i}+v \hat{j}+w \hat{k} \\
\nabla \cdot \vec{V}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}
\end{gather*}
$$

Equation (v) becomes $\quad \tau_{x x}=-P-\frac{2}{3}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)+2 \mu \frac{\partial u}{\partial x}$
Collected by: Muhammad Saleem

Diff. w.r.t ' $\mathrm{x} \quad \frac{\partial \tau_{x x}}{\partial x}=-\frac{\partial P}{\partial x}-\frac{2}{3} \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)+2 \mu \frac{\partial^{2} u}{\partial x^{2}}$

$$
\begin{equation*}
\frac{\partial \tau_{x x}}{\partial x}=-\frac{\partial P}{\partial x}-\frac{2}{3}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y \partial x}+\frac{\partial^{2} w}{\partial z \partial x}\right)+2 \mu \frac{\partial^{2} u}{\partial x^{2}} \tag{viii}
\end{equation*}
$$

Diff. equation (ii) w.r.t 'y' $\quad \frac{\partial \tau_{y x}}{\partial y}=\mu\left(\frac{\partial^{2} v}{\partial y \partial x}+\frac{\partial^{2} v}{\partial y^{2}}\right)$
Diff. equation (iv) w.r.t ' z ' $\frac{\partial \tau_{z x}}{\partial y}=\mu\left(\frac{\partial^{2} u}{\partial z^{2}}+\frac{\partial^{2} w}{\partial x \partial z}\right)$
Using equation (viii), (ix), (x) in (i)

$$
\rho \frac{\partial u}{\partial t}=\rho g_{x}-\frac{\partial P}{\partial x}-\frac{2}{3}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y \partial x}+\frac{\partial^{2} w}{\partial z \partial x}\right)+2 \mu \frac{\partial^{2} u}{\partial x^{2}}+\mu\left(\frac{\partial^{2} v}{\partial y \partial x}+\frac{\partial^{2} v}{\partial y^{2}}\right)+\mu\left(\frac{\partial^{2} u}{\partial z^{2}}+\frac{\partial^{2} w}{\partial x \partial z}\right)
$$

Rearranging

$$
\begin{gathered}
\rho \frac{\partial u}{\partial t}=\rho g_{x}-\frac{\partial P}{\partial x}-\frac{2}{3}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y \partial x}+\frac{\partial^{2} w}{\partial z \partial x}\right)+\mu \frac{\partial^{2} u}{\partial x^{2}}+\mu \frac{\partial^{2} u}{\partial x^{2}}+\mu\left(\frac{\partial^{2} v}{\partial y \partial x}+\frac{\partial^{2} v}{\partial y^{2}}\right)+\mu\left(\frac{\partial^{2} u}{\partial z^{2}}+\frac{\partial^{2} w}{\partial x \partial z}\right) \\
\rho \frac{\partial u}{\partial t}=\rho g_{x}-\frac{\partial P}{\partial x}-\frac{2}{3}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y \partial x}+\frac{\partial^{2} w}{\partial z \partial x}\right)+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y \partial x}+\frac{\partial^{2} v}{\partial y^{2}}\right)+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial z^{2}}+\frac{\partial^{2} w}{\partial x \partial z}\right) \\
\rho \frac{\partial u}{\partial t}=\rho g_{x}-\frac{\partial P}{\partial x}-\frac{2}{3} \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)+\mu \nabla^{2} u+\mu \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right) \\
\rho \frac{\partial u}{\partial t}=\rho g_{x}-\frac{\partial P}{\partial x}-\frac{2}{3} \frac{\partial}{\partial x}(\nabla \cdot \vec{V})+\mu \nabla^{2} u+\mu \frac{\partial}{\partial x}(\nabla . \vec{V})
\end{gathered}
$$

For incompressible fluid $\nabla \cdot \vec{V}=0$

$$
\rho \frac{\partial u}{\partial t}=\rho g_{x}-\frac{\partial P}{\partial x}-\frac{2}{3} \frac{\partial}{\partial x}(0)+\mu \nabla^{2} u+\mu \frac{\partial}{\partial x}(0)
$$

Collected by: Muhammad Saleem
$\Rightarrow \rho \frac{\partial u}{\partial t}=\rho g_{x}-\frac{\partial P}{\partial x}+\mu \nabla^{2} u$ is the X-component of Navier-Stokes equation.
Similarly, for Y and Z components.

$$
\begin{aligned}
& \rho \frac{\partial v}{\partial t}=\rho g_{y}-\frac{\partial P}{\partial y}+\mu \nabla^{2} v \\
& \rho \frac{\partial w}{\partial t}=\rho g_{z}-\frac{\partial P}{\partial z}+\mu \nabla^{2} w
\end{aligned}
$$

Parallel flows:

A flow is called parallel if there is only one velocity component. If $\vec{V}=u \hat{i}+v \hat{j}+w \hat{k}$ then $\vec{V}=u \hat{i}$ when $v=w=0$

The practical application of this simple case if the flow between parallel flat plates (planes). Circular pipes and concentric rotating cylinder in such one component flow the Navier-Stokes equation simplify, consider by and infect permit and exact solution e.g. $\nabla \cdot \vec{V}=0$

$$
\Rightarrow \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0 \text { becomes } \frac{\partial u}{\partial x}=0
$$

Lecture \# 08

Couette flow:

The simple Couette flow or simple sheer flow is the flow between two parallel plates one which $\mathrm{y}=0$ is at rest and other is $\mathrm{y}=\mathrm{h}$ moving with the uniform constant velocity ' u ' parallel to itself.
Consider the steady laminar flow of inviscous, incompressible fluid between the two infinite horizontal parallel flat plates. Let X-axis be the direction of the flow and Y -axis perpendicular to the direction of flow. Consider the distance between the plates be ' h ' and the width of the plates in Z-direction be finite.
Case-I: The X-component of Navier-Stokes equation is

$$
\begin{equation*}
\rho \frac{d u}{d t}=\rho g_{x}-\frac{\partial P}{\partial x}+\mu \nabla^{2} u \tag{i}
\end{equation*}
$$

\qquad
*The assumptions are
(i) One dimensional flow i.e $u=u(y), v=w=0$
(ii) Viscous medium i.e $\mu \neq 0$
(iii) Incompressible flow i.e. $\rho \neq 0$
(iv) Steady flow i.e. independent of time
(v) No pressure i.e pressure gradient is zero.
(vi) No body force i.e. $\mathrm{g}_{\mathrm{x}}=0$

From equation (i)

$$
\frac{d u}{d t}=-\frac{1}{\rho} \frac{\partial P}{\partial x}+\frac{\mu}{\rho} \nabla^{2} u+\frac{\rho}{\rho} g_{x}
$$

$$
\frac{d u}{d t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=-\frac{1}{\rho} \frac{\partial P}{\partial x}+\frac{\mu}{\rho}\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right]+g_{x}
$$

According to these above assumptions

$$
\begin{aligned}
0 & =\left(\frac{\partial^{2} u}{\partial y^{2}}\right) \frac{\mu}{\rho}+0 \\
& \Rightarrow \frac{d^{2} u}{d y^{2}}=0
\end{aligned}
$$

Integrating w.r.t ' y '

$$
\Rightarrow \frac{d u}{d y}=c_{1}
$$

Again integrating

$$
\begin{equation*}
y=c_{1} y+c_{2} \tag{ii}
\end{equation*}
$$

\qquad
According to boundary condition

$$
\begin{align*}
& \mathrm{u}=0 \text { at } \mathrm{y}=0 \tag{iii}\\
& \mathrm{u}=\mathrm{U} \text { at } \mathrm{y}=\mathrm{h}
\end{align*}
$$

\qquad
\qquad (iv)

Using (iii) in (ii) we have

$$
\begin{aligned}
& 0=c_{1}(0)+c_{2} \Rightarrow c_{2}=0 \\
& \text { (ii). } \Rightarrow \quad u=c_{1} y \quad \ldots \text { (v) }
\end{aligned}
$$

Using (iv) in (v) we have
$\mathrm{U}=\mathrm{c}_{1} \mathrm{~h} \Rightarrow c_{1}=\frac{U}{h}$
Put in (v)

$$
u=\frac{U}{h} \cdot y
$$

$\frac{u}{U}=\frac{y}{h}$ is the required velocity field for Couette flow.

Case-I: When both plated moves with uniform velocity i.e According to boundary condition

$$
\begin{align*}
& \mathrm{u}=\mathrm{u}_{1} \text { at } \mathrm{y}=0 \tag{vi}\\
& \mathrm{u}=\mathrm{u}_{2} \text { at } \mathrm{y}=\mathrm{h} \tag{vii}
\end{align*}
$$

\qquad
\qquad
From equation (ii)

$$
y=c_{1} y+c_{2}
$$

\qquad (viii)

Using (vi) in (viii) we have

$$
\begin{equation*}
u_{1}=c_{1}(0)+c_{2} \Rightarrow c_{2}=u_{1} \tag{ix}
\end{equation*}
$$

Put in (viii) $\Rightarrow \mathrm{u}=\mathrm{c}_{1} \mathrm{y}+\mathrm{u}_{1}$ \qquad
Using (vii) in (ix) we have

$$
\mathrm{u}_{2}=\mathrm{c}_{1} \mathrm{~h}+\mathrm{u}_{1} \Rightarrow c_{1}=\frac{u_{2}-u_{1}}{h}
$$

Put in (ix)

$$
u=\frac{u_{2}-u_{1}}{h} y+u_{1}
$$

$$
u=\frac{\left(u_{2}-u_{1}\right) y+u_{1} h}{h} \text { which is the required solution. }
$$

Generalization of Couette flow:

It is simple Couette flow with non-zero pressure gradient. Therefore, the boundary conditions are same. The X-component of Navier-Stokes equation is

$$
\begin{equation*}
\frac{d u}{d t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=-\frac{1}{\rho} \frac{\partial P}{\partial x}+\frac{\mu}{\rho}\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right]+g_{x} \tag{i}
\end{equation*}
$$

According to assumptions
(i) One dimensional flow i.e $u=u(y), v=w=0$
(ii) Viscous medium i.e $\mu \neq 0$
(iii) Incompressible flow i.e. $\rho \neq 0$
(iv) Steady flow i.e. independent of time

Collected by: Muhammad Saleem $\quad{ }^{\circ}{ }_{4}^{\circ}$ Composed by: Muzammil Tanveer
(v) No body force i.e. $\mathrm{g}_{\mathrm{x}}=0$

Equation (i)

$$
\begin{gathered}
\Rightarrow 0=-\frac{1}{\rho} \frac{\partial P}{\partial x}+\frac{\mu}{\rho}\left(\frac{\partial^{2} u}{\partial y^{2}}\right) \\
\frac{1}{\rho} \frac{\partial P}{\partial x}=\frac{\mu}{\rho}\left(\frac{\partial^{2} u}{\partial y^{2}}\right) \\
\frac{d^{2} u}{d y^{2}}=\frac{1}{\mu} \frac{d P}{d x}
\end{gathered}
$$

On integrating w.r.t ' y '

$$
\frac{d u}{d y}=\frac{1}{\mu} \frac{d P}{d x} y+c_{1}
$$

Again, integrating w.r.t ' y '

$$
\begin{equation*}
u=\frac{1}{\mu} \frac{d P}{d x} \frac{y^{2}}{2}+c_{1} y+c_{2} \tag{ii}
\end{equation*}
$$

$$
u=\frac{1}{2 \mu} \frac{d P}{d x} y^{2}+c_{1} y+c_{2}
$$

N|UZ Z Using boundary condition

$$
\begin{align*}
& u=0 \text { at } \mathrm{y}=0 \tag{iii}\\
& \mathrm{u}=\mathrm{U} \text { at } \mathrm{y}=\mathrm{h}
\end{align*}
$$

Using (iii) in (ii) we have

$$
0=\frac{1}{2 \mu} \frac{d P}{d x}(0)^{2}+c_{1}(0)+c_{2} \Rightarrow c_{2}=0
$$

Put in (ii)

$$
\begin{equation*}
u=\frac{1}{2 \mu} \frac{d P}{d x} y^{2}+c_{1} y \tag{v}
\end{equation*}
$$

Using (iv) in (v) we have $\quad U=\frac{1}{2 \mu} \frac{d P}{d x} h^{2}+c_{1} h$

$$
c_{1}=\frac{U}{h}-\frac{h}{2 \mu} \frac{d P}{d x}
$$

Put in (v)

$$
\begin{gather*}
u=\frac{1}{2 \mu} \frac{d P}{d x} y^{2}+\left(\frac{U}{h}-\frac{h}{2 \mu} \frac{d P}{d x}\right) y \\
u=\frac{1}{2 \mu} \frac{d P}{d x} y^{2}+\frac{U}{h} y-\frac{h}{2 \mu} \frac{d P}{d x} y \\
u=\frac{U}{h} y+\frac{h y}{2 \mu}\left(-\frac{d P}{d x}\right)+\frac{1}{2 \mu} \frac{d P}{d x} y^{2} \\
u=\frac{U}{h} y+\frac{h y}{2 \mu}\left(-\frac{d P}{d x}\right)\left[1-\frac{y}{h}\right] \tag{vi}
\end{gather*}
$$

Which is the equation for the velocity field of generalized Couette flow.
Equation (vi) can be written as

$$
\begin{gather*}
\frac{u}{U}=\frac{y}{h}+\frac{h y}{2 \mu U}\left(-\frac{d P}{d x}\right)\left[1-\frac{y}{h}\right] \\
\frac{u}{U}=\frac{y}{h}+h^{2}\left(\frac{y}{h}\right) \frac{1}{2 \mu U}\left(-\frac{d P}{d x}\right)\left[1-\frac{y}{h}\right]- \tag{vii}
\end{gather*}
$$

*Let $\alpha=\frac{h^{2}}{2 \mu} U\left(\frac{-d P}{d x}\right)$ be the dimensionless pressure gradient. Equation (vii) becomes

$$
\begin{equation*}
\frac{u}{U}=\frac{y}{h}+\alpha\left(\frac{y}{h}\right)\left[1-\frac{y}{h}\right] \tag{viii}
\end{equation*}
$$

Case-I: If $\alpha>0 \Rightarrow \frac{d P}{d x}<0 \quad *$ Pressure is decreasing in the direction of flow.
Case-II: If $\alpha<0 \Rightarrow \frac{d P}{d x}>0 \quad *$ Pressure is increasing in the direction of flow.
Case-III: If $\alpha=0 \Rightarrow \frac{d P}{d x}=0$ equation (viii) becomes $\frac{u}{U}=\frac{y}{h}$ which is the solution of simple Couette flow.

Collected by: Muhammad Saleem

Lecture \# 09

Plane Poiseuille flow:

If two parallel plates are stationary, the fully developed between the plates is generally referred to as place Poiseuille flow.
Let plane is situated at

$$
y=\frac{-h}{2} \text { and } y=\frac{h}{2} \text {. }
$$

The X-component of Navier-Stokes equation is

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=\frac{-1}{\rho} \frac{d P}{d x}+\frac{\mu}{\rho}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)+g_{x}
$$

Now without body forces. (Apply assumption)

$$
\begin{align*}
& 0=\frac{-1}{\rho} \frac{d P}{d x}+\frac{\mu}{\rho} \frac{\partial^{2} u}{\partial y^{2}} \\
\Rightarrow & \frac{d^{2} u}{d y^{2}}=\frac{1}{\mu} \frac{d P}{d x} \tag{i}
\end{align*}
$$

Integrate w.r.t ' y '

$$
\frac{d u}{d y}=\frac{1}{\mu} \frac{d P}{d x} y+c_{1}
$$

Again, integrate w.r.t 'y'

$$
\begin{array}{r}
u=\frac{1}{\mu} \frac{d P}{d x} \frac{y^{2}}{2}+c_{1} y+c_{2} \tag{ii}\\
u=\frac{1}{2 \mu} \frac{d P}{d x} y^{2}+c_{1} y+c_{2}
\end{array}
$$

Boundary conditions are

$$
\begin{equation*}
u=0 \text { at } y=\frac{h}{2} \tag{iii}
\end{equation*}
$$

\qquad
Collected by: Muhammad Saleem

$$
\begin{equation*}
u=0 \text { at } y=-\frac{h}{2} \tag{iv}
\end{equation*}
$$

\qquad

Using equation (iii) and (iv) in (ii)

$$
\begin{align*}
& 0=\frac{1}{2 \mu} \frac{d P}{d x} \frac{h^{2}}{4}+c_{1} \frac{h}{2}+c_{2} \tag{v}\\
& 0=\frac{1}{2 \mu} \frac{d P}{d x} \frac{h^{2}}{4}-c_{1} \frac{h}{2}+c_{2} \tag{vi}
\end{align*}
$$

Adding equation (v) and (vi)

$$
\begin{gathered}
0=2\left(\frac{1}{2 \mu} \frac{d P}{d x} \frac{h^{2}}{4}\right)+2 c_{2} \\
2 c_{2}=-\frac{h^{2}}{4 \mu} \frac{d P}{d x} \\
\Rightarrow c_{2}=-\frac{h^{2}}{8 \mu} \frac{d P}{d x}
\end{gathered}
$$

On subtracting (v) and (vi)

$$
\mathbb{V} \cup V_{0}=0+2\left(\frac{h}{2} c_{1}\right)+0 \Rightarrow c_{1}=0
$$

Equation (ii) becomes

$$
\begin{gathered}
u=\frac{1}{2 \mu} \frac{d P}{d x} y^{2}+0-\frac{h^{2}}{8 \mu} \frac{d P}{d x} \\
u=\frac{-h^{2}}{8 \mu} \frac{d P}{d x}\left(1-\frac{4 y^{2}}{h^{2}}\right)
\end{gathered}
$$

Which is velocity profile of the fully developed laminar flow between two parallel plates is parabolic. Thus, if the pressure gradient viscosity and place spacing are specified then the velocity distribution can be determined.

Poiseuille flow or General Poiseuille flow:

Steady viscous fluid flow drives by an effect of pressure gradient established between the ends of a long straight pipe of uniform circular cross-section or between two parallel plates both are at rest. This flow is symmetric and axis symmetric. If $v=(u, v, w)$ then $u \neq 0$ and $v=w=0$. Also $u=u(y, z)$.
X -component of Navier-Stokes equation is

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=\frac{-1}{\rho} \frac{d P}{d x}+v \nabla^{2} u+g_{x} \quad \text { where } v=\frac{\mu}{\rho} \\
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=\frac{-1}{\rho} \frac{d P}{d x}+\frac{\mu}{\rho}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)+g_{x}
\end{aligned}
$$

Without body forces (by assumption)

$$
0=\frac{-1}{\rho} \frac{d P}{d x}+v\left(\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right) \because u=u(y, z)
$$

Similarly, for y-component

$$
0=\frac{-1}{\rho} \frac{d P}{d y} \Rightarrow \frac{d P}{d z}=0 \Rightarrow P \neq P(z)
$$

\Rightarrow pressure is also independent of z .
So, $\mathrm{P}=\mathrm{P}(\mathrm{x})$. The X -component becomes

$$
\begin{gather*}
0=\frac{-1}{\rho} \frac{d P}{d x}+v \nabla^{2} u \quad \because u=u(y, z) \\
0=\frac{-1}{\rho} \frac{d P}{d x}+\frac{\mu}{\rho} \nabla^{2} u \\
\frac{d P}{d x}=\mu \nabla^{2} u \\
\frac{1}{\mu} \frac{d P}{d x}=\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}} \tag{i}
\end{gather*}
$$

Now we make some substitutions
Collected by: Muhammad Saleem $\quad{ }_{50}{ }^{\circ}$ Composed by: Muzammil Tanveer

$$
\begin{aligned}
& y^{*}=\frac{y}{h}, z^{*}=\frac{z}{h}, \mathrm{u}^{*}=\frac{\mu u}{h^{2}\left(\frac{-d P}{d x}\right)} \\
& \Rightarrow y=h y^{*}, z=z^{*} h, \mathrm{u}=\frac{\mathrm{u}^{*} h^{2}\left(\frac{-d P}{d x}\right)}{\mu}
\end{aligned}
$$

Putting these values in (i)

$$
\begin{gathered}
\frac{1}{\mu} \frac{d P}{d x}=\frac{\partial^{2}}{\partial\left(h y^{*}\right)^{2}}\left[u^{*} h^{2}\left(\frac{-d P}{d x}\right)\right]+\frac{\partial^{2}}{\partial\left(h z^{*}\right)^{2}}\left[u^{*} h^{2}\left(\frac{-d P}{d x}\right)\right] \\
\frac{1}{\mu} \frac{d P}{d x}=\frac{h^{2}\left(\frac{-d P}{d x}\right)}{h^{2} \mu}\left[\frac{\partial^{2}}{\partial y^{* 2}}+\frac{\partial^{2}}{\partial z^{* 2}}\right] \\
1=-\nabla^{2} u^{*}
\end{gathered}
$$

$\Rightarrow \nabla^{2} u^{*}+1=0$ Which is called Poiseuille equation.

Steady laminar flow through a circular pipe (The Hagen-Poiseuille

 flow):Consider the steady laminar flow of a viscus incompressible fluid in an infinitely long straight, horizontal circular pipe of radius R as shown in figure.

Let z -axis be along the axis of the pipe and r denote the radial direction measured outward from the z -axis. Let the direction of the flow be along the axis of pipe i.e z-axis. The axially symmetric flow in a circular Flow. Clearly the flow is one-dimensional.

The velocity component in the radial and tangential direction are zero. $V_{r}=V_{\theta}=0$. Under these assumptions the equation of continuity in cylindrical coordinates is Collected by: Muhammad Saleem $\quad{ }_{51}^{\circ}$ Composed by: Muzammil Tanveer

$$
\begin{gathered}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \cdot V_{r}\right)+\frac{1}{r} \frac{\partial V_{\theta}}{\partial \theta}+\frac{\partial V_{z}}{\partial z}=0 \\
\text { Reduce to } \frac{\partial V_{z}}{\partial z}=0
\end{gathered}
$$

Showing that V_{z} is independent of z due to axial symmetry of the flow. V_{z} will be independent of θ. Also, V_{z} is a function of r only i.e. $V_{z}=V_{z}(r)$ \qquad
The Navier-Stokes equation without body forces in cylindrical coordinates reduce to

$$
\left.\begin{array}{l}
0=\frac{-1}{\rho} \frac{\partial P}{\partial r} \\
0=\frac{-1}{\rho r} \frac{\partial P}{\partial \theta} \tag{iii}\\
0=\frac{-1}{\rho} \frac{\partial P}{\partial z}+v\left[\frac{\partial^{2} V_{z}}{\partial r^{2}}+\frac{1}{r} \frac{\partial V_{z}}{\partial r}\right]
\end{array}\right\}
$$

Equation (iii) can be written as

$$
\frac{\partial P}{\partial r}=\frac{\partial P}{\partial \theta}=0
$$

$\mathrm{P}=\mathrm{P}(\mathrm{z})$ or P is a function of z alone and

$$
\begin{gathered}
\frac{\partial P}{\partial z}=\mu\left[\frac{\partial^{2} V_{z}}{\partial r^{2}}+\frac{1}{r} \frac{\partial V_{z}}{\partial r}\right] \\
\Rightarrow \frac{\partial P}{\partial z}=\frac{\partial^{2} V_{z}}{\partial r^{2}}+\frac{\mu}{r} \frac{\partial V_{z}}{\partial r} \\
\text { Multiplyby } \frac{r}{\mu} \\
\frac{r}{\mu} \frac{d P}{d z}=r \frac{d^{2} V_{z}}{d r^{2}}+\frac{d V_{z}}{d r}
\end{gathered}
$$

$$
\begin{gather*}
\frac{r}{\mu} \frac{d P}{d z}=\frac{d}{d r}\left(r \frac{d V_{z}}{d r}\right) \\
\text { Integrate w.r.t ' } r \text { ' } \\
r \frac{d V_{z}}{d r}=\frac{r^{2}}{2 \mu} \frac{d P}{d z}+A \\
\frac{d V_{z}}{d r}=\frac{r}{2 \mu} \frac{d P}{d z}+\frac{1}{r} A \quad \because \text { divide byr } \\
\text { Again integrating } \\
V_{z}=\frac{r^{2}}{4 \mu} \frac{d P}{d z}+A \ln r+B \quad(i v) \tag{iv}
\end{gather*}
$$

Where the arbitrary constant A and B are to be determined from the boundary condition. The first boundary condition is found from the symmetry of the flow which requires that V_{z} must be finite on the axis of the pipe $(r=0)$. It follows that we must take $A=0$ because otherwise V_{z} would be infinite at $r=0$. Thus equation (iv) reduce to

$$
V_{z}=\frac{r^{2}}{4 \mu} \frac{d P}{d z}+B
$$

The second boundary condition $\mathrm{V}_{\mathrm{z}}=0$ at $\mathrm{r}=\mathrm{R}$. With this boundary condition the constant B is obtained from (v)

$$
0=\frac{R^{2}}{4 \mu} \frac{d P}{d z}+B \Rightarrow B=-\frac{R^{2}}{4 \mu} \frac{d P}{d z}
$$

Put the value of B in (v) we get the axial velocity distribution of Hagen Poiseuille flow through pipe as

$$
V_{z}=\frac{r^{2}}{4 \mu} \frac{d P}{d z}-\frac{R^{2}}{4 \mu} \frac{d P}{d z}
$$

$V_{z}=-\frac{R^{2}}{4 \mu} \frac{d P}{d z}\left[1-\frac{r^{2}}{R^{2}}\right] \Rightarrow V_{z}=-\frac{R^{2}}{4 \mu} \frac{d P}{d z}\left[1-\left(\frac{r}{R}\right)^{2}\right]$ which has the form of
paraboloid of revolution.
Collected by: Muhammad Saleem

Lecture \# 10

Couette-Poiseuille flow:

As we have $\bar{V}=(u, v, w)$. For one dimension (parallel flow) we can write as $\bar{V}=(0,0,0)$ i.e. $\mathrm{v}=0, \mathrm{w}=0$ and $\mathrm{u} \neq 0$. Also, the equation of continuity in 2-D is

$$
\begin{gathered}
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0 \text { where } \mathrm{u}, \mathrm{v} \text { are component of } \bar{V} \text { and we have } \mathrm{v}=0 \\
\Rightarrow \frac{\partial u}{\partial x}=0
\end{gathered}
$$

So, $u=u(y), u \neq u(x), u$ is a function of y and independent of x i.e. there is no change in u w.r.t x.
Now from the Navier-Stokes equation in 2-D x-component

$$
\begin{equation*}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=-\frac{1}{\rho} \frac{\partial P}{\partial x}+v\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right] \tag{i}
\end{equation*}
$$

y-component $u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}=-\frac{1}{\rho} \frac{\partial P}{\partial y}+v\left[\frac{\partial^{2} y}{\partial x^{2}}+\frac{\partial^{2} y}{\partial y^{2}}\right]$
As we have $\frac{\partial u}{\partial x}=0, v=0$ and $u=u(y)$
Using these values in equation (i) and (ii)

$$
\begin{align*}
& 0=-\frac{1}{\rho} \frac{\partial P}{\partial x}+v \frac{\partial^{2} u}{\partial y^{2}} \\
& v \frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{\rho} \frac{\partial P}{\partial x} \\
& \Rightarrow \frac{\mu}{\rho} \frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{\rho} \frac{\partial P}{\partial x} \quad \because v=\frac{\mu}{\rho} \\
& \Rightarrow \mu \frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial P}{\partial x} \quad---(i i i) \tag{iii}
\end{align*}
$$

Collected by: Muhammad Saleem
(ii) $\Rightarrow \quad 0=-\frac{1}{\rho} \frac{\partial P}{\partial y} \Rightarrow \frac{\partial P}{\partial y}=0$

It means $\mathrm{P} \neq \mathrm{P}(\mathrm{y}), \mathrm{P}=\mathrm{P}(\mathrm{x}) . \mathrm{P}$ is a function of x . Thus, from equation (iii)

$$
\begin{equation*}
\mu \frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial P}{\partial x} \tag{iv}
\end{equation*}
$$

Now we take Poiseuille and Couette at a time. For example, the equation (iv) is of Poiseuille but conditions are of Couette. The boundary conditions are

$$
\begin{aligned}
& y=0 \text { then } u=0 \\
& y=h \text { then } u=U
\end{aligned}
$$

Equation (iv) can be written as

$$
\begin{aligned}
& \frac{d^{2} u}{d y^{2}}=\frac{1}{\mu} \frac{d P}{d x} \\
& \left(\frac{d u}{d y}\right)=\frac{1}{\mu} \frac{d P}{d x} \\
& d\left(\frac{d u}{d y}\right)=\frac{1}{\mu} \frac{d P}{d x} . d y
\end{aligned}
$$

$$
y=0 \quad u=0
$$

On integration

$$
\begin{equation*}
\frac{d u}{d y}=\frac{1}{\mu} \frac{d P}{d x} \cdot y+c_{1} \tag{v}
\end{equation*}
$$

\qquad

Again, on integration

$$
\begin{equation*}
u=\frac{1}{2 \mu} \frac{d P}{d x} \cdot y^{2}+c_{1} y+c_{2} \tag{vi}
\end{equation*}
$$

\qquad
By applying boundary conditions

$$
\text { When } \mathrm{y}=0, \mathrm{u}=0
$$

(vi) $\Rightarrow 0=0+0+\mathrm{c}_{2} \Rightarrow \mathrm{c}_{2}=0$

$$
\begin{gather*}
\Rightarrow u=\frac{1}{2 \mu} \frac{d P}{d x} \cdot y^{2}+c_{1} y \tag{vii}\\
\text { When } \mathrm{y}=\mathrm{h}, \mathrm{u}=\mathrm{U} \\
\Rightarrow U=\frac{1}{2 \mu} \frac{d P}{d x} \cdot \mathrm{~h}^{2}+c_{1} h \\
c_{1} h=U-\frac{\mathrm{h}^{2}}{2 \mu} \frac{d P}{d x} \\
c_{1}=\frac{U}{h}-\frac{\mathrm{h}}{2 \mu} \frac{d P}{d x}
\end{gather*}
$$

Put in (vii)
$u=\frac{1}{2 \mu} \frac{d P}{d x} \cdot y^{2}+\left(\frac{U}{h}-\frac{\mathrm{h}}{2 \mu} \frac{d P}{d x}\right) y$
$u=\frac{1}{2 \mu} \frac{d P}{d x} \cdot y^{2}+\frac{U}{h} y-\frac{\mathrm{h}}{2 \mu} \frac{d P}{d x} y$
$u=\frac{U}{h} y-\frac{\mathrm{h}}{2 \mu} \frac{d P}{d x} y \frac{1}{2 \mu} \frac{d P}{d x} \cdot y^{2}$

$$
u=\frac{y}{h} U-\frac{\mathrm{h}}{2 \mu} \frac{d P}{d x} y\left(1-\frac{y}{h}\right)
$$

$$
u=\frac{y}{h} U-\frac{\mathrm{h}^{2}}{2 \mu} \frac{d P}{d x} \frac{y}{h}\left(1-\frac{y}{h}\right)
$$

Which is combine Couette Poiseuille equation.
For non-dimensional

$$
\begin{gathered}
\frac{u}{U}=\frac{y}{h}+\frac{\mathrm{h}^{2}}{2 \mu}\left(-\frac{d P}{d x}\right) \cdot \frac{1}{U} \frac{y}{h}\left(1-\frac{y}{h}\right) \\
\frac{u}{U}=\frac{y}{h}+\bar{P} \frac{y}{h}\left(1-\frac{y}{h}\right) \quad \text { where } \bar{P}=\frac{\mathrm{h}^{2}}{2 \mu}\left(-\frac{d P}{d x}\right) \cdot \frac{1}{U}
\end{gathered}
$$

\bar{P} is non-dimensional pressure.
Non-dimensional equation of Couette Poiseuille at a time.

Let $u^{*}=\frac{u}{U}, y^{*}=\frac{y}{h} \Rightarrow u^{*}=y^{*}+\bar{P} y^{*}\left(1-y^{*}\right)$
This is the required Couette Poiseuille flow at a time.

Flow between two concentric rotating cylinders:

Consider the steady laminar flow of a viscous incompressible fluid between two infinitely long concentric rotating cylinder with radii R_{1} and $\mathrm{R}_{2}\left(\mathrm{R}_{2}>\mathrm{R}_{1}\right)$. Let ω_{1} and ω_{1} be the steady angular velocities (speed / rotating speed) of the inner and outer cylinder respectively as shown in figure.

Assume the flow between the cylinders to be peripheral (circular or round about) so that we have only the tangential component of velocity V_{θ} i.e. $\mathrm{V}_{\mathrm{r}}=\mathrm{V}_{\mathrm{z}}=0$. The equation of continuity in cylindrical coordinates is

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r V_{r}\right)+\frac{1}{r} \frac{\partial V_{\theta}}{\partial \theta}+\frac{\partial V_{z}}{\partial z}=0
$$

Reduces to $\frac{\partial V_{\theta}}{\partial \theta}=0$ \qquad (i) $\because V_{r}=V_{z}=0$

So, that V_{θ} does not depend on θ and $\mathrm{V}_{\theta}=\mathrm{V}_{\theta}(\mathrm{r}, \mathrm{z})$. Also, since the cylinders are infinitely long. $\mathrm{So}, \mathrm{V}_{\theta}$ cannot be a function of z . Thus, we have

$$
\begin{equation*}
\mathrm{V}_{\theta}=\mathrm{V}_{\theta}(\mathrm{r}) \tag{ii}
\end{equation*}
$$

The Navier Stokes equation in cylindrical coordinates are
R - component
$\rho\left(\frac{\partial u_{r}}{\partial t}+u_{r} \frac{\partial u_{r}}{\partial t}+\frac{u_{\theta}}{r} \frac{\partial u_{r}}{\partial \theta}-\frac{u_{\theta}^{2}}{r}+u_{z} \frac{\partial u_{r}}{\partial z}\right)=-\frac{\partial P}{\partial z}+\rho g_{r}$

$$
+\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{r}}{\partial r}\right)-\frac{u_{r}}{r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} u_{r}}{\partial \theta^{2}}-\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial^{2} u_{r}}{\partial z^{2}}\right]
$$

θ-Component

$$
\begin{aligned}
& \rho\left(\frac{\partial u_{\theta}}{\partial t}+u_{r} \frac{\partial u_{\theta}}{\partial t}+\frac{u_{\theta}}{r} \frac{\partial u_{\theta}}{\partial \theta}-\frac{u_{r} u_{\theta}}{r}+u_{z} \frac{\partial u_{\theta}}{\partial z}\right)=-\frac{1}{r} \frac{\partial P}{\partial \theta}+\rho g_{\theta} \\
& +\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{\theta}}{\partial r}\right)-\frac{u_{\theta}}{r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} u_{\theta}}{\partial \theta^{2}}-\frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta}+\frac{\partial^{2} u_{\theta}}{\partial z^{2}}\right]
\end{aligned}
$$

z-component

$$
\begin{aligned}
& \rho\left(\frac{\partial u_{z}}{\partial t}+u_{r} \frac{\partial u_{z}}{\partial t}+\frac{u_{\theta}}{r} \frac{\partial u}{\partial \theta}+u_{z} \frac{\partial u_{z}}{\partial z}\right)=-\frac{1}{r} \frac{\partial P}{\partial z}+\rho g_{z} \\
& +\mu\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u_{z}}{\partial \theta^{2}}+\frac{\partial^{2} u_{z}}{\partial z^{2}}\right]
\end{aligned}
$$

The Navier Stokes equation in cylindrical polar coordinates for present case reduces to

$$
\begin{gather*}
\text { VUZ }-\rho \frac{V_{\theta}^{2}}{r}=-\frac{\partial P}{\partial r} \tag{iii}\\
0=-\frac{1}{r} \frac{\partial P}{\partial \theta}+\mu\left[\frac{\partial^{2} V_{\theta}}{\partial r^{2}}+\frac{1}{r} \frac{\partial V_{\theta}}{\partial r}-\frac{V_{\theta}}{r^{2}}\right] \tag{iv}\\
0=-\frac{\partial P}{\partial z}- \tag{v}
\end{gather*}
$$

Equation (v) shows that P is independent of z . So, $\mathrm{P}=\mathrm{P}(\mathrm{r}, \theta)$.
Since V_{θ} is a function of ' r ' only. It follows that form equation (iii) the pressure must be function of ' r ' only i.e. $\mathrm{P}=\mathrm{P}\left(\mathrm{r}\right.$). Hence the term $\frac{\partial P}{\partial \theta}$ in (iv) is zero. The equation (iii) and (iv) can be written as

$$
\begin{equation*}
\rho \frac{V_{\theta}^{2}}{r}=\frac{d P}{d r} \tag{vi}
\end{equation*}
$$

Collected by: Muhammad Saleem

$$
\begin{equation*}
\frac{d^{2} V_{\theta}}{d r^{2}}+\frac{1}{r} \frac{d V_{\theta}}{d r}-\frac{V_{\theta}}{r^{2}}=0 \tag{vii}
\end{equation*}
$$

\qquad
Equation (vii) can be written as

$$
\frac{d^{2} V_{\theta}}{d r^{2}}+\frac{d}{d r}\left(\frac{V_{\theta}}{r}\right)=0
$$

On integration

$$
\begin{gathered}
\frac{d V_{\theta}}{d r}+\frac{V_{\theta}}{r}=2 A \quad \because 2 \mathrm{~A} \text { is constant } \\
\frac{1}{r}\left(r \frac{d V_{\theta}}{d r}+V_{\theta}\right)=2 A \\
\frac{d}{d r}\left(r V_{\theta}\right)=2 A r
\end{gathered}
$$

Again, on integration

$$
\begin{align*}
& r V_{\theta}=2 A \cdot \frac{r^{2}}{2}+B \\
& r V_{\theta}=A r^{2}+B \\
& \Rightarrow V_{\theta}=A r+\frac{B}{r} \tag{viii}
\end{align*}
$$

Where A and B are constant of integration. The boundary conditions of this rotating cylinder are

$$
\begin{array}{lll}
V_{\theta}=R_{1} \omega_{1} & \text { at } r=R_{1} & \because v=r \omega \\
V_{\theta}=R_{2} \omega_{2} \quad \text { at } r=R_{2} & \because v=r \omega
\end{array}
$$

Using these conditions equations (viii) becomes

$$
\begin{align*}
& R_{1} \omega_{1}=R_{1} A+\frac{B}{R_{1}} \tag{ix}\\
& R_{2} \omega_{2}=R_{2} A+\frac{B}{R_{2}} \tag{x}
\end{align*}
$$

Collected by: Muhammad Saleem

Solving these equation (ix) and (x)

$$
\begin{array}{r}
A=\frac{R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}}{R_{2}^{2}-R_{1}^{2}} \\
B=\frac{-R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{R_{2}^{2}-R_{1}^{2}}
\end{array}
$$

Put these values of A and B in (viii)

$$
V_{\theta}=r\left(\frac{R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}}{R_{2}^{2}-R_{1}^{2}}\right)+\frac{1}{r}\left(\frac{-R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{R_{2}^{2}-R_{1}^{2}}\right)
$$

Muzammil Tanveer

Lecture \# 11

We know that

$$
\begin{array}{r}
V_{\theta}=r\left(\frac{R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}}{R_{2}^{2}-R_{1}^{2}}\right)+\frac{1}{r}\left(\frac{-R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{R_{2}^{2}-R_{1}^{2}}\right) \\
V_{\theta}=\frac{1}{R_{2}^{2}-R_{1}^{2}}\left[\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) r-\left(\frac{R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{r}\right)\right] . \tag{A}
\end{array}
$$

Angular Velocity:

Let ω be the angular velocity of the fluid then $V_{\theta}=r \omega \Rightarrow \omega=\frac{V_{\theta}}{r}$ from equation
(A) we get

$$
\begin{gather*}
\omega=\frac{1}{r}\left[\frac{1}{R_{2}^{2}-R_{1}^{2}}\left\{\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) r-\left(\frac{R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{r}\right)\right\}\right] \\
\omega=\frac{1}{R_{2}^{2}-R_{1}^{2}}\left\{\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right)-\left(\frac{R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{r^{2}}\right)\right\} \\
\omega=\frac{1}{R_{2}^{2}-R_{1}^{2}}\left[\frac{\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) r^{2}-R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{r^{2}}\right] \\
\omega=\frac{1}{R_{2}^{2}-R_{1}^{2}}\left[\frac{R_{2}^{2} \omega_{2} r^{2}-R_{1}^{2} \omega_{1} r^{2}-R_{1}^{2} R_{2}^{2} \omega_{2}+R_{1}^{2} R_{2}^{2} \omega_{1}}{r^{2}}\right] \\
\omega=\frac{R_{1}^{2}\left(R_{2}^{2}-r^{2}\right) \omega_{1}-R_{2}^{2}\left(R_{1}^{2}-r^{2}\right) \omega_{2}}{\left(R_{2}^{2}-R_{1}^{2}\right) r^{2}}
\end{gather*}
$$

Pressure distribution:

The radial pressure distribution resulting from the peripheral motion can be determined form the equation

Collected by: Muhammad Saleem

$$
\begin{gathered}
\rho \frac{V_{\theta}^{2}}{r}=\frac{d P}{d r} \\
\frac{d P}{d r}=\frac{\rho}{r} V_{\theta}^{2} \\
\frac{d P}{d r}=\frac{\rho}{r} \cdot \frac{1}{\left(R_{2}^{2}-R_{1}^{2}\right)^{2}}\left[\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) r-\left(\frac{R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{r}\right)\right]^{2} \\
\frac{d P}{d r}=\frac{\rho}{r} \cdot \frac{1}{\left(R_{2}^{2}-R_{1}^{2}\right)^{2}}\left[\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right)^{2} r^{2}+\left(\frac{R_{1}^{4} R_{2}^{4}\left(\omega_{2}-\omega_{1}\right)^{2}}{r^{2}}\right)-2\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) r \cdot\left(\frac{R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{r}\right)\right] \\
\frac{d P}{d r}=\frac{\rho}{\left(R_{2}^{2}-R_{1}^{2}\right)^{2}}\left[\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right)^{2} r+\left(\frac{R_{1}^{4} R_{2}^{4}\left(\omega_{2}-\omega_{1}\right)^{2}}{r^{3}}\right)-\frac{2\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) \cdot R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{r}\right]
\end{gathered}
$$

On integration

$$
\text { Since } P=P_{1} \text { at } r=R_{1} \text { we get }
$$

$$
\begin{aligned}
P_{1} & =\frac{\rho}{\left(R_{2}^{2}-R_{1}^{2}\right)^{2}}\left[\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) \frac{R_{1}^{2}}{2}-\frac{R_{1}^{4} R_{2}^{4}\left(\omega_{2}-\omega_{1}\right)^{2}}{2 R_{1}^{2}}-2\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) \cdot R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right) \ln R_{1}\right]+c_{1} \\
c_{1} & =P_{1}-\frac{\rho}{\left(R_{2}^{2}-R_{1}^{2}\right)^{2}}\left[\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) \frac{R_{1}^{2}}{2}-\frac{R_{1}^{4} R_{2}^{4}\left(\omega_{2}-\omega_{1}\right)^{2}}{2 R_{1}^{2}}-2\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) \cdot R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right) \ln R_{1}\right]
\end{aligned}
$$

Put the value of c_{1} in equation (C)

$$
P=\frac{\rho}{\left(R_{2}^{2}-R_{1}^{2}\right)^{2}}\left[\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) \frac{r^{2}}{2}-\frac{R_{1}^{4} R_{2}^{4}\left(\omega_{2}-\omega_{1}\right)^{2}}{2 r^{2}}-2\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) \cdot R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right) \ln r\right]
$$

$$
+P_{1}-\frac{\rho}{\left(R_{2}^{2}-R_{1}^{2}\right)^{2}}\left[\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) \frac{R_{1}^{2}}{2}-\frac{R_{1}^{4} R_{2}^{4}\left(\omega_{2}-\omega_{1}\right)^{2}}{2 R_{1}^{2}}-2\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) \cdot R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right) \ln R_{1}\right]
$$

Collected by: Muhammad Saleem

$$
\begin{align*}
& P=P_{1}^{+}+\frac{\rho}{\left(R_{2}^{2}-R_{1}^{2}\right)^{2}}\left[\left(R_{2}^{2} \omega_{2}-R_{1}^{2}(\omega)\left(\frac{r^{2}}{2}-\frac{R_{1}^{2}}{2}\right)-\frac{R_{R}^{4} R_{2}^{R}\left(\omega_{2}-\omega\right)^{2}}{2}\left(\frac{1}{r^{2}}-\frac{1}{R_{1}^{2}}\right)-2\left(R_{2}^{2} \omega_{2}-R_{1}^{2}(\alpha) \cdot R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega\right)\left(\ln r-\ln R_{1}\right)\right]\right.\right. \\
& P=P_{1}+\frac{\rho}{\left(R_{2}^{2}-R_{1}^{2}\right)^{2}}\left[\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega\right)\left(\frac{r^{2}-R_{1}^{2}}{2}\right)-\frac{R_{1}^{t} R_{2}^{4}\left(\omega_{2}-\omega\right)^{2}}{2}\left(\frac{1}{r^{2}}-\frac{1}{R_{1}^{2}}\right)-2\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega\right) \cdot R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega\right)\left(\frac{\ln r}{\ln R_{1}}\right)\right] \tag{D}
\end{align*}
$$

This equation is the required pressure distribution and can be used to find the pressure of rotating cylinder.

Maximum Velocity:

The maximum velocity will occur at the position r where $\frac{d V_{\theta}}{d r}=0$
Now from equation (A) $\Rightarrow V_{\theta}=\frac{1}{R_{2}^{2}-R_{1}^{2}}\left[\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) r-\left(\frac{R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{r}\right)\right]$

$$
\frac{d V_{\theta}}{d r}=\frac{1}{R_{2}^{2}-R_{1}^{2}}\left[\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right)+\left(\frac{R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{r^{2}}\right)\right]
$$

$$
\text { VUZan } \operatorname{Put} \frac{d V_{\theta}}{d r}=0
$$

$$
\begin{aligned}
& \frac{1}{R_{2}^{2}-R_{1}^{2}}\left[\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right)+\left(\frac{R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{r^{2}}\right)\right]=0 \\
& \frac{1}{R_{2}^{2}-R_{1}^{2}}\left[\frac{\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) r^{2}+R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{r^{2}}\right]=0
\end{aligned}
$$

$$
\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) r^{2}+R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)=0
$$

$$
\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) r^{2}=-R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)
$$

$$
\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) r^{2}=R_{1}^{2} R_{2}^{2}\left(\omega_{1}-\omega_{2}\right)
$$

Collected by: Muhammad Saleem

$$
\begin{array}{r}
r^{2}=\frac{R_{1}^{2} R_{2}^{2}\left(\omega_{1}-\omega_{2}\right)}{\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right)} \\
r=R_{1} R_{2} \sqrt{\frac{\left(\omega_{1}-\omega_{2}\right)}{R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}}} \\
r=R_{1} R_{2} \sqrt{\frac{\left(\omega_{1}-\omega_{2}\right)}{R_{2}^{2}\left(\omega_{2}-\frac{R_{1}^{2} \omega_{1}}{R_{2}^{2}}\right)}} \\
r=R_{1} \sqrt{\frac{\left(\omega_{1}-\omega_{2}\right)}{\omega_{2}-\frac{R_{1}^{2} \omega_{1}}{R_{2}^{2}}}} \tag{E}
\end{array}
$$

For objectives

- Several possible situations can arises depending on the value of angular velocities ω_{1} and ω_{2}.
- If $\omega_{1}>\omega_{2}$ the numerator is negative. Then since $\mathrm{R}_{2}>\mathrm{R}_{1}$ we have $\omega_{2}-\left(\frac{R_{1}}{R_{2}}\right)^{2} \omega_{1}>0$ and there is no real value of r . This implies that fluid velocity increases continuously from $V_{\theta}=R_{1} \omega_{1}$ at the inner surface to $V_{\theta}=R_{2} \omega_{2}$ at the outer surface.
- If $\omega_{2}<\omega_{1}$, the numerator is positive. However, there are three possibilities depending on the denominator $\left[\omega_{2}-\left(\frac{R_{1}}{R_{2}}\right)^{2} \omega_{1}\right]$ being positive, negative or zero.
(i) If $\omega_{2}>\left(\frac{R_{1}}{R_{2}}\right)^{2} \omega_{1}$ the denominator is positive and there is a real value occurs at a definite radius r .
(ii) If $\omega_{2}<\left(\frac{R_{1}}{R_{2}}\right)^{2} \omega_{1}$ the denominator is negative and there is no real value of radius r .
Collected by: Muhammad Saleem $\quad{ }_{64}^{\circ} \quad$ Composed by: Muzammil Tanveer
(iii) If $\omega_{2}=\left(\frac{R_{1}}{R_{2}}\right)^{2} \omega_{1}$ the value of radius r is indeterminate.

To summarize the tangential velocity attains a Maximum value at some radius attains a maximum value at some radius $\mathrm{R}_{1}<\mathrm{r}<\mathrm{R}_{2}$ only if $\omega_{1}>\omega_{2}>\left(\frac{R_{1}}{R_{2}}\right)^{2} \omega_{1}$

Shearing Stress:

The shearing stress in this case can be determined from

$$
\begin{gather*}
\tau_{r \theta}=\mu\left[r \frac{d}{d r}\left(\frac{V_{\theta}}{r}\right)-\frac{1}{r} \frac{\partial V_{r}}{\partial \theta}\right] \\
\text { Since } \mathrm{V}_{\mathrm{r}}=0 \\
\Rightarrow \tau_{r \theta}=\mu\left[r \frac{d}{d r}\left(\frac{V_{\theta}}{r}\right)\right] \\
\Rightarrow \tau_{r \theta}=\mu\left[r \frac{d}{d r}\left[\frac{1}{r} \cdot \frac{1}{R_{2}^{2}-R_{1}^{2}}\left\{\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right) r-\left(\frac{R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{r}\right)\right\}\right]\right] \\
\Rightarrow \tau_{r \theta}= \\
\frac{\mu r}{R_{2}^{2}-R_{1}^{2}} \cdot \frac{d}{d r}\left\{\left(R_{2}^{2} \omega_{2}-R_{1}^{2} \omega_{1}\right)-\left(\frac{R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{r^{2}}\right)\right\} \\
\Rightarrow \tau_{r \theta}=\frac{\mu r}{R_{2}^{2}-R_{1}^{2}} \cdot\left(0+\frac{2 R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{r^{3}}\right) \\
\Rightarrow \tau_{r \theta}=\frac{\mu r}{R_{2}^{2}-R_{1}^{2}} \cdot\left(\frac{2 R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{r^{3}}\right) \tag{F}\\
\Rightarrow \tau_{r \theta}=\frac{2 \mu R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{\left(R_{2}^{2}-R_{1}^{2}\right) r^{2}}-(F)
\end{gather*}
$$

The shearing stress at the walls of inner cylinder is

$$
\begin{equation*}
\left(\tau_{r \theta}\right)_{r=R_{1}}=\frac{2 \mu R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{\left(R_{2}^{2}-R_{1}^{2}\right) R_{1}^{2}}=\frac{2 \mu R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{\left(R_{2}^{2}-R_{1}^{2}\right)} \tag{G}
\end{equation*}
$$

The shearing stress at the walls of outer cylinder is

$$
\begin{equation*}
\left(\tau_{r \theta}\right)_{r=R_{2}}=\frac{2 \mu R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{\left(R_{2}^{2}-R_{1}^{2}\right) R_{2}^{2}}=\frac{2 \mu R_{1}^{2}\left(\omega_{2}-\omega_{1}\right)}{\left(R_{2}^{2}-R_{1}^{2}\right)} \tag{H}
\end{equation*}
$$

Torque on the cylinder:

Let us determined the torque or moment of shearing forces acting on the cylinders.
The shearing stress at the walls of inner cylinder is given as

$$
\left(\tau_{r \theta}\right)_{r=R_{1}}=\frac{2 \mu R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{\left(R_{2}^{2}-R_{1}^{2}\right)}
$$

And the shearing force per unit length of the inner cylinder is

$$
\begin{gathered}
F=\left(\tau_{r \theta}\right)_{r=R_{1}} \times 2 \pi R_{1} \\
F=\frac{2 \mu R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{\left(R_{2}^{2}-R_{1}^{2}\right)} \times 2 \pi R_{1} \\
F=\frac{4 \pi \mu R_{1} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{\left(R_{2}^{2}-R_{1}^{2}\right)}
\end{gathered}
$$

The torque experience by a unit length of the inner cylinder is given by

$$
\begin{gathered}
T_{1}=F \times r \\
T_{1}=\frac{4 \pi \mu R_{1} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{\left(R_{2}^{2}-R_{1}^{2}\right)} \times R_{1} \quad \because r=R_{1} \\
T_{1}=\frac{4 \pi \mu R_{1}^{2} R_{2}^{2}\left(\omega_{2}-\omega_{1}\right)}{\left(R_{2}^{2}-R_{1}^{2}\right)}
\end{gathered}
$$

The torque of the shearing forces acting on the outer cylinder is

$$
\mathrm{T}_{2}=-\mathrm{T}_{1}
$$

Collected by: Muhammad Saleem

Note that torque is independent of r . The moment or torque exerted by the cylinders upon each other is of interest in viscometery by knowing the geometry and measuring $\mathrm{T}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ at either cylinder. One can calculate the viscosity of the fluid, as first suggested by Couette (1890). This is still a popular method in viscometery.

MathCiIy.OIO Muzammil Tanveer

Lecture \# 12

Flow through a cylinder of uniform cross-section:

Consider the steady laminar flow of viscous incompressible fluid through a cylinder of orbitrary but uniform cross-section as shown in figure below. Let z -axis be taken as the axes of the pipe. Since the flow is parallel to z -axis. The velocity components $\mathrm{u}=\mathrm{v}=0$ everywhere. Moreover, the flow being steady so

$$
\frac{\partial}{\partial t}=0
$$

The equation of continuity thus reduces to

$$
\frac{\partial w}{\partial z}=0
$$

So, that $\mathrm{w}=\mathrm{w}(\mathrm{x}, \mathrm{y})$. Thus, for the present problem

The Navier-Stokes equation without body forces becomes

$$
\begin{gather*}
0=-\frac{1}{\rho} \frac{\partial P}{\partial x} \quad(i), 0=-\frac{1}{\rho} \frac{\partial P}{\partial y} \tag{ii}\\
0=-\frac{1}{\rho} \frac{\partial P}{\partial z}+v\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right) \tag{iii}
\end{gather*}
$$

From (i) and (ii)

$$
-\frac{1}{\rho} \frac{\partial P}{\partial x}=-\frac{1}{\rho} \frac{\partial P}{\partial y}=0
$$

Collected by: Muhammad Saleem

$$
\frac{\partial P}{\partial x}=\frac{\partial P}{\partial y}=0 \quad \because P=P(z)
$$

From equation (iii)

$$
0=-\frac{1}{\rho} \frac{\partial P}{\partial z}+\frac{\mu}{\rho}\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right) \quad \because v=\frac{\mu}{\rho}
$$

$$
\frac{1}{\rho} \frac{\partial P}{\partial z}=\frac{\mu}{\rho}\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right)
$$

$$
\mu\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right)=\frac{\partial P}{\partial z}
$$

Moreover,

$$
\mu\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right)=\frac{\partial P}{\partial z} \quad \because \frac{\partial P}{\partial z} \approx \frac{d P}{d z}
$$

The L.H.S of this equation is a function of x and y only while R.H.S is a function of z only and since these are equal. Each side must be constant (say) -P. The minus being taken as we except P to decreases as z increases. Thus,

$$
\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=\frac{-P}{\mu} \quad \text { (iv) } \quad \text { Where } P=-\frac{d P}{d z}
$$

Along with $\mathrm{w}=0$ on the walls of the cylinder. Hence the problem of finding the velocity distribution reduces to that of finding the solution of equation (iv) subject to boundary condition $\mathrm{w}=0$ on the cross-section of the pipe (cylinder) cuts the XY-Plane.

The problem can be further simplifying if we write

$$
\begin{align*}
& w=w_{1}-\frac{P}{4 \mu}\left(x^{2}+y^{2}\right) \\
& \text { Then } \frac{\partial^{2} w}{\partial x^{2}}=\frac{\partial^{2} w_{1}}{\partial x^{2}}-\frac{P}{2 \mu} \tag{vi}\\
& \text { And } \frac{\partial^{2} w}{\partial y^{2}}=\frac{\partial^{2} w_{1}}{\partial y^{2}}-\frac{P}{2 \mu} \tag{vii}
\end{align*}
$$

Collected by: Muhammad Saleem

Substituting these partial derivatives in equation (iv) we find that w_{1} has to satisfy the two-dimensional Laplace equation.

$$
\begin{gathered}
\frac{\partial^{2} w_{1}}{\partial x^{2}}-\frac{P}{2 \mu}+\frac{\partial^{2} w_{1}}{\partial y^{2}}-\frac{P}{2 \mu}=\frac{-P}{\mu} \\
\frac{\partial^{2} w_{1}}{\partial x^{2}}+\frac{\partial^{2} w_{1}}{\partial y^{2}}-\frac{P}{\mu}=-\frac{P}{\mu} \\
\frac{\partial^{2} w_{1}}{\partial x^{2}}+\frac{\partial^{2} w_{1}}{\partial y^{2}}=0
\end{gathered}
$$

With boundary condition $\mathrm{w}=0$ equation (v) becomes

$$
\begin{aligned}
& 0=w_{1}-\frac{P}{4 \mu}\left(x^{2}+y^{2}\right) \\
& \Rightarrow w_{1}=\frac{P}{4 \mu}\left(x^{2}+y^{2}\right)
\end{aligned}
$$

In cylindrical polar coordinates ($\mathrm{r}, \theta, \mathrm{z}$) equation (iv) can be written as

$$
\frac{\partial^{2} V_{z}}{\partial z^{2}}+\frac{1}{r} \frac{\partial V_{z}}{\partial z}+\frac{1}{r^{2}} \frac{\partial^{2} V_{z}}{\partial \theta^{2}}=-\frac{P}{\mu}
$$

Where $V_{z}=V_{z}(r, \theta)$ and $P=\frac{-d P}{d z}$ is pressure gradient.

Reynold Transport Theorem:

$$
\frac{D}{D t} \iint_{V} \int_{V} G d V=\iiint_{V} \frac{\partial G}{\partial t} d V+\iint_{s} G \vec{q} \cdot \hat{n} d s
$$

Where G is any fluid property per unit volume.

Transport of mass:

Assume the fluid property G with density ρ and there is no sink or source of mass inside the system, then
$\iint_{V} \rho d V$ is the mass of fluid with volume V .
Collected by: Muhammad Saleem

$$
\begin{equation*}
\Rightarrow \frac{D}{D t} \iint_{V} \int_{V} \rho d V=0 \tag{i}
\end{equation*}
$$

By using Reynold Transport theorem

$$
\begin{gather*}
\frac{D}{D t} \iint_{V} \int_{V} \rho d V=\iint_{V} \int_{V}^{\partial \rho} d V+\int_{s} \int_{S} \rho \vec{q} \cdot \hat{n} d s \quad \because G=\rho \\
\iiint_{V} \frac{\partial \rho}{\partial t} d V+\iint_{s} \rho \vec{q} \cdot \hat{n} d s=0 \quad \because b y \quad(i) \tag{i}
\end{gather*}
$$

Now by using Gauss Divergence theorem

$$
\begin{gathered}
\iiint_{V} \frac{\partial \rho}{\partial t} d V+\iiint_{V} \nabla \cdot(\rho q) d V=0 \\
\iiint\left(\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho q)\right) d V=0 \\
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho q)=0
\end{gathered}
$$

$$
\frac{\partial \rho}{\partial t}+q-\nabla \rho+\rho \nabla \cdot q=0 \quad \because \nabla \rho=0 \text { By Kelvins theorem }
$$

$$
\frac{\partial \rho}{\partial t}+\rho \nabla \cdot q=0
$$

For incompressible

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}=0 \\
\Rightarrow \quad 0+\rho \nabla \cdot q=0 \Rightarrow \rho \nabla \cdot q=0 \\
\Rightarrow \nabla \cdot q=0
\end{gathered}
$$

Transport of any dynamical:

Let $\mathrm{G}=\rho \mathrm{F}$ be any fluid property per unit mass then prove that

$$
\frac{D}{D t} \iint_{V} \int_{V} \rho F d V=\iint_{V} \int_{V} \rho \frac{D F}{D t} d V
$$

Proof: We know that the Reynold theorem

$$
\begin{gathered}
\frac{D}{D t} \iint_{V} \int_{V} G d V=\iiint_{V} \frac{\partial G}{\partial t} d V+\iint_{s} G \vec{q} \cdot \hat{n} d s \\
\text { Put } \mathrm{G}=\rho \mathrm{F} \\
\frac{D}{D t} \iint_{V} \int_{---} \rho F d V=\iiint_{V} \frac{\partial}{\partial t}(\rho F) d V+\iint_{s}(\rho F) \vec{q} \cdot \hat{n} d s \\
\text { By using Gauss divergence theorem } \\
\frac{D}{D t} \iint_{V} \rho F d V=\iiint_{V} \frac{\partial}{\partial t}(\rho F) d V+\iiint_{V} \nabla \cdot(\rho F q) d V \\
\left.\frac{D}{D t} \iint_{V} \int \rho F d V=\iiint_{V} \int F \frac{\partial \rho}{\partial t}+\rho \frac{\partial F}{\partial t}\right) d V+\iiint_{V}(\rho F \nabla \cdot q+q \cdot \nabla(\rho F)) d V \\
\frac{D}{D t} \iint_{V} \iint_{V} \rho F d V=\iiint_{V} F \frac{\partial \rho}{\partial t} d V+\iiint_{V} \rho \frac{\partial F}{\partial t} d V+\iiint_{V} \rho F \nabla \cdot q d V+\iiint_{V} \int_{V} q \cdot \nabla(\rho F) d V \\
\iint_{V} F \frac{\partial \rho}{\partial t} d V+\iiint_{V} \rho \frac{\partial F}{\partial t} d V+\iiint_{V} \rho F \nabla \cdot q d V+\iint_{V} \int_{V} q \cdot(\rho \nabla F+F \nabla \rho) d V
\end{gathered}
$$

Rearranging

$$
\begin{aligned}
& \frac{D}{D t} \iint_{V} \rho \rho d V=\iiint_{V} F\left(\frac{\partial \rho}{\partial t}+\rho \nabla \cdot q+q \cdot \nabla \rho\right) d V+\iiint_{V} \rho\left(\frac{\partial F}{\partial t}+q \cdot \nabla F\right) d V \\
& \frac{D}{D t} \iint_{V} \int_{V} \rho F d V=\iint_{V} \int_{V} F\left(\frac{\partial \rho}{\partial t}+\rho \nabla \cdot q+0\right) d V+\iint_{V} \int_{V} \rho\left(\frac{\partial F}{\partial t}+q \cdot \nabla F\right) d V \quad \because \nabla \rho=0
\end{aligned}
$$

$$
\frac{D}{D t} \iiint_{V} \rho F d V=\iiint_{V} F\left(\frac{D \rho}{D t}+\rho \nabla \cdot q\right) d V+\iiint_{V} \rho \frac{D F}{D t} d V \quad \because \frac{D F}{D t}=\frac{\partial F}{\partial t}+q \cdot \nabla F \quad \& \frac{\partial \rho}{\partial t} \approx \frac{D \rho}{D t}
$$

By Equation of continuity

$$
\begin{gathered}
\frac{D \rho}{D t}+\rho \nabla \cdot q=0 \\
\frac{D}{D t} \iiint_{V} \rho F d V=0+\iiint_{V} \rho \frac{D F}{D t} d V
\end{gathered}
$$

$$
\frac{D}{D t} \iiint_{V} \rho F d V=\iiint_{V} \rho \frac{D F}{D t} d V \quad \text { Hence Proved. }
$$

