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PREFACE (Scope of Linear Algebra)

Linear Algebra is the study of vectors and linear transformations. The main
objective of this course is to help students learn in rigorous manner, the tools and
methods essential for studying the solution spaces of problems in mathematics,
engineering, the natural sciences and social sciences and develop mathematical
skills needed to apply these to the problems arising within their field of study; and
to various real world problems.

Course Contents:

System of Linear Equations: Representation in matrix form, matrices,
operations on matrices, echelon and reduced echelon form, inverse of a
matrix (by elementary row operations), solution of linear system, Gauss-
Jordan method, Gaussian elimination.

Vector Spaces: Definition and examples, subspaces. Linear combination and
spanning set. Linearly Independent sets. Finitely generated vector spaces.
Bases and dimension of a vector space. Operations on subspaces,
Intersections, sums and direct sums of subspaces. Quotient Spaces.

Inner product Spaces: Definition and examples. Properties, Projection.
Cauchy inequality. Orthogonal and orthonormal basis. Gram Schmidt
Process.

Determinants: Permutations of order two and three and definitions of
determinants of the same order. Computing of determinants. Definition of
higher order determinants. Properties. Expansion of determinants.
Diagonalization, Eigen-values and eigenvectors

Linear mappings: Definition and examples. Kernel and image of a linear
mapping. Rank and nullity. Reflections, projections, and homotheties.
Change of basis. Theorem of Hamilton-Cayley.

Recommended Books:

Curtis C. W., Linear Algebra

Apostol T., Multi Variable Calculus and Linear Algebra.

Anton H., Rorres C., Elementary Linear Algebra: Applications Version
Dr. Karamat Hussain, Linear Algebra

Linear Algebra by Seymour Lipschutz
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CHAPTER # 1

SYSTEMS OF LINEAR EQUATIONS

Systems of linear equations play an important and motivating role in the subject of
linear algebra. In fact, many problems in linear algebra reduce to finding the
solution of a system of linear equations. Thus, the techniques introduced in this
chapter will be applicable to abstract ideas introduced later. On the other hand,
some of the abstract results will give us new insights into the structure and
properties of systems of linear equations. All our systems of linear equations
involve scalars as both coefficients and constants, and such scalars may come from
any number field F. There is almost no loss in generality if the reader assumes that
all our scalars are real numbers — that is, that they come from the real field R.

Linear Equation: (ax+b =0; a+ 0)

It is an algebraic equation in which each term has an exponent of one and graphing
of equation results in a straight line.

Or A linear equation in unknowns x4, x,, ..., x,, IS an equation that can be put in
the standard form a,x; + ayx, + -+ a,x, = b where a4, a,, ...,a, and b are
constants. The constant a;, is called the coefficient of x; , and b is called the
constant term of the equation. e.g 6x; + 7x, =5,2x + 3y + 4z = —1

Solutions of Linear Equation:

A solution of the linear equation a;x; + a,x, + -- + a,x,, = b is a list of values
for the unknowns or, equivalently, a vector u in R" , say

X, =k, % =ky,...,x, =k, or U= (kyk,, .., k,) such that the following
statement (obtained by substituting k; for x; in the equation) is true:

a1k1 + a2k2 + -+ ankn == b

In such a case we say that u satisfies the equation.
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Example : Consider the following linear equation in three unknowns X, Yy, z:
x +2y—3z= 6 We note that x =5; y= 2; z= 1, or, equivalently, the
vector i = (5,2,1) is a solution of the equation. Thatis,5 +2(2) — 3(1) = 6

On the other hand, ¥ = (1,2,3) is not a solution, because on substitution, we do not
getatrue statement: 1 +2(2)— 3(3) =—4+ 6

System of Linear Equations (System in which more than one linear equations involve)

A system of linear equations is a list of linear equations with the same unknowns.
In particular, a system of ‘m’ linear equations Li, L,,..., Ly, in ‘n’ unknowns
X1, X9, ..., Xy Can be put in the standard form

m = No. of equations

Az1X1 + AgpXp + 0+ AppXy = by AijXj = bi n = No. of unknowns

Am1X1 T ApaXy + 0+ A Xy = bm

where the a;; and b; are constants. The number a;j is the coefficient of the unknown
X; in the equation L;, and the number b; is the constant term of the equation L;.

= The system of linear equations is called an m X n system. It is called a
square system if m = n that is, if the number m of equations is equal to the
number n of unknowns.

» The system is said to be homogeneous if all the constant terms are zero
that is, if b, =0,b, =0,.....,b, = 0 Otherwise the system is said to be
nonhomogeneous (inhomogeneous.).

= A solution (or a particular solution) of the system (above) is a list of values
for the unknowns or, equivalently, a vector u in R", which is a solution of
each of the equations in the system. The set of all solutions of the system is
called the solution set or the general solution of the system.

= A finite set of linear equations is called a system of linear equations, or
more briefly a linear system. The variables are called unknown.

= A linear equation does not involve any products or roots of variables. All
variables occur only to the first power, and do not appear as arguments of
trigonometric, logarithmic or exponential functions.
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EXAMPLES FOR LINEAR AND NON - LINEAR EQUATIONS

" x+3y=7 linear

» 5x+4+7y—8yz=16 notlinear

" x+ny+ez=1log5 linear for constants m, e
. %x—y+32=—1 linear

" x;—2x, —3x3+x,=0 linear

" X tx,tx3+rt+x, =1 linear
= x+3y%= not linear

" 3x4+2y—xy=5 not linear

= Sinx+y=0 not linear

" X+ 2x,+x3=1 not linear

= X+ 5%, —V2x; =1 linear

" Xy + 3%, +x1x3 =2 not linear

" x; =—7x,+ 3x; linear

= x;72+4+x,+8x3=5 notlinear
= x,3/5—2x,+x3 =4 notlinear

= mx, —V2x, = 75 linear

. 2ix+ V3y =1 linear

= Cos (g) x —4y =log3 not linear
m xy=1 not linear

" y+7=x linear

. %Cosx —4y =0 not linear

TRY OTHERS ALSOQ!!!

_ungﬁ/ﬂd?ld/”u),n.lfw;i’.}d/jﬁﬂilfﬁdﬂd/,,:‘n;o;gjf/c;yg/;g&)?!u'/“;tug‘.f.Jf’f

Variable not appears in this form tanx, logx, sSinx, cosx, \/E, e’ etc.
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Example: Consider the following system of linear equations:
Xy +x,+4x34+3x, =5

2x1 +3xy +x3 —2x, =1

Xy +2x, —5x3 +4x, =3

It is a 3 X 4 system because it has three equations in four unknowns. Determine
whether (a) u=(-8,6,1,1) and (b) v =(-10,5,1,2) are solutions of the
system.

Solution:

(a) Substitute the values of u in each equation, obtaining
—8+6+4(1)+3(1)=5=5=5
2(-8)+3(6)+1-2D=1=21=1
—8+2(6)—5(1)+4(1)=3=3=3

Yes, u is a solution of the system because it is a solution of each equation.
(b) Substitute the values of v into each successive equation, obtaining
—10+5+4(1)+3(2)=5=5=5
2(-10)+30B)+1-22)=1=>-8%1

No, v is not a solution of the system, because it is not a solution of the second
equation. (We do not need to substitute v into the third equation.)

Consistent and Inconsistent Solutions:

The system of linear equations is said to be consistent if it has one or more
solutions, and it is said to be inconsistent if it has no solution.

Underdetermined: A system of linear equations is considered underdetermined if
there are fewer equations than unknowns. m < n

Over determined: A system of linear equations is considered over determined if
there are more equations than unknowns. n < m
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PRACTICE: (Solution to system of linear equations)
1. Consider the following system of linear equations:
2x1 —4x, —x3 =1
X1 —3x, +x3=1
3x; —5x, —3x3=1
Determine whether given 3 — tuples are solutions of the system?

(@ (3,1,1)
(b) 3,-1,1)
(c) (13,5,2)

o (222)
(e) (17,7,5)

2. Consider the following system of linear equations:
x+2y—2z=3
3x—y+z=1
—x+5y—-5z=5

Determine whether given 3 — tuples are solutions of the system?

) (221)

) (¢.2.0)
c) (5,8,1)

0 (22
) (:22)
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If the field F of scalars is infinite, such as when F is the real field R or the complex
field C, then we have the following important result.

Result: Suppose the field F is infinite. Then any system of linear equations has

(1) a unique solution, (ii) no solution, or (iii) an infinite number of solutions.

SYSTEM OF
LINEAR
EQUATIONS
CONSISTENT
INCONSISTENT
| |
UNIQUE INFINITE
SOLUTION NUMBER OF NO SOLUTION
SOLUTIONS

Remark: (Geometrical Presentation / Graphics)
Linear system in two unknowns arise in connection with intersection of lines.

= The lines may be parallel and distinct, in which case there is no intersection
and consequently no solution.

= The lines may be intersect at only one point, in which case the system has
exactly one solution.

= The lines may coincide, in which case there are infinitely many points of
intersection (the points on the common line) and consequently infinitely
many solutions. (in such system, all equations will be same with few
common factors)
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Example (A Linear System with one Solution):

Solve the following system of linear equations:

x—y=1 ........... (1)
2x+y =6 ........... (11)
Solution:

(i) > —2x + 2y = —2 multiplying with —2

Adding (i) with (ii) :>—2x+2y+2x+y=—2+6:>y=§

. 4 7
(l)=>x—§—1=>x—§

$.§= (x = g,y = g) Geometrically this means that the lines represented by the

equations in the system intersect at the single point (x = g,y = %)

Example (A Linear System with No Solution):

Solve the following system of linear equations:

x+y=4 .......... (1)

343y =6 ........... (ii)

Solution:

(i)> —3x—3y=-12 multiplying with —3

Adding (i) with (i) = —3x — 3y +3x+3y=-12+6=0=—6

The result is contradictory, so the given system has no solution. Geometrically this
means that the lines may be parallel and distinct, in this case there is no
intersection and consequently no solution.
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Example (A Linear System with Infinitely many Solutions):

Solve the following system of linear equations:

4x =2y =1 ........... (1) 16x—8y=4 ........... (11)
Solution:
(i) = —-16x+8y =—4 multiplying with —4

Adding (i) with (ii) = —16x+8y + 16x—8y = —4+4=0=0

Equation 0 = 0 does not impose any restriction on ‘x” and ‘y’ and hence can be
omitted. Thus the solution of the system are those values of ‘x” and ‘y’ that satisfy
the single equation 4x — 2y =1

Geometrically this means that the lines corresponding to the two equations
in the original system coincide. And this system will have infinitely many
solutions.

How to Find Few Solutions of Such System?

» Find the value of ‘x’ from Common equation.

= Puty =t ‘t’ being Parameter (arbitrary value instead of actual value)
» Replace y = t in given system.

= Uset =0,1,2,3,.... Upon your taste and get different answers.

= We may apply same procedure by replacing ‘x’ and ‘y’

Example: Want to find different solutions for problem as follows using
Parametric Equation (arbitrary equation using Parameter instead of actual value).

4x -2y =1 ........... (1) 16x—8y =4 ........... (11)
Solution
1 1 1
=>x=_+y and put y = = x=_+ct
s.5=(x=2y=0) t=0 . SSs=(x=2y=1) t=1
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Example: Want to find different solutions for

11

problem as follows using

Parametric Equation (arbitrary equation using Parameter instead of actual value).

X—y+2z=5 ... (1)
2x—y+4z=10 ........... (11)
3x—3y+6z=15 ........... (11)

Solution:

Since above all equations have same graphics or formation. Therefore will have
infinitely many solutions. We will solve it using parametric equations.

In above all equations we have the parallel form x —y

>x=5+4+y—2z and put y=r,z=s

+2z=5

=>x=54+r—2s

$5=x=5y=0z=0) r=0s=0
$S=x=6y=1z=0) r=1s=0
S$S=x=4y=1z=1) r=1s=1

General Solution = {(5,0,0), (6,1,0), (4,1,1)}

General Solution:

How to find solution of more than
two equations?

1* method: find x,y,z solving
equations in pair (Lengthy Process)

2": solve two equations, find x,y and
put in 3™ equation to get value of z.

3" method: observe given equations
and take common if possible and
then check all equations are same or
not, if same then solution will be
infinite.

If a linear system has infinitely many solutions, then a set of parametric equations
from which all solutions can be obtained by assigning numerical values to the

parameters is called a General Solution of the system.
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PRACTICE:

1. In each part, solve the linear system, if possible, and use the result to
determine whether the lines represented by the equations in the system have
zero, one, or infinitely many points of intersection. If there is a single point
of intersection, give its coordinates, and if there are infinitely many, find
parametric equations for them.

a) 3x —2y =4and 6x —4y =9
b) 2x —4y = 1and 4x — 8y =2
c) x—2y=0 and x—4y =8

2. In each part use parametric equations to describe the solution set of linear

equations.
a) 7x —5y =3 b) x + 10y =2
C) 3x; —5x, +4x3 =7 d) —8x; +2x, —5x3+6x, =1
e) 3v—8w+2x—y+4z=0 g) 4x; + 2x, +3x3+x, = 20
f) x; +3x, —12x3 =3 hv+w+x—-5y+7z=0

3. In each part use parametric equations to describe the infinitely many
solutions of linear equations.

a) 2x —3y=1 and 6x —9y =3
b) x; +3x, —x3 =—4, 3x; +9x, —3x3 =—12 and —x; — 3x, + x5 =4
C) 6x1+2x2 == _8 and 3X1 +X2 == _4‘

d) 2x—y+2z=—-4, 6x—3y+6z=-12 and —4x+2y—4z=28
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Matrices:
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A matrix A over a field F or, simply, a matrix A (when F is implicit) is a
rectangular array of scalars usually presented in the following form:

a;1 Qg2 A1n

a1 Ay Ayn
A= \

Am1 Amz2 *° Qmn

The numbers in the array are called the entries in the matrix.
Augmented and Coefficient Matrices of a System

Consider the general system of m equations in n unknowns.

Am1X1 T ApaXy + 0+ A Xy = bm

Coefficient matrix

Consider a system of linear
equations a;;x; = b; then
coefficient matrix is
defined as A = [a;;]

Augmented matrix

Consider a system of linear
equations a;;x; = b; then
augmented matrix is
defined as

A= [aij bL]

Such a system has associated with it the following two matrices:

a;1 Qg2 A, by a1 Qg

a a - a b a1 Ay
M=|"2t T2 Tm T2l and A= . :

Ami Am2  ° Qmn  bm Am1  Am2

A1n
a?n = [ai,-]

amn

The first matrix M is called the augmented matrix of the system, and the second

matrix A is called the coefficient matrix.

The coefficient matrix A is simply the matrix of coefficients, which is the
augmented matrix M without the last column of constants. Some texts write
M = [A, B] to emphasize the two parts of M, where B denotes the column vector

of constants.
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Example:

Consider the general system of 3 equations in 3 unknowns.
X1 +x,+2x3=9

2x1 +4x, —3x3 =1

3X1 +6x2 - SX3 == 0

11 2 9
Then M = augmented matrix =2 4 -3 1
3 6 =5 0
1 1 2
and A = coefficient matrix = |2 4 -3
3 6 =5
Example:
Consider
1 0 0 1
M = augmented matrix = [0 1 0 2
0 0 1 3

Then the general system of 3 equations in 3 unknowns is as follows;

x1:1
x2=2
x3=3
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PRACTICE:

1.

2.

In each part, find a linear system in the unknowns x;,x,,..... that
corresponds to the given augmented matrix.

3 0 -2 5
al7 1 4 —3]
0 —2 1 7
2 0 0
b) |3 —4 0]
0o 1 1
0 3 —1 -1 -1
V5 2 0 -3 —6l
'3 0 1 -4 3]
4 0 4 1 -3
D11 3 0 -2 —9
0 0 0 -1 -2

In each part, find the augmented matrix for the given linear system.

a) —2x;, =6 : 3x; =8 : 9%, = =3

b) 6x; —x, +3x3=4 , 5x, —x3 =1

C) 2x; —2x, = —1 : 4x; +5x, =3 7x1 +3x, =0
d x, =6 , 3x; =8 : 9x, = -3

e) 2x; +2x3 =-—1
31 —xy +4x3 =7
6x; +x, —x3=0
f) 2x, —3x,+ x5 =0
—3x; —x, +x3=-1
6x1 + 2xy —x3 +2x4, —3x5 =6
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Degenerate Linear Equations A linear equation is said to be degenerate if
all the coefficients are zero, that is, if it has the form
Ox; +0x, + -+ 0x,=b

The solution of such an equation depends only on the value of the constant b.
Specifically,

(i) If b # 0, then the equation has no solution.
(ii) If b = 0, then every vector ¥ = (ky, ky, ..., k) in R"is a solution.
The following theorem applies.

Theorem: Let ¢ be a system of linear equations that contains a degenerate
equation L, say with constant b.

(i) If b # 0, then the system £ has no solution.

(if) If b = 0, then L may be deleted from the system without changing the solution
set of the system.

Part (i) comes from the fact that the degenerate equation has no solution, so the
system has no solution.

Part (ii) comes from the fact that every element in R" is a solution of the
degenerate equation.

Leading Unknown in a Non-degenerate Linear Equation

Let ‘L’ be a non-degenerate linear equation. This means one or more of the
coefficients of L are not zero. By the leading unknown of L, we mean the first
unknown in L with a nonzero coefficient.

For example, x3 and y are the leading unknowns, respectively, in the equations
Ox; + 0xy, + 5x3 + 6x, + 0x5 +8x, =7 and Ox+2y—4z=5

We frequently omit terms with zero coefficients, so the above equations would be
writtenas 5x; + 6x, +8x, =7 and 2y —4z=5

In such a case, the leading unknown appears first.
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Linear Combination of System of Linear equations

Consider the system of m linear equations in n unknowns. Let L be the linear
equation obtained by multiplying the m equations by constants cy,c,, ..., Cy,
respectively, and then adding the resulting equations. Specifically, let L be the
following linear equation:

(ci1a41 + ¥ Cpm)x, + -+ (ciaqq + -+ Cnamn) Xy = c1by + -+ b
Then L is called a linear combination of the equations in the system.

EXAMPLE: Let Ly, L,, L3 denote, respectively, the three equations in

Xy +x, +4x3+3x, =5

2x1 +3xy +x3—2x, =1

Xy +2x, —5x3 +4x, =3

Let L be the equation obtained by multiplying L,, L,, L3 by 3, —2, 4, respectively,
and then adding. Namely,

3L;: 3x; +3x, +12x3 +9x, = 15

—2L,: —4xy —6x, — 2x3 +4x, = =2

4L3: 4x; + 8xy — 20x3 + 16x, = 12

Then Sum will be L: 3x; + 5x, — 10x3 + 29x, = 25

Then L is a linear combination of L, L,, Ls. As expected, the solution
u = (—8,6,1,1) of the system is also a solution of L. That is, substituting ‘u’ in L,
we obtain a true statement:

3(=8)+5(6)—1(1)+29(1) =25=>25=25
The following theorem holds.

Theorem (when two systems have same solution): Two systems of linear
equations have the same solutions if and only if each equation in each system is a
linear combination of the equations in the other system.
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PRACTICE: Show that if the linear equations
X, +kx,=c
x1 + le = d

Have the same solution set, then the two equations are identical. (i.e. k = [,c = d)

Equivalent Systems:  Two systems of linear equations are said to be equivalent
If they have the same solutions.

Elementary Operations (Elementary Row Operations)

The basic method for solving a linear system is to perform algebraic operations on
the system that do not alter the solution set and that produce a succession of
increasingly simpler system, until a point is reached where it can be ascertained
whether the system is consistent, and if so, what its solutions are. Typically the
algebraic operations are:

1. Multiply an equation through by a non — zero constant.
2. Interchange two equations.
3. Add a constant times one equation to another.

Since the rows (horizontal lines) of an augmented matrix correspond to the
equations in the associated system, these three operations correspond to the
following operations on the rows of the augmented matrix;

1. Multiply a row through by a non — zero constant.

2. Interchange two rows.

3. Add a constant times one row to another. Or replace an equation by the sum
of a multiple of another equation and itself.

These are called Elementary Row Operations on a matrix.

The main property of the above elementary operations is contained in the
following theorem.
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Theorem: Suppose a system of M of linear equations is obtained from a system
¢ of linear equations by a finite sequence of elementary operations. Then M and ¢

have the same solutions.

Remark: Sometimes (say to avoid fractions when all the given scalars are

integers) we may apply step 1 and 3 in one step.

EXAMPLE:

In the left column we solve a system of linear equations by

operating on the equations in the system, and in the right column we solve the
system by operation on the rows of the augmented matrix.

xX+y+2z=9

2x+4y—-3z=1

3x+6y—5z2=0

= E, —2E,
xX+y+2z=9
2y — 7z =—17

3x+6y—5z=0
= —3E, + E;

xX+y+2z=9

2y — 7z =—-17

3y —11z = =27

Avai |l able at MathCity. org

1 2 9
4 -3 1]
6 =5 0
~R2 - 2R1
1 2 9
2 =7 =17
6 —5 0
~ - 3R1 + R3
1 2 9
2 =7 =17
3 =11 =27
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1
=>-F
2 L2

xX+y+2z=9

$—3E2+E3
xX+y+2z=9
7 17
YT3PT T
3
—_——Z = — =
2
= —2E;
xX+y+2z=9
7 17
y—zzZz=—7
z=3

21

~_3R2+R3
11 2 9
01 -2 X
2 2
00 — -3
2 2
~—2R3
11 2 9
_r _1
2 2
0o 1 3
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:>—E2+E1 ~_R2+R1
x+£z=E
2
11 35
10 = =
7 17 7 217
Y=32%T77% 01 —2 —=
00 1 3
z=3
11 7 11 7
> (-5 Es+E1)&(ZE; + Ey) ~(~=5Rs+Ry)&(ZR;s +R,)
x=1
10 0 1
y =2 01 0 2
0 01 3
z=3

Thus, the solutionis x =1,y =2,z =3

We may write (1,2,3) as a required solution. In the order triple form.
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PRACTICE:

1. Find a single elementary row operation that will create a ‘1’ in the upper left
corner of the given augmented matrices and will not create any fractions in
its first rows.

-3 -1 2 4
a)|2 -3 4 2]

0 2 -3 1
0 -1 -5 0
b)y[2 -9 3 2
1 4 -3 3
2 4 —6 8
0|7 1 4 3]
-5 4 2 7

df3 -1 8 1
-6 3 -1 4

7 -4 =2 2]

2. Find all values of ‘k’ for which the given augmented matrices correspond to
a consistent linear system.

1k —4]
Nl g 2l
1k —1]
)1, g _4
'3 —4
9% s s
k1 =2
Dy 21 2
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Systems in Triangular and Echelon Forms

The main method for solving systems of linear equations, Gaussian elimination, is
treated in the next Section.

Here we consider two simple types of systems of linear equations: systems
in triangular form and the more general systems in echelon form.

Triangular Form
Consider the following system of linear equations, which is in triangular form:
2x; —3x, +5x3 —2x, =9
5x5 —1x3 +3x, =1
7x3— X4 =3
2x, =8

That is, the first unknown x; is the leading unknown in the first equation, the
second unknown X, is the leading unknown in the second equation, and so on.

Definition: The system in which the first unknown x; is the leading unknown in
the first equation, the second unknown x, is the leading unknown in the second
equation, and so on. Then such system is called Triangular system.

(Example given above)

Thus, in particular, the system is square and each leading unknown is directly to
the right of the leading unknown in the preceding equation. Such a triangular
system always has a unique solution, which may be obtained by back-substitution.

That is,
(1) First solve the last equation for the last unknown to get x, = 4.

(2) Then substitute this value x, = 4 in the next-to-last equation, and solve for the
next-to-last unknown x5 as follows:

7X3_4‘=3 Orx3=1
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(3) Now substitute x; = 1 and x, = 4 in the second equation, and solve for the
second unknown x, as follows:

5x, —1(1)+3(4) =1 or x, =—-2

(4) Finally, substitute x, = —2, x; = 1 and x, = 4 in the first equation, and solve
for the first unknown x; as follows:

2x; —3(—2)+5(1)—-2(4) =9 or x;, =3

Thus, x; = 3,x, = —2,x3 = 1and x, = 4, 0r, equivalently, the vector
u = (3,—2,1,4) is the unique solution of the system.

Remark: There is an alternative form for back-substitution (which will be used
when solving a system using the matrix format). Namely, after first finding the
value of the last unknown, we substitute this value for the last unknown in all the
preceding equations before solving for the next-to-last unknown. This yields a
triangular system with one less equation and one less unknown. For example, in
the above triangular system, we substitute x, = 4 in all the preceding equations to
obtain the triangular system

2x1 — 3x, + 5x3 =17
5x, —1x; = —1
7x3 = 7
We then repeat the process using the new last equation. And so on.
PRACTICE: Solve the following Triangular system: (by Back substitution)
2x—6y+7z=1
4y +3z=28

2z =4
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Pivoting:
Changing the order of equations is called pivoting. It has two types.

1. Partial pivoting 2. Total pivoting

Partial pivoting:
In partial pivoting we interchange rows where pivotal element is zero.

In Partial Pivoting if the pivotal coefficient “a;;”” happens to be zero
or near to zero, the i column elements are searched for the numerically largest
element. Let the j" row (j > i) contains this element, then we interchange the “i"™
equation with the “jth” equation and proceed for elimination. This process is
continued whenever pivotal coefficients become zero during elimination.

Total pivoting:
In Full (complete, total) pivoting we interchange rows as well as column.

In Total Pivoting we look for an absolutely largest coefficient in the
entire system and start the elimination with the corresponding variable, using this
coefficient as the pivotal coefficient (may change row and column). Similarly, in
the further steps. It is more complicated than Partial Pivoting. Partial Pivoting is
preferred for hand calculation.

Why is Pivoting important?:

Because Pivoting made the difference between non-sense and a perfect result.
Pivotal coefficient:

For elimination methods (Gauss’s Elimination, Gauss’s Jordan) the coefficient of
the first unknown in the first equation is called Pivotal Coefficient.
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Back substitution:

The analogous algorithm for upper triangular system “AX =

aiq A1 oo vev e A X1 bl
0 azz Aon X2\ _[| by
0 0 ... Amn Xn bm

Is called Back Substitution.

The solution Xj 1S
_ bi-¥jia 4y

x; = —r2——+— 27 i=1,2,3, ... ... n
ajj

Forward substitution

The analogous algorithm for lower triangular system “LX =

lll O 0 xl b1
121 lZZ ver mes wan e 0 xZ — bz
lml lm2 """ lmn Xn bm

Is called Forward Substitution.

The solution “x;” is computed by  x; =

27

B” of the form

computed by

B’ of the form
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Echelon Form, Pivot and Free Variables
The following system of linear equations is said to be in echelon form:
2x1 + 6x, — 1x3 + 4x, — 2x5 = 15
1x3 + 2x4 + 2x5 =5
3X4 —9%5 =6

That is, no equation is degenerate and the leading unknown in each equation other
than the first is to the right of the leading unknown in the preceding equation. The
leading unknowns in the system, x4, x3, x4, are called pivot variables, and the
other unknowns, x, and xs, are called free variables. Those positions in which
leading 1 occur called pivot positions and pivot column.

Generally speaking, an echelon system or a system in echelon form has the
following form:

allxl + alzxz + -+ alnxn == b1

Azj,%j, + A2jpr1%i241 Tt appXy = bZ

arj Xj. + -+ aQpXy = b,

where 1 <j, < ....<jrand ayq, azj,,.....ar;_ are not zero. The pivot variables are

X1y Xjypeens Xj Note that r < n.

Jr

The solution set of any echelon system is described in the following theorem

Theorem: Consider a system of linear equations in echelon form, say with ‘r
equations in ‘n’ unknowns. There are two cases:

(i) r = n. That is, there are as many equations as unknowns (triangular form). Then
the system has a unique solution.

(if) r <n. That is, there are more unknowns than equations. Then we can arbitrarily
assign values to the n —r free variables and solve uniquely for the ‘r’ pivot
variables, obtaining a solution of the system.
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Suppose an echelon system contains more unknowns than equations. Assuming the
field F is infinite, the system has an infinite number of solutions, because each of
the n — r free variables may be assigned any scalar.

The general solution of a system with free variables may be described in
either of two equivalent ways. One description is called the ‘‘Parametric Form”’
of the solution, and the other description is called the ‘‘Free —Variable Form.”’

Parametric Form
Procedure

Consider we have the system
i Write given system

le + 6X2 — 1x3 + 4_x4 — 2X5 =15 ii.  Solve last equation using
parameter
1x3 + ZX4 + 2x5 =5 iii. Using back substitution

find variables

3, — 9% =6

Assign arbitrary values, called parameters, to the free variables x, and xs, say
X, = a and x5 = b, and then use back-substitution to obtain values for the pivot
variables x3, X3, Xs in terms of the parameters ‘a’ and ‘b’. Specifically,

(1) Substitute xs = b in the last equation, and solve for x,:

3%, —9b =6=>x,=2+3b

(2) Substitute x, = 2 + 3b and x5 = b into the second equation, and solve for Xs:
1x3+2(2+3b) +2(b) =5=x; =1—8b

(3) Substitute x, =a,x3 =1—8b,x, =2+ 3b, x5 = b into the first equation,
and solve for Xx;:

2x; +6a—1(1—-8b)+4(2+3b)—2b=15=>x;, =4—-3a—9b
Accordingly, the general solution in parametric form is

Xx1=4—3a—-9b; x,=a;x3=1—-8b;x, =2+ 3b; x5 = b or, equivalently,
u=(4—-3a—9b,a,1—8b,2 + 3b,b) where aand b are arbitrary numbers.

Visit us @ Youtube: “Learning With Usman Hamid”



30

Free —Variable Form
Consider we have the system
2x1 + 6x5, — 1x3 + 4x, — 2x5 = 15
1x3 + 2x4 +2x5 =5
3X4 —9%5 =6

Use back-substitution to solve for the pivot variables Xy, X3, X4 directly in terms of
the free variables x, and Xs.

That is, the last equation gives x, = 2 + 3x;5

Substitution in the second equation yields x; = 1 — xg

and then substitution in the first equation yields x; = 4 — 3x, — 9x;
Accordingly, x; =4 —3x, — 9xs ; x, = free variable;

x3 =1 — 8xg; x, =2+ 3x5; x5 =free variable

or, equivalently, u = (4—3x, —9xg,x,,1—8x5,2+ 3x5,x5) IS the free —
variable form for the general solution of the system.

We emphasize that there is no difference between the above two forms of
the general solution, and the use of one or the other to represent the general
solution is simply a matter of taste.

Remark: A particular solution of the above system can be found by assigning any
values to the free variables and then solving for the pivot variables by back
substitution. For example, setting x, = 1 and x; = 1 we obtain

x,=2+3(1) =5 L x;=1-8(1)=-7 ;x,=4-3(1)—-9(1) =-8

Thus, u = (—8,1,—7,5,1) is the particular solution corresponding to x, = 1
and x; = 1.
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PRACTICE:
1. Determine the ‘Pivot” and ‘Free variables’ in each of the followings;
2x1 + 6x5, — 1x3 + 4x, — 2x5 = 15
1x3 +2x4 +2x5 =5

34, —9%; =6

2x—6y+7z=1
4y +3z =8

2z =4

x+2y—3z=2
2x +3y+z=4

3x+4y+5z=8

2. Solve using parametric form as well as free variable form assigning Pivot.
2x; + 6x, — 1x3 + 4x, — 2x5 = 15
1x3 +2x4 + 2x5 =5

3, — 9% =6
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Echelon Form of a Matrix:
A matrix is said to be in echelon form if it has the following structure;

I.  All the non — zero rows proceed the zero rows.
Ii.  The first non — zero element in each row is 1.
lii.  The preceding number of zeros before the first non — zero element 1 in each
row should be greater than its previous row.

For example followings are in echelon form.

1 2 4

3
0 1 2 4111 3 0 2
03 73t o1 slloo 1ol
000100000001

Reduced Echelon Form of a Matrix:
A matrix is said to be in reduced echelon form if it has the following structure;

I.  Matrix should be in echelon form.
ii.  If the first non — zero element 1 in the i row of matrix lies in the j" column
then all other elements in the j™ column are zero.

For example followings are in reduced echelon form.

1 3 0 0] 0 O]Jfr 0 0 O] O O 1
0 01 0,0 1 Of,j0 1 0 O[,|0 1 0 2

0 0 0 1410 0 1110 0 O 1110 0 1 3

Remark about echelon forms:

I.  Every matrix has a unique reduced row echelon form.
ii.  Row echelon forms are not unique.
iii.  Although row echelon forms are not unique, the reduced row echelon form
and all row echelon forms of a matrix A have the same number of zero rows,
and the leading 1’s always occur in the same positions.
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Row Echelon Form of a Matrix:
A matrix is said to be in row echelon form if it has the following structure;

I. If a row does not consists entirely of zeros, then the first non — zero number
in the row is a 1. We call this a leading 1.
Ii. If there are any rows that consist entirely of zeros, then they are grouped
together at the bottom of the matrix.
Ii.  In any two successive rows that do not consists entirely of zeros, the leading
1 in the lower row occurs farther to the right than the leading 1 in the higher
row.

For example followings are in row echelon form.

11014—37012 0
0 1 0f,j0 1 001—10

0 0 O 0 0 O 1

Row Reduced Echelon Form of a Matrix:
A matrix is said to be in row reduced echelon form if it has the following structure;

I. If a row does not consists entirely of zeros, then the first non — zero number
in the row is a 1. We call this a leading 1.

1. If there are any rows that consist entirely of zeros, then they are grouped
together at the bottom of the matrix.

ii.  In any two successive rows that do not consists entirely of zeros, the leading
1 in the lower row occurs farther to the right than the leading 1 in the higher
row.

iv. Each column that contains a leading 1 has zeros everywhere else in that
column.

For example followings are in row reduced echelon form.

1 -2 0

0

100 47711 0 0
01 0 7,010,[00,00
o ol'lo o
0 1 -1 X

0 0 0 1

oS O O
O O W

1
0
0
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PRACTICE:

Determine whether the matrix is in row echelon form, reduced row echelon form,
both or neither.

1 0 O] 0 1 0
. 0 1 0 ii. 0 0 1]
0 0 1l 0 0 O
) 1 0 O] iv 1 0 3 1
I. 0 1 0 o1 2 4
0 0 Ol
1 2 0 3 0 0 O
v 0O 01 10 Vi. 0 O]
' 0O 0 0 0 1 0 O
0 0 0 0 O
vii. 1 -7 5 5 _ 1 0 O
0 1 3 2 IX. 0 1 0
0 2 0
1 2 0
Viil. 0 1 0] 1 3 4
0 0 O X 0 0 1
0 0 O
1 5 -3 (1 2 3 4 5
XI. 0 1 1] iii 1 0 7 1 3
0O 0 O ' 0O 0 0 0 1
0 0 0 0 O
1 2 3]
XIl. 0 0 O . 1 -2 0 1
0 0 1 v oo 1
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Gaussian Elimination

The main method for solving the general system of linear equations is called
Gaussian elimination. It essentially consists of two parts:

Part A. (Forward Elimination) Step-by-step reduction of the system yielding either
a degenerate equation with no solution (which indicates the system has no
solution) or an equivalent simpler system in triangular or echelon form.

Part B. (Backward Elimination) Step-by-step back-substitution to find the solution
of the simpler system.

Gaussian Elimination steps (Procedure):

I.  Reduce the augmented matrix into echelon form. In this way, the value of
last variable is calculated.

ii.  Then by backward substitution, the values of remaining unknown can be
calculated.

Example: Solve the matrix using Gauss’s Elimination method.

2 4 -10 6 12 28

00—20712]
2 4 -5 6 -5 -1

Solution: Firstly we reduce the given matrix in echelon form.

Step — I: locate the left most column that does not consist entirely of zeros.

2 4 —-10 6 12 28

[00—20712]
2 4 -5 6 -5 -1

Step — I1: interchange the top row with another row, if necessary, to bring a non —
zero entry to the top of the column found in step — I.

0O 0 -2 0 7 12

2 4 —-10 6 12 28
~R12
2 4 -5 6 -5 -1
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Step — I11: if the entry that is now at the top of the column found in step — I is ‘a’,
multiply the first row by ‘1/a’ in order to introduce a leading 1.

1 2 -5 3 6 14 .

0O 0 -2 0 7 12 ~5R1

2 4 -5 6 -5 -1

Step — IV: add suitable multiples of the top row to the rows below so that all
entries below the leading 1 become zero.

1 2 -5 3 6 14
0 0 -2 0 7 12 ~R3 — 2R
0 0 5 0 —17 =29

Step — V: now cover the top row in the matrix and begin again with step — |
applied to the submatrix that remains or remaining rows. Continue in this way until
the entire matrix is in row echelon form.

1 2 -5 3 6 14
7 1
00 1 0 -2 =6 ~— =R,
00 5 0 —17 —29
1 2 -5 3 6 14]
7
00 0 0 = 1
2 i
2 -5 3 6 14]
00 1 0 —2 —6 ~2R;
oo 0 0 1 2]

Hence above matrix is in row echelon form.
Thus corresponding system is
Xg = 2

7

X3 = X5 = —6

X1 + 2x5 — 5x3 + 3x4 + 6x5 = 14
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Solving for leading variables we obtain and in next line solution using free variable
Xs =2, X3 = —6+%x5, x; = 14 — 2x, + 5x3 — 3x, — 6X5
Xs = 2, X3 = —6+%(2) =1

X, =2—2x,+5(1) —3x, —6(2) =7 —2x, — 3x,

Finally we express the general solution of the system parametrically by assigning
the free variables x,, x, arbitrary values ‘r’ and ‘s’ respectively. This yield

X, =7—2r—=3s,x,=71 ,x3=1,x,=5, x5 =2

Above is our required solution.

PRACTICE:

1. Solve the linear system by Gauss’s Elimination method.

. x;+x,+2x;=8
—x1 —2x,+3x3=1
3x1 — 7xy +4x3; =10

. 2x; +2x, +2x3=0
—2x; +5x, +2x3 =1
8xy + x5 +4x3 =—1

. x—y+2z—-w=-1
2x+y—2z—2w=-2
—x+2y—4z+w=1
3x —3w=-3

iv. —-2b+3c=1
3a+6b—3c=-2
6a+ 6b+3c =5

2. Find two different row echelon forms of B 3
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Gauss Jordan Elimination

Procedure:

I. In this method we reduce the augmented matrix into reduced echelon form.
In this way, the value of last variable is calculated.

Ii.  Then by backward substitution, the values of remaining unknown can be
calculated.

Example: Solve the matrix using Gauss’s Elimination method.

2 4 -10 6 12 28

00—20712]
2 4 -5 6 -5 -1

Solution: Firstly we reduce the given matrix in reduced echelon form.

Step — I: locate the left most column that does not consist entirely of zeros.

2 4 -10 6 12 28

[00—20712]
2 4 -5 6 -5 -1

Step — I1: interchange the top row with another row, if necessary, to bring a non —
zero entry to the top of the column found in step — I.

o 0 -2 0 7 12

2 4 —-10 6 12 28
[ ] ~R12
2 4 -5 6 -5 -1

Step — 111 if the entry that is now at the top of the column found in step — I is ‘a’,
multiply the first row by ‘1/a’ in order to introduce a leading 1.

1 2 -5 3 6 14 L

0O 0 -2 0 7 12 ~5R1

2 4 -5 6 -5 -1

Step — IV: add suitable multiples of the top row to the rows below so that all
entries below the leading 1 become zero.

12 -5 3 6 14
00 -2 0 7 12 ~— 2R, + Ry
00 5 0 —17 -29
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Step — V: now cover the top row in the matrix and begin again with step — |
applied to the submatrix that remains or remaining rows. Continue in this way until
the entire matrix is in row echelon form.

1 2 -5 3 6 14
00 1 0 -2 -6 ~—2R,
2 2
0 0 5 0 —-17 —29
1 2 =5 3 6 14]
7
00 0 0 = 1
| 2 _
1 2 -5 3 6 14]
00 1 0 —2 =6 ~2R,
00 0 0 1 2|

Step — VI: Beginning with the last non — zero row and working upward, add
suitable multiples of each row to the rows above to introduce zeros above the
leading 1°s.

1 2 -5 3 6 14 ,
0 1 0 0 1 ~R, +-R;
00 0 0 1 2
1 2 -5 3 0 2
00 1 00 1 ~R; — 6R;
00 0 0 1 2
12 0 3 0 7
0 01 0 0 1 ~R; + 5R,
000 0 1 2

Hence above matrix is in row reduced echelon form. Thus corresponding system is
Xs =2, x3=1, x; +2x, +3x, =7
Solving for leading variables we obtain and in next line solution using free variable

x5:2, X3=1, x1=_2x2_3x4_7
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Finally we express the general solution of the system parametrically by assigning
the free variables x,, x, arbitrary values ‘r’ and ‘s’ respectively. These yields
X, ==—2r—3s—7,xp=71 ,x3=1,x, =5, xXg =2
Above is our required solution.
Example:
Solve the linear system by Gauss’s Jordan Elimination method.
X1+ 3xy —2x3 +2x5 =0
2x1 + 6x5 — 5x3 — 2x4 + 4x5 — 3x5 = —1
5x3 +10x,4 + 15x4 =5

2x1 + 6x5 + 8x4 + 4x5 + 18x5 = 6

Solution:
1 3 -2 0 2 O 0
2 6 -5 -2 4 -3 -1
0O 0 5 10 0 15 5
2 6 0 8 4 18 6
1 3 -2 0 2 0O 0
O 0 -1 -2 0 -3 -1
0 0 4 8 0 18 6
1 3 -2 0 2 0 O
0 0 1 2 0 3 1
0 0 5 10 0 15 5 ~ 1R
0 0 4 8 0 18 6
1 3 -2 0 2 0 O
0O 0 1 2 0 3 1
0O 0 0 0 0 6 2
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(1 3 =2 0 2 0 O]
0o 0 1 2 0 3 1 R
0 0 0 0 0 6 2 34
0 0 0 0 0 0 ol
1 3 =2 0 2 0 0
0 0 1 2 0 3 1 1 Eehelon f
00 0 00 1 § ~<Rs3 chelon form.
0 0 0 0 0 0 O
1 3 =2 0 2 0 0
0 0 1 2 000
1 ~R., —
00 0 0013 Ry = 3R;
0 0 0 0 0 0 O
1 3 0 4 2 0 0]
0 01 2 0 0O , tuced echelon
00 0 0O 0 1 é ~R; + 2R, reduced echelon form.
0 0 0 0 0 0 O

Thus corresponding system is

x6=§, x3+2x, =0, x; +3x, +4x, +2x5 =0

Solving for leading variables we obtain and in next line solution using free variable
1

Xe =3, X3 = —2X4, X1 = —3Xy — 4x, — 2X<

Finally we express the general solution of the system parametrically by assigning
the free variables x,, x,, x5 arbitrary values ‘r’, ‘s’ and ‘t’ respectively. These
yields

1
X, ==—3r—4s—2t,x, =71, X3=-—25, X, =S, X5 =t, Xe =3

Above is our required solution.

2 1 3
3% Find reduced row echelon forms of [0 -2 —29] without introducing
3 4 5

fractions at any intermediate stages.
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PRACTICE:

1. Solve the linear system by Gauss’s Jordan Elimination method.

. 2x; +2x, +2x3=0 . x—y+2z—-w=-1
—2x1 +5x, +2x3 =1 2x+y—2z—2w=-2
8xy +x, +4x3 =—1 —x+2y—4z+w=1

3x — 3w =-3

.  x; +x, +2x; =8 iv. —-2b+3c=1
—X1 —2x, +3x3 =1 3a+6b—3c=-2
3x; — 7xy +4x3 =10 6a+6b+3c=5

2. Solve the following system for x, y and z. using any method.
2 4

4229
X y z
E_I_E_I_E:()
X y z

x y z

Example: Solve the linear system by Gauss Elimination method. Or show that
system has no solution.

1 2 -3 1 2
[2 4 —4 6 10]
3 6 -6 9 13

Solution:

2 4 -4 10 0 0 2 4 6
3 6 -6 9 13 0 0 3 6 7

1 2 -3 1 2 ;
= lo 0 2 4 6 ] ~R; — ERZ
O 0 0 0 -2
The matrix is now in echelon form. The third row of the echelon matrix

corresponds to the degenerate equation 0x; + Ox, + Ox3 + 0x, = —2 which has
no solution, thus the system has no solution.

@)}

1 2 -3 1 2 1 2 -3 1 2
= ~R2_2R1alSO~R3_3R1
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Homogeneous system of linear equations

A system of linear equations AX = B is said to be Homogeneous if AX = 0.i.e.
B = 0. or A system of linear equations is said to be Homogeneous if the constant
terms are all zeros; i.e. the system has the form;

a11x1 + alzxz + -+ alnxn - 0

alel + a22x2 + -4 aann - 0

A1 X1 + ApoXy + -+ AnXy =0
Remark:

= Every homogeneous system of linear equations is consistent because all such
systems have x; =0,x, =0,.....,x, = 0 as a solution. This solution is
called the Trivial Solution. If there are others solutions, they are called
nontrivial solutions.

= Because a homogeneous linear system always has the trivial solution, there
are only two possibilities for its solutions:
. The system has only the trivial solution.
Ii.  The system has infinitely many solutions in addition to the trivial

solution.
Example:
1 3 -2 0 2 0 0O
. e .12 6 -5 -2 4 -3 0
Using Gauss Jordan’s Elimination method matrix 00 5 10 0 15 0
2 6 0 8 4 18 0
1 3 0 4 2 0 O
) 0 01 2 000
can be converted into row reduced echelon form as 00000 1 0
0O 00 OO O O
Thus corresponding systemis x, = 0, x5 +2x, =0, x; + 3x, + 4x, + 2x5 =0
Theseyields x; = =3r —4s —2t,x, =1, x3=—25, X, =5, xs =t, x4 =0
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1) Solve the linear system by any method, Gauss elimination method or Gauss’s

Vi.

Vil.

Jordan Elimination method
2x1 +x,+3x3=0
X, + 2x, =0
X, +x3 =0

2x—y—3z=0
—x+2y—3z=0
x+y+4z =0

3X1+XZ +x3+X4=0
5X1—X2 +x3_X4=0

v+3w—2x=0
2u+v—4w+3x =0
2u+3v+2w—x=0

—4u—-3v+5w—4x=0

2x+2y+4z=0
w—y—3z=0
2Zw+3x+y+z =0

—2w+x+3y—2z =0

3% +3x, +x, =0

Xy +4x, +2x3 =0
—2xy —2x3— x4, =0
2x1 —4x, +x3+ x4, =0
X1 —2Xy —X3+x, =0

21, =L, + 31, + 41, = 0
L —2l;+7L,=0

31, = 3L, + I, +5],=0
21, + 1, + 4l + 41, = 0
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Vili. Zzs+Z,+2Z5=0
—Z,—Zy+2Z5—32,+Zs =0
Zy+2Zy—2Z3—Zs =0
27,4+ 27, —Zs+Zs =0

iX. x*+y*+z2=6
x2—y%+2z%2=2
2x2+y2—2z2=3

X. 2S8in « —Cosf + 3tany = 3
4Sin < +2Cosf — 2tany = 2 find , 8,y
6Sin <« —3Cosp + tany =9

2) Solve the following systems where ‘a’ , ‘b’ and ‘¢’ are constants.
Q) Xy +x,+x3=a,2x;+2x3=>b, 3x,+3x3=c¢
b) 2x+y=a, 3x+6y=>

Remark: A homogeneous system AX = 0 with more unknowns than equations
has a nonzero solution.

Nonhomogeneous and Associated Homogeneous Systems

Let AX = B be a nonhomogeneous system of linear equations. Then AX =0 is
called the associated homogeneous system. For example,

x+2y—4z=17 x+2y—4z=0

3x —5y+ 6z = 8 3x =5y + 6z =0

show a nonhomogeneous system and its associated homogeneous system.
Free variable theorem for Homogeneous system:

If a homogeneous linear system has ‘n’ unknowns, and if the reduced row echelon
form of its augmented matrix has ‘r’ non — zero rows, then the system has n —r
free variables.
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CHAPTER #2

MATRICES AND MATRIX OPERATIONS

Matrices:

A matrix A over a field K or, simply, a matrix A (when K is implicit) is a
rectangular array of scalars usually presented in the following form:

ai1 Q12 0 Qi

Az1 Az = Adzn|

= : : T [ai;]
Am1 Amz2 *° Amn

The numbers in the array are called the entries in the matrix.

Note that

the element a;; , called the ij-entry or ij-element, appears in row i and column
j. We frequently denote such a matrix by simply writing 4 = [a;;]

A matrix with ‘m’ rows and ‘n’ columns is called an m — by —n matrix,
written m X n. The pair of numbers m and n is called the size of the matrix.
Two matrices A and B are equal, written A = B, if they have the same size
and if corresponding elements are equal. Thus, the equality of two m X n
matrices is equivalent to a system of mn equalities, one for each
corresponding pair of elements.

A matrix with only one row is called a row matrix or row vector, and a
matrix with only one column is called a column matrix or column vector.
A matrix whose entries are all zero is called a zero matrix and will usually
be denoted by 0 or 0.

Matrices whose entries are all real numbers are called real matrices and are
said to be matrices over R.

Analogously, matrices whose entries are all complex numbers are called
complex matrices and are said to be matrices over C. This text will be
mainly concerned with such real and complex matrices.
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Square matrix:

A square matrix is a matrix with the same number of rows as columns. An n X n
square matrix is said to be of order ‘n’ and is sometimes called an n-square matrix.

Diagonal and Trace:

Let A = [aij] be an n-square matrix. The diagonal or main diagonal of A consists
of the elements with the same subscripts—that is, a,{, a,,, ..., Gy,

The trace of A, written as tr(A) , is the sum of the diagonal elements.
Namely, tr(A) =a;; +ay + -+ ay,

-1 2 7 0
3 5 -8 4
1 2 7 =3
4 =2 1 0

For example A=

Then diag(A) = {—1,5,7,0}and tr(A) =-1+54+74+0=11
Remark: (Prove Yourself)
Suppose A = [ai j] and B = [bi j] are n — square matrices and ‘k’ is scalar then

1) tr(A+ B) =tr(A) + tr(B) 3) tr(kA) = ktr(A)
2) tr(AT) = tr(4) 4) tr(AB) = tr(BA)
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Addition and Subtraction of matrices:

If A and B are matrices of same size, then the sum A + B is the matrix obtained by
adding the entries of B to the corresponding entries of A, and the difference
A — B is the matrix obtained by subtracting the entries of B to the corresponding
entries of A.

For example
0 3 4 3 5 1
A=|- 2 4| and B = 2 0 -1
—2 7 0 2 —4 5
-2 4 5 4 6 —2 -5 2
Then A+B=[|1 2 2 and A—-B=|-3 -2 2 5
7 0 3 5 1 -4 11 -5

Remark: addition and Subtraction of two matrices will be defined if both matrices
are equal i.e. having same size and corresponding entries.

2 1 0 3
egAd=|-1 0 2 4] and C = [ i] are not defined for above operations.
4 =2 7 0

Scalar Multiplication:

If A is any matrix and c is any scalar, then the product cA is the matrix obtained by
multiplying each entry of the matrix A by c. the matrix cA is said to be a Scalar
Multiple of A.

For example
2 1 0 3 -4 3 5 1
A=]|-1 0 2 4| andB=[|2 2 0 -1
4 =2 7 0 3 2 —4 5
-2 -1 0 3 -8 6 10 2
Then (-1)A = 0 -2 —4land2B=|4 4 0 -2
-4 2 =7 0 6 4 -8 10
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Matrix Multiplication (Entry method):

If Ais an m X r matrix and B is an r X n matrix, then the product AB is then
m X n matrix whose entries are determined as follows;

To find the entry in the row ‘i’ and column j’ of AB, single out row ‘i’ from
the matrix A and column ‘j’ from the matrix B. multiply the corresponding entries
from the row and column together, and then add up the resulting products.

i 4 1 4 3
For example if Azé é g] and B=|0 -1 3 1]
] 2 7 5 2
4 1 4 3
ThenAB=B 2 g]o -1 3 1]
2 7 5 2

[(1)(4)+(2)(0)+(4)(2) OO+ @ED+®T) OB+ +HWG) MB)+ )M+ H(Q2)
2)4) +(6)(0) +(0)(2) M+ @D +0)(7) @)@+ (6)(3)+(0)(B) 2)AB)+(6)(1)+(0)(2)

AB=[182 27 30 13]

-4 26 12

Row Column Rule (General Product definition):

If A = [a;;] isan m x r matrix and B = [b;;] is an r x n matrix, then the product
AB is then m x n matrix given as follows;

(AB)ij = aibyj + aizbyj + -+ + ayr by

Remark: multiplication of two matrices will be defined if number of column of 1*
matrix equals to the number of rows of 2™ matrix.

Transpose of a Matrix: If A = [a;;] is an m x n matrix, then the transpose of A,

denoted by AT is defined to be the n x m matrix that results by interchanging the
rows and columns of A. i.e. (AT);; = (A) j;

1 2
2 6

4 0

1 2 4

T
5 6 0 then A" =

Like A=[
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PRACTICE:
1. Suppose that A, B, C, D and E are matrices with the following sizes;
A B C D E
(4 x5) (4 x5) (5x%x2) (4x2) (5x4)

In each part, determine whether the given matrix expression is defined. For those
that are defined, give the size of the resulting matrix.

i. BA v. A-—3ET ix. BC—3D
ii. ABT vii E(5B+ A) X. DT(BE)
iii. AC+D vii. CDT xi. BTD+ED
iv. E(AC) viii. DC xii. BAT +D

2. Use the following matrices to compute the indicated expression if it is

defined.
3 0 1 5 2
R e H g A
1 1 3 2 4
6 1 3
E=]1-1 1 2
4 1 3
i. D4E V. 4E—-2D ix. tr(D—3E)
ii. D-—E vii A-A X. 4tr(7B)
iii. 54 vii. —3(D + 2E) Xi. tr(A)
iv. 2B-C viii.  tr(D)
xii. 24T +C xvi. fcT -1g xix. (CD)E
T _ T 2 4 TR AT
XI-II. D" —E ) wiii. B —BT xX. (C'B)A
Xiv. (D —E) xviii. 2ET —3DT
xv. BT +5CT

xxi. tr(CTAT + 2ET)
xxii. BT(CCT — ATA)
xxiii. (2ET —3DT)T
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Matrix form of a linear System (Already discussed)
Consider the general system of m equations in n unknowns.
A1X1 + A% + -+ A1 X, = by

Ay X1 + AypXy + -+ aynX, = by

A1 X1 + QX + -+ A Xy = by

Such a system has associated with it the following form:

ai; Q2 0 QGp [ by
G Gt G (%2 b gy p
Am1i Amz2  ° Qmnl [Xn bm
Also
a1 Qg ain by a1 Qg2 A1n
M= a:21 a:22 a?n b:2 and A = a:21 a:22 a?n
a,-nl a,;lz ar;Ln b;n An1 Amz " Qmn

The first matrix M is called the augmented matrix of the system, and the second
matrix A is called the coefficient matrix.
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1. Express the given linear system as a single matrix equation AX = B
a) 2x; —3x, +5x3=7
9%, —x, + x3 =
X1 +5x; +4x3 =0

-1

b) 4x; —3x3+x, =1

le+xZ_8X4=0

C) x; —2x, +3x3 =-3
2x1+x,=0
—3x, +4x3 =1
Xy +x3=5

d) 3x1 + 3x2 + 3x3 = -3

2x1—5x2+9x3—x4=0 _xl_st_2x3=3
3x2—x3+7x3=2

—4x2 +X3 = O

2. Express the matrix equation as a system of linear equation.

a)

C) 2 ]
5 —3 —6
[3 =2 0
5 0

d) 3 1 4
-2 5 1

H I

i

CIIEAES SR

L

91
2
9.

W+
X
y
z

o O OO

3. Solve the matrices for ‘a’, ‘b’, ‘c’ and ‘d’.

)[ 1 a+b] [d+Zc
b+a

8
b) [3d+c 2d —cl

7

d:;ﬂ
1
6

4. Solve the matrices for ‘k’ if any that satisfy the equation.

-

a) [k 1 1]

b) [2 2 k]

ONRO R

1

1

o

2
2

0
3

0
3
1

Avai |l able at MathCity. org
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Partitioned Matrices

A matrix can be subdivided or Partitioned into smaller matrices by inserting
horizontal and vertical rules between selected rows and columns.

For example, the following are three possible partitions of a general 3 x 4
ai1 Q12 Q13 Q14
matrix A = |Qz1 Q2 Q3 QAz4.
d3z1 A3z A3z A3y

The first is a partition of A into four submatrices A4, A2, 451,45,

ajp Aqz Qg3
A=1Qz1 Gy Qazz
a3; Q3 a3z | A3y

a
o [An Alz]
24| = A A

21 22

The second is a partition of A into its row vectors ry,1,,73

11 A1z Qg3 0Qqq4 T
A=1Qz1 QG QAz3z QAyu| =|T2
I3

A31 QAzp A3z A3y

The third is a partition of A into its column vectors ¢y, ¢, c3

A1 | Q12| Q13 | Q14
A=[0z1 | Ay | Q23 | Qp4| =[C1 C2 (3]
a3z1 | A3 ! dz3z | A3y
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Row method

This will be computed by following procedure. If the system is given as follows;

A1 Q12 0 Qn | [*1 b,
a:z1 a:22 - a?n X2| _ b:2 S AX =B
Am1 Am2  ° Qmn] [ Xn b;n
Then jt column vector of AB = A[j*" column vector of B]
Or
AB (column by column) = A[by b, - b,]=[Aby Ab, --- Ab,]
For example if A=; é g] and B=3 —11 g i]
2 7 5 2

[ 1
12 4] 4| 0@+ @En+ @) _pe27
men [y § ol _‘71]‘[(2)(1)+(6)(—1)+<0)<7)]‘[—]

Column method

This will be computed by following procedure. If the system is given as above;

Then it" row vector of AB = [i*" row vector of A]B
al alB
a
Or AB (row by row) = ;2 B = a%B
An a,B
) 4 1 4 3
Forexample if A= ; 2 g] and B=|0 -1 3 1]
] 2 7 5 2
4 1 4 3
Then [1 2 4]|0 -1 3 1] =[12 27 30 13]
2 7 5 2
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PRACTICE:

Use the following matrices and either the row method or column method, as
appropriate, to find the indicated row or column.

3 =2 7 6 —2 4
A=|6 5 4] and B=|0 1 3]
0O 4 9 7 7 5
I.  The first row of AB
ii.  The third row of AB
iii.  The second column of AB
iv.  The first column of BA
v. The third row of AA
vi. The third column of AA
vii.  The first column of AB
viii.  The third column of BB
iX. The second row of BB
X.  The first column of AA
Xi.  The third column of AB
xii.  The first row of BA
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Linear combination of matrices:

If A,,A,, ..., A, are matrices of the same sizes and k,, k,, ..., k,, are scalars then an
expression of the form kA, + k,A, + .-+ k,A,, is called a linear combination
of the matrices 4,, 4,, ..., A,, with coefficients k,, k,, ..., k,,

ai; Q2 Qip X1
General form:  IfA = afl afz a?“ x = |2
Am1 Amz2 **° Qmn Xn
Then
A11X1 QX 0 QupXp ai» Ain
Ax = a2%x1 aZ%xz aann“ I +x, a:22 bt a?n
Am1X1 AmaXz2 *° AqunXn Am2 Amn

Matrix product as a Linear combination:

] [ ] can be written as in linear

RaE

Column of a product as a Linear combination:

-1 3
For example 1 2 —3

+3

combination [ ] -1

Smce[2600—131— _4 26 12

then [182] =4 B]i 0 Eé] +5 2 [%]

2= = (el + 7o)
el =45+ 315+

5] =3+ 1l +2[3)

1 2 4][4 14 3]_12 27 30 13
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PRACTICE: Use the following matrices and linear combination, to find the
indicated operations.

3 =2 7 6 -2 4
A=16 5 4] and B=10 1 3]
0O 4 9 7 7 5
I.  Each column vector of AA as a linear combination of the column vector of
A
ii.  Each column vector of BB as a linear combination of the column vector of
B
iii.  Each column vector of AB as a linear combination of the column vector of
A
iv. Each column vector of BA as a linear combination of the column vector of
B

Column Row expansion

Suppose that an m X r matrix A is partitioned into its ‘r’ column vectors
1, Cy, ..., C, (€ach of size m X 1) and an r X n matrix B is partitioned into its ‘r’
row vectors ry, 1y, ..., ;- (éach of size 1 X n ). Each term in the sum

ci1 + ¢y + -+ .. +c,1 has size m X n so that sum itself is an m X n matrix.
So from above discussion we write the column row expansion of AB as follows;
AB = ¢y + o1y + -+ ¢ 1

Question: find the column row expansion of the product;

AB=B 3112 0 ¢

—-111-3 5 1

Solution: using the column of A and rows of B as follows;

aB=[]iz 0 a1+ [>]1-3 5 1]

ap=[2 0 [0 15 _31]:[—77 15 7

4 0 8 3 =5 -5 7
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PRACTICE:

Use the column row expansion of AB to express this product as a sum of matrices.

4 -3 70 1 2
1)A—_2 _1 and B—__2 3 1
0 -2 71 41
2)A—_4 _3 and B—__3 0 2
_ 1 2
pa-( 2w sl
‘ 5 6
_ 2 -1
na=[0 4 2] and B=|4 o
1 -2 5 L1

Square Root of a Matrix:

A matrix B is said to be square root of a matrix Aif BB = A

1) Find two square roots of A = [g g]

2) How many different square roots can you find of A = [g 8]7

3) Do you think that every 2 X 2 matrix has at least one square root? Explain
your reasoning.

Properties of matrix arithmetic (addition and scalar multiplication):

.

i.
iii.
V.
V.
Vi.
Vii.
viii.

A+ B =B+ A (Commutative law for matrix addition)

A+ (B+C)=(A+ B)+ C (Associative law for matrix addition)
A(BC) = (AB)C (Associative law for matrix multiplication)
A(B+ C) = AB + AC (Left distributive law)

(B+ C)A = BA + CA (Right distributive law)

A(B = C) = AB — AC x. (a+b)C=aC+bC
(B—C)A=BA—CA xi. (a—b)C =aC —bC
a(B+C)=aB +aC xii. a(bC) = (ab)C
a(B—C)=aB —aC xiii. a(BC) = (aB)C = B(aC)
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Question: Verify the property A(BC) = (AB)C for the following matrices

1 2
a=l3 alp=[ ] c=[; 3
Solution:
1 2 1 2
LH.S = ABC) = 3 ‘;]([3 HIE §])=[g ﬂ[lf i
18 15
L.H.S = ABC) = |46 39]
4 3
R.H.S=(AB)C=<E zj}]; ﬂ)[; g=[2jo 1?3][% g]
18 15
R.H.S = (AB)C = |46 39]
4 3

Hence verified that A(BC) = (AB)C
PRACTICE:

Verify the law given in following lines for given matrices and scalars.

a=[3 J1= Zle=[f Llazen=-

I.  Associative law for matrix addition
Ii.  Associative law for matrix multiplication

iii.  Left distributive law iX. a(BC) = (aB)C = B(aC)
iv. A(B—C)=AB - AC X. (AT =4
v. (B—C)A=BA-CA Xi. (AB)T = BTAT
vii a(B+C)=aB+aC xii. (A+B)T =AT + BT
vii. (a+b)C =aC +bC xiii.  (aC)T = aCT

viii. a(bC) = (ab)C

59
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Important Remark:
In matrix arithmetic, the equality of AB and BA can fail for three reasons;

I. AB may be defined and BA may not defined ( for example, if Ais 2 x 3
and B is 3 x 4)
ii. AB and BA may both be defined, but they may have different sizes ( for
example, if Ais2x 3 and Bis 3 X 2)
li. AB and BA may both be defined and have the same size, but the two
products may be different. (as given below)

Example: for given matrices
-1 01 ,_11 2
a=5 5lB=15 ¢

| F i I P e P [ P S

Clearly AB # BA

Zero Matrix: A matrix whose entries are all zero is called a zero matrix.
0 0
For example: [0 0], 0 0],[0]
0 0
0 0
Remark:

I.  We will denote a zero matrix by O. i.e. 0 = [8 8

I.  If we want to mentions size then write as 0,,, = [8 8 I.. Opxn

lii. ‘O’ plays the same role in matrix equation as the number ‘0’ in the
numerical equations.ie. 0O +A=A+0=A

iv. A-0=A vVii OA=A0=0
V. A—A=A+(-4)=0 Vi IfcA=0=>c=00rA=0
viii. If AB = AC and A # O then B = C but this law does not hold in general.

iIX. [IfAB =0 then A = 0 or B = O but this law does not hold in general.
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Failure of Cancellation law: for given matrices

0 11 ,_M1 11 ~_[2 5 _ a3
A= [0 2],3 = [3 4],6 = [3 4] we have AB = AC = [6
Although A # O but cancelling of A from both sides of AB = AC does not lead to

the statement B = C

Failure of Zero Product with non — zero factors:
) . [0 1 3 7
For given matrices A = [0 2],3 = [O O]

We have AB =0 but A+ 0O alsoB # 0

Identity Matrix: A matrix in which all diagonal elements are 1 and other are zero
is called the identity matrix. Or the n — square identity or unit matrix, denoted by
I, or simply I, is the n-square matrix with 1’s on the diagonal and 0’s elsewhere.
The identity matrix | is similar to the scalar 1 in that, for any n-square matrix A,
Al =1A=A

1 0 O
For example: [(1) (1)] , [0 1 0] ,[1]
0O 0 1

Remark:

I.  We will denote an identity matrix by I. i.e. I = [(1)

ii.  If we want to mentions size then write as I, = [(1) 1 1.e. Lyxn

ar 1 0 O
a1 QA azs]g (1) (1)

aj; 412 Qg3
a1 Q2 dAzz
v. If R is the reduced row echelon form of an n X n matrix A , then either R
has a row of zeros or R is the identity matrix I,,.
vi. A°=1 and A" = AA .. A(n factor)
viih. AT =ADH"=A4"14"1 A7 (n factor)

ii. AL, = A for example Al; = [

iv. [,A=A forexample LA = [(1) (1)] [ ] =A
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PRACTICE:

1. Compute the given operation using A and B both.

1=l =l

i. A% and B3
ii. A*2—2A+1 and B2-2B+1
2. Show that the matrix A = [Z 2] satisfies the equation
A2 —(a+d)A+ (ad —bc)I =0
3. A square matrix A is said to be idempotent if 42 = A
Then Show that if A is idempotent, thensois — A
Scalar Matrices:

For any scalar k, the matrix kI that contains k’s on the diagonal and 0’s elsewhere
Is called the scalar matrix corresponding to the scalar k. Observe that

(kDDA = k(I1A) = kA  Thatis, multiplying a matrix A by the scalar matrix kI is
equivalent to multiplying A by the scalar k.

Invertible (Nonsingular) Matrices:

A square matrix A is said to be invertible or nonsingular if there exists a
matrix B such that AB = BA = I where I is the identity matrix. If no such matrix
B can be found, then A is said to be Singular.

Example: letA = [_21 _35],3 = ﬁ g]

Then AB=[_21 _:35][? ;]:[(1) 2=1
wo w-f 915 F-1 -

Remark:

i. If Band C are both inverse of a matrix Athen B = C

ii.  Aninvertible matrix has exactly one inverse. Denoted as A™1
iii. AA™'=1=4714
iv. A '+ %for matrices.
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Theorem (necessary and sufficient condition for the existence of invertible
matrix):

The matrix A = [Z 2] Is invertible if and only if ad — bc # 0 in this case

1 1 d —by]_ 1 :
A " ad-bc [—c a ] o |A] (ad]A)

Inverse of a 2 X 2 Matrix: Let A be an arbitrary 2 x 2 matrix, then its inverse

can be defined as follows; A~ = ﬁ (adjA)

In other words, when |A| # 0, the inverse of a 2 X 2 matrix A may be obtained
from A as follows:

(1) Interchange the two elements on the diagonal.

(2) Take the negatives of the other two elements.

(3) Multiply the resulting matrix by ﬁ or, equivalently, divide each element by |A|
In case |A| = 0, the matrix A is not invertible.

6 1

Example: IetA=[5 )

|.B=[7' 2 ]thenfind 4=, 5~

1

A=
al

@in =31 % = |

For B~ since |B| = 0 therefore B is not invertible.

PRACTICE: Compute the inverse of the following matrices.

) 2 —3 2 0
. 4 4] iii. [0 3]
.. 3 1 . 6 4
ii. . 2] iv. [_2 _1]
v Cos@  Sin6
' :—Sine Cos6
_ %(ex +e™%) %(ex —e™)
Vi.

;e —e™) S(e*+e™
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Solution of a Linear System by Matrix Inversion:

e Consider we have a system AX =B

e Fins A~1 using formula A~! = ﬁ(ade)

e UseformulaX =A"1B

PRACTICE:

Find the unique solution of given linear system.

i. 3X1 - 2x2 B _1
” —X1 + xz B 4‘
. 6x;+x, =0

Theorem:

and
and
and
and

4x, + 5x, =3
—x; —3x, =1
4x; —3x, = =2
X, +4x, =4

If A and B are invertible matrices with the same size then AB is invertible and

(AB)"1=pB71471

Proof:

Consider (AB)(B™1A™1) = A(BB™DA 1= AIA 1 = AA 1 =1

Similarly (B~1A"1)(AB) = B"1(AA"\)B=B~lIB-1=B-'B =1

Then (AB)(B~1A™Y) = (B~1A"1)(4B) =1 = (AB)~! = B~14"!

Or (AB)(B~'A™Y) =1 = (AB)"}(4B)(B~1A™1) = (AB)™'I

= (AB)"A(BB™1)A™! = (AB)™'I = (AB)™1AA™! = (AB)™I

= (AB)™' = (AB)™! > (AB)~! = B~14"!

Ingeneral (4;4,..4,) ' =4, "4, 1.4,
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Polynomial Matrix:

If A is a square matrix, say n X n and if P(x) = a, + a;x + - + a,,x™ Is any
polynomial, then we define the n X n matrix P(A) to be

P(A) = aol + alA + -+ amAm

Where [ is the n X n identity matrix. Above expression is called a matrix
polynomial in A.

Example:
1 2 , .
Let A = [ ) 3] and P(x) = x2 — 2x — 3 then find P(4)

Solution:  given polynomial is P(x) = x? — 2x — 3

> P() =42 -24-31 =[] 5]2_2[—01 2] _3[1

= P(A) = [8 8] = 0 after solving.

Remark:

if P(x) = P;(x)P,(x) then for square matrix A we can write P(A) = P,;(A)P,(A)

PRACTICE:

1) Compute P(A) for the given matrix A and the following polynomials;
Px)=x—-2, Px)=x*—x+1, P(x)=x3—-2x+1

B 1 _[2 0
A=l jJand a=[] 7
2) Verify the statement P(A) = P,(A)P,(A) for the stated matrix A and given
polynomials;
P(x) =x2—-9,P,(x) =x+3,P,(x)=x—3
3 1
A= [2 1]

-
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Properties of exponents:
If A is invertible and ‘n’ is a non — negative integer, then

i. A lisinvertibleand (A"1)"1 =4
ii. Am™isinvertibleand (A") ! =4"" = (4"H)"
iii. kA is invertible for any non — zero scalar ‘k’, then (kA)™! = k71471

Example: IetAz[} g],A*:[_Bl _12] then
e e e e S e I R
aso 42 =[1 A1 Sl 3l=ls

Then (4%)7* =ﬁ(ade3) = (11)(41)_(1_30)(_15) _4115 _1310

(A3t = _4115 _1310 ....... (ii)

Thus from (i) and (ii)) (43) 1 =43 =(4"1)3

Theorem:
If A is invertible matrix, then AT is also invertible and (47)"! = (4™H)T
Proof: since we know that IT = |
Then AT(A™ )T = (AA DT =1T =1 Also (A DTAT = (AT =1T =1
Thus AT(AD)T = (A~)TAT =1 = AT(A")T = T and (A-DTAT = IT
This implies A 1=UHT

d -C

REMEMBER: (AT)™1 = [®7pc  ad-bef = (41T

ad—bc ad—bc
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PRACTICE (MIXED):

1) Compute then given operation for following matrices;

B i B Y
i, [g %] iv. [_62 _41]
a) AN t=@A"hHr

b) (41 =4

¢) (ABC)~! = C 1B 14!
d) (ABC)T = CTBTAT

2) Use the given information to find A
L oar=[7
i. (547)1=
i, (+2t=[T) 2
1

iv. Al=

3) Compute A~3 and B~3 using A and B both.

=l =l

4) A square matrix A is said to be idempotent if A2 = A

Then Show that if A is idempotent, then 24 — I is invertible and is its own
inverse.

5) Determine whether given matrices are invertible, and if so, find the inverse.

(Hint: solve AX =1 for X by equating corresponding entries on the two sides)

1 0 1 1 1 1
A=11 1 0|,B=|1 0 O
0 1 1 0 1 1

6) Give an example of 2 x 2 matrices such that (A + B)(4 — B) # A%? — B?
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Let e denotes an elementary row operation and let e(4)

denote the results of applying the operation e to a matrix A. Now let E be the
matrix obtained by applying e to the identity matrix I ; that is, E = e(I) Then E is
called the elementary matrix corresponding to the elementary row operation e.
Note that E is always a square matrix.

OR A matrix E is called an elementary matrix if it can be obtained from
an identity matrix by performing a single elementary row operation.

Examples: Below are four elementary matrices and the operations that produce

them:;

1

0 -3

1 0 0 O
0 0 0 1
0 01 0
0 1 0 O
1 0 3]
0 1 0
0 0 11
1 0 O]
0 1 0
0 0 1.

0 ] —  Multiply the 2" row of I, by —3

—s interchange the 2" and 4™ rows of I,

— add 3 time the third row of I; to the first row.

— multiply the 1% row of I, by 1

PRACTICE: Determine whether the given matrix is elementary.

L
i [ (1)]

SO R OO O
SR OOO O

Avai |l abl e at

Mat hCity. org

Vi.

_ O ON

Vil.

0 1 9

0 0 1
'—100]

'100]

0 0 1
0 1 0

1 0
0 \/§]
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A Method for Inverting Matrices (Inversion Algorithm)
To find the inverse of an invertible matrix A

= Find a sequence of elementary row operations that reduces A to the identity.
= Then perform that same sequence of operations on I,, to obtain A~1
= For this we will change [A 1 I]to [T 1 A71]

1 2 3
Example: Find the inverseof A=|2 5 3
1 0 8
Solution:
12 3100
[2 5 3:0 1 0]
1 08001 PROCEDURE
1 2 3 1 00 — .
=]l0 1 -3:-2 1 0|~R,—2R,&R;—R, Write given matrix A
0 -2 5 -101 Make form [A: I]
1 2 3 1 0 0 _ _
=0 1 =3:-2 1 0] ~ R; + 2R, Use row operation and shift
0 0 -1 -5 2 1 identity matrix on left side.
) o
12 3 1 0 o0 ie [I: A7
=10 1 -3:=2 1 0|~—1R;
o 0 1 5 -2 -1
(1 2 0 -14 6 3]
=0 1 0: 13 -5 =3 ~R2 + 3R3& R1 - 3R3
0 0 1 5 -2 -1
1 0 0 —40 16 9
=0 1 0: 13 -5 -3|~R{—2R;
0 0 1 5 -2 -1
—-40 16 9
=A1=|13 -5 -3
5 -2 -1
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Remark:

Often it will not be known in advance if a given n X n matrix A is invertible.
However, if it is not, then by results (part i, iii);

A is invertible. Then the reduced row echelon form of A'is I,

It will be impossible to reduce A to I,, by elementary row operations. This will be
signaled by a row zeros appearing on the left side of the partition at some stage of
the inversion algorithm. If this occurs, then you can stop the computations and
conclude that A is not invertible.

Example:
1 6 4
Find theinverseof A =2 4 -1
-1 2 5
Solution:
1 6 4 1 0 O
2 4 -1:0 1 O
-1 2 5 0 0 1
1 6 4 1 0 0
=0 -8 —-9:-2 1 0| ~R,—2R,&R;+ Ry
0 8 9 1 0 1.
1 6 4 1 0 0
=10 -8 —9:—2 1 0|~R;+R,
0 0 0O -1 1 1.

Since we obtain a row of zeros on the left side, A is not invertible.
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PRACTICE:

1. Find inverse of given matrices, if exists.

oraps - 2 2_53_m1_0
N O O I~
_ < | wn Ml F|lwn
1_51_5_ 1_5_ _ O IN I~
o
_1_51_51_5 Sl NN AW AN AN N
| | S | [ —"
= > = = m
> S
e —
— 5_|_
e < 000_0103
[r— [ — _
< o Ny o oo~ ~ <
| = SN I nNomin
[r— [r— o
48338 — - O © O
[ n <F N <+ — —
<+ N O o ~ S cmmm | NS 122 —
~ Y g T _V4O
— N | — | | — O _ [ AT AN O OO —HON
= = > '3 X X = = >
x < <

Visit us @ Youtube: “Learning With Usman Hamid”



71

2. Find the inverse of each of the following 4 X 4 matrices, where kq, k5, k3, k,
and k are all non — zeros.

k, 0 0 O 0 0 0 k,
. |0 k0 0 |00 ko0
0 0 ks O 0 ks 0 0
0 0 0 k, k, 0 0 O
k 1 0 0 k 0 0 O
o100 |1 k00
00 k 1 01 k 0
0 0 0 1 0 0 1 k

3..Find all values of ‘c’, if any, for which the given matrix is invertible.

c C ¢ c 1 0
I [1 c C] i [1 c 1]
1 1 ¢ 0 1 ¢
4..Express the matrix and its inverse as products of elementary matrices.

-3 1 L7100

P ols 2
10 -2 11 0

i. [0 4 3 iv. [1 1 1]
00 1 01 1

5.. Show that the matrices A and B are row equivalent by finding a sequence of
elementary row operations that produces B from A, and then use that result to find
a matrix C such that CA = B.
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Diagonal Matrix:

A square matrix in which all the entries off the main diagonal (without main
diagonal) are zero is called a Diagonal Matrix. Examples are given as follows;

6 0 0 O
[2 0] (1) (1) 8 0 —4 0 O [O 0
0 51" 0 0 1 ’ O 0 o0 o]’ 0 0
0O 0 O 8
Remark:

= A general n X n diagonal matrix D can be written as

d 0 - 0
p=|? % 7 7
0 0 0 d,

= A diagonal matrix is invertible if and only if all of its diagonal entries are

non — zero. In this case inverse is
-1

1 _ g1
% d; 0 0
1 _ g1
D-1— 0 il d, 0
. . . L . B
0 0 0 il dnl_
= [fD is the diagonal matrix and ‘k’ is a positive integer, then
ar 0o 0
pe_|0 dk 0
0 0 0 dk

Is Null (Zero) matrix a diagonal matrix? Or why Null (Zero) matrix a
diagonal matrix?

A diagonal matrix is one in which all non — diagonal entries are zero. Entries on
the main diagonal may or may not be zero. Clearly this is also satisfied. Hence, a
zero square matrix is upper and lower triangular as well as a diagonal matrix.
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Example: if A=

1 0 O
0 -3 0f then

O 0 2
1 0 0 1 0 0
0 1 0 1 0 0 0 — 1 0
A7l = T3 JAS =10 —243 0| ,A7°= 243
o o0 2 0 0 32 0 0 X
2 32
Triangular Matrix: A square matrix A = [a;;] that is either upper triangular

or lower triangular is called Triangular matrix.

A1 Az 0 Qqn
a e a
For example; 22 Thn
0 0 0 au,
Lower triangulation matrix: A matrix having only zeros above the diagonal is
called Lower Triangular matrix.

(Or)

A "n X n" matrix “L” is lower triangular if its entries satisfy [;; =0 fori <j
Ly 0 0

I.e. [121 l,b, O ]
37 3z 33

Upper triangulation matrix: A matrix having only zeros below the diagonal is
called Upper Triangular matrix.

(Or)

A "n X n" matrix “U” is upper triangular if its entries satisfy w;; =0 fori > j

U1 Uqz  Ug3
l.e. 0 uy Uy

0 0  us;
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REMARKS:

= A square matrix A = [aij] Is upper triangular iff all entries to the left of the
main diagonal are zero. i.e. a;; =0 ifi > j

= A square matrix A = [aij] is lower triangular iff all entries to the right of the
main diagonal are zero. i.e. a;; =0 ifi <j

= A square matrix A = [a;;] is upper triangular iff the i** row starts with at
least i — 1 zeros for every i.

= A square matrix A = [aij] is lower triangular iff the j** column starts with
at least j — 1 zeros for every j.

PRACTICE:

1. Classify the matrix as upper triangular, lower triangular, or diagonal, and decide
by inspection whether the matrix is invertible. (Recall that: diagonal matrix is both
upper and lower triangular, so there may be more than one answer in some parts.)

2 1 . [0 0

“ 1o 3 S ) 0]
—1 0 0 3 -2 7

i 0 2 0 iv. lo 0 3
o o0 I 0 0 8
| 5
4 0 0 -3

Voo g 7] Vo 0]
4 0 0 3 00

Vii. o 2 o viii. 3 1 0

5

0 0 -2 700
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2.. Find the product by inspection.

i. _1 0” 4 1]
4 0 O
! 2 ]l ]
Il. 0 3 0
'_3 100y 0 2
5 0 01[-3 2 0 4 -4
Ii. 0O 0 O 1 —5 3 0 3
0 0 -=-31L 2 2
2 0 O1r 3 0 0
\Y2 0 -1 0
0 0 411L-5 —2
3..Find A%,A72 and A™* (where ‘k’ is any integer) by inspection.
i 1 0] —6 0 O
ol =2 i. 0 3 0
L0 0 5
: 09 0 40 o
i. |0 = o V1o o0 =3 o0
0 0 %| ) 0 0o 2

4.. Compute the product by inspection.
1 0 0][2 0 OJ[0 0 O

. |0 0 O0||0 5 0]|0 2 0
0 0 3110 0 oflo O 1

—1 0 013 0 O
I ”0 5 O” -2 0]
i 0 0 7 0 3

5..Compute the indicated quantity.
o
0 —1

o Al

39
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6.. Multiplying by diagonal matrices compute the product by inspection.

coQ s eReIooQ

= AN RO O

A=

0
0

§‘<QUJOU‘O

|l

0 o01[7
b 0||lu
0 cllx Yy

.. Determine by inspection whether the matrix is invertible.

6 —1
7—4]
0 -2
0 0

w o o O

0
-3 4
1

0 1
0 0

-2

-2 0 0

u v
w X

>
E

(3 2 6]

—1.
4 0 O]

-3 0 7.

and B =

and B =

—1 2 4
i. o 3 o0

0 0 5

"2 0 0 0
|-3 -1 0 o0
V-ol4 =6 0 o0
0 3 8 -5

.. Find the diagonal entries of AB by inspection.

0 5 3

-1 2 7]

L0 0 6

w = O
N U1 O
o © O

|
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Symmetric Matrices:

A matrix A is symmetric if AT = A. Equivalently, 4 = [a;;] is symmetric if
symmetric elements (mirror elements with respect to the diagonal) are equal, that
iS, if each a;j = aj;

Examples: [_73 _53] [4 -3 0], 0 d:Z 0
: o 7 S
0 0 0 d,

Skew Symmetric Matrices:

A matrix A is skew-symmetric if AT = — A or, equivalently, if each a;j = —aj;
Clearly, the diagonal elements of such a matrix must be zero, because
a;; = —a; ImplleS a; = 0

(Note that a matrix A must be square if AT = A or AT = — A)
Remark:

= The product of two symmetric matrices is symmetric iff the matrices
commulte.

= If Ais an invertible symmetric matrix, then A=1 is symmetric.

= If Ais an invertible, then AAT and AT A are also invertible.

Theorem:
If A and B are symmetric matrices with the same size, and if ‘k’ is any scalar, then

a) AT is symmetric.
b) A+ B and A — B are symmetric.
C) kA is symmetric.
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PRACTICE:
1) Find all values of unknown constant(s) for which A is symmetric.
: 1 4 -3 . [ 4 x+2
as=[ys O ioa=l, 0 A
2 a—2b+2c 2a+b+c
. A=|{3 5 a+c
0 -2 7

2) Find all values of ‘x” for which A is invertible.

(x —1 x? x*

i. A=]| 0 x+2 x3
0 0 x—4
x—= 0 0 ]

1 A=| x x—g 0
x? X3  x4+2

3) Find a diagonal matrix that satisfies the given conditions.

1 0 O
i. A°=[0 -1 0]
0 0 -1
9 0 0
ii. A‘2=[0 4 0]
0 0 1

4) Let A be n X n symmetric matrix, then
i.  Show that A2 is symmetric.
ii. Showthat 242 — 34 + I is symmetric.

1 30

5) Find an upper triangular matrix that satisfies A3 = 0 —§

6) Find all values of a,b,c and d for which A is skew symmetric.

0 2a—3b+c 3a—5b+5c
A=1|-2 0 5a — 8b + 6¢
-3 -5 d

78
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Orthogonal Matrices:

A real matrix A is orthogonal if AT = A~ ; that is, if AAT = ATA =1. Thus, A
must necessarily be square and invertible.

1 8 4
[9 9 9]
7

Examples: r

Ol ol
| = I
O |
e |
O |
e —

Remark (discussed later):

Vectors iy, Uy, Uz ... ... ... , U, in R" are said to form an orthonormal set of vectors if
the vectors are unit vectors and are orthogonal to each other. i.e.

0 if i#]
1ifi=j

Theorem: Let A be a real matrix then following are equivalent;

Ui = 6;; = { where §;; is known as Kronecker delta function.

a) A is orthogonal.
b) The rows of A form an orthonormal set.
¢) The columns of A form an orthonormal set

Normal Matrices:
A real matrix A is normal if it commutes with its transpose A™—that is, if

AAT = ATA If A is symmetric, orthogonal, or skew-symmetric, then A is normal.
There are also other normal matrices.

. %

=t =[5 NG =10l
=ata=[5 {5 S0l

= AAT = ATA

Examples: let A = [
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COMPLEX MATRICES

A matrix with complex entries is called a complex matrix. Since we know that
z = a+ ib is a complex number then Z = a +1b = a — ib is its conjugate. Then
the conjugate of a complex matrix A is written as A is the matrix obtain from A by
taking the conjugate of each entry in A. i.e. if A = [a;;] then 4 = [a;;]

Remark:

= The two operations of transpose and conjugation commute for any complex
matrix.

= The special notation A” is used for the conjugate transpose of A. i.e.
Al = (DT = AT

= If Aisreal then A" = AT (some author use A* instead of A¥)

Examples:
. . . 2-8i —6i
et a=[2F8 >~ 3o then AT=5430 1+4i
' ' ' A+70 3-—2i

Hermitian Matrix:
A complex matrix A is said to be Hermitian if A" = A
Remember:

A= [aij] is Hermitian iff symmetric elements are conjugate. i.e. if each a;; = a;; ,
in which case each diagonal element a;; must be real.

3 1-2i 4+4+7i
Examples: let A=[1+2i —4 —2i
4—7i 2i 5

Clearly the diagonal elements of A are real and the symmetric elements 1 — 2i and
1+2i,4—7iand 4+ 7i, —2iand 2i are conjugate. Thus A is Hermitian.
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Skew Hermitian Matrix:

A complex matrix A is said to be Skew Hermitian if A¥ = —A

Unitary Matrix:

A complex matrix A is said to be Hermitian if A"A™! = A71A" =T ie AF =471
1 —1 -1+

> i 1 1+
1+i —-1+1 0

Examples: let A= E

Clearly A"A™Y = A71AH =T i.e. A" = A~ this yields A is Unitary matrix.
Normal Matrices:
A real matrix A is normal if it commutes with its transpose A™"—that is, if

AAR = AHA

Examples: let A= [2 -IZ 3t 1 -:Zi]

Clearly AA" = AP A this yields A is Normal matrix.

Note: When a matrix A is real, Hermitian is the same as Symmetric and Unitary
Is the same as Orthogonal.

PRACTICE:
) . 2—3i 5+48i
. H _[B—=50 2+4i _| o
1) Find A Where(a)A—[6+7l_ 1+8i] (b) A = 4_ 3 _71
—6—1 5i
1_2; 2
2) Showthat 4 =|* }° 2>, | s unitary.
—=i —-—=i
3 3 3

3) Determine which of the following matrices are normal;
_[3+4i 1 1 0
@A=["7" L pal  @B=[ 2]
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BLOCK MATRICES

Using a system of horizontal and vertical (dashed) lines, we can partition a matrix
A into submatrices called blocks (or cells) of A. Clearly a given matrix may be
divided into blocks in different ways. For example,

18 37 [1.=250.1.31[ -2 0:i1 3
c |

: 1 :
4 6:-3 1 8] |4 6:-3 1 8]l14 6 -3i1 8
The convenience of the partition of matrices, say A and B, into blocks is that the
result of operations on A and B can be obtained by carrying out the computation
with the blocks, just as if they were the actual elements of the matrices. This is
illustrated below, where the notation A = [A;;]| will be used for a block matrix A

with blocks Aj;

Suppose that 4 = [4;;] and B = [B;;] are block matrices with the same
numbers of row and column blocks, and suppose that corresponding blocks have
the same size. Then adding the corresponding blocks of A and B also adds the
corresponding elements of A and B, and multiplying each block of A by a scalar
‘k> multiplies each element of A by ‘k’. Thus,

A + By Aip +Biz + Ayp + By
A+ B = Ay ‘!‘321 Ay, ‘!‘Bzz Azn + Ban
Apm1+Bn1i Amz + Bz - Amn + Bon
kA kA o kA,
And KA = k“}m kl‘}zz kA:Zn
KAmy *Amy - KAy

The case of matrix multiplication is less obvious, but still true. That is, suppose
that U = [Uy] and V = [V};] are block matrices such that the number of columns
of each block Uy is equal to the number of rows of each block V; ;

(Thus, each product UiV, is defined.)
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Then
Wll W12 Wln
Wy, W w.

uv =| " T2 2 [ where Wi = UyVyj+ UpVyj + -+ UpVy;
Wml sz Wmn

Square Block Matrices

Let M be a block matrix. Then M is called a square block matrix if
(i) M is a square matrix.

(i1) The blocks form a square matrix.

(iii) The diagonal blocks are also square matrices.

The latter two conditions will occur if and only if there are the same numbers of
horizontal and vertical lines and they are placed symmetrically.

Consider the following two block matrices:

1 2i3 415 1 2:3 4:5
A=98:7 6:5 . B=[978176i5
47414747 4. 454 414
3 5i3 5:i3 3 5:3 5:3

The block matrix A is not a square block matrix, because the second and third
diagonal blocks are not square. On the other hand, the block matrix B is a square
block matrix.

Block Diagonal Matrices

Let M = [A;;] be a square block matrix such that the non-diagonal blocks are all
zero matrices; that is, A;; =0 when i # j. Then M is called a block diagonal
matrix. We sometimes denote such a block diagonal matrix by writing

M == dlag (AlllAZZ’ ""'ATT) or M == A11®A22® ""@ATT
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The importance of block diagonal matrices is that the algebra of the block matrix
Is frequently reduced to the algebra of the individual blocks. Specifically, suppose
f(x) is a polynomial and M is the above block diagonal matrix. Then f(M) is a

block diagonal matrix, and ~ f(M) = diag (f(A11),f(A32), -, f(Arr)

Also, M is invertible if and only if each 4;; is invertible, and, in such a case, M1
is a block diagonal matrix, and M~! = diag (A7}, A2, ..., A7}

Analogously, a square block matrix is called a block upper triangular matrix if the
blocks below the diagonal are zero matrices and a block lower triangular matrix if
the blocks above the diagonal are zero matrices.

Example: Determine which of the following square block matrices are upper
diagonal, lower diagonal, or diagonal:

120 e 1,00
A=|[3 4is B=|gi : C=10:2 3
5 219,250 [oi 4 5]
07T EEY
1 2:0
D=13 415
07677

(a) A is upper triangular because the block below the diagonal is a zero block.
(b) B is lower triangular because all blocks above the diagonal are zero blocks.
(c) C is diagonal because the blocks above and below the diagonal are zero blocks.

(d) D is neither upper triangular nor lower triangular. Also, no other partitioning of
D will make it into either a block upper triangular matrix or a block lower
triangular matrix.

Periodic Matrix: A square matrix A is said to be periodic matrix of period Kk,
where K is the least positive integer such that A¥*1 = A

Idempotent Matrix: A square matrix A is said to be idempotent matrix if 42 = A

Nilpotent Matrix: A square matrix A is said to be Nilpotent matrix of index Kk,
where K is the least positive integer such that A¥ = 0

Involutory: A square matrix A is said to be Involutory matrix if A2 = I
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Rank of a Matrix: The rank of a matrix A, written rank A , is equal to the
number of pivots in an echelon form of A. It is equal to the number of non — zero
rows in its echelon form.

The rank is a very important property of a matrix and, depending on the
context in which the matrix is used; it will be defined in many different ways. Of
course, all the definitions lead to the same number.

'
TR Da o Uy et Sk L e o el e e
ACT ' B - I B r1

.”.\_,.._...._.._‘__._;._.,..w:_'__..‘-".‘_“,-__-__5. ~2 3 1 2'
Example 1: Find the rank of A=
| 3 3 5 4 3|
1 -1 212 ]
. "1'2312 12 312
' 21 23 1] [0-3-41-3 R
$0|I.lﬁ0n:A= L ~f h -3 R ]
T (33 543/ 10-3 413 Ry
[-t-124jo-3-a¢3 %
rerft 2 3 12] 1231 7]
Rs-Rl . -=Ry
70 -3 -4 1 -3[590 14 1y
00 00O0| (0000 0
00 00 0_ 000 0 0
Ths is echelon form of malnx A and the number of its nonzero rows is 2, therefore,
merankofms2 ' | ‘
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Canonical Form of a Matrix

If A is a nonzero mxn matrix then it is equivalent to an m x n matrix D, where
s
00

This matrix D is called the canonical form or normal form of the matrix A.

In reducing a matrix A to canonical form we shall consider two identity matrices,
then eacin ow operation performed on A is also applied on the first identity matrix,
and each column operation perfoi.> d cn A is also appliéd on the secbnd identity
matrix. When we get the canonical fcrm of the given matrix A as a result of these row
and column operations, the two identity matrices reduce to matrices P and Q. The
matrices P and Q are non-singular and satisfy the conditon PAQ=D. In the

following example we show that non-singular matrices P and Q so obtained are note
unique.

1 1 2
Example 1: Reduce the matrix A= 1 2 3| to canonical form. Also find the
o -1 -1

non-singular matrices P and Q such that PAQ is in the canonical for.

Solution:
A Row Column
operations operations
(1.1 2] [1 0O 4 0 0]
1 2 3 o 10 0O 1 0
o -1 -1] |0 O 1 0 0 1]
4 1 271 [1 o o] [1 o O]
o 4. 1| =1 "o 0 1 0L R —Ry
0 —1 9 0913*1‘ Lo o 1] ' '
R R S
o '1:: -1 1 0‘\ 0 1 0, R, +R;
lo 0 © <1 1 2] [0 0 1
4. & 4] (2 +—170] T1-0 O
o 1 1 -1 1 0| |0 1 O(R—R;
|0 0 O [=1.-1 1] 0 0 1
1 0 O ra 2 o] [ vo- =1
o 1 0 =4 9 _ © o T | C, —(Cy +C3)
o 0 O -9 3" al oo '
D P Q
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100 2 —4-0]. .. [4.0 =1}
D=0 1. 0} P=|-9 1 olQ@=j0 1 -1
ooo| |[-1 11 o0 1

/

" where Dis the canonical form of A. We can also verify that
: 2—1011210—1100
e PAQ.'=‘41'14012301—1=010=_D
“ 1.4 4 1lo -1 -1Jo o 1| [0 00

ince again we reduce the matrix A to canonical form using different operations.

A Row operations C_olumn o_perations
1t 1 2| [r o0 1 0 0]
1 2 3|[]o 1o 010
o -1 -1] |0 0'1} 0 0 1
f{ - 4..8% 400 (10 O]
o 1 1 =1 4 0 01 0|R,-R
o -1 -1 [0 0O 1] 0 0 1
1 0 0] [1 0 O] e -1'-J
o 1 1 =4 1 Q| o0 1 0)C,-C,Cy-2C4
0 -1 =1 [0 0 1 0o 0 1
-1 0 O (1 0 O] [ =1 ~H i
o 1 0 -1 1 0 o 1 -1,C,-C,
0o -10] [0 O 1] 6 0. - 1.
1 0 0 (10 O] 1 =1 =] |
0 1.0 -1 14 0 0 1 -1R;+R,
LD 00 _—1'1 30 _0 i
D Py 8 Q,
, 1 00 1 0 @ 1 -1 -1
—~D=|0 1 O},P,=|-110,Q,=|0 1 -1
0 00 -1 1 1 O 0 1

where Dis the canonical form of A. We can also verify that
| 1 001 1 271 -1 -1] |1 0

PAQ,=|-1 1 0|1 2 3|10 1 -1(=(0 0|=D

-1 1 1]o.-1 -1]0o 0-1] |00 O

This example shows that the non-singular matrices are not unique.
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1 -1 3
Example 2: Reduce the matrix A =[ -4 1

0 '3 2

singular matrices P and Q such that PAQ is in the canonical for
Solution:

A Row operations - Column operations
(1 -1 3 (1 .¢ ‘0 [1 0 0]
2 -4 1 010 010
0 3 2 0 0 1 0 0 1)
1 -1 3 (1 0 0] 4 0 OW
0 -2 -5 -2 10 0 1 0| R,—-2R,
0 3 2 L0 o0 1] 0 0 1]
1 ~5. @7 1 0 0 1 0 0]
o 1 -3| =2 14 0 1 OlR,+R,
0 3 .2 | | 04 0 0 1
1 -1 3} 4 1 0.0
07T -8 -2 1 1 0 1 0| R,-3R,
0 0 11 . L8 =3 =2 (0 0 1
__ _ - w J | B o "
1 -1 0 A 0 0] (1 0 01
0 1 o =2 4 4 0 1 81C,+3C,
0 0 11 'L &8 -3 -2] 0 0 1]
1 0 0 ekl | 6T 4. 3 o}
010 -2 1 1 0 4 3|46
0 0 11 | 6 -3 -2 0 0 1]
(1 00 (1 0 o M 1 o] g
0 10 =2 1 0 1 S'WR"
0 0 1 | 76~ 10 g 1
D P Q
‘100 1 0 o] [110
=D=10 1 OLP=|-2 1 11,Q=|0 1 3
0 0 1 =+ -5 - 0 0 1

where D is the canonical form of A. We can also verify that

1 0 0 1 -1 3||1 1 O 1' 0O O
PAQ=|-2 1 1 2 -4 1]l 1 34=|0 1 0O|=D

8 2 —Z|l0 -3 2|0 0 1 O 0 1

11 11 11
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CHAPTER # 3

VECTOR SPACES

This chapter introduces the underlying structure of linear algebra that of a finite
dimensional vector space. Where vector space is a collection of objects, called
vectors, which may be added together and multiplied by numbers, called scalars.

Vectors:  Many physical quantities, such as temperature and speed, possess only
““magnitude.”” These quantities can be represented by real numbers and are called
scalars. On the other hand, there are also quantities, such as force and velocity, that
possess both ‘‘magnitude’” and ‘‘direction.’” These quantities, which can be
represented by arrows having appropriate lengths and directions and emanating
(originating) from some given reference point O, are called vectors. The tail of the
arrow is called initial point of the vector and the tip the terminal point of the
vector.

Remark: Mathematically, we identify the vector v with its (a, b, ¢) and write
v = (a, b, c) Moreover, we call the ordered triple (a, b, ¢) of real numbers a point
or vector depending upon its interpretation. We generalize this notion and call an
n- tuple (vq, vy, ..., v,,) Of real numbers a vector. However, special notation may be
used for the vectors in R® called spatial vectors.

Vectors in R":  The set of all n-tuples of real numbers, denoted by R" is called
n-space. A particular n-tuple in R" say v = (vq, vy, ...,,) is called a point or
vector. The numbers v; are called the coordinates, components, entries or elements
of ¥. Moreover, when discussing the space R"

= we use the term scalar for the elements of R.

= Two vectors, u and v, are equal, written u = v, if they have the same number
of components and if the corresponding components are equal. Although the
vectors (1,2,3) and (2,3,1) contain the same three numbers, these vectors
are not equal because corresponding entries are not equal.

= The vector (0,0,0, .....0) whose entries are all 0 is called the zero vector and

is usually denoted by 0 or 0.
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VECTOR ADDITION AND SCALAR MULTIPLICATION

Vector addition: Consider two vectors u and v in R", say

U = (Ug, Uy, ..., Uy) aNd U = (v, Uy, ..., v,) then Their sum written i + ¥ , is the
vector obtained by adding corresponding components from u and v. That is,
UtV =(u +v,uUy, + v, ., Uy + 1)

Scalar Product: The scalar product or, simply, product, of the vector v by a real
number k, written kv, is the vector obtained by multiplying each component of v
by k. That is, kv = (kvy, kv,, ..., kv,)

= Observe that u + v and kv are also vectors in R"

* The sum of vectors with different numbers of components is not defined.

= Negatives and subtraction are defined in R" as follows:
—v=(—1vandu — v = u+ (—v) The vector —v is called the negative of
v, and u — v is called the difference of u and v.

= Linear combination of the vectors : suppose we are given vectors
Uy, Uy, ..., U, in R" and scalars kq, ks, ...,k, in R. We can multiply the
vectors by the corresponding scalars and then add the resultant scalar
products to form the vector

17 - klﬁl + kzﬁz + -+ knﬁn
Such a vector v is called a linear combination of the vectors ¥, ¥, ..., ¥y,
Vectors in R® (Spatial Vectors), ijk Notation

Vectors in R®, called spatial vectors, appear in many applications, especially in
physics. In fact, a special notation is frequently used for such vectors as follows:

I = (1, 0,0) denotes the unit vector in the ‘X’ direction:
j = (0,1, 0) denotes the unit vector in the ‘y’ direction:
k = (0,0, 1)denotes the unit vector in the ‘z’ direction:
Then any vector ¥ = (a, b, ¢) in R® can be expressed uniquely in the form

v=(a,b,c) =ai+ bj+ck
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n — Space: If ‘n’ is a positive integer, then an ordered n — tuple is a
sequence of ‘n’ real numbers(vy, vy, ..., v,). The set of all ordered n — tuples is
called n — space and is denoted by R"

Finding the components of vectors:

If a vector in 2 — space or 3 — space is positioned with its initial point at the origin
of a rectangular coordinate system, then the vector is completely determined by the
coordinates of its terminal point. We call these coordinates the components of
vector v relative to the coordinate system.

If v = P, P, denote the vector with initial point P, (x4, x5, x3) and terminal
point P,(v,,y,,¥y3) then the components of the vector are given by the formula

v=PP,=(y1 — X1,y — X2, ¥3 — X3)

Example: The components of the vector v = P, P, with initial point P, (2,—1,4)
and terminal point P,(7,5, —8) are

v=PP,=(7-25—(-1),-8—4) = (5,6,—12)
PRACTICE:

1) Find the components of the vector v = ﬁ
i. P35 ; P,(2,8)
i. P;(5-21); P,(242)
iii. P(—62); P,(—4,—-1)
iv. P,(0,0,0); Py,(—1,61)

2) Letu = (—4,1),v = (0,5) and w = (—3,—3) then find the components of
. uU+w
ii. v-—3u
iii.  2(d - 5W)
iv. 3U-—21+2w)
3) Letu =(1,-1,3,5),v = (2,1,0,—3) find scalar ‘a’ and ‘b’ so that
aii + b? = (1,—4,9,18)
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Vector Space:

Let V be a nonempty set with two operations:

(i) Vector Addition: This assigns to any u, veV asum u + v e V.

(ii) Scalar Multiplication: This assigns to any veV, keK a product kv €V.

Then V is called a vector space (over the field K) if the following axioms hold for
any vectors u, v, weV:

Uu+v=v+u

U+ @+w)=@W+v)+w

There is a vector in V, denoted by 0 and called the zero vector, such that, for
any eV ; 5+0=0+3=17

For each veV; there is a vector in V, denoted by - v, and called the negative
of &, such that % + (—%) = (-¥) + B =0

If °k’ is any scalar and ¥ is in V then kv isin V.

k(u+ v) = ku + kv foru, veV and keK

(k + m)v = kv + mv for veV and k,m eK

k(mv) = (km)v for veV and k,m eK

1(¥) = v, for the unit scalar 1 in K.

The above axioms naturally split into two sets (as indicated by the labeling of the
axioms). The first four are concerned only with the additive structure of V and can
be summarized by saying V is a commutative group (Abelian group) under
addition. This means

Also,

Any sum vy, v,,...,v, Of vectors requires no parentheses and does not
depend on the order of the summands.

The zero vector 0 is unique, and the negative —v of a vector v is unique.
(Cancellation Law) If u + w = v+ W, thenu = v

subtraction in V is defined by v — v = v + (—v) , where —v is the unique

negative of ¥. On the other hand, the remaining four axioms are concerned with the
“‘action’’ of the field K of scalars on the vector space V.
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To Show that a Set with two operation is a VVector Space

= |dentify the set V of objects that will become vectors.
= |dentify the addition and scalar multiplication operation on V.
= Verify remaining axioms.

EXAMPLES OF VECTOR SPACES

This section lists important examples of vector spaces that will be used throughout
the text.

The Zero Vector Space:

Let 0 eV and define 0 + 0 = 0 also kO = O for all scalars ‘k’ then given space V
will a be vector space and called zero vector space.

Space K"

Let K be an arbitrary field. The notation K" is frequently used to denote the set of
all n-tuples of elements in K. Here K" is a vector space over K using the following
operations:

(i)  Vector Addition:
(Uy, Uy, ooy Uy) + (U1, V5, o, V) = (Ug + V1, Uy + Vg, o, Uy + 1)

(i)  Scalar Multiplication:
k(vy,v,,...,0,) = (kvy, kvy, ..., kvy)

The zero vector in K" is the n-tuple of zeros, 0= (0,0,,....,0) and the negative of
a vector is defined by —(v4, v, ..., 1) = (—V1, = Vo, ..., =)
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Theorem 1: Every field is a yector space over itself.
Proof: Let Fbe any flEld then for o, ﬂ.u v, w eF

u+veF

U+(v+w)=(U+v)+w f

There exists 0 e F suchthat y+0=u=0+4

There exists —u e F suchthat v+ (—u)=0=(-u}+u
L U+v=Vv+u ’

at;l eF

a(pu) = (aBu

u=u

alu+Vv)=ald+av

(a+ Bl)u =au+ LU

This shows that F is a vector space over F, so every field is a vector space over
itself. '

"509“."@!-":"5*’!“.'*

o

" Example 1: Show that V = {a+ bJ2 : a,b € Q} is a vector space over Q.
Solution: Let e, uv,weV , then

‘u=a+bJ2v= a+b-J_w a+b"v’—aas b, b \b"eQ

1. u+v =(a+bJ3)+(a’ +b'J2)=(a+a)+(b+b)W2 eV ‘

2. u+{v+w)=(a+bJ2)+ {a"+ b'\2)+ (@"+ b "J2)}
=(a+b2)+{(@ +a") + (b’ + b2}
=(@+a+a”)+(b+b' +b")J2
={(a+a)+(b+b)2}+(a"+ b"/2)
={(a+bJ2)+ (@ +B'V2)} + (a" + b"2)

={U+v)t+w

'; 0:o+o.j2'_ev$uchthat U+O=u=0+u
" -—u=-"(3+b_‘/§)'= —a—bJ2 eV suchthat U+ (-u)=0=(-u)+u -
6. U+v= (a+bﬁ)-+ (@' +b'V2) = (@+a)+(b+b)2 _
' "-—(a'+ﬂ)+”(b'+b)%/_-—(a'+b'ﬁ)+'(a+bﬁ)=\?+u
4 ol = a(a+b-\/—) aa+ab2 eV
7 alpn)=alBa+by2) = (ap)a+bi2)= (aﬂ)u
8. u_.1(e+bf)—a+b\/_ u i
L auev) =@+ by e+ D)

- _a(a+bJ_)+a(a +b-J_) au+av
10. (a+ﬁ’)u—(a+ﬁ)(a+b~/_)—a(a+bJ_)+ﬁ(a+bJ_) au+pu

This shows that V is a vector space over Q.
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Example 30 Show that the set. of all solution
y" -5y’ + 6y =0 is a real vector space.

y" -5y

V ={ae® +be** :a,beR}

" Let a,feR, uv,weV, then

O© o ~N D

u = ae?* +be®*,
v =a'e? +b'e™,
w=a"e +b"e**, aba,b.ab"eR
u+v=(ae® +be¥)+(a'e® +b'e®)=(a+ a'Ye? +(b+b")e** eV
u+(v+w)=(ae? +be*)+{(@'e™ +b'e™)+ (a"e® +b"e**)}
= (a6 + be® )+ {(a'+ a")e™ +(b' +b")e™}
—(a+a'+a")e® +(b+b' +b")e™
~(a+a")e? +(b+b)e’* +(a"e® £b"e™)
= {(ae? +be®* )+ (a'e™* +b'e* )} +(a"e™ +b"e™)
=(U+V)+w -
0=0e% +0e** eV suchthat u+0=u=0+u
-u=—{ae® +be**)=-ae* -be** eV
suchthat u+(-u)=0=(-u)+u
u+v=(ae®™ +be™)+(a'e™ +b'e™)
=(a'e® +b'e®™) +(ae®* +be®*)=v+u

au = a(ae® +be*™)=aae™ +abe® eV
a(pu) = a(B(ae®™ +be*)) = (ap)(ae™ + be® ) = (a f)u
1u =Yae? +be**)=(ae®* +be**)=u

a(u+v)=a{(@e®™ +be*™)+(a'e®™ +b'e™))

= a(ae® +be™ )+ a(a’e®™ +b'e*)=au+av

10 (a+ P =(a+ f)(ae™ +be®)

This shows that V is a vector space over R, i.e. Vis a real vector space.

=a(ae™ +be’™)+ flae™ +be™)=au + pu
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s of the: differential equat?,.;'

Solution: Let V be the set of all solutions of the differential €Quati,

'+6y =0, then-
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Space R"

We have to show that is a vector space. Since we know that

V =R" ={(ay,a,, .., a,):a,,a,,..,a, € R}

Let us define addition and scalar multiplication of n — tuples as follows for i, VeV
UtV = (U, Uy, o, Uy) + (U, Vg, 0, 1) = (U + U, Uy + Uy, o, Uy, + V)
And k(uq,u,, ..., u,) = (kuy, ku,, ..., ku,)

Firstly we will show that V is an Abelian Group.

Closure Law: that is Vi, veV we will have U + v €V

Let 4 = (uq, uy, ..., Uy) , ¥ = (vq, V5, ...,7,) then

U+ V= (U, Uy, ..., Uy) + (U, .0, V)

U+ V= (u +v,uUy + Uy, ., Uy +1,) €V

= Closure Law holds.

Associative Law: that is Vi, v, ,w eV we willhaveu + (W +w) = (U + V) + w
Letd = (uy, Uy, vy Uy) , U = (Vq, Uy, ..., V) , W = (W, Wy, ..., w,,) then
U+ W+ wW) = (U, Uy, o, Uy) + [(V, Vs, o, V) + (We, Wy, o, wy) ]

U+ @ +w) = (U, Uy, o Uy) + (Vg +wy, v + Wy, o, vy + W)

U+ @+w) =[uy + (v +w),uy + (v, + wy), ., uy + (v, + wy)]

U+ @W+w)=[(u; +vy) +wy, (U, +v5) +wy, ..., (U, + v,) + w,,]

U+ @ +w) = +v,U + Uy, e, Uy + 1) + (W, Wy, o, wy)

U+ W+w) = [(ug, uy, o, Uy) + (U1, Vg, o, )] + (W, Wy, o, wy)
Uu+@+w)=W+v)+w

= Association Law holds.
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Identity Law: that is V0, % eV we will have 0 + % = % + 0 =

Let0 = (0,0, ....,0) , v = (vq, vy, ..., v,) then

= ldentity Law holds.
Inverse Law: that is V&, —% eV we will have B + (—3) = —B+ 3 =0

Let v = (vq, vy, ...,v,) ,— U = (—Vy, —Vy, ..., —1;,) then

U+ (=0) = (v, vy, o, ) + (—v1, =V, oo, =) = (V] — V1, Vy — Vy oV, —

%+ (—%) = (0,0,....,0) =0

—V+ U = (—vy,—Vy, o, = V) + (V1, Uy, oo, V)
—V+v=(-v+v,-V,+V,..— v, +v,) =(0,0,...,0) = 0
= Inverse Law holds.

Commutative Law: that is Vi, v eV we willhave i + v = v + u

Letd = (uy, Uy, ..., Uy) , ¥ = (vq,Vy, ..., v,) then

U+ V= (U, Uy, ..., Uy) + (U, .0, V)

UtV = (U +v,Uy + Uy, e, Uy + 1) = (V; + Uy, Uy + Uy, o, Uy + Uy)
U+ V= (,Vq 0, V) + (U, Uy, o Uy) =V 4+ U

= Commutative Law holds.

Hence given space is Abelian group under addition.

97
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Now we will show Scalar multiplication properties.

If °k’ is any scalar and ¥ is in V then kv isin V.

Let ‘k’ is any scalar and ¥ = (v, vy, ..., v,) then

k(vy,v,,...,v,) = (kvy, kv,, ..., kv,) €V

k(u+ v) = ku+ kv foru, veV and keK

k(i + v) = k[(ug, Uy, ..., up) + (V1,05, ..., )]

k(i + v) = [k(ug, uy, ..., uy) + k(vy, vy, ...,v,)] = kU + kv
k(u+v) =ku+ kv

(k +m)v = kv + mv for veV and k,m eK
(k+m)v = (k + m)(vy, vy, ..., V)

(k + m)V = k(vy, vy, ..., 1) + m(vy, vy, ..., V)
(k+m)v =kv+mv

k(mv) = (km)v for veV and k,m eK
k(mv) = k[m(vy, vy, ..., v)] = (km)(vy, vy, ..., V)
k(mv) = (km)v

1(¥) = v, for the unit scalar 1 in K.
1(W) = 1(vy, vy, ..., V) = (1vg, 11y, ..., 1v,) = (v, Uy, o0, Vy) = U

Hence above all conditions show that V' = R™ is a vector space.
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Matrix Space M,,,xn

The notation M,,,,,, or simply M; will be used to denote the set of all m xn
matrices with entries in a field K. Then M,,,,, is a vector space over K with respect
to the usual operations of matrix addition and scalar multiplication of matrices.

We will prove it as follows; since we know that

V11 V12 U1in
V=M _ | V21 V22 ot Von|
= Mmxn = | A L1
Umi Vm2 " VUmn

Let us define addition and scalar multiplication for u, veV
Ut =[uyl vyl = e vl

And kv = k[vij]mxn = [kvij]mxn
Firstly we will show that V is an Abelian group.
Closure Law: that is Vi, veV we will have U + v eV

Let 'l_li = [uij] 1_7) = [vij]mxn then

mxn !
U+7v= [uif]mxn + [vij]mxn = [w; + vij]mxn eV

= Closure Law holds.

Associative Law: that is Vi, 7, w eV we willhave i + W+ w) = (U + V) + w
W= [w]

Let 17 = [uij]mxn , 13 = [UU] n then

mxn’ mx

U+ @+w)=[uy] + [[”ij]mxn + [Wii]mxn]

U+ @+ W) = [uy] 2T [vij + wij] = [ui; + (vij + wij)]

mxX mxn mxn

Ut @+ W) = [(w; +vy) +wy] = [[uij]mxn + [”if]mxn] +wil

U+ @+w)=@W+v)+w = Association Law holds.
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Identity Law:

that is VO, 3 eV we willhave 0 + 5 =3+ 0 = &

Let 6 = [Oij]mxn , 13 = [vij]mxn then

0+7= 0y]  +lvil =[05+vy] =[vy] =7
5+0=[vy] . +[04] . =lvy+05] . =[vl, . =7
= ldentity Law holds.

Inverse Law:

that is V&, —% eV we will have B + (=8) = -3+ 3 =0

Let 1}) = [vij]mxn , — 1_7) = [_vij]mxn then

v+ U= [~y A [vy] =[] =[05] = 0
= Inverse Law holds.
Commutative Law:

thatisvVu,v eVwewillhave i + v =v + u

Let 17 = [uij]mxn , 13 = [vij]mxn then

<
Il

+

&l

[uij]mxn + [vij]mxn = [w;; + vij]mxn = [y + uij]mm

U
Il
Ae{!

<

_|_

&l

V1] e + [i1] e = 7+
= Commutative Law holds.

Hence given space is Abelian group under addition.

D e N YR ) N LY N
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Now we will show Scalar multiplication properties.

Let ‘k’ is any scalar and ¥ = [v;;]

If °k’ is any scalar and ¥ is in V then kv isin V.

then
mxn

k1_7) = k[vij]mxn = [kvij]mxn eV

k(u+v) = ku + kv for u, veV and keK

k("l—i + ﬁ) =k [[uij]mxn + [vij]mxn]

k@ +9) = [k[uy]  +k[vy] | = kil + ko
k(u+v) =ku+ kv

(k + m)v = kv + mv for veV and k,m eK
(k+mv=(k+m) [vij]mxn
(k+m)v = k[vij]mxn + m[vij]
(k+m)v =kv+mv

mxn

k(mv) = (km)v for veV and k,m eK
k(mv) = k [m[vij]mxn] = (km)[v;]
k(mv) = (km)v

mxXn

1(v) = v, for the unit scalar 1 in K.

1(17) = 1[vij]m><n = [1.vij]m><n = [vij]mxn =7V

Hence above all conditions show that V = M,,,,, is a vector space.
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The Vector Space of real valued Functions defined on (—oo, o)
We will prove it as follows; since we know that

V = F(—o0,00) = {f: f is real valued function on (—oo, )}
Let us define addition and scalar multiplication for 1, veV
Uutv=(+9x =fx)+gkx)

And kv = (kf)(x) = kf(x)

Firstly we will show that V is an Abelian Group.

Closure Law: that is Vi, eV we will have © + v eV
Leti = f,V = g then

U+v=((+g)x) =f(x)+gx)eV

= Closure Law holds.

Associative Law: that is Vi, 7, w eV we willhave it + W+ w) = (U + V) + w
Letd =f,Uv=g,w = hthen

U+ @+w) =f)+[g+h](x)=f0)+gx) + h(x)

U+ @+w)=[f+g]l(x)+h(x)=@U+D)+W
Uu+@+w)=@WU+v)+w = Association Law holds.
Identity Law:

that is V0, 7 eV we willhave 0 + # = 5 + 0 =

Let0 = 0,% = f then
0+7=0+))=0)+f(x)=f)=7v

$+0=(+0)(x)=fx)+0x)=f(x)=7
= ldentity Law holds.
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Inverse Law: that is V3, — eV we will have % + (—=%) = -3+ 3 = 0
Letv =f,— v = —f then
T+ (D) = (f+ (N =f) — () =0
—F+B=(—f+)x) =—fx)+f(x) =0 = Inverse Law holds.
Commutative Law: thatis Vi, v eV we willhave i + v = v + U
Leti = f,¥ = g then
Uu+v=(f+9x) =fx)+9x)=gx) +fx)=v+1u
u+v=v+u = Commutative Law holds.
Hence given space is Abelian group under addition.
Now we will show Scalar multiplication properties.

= If ‘k’ is any scalar and ¥ is in V then kv is in V.

Let ‘k’ is any scalar and v = f then kv = (kf)(x) = kf (x) €V

» k(u+v) =ku+ kv foru,veV and keK

k(i +7) = [k(f + 9Ix) = (kf + kg)(x) = kf (x) + kg(x)
k(u+v)=ku+ kv

» (k+m)v =kv+mv for veV and k,m eK

(k + m)v = [(k + m)f](x) = (kf + mf)(x) = kf (x) + mf (x)
(k+m)v =kv +mv

» k(mv) = (km)v for veV and k,m eK

k(mv) = k[mf](x) = k[mf(x)] = (km)f(x) = (km)f
k(mv) = (km)v

= 1(v) = v, for the unit scalar 1 in K.

1) =1f =[1fl) =1f ) =f) =f =7

Hence above all conditions show that V = F(—oo, o) is a vector space.
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Polynomial Space P(x)
Let P(x) denote the set of all polynomials of the form
Px)=ay+a;x+-+a,x" ;n=1,23,..

where the coefficients a; belong to a field K. Then P(x) is a vector space over K
using the following operations:

(i) Vector Addition: Here p(x) + q(x) in P(x) is the usual operation of addition of
polynomials.

(ii) Scalar Multiplication: Here kp(x)in P(x) is the usual operation of the product
of a scalar ‘k’ and a polynomial p(x).

The zero polynomial 0(x) is the zero vector in P(x).
Polynomial Space P,,(x)

Let B, (x)denote the set of all polynomials p(x) over a field K, where the degree of
p(x) is less than or equal to n; that is,

P(x) =ay+ a;x + -+ a,x* wheres < n.

Then PB,(x) is a vector space over K with respect to the usual operations of
addition of polynomials and of multiplication of a polynomial by a constant (just
like the vector space P(x)above). We include the zero polynomial 0 as an element
of P,(x), even though its degree is undefined.

Fields and Subfields

Suppose a field E is an extension of a field K; that is, suppose E is a field that
contains K as a subfield. Then E may be viewed as a vector space over K using the
following operations:

(i) Vector Addition: Here u + v in E is the usual addition in E.

(if) Scalar Multiplication: Here ku in E, where keK and ueE, is the usual product
of ‘k’ and u as elements of E.

That is, the eight axioms of a vector space are satisfied by E and its subfield K with
respect to the above two operations.
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A Set that is Not a Vector Space

Show that V = R? is not a vector space under the operation
U+ 7= (u +vy,u, +v,)and kil = (kuy, 0)

We have to show that is a vector space. Since we know that
Let us consideru = (2,4) , v =(-3,5) , k=7

i+ =024+ (=35 =2-34+5)=(-19)

And ki = (kuy,0)

= 714 = (7uy,0) = (7 x 2,0) = (14,0)

= 7u = 7(uy,u,) = 7(2,7) = (14,—21) actual value.
= 7u # (7uy,0)

Not satisfy given operation.

Hence V = R? is not a vector space under the given operation

Some Standard Operations:

= For R = Set of real numbers
= u + v addition and ku scalar multiplication.
= For R? = Set of ordered pairs of real numbers
S>u+v=(u +vy,u, +v,) and kud = (kuy, ku,)
= For R™ = Set of n — tuples of real numbers

SU+V= (U +v,uUp + Uy, .Uy, + U)

And ki = (kuq, ku,, ..., kuy,)
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PRACTICE:

1) Show that R* = {(a,,a,, ..., a, ...):a4,a,, ..., a, ... € R} is a vector space.
Or show that space of infinite sequence of real number is vector space.
2) Show that V = set of positive real numbers is a vector space under
defined operation as u + v = uv and ku = u”*
3) Show that ¥ = R? is not a vector space under the operation
U+ v = (u, +vy,u, +vy)and kit = (kuy, 0)
4) Show that V = R = set of real numbers is a vector space under the
standard operation of addition and scalar multiplication.
5) Let Show that V = setof all ordered pairs of real numbers  with
defined operations u + v = (u; + vy, u, + v,) and ku = (0, ku,)
I.  Show that not a vector space.
ii. Computeu +vandkuforu=(-12),v=34),k=3
6) Show that V = R = set of real numbers is a vector space or not under
the operation of addition and scalar multiplication as follows
u+v=_~ +v,+1,u,+v,+1)and ki = (kuy, ku,)
I. Compute u +vand ku foru =(0,4),v=(1,-3),k =2
ii.  Show that (0,0) # 0
iii. Showthat (=1,—1) =0
7) Show that the set of all pairs of real numbers of the form (x, 0) is a vector
space or not with standard operations on R2.
8) Show that the set of all pairs of real numbers of the form (1, x) is a vector
space or not with the operations (1,y) + (1,y) = (1,y + y)
and k(1,y) = (1, ky)
9) Show that the set of all pairs of real numbers of the form (x,y) with x > 0
is a vector space or not with standard operations on R2.

10) Show that the set of all n — tuples of the real numbers of the form
(x,x, ..., x) is a vector space or not with standard operations on R™.
11) Show that the set of all triples of the real numbers is a vector space or

not with standard vector addition but with scalar multiplication defined by
k(x,v,z) = (k?x,k?*y, k*z)
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12) Show that M, is a vector space.
Or show that space of 2 X 2 matrices is a vector space.

13) Show that set of all 2 x 2 invertible matrices with the standard matrix
addition and scalar multiplication is a vector space or not.

14) Show that set of all 2 X 2 non singular matrices with the standard
matrix addition and scalar multiplication is a vector space or not.

15) Show that set of all 2 x 2 matrices of the form [g g] with the
standard matrix addition and scalar multiplication is a vector space or not.
16) Show that set of all 2 x 2 real matrices of the form [Cll lﬂ with the

standard matrix addition and scalar multiplication is a vector space or not.

17) Show that Function Space F[X] i.e. set of all function of X into K (an
arbitrary field) is vector space.

Or show that F[X] = {f: f is real valued function} is a vector space.

18) Show that
Cla,b] = {f: f is continuous real valued function on [a, b]} is a vector
space.

19) Show that C'[a,b] = {f:f € Cla,b] and f(a) = f(b)} is a vector
space.

20) Show that the set of all real valued functions f defined everywhere on
the real line and such that f(1) =0 is a vector space or not with the
operations (f +g)(x) = f(x) + g(x) And (kf)(x) = kf(x)

21) Show that the set of polynomials of the form a, + a;x is a vector
space or not with the operation
(ap + a;x) + (by + byx) = (ay + by) + (ay + by)x
And k(ay + a;x) = (kay) + (ka,)x
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Theorem: Let V be a vector space over a field K.

I. Foranyscalark € Kand 0 €V, kO =0
li. For0 € K and any vector u € V; Ou=20
ii. Ifku=0,whereke KandueV,thenk=0oru=20
iv. Foranyke Kandanyu €V, (—k)u =k(—u) = —ku
And in particular (—1)u = —u
Proof:
Part=i: Foranyscalark e Kand 0 € V; k0 =0

Since we know that 0 + 0 = 0 therefor k0 = k(0 + 0) = k0 + kO
Adding— k0 on both sides —k0+ k0 =—-k0+k0+k0=>0=k0=>£k0=0

Part=ii: For0 € K and any vector u € V; Ou=20

We can write Ou + Ou = (0 + 0)u = Ou
= [Ou + Ou] + (—0u) = Ou + (—0u) = Ou + [Ou + (—0u)] = Ou + (—0u)

>0UuUu+0=0=>0u=0

Part=iii: Ifku=0,whereke Kandu€eV,thenk=0oru=20

Suppose ku = 0 and k # 0 then there exists a scalar k=1 such that k~1k = 1

Thusu=1u=(k"*Hu=k *(ku) =k 1(0)=0

Part=iv: Foranyk e Kandanyu € V; (=k)u =k(—u) = —ku

And in particular (—1)u = —u

Usingu+ (—u)=0and k+ (k) =0
=>0=k0=klu+ (—u)] =ku+k(—u) = —ku = k(—u)
and =20=0u=[k+ (-k]u=ku+ (—k)u= —ku=(—k)u

Thus (—k)u = k(—u) = —ku andfork=1weget (—1))u=—-u
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Linear Combinations

Let V be a vector space over a field K. A vector ¥ in V is a linear combination of
vectors vy, vy, ..., v, in V if there exist scalars k4, k, ..., k,, in K such that

1}) = klvl + kzvz + -+ knvn

Alternatively, ¥ is a linear combination of k4, k,, ..., k,, if there is a solution
to the vector equation v = x,v; + x,v, + -+ + x,, v, Where x,x,,...,x, are
unknown scalars. These scalar are called coefficients of linear combination.

Example:(Linear Combinations in R")

Suppose we want to express ¥ = (3,7,—4) in R® as a linear combination of the
vectorsu; = (1,2,3) ; u, = (2,3,7) ; us = (3,5,6)

We seek scalars X, y, z such that ¥ = xu; + yu, + zu; thatis,

3 1 2 3
[7]=x 2| +y|3|+2z|5
—4 3 7 6
or x+2y+3z=3, 2x+3y+5z=7, 3x+7y+6z=-4

(For notational convenience, we have written the vectors in R® as columns, because
it is then easier to find the equivalent system of linear equations.) Reducing the
system to echelon form yields

x+2y+3z=3 Andthen x+2y+3z=3
_y_Z=1 —y—Z:1
y—3z=-13 —4z = —12

Back-substitution yields the solutionx = 2,y = — 4,z = 3.

ThUS 1_7) - 2u1 - 4u2 + 3u:3
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Remark:

Generally speaking, the question of expressing a given vector v in K" as a linear
combination of vectors v, v,,...,v, in K" is equivalent to solving a system
AX = B of linear equations, where v is the column B of constants, and the v’s are
the columns of the coefficient matrix A. Such a system may have a unique solution
(as above), many solutions, or no solution. The last case—no solution—means that
¥ cannot be written as a linear combination of the v’s.

Example:

Suppose that the vectors % = (1,2,—1) and ¥ = (6,4,2) in R® show that
w = (9,2,7) is a linear combination of u and ¥ and w' = (4,—1,8) is not a linear
combination of % and v

Solution: In order for w to be a linear combination of u and v, there must be
scalars k4, k, such that w = k,u + k,v that is

(9,2,7) = k;(1,2,—1) + k,(6,4,2) = (1k; + 6k,, 2k, + 4k,, —1k, + 2k,)
Equating corresponding components gives

ki + 6k, =9 : 2k, + 4k, =2 —ky + 2k, =7
Solving the system using Gaussian Elimination yields k;, = -3 , k, =2

So W= -3u+2v hencew isa linear combination of # and v

Similarly In order for w' to be a linear combination of % and ¥, there must
be scalars k4, k, such that w' = k,u + k,v that is

(4‘, _1,8) = k1(1,2, _1) + k2(6,4‘,2) = (1k1 + 6k2, Zkl + 4‘k2, _1k1 + Zkz)
Equating corresponding components gives
k1+6k2 =4 , 2k1+4‘k2 =—-1 , _k1+2k2 =8

Solving the system of equation we notify that this is inconsistent. So no such k;, k-
exists. Consequently w' is not a linear combination of i and v
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Example: (Linear combinations in P(t) )

Suppose we want to express the polynomial ¥ =3t?2+5t—5 as a linear
combination of the polynomials

py=t*+2t+1 , p, = 2t> + 5t +4, ps =t2+3t+6
We seek scalars x, y, z such that v = xp; + yp, + zp;  thatis,
3t2+5t—5=x(t?+2t+ 1) +yQt?+5t+4) +z(t*+3t+6) ....... (1)

There are two ways to proceed from here.

(1) Expand the right-hand side of (i) obtaining:
3t2+5t—5=(x+2y+2)t?+ 2x + 5y + 32)t + (x + 4y + 62)

Set coefficients of the same powers of ‘t’ equal to each other, and reduce the
system to echelon form:

x+2y+z=3 , 2x+5y+3z=5 and x+4+4y+6z=-5
Or x+2y+z=3, y+z=-1 and 2y+5z=-8
Or x+4y+6z=-5, 2y+5z=-8 and 3z=-6

The system is in triangular form and has a solution. Back-substitution yields the
solutionx =3,y =1,z = —-2. Thus, U =3p, +p, — 2p;

(2) The equation (i) is actually an identity in the variable ‘t’; that is, the equation
holds for any value of ‘t’. We can obtain three equations in the unknowns X, y, z by
setting ‘t” equal to any three values.

For example, Sett =0in (1) to obtain: x + 4y + 6z = =5
Sett =1in (1) to obtain: 4x + 11y + 10z = 3
Sett =—1in (1) toobtain: y + 4z = -7

Reducing this system to echelon form and solving by back-substitution again
yields the solutionx =3,y =1,z = =2

Thus (again), U =3p; +p, — 2p3
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PRACTICE:
1) Which of the following are linear combination of u = (0,—2,2) and
B =(13,—-1)?
i (2,2,2) ii. (04,5 iii.  (0,0,0)

2) Express the following as linear combination of % = (2,1,4)
v=(1,-1,3)and w = (3,2,5)

i.  (=9,—7,—15) i.  (611,6) iii. (0,00

3) Which of the following are linear combination of A = [_42 _02] :

1 -1 0 2
B=[2 3]andC=1 4]?
6 —8

1 —8

0 0

0 0

i ‘71 f]

4) For what value of ‘k’ will the vector (1,—2, k) in R%be a linear combination
of the vectors (3,0,—-2),(2,—1,-5)

5) In each part express the vector as a linear combination of
pr =2+ x + 4x?, p, =1 —x + 3x?, ps = 3 + 2x + 5x2

i. —9—7x— 15x?
ii. 6+ 11x + 6x?
. 0
iv. 7+ 8x + 9x?

6) Let V be a vector space over a field K. Then show that for every u,v € V
and k € K: we have k(u + v) = ku+ kv
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Subspaces

Let V be a vector space over a field K and let W be a subset of V. Then W is a
subspace of V if W is itself a vector space over K with respect to the operations of
vector addition and scalar multiplication on V.

The way in which one shows that any set W is a vector space is to show that W
satisfies the eight axioms of a vector space. However, if W is a subset of a vector
space V, then some of the axioms automatically hold in W, because they already
hold in V. Simple criteria for identifying subspaces follow.

Theorem: Suppose W is a subset of a vector space V. Then W is a subspace of V
iff the following two conditions hold:

a) The zero vector 0 belongs to W
b) Foreveryu,v e Wand k € K:
(i) Thesumu+vew
(i)  The multiple ku e W

Property (i) in (b) states that W is closed under vector addition and property (ii) in
(b) states that W is closed under scalar multiplication. Both properties may be
combined into the following equivalent single statement:

(b") For every u,v € W; a,b € K, the linear combination au + bv € W

Now let V be any vector space. Then V automatically contains two subspaces: the
set {0} consisting of the zero vector alone and the whole space V itself. These are
sometimes called the trivial subspaces of V. this means that every vector space has
at least two subspaces.

The Zero Subspace:

If V is any vector space and W = {0} is the subspace of V that contains the zero
vector only, then W is closed under addition and scalar multiplication

Since 0 + 0 = 0 and kO = O for any scalar ‘k’
Then we call W the zero subspace of V.

Remember that smallest vector space is {0}.
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Example 2: Show that Q is not a subsbéce of R.
Solution: Let x,y € Q, then for irrational numbers JEJE €R

\/2’(+w/§}’EQ

This shows that Q is not a subspace of R.

Example 3: Show that the set of all irrational numbers is not a subspace of R,
Solution: L'et Q° be the set of all irrational numbers, then forv2,43 Q¢ and
23¢Q° R,

J2V2 +3V3=2+3=5¢Q°

This shows that Q¢ is not a subspace of R.

Example 4: Show that the set of all 2x 2 non-singular matrices is not a subspace of
2-
Solution: Let A and B be two 2x2 non-singular matrices, then 0A+0B=0 is a

singular matrix. so the set of all 2x2 non-singular matrices does not contain this

Matrix, Hence the set of all 2x 2 non-singular matrices is not a subspace of M, .

Example 6: Show that W ={(x,y,2): x+ y + 2 =0} is a subspace of R®.

PU, 2016, 2015, 2014, Mathematics A-lll. BS (A
Solution: Let w,w, W, a,f<R then

W =(y,2) W, =(X\y\Z); X+y+2=0,X"+y'+2'=0

Coﬁsider
| oW, + B, =alx,y,2)+ f(x,y,Z)
=(ox,ay,2) + (B, By', Bz')

| =(@x+ B0y + a2+ fir)
Now (ax+ﬁX')+(ay+ﬁy')+(czz'+,Bz'):a(x+y+z)+ﬂ(x’+y’+z')

=(0)+ 5(0)=0 ,
Thus, aw, + pw, e W . This shows that Wis a subspace of R°.

Avail able at MathGty.org Visit us @ Youtube: “Learning With Usman Hamid”



115

Theorem: If S = {wy,w,, ... ... ,W,.} IS a non-empty set of vectors in a vector space
V then the set W of all possible linear combinations of the vectors in S is a
subspace of V.

Proof: Let W be the set of all possible linear combinations of the vectors in S
We must show that W is closed under addition and scalar multiplication.
To prove closure under addition let i, v € W as

U=cwy +cwy + -+ cw, and U =kywy + k,wy, + -+ kw,
Then their sum can be written as

U+7=(c, + kpwy + (c; + kp)wy, + -+ (¢ + k- )w,

Which is the linear combination of the vectors in S.

To prove closure under multiplication let # € Wand k € K as

U=c,wy + Cw, + -+ c,w,

then ku = (kc)w; + (kcy)w, + -+ (ke )w,

ki = a,w; + a,w, + -+ + a,w,

Which is the linear combination of the vectors in S.

Then W is closed under multiplication.

Hence W is a subspace of V

Theorem: If S = {w;,w,, ..., w,.} is a non-empty set of vectors in a vector space V
and if the set W of all possible linear combinations of the vectors in S is a subspace
of V then set W is the smallest subspace of V that contains all of the vectors in S in
the sense that any other subspace that contains those vectors contains W.

Proof: Let W' be any subspace of V that contains all of the vectors in S. Since W'
Is closed under addition and scalar multiplication, it contains all linear
combinations of the vectors in S and hence contains W.
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Theorem: Suppose W is a subset of a vector space V. Then W is a subspace of V
Iff the following two conditions hold:
Foreveryu,v e Wand k € K:

I. Thesumu+veW
ii.  The multiple ku e W

Proof:

Suppose that W is a subspace of V then by definition of a subspace W is a vector
space over field K and hence given conditions must hold.

Conversely:

Suppose that W is a non — empty subset of V such that the conditions (i) and (ii)
are satisfied then we have to show that W is a subspace of V

Forthisletu,v e WandsinceveWalso—-1e K = -1lv=—-veW Dby (i)
SoforuuveW=>u,-veW=>u—-vew by (i)
Which shows that W is a subspace of V under addition.

Now because V is an Abelian group under addition and W < Vso W is also an
Abelian group under addition.

Alsoforke Kandue W = kueWw by (ii)

The remaining four conditions of scalar multiplication holds in W because they
hold in V therefore W is subspace of V.
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Theorem: Suppose W is a non — empty subset a vector space V. Then W is a
subspace of a vector space V. If and only if for every u,v € W; a,b € K, the
linear combination au + bv e W

Proof: Suppose that W is a subspace of V then by definition of a subspace W
Is a vector space over field K and hence given condition must hold.

Conversely: Suppose that W is a non — empty subset of V such that the condition
au + bv € W s satisfied then we have to show that W is a subspace of V

For this leta = b = 1 € K then according to condition
aut+bveW>u+vew

Now take b = 0 € K so that au e W

This means that for everyu,v € W;a € K,we haveu+v € Wandau e W
Thus by theorem “W is a subspace of V iff the following two conditions hold:
Foreveryu,v € Wand k € K: The sum u + v € W and the multiple kue w”
= W is a subspace of V

Theorem:

Suppose U and W are subspaces of a vector space V. then show that U n W is also
a subspace of V.

Proof: Suppose thata,b €e Kand w,veUnW
>uvevUalso uuvew

= au+ bv € U also au + bv € W being Subspace.
>au+bvelUnW

Hencefora,b e Kand uuveUnNnW=au+bvelUnW

This implies U n W is a subspace of V
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Theorem:

Show that the intersection of any number of subspaces of a vector space V is a
subspace of V.

Proof: Suppose that {U, ;<€ I} be any subcollection of subspaces of a vector
space V over the field K. Then we have to show that is also a subspace of V.

For this Suppose thata, b € K and u, v € Ny Uy

= u,v e U, forall xe |

= au + bv € U, for each <€ [ being Subspace. = au + bv ENy; Uy
This implies Ny¢; U, is a subspace of V

Theorem:

Suppose U and W are subspaces of a vector space V. then U+ W is also a
subspace of V containing both U and W. Further U + W is a smallest subspace of
V containing both U and W

Proof: Given that U and W are subspaces of a vector space V then we can define
U+W={u+w:uelUweW}

We will prove that U + W is also a subspace of V

For this Suppose thata,b € K and v, v, € U+ W

>V =U; +Wq, V3 =U, +wW, Whereu,,u, €eU and wyq,wy, EW

= auq + bu, € U also aw; + bw, € W being Subspace.

= (auy + buy) + (awy +bwy) eU+ W

= (auy + awy) + (bu, +bwy,) eU+ W

>a(uy+wy)+b(u, +wy) eU+W=av,+bv, eU+W

This implies U + W is a subspace of V

Visit us @ Youtube: “Learning With Usman Hamid”



119
Next we will prove that U + W is a smallest subspace of V containing both U and
WieUCU+Wand WCU+W
Sinccu€eU and 0eW =u+0=ucU+W forallueU
>UcCU+W and similarly wcu+w
Hence U + W is a subspace of V containing both U and W
Now
we will prove that U + W is a smallest subspace of V containing both U and W
let S be any subspace of V containing both U and W
then foreveryu e Uand w e W wehaveu € S andw e Ssothat u+wes
but u+weU+W SoU+WCS

Hence U + W is a smallest subspace of V containing both U and W

Only way to learn
mathematics is to do
mathematics
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Examples of nontrivial subspaces follow.
Lines through the origin are subspace of R? and of R3

If W is the line through the origin of either R? or R3, then adding two vectors on
line or multiplying a vector on the line by a scalar produces another vector on the
line, so W is closed under addition and scalar multiplication. Hence a subspace.

w

Uty
kn

Y
3

By Wis closed under scalar
{¢) Wis closed under addition. multiplication.

Planes through the origin are subspace of R3

If u and v are vectors in a plane W through the origin of R3, then it is evident
geometrically that u + v and ku also lie in the same plane W for any scalar ‘k’.
thus W is closed under addition and scalar multiplication.

A list of subspace of R? and of R3

Subspace of R? Subspace of R3

{0} {0}
Lines through the origin | Lines through the origin
Planes through the origin
R? R3
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A subset of R? that is not a subspace of R?

Consider W = {(x,y):x = 0,> 0}in R> This is not a subspace of R? because
it is not closed under scalar multiplication.

Forexample: v=(1,1) e Wbhut—1lv=(-1,-1) ¢ W

A D
s 1. 1)
-4
P

/

(—1i. —1)

Example: Consider the vector space V = R3 and Let U consist of all vectors in R®
whose entries are equal; that is, U = {(a,b,c):a = b = c}

For example, (1,1,1),(-3,-3,-3),(7,7,7),(—2,—2,—2) are vectors in
U. Geometrically, U is the line through the origin O and the point (1, 1, 1) as
shown in Figure. Clearly 0 = (0,0,0) belongs to U, because all entries in 0 are
equal. Further, suppose u and v are arbitrary vectors in U, say, u = (a,a, a) and
v=(b,b,b).

Then, for any scalar k € R, the following are also vectors in U:
u+v=(@+b»ba+b,a+b)and ku = (ka, ka, ka)

Thus, U is a subspace of R3.

Visit us @ Youtube: “Learning With Usman Hamid”



122

Example: Consider the vector space V = R3 And Let W be any plane in R®
passing through the origin, as pictured in Figure. Then 0 = (0,0, 0)belongs to W,

because we assumed W passes through, the origin O. Further, suppose u and v are
vectors in W. Then u and v may be viewed as arrows in the plane W emanating
from the origin O, as in Figure. The sum u + v and any multiple ku of u also lie in
the plane W. Thus, W is a subspace of R3

PRACTICE:

1) Use subspace criteria to determine which of the following are subspaces of
R3?
a) All vectors of the form (a, 0,0)
b) All vectors of the form (a, 1,1)
c) All vectors of the form (a, b,c) whereb =a + ¢
d) All vectors of the form (a,b,c) whereb=a+c+1
e) All vectors of the form (a, b, 0)
f) All vectors of the form (x,y,z) wherex + y+z =10
g) All vectors of the form (x,y,z) where x > 0
h) All vectors of the form (x,y, z) where x? + y2 + z2 < 0
and x>+ y? +z2<1
i) All vectors of the form (x, y, z) where x, y, z are rationals
j) All vectors of the form (x, y, z) where x,z € R
k) All vectors of the form (x, vy, z) where y? = x? + z2

2) Show that set of rational numbers Q is not a subspace of R.
3) The union of any number of subspaces need not to be a subspace. Prove!
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Subspaces of M,,,,

We know that the sum of two symmetric n X n matrices is symmetric and
that a scalar multiple of a symmetric n X n matrix is symmetric. Thus the set of
symmetric n X n matrices is closed under addition and scalar multiplication and
hence is a subspace of M,,,,.

Similarly the sets of upper triangular matrices, lower triangular matrices and
diagonal matrices are subspaces of M,,,,.

Let V = M,,,, the vector space of n X n matrices. Let W, be the subset of all
(upper) triangular matrices then W, is a subspace of V, because W, contains the
zero matrix 0 and W is closed under matrix addition and scalar multiplication; that
IS, the sum and scalar multiple of such triangular matrices are also triangular.

A subset of M,,,, that is not a Subspace

The set W of invertible n X n matrices is not a subspace of M,,,, failing on two
counts;

= Itis not closed under addition
= |tis not closed under scalar multiplication

We will illustrate this with an example;

Let us consider two matrices U = B é] and V = [:; é in M,, then the

matrix QU is the 2 X 2 zero matrix and hence is not invertible and then U + V has a
column of zeros, so it also is not invertible.

Remark:

Matrices whose determinant is zero are not subspaces.
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PRACTICE:
Use subspace criteria to determine which of the following are subspaces of M,,,,?

a) The set of all diagonal n X n matrices.

b) The set of all n X n matrices A such that det(4) = 0

c) The set of all n X n matrices A such that tr(4) =0

d) The set of all symmetric n X n matrices.

e) The set of all n X n matrices A such that AT = —A4

f) The set of all n X n matrices A for which Ax = 0 has only the trivial
solution.

g) The set of all n x n matrices A such that AB = BA for some fixed
n X n matrices B.

The Subspace €(—oo, )

Since we know that a theorem in calculus “a sum of continuous functions is
continuous and that a constant times a continuous function is continuous”
Rephrased in vector language, the set of continuous functions on (—oo, ) is a
subspace of F(—o, ) we will denote this subspace by €(—o, )

Remark:

e A function with continuous derivative is said to be continuously
differentiable.

e Sum of two continuous differentiable functions is continuously
differentiable and that a constant times a continuous differentiable function
Is continuously differentiable.

e Functions that are continuously differentiable on (—oo, o) form a subspace
of F(—o0, o). we will denote this subspace by €(—o0, o)

e We will denote this subspace by C'(—oo,0) where the superscript
emphasizes that the first derivatives are continuous.

e We will denote this subspace by €™ (—o0,),C*(—0,0) where the
superscript emphasizes that the m continuous derivatives and the derivatives
of all orders respectively.
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The Subspace of all Polynomials:

Since we know that a polynomial is a function that can be expressed in the form
P(t) = ay + a,t + -+ + a,t™ where a,, a4, ..., a,, are constants.

Also we know that “the sum of two polynomials is a polynomial and that a
constant time polynomial is polynomial.” Thus the set W of all polynomials is
closed under addition and scalar multiplication and hence is a subspace of
F(—o0, ). We will denote it by P

Degree of Polynomial:
The highest power of the variable that occurs with a non — zero coefficient.

For example the Polynomial P(t) = a, + a,t + --- 4+ a,t™ with a,, # 0 has
degree ‘n’

The Subspace of all Polynomials of degree < n:

It is not true that the set W of polynomials with positive degree ‘n’ is a subspace of
F(—o0, o) because the set is not closed under addition.

For example the Polynomials 1+ 2t + 3t? and 5+ 7t — 3t? both have
degree 2 but their sum has degree 1.

But for each non — negative integer ‘n’ the polynomials of degree ‘n’ or less form a
subspace of F(—oo, ). We will denote it by P,,

Example:

Let V = P(t), the vector space P(t)of polynomials. Then the space P,(t) of
polynomials of degree at most ‘n” may be viewed as a subspace of P(t). Let Q(t)
be the collection of polynomials with only even powers of ‘t’. For example, the
following are polynomials in Q(t) :

p, =3+ 4t2 —5t% and p, = 6 — 7t* + 9t® + 3t12

(We assume that any constant k = kt° is an even power of ‘t’) Then Q(t) is a
subspace of P(t) .
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Remark: It is proved in calculus that polynomials are continuous functions and
have continuous derivatives of all orders on (—oo, o), thus it follows that P, is not
only a subspace of F(—oo, ) but is also a subspace of C*(—oo, )

All spaces discussed previously are nested. See follow;

PRACTICE:

1) (Calculus Required)  Show that followings set of functions are
subspaces of F(—o0,0)?

I.  All functions f in F(—oo, o) that satisfy f(0) =0

ii.  All functions f in F(—oo, ) that satisfy f(0) = 1
ii.  All functions f in F(—oo, ) that satisfy f(—x) = f(x)

iv.  All polynomials of degree 2.

v. All continuous functions on (—oo, ©)
vi.  All differentiable functions on (—oo, o)
vii.  All differentiable functions on (—oo, o) that satisfy f' + 2f = 0

2) (Calculus Required) Show that the set of continuous functions f = f(x)
on [a, b] such that f;f(x) dx = 0 is a subspace of C[a, b]
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3) Use subspace criteria to determine which of the following are subspaces of
P3?
i.  All polynomials a, + a;x + a,x? + azx3 for whicha, = 0
i.  All polynomials a, + a;x + a,x? + azx3 for whichay + a; + a, + a3 =0
iii.  All polynomials a, + a,x + a,x? + asx3 in which ay, a,, a,, a; are rational
iv. All polynomials a, + a;x in which a,, a, are real numbers.

4) Use subspace criteria to determine which of the following are subspaces of

R*?
i.  All sequences vin R® of the formv = (v,0,v,0,7,0, ... .....)
i.  Allsequences vin R® of the formv = (v,1,v,1,v,1, ........)
iii.  All sequences v in R® of the form v = (v, 2v,4v,8v, 16v, ........)
iv. All sequences v in R® whose components are zero from some point
on.

5) Let V be a vector space of functions f: R = R. Show that W is subspace of
V where;
i. W={f(x):f(1) =0} allfunctions whose values at 1 is 0.
. W={(x):f(3)=f1)} all functions assigning to same value
to 3and 1.
. W ={f(t):f(x) =—f(x)} all odd functions.
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Spanning Sets

Let V be a vector space over K. Vectors vy, v,, ..., v, in V are said to span V or to
form a spanning set of V if every ¥ in V is a linear combination of the vectors
Vq,V,, .., Uy . Thatis, if there exist scalars k4, k, ..., k,, in K such that

1}) = klvl + kzvz + -+ knvn

Oor ifS={w,w,,.... ,W,.} is a non — empty set of a vector in a vector space V
then the subspace W of V that consists of all possible linear combinations of the of
the vectors in S is called the subspace of V generated by S and we say that the
vectors wy, w,, ..., w,. span W. we denote this subspace as

W = span{w;,w,, ..., w, } or W =span(S)

Or Let S be a non — empty subset of a vector space V. then the set of all linear
combinations of finite number of elements of S is called the linear span of S and is
denoted by (S) or L(S) or [S]

Remarks:

=  Suppose vy, vy, ..., U, SPan V. Then, for any vector w, the set w, vy, vy, ..., v,
also spans V.

= Suppose vy, V,,...,v, Span V and suppose v, is a linear combination of
some of the other v’s. Then the v’s without v}, also span V.

= Suppose vy, vy, ..., Uy, SPan V and suppose one of the v’s is the zero vector.
Then the v’s without the zero vector also span V.

= If S={v,,v,..,v}and §' = {w;,w,,...,w,} are non — empty sets of a
vector in a vector space V, then Span{v,, v,, ..., v} = Span{w,, w,, ..., w; }
iff each vector in S is a linear combination of those in S’, and each vector in
S’ is a linear combination of those in S

Theorem: If Sand T are subsets of Vthen S ¢ T = (S) c (T)
Proof: Let S = {vy,v,, ..., v,.}and T = {vy, Vs, ..., Uy, U1y oo o» Un )

Let v € (S) then v = ayv; + a,v, + - ... + a, v, a linear combination of vectors
inS.

We may write v=av; +av,++av.+0v,,,+--+0v, a linear
combination of vectors in T. then this implies v € (T)

Hence S c T = (S) c (T)
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Theorem:

Let S be a non — empty set of vectors in a vector space V over a field K. then (S) is
a subspace of V containing S and it is the smallest subspace of V containing S.

Proof:

Leta,b € Kandu,v € (S) alsou;,v; € Sand a;, b; € K then

n

u= a1u1 + azuz + -+ anun - z aiui
i=1

m
v = byv, + byvy + -+ by vy, = Z b;v;
j=1

Now au + bv = a1, a;u;) + b(Z}”zl biv;) = X, alau) + P b(b;v;)
au + bv = Yi, (aa)u; + XL, b(ijj) s~ a(bv) = (ab)v

Which shows that au + bv is a linear combination of vectors in S.

So au + bv € (S)

Soa,be Kand u,v € (S) = au + bv € (S) = (S) is a subspace of V.

Now we prove that (S) is the smallest subspace of V containing S.

If W is any other subspace of V containing S then it contains all vectors of the
formu =Y, a;u; whereu; € Sand a; € K

=>8cW

Thus (S) is the smallest subspace of V containing S.
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The standard unit vectors spans R"
Since we know that standard unit vectors are as follows;
é, = (1,0,0,..,0), é,=(01,0,..,0),..cc. c....... &, =1(0,00,...,1)

These vectors span R" since every vector ¥ = (v, v, ... ... ,v,) in R" can be
expressed as v = v,é; + v,€, + ---+ v,é, which is a linear combination of
éll éZi ey én

Example: Consider ¥ = (a,b,¢) in R® then it can be written as a linear
combination of standard unit vectors in R® as follows;

v = (a,b,c) = a(1,0,0) + b(0,1,0) + ¢(0,0,1) = aé, + bé, + cé;
Example: Consider the vector space V = R® then show that
é; = (1,0,0),8, = (0,1,0),8; = (0,0,1) span ¥ = (5,—6,2) in R®

Solution: Since we know that “The standard unit vectors spans R™ then we can
write ¥ = (5,—6,2) as a linear combination of standard unit vectors in R®

% = (5,—6,2) = 5(1,0,0) — 6(0,1,0) + 2(0,0,1) = 58, — 68, + 26,

Example: Consider the vector space V = R® then we claim that the following
vectors also form a spanning set of R®

wy = (1,1,1),w, = (1,1,0),ws = (1,0,0)
Specifically, if = (a, b, ¢) is any vector in R®, then
v=(a,b,c)=cwy+ (b—c)wy, + (a—b)ws

For example, v = (5,—6,2) = 2w; — 8w, + 11w;,

Example: Consider the vector space V = R® then One can show that ¥ = (2,7,8)
cannot be written as a linear combination of the vectors

u; = (1,2,3),u, = (1,3,5), u3 = (1,5,9) Accordingly, u,,u,, uz do not span R®
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Testing for spanning:

Determine whether the vectors v, = (1,1,2),v, = (1,0,1),v3 = (2,1,3) span the
vector space R®

Solution:

must determine whether an arbitrary vector b = (b, b,, b3) in R® can be expressed
as linear combination b = k v, + k,v, + k3v3 of the vectors vy, vy, v3

Expressing above equation in terms of components gives

(by, by, b3) = k,(1,1,2) + k,(1,0,1) + k5(2,1,3)

(by, by, b3) = (ky + ky + 2ks, ky + 0k, + k3, 2k, + k, + 3k3)
by = ki + ky, + 2k;

b, = ky + 0k, + k4

b; = 2k, + k, + 3k3

This system is consistent if and only if its coefficient matrix

1 1 2
1 0 1
2 1 3

has a non - zero determinant.
But this is not the case here since det(4) = 0

S0 v4,v,, v3 do not span R
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A geometric view of spanning in R* and R®

a) If v is a non — zero vector in R? or R® that has its initial points at the origin,
then span{v}, which is the set of all scalar multiples of v, is the line through
the origin determined by v.

A=
/spnn {+v]

kv

A )
s o

b) If v; and v, are non-zero vectors in R® that have their initial points at the
origin, then span{v4,v,}, which consists of all linear combinations of v,
and v, , is the plane through the origin determined by these two vectors.

span (v, val

Kivi +&ovs

Visit us @ Youtube: “Learning With Usman Hamid”



133

PRACTICE:

1) In each part determine whether the vectors span R®
a) v; = (2,2,2),v, =(0,0,3),v3 =(0,1,1)
b) v, = (2,-1,3),v, = (4,1,2),v3 = (8,—1,8)

2) Suppose v4 = (2,1,0,3),v, = (3,—1,5,2),v3 = (—1,0,2,1) then which of
the following vectors are in span {vq, v,, v3}
a) (2,3,—-7,3)
b) (0,0,0,0)
¢) (1,1,1,1)
d) (—4,6,—13,4)

3) Show that the yz — plane W = {(0,y,2):y,z € R} is spanned by (0,1,1) and
(0,2,—-1)
4) Find an equation of the subspace W of R® generated by
{(1,-3,5),(—2,6,—10)}
5) Show that the complex numbers 2 4+ 3i and 1 — 2i generate the vector
space C over R.
6) Let v, = (1,6,4),v, = (2,4,—1),v3 = (—1,2,5) and
w; = (1,-2,5),w, = (0,8,9) then show that
Span{vy, v, v3} = Span{wy, w,}
7) Show that uy = (1,1,1),u, = (1,2,3),u3 = (1,5,8) span R®
8) Find conditions on a, b, ¢ so that ¥ = (a, b, ¢) in R® belongs to
W = Span(uq,u,, uz) where u; = (1,2,0),u, = (—1,1,2),u3 = (3,0,—4)
9) Let S and T be subsets of a vector space V. then show that
I. (S)U(T) c (S UT) butequality does not hold.
ii. (SNT)c(S)n(T)butequality does not hold.
lii. (S)U(T) =(S)+(T)
iv.  ({$)) =(S)
10) Suppose {uy, uy, ..., Uy, Wy, Wy, ..., w.} is linearly independent subset
of V then show that {(u;) N (w;) = {0}. That is span{u;} N span{wj} = {0}
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A spanning set for P,,(x)
Consider the vector space V = P,,(x) consisting of all polynomials of degree n.

(a) Clearly every polynomial in P,,(x) can be expressed as a linear combination
of the x + 1 polynomials 1, x, x2, ..., x™
Thus, these powers of x (where 1 = x°) form a spanning set for P,,(x) .
We can denote this by writing P,(x) = Span{1, x, x?, ..., x™}

(b) One can also show that, for any scalar c, the following x + 1 powers of
x—c, thatis 1,x —c,(x — c)?,....,(x —c)® (where (x —¢)° = 1), also
form a spanning set for P,,(x) .

We can denote this by writing P,(x) = Span{l,x — ¢, (x — ¢)?, ..., (x — )"}

(c) Consider the vector space M = M, , consisting of all 2 x 2 matrices, and
consider the following four matrices in M:

E11=[(1) 8] Ey; = 0 1] Ey = [ 8]’E22=[8

Then clearly any matrix A in M can be written as a linear combination of the four
matrices. For example,

5 -6
A = [7 8 ] = 5E11 - 6E12 + 7E21 + 8E22

Accordingly, the four matrices E;1, E1o, Ez1, Ex, Span M.

PRACTICE:

1) Show that a vector space V = P(t) of real polynomials cannot be spanned
by a finite number of polynomials.
2) Determine whether the following polynomials span P,
i. p1=1—-x+2x%p,=3+x
P3=5—x+4x%py = —2—2x + 2x?
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Linear Dependence and Independence

Let V be a vector space over a field K. The following defines the notion of linear
dependence and independence of vectors over K. (One usually suppresses
mentioning K when the field is understood.) This concept plays an essential role in
the theory of linear algebra and in mathematics in general.

Definition: We say that the vectors v,,v,, ..., v, Iin V are linearly dependent if
there exist scalars a4, a,, ... ... ,ap in K, not all of them 0, such that

a v, +av, +--+a,v, =0

On the other hand we say that the vectors vy, v,,...,v, in V are linearly
independent if there exist scalars a4, a,, ..., a,, in K, all of them 0, such that

a vy +av, + -+ a,v, =0

Another definition: If § ={v,,v,,...,v,.} is a set of two or more vectors in a
vector space V , then S is said to be linearly independent set if no vector in S can
be expressed as a linear combination of the others.

A set that is not linearly independent is said to be linearly dependent.
Remark:

= A set S={v,,v,..,v,} of vectors in V is linearly dependent or
independent according to whether the vectors vy, v,,...,v,are linearly
dependent or independent.

* An infinite set S of vectors is linearly dependent or independent according to
whether there do or do not exist vectors vy, v,, ..., v,in S that are linearly
dependent.

= Warning: The set S = {v,,v,,...,v,} above represents a list or, in other
words, a finite sequence of vectors where the vectors are ordered and
repetition is permitted.

= Suppose 0 is one of the vectors vy, v,, ..., v,, Say v; = 0. Then the vectors
must be linearly dependent, because we have the following linear
combination where the coefficient of v; # 0;

v, +ayv, +-+a,v, =1.0+0+--+0
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Suppose Vv is a nonzero vector. Then v, by itself, is linearly independent,
because kv = 0; v # 0 impliesk =0

Implies a single non — zero vector always linearly independent.

Suppose two of the vectors v4, v,, ..., v, are equal or one is a scalar multiple
of the other, say v; = kv,. Then the vectors must be linearly dependent,
because we have the following linear combination where the coefficient of
v, # 0;

vy —kvy,+0v3+--+0v,=0

Two vectors v; and v, are linearly dependent if and only if one of them is a
multiple of the other.

If any two vectors out of vy, v,, .., v, are equal say vs; = v, then
V4, Uy, ..., Uy are linearly independent because

Ov, + 0v, + 1.v3+ (—1Dv, + 0vs + -+ 0v, =0

If the set { vy, v, ..., v, } is linearly independent, then any rearrangement of
the vectors { v, v;, ..., v;_} is also linearly independent.

If a set S of vectors is linearly independent, then any subset of S is linearly
independent. Alternatively, if S contains a linearly dependent subset, then S
is linearly dependent.

A set S={v,,v,..,v.} Iin a vector space V is said to be linearly
independent set iff the only coefficients satisfying the vector equation
a,v; + a,v, +---+a,v,=0area, =0,a,=0,...,a, =0

Let V be a vector space over a field F and § = { v, v,, ..., v,,} be a set of
vectors in V, then if S is linearly independent then any subset of S is also
linearly independent.

Let V be a vector space over a field F and § = { v, v,, ..., v,,} be a set of
vectors in V, then if S is linearly dependent then any subset of S is also
linearly dependent.

A finite set that contains 0 is linearly dependent.

A set with exactly one vector is linearly independent iff that vector is not 0.
A set with exactly two vectors is linearly independent iff neither vector is a
scalar multiple of other.

If {v,,v,,v3} is linearly independent set of vectors, then so are

{v1, V25, {v, v3}, { v, v3}, { vi} { vo} and { v3}
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Theorem:

Aset S ={v,,v,..,v.}Iina vector space V is said to be linearly independent
set iff the only coefficients satisfying the vector equation

avy +av, +--+a v, =0area; =0,a, =0,...,a,=0
Proof:

Suppose that § = { vy, v,, ..., v,.} is linearly independent. Then we will show that if
the equation a,v; + a,v, + -+ a,. v, = 0 can be satisfied with coefficients that
are not all zero, then at least one of the vectors in S must be expressible as the
linear combination of the others, thereby contradicting the assumption of linear
independence.

To be specific suppose that a; # 0 then we can rewrite the above equation as

Which expresses v, as the linear combination of the other vectors in S.

Conversely: We must show that if the only coefficients satisfying
a,v; + a,v, + -+ a, v, =0are a;, =0,a, =0,...,a, = 0 then the vectors in S
must be linearly independent. But if this were true of the coefficients and the
vectors were not linearly independent, then at least one of them would be
expressible as a linear combination of the other, say

vy + (—c)vy + (—c3)vs + -+ (—c)v,. = 0

But this contradict our assumption that a,v, + a,v, + -+ a,.v, = 0 can only be
satisfied by coefficients that are all zero.

Thus the vectors in S must be linearly independent.

Theorem: (Just Statement): Suppose {v,,v,,...,v,} spans V, and suppose
{wi, Wy, ..., w,,, } is linearly independent. Then m < n, and V is spanned by a set of

the form {Wl, Wy, oo, Wiy, vil’ Uiz, ey vin—m}

Thus, in particular, n 4+ 1 or more vectors in V are linearly dependent.
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Theorem:

Let V be a vector space over a field Fand § = { v, v,, ..., v,,} be a set of vectors in
V, then if S is linearly independent then any subset of S is also linearly
independent.

Proof:

Here S = {v,,v,,..,v,}and { vy, v,, ...,v;} ; @ < nisasubset of S.

And let a,v; + a,v, + -+ ...+ a;v; = 0 where a; are scalars.
We may write a;v; + a,v, + -+ aqv; + a4 Vi1 + o+ apv, =0
ButS = {v,,v,, ..., v, } is linearly independent thena; = a, =,...=a; =0

Hence { vy, v,, ..., v;} ; i < n is linearly independent.

Theorem:

Let V be a vector space over a field Fand § = { v, v,, ..., v,,} be a set of vectors in
V, then if S is linearly dependent then any subset of S is also linearly dependent.

Proof:

Here S = { v, vy, ..., v} and {v, vy, v,, ..., v, } IS a subset of S.
Since § = { vy, v,, ..., v, } is linearly dependent then

a; v, + a,v, + -+ a,v, = 0 where a; # 0 for some i

Now Ov + a,v; + a,v, + -+ a,v,, = 0 where a; # 0 for some i

Then {v,v,, v,, ..., v, } is linearly dependent.
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Theorem:

Aset S ={vy,v,,..,1v,} of ‘N’ vectors (n = 2) in a vector space V is linearly
dependent iff atleast one of the vectors in S is a linear combination of the
remaining vectors of the set.

Proof: Suppose the set § ={v,,v,,..,v,} is linearly dependent. Then there
exists scalars aq, a,, ... ... , 4, at least one of them say a; is non — zero such that

a vy +avy + -+ av;+ - +a,v, =0
Or av;=—a1v; — Uy = = Qj_1Vi1 — Q41Vi41 — " — Anly

ai a aj—1 Ai+1 an
Or (% ] ) ] vi—l__,vi+1_'"__,vn
aj aj aj ai aj

Which shows that v; is a linear combination of the remaining vectors of the set.
Conversely:

Suppose that some vector v; of the given set is a linear combination of the
remaining vectors of the set. i.e.

U] = a1171 + azvz i aj_lvj_l + aj+1vj+1 + -+ anvn
Then above equation can be written as
a,v1 + ayv; + -+ a1 Vo + (D + Vi o+ apv, =0

Here there is at least one coefficient namely —1 of v; which is non — zero and so
that { vy, vy, ..., Vj_1, U}, Vjy1, ..., U } IS linearly dependent.
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Theorem:

AsetS ={v,v,,.... , U} In a vector space V is linearly dependent iff some of
the vectors say v, is a linear combination of the vectors preceding it.

Proof: Suppose the set § ={v,,v,,...,v,} is linearly dependent. Then there
exists scalars a4, a,, ..., a,, at least one of them say a; is non — zero such that

avy +av, + -+ avp+-tayv, =0 (1)
Let a, be the last non - zero scalar in (i) then the terms
Ay +1Vk+1> Ak 42Vk42, - -, Ay Uy, are all zeros.

So the equation (i) becomes

a;v; + a,v, + -+ a,v, =0 wherea, #0

_ a a Ak-1
Or L

Vk-1
Which shows that vy, is a linear combination of the vectors preceding it.
Conversely:

Suppose that in § = {vy,v,,...,v,} , some of the vectors say v, is a linear
combination of the vectors preceding it.

Vi = byvy + byvy, + -+ -+ bv,

Then above equation can be written as

bivy + bvy, + -+ by_vk_; + (=D, =0

Or  byvy+byvy+ -+ by_1v_1 +(—Dv, + 0V +-+0v, =0

Here there is at least one coefficient namely —1 of v, which is non — zero and so
that { v,, v,, ..., v, } is linearly dependent.
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Theorem:

Let S ={v,,v,,..,v,.} be a set of vector in R". if r >n then S is linearly
dependent.

Proof: Suppose that
V1 = (V11, V12 o) V1n)

Uy = (21, V22, o) Van)

Uy = (vr1; Uy2y ey vrn)
And consider the equation kivi + kv + -+ kv, =0

If we express both sides of this equation in terms of components and then equate
the corresponding components, we obtain the system;

k1v11 + k2v21 R k-rvrl == O

k1v12 + k2U22 + -4 krvrz - 0

klvln + szZn + -+ krvrn == 0
This is the homogeneous system of ‘n’ equations in ‘r’ unknowns k4, k5, ... ... k.
Sincer > n.

It follows from theorem “ a homogeneous linear system with more unknowns than
equations has infinitely many solution” that the system has non — trivial solution.
Therefore § = { v, vy, ..., v, } is linearly dependent.
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Linear independence of the Standard unit vectors in R"

In R" the most basic linearly independent set is the set of standard unit vectors
e; =(1,0,,...,0), e, = (0,1,0,....,0), ..ovn..... e, = (0,00, ....,1)

Now we consider the standard unit vectors in R®

i=(1,0,0) , j=(01,0) , k = (0,0,1)

To prove linearly independent we must show that the only coefficient satisfying
the vector equation kii+kyj+k;k=0 are ki, =0k, =0,k; =0
But this become evident by writing the equation in its component form
(k1, k2, k3) = (0,0,0)

Linear independence in R®

Determine whether the vectors v, = (1,—-2,3),v, = (5,6,—1),v3 = (3,2,1) are
linearly independent or linearly dependent in R®

Solution:  Consider kyvq + kv, + ksv3 =0
Rewriting in component form  k,(1,—-2,3) + k,(5,6,—1) + k5(3,2,1) = (0,0,0)

Equating corresponding components on the two sides yields the homogeneous
linear system

ki + 5k, +3k; =0
—2ky 4 6k, + 2k; =0
3ki — k, +k;=0
After solving the system we get k, = —%t , ky, = —%t , ks =t

This shows that the system has non — trivial solution and hence that the vectors are
linearly dependent.
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Linear independence in R*
Determine whether the vectors

v, = (1,2,2,-1),v, = (4,9,9,—4),v3 = (5,8,9,—5) are linearly independent or
linearly dependent in R*

Solution:  Consider k;vq + k,v, + k3v3 =0
Rewriting in component form
k:(1,2,2,—1) + k,(4,9,9,—4) + k3(5,8,9,—5) = (0,0,0,0)

Equating corresponding components on the two sides yields the homogeneous
linear system

ki + 4k, + 5k; =0
2k + 9k, +8k; =0
2k +9 k, +9k; =0
—ky—4 k, —5k; =0
After solving the system we get ky, =0, k,=0, ks=0

This shows that the system has trivial solution and hence that the vectors are
linearly independent.

Example:

Let u=(1,1,0),v = (1,3,2),w = (4,9,5) .Then u,v,w are linearly dependent,
because  3u+ 5v — 2w = 3(1,1,0) + 5(1,3,2) — 2(4,9,5) = (0,0,0) = 0

Example: We show that the vectors u = (1,2,3),v = (2,5,7),w = (1,3,5) are
linearly independent. We form the vector equation xu + yv + zw = 0,
where X, Yy, z are unknown scalars. This yield

1 2 1
x|2|+y|5|+2z|3|=0
3 7 5
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Or Or
xX+2y+z=0 x+2y+z=0
2x+5y+3z=0 y+z=0
3x+7y+5z=0 2z=0

Back-substitution yields x = 0,y = 0,z = 0. We have shown that
xu+yv+zw=0impliesx =0,y =0,z=0

Accordingly, u, v, w are linearly independent.

Linear Dependence in R®

Linear dependence in the vector space V = R3 can be described geometrically as
follows:

(a) Any two vectors u and v in R3 are linearly dependent (not independent) if
and only if they lie on the same line through the origin O, as shown in Fig.

(b) Any three vectors u, v, w in R3 are linearly dependent (not independent) if
and only if they lie on the same plane through the origin O, as shown in Fig.
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Practice:

Or

1) In each part, determine whether the vectors are linearly independent or are
linearly dependent in R3

a) (-3,04),(5-1,2),(1,1,3)
b) (-2,0,1),(3,2,5),(6,—1,1),(7,0,—2)

2) In each part, determine whether the vectors are linearly independent or are
linearly dependent in R*

a) (3,87,—-3),(1,53,—1),(2,—-1,2,6)

b) (3,0,-3,6),(0,2,3,1), (0, —2,—2,0),(—2,1,2,1)
c) (0,3,1,—1),(6,0,5,1),(4,—7,1,3)

d) (1,2,3,4),(0,1,0,—1),(1,3,3,3)

3) Express each vector in (3,8,7,—3),(1,5,3,—1),(2,—1,2,6) as a linear
combination of other.

4) For which real value of 1 do the following vectors form a linearly dependent
setin R3?

- 1 1 - 1 1 - 1 1
vl = (A;_E;_E)lvz = (_EIAI_E)IU?) = (_E)_E'/l)

determine A so that the above vectors are linearly dependent in R3.

5) Show that the vectors (1 —1i,i),(2,—1+ i) in C* are linearly dependent
over C but linearly independent over R.

6) Show that the vectors (3 ++v2,1++v2),(7,1+2v2) in R? are linearly
dependent over R but linearly independent over Q.

7) Show that the vectors (1 + i, 2i), (1,1 + i) in C? are linearly dependent over
the complex field C but linearly independent over the real field R.

8) Suppose that u, v, w are linearly independent vectors.
Prove that u + v — 2w is linearly independent.

9) Show that for any vectors u, v, w in a vector space V, the vectors u — v,
v —w,w — u form a linearly dependent set.

10) Under what conditions is a set with one vector linearly independent?
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Linear independence for Polynomials

Consider the vector space V = P, (x) consisting of all polynomials of
degree n. Show that the polynomials 1,x,x2,....,x™ in P, (x) form a linearly
independent set.

Solution: Letpy = 1,p1 = x, Py = X2, ..., Py = X"
And consider aoPo + 1p1+ -+ a,pr,=0
Equivalently ap+a;x+ -+ a,x" =0 forall ‘x’in (—oo,0)

Since we know that a non — zero polynomial of degree ‘n’ has atmost ‘n’ distinct
roots. Then in this case all coefficients in above expression must be zero. For
otherwise the left side of the equation would be a non — zero polynomial with
infinity many roots. Thus above equation has only the trivial solution.

Implies P, (x) is the linearly independent set.

Example:

Determine whether the polynomials
pr=1—xp,=5+3x—2x%p3;=1+3x—x?

Are linearly dependent or linearly independent in P,

Solution: Consider  kypq + kypo + kspz =0

Equivalently ki(1—x)+k,(5+3x—2x*)+k3(1+3x—x2)=0
= (ky + 5k, + k3) + (—ky + 3k, + 3k3)x + (0k; — 2k, — k3)x? =0

Since this equation must be satisfied by all ‘x” in (—oo, ), each coefficient must
be zero. Thus the linear independence or linear dependence of the given
polynomials hinges on whether the following linear system has a non — trivial
solution;

k1+5k2+k3 =O, _k1+3k2+3k3=0, k1_2k2_k3=0
After solving we will get k; = k, = k3 = 0. And hence given polynomials form

linearly dependent set.
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Example: Determine whether the polynomials

pr=x3—4x*>4+2x+3,p, =x3+2x*+4x—1,p3 =2x3—x?>—-3x+3
Are linearly dependent or linearly independent in P,

Solution: Consider  kyp1 + kypy + ksps =0

ki(x® —4x2+2x+3)+k,(x3+2x% +4x — 1) + k3(2x3 —x2—-3x+3) =0
= (ky + ky + 2k3)x3 + (—4k, + 2k, — k3)x? + (2k, + 4k, — 3k3)x

+(3k1 - kz + 3k3) = 0

ky+ky+2ks =0 i, (i)

Ak, +2ky—ks =0 oo, (i)
2ky + 4k, —3ks =0 eeoeveen. (iii)
3ky —ky+3ks=0 oo, (iv)

After solving we will get k; = k, = k3 = 0. As follows;

kq —k; k3

—1-4  —1+8 2+4

ki _ ke _ ks _
5 -7 6 =k
Implies k, = -5k, k, =-=7k, ks =6k

Putting these values in (iii) and (iv) we see equations are not satisfied. They are
satisfied only when k; = k, = k; = 0.

Hence given polynomials are linearly independent.
Remember: In P, every set with more than three vectors is linearly dependent.

Practice: In each part, determine whether the vectors are linearly independent
or are linearly dependent in P,

a) 2—x+4x? , 3+6x+2x%, 2+ 10x — 4x?
b) 1+3x+3x% , 5+6x+3x%, 7+ 2x —x?
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Linear independence of functions:

Example: Let V be the real vector space of all functions defined on R into R.
determine whether the given vectors f(t) = Sint, g(t) = et, h(t) = t? are linearly
independent or linearly depended in V.

Solution:  Consider xf +yg + zh = 0 where X,y,z are unknown scalar.
This implies xSint + yet + zt> =0

Thus in this equation we choose appropriate values of ‘t’ to easily get
x=0,y=0z=0 for example

i.  Substitute t = 0 to obtain x(0) + y(1) +z(0) =0 or y =0
ii. Substitute t = 7 to obtain x(0) + y(e™) + z(w?) =0 or z=0

iii.  Substitute ¢ =  to obtain x(0) + y(e™?) + z (”72) =0 or x=0
We have shown xSint + ye® + zt> = 0 implies x =0,y =0,z=0
Thus given vectors are linearly independent.

Wronskian of Functions:

If f1=f),f2=7Ff),....,fan=f.(x) are functions that are n — 1 time
differentiable on the interval (—oo, ), then the determinant

f1(x) o) fu()
W(x)= fllz(x) le.(x) fn,:(x)

AN TN e £
Is called Wronskian of f1 = f,(x), f2 = f5(x), e, frn = fn(x)
Remember:

Sometime linear dependence of functions can be deduced from known
identities. However, it is relatively rare that linear independence or dependence of
functions can be ascertained by algebraic or trigonometric methods. To make
matter worse, there is no general method for doing that either.
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Theorem:

If the functions f4, f, ...., fn have n — 1 continuous derivatives on the interval
(—o,00) and if the Wronskian of these functions is not identically zero on
(—o0,0), then these functions form a linearly independent set of vectors in
C™ 1(—o0, o) but the converse of this theorem is false.

Example:

Use the Wronskian to show that f; = x, f, = Sinx are linearly independent
vectors in € (—oo, ).

Solution:

The Wronskian of given functions is as follows;

i) ()] 1x Sinx

WO =10 £l =11 cosx

| = xCosx — Sinx

. T T A . A A
Consider w (E) = ECos (E) — Sin (E) =% 0
This function is not identically zero on the interval (—oo, o), thus , the functions
are linearly independent.
Example:

Use the Wronskian to show that f; =1,f, =e* f3 =e?* are linearly
independent vectors in C* (—oo, o).

Solution:

The Wronskian of given functions is as follows;

() flx)  f:(0)
W) =i £ [(E]=
A7) R ()

This function is not identically zero on the interval (—oo, o), thus , the functions
are linearly independent.

1 ex er
0 eX 2e%*
0 eX 4e?*

=2e3* £ 0
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Practice:

1) Let V be the real vector space of all functions defined on R into R. determine
whether the given vectors are linearly independent or linearly depended in V.
iI. x, Cosx
ii. Sin?x, Cos?x, Cos2x
iii. Sin®x, Cos?x, 5
iv. Sinx, Cosx, Sinhx, Coshx
V. Sinx, Sinx + Cosx, Sinx — Cosx
2) By using appropriate identities, where required, determine which of the
following sets of vectors in F(—oo, o) are linearly dependent.
i. 6, 3Sin’x, 2Cos?*x
. 1, Sinx, Sin2x
iii. (3—x)% 5, x?—6x
iv. 0, Sin®3mx, Cos3mx

3) Use the Wronskian to show that given functions are linearly independent
vectors in € (—oo, ).
i. x, Cosx
ii. Sinx , Cosx
. 1, x, e*
iv. 1, x, x?
X

V. e*, xe* , x%e*

vi. Sinx , Cosx , xCosx

4) Using the technique of casting out vectors which are linear combination of

others, find a linearly independent subset of the given set spanning the same
subspace;

i, {(1,-3,1),(2,1,-4),(-2,6,-2),(~1,10,-7)} in R®
ii. {1,Sin%x,Cos?x, Cos2x} in the space of all functions from R to R
iii.  {1,3x —4,4x + 3,x% + 2,x — x2} in the space P, of all polynomials
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Basis

Aset S = {v,,v,,..,1v,} of vectors is a basis of a finite dimensional vector space
V if it has the following two properties:

I.  Sis linearly independent.
ii. SspansV.

Or

Aset S = {v,,v,,...,v,} of vectors is a basis of a finite dimensional vector space
V if every veV can be written uniquely as a linear combination of the basis vectors.

Examples of Bases

This subsection presents important examples of bases of some of the main vector
spaces appearing in this text.

Usual or the Standard basis for R"

In R" the most basic linearly independent set is the set of standard unit vectors
e; = (1,0,0,....,0), e; = (0,1,0,....,0), .......... e, =(0,0,0,...,1)

Thus they form a basis for R" that we call the Standard basis for R"

For example, any vector u = (ay, a,,...,a,)in R" can be written as a linear
combination of the above vectors. i.e. u = a,eq + a,e,+...+a, e,

In particular we consider the standard unit vectors in R®
i=(1,0,0) , j=1(0,1,0) , k =(0,0,1)

And we call the Standard basis for R®

Remark:

= The number of elements in a basis of a vector space V over F is called
dimension of V. It is denoted by dimV .

= For n — dimensional vector space V, every set § = {v,,v,,...,v,} of ‘0’
linearly independent vectors forms a basis for V.
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Example: Show that the vectors v, = (1,2,—1),v, = (0,3,1),v3 = (1,-5,3)
form a basis for R®

Solution: We must show that these vectors are linearly independent and span R®
To prove linear independence we must show that the vector equation
kiv{ + k,v, + k3v3 = 0 has only the trivial solution.

Then k;(1,2,—1) + k,(0,3,1) + k5(1,-5,3) = 0

By equating corresponding components on the two sides, we get a linear system;

k1+0k2+k3=0 .............. (1)
2k1 + 3k2 - 5k3 = 0 .............. (11)
_kl + k2 + 3k3 == 0 .............. (111)

From (ii) and (iii)

k1=_k2=k3=k$ﬁ=k_2zﬁ=k$k1=14k)k2=_k’k3=5k
9+5  6-5 243 14 -1 5

Putting these values in equation (i), we see equation (i) is not satisfied. It is
satisfied only when k= 0. i.e. k; = 0,k, = 0, k3 = 0 Hence given vectors
v; = (1,2,-1),v, = (0,3,1),v3 = (1,—-5,3) are linearly independent.

Since dimension of R® is ‘3’ and the number of linearly independent vectors in R®
is also ‘3’, so the vectors vy = (1,2,—1),v, = (0,3,1),v3 = (1,-5,3) forms a
basis for R®

Practice:

1) Show that the given vectors may or may not form a basis for R or R®.
i, v =(1,21),v, =(290),v; = (3,3,4)
i. v, =(21),v, =(3,0)
ii. v, =(03,1,-4),v, =(2,5,6),v; = (1,4,8)
iv. v,=(2,-31),v,=0(%411),v3=(0,-7,1)
v. v1=(0164),v,=024-1),v;3=(-125)
2) In words explain why the matrices (1,2), (0,3),(1,5) and (—1,3,2),(6,1,1)
are not basis for R* and R® respectively.
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Usual or the Standard basis for P,,(x)

Consider the vector space V = P,,(x) consisting of all polynomials of degree n or
less then the set {1, x, x2, ...., x™} is a basis for V = P,,(x)

For this we must show that given polynomials in S are linearly independent
and span P, (x).

Clearly every polynomial p in P,,(x) can be expressed as a linear combination of
the x + 1 polynomials 1,x,x?, ....,x™ thatis p = ag + a;x + ayx? + -+ a,x™ .
Thus, these powers of x (where 1 = x°) form a spanning set for P,,(x) .We can
denote this by writing P,(x) = Span{1, x,x?, ...., x™}

Now we have to show that the polynomials 1, x,x2, ....,x™ in P, (x)
form a linearly independent set.

For thisletpy = 1,p; = x,p, = x4, ....,p,, = x™
And consider aoPo + P11+ -+ a,p,=0
Equivalently ap+a;x+ -+ a,x" =0 forall ‘x’in (—o0,0)

Since we know that a non — zero polynomial of degree ‘n’ has atmost ‘n’ distinct
roots. Then in this case all coefficients in above expression must be zero. For
otherwise the left side of the equation would be a non — zero polynomial with
infinity many roots. Thus above equation has only the trivial solution. Implies
P, (x) is the linearly independent set.

Thus the set {1, x, x?, ...., x™} is a basis for V = P, (x)
Practice:

1) Show that the given polynomials may or may not form a basis for P, or P.
. 1—3x4+2x%, 14+x+4x?,1—-7x
i. 1, 2x,-2+4x%,-12x+8x3>  Hermite Polynomials
ii. 1,1—x,2—4x+x%,6—18x+9x%—x3  Laguerre Polynomials
2) Show that {Cos?x, Sin®x, Cos2x} is not a basis. Find a basis for vector space
V spanned by these polynomials.
3) In words explain why the polynomials 1 + x + x% , x are not basis for P,
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Usual or the Standard basis for M,,,,,

Show that the following matrices form a basis of the vector space M,, of all 2 x 2
matrices over K:

T (RO W L

Solution:

We must show that the given matrices are linearly independent and span M,

To prove linear independence we must show that the equation
kiMq+k,My + ksM3 + k,M, = 0 has only the trivial solution, where 0 is the
2 X 2 zero matrix.

Consider kM, + k,My + k;sM3+k,M, =0 = [8 8
bly ol +kly ol +kly ol*kls 1=[0 o

[k1 kz] _ [0 0
ks ky 0 0
Above equation has only trivial solution. i.e. k, =k, =k; =k, =0

Given matrices are linearly independent.

To prove matrices span M,

Consider  k My + k,M; + k3M3 + k,M, = B = [Ccl Z

S PR R i R R A
[1]: ii] = [Z Z I.e. given matrices span M,

ThisshowthatMlz[(l) 8],M2=[8 (1)],M3=(1) 8]’M4=[8 (1)

Form a basis of the vector space M,, of all 2 x 2 matrices over K
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Remark:

= Vector space M = M,,,,, of all m X n matrices: The following six matrices
form a basis of the vector space M3 of all 2 X 3 matrices over K:

1 0 0 0 1 0 0 0 1
Ml_[o 0 ] Mz_o 0o ol M3_0 0 ol
[0 0 0 [0 0 0 0 0 0

Ml_[1 0 ] ’ Ml_o 1 ol Ml_o 0 1

= More generally, in the vector space M = M,,,, of all m X n matrices, let E;
be the matrix with ij-entry 1 and 0’s elsewhere. Then all such matrices form
a basis of M,,,,, called the usual or standard basis of M,,,,,

Practice:

1) Show that the given matrices may or may not form a ba3|s for M,, .

L Y s P
oo ol ‘01]'[3 o
AR R i

2) In words explain why the matrices B ] [ 1 4] E g] [Z (2)] are

N N YY)

not basis for M5,
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Theorem (Uniqueness of Basis representation):

If § = {v,,v,,...,v,} is a basis for a vector space V, then every vector v in
V can be expressed in the form v = cyv; + c,v,+ ... +c, v, in exactly one way.

Or let § ={v,,v,,...,v,} in V is linearly independent then each v of
V < L(S) of S is uniquely expressible.

Proof:

Since S spans V, if follows from the definition of a spanning set that every vector
in V is expressible as a linear combination of the vectors in S. To see that there is
only one way to express a vector as a linear combination of the vector in S,
suppose that some vector v can be written as;

V=0CV;+CUy+...+C UV e (1)

Andalsoas v =kyvy +kyv+...+k, v, o (i)
Subtracting the second equation from the first;

0=_(_c; — kv, + (c; —ky)v,+...+(c, — kp)v,

Since the right side of the equation is the linear combination of vectors in S, and S
is linearly independent then;

(Cl_kl) = O,(Cz_kz) = 0,...,(Cn_kn) =0
That |S 1 = kll c, = kz ) ey CTL == kn

Thus the two expressions for v are the same (unique).
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Theorem:
Any finite dimensional vector space contains a basis.
Proof:

Let V be a finite dimensional vector space then V should be linear span of some
finite set. Let {v,, v,, ..., 1.} be a finite spanning set of V. in case v,, v,, ..., v, are
linearly independent, then they form a basis of V and the proof is complete.

Suppose v,,v,,...,v, are not linearly independent. i.e. they are linearly
dependent, so one of the vectors v; is a linear combination of the preceding
vectors. We drop this vector v; from the set and obtain a set of » — 1 vectors,
Vq, V5, .., Vp_q1. Then clearly any linear combination of v, v,, ..., v, is also a linear
combination of v, v,, ...,v,_;. S0 {vy,v,,...,v,_,} is also a spanning set for V.
continuing in this way, we arrive at a linearly independent spanning set
{vy, vy, ..., vy} such that 1 < n < r and so it forms a basis for V.

Thus every finite dimensional vector space contains a basis.
Theorem:

Let V be a vector space of finite dimension ‘n’. Then, any n + 1 or more
vectors in V are linearly dependent.

Proof:

Suppose B = {w;,w,,...,w,} is a basis of V. because B spans V, then by lemma
‘Suppose {vq,v,,...,v,} spans V, and suppose {wq,w,,...,w,,,} is linearly
independent. Then m<n, and V is spanned by a set of the form
(Wi, Wy, oo, Wi, v, 4 v

Thus, in particular, n 4+ 1 or more vectors in V are linearly dependent.
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Theorem:

Let V be a vector space of finite dimension ‘n’. Then, any linearly
independent set S = {v,, v,,..., v, } With ‘n’ elements is a basis of V.

Proof:
Suppose B = {w;,w,,...,w,} is a basis of V. then by lemma

‘Suppose {vq4,v,,...,v,} spans V, and suppose {wq,w,,...,w,,} is linearly
independent. Then m<n, and V is spanned by a set of the form

(Wi, Wy, oo, Wi, v, 4, v

Elements from B can be adjoined to S to form a spanning set of V with ‘n’
elements. Because S already has ‘n’ elements, S itself is a spanning set of V.

Thus S is a basis of V.
Theorem:

Let V be a vector space of finite dimension ‘n’. Then, any spanning set
T = {v,,v,,...,v,} of V with ‘n’ elements is a basis of V.

Proof:

Suppose B = {w;,w,,...,w,} is a basis of V. and suppose T = {v,,v,,..., v, } IS
linearly dependent. Then some v; is a linear combination of the preceding vectors.
By problem “if T = {vq,v,,...,v,} spans V then for weV the set
{w,vq,v,,...,v,} Will be linearly dependent and spans V and if v; is a linear
combination of v4,v,,...,v;_1 then T without v; spans V”

Thus V is spanned by vectors in T without v; and there are n — 1 of them. By
Lemma ‘‘Suppose {vq,v,,...,v,} spans V, and suppose {wq,wsy,...,w,,} is
linearly independent. Then m < n, and V is spanned by a set of the form
{wl,wz, s Wi, U, Vi, ---'”in_m}” the independent set B cannot have more than
n — 1 elements. This contradict the fact B has ‘n’ elements.

Thus T is linearly independent and hence T is a basis of V.
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Theorem: Suppose S spans a vector space V. Then: Any maximum number of
linearly independent vectors in S form a basis of V.

Proof: Suppose {v,, v,,...,v,} is maximum linearly independent subset of S,
and suppose weS . Accordingly, {v,, v,,..., v, w} is linearly independent. No v,
can be linear combination of preceding vectors. Hence is w is a linear combination
of the v;. Thus we Span(v;) and hence S S Span(v;)

This leads to V = SpanS € Span(v;) €V

Thus {v;} spans V and as it is linearly independent, it is a basis of V.

Theorem: Suppose S spans a vector space V. Then: Suppose one deletes from S
every vector that is a linear combination of preceding vectors in S. Then the
remaining vectors form a basis of V.

Proof: The remaining vectors form a maximum linearly independent subset
of S; hence by theorem “Suppose S spans a vector space V. Then: Any
maximum number of linearly independent vectors in S form a basis of V” it is
a basis of V.

Theorem: Let V be a vector space of finite dimension and let § = {vy, v,,..., v}
be a set of linearly independent vectors in V. Then S is part of a basis of V; that is,
S may be extended to a basis of V.

Proof: Suppose B = {w;,w,,...,w,} is a basis of V. then B spans V and
hence V is spanned by SUB ={v,,v,,...,0, W;,W,,...,w,}By theorem
“Suppose S spans a vector space V. Then: Any maximum number of linearly
independent vectors in S form a basis of V. And Suppose one deletes from S
every vector that is a linear combination of preceding vectors in S. Then the
remaining vectors form a basis of V ” we can delete from $ U B each vector that
is the linear combination of preceding vectors to obtain a basis B’ for V. because S
is linearly independent, no v, is a linear combination of preceding vectors.
Thus B’ contains every vector in S, and S is the part of the basis B’ for V
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Examples:

(a) The following four vectors in R* form a matrix in echelon form:
(1111, (0,1,1,1), (0,0,1,1) , (0,0,0,1)

Thus, the vectors are linearly independent, and, because dimR* = 4, the four
vectors form a basis of R*

(b) The following n + 1 polynomials in P, (t) are of increasing degree:
1,t—1,(t-172%,... (t—-D"

Therefore, no polynomial is a linear combination of preceding polynomials; hence,
the polynomials are linear independent. Furthermore, they form a basis of P,(t) ,
because dimP,(t) = n + 1.

(c) Consider any four vectors in R®, say
(257,—132,58) , (43,0,—17) , (521,—317,94) , (328,—512,-731)

By Theorem “Let V be a vector space of finite dimension ‘n’. Then, any n + 1
or more vectors in V are linearly dependent”, the four vectors must be linearly
dependent, because they come from the three-dimensional vector space R®.
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Dimension

The number of elements (vectors) in a basis of a vector space V over F is called
dimension of V. It is denoted by dim(V).

Engineers often use the term degree of freedom as a synonym for dimension.

Remark:

The vector space {0} is defined to have dimension 0. It is known as zero
vector space.

The simplest of all vector spaces is the zero vector space V = {0}. This
space is the finite dimensional because it is spanned by vector 0.Since {0} is
not linearly independent set, thats why V = {0} has no basis. However we
will find it useful to define empty set ¢ to be a basis for this vector space.
Suppose a vector space V does not have a finite basis. Then V is said to be
of infinite dimension or to be infinite-dimensional.

dim(R™) =n (The standard basis has ‘n’ vectors)
Example: {(1,0,0),(0,1,0),(0,0,1)} is the standard basis set of R3 and
dim(R3) =3

dim(P,,) = n + 1 (The standard basis has ‘n + 1’ vectors)

dim(M,,,,) = mn (The standard basis has ‘mn’ vectors)

R"“,P,,M,,, are finite dimensional vector space. While
R*, P, F(—00,0),C(—,0),C"(—,x),C*(—0c0, ) are infinite
dimensional vector spaces

dim[Span{v,,v,,...,v,}] =r it means, the dimension of the space
spanned by a linearly independent set of vectors is equal to the number of
vectors in that set.

For two finite dimensional subspaces U and W of a vector space V over a
field F we have dim(U + W) = dim(U) + dim(W) — dim(U n W)

For two finite dimensional subspaces U and W of a vector space V over a
field F with UnW={0} and V=UPW we have
dim(U + W) = dim(U) + dim(W)
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Keep in mind:

Let V be a vector space such that one basis has ‘m’ elements and another
basis has ‘n’ elements. Then m = n.

Every basis of the finite dimensional vector space has the same number of
elements (vectors).

Let V be an n — dimensional vector space, and let {v,, v,, ..., v,} be any
basis then if a set in V has more than ‘n’ vectors, then it is linearly
dependent.

Let V be an n — dimensional vector space, and let {v,, v,, ..., v,} be any
basis then if a set in V has fewer than ‘n’ vectors, then it does not span V.
(Plus Theorem) Let S be a non — empty set of a vectors in a vector space V
then if S is linearly independent set, and if v is a vector in V that is outside of
span(S), then the set S U {v} that results by inserting v into S is still linearly
independent.

(Minus Theorem) Let S be a non — empty set of a vectors in a vector space
V then if v is a vector in S that is expressible as a linear combination of other
vectors in S, and if § — {v} denotes the set obtained by removing v from S,
then S and S U {v} span the same space; that is,span(S) = span(S — {v})
Let V be an n — dimensional vector space, and let S be a set in V with
exactly ‘n’ vectors. Then S is a basis for V if and only if S spans V or S is
linearly independent.

Let S be a finite set of vectors in a finite dimensional vector space V then if
S spans V but is not a basis for V, then S can be reduced to a basis for V by
removing appropriate vectors from S. (This theorem tells that; every
spanning set for a subspace is either a basis for that subspace or has a basis
as a subset)

Let S be a finite set of vectors in a finite dimensional vector space V then if
S is linearly independent set that is not already a basis for V, then S can be
enlarged to a basis for V by inserting appropriate vectors into S. (This
theorem tells that; every linearly independent set in a subspace is either a
basis for that subspace or can be extended to a basis for it.)

If W is subspace of a finite dimensional vector space V, then W is finite
dimensional , dim(W) < dim(V) and W =V & dim(W) = dim(V)
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An infinite dimensional vector space

Show that P, is an infinite dimensional vector space as it has no finite spanning
set.

Solution:

Arbitrary if we consider a finite spanning set, say S = {p1,p2,..., P} then the
degree of the polynomials in S would have a maximum value say ‘n’ and this in
turn would imply that any linear combination of the polynomials in S would have
degree at most ‘n’. Thus there we would be no way to express the polynomial x™+?1
as a linear combination of the polynomials in S, contradicting the fact that the
vectors in S span P,

Example: Let W be a subspace of the real space R®. Note that dim R® = 3. The
following cases apply:

(@) If dimW = 0, then W = {0}, a point.

(b) If dimW = 1, then W is a line through the origin 0.
(c) If dimW = 2, then W is a plane through the origin 0.
(d) If dimW = 3, then W is the entire space R®

Example: Find a basis and dimension of the subspace W of R® where
W = {(a,b,c):a+ b+ c =0}

Solution: Note that W # R3, because, for example (1,2,3) € W thus
dim(W) < 3. Note that (1,0,—1),(0,1,—1) are two independent vectors in W
thus dim(W) = 2 and so both vectors (1,0,—1), (0,1, —1) form a basis of W.

Example: Find a basis and dimension of the subspace W of R® where
W ={(a,b,c):a=b =c}

Solution: The wvector u=(1,1,1)eW any vector weW has the form
w = (k,k, k). Hence w = ku. Thus u spans W and dim(W) = 1
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Example:
Find a basis and dimension of the solution space of the homogeneous system
X1 +3x; —2x3 +0x4 + 2x5 +0xg =0
2x1 + 6xy — 5x3 — 2x, +4x5 — 3x5 =0
0x; + 0x, + 5x3 + 10x,4 + Ox5 + 15x5 =0

2xq + 6x, + 0x3 + 8x, +4x5+ 18x, =0

Solution:

1 3 -2 0 2 0 0
, .2 6 =5 =2 4 -3 0
Using Gauss Jordan’s Elimination method matrix 00 5 10 0 15 0
2 6 0 8 4 18 0

1 3 0 4 2 0 O

_ 0 01 2 00O

can be converted into row reduced echelon form as 00000 1 0

0 000 0 0O

Thus corresponding systemis x, =0, x5 +2x, =0, x; + 3x, + 4x, + 2x5 =0
Theseyields x; = =3r —4s —2t,x, =1, x3=-25, X, =5, xs =t, x4 =0
Which can be written in vector form as

(x1, %5, X3, X4, X5, Xg) = (—3r — 4s — 2t,1,—25,5,t,0)

Or alternatively as

(x1, x5, X3, X4, X5, X¢) = 1(—3,1,0,0,0,0) + s(—4,0,—-2,1,0,0) + t(—2,0,0,0,1,0)
This shows that the vectors

vy = (-3,1,0,0,0,0), v, = (—4,0,—2,1,0,0), v3 = (—2,0,0,0,1,0)

Span the solution space and are linearly independent (Check!). Thus the solution
space has dimension 3.
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Example:(Applying the plus minus theorem)
Show thatp; = 1 —x?,p, = 2 — x?, p3 = x3 are linearly independent vectors.

Solution: The set S = {p4,p,} is linearly independent since neither vector in S
Is a scalar multiple of the other. Since the vector p; cannot be expressed as a linear
combination of the vectors in S, it can be adjoined to S to produce a linearly

independent set S U {ps} = {p1, P2, P3)}

Example: (Basses by inspection)
Explain why the vectors v; = (=3,7) , v, = (5,5) form a basis for R?

Solution:  Since neither vector is a scalar multiple of the other, the two vectors
form a linearly independent set in the two dimensional space R? and hence they
form a basis by theorem ‘Let V be an n — dimensional vector space, and let S
be a set in V with exactly ‘n’ vectors. Then S is a basis for V if and only if S
spans V or S is linearly independent.’

Example: (Basses by inspection):  Explain why the vectors v, = (2,0,—1) ,
v, = (4,0,7) and v3 = (—1,1,4) form a basis for R®

Solution:  The vectors v4, v, form a linearly independent set in the xz — plane.
The vector v4 is outside of the xz — plane, so the set {vq, v5,v3} is also linearly
independent. Since R? is there dimensional theorem “Let V be an n — dimensional
vector space, and let S be a set in V with exactly ‘n’ vectors. Then S is a basis
for V if and only if S spans V or S is linearly independent.” Implies that
{v4,v,, v3} is the basis for R®

Example: Determine a basis for the subspace the plane x — 2y + 5z = 0 of R®

Solution:  Given equation of is the planex —2y +5z=0 or x =2y — 5z
where ‘y’ and ‘z’ are free variables. Then the above equation in vector form can be
written as (x,y,z) = 2y —5z,y,z) = (2y —5z,y+ 0,z + 0)

(x,v,z) = (2y,y,0) + (—52,0,z) = y(2,1,0) + z(—5,0,1) thus given plane is
spanned by vectors (2,1,0), (—5,0,1) and as none of the vector is multiple of the
other. So that set {(2,1,0),(—5,0,1)} is linearly independent. Hence
{(2,1,0), (—5,0,1)} and dimension of subspace is 2.
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Practice:

1) Determine whether (1,1,1,1),(1,2,3,2),(2,6,8,5) form a basis of R*. If not,
find the dimension of the subspace they span.

2) Find a basis and dimension of the subspace W of R* where
i. W = All vectors of the form (a, b, c,0)
ii. W= All vectors of the form (a,b,c,d) where d =a+b and
c=a-—>b
iii. W={(ab,c,d):a=b=c=d}
iv. W = {(xy, x5, %3,%4): X5, = X3}

3) Find a basis and dimension of the solution space of the homogeneous system.
. X 4+x,—x3=0

—2%x1 — X5 +2x3=0

—x1+0x;, +x3=0

. 3x;+x,+x3+x,=0
5X1—X2 +x3_X4=0

||| 2X1+X2 +3X3 - 0
xl + Oxz + 5X3 == 0
0X1 + xz + x3 ES 0

|V x1_4x2+3x3_x4:0
2X1 - 8x2 + 6X3 - 2x4_ = 0

V. x1_3x2+x3=0
2x1—6x2+2x?, :0
31 — 9%, +3x3 =0

vii x+y+z=0
3x+2y—2z=0
4x+3y—z=0
6x+5y+z=0
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4) Determine a basis for the subspace of R® and state its dimension.
. W ={(a,b,c):3a — 2b + ¢}
ii. W={(ab,c):b=a+c}
iii. theplane3x—2y+5z=0
Iv. theplanex—y =20
V. the linex = 2t,y = —t,z = 4t
Vi theline==2=2
-2 1 6
5) Find the dimension of each of the following vector spaces:
I. The vector space of all diagonal n x n matrices
Ii.  The vector space of all symmetric n X n matrices
iii.  The vector space of all upper triangular n X n matrices
6) Find the dimension of the subspace of P; consisting of all polynomials
ap + a,x + a,x? + azx3 for which a, = 0
7) Show that the set W of all polynomials in P, such that p(1) = 0 is a subspace
of P,. Then make a conjecture about the dimension of W, and conform your
conjecture by finding a basis for W.
8) Find a standard basis vector for R® that can be added to the set {v,,v,} to
produce a basis for R®
i. vy =(-1,23), v, =(1,-2,-2)
ii. v, =(1,-1,0), v, =(3,1,—-2)
9) Find a standard basis vector for R* that can be added to the set {v,, v,} to
produce a basis for R* where v, = (1,-4,2,-3), v, = (—3,8,—4,6)
10) Let {v4,v,,v3} be a basis for a vector space V. Show that {u,,u,, u3} is
also a basis, where u; = vq,uy = v, +v,,u3 =V, + v, + V3
11) The vectors vy = (1,-2,3), v, = (0,5,—3) are linearly independent.
Enlarge {v,, v,} to a basis for R®
12) The vectors v, =(1,0,0,0), v, = (1,1,0,0) are linearly independent.
Enlarge {v,, v,} to a basis for R*
13) Find a basis for the subspace of R® that is spanned by the vectors;

v, =(1,0,0),v, = (1,0,1),,v3 = (2,0,1) ,v, = (0,0,—1)
14) Find a basis for the subspace of R* that is spanned by the vectors;

vy =(1,1,1,1),v, = (2,2,2,0),v3 = (0,0,0,3) ,v4 = (3,3,3,4)
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The following is a fundamental result in linear algebra.

Theorem (Omit Proof): Let V be a vector space such that one basis has ‘m’
elements and another basis has ‘n’ elements. Then m = n.

(A vector space V is said to be of finite dimension ‘n’ or n-dimensional, written
dimV = n if V has a basis with ‘n’ elements. Theorem tells us that all bases of V
have the same number of elements, so this definition is well defined.)

Theorem:

Every basis of the finite dimensional vector space has the same number of
elements (vectors).

Proof:

Let a vector space V over field F has two basis A and B with ‘m” and ‘n” number
of elements. Since A4 spans V and B is a linearly independent subset in V, so B
cannot have more than ‘m’ number of elements

le. n<m . (1)

now Since B spans V and A4 is a linearly independent subset in V, so A cannot have
more than ‘n’ number of elements

le. ms<n ... (i1)
from()and (i) m=n

Hence the theorem.
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Theorem:

Let V be an n — dimensional vector space, and let {v,, v,, ..., v,,} be any basis then
if a set in V has more than ‘n’ vectors, then it is linearly dependent.

Proof:

Let S’ = {wy,w,, ...,w,, } be any set of ‘m’ vectors in V, where m > n. We want
to show that S’ is linearly dependent. Since S = {v,, v, ..., v,,} iS a basis, each w;
can be expressed as linear combination of the vectors in S, say

Wl - a11v1 + a21172 + -4 anlvn

Wy = A13V1 + a,,V- e R An2Vn (l)

Wm - almvl + avaz + -4 anmvn

To show that S’ is linearly dependent, we must find scalar k4, k5, ..., k,,, not all
zero, such that kywq + kowy + -+ kpw,, =0 ..l (i1)

We can write equation (i) in partition as follows

a1 Qxq Am1

a a e a
[wilwyl - lw,, ] = [v1lvy] - 1v,,] :12 ?2 . TZ .................. (iii)

Ain Q2n Amn

Since m > n, the linear system

i1 Q1 O] [*1 0
A1z Az = Amz||X2| |0 (iv)
Ain Aon  *° Amnl | Xm 0

Has more equations than unknowns and hence has a non — trivial solution
X1 = kl,xZ - k2, v, Xim = km

Creating a column vector from this solution and multiplying both sides of (iii) on
the right by this vector yields
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kq a1 A1 Ama] [k
[wilwyl 1w, ] k:Z = [v4lvyl -+ 11, a?Z a:ZZ Clr:nz k.2
. Gn Gn v Qo] LKy,
kq 0
By (iv) this simplifies to [wilw,l - lw,] k2 = [v4lv,] - 1v,,] 0
o 0

k, 0
ko 0

Which we can writesas  k,wq + k,wy + -+ k,,w,, =0

Since the scalar coefficients in this equation are not all zero, we have proved that
S' = {w;,w,, ...,w,, } is linearly dependent

Theorem:

Let S be a non — empty set of a vectors in a vector space V then if S is linearly
independent set, and if v is a vector in V that is outside of span(S), then the set
S U {v} that results by inserting v into S is still linearly independent.

Proof:

Assume that § = {v,, v,, ..., 1.} is a linearly independent set of vectors in V and v
is a vector in V that is outside of span(S). To show that §' = {v,,v,, ..., v,, v} iS
linearly independent set we must show that the only scalar that satisfy
kv + kv, + -+ kv, +k,,v=0arek;, =k, ==k, =k, =0

But it must be true that k,.,., =0 for otherwise we could solve
kyzvi + kv, + -+ kv, +k,,.q,v=0 for v as a linear combination of
Vi, Vs, ..., Uy, cONtradicting the assumption that v is outside of span(S). Thus
kivi + kyvy + -+ kv, + k,..,v =0 simplifies to kvy + kv, + -+ kv, =0
which, by linear independence of {v,,v,,..,v,,v} implies that
ki=k,==k,=0

Hence the theorem.
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Theorem:

Let S be a non — empty set of a vectors in a vector space V then if v is a vector in S
that is expressible as a linear combination of other vectors in S, and if § — {v}
denotes the set obtained by removing v from S, then S and S U {v} span the same
space; that is,span(S) = span(s — {v})

Proof:

Assume that § = {v,, v,, ..., v, } is a set of vectors in V and (to be specific) suppose
that v, is a linear combination of vy, v,, ..., v,_4, Say

VUV, =C1Vq + (05X %) + -4 Cr-1Vr-1

We want to show that if v,. is removed from §, then the remaining set of vectors
{vy,v,, ...,v,_1} still spans S; that is , we must show that every vector w in
span(S) is expressible as a linear combination of {v,, v,, ..., v,_1}. But if wis in
span(S), then w is expressible in the form

w=kvi+ kv, + -+ k10,1 + kv,
Or, on substituting v,. = k,vy + k,v, + -+ + k,_,v,_1 in above
w=kvy+kvy+-+k V. 1+ k. (V1 + 03+ +Cr_1Vp_1)

Which expresses w as a linear combination of {v,, v,, ..., v,-_; }.Hence the theorem.
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In general, to show that a set of vectors {v,, v,, ..., v, } is a basis for a vector space
V, one must show that the vectors are linearly independent and span V, However,
if we happen to know that V has dimension ‘n’ (so that {v,, v,, ..., v,,} contains the
right number of vectors for a basis), the it is suffices to check either linear
independence or spanning, the remaining condition will hold automatically. This is
the content of the following theorem.

Theorem:

Let W Dbe a subspace of an n-dimensional vector space V. Then dimW < n. In
particular, if dimW =n,then W =V.

Proof:

Because V is of dimension ‘n’ , any n + 1 or more vectors are linearly dependent.
Furthermore, because a basis of W consists of linearly independent vectors, it
cannot contain more than ‘n’ elements. Accordingly, dimW <n in
particular, if {w;,w,, ..., w,} is a basis of W, then because it is an independent set
with n elements, it is also a basis of V. Thus W = V when dimW = n

Quotient Space

Let W be a subspace of V i.e. W c V then %= {fw+ x: weW & xeV} then

w + x is a subset of V for xeV then % form a vector space over the same field of V
with respect to operation defined as;

I. wW+x)+Ww+y)=w+ (x+y) where weW & x,yeV
i. < (w+ x) = w+x x where weW , xeV & « eF

Remember:

I. W is the additive identity of % I.e. W is zero vector of %

i, wH+x=w+y ©Sx—yeW

Visit us @ Youtube: “Learning With Usman Hamid”



173

Examples:

. Let W be a subspace of a R® spanned by the vector (1,1,1) that is
W = span{(1,1,1)} = {k(1,1,1): k € R} then W is the straight line
through origin and the point (1,1,1). For any vector (x,y, z) € R3 we can
regard the coset (x,y,z) + W as the set of vectors obtained by adding the
vector (x,y, z) to each vector of W. This coset is therefore the set of all
vectors on the line through the point (x,y,z) parallel to the line W.

R3 . i .
Hence 1S the collection of lines parallel to W

ii. Let W = span{(1,0,0),(0,1,0)} then W is the set of all vectors in xy —
plane and the cosets are the planes parallel to the xy — plane. Thus the

3
quotient space RW Is the collection of planes parallel to xy — plane.

iii. Let W =span{(1,0,0)} then for any vector (x,y,z) € R®> we have
(x,y,z) = x(1,0,0) + y(0,1,0) + z(0,0,1) and  therefore  since
x(1,0,0) € W
(x,y,z) + W =W +vy[(0,1,0) + W] + z[(0,0,1) + W]

(x,y,z) + W =1y(0,1,0) + W+ 2z(0,0,1) + W
,y,z2)+W=(0,y,2)+ W
The vectors (0,1,0) + W and (0,0,1) + W are therefore also independent
and hence they for a basis of%

Py

iv.  The set P, is a subspace of P, form the quotient space o for this we
1

consider p(x) = asx* + asx> + a,x? + ayx + ay € Py

Thenp(x) + Py = a,(x*+ Py) +as(x3+ Py) +a,(x*+ Py) + P,
p(x) + Py = a,x* +azx® + a,x* + Py

So (x* + Pq),(x3+ Py),(x*+ P,) spans i—‘;

. . . Py .
Moreover these are linearly independent so a basis for P—“ IS
1

{x4+ P1,x3+ P1,x2+ Pl}
V. Let B = {wq,w,, ..., w, } be a basis for a subspace W of V, and extended
it to a basis B ={wq,w,, .., W, V,,V,, .., of V, then

{fvi + W, v, + W, ..., v, + W}is abasis of%
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Theorem: Dimension of Quotient Space:
If W is subspace of a finite dimensional vector space V, then

I W is finite dimensional
. dim(W) < dim(V)
i, dim% = dimV — dimW

Proof:

. Since dim(W) < dim(V) =n and if W has a basis with n elements.
Then by theorem “Let W be a vector space such that one basis has m
elements and another basis has n elements, then m = n.” all basis of
W have the same number of elements and hence W is finite dimensional.

ii. If W is finite dimensional, so it has a basis § = {w;,w,, ..., w,,,}. Either S
is also a basis for V or it is not. If so, then dim(V) = m, which means
that dim(W) = dim(V). If not, then because S is a linearly independent
set it can be enlarged to a basis for V by theorem “Let S be a finite set of
vectors in a finite dimensional vector space V then if S is linearly
independent set that is not already a basis for V, then S can be
enlarged to a basis for V by inserting appropriate vectors into S”

But this implies that dim(W) < dim(V). So we have shown that
dim(W) < dim(V) in all cases.

iii.  Let {w;,w,,..,w,} be a basis of W with dimW =m and
{wi,wy, ..., W, V1,05, ...,v,} be an extended basis of V with
dimV =m+n.

Then we have to prove that {v; + W,v, + W, ..., v, + W} is a basis of%

For this firstly we will show that {v; + W,v, + W, ..., v,, + W} is linearly
independent. Consider;

<, (v + W)+, (v, + W)+ -4, (v, +W)=0,+W
(Ocl U1+W)+(OC2 v2+W)++(OCnUn+W)=OU+W

(xq v+, vy + oo+, v,)) +W=0,+W
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(o¢q v1 +X, Uy + -+, v,)eEW
Implies «; v; +«, v, + -+ +,, v, is a linear combination of wy, w, + -+, w,,
g V3 +C Uy + oo 0 vy = Biwy + Bawy o+ S
o vy +0CG vy + o+ Uy — Wy — Bowy — o — By, = 0

Since  {wy,w,,...,w,,,V;,7,,...,v,} be an extended basis of V so
Wy, Wy, ..., Wy, Vq, Vs, ..., Uy, are linearly independent.

Implies x;=x, =+ =, = 0 and B = Lo,wy, ==, =0
Thus {v, + W,v, + W, ..., v, + W} is linearly independent.

Now we will show that {v; + W, v, + W, ..., v,, + W} is spans % Consider;

|4 . . .
v + W be any element of " Here veV can be expressed as a linear combination of

Wi, Wy, o, Wy, U1, Ug, wor, Uy LLE.

V=X; V; +X, vy + o4, v, + Biwy + Lowy + o+ BWi,

v+W=(x; v; +X; vy + -+, v,) + (Biwy + Bowy + -+ Lrwy,) + W
v+W=(Lw; + Bowy + -+ Lrwy,) + W

v+ W= (Bw; + W)+ (Bow, + W) + -+ (B,wy,, + W)

v+W=3w; + W)+ B,w, + W)+ -+ B, (W, + W)

This shows that {v, + W,v, + W, ..., v,, + W} is spans % :
Thus {v; + W,v, + W, ..., v,, + W} is a basis of % and dim% =n

Hence dim% =dimV — dimW
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Theorem: If W is subspace of a finite dimensional vector space V, then

Proof:

W is finite dimensional
dim(W) < dim(V)
W=V < dim(W) = dim(V)

Since dim(W) < dim(V) = n and if W has a basis with n elements.
Then by theorem “Let W be a vector space such that one basis has m
elements and another basis has n elements, then m = n.” all basis of
W have the same number of elements and hence W is finite dimensional.
If W is finite dimensional, so it has a basis § = {w;,w,, ..., w,,,}. Either S
is also a basis for V or it is not. If so, then dim(V) = m, which means
that dim(W) = dim(V). If not, then because S is a linearly independent
set it can be enlarged to a basis for V by theorem “Let S be a finite set of
vectors in a finite dimensional vector space V then if S is linearly
independent set that is not already a basis for V, then S can be
enlarged to a basis for V by inserting appropriate vectors into S”

But this implies that dim(W) < dim(V). So we have shown that
dim(W) < dim(V) in all cases.

Assume that dim(W) = dim(V) and that § = {w,, w,, ..., w,,,} is a basis
for W. If S is not also a basis for V, then being linearly independent S
can be extended to a basis for V by theorem “Let S be a finite set of
vectors in a finite dimensional vector space V then if S is linearly
independent set that is not already a basis for V, then S can be
enlarged to a basis for V by inserting appropriate vectors into S”.
But this would mean that dim(W) < dim(V), which contradiction our
hypothesis. Thus S must also be a basis for V, which means that W =V
The converse is obvious.
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Theorem:

Let V be an n — dimensional vector space, and let S be a set in V with exactly ‘n’
vectors. Then S is a basis for V if and only if S spans V or S is linearly
independent.

Proof:

Assume that S has exactly n vectors and spans V. To prove that S is a basis, we
must show that S is linearly independent set. But if this is not so, then some vector
v in S is a linear combination of the remaining vectors. If we remove this vector
from S, then it follows from theorem;

“Let S be a non — empty set of a vectors in a vector space V then if v is a
vector in S that is expressible as a linear combination of other vectors in S,
and if S — {v} denotes the set obtained by removing v from S, then S and
S U {v} span the same space; that is,span(S) = span(S — {v})”

That the remaining set of n — 1vectors still spans V. But this is impossible since
theorem “Let V be an n — dimensional vector space, and let {v4,v,, ..., v,} be
any basis then if a set in V has fewer than ‘n’ vectors, then it does not span V”
states that no set with fewer than n vectors can span an n — dimensional vector
space. Thus S is linearly independent.

Assume that S has exactly n vectors and is a linearly independent set. To
prove that S is a basis, we must show that S spans V. But if this is not so, then
there is some vector v in V that is not in span(S). If we insert this vector into S,
then it follows from theorem “Let S be a non — empty set of a vectors in a vector
space V then if S is linearly independent set, and if v is a vector in V that is
outside of span(S), then the set S U {v} that results by inserting v into S is still
linearly independent” that this set of n 4+ 1 vectors is still linearly independent.
But this is impossible, since theorem

“Let V be an n — dimensional vector space, and let {v{, v,, ..., v, } be any basis
then if a set in V has more than ‘n’ vectors, then it is linearly dependent”

states that no set with more than n vectors in an n — dimensional vector space can
be linearly independent. Thus S spans V.
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Theorem:

Let S be a finite set of vectors in a finite dimensional vector space V then if S
spans V but is not a basis for V, then S can be reduced to a basis for V by
removing appropriate vectors from S. (This theorem tells that; every spanning set
for a subspace is either a basis for that subspace or has a basis as a subset)

Proof:

If S is a set of vectors that span V but is not a basis for V, then S is a linearly
dependent set. Thus some vector v in S is expressible as a linear combination of the
other vectors in S. By theorem;

“Let S be a non — empty set of a vectors in a vector space V then if v is a vector
in S that is expressible as a linear combination of other vectors in S, and if
S — {v} denotes the set obtained by removing v from S, then S and S U {v}
span the same space; that is,span(S) = span(S — {v})”

We can remove v from S, and the resulting set $’ will still span V. If S is linearly
independent, then S’ is a basis for V, and we are done. If S’ is linearly dependent,
then we can remove some appropriate vector from S’ to produce a set S” that still
span V. We can continue removing vectors in this way until we finally arrive at a
set of vectors in S that is linearly independent and span V. This subset of S is a
basis for V.
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Theorem:

Let S be a finite set of vectors in a finite dimensional vector space V then if S is
linearly independent set that is not already a basis for V, then S can be enlarged to
a basis for V by inserting appropriate vectors into S. (This theorem tells that; every
linearly independent set in a subspace is either a basis for that subspace or can be
extended to a basis for it)

Proof:

Suppose that dim(V) = n. If S is a linearly independent set that is not already a
basis for V, then S fails to span V, so there is some vector v in V that is not in
span(S). By the theorem “Let S be a non — empty set of a vectors in a vector
space V then if S is linearly independent set, and if v is a vector in V that is
outside of span(S), then the set S U {v} that results by inserting v into S is still
linearly independent.” We can inset v into S, and the resulting set S’ will still be
linearly independent. If $' spans V, then S’ is a basis for V, and we are finished. If
S’ does not spans V, then we insert an appropriate vector into S’ to produce a set
S"' that is still linearly independent. We can continue inserting vectors in this way
until we reach a set with n already independent vectors in V. this set will be a basis
for V by theorem “Let V be an n — dimensional vector space, and let S be a set
in V with exactly ‘n’ vectors. Then S is a basis for V if and only if S spans V or
S is linearly independent.”
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Sums

Let U and W be subsets of a vector space V. The sum of U and W, written U + W,
consists of all sums u + w where ueU and weW. That is,

U+ W ={v:v=u+ w;uel and weW}

Now suppose U and W are subspaces of V. Then one can easily show that U + W
Is a subspace of V. Recall that U n W is also a subspace of V. The following
theorem relates the dimensions of these subspaces.

Theorem:

Suppose U and W are finite-dimensional subspaces of a vector space V. Then
dim(U+ W) =dimU + dimW —dim(U n W)

Proof:

Suppose {v,,v,,...,v,.} be a basis of U N W, {vy,v,, ..., v, Uy, Uy, ..., Uy} DE @
basis of U and {v,, vy, ..., v, Wy, W5, ..., w,, } be a basis of W

Then we have to show that {v,, v,, ..., U, Uy, Uy, ..., Uy, Wy, Wy, ..., Wy, } DE @
basisof U+ W

Firstly we will show that linearity condition. For this consider;

Xy V1 +C vy + o+ v + LUy + Pouy + o+ LBl + YW+ VoW, + e+

YaWn = 0y

S U +Xp Uy + o+ U+ fruy + Loy + o Bl = —YiWg — VoW —

= VaWn e, (i)

Since LHS of (i) is in U so does RHS also will be in U

Le. =YWy — VoW, — - — YW, EU
also  —yywy —y,wy — - — YW €W
therefore  —y,w; —y,wy, —--—y,w, €U N W

as {vy,v,, ..., 0.} be abasis of U N W then for §; € F we have
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61V, + 60y + -+ 6,0 + YW + VoW, + -+ Yw, =0,

Since {vy,v,, ..., v, Wy, Wy, ..., w,, } be a basis of W

=206, =0,==0,=y1=V,==V, =0

So that (i) becomes

X Vg +Ky Uy + o+ X, v + Liuy + fouy + o+ Lt = 0,

But {v, vy, ..., v, Uy, Uy, ..., U, } DE & basis of U

S0 =0G= e =0, = By = By = = By = 0

ie. eacho,=p;,=y; =0

Hence {v,, vy, ..., Uy, Uq, Uy, oo, Uy, Wy, Wo, ..., Wy, } IS linearly independent.
Now we to show spanning condition. For this suppose x + y e U+ W

i.e.x € U,y € W. Also we know that {v,,v,, ..., v, Uy, Uy, ..., U, } b€ @ basis of U
and {v,, v, ..., U, Wy, W, ..., Wy, } be a basis of W

Then x =0 Vg +Xy Uy + o+ v + Bruy + Bouy + o0+ By,
Andy =3 vy +5 v, + -+ v + Biwy + Bow, + o+ Brwy,
Adding both we get

x +y = (+x)v; + (6+05) vy + o+ + (0, +X) v, + Brug + Pouy + -0 +
.Bmum + .B{W1 + ﬁéwz + et .Br’ng

This implies that {vy, vy, ..., Uy, Uy, Us, oo, Uy, Wi, Wo, ..., Wy} SPANS U + W

From both conditions we conclude that {v,, v,, ..., U, Uy, Uy, ..., Upy, Wy, Wo, o, Wy}
isabasisof U+ W

Therefore U + W is finite dimensional. And
dim(U+W)=r+m-n=0+m)+(r+n)—r

dim(U+ W) = dimU + dimW — dim(U n W)
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Example: Let V = M,.,, the vector space of 2 X 2 matrices. Let U consist of those
matrices whose second row is zero, and let W consist of those matrices whose
second column is zero. Then

o={l§ o} W=t ol vrw= {2 b vow={§ gl

That is, U + W consists of those matrices whose lower right entry is 0, and U Nn'W
consists of those matrices whose second row and second column are zero.
Note that dim(U) = 2, dim(W) = 2, dim(U + W) = 1. Also, dim(UNW) = 3,
which is expected from Theorem. That is,

dim(U+ W) =dimU +dimW —dim(U N W)=2+4+2—-1=3
Practice:

1. Give an example of a vector space V and its subspace W such that V,W and
— are infinite dimensional and dim .- = dimV — dimW
2. Let Uand W be subspaces of a vector space V. Then show that;
. U + Vs subspace of V
il U and Ware contained inU + W
ii. U+ W is the smallest subspace containing U and W
i.e. U+ W = span(U,W)
iv. W+W=W

3. Consider the following subspaces of R>;
U = span(uq, u,,u3) = span{(1,3,-2,2,3),(1,4,-3,4,2),(2,3,—1,—-2,9)}
W = span(w;, w,, w3) = span{(1,3,0,2,1), (1,5,-6,6,3),(2,5,3,2,1)}

Find a basis and the dimensionof @) U+W (b)U n W
4. Suppose U and W are distinct four dimensional subspaces of a vector space

V, where dimV = 6. Find the possible dimensionof U N W

5. Let W, and W, be the subset of all upper and lower triangular matrices of
F™ ™ show that both are subspaces of F™*™ |
find dim(W{,W, ) ,dim(W,+ W, ) ,dim(W;nNW, )
also verify dim(W, + W,) = dimW, + dimW, — dim(W, N W)
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Direct Sums

The vector space V is said to be the direct sum of its subspaces U and W, denoted
by V = UBW if every v € V can be written in one and only oneway asv =u +w
whereue Uandw e W,

The following theorem characterizes such a decomposition.

Theorem:

The vector space V is the direct sum of its subspaces U and W if and only if:
MOV=U+W,(iilU n W ={0}.

Proof: Suppose V = U®W then every v € V can be uniquely written in the form
v =u+ wwhereu e Uandw € W. Thus in particular, V.=U + W

Now supposev € U N W then

(1) v=v+0whereveUand0eW.
(i) v=04+vwhereOeUandveWw.

Thusv=0+0=0andU n W = {0}

On the other hand, suppose that V=U+ W,and U n W = {0}. Letve V
because V = U + W, there exists u € U and w € W such that v = u + w. We need
to show that such a sum is unique. Suppose also that v = u’ + w' where u' € U
and w' € W then

u+w=u+w also u—u =w'—-w
Butu—u'eUandw’ —weWthenby U n W = {0}
u—u =0andw’' —w=0andsou=u"andw’' =w

Thus such a sum for v € Vis unique, and V = UGW
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Example: Consider the vector space V = R3
(a) Let U be the xy-plane and let W be the yz-plane; that is,
U={(a,b,0):a,b € R}and U = {(0,b,c):b,c € R}

Then R3 = U + W, because every vector in R3 is the sum of a vector in U and a
vector in W. However, R3 is not the direct sum of U and W, because such sums
are not unique. For example,

(3,5,7) = (3,1,0) + (0,4,7) and also (3,5,7) = (3,—4,0) + (0,9,7)
(b) Let U be the xy-plane and let W be the z-axis; that is,
U={(a,b,0):a,b € R}and U = {(0,0,c):c € R}

Now any vector (a, b,c) € R3 can be written as the sum of a vector in U and a
vector in V in one and only one way:

(a,b,c) = (a,b,0) + (0,0,c)
Accordingly, R3 is the direct sum of U and W; that is, R3 = UGW
General Direct Sums

The notion of a direct sum is extended to more than one factor in the obvious way.
That is, V is the direct sum of subspaces W, W,, ..., W,., written

V=W, oW, d...0 W, if every vector v € V can be written in one and only
onewayasv=w; +w, + -+ w, Wherew; € Wq,w, E W,,...,w,. E W,

Theorem:

Suppose V=W, W, ® ... W,.. Also, for each k, suppose S is a linearly
independent subset of W, .Then

(@) The union S =U,, Sy is linearly independent in V.
(b) If each Sy is a basis of W, then U, S, is a basis of V.

(c) dimV = dimW, + dimW, + -+ dim W,
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Theorem: (For two factors)

Suppose V = U® W . Suppose S = {uy, u,, ...,u,,} and S’ = {w,w,, ...,w,} are
linearly independent subset of U and W.Then

(@) The union S U S’ is linearly independent in V.

(b) If each S = {uy,uy,...,u,,} and 8’ = {wy,w,, ..., w,,} are basis of Uand W ,
then S U S’ is a basis of V.

(c) dimV = dimU + dimW
Proof:

a) Suppose that o<; uy +o¢, Uy + -+ +X,, Uy, + LW + Bowy, + -+ Bw, =0
Where «;, §; are scalars then
(¢ Uy ¢, Uy + -+ Upy) + (BW + Bowy, + -+ Bw,) =0=0+0
Where 0,0¢; uy + -4+, u,, EUand 0, Byw + Lowy, + -+ Bow, EW
Because such a sum for 0 is unique, this leads to
o U+, Uy + o, Uy, =0 and fyw + Bow, + -+ Buw, =0
Because S is linearly independent for each «c;= 0 and S’ is linearly independent
for each ; = 0 therefore is S U §' is linearly independent.

b) By theorem “Suppose V =U® W . Suppose S = {u,,u,,..,u,} and
S' = {wy,w,,...,w,} are linearly independent subset of U and W.Then the
union SU S’ is linearly independent in V.” SU S’ is linearly independent, and
by problem “Suppose that U and Ware subspaces of a vector space V and that
S = {u;} spans U and S’ = {u;} spans W. This show that S U S’ spans U + W”
Thus S U S’ is a basis of V.

c) Suppose V = U@ W . Suppose S = {uy,u,, ..., Uy} and S’ = {wy,w,, ..., w, }
are linearly independent subset of U and W.Then If each S = {u,,u,, ..., u;,}
and S’ = {w;,w,, ..., w,,} are basis of Uand W , then SU S’ is a basis of V.
then it follows directly dimV = dimU + dim

Theorem: (Just read): SupposeV =W, + Wyo+...+ W,..

And dimV = 3, dimW, then V=W,®W,® ...® W,
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Practice:

1. Consider the following subspaces of R;
U={(a,b,c):a=b=c}, W={(0,b,c)} (Wisyz-plane)
Show that R3 = U®W

2. Suppose that U and Ware subspaces of a vector space V and that S = {u;}
spans U and S" = {u;} spans W. Then show that SU S' spans U + W.

Cardinality of a vector space V(F):

Let dim(V) =n and B = {x,, x,, ..., x,,} is any basis of V(F) then cardinality of
vector space is given as |V (F)| = p™ where p is any prime.

Number of Basis of a vector space V(F):
Let dim(V) = n then;
P"-DE"-P)@"-p*)..("-p"H

n!

i. Number of ordered basis = (p™ — 1) (p" _ p)(p™ —p?) ...(p"* —p" 1)

I Number of distinct basis =

Number of subspaces of a vector space V(F):

Let V(F) be a vector space and W be a subspace of V(F) . Let dim(W) = r and
By = {x4, x5, ..., x,} then

P"-DE"-P)®"-p*)..0"-p" )
r!
Il Number of basis of V selective ‘r’ linearly independent vectors from V
_ @"-)@"-p)@"-p?)..(p"-p" )

r!

iii.  Number of subspaces of dim(r) =t,

I Number of basis in W =

_ (P"-1)@E"-p)(P"-p?)..(p"-p"™ )
@"-D@E"-p)(P"-p?)..(p"-p" 1)

wheret, =1 =t¢t,
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Coordinates

If s = {v,,v,,..,v,}is abasis for a vector space V, and
v = kv, + kyv, + - + kv, is the expression for a vector v in terms of the basis
S, then the scalars kq, ko, ..., k,, are called the coordinates of v relative to the
basis S.

The vector (kq,k,, ..., k) in R" constructed from these coordinates is called the
coordinate vector v relative to S; it is denoted by (¥)g = (ky, k5, ..., k)

Remark:

The above ‘n’ scalars kq,k,,...,k,, also form the coordinate column vector
(ky, ko, ..., k)T of ¥ relative to S. The choice of the column vector rather than the
row vector to represent v depends on the context in which it is used.

Coordinates relative to the standard basis for R"

In the special case where V = R" and S is the standard basis, the coordinate vector
(¥)s and the vector ¥ are the same; that is , v = (V)

For example in R® the representation of a vector ¥ = (a,b,c) as a linear
combination of the vectors in the standard basis § = {i,j, k} is v = ai + bj + ck
so the coordinate vector relative to the basis is (v)g = (a, b, ¢) which is the same
as the vector v.

Example:

Consider real space R®. The following vectors form a basis S of R:

v =(1,-10); v,=(110); wv3=(011)

The coordinates of v = (5,3,4) relative to the basis S are obtained as follows.

Set v = xvq + yv, + zvsz ; that is, set v as a linear combination of the basis
vectors using unknown scalars X, y, z. This yield

5 1 1 0
3| =x|-1|+y|1|+ 2|1
4 0 0 1
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The equivalent system of linear equations is as follows:

x+y=>5
—x+y+z=3
z=4

The solution of the system is x = 3,y = 2,z = 4. Thus,
v =3vq + 2v, + 4v;3

And so (D)g = (3,2,4)

Practice:

1) Find the coordinate vectors of w relative to the basis § = {v4, v,} for R?
. vy=(02,-4),v,=(38),w=(1,1)
ii. vy=01,1),v,=(02),w=1(a,b)
ii. vy =(01,-1),v, =(1,1),w=(1,0)
iv. v,=01,-1),v,=(1,1),w=(0,1)
2) Find the coordinate vectors of v relative to the basis § = {v4, v,, v3} for R®
I. v =(1,2,1),v, =(2,9,0),v3 =(3,3,4),v=(5-19)
ii. vy =(100),v, =(220),v3=(333),v=(2,-13)
iii. vy =01,23),v;, =(—-4,5,6),v3 =(7,-8,9),v=(5-12,3)

3) Relative to the basis § = {v4,v,} = {(1,1), (2,3)} of R?, find the coordinate
vector of v = (4,-3)
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Coordinates relative to the standard basis for P,
In the special case where V = P, the given formula for

p(x) = ko + kyx + k,x? ...+ k,x™ expresses the polynomials as a linear
combination of the standard basis vectors S = {1, x, x2, ..., x™}. Thus the
coordinate vectors for p relative to S is (p)s = (kq, k5, ..., k)

Example: Consider the vector space P, of polynomials of degree < 2. The
polynomials p; =x+1, p,=x—1, p3=((x—-1)2=x?—-2x+1

form a basis S of P, . The coordinate vector (¥)of ¥ = 2x? — 5x + 9 relative to S
Is obtained as follows.

Set v = ap; + bp, + cp3 using unknown scalars a,b,c, and simplify:
2x>—=5x+9=a(x+1)+b(x—1)+c(x>*—-2x+1)
2x>—=5x+9=cx*+(a+b—-2c)x+(a—b+¢)

Then set the coefficients of the same powers of ‘x” equal to each other to obtain the
system c=2 , a+b—2c=-5 , a—b+c=9

The solution of the systemisa =3, b =—4 , ¢ = 2. Thus,

v = 3p; —4p, + 2p3 and hence; (p)s = (3,—4,2)

Practice:  Find the coordinate vectors of p relative to the basis S = {p1, p2, P3}
for P, , Psand P,

i. p=x>-3x+4,p;=1, py=x, p3 =x?

i. p=x?—x+2,p;=1+x, p,=1+x%, p3 = x + x?

iii. p=2x>—x+4+7 ,p=1+x+x%, p,=x+x?, p3 = x?

iv. p=-3x24+17x+2, p;=1+4+2x+x2% py,=2+9x, p3 = x2

V. p=8x3+8x2—-4x—-1, p;=1, p,=2x, p3=-—-2+4x?,
Py = —12x + 8x3

Vi p=—x34+9x2—-10x, p;=1, p,=1—x, p3=2—4x+x?,
Py =6 — 18x + 9x? — x3
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Coordinates relative to the standard basis for M,

In the special case where V = M, the representation of a vector

B = [? Z] could be expressible as the linear combination of the standard basis

vectors in matrices as follows;

B=[¢ al=ely ol+oly ol+ely ol+4lp 1

So the coordinate vector of B relative to Sis (B)g = (a, b, c,d)

Example:
Consider the vector space Mo, : The matrices
=l la=; Glas=lg §la=1 o

2

form a basis S of M,, . The coordinate vector (4)of A = [4

3 ) )
_7] relative to S is

obtained as follows.

Set A = aA; + bA, + cA3 + dA,4 using unknown scalars a,b,c,d and simplify:
2 31_.11 1 1 -1 1 -1 1 0

i Sl=aly al+ely Gl+ely ol+ely o

HE NP

Then set the coefficients of the same powers of ‘x” equal to each other to obtain the
system a=-7, a+c+d=2, a—b—c=3,a+b=4

The solution of the systemisa =—-7 , b=11, ¢ = -21, d = 30. Thus,

A=-7A; + 114, — 2143 + 304, and hence; (A)g = (—7,11,-21,30)
(Note that the coordinate vectors of A is a vector in R, because dim M,, = 4)
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Practice:

1) Find the coordinate vectors of A relative to the basis § = {4,,A4,, A3, A4} for
MZZ

O O I R PR

i a=[p ol a=[y ol as=[y A=y oJa=1[2 3

-8
2) Consider the coordinate vector (B)g = Z find B if S is the basis in
3
3 6] [0 —1] 0 —8] 1 0
3 —-6l’l-1 01'Ll-12 —-41'1l-1 2
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Geometrical interpretation of the coordinates of a vector relative to a basis S:

There is a geometrical interpretation of the coordinates of a vector v relative to a
basis S for the real space R", which we illustrate using the basis S of R® in
Example the following vectors form a basis S of R*:

v, =(1,-1,0); v,=(1,10): w3=(011)

The coordinates of v = (5,3,4) relative to the basis S are (V)¢ = (3,2,4). First
consider the space R® with the usual x, y, z axes. Then the basis vectors determine
a new coordinate system of R® say with x’,y’,z" axes as shown in following
figure. That is;

i. The x' — axis is in the direction of v, with unit length |v,4|
ii. They’ — axisis in the direction of v, with unit length |v,|
iii. The z" — axis is in the direction of w3 with unit length |v3|

Then each vector v = (a, b, c), or equivalently the point P(a, b, ¢) in R® will have
new coordinates with respect to the new x’,y’, z" axes. These new coordinates are
precisely (¥)g, the coordinates of ¥ with respect to the basis S, thus as shown in
example, the coordinates of the point P(5,3,4) with the new axes form the vector

(1_7))5 = (31214)

ve= (53,49 =[3.24]
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CHAPTER # 4

INNER PRODUCT SPACES

In this chapter we will generalize the ideas of length, angle, distance and
orthogonality. We will also discuss various applications of these ideas.

Norm of Vector:

Consider a vectors v in R" , then norm, length or size of vector is non — negative
square root of v. v denoted by ||7|| and defined as follows;

1G]l = V3.0 = Jv2 + v2 + -+ v2 forv = (v, vy, ..., )

Note:
a) |[¥]l =0
b) I]|=0=v=0
c) |lkv|| = |k|||¥]| for any scalar ‘k’

d) a vector is said to be unit vector if ||| = 1 or equivalently v.v = 1
e) for any non — zero vector v in R" the vector ¥ = ||ZT|| is the unit vector in the

same direction as v and the process of finding ¥ is called normalizing v

Example:

= Consider ¥ = (=3,2,1) in R® then ||7]] = {/(=3)2 + 22 + 12 = V14
= Alsov = (2,-1,3,-5) in R*
Then ||5]] = /22 + (=1)% + 32 + (=5)2 = V39

Example (Normalizing a vector):

Consider ¥ = (2,2,—1) Then ||5]| = /22 + 22+ (-1)2=+/9=3

—

Thenclearly i = 9 = — = %(2,2, -1)

1@l

Thus 4 is the unit vector that has the same direction as v = (2,2, —1)
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PRACTICE:

Find the norm of ¥ and a unit vector that is oppositely directed to ©

i. $=(222)

i. 7=(1,-12)
iii. ¥ =(1,021,3)
iv. v=(-233-1)

Find ¥ then change its sign.
The Standard Unit Vectors in R™

Vectors given as follows are called Standard Unit Vectors in R"
é, = (1,0,0, ...,0),é, = (0,1,0, ...,0) , ..., &, =(0,0,0,...,1)
Note:

f) 1= (1,0),7 = (0,1) are called standard unit vectors in R?
9) £ =(1,0,0),7 = (0,1,0),k = (0,0,1) are called Standard unit vectors in R3
h) Every vector v = (vq,v,,..,v,) can be expressed as the linear
combination of standard unit vectors. e.g.
V= (v,Vp o, Vp) = V18] + V.8, + - + 1,&5
Like
(2,-3,4) = 2(1,0,0) — 3(0,1,0) + 4(0,0,1) = 21 — 3] + 4k
Also
(7,3,—4,5) = 7(1,0,0,0) + 3(0,1,0,0) — 4(0,0,1,0) + 5(0,0,0,1)
(7,3,—4,5) =7é, + 3é, —4é; + 5é,

Distance between vectors:

Consider two non — zero vectors u and v in R", say u = (uy, uy, ..., uy) and
v = (vq,v,, ..., Uy) then distance between them is given as follows;

d(@, 9) = |[i = Bl = \/(uy —v1)? + (uy = v3)? + - + (n — V)2
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Example: if u = (1,3,—2,7)and v = (0,7,2,2) then

d@W,v) = lu—-7v| = \/(u1 —v1)% + (uy — )% + (uz —v3)% + (uy — 1,)2

d@,?) =i -9l =J(1 =024+ (3B =7)2+ (=2 —-2)2+ (7 — 2)2 =58
PRACTICE:

1) Evaluate the given expression with u = (2,-2,3) , v =(1,-3,4) and

w = (3,6,—4)
i |lu+ D
i |l + (|17
i, ||—2u + 27|
iv. |[|3u =5V +w||
V. |JUu+7v+w
vi.  ||lu—7|
vii. |13 — 3|7]|
viii. ||| — |7

2) Evaluate the given expression with ¥ = (—2,—1,4,5) , v = (3,1,—5,7) and
w = (—6,2,1,1)
. |I13u — 57+ wW||
134l = 51[@l + [l

i, (ldl[l[2]]
iv. [l + [I=29]] + [|-3W]||
v. |- 1]

3) Let v = (—2,3,0,6). Find all scalars ‘k’ such that ||kv|| = 5
4) Let v = (1,1,2,—3,1). Find all scalars ‘k’ such that ||kv|| = 4
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Projection of vectors onto (along) another vector:

Consider two non — zero vectors u and v in R", say % = (uy, uy, ..., uy)
and v = (v, v,,...,1,) then projection of vector u onto (along) a non — zero
vector v is given as follows;

proj(u, V) = projzu = —5v = —=v (vector component of 1 onto v/ )

This is also called orthogonal projection of i on ©
Projection of vectors orthogonal to another vector:

Consider two non — zero vectors u and v in R", say © = (uy, uy, ..., uy)

and v = (vq,v,, ..., v,) then projection of vector u orthogonal to a non — zero
vector v is given as follows;

v

U—projzu=1u-— W? (vector component of % orthogonal to v )

&l

<

Example:

Let i = (2,—1,3) and v = (4,—1,2). Find the vector component of % along ¥ and
the vector component of % orthogonal to v.

Solution: Wehave # = (2,—1,3) and v = (4,—1,2)
0o=(2-13).(4-12)=2)4) + (DD + 3)(2) =15
171> = (4)* + (=1)*+ (2)* = 21

Then the vector component of 1 along (onto) ¥ is as follows;

u.v 15 5 (20 510)
\7’ 77

- . = - uv 20 5 10 6 2 11
i prop =1 59 = (o1 — (2,39 = (5,2, 2)
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PRACTICE:

1) Find ||projzu|| for given vectors.

1,—2)and a = (—4,-3)
3,0,4) and d = (2,3,3)
56)anda = (2,—1)
3,—-2,6)and a = (1,2,—7)

gl & & =

N NN

2) Find the vector component of % along @ and the vector component of u
orthogonal to a.
i. u=(6,2)andd = (3,-9)
ii. =
. u
iv. #=(2112)andd = (4,—4,2,—2)
V. U

l
T
l—\

|
[\)
\—/
QD
S
o
Qu
Il
[
N
w
N
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Field: A non-empty set F is called a field if

» Fis Abelian group under addition.
» F —{0} is Abelian group under multiplication.
= Distributive law holds in F.

Note: Elements of a Field called Scalars.

Inner Product Spaces

Let V be a real vector space. Suppose to each pair of vectors u, VeV there is
assigned a real number, denoted by (u, v) . This function is called a (real) inner
product on V if it satisfies the following axioms:

I. (Linear Property): (au, + bu,, V) = al{uy, V) + b{u,, V).

ii. (Symmetric Property): (i, v) = (v, u) .

iii.  (Positive Definite Property): (u,1) = 0; and (u,u) = 0 if and only if
u=0.

The vector space V with an inner product is called a (real) inner product space.

Axiom (i) states that an inner product function is linear in the first position. Using
(i) and the symmetry axiom (ii) , we obtain

(ﬁ, Cﬁl + dﬁz) == <C1_7)1 + dﬁz,ﬁ) = C(ﬁl, 17) + d(ﬁz,ﬁ) = C(ﬁ, 61) + d(ﬁ, 1_7)2)

That is, the inner product function is also linear in its second position. Combining
these two properties and using induction yields the following general formula:

(X a;t; :Zj bjﬁj) = ZiZj aibj(ﬁi, 17])
That is, an inner product of linear combinations of vectors is equal to a linear
combination of the inner products of the vectors.

We may define above axioms as follows

I. (Additivity Axiom): (1, + U,, V) = (U, V) + (Uy, V).

ii. (Symmetry Axiom): (i, U) = (v, u) .

iii.  (Homogeneity Axiom): (kiu, V) = k(u, V) .

iv.  (Positivity Axiom): (i, 1) = 0; and (¥, u) = 0 if and only if = 0.
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Because the axiom for a real inner product space are based on properties of the dot
product, these inner product space axioms will be satisfied automatically if we
define the inner product of two vectors u and v in R" to be

(U, V) = UV =u vy +uvy + -+ u, v,

This inner product is commonly called the Euclidean Inner Product (or the
Standard Inner Product) on R" to distinguish it from other possible inner
products that might be defined on R". We call R" with the Euclidean Inner Product
Euclidean — n space.

Example:
Let V be areal inner product space. Then, by linearity,

(3uy — 4uy, 2vy — 5v;, + 6v3) = 6{uy, V1) — 15(uy, v3) + 18(uy, v3) —
8(uy, v1) + 20(uy, v;2) — 24(u,, v3)

(2u — 5v,4u + 6v) = 8(u, u) + 12{(u, v) — 20(v,u) — 30(v, v)
= 8(u, u) — 8(v,u) — 30(v, v)

Observe that in the last equation we have used the symmetry property that
(u,v) = (v,u).

Norm (length) of a Vector

By the axiom (u,u) = 0; and (u,u) =0 if and only if u=0., (W,u) is
nonnegative for any vector u. Thus, its positive square root exists. We use the
notation ||| = +/(u, i) and This nonnegative number is called the norm or length
of 4. The relation |[u]|? = (1, u) will be used frequently. Also remember a vector
of norm 1 is called unit vector.

Distance between two Vectors

For this we use the notation d (i, ¥) = ||t — ¥|| = /(U — ¥, 1 — V)
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Examples of Inner Product Spaces
This section lists the main examples of inner product spaces used in this text.

Although the Euclidean inner product is the most important inner product on
R". However, there are various applications in which it is desirable to modify the
Euclidean inner product by weighting its terms differently. More precisely, if
wy, Wy, ..., Wy, are positive real numbers, which we shall call weights, and if
U= (ug, Uy, ..., uy) and ¥ = (vy, v,, ..., v,) are vectors in R", then it can be
shown that the formula (u, v) = wyu v, + wou,v, + -+ + wyu, v, defines an
inner product on R" ; it is called the weighted Euclidean inner product with
weights wy, wy, .., w,, .

Example: Weighted Euclidean Inner Product

Let % = (uy,u,) and ¥ = (v4,v,) be vectors in R% Verify that the weighted
Euclidean inner product (u, v) = 3u,v; + 2u,v, satisfies the four inner product
axioms.

Solution

Axiom 1: If % and ¥ are interchanged in this equation, the right side remains the
same. Therefore, (U, ¥) = (v, u)

Axiom 2: If w = (wy,w,), then

U+ 7,W) = 3(uy + v)wy + 2(uy + vy)w,

(U + 7,W) = 3(uywy + vywy) + 2(uyw, + vow,)

U+ v,w) = Buywy + 2u,w,) + Buywy + 2v,w,)

U+ v, w) = Uw)+ (v, w)

Axiom 3: (ku, v) = 3(kuy)v, + 2(kuy)v, = k(3u vy + 2u,v,) = k(u, V)

Axiom 4: (3,9) = 3(vyvy) + 2(v,v,) = 3v2 + 2v2 > 0; and (¥, ¥) = 0 if and
onlyif v =0
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Example: Using a Weighted Euclidean Inner Product

It is important to keep in mind that norm and distance depend on the inner product
being used. If the inner product is changed, then the norms and distances between
vectors also change. For example, for the vectors % = (1,0) and ¥ = (0,1) in R?

with the Euclidean inner product, we have ||u]| = V12 + 02 =1

and d(@, ) = ||[d — 3| = ||(1, =D = /12 + (=12 =2 However, if we

change to the weighted Euclidean inner product (i, v) = 3u,v,; + 2u,v, then we

obtain ||| = /{1, 1) = \/3(1)(1) + 2(0)(0) =3
and d(4, %) = [l — 9|l = (&, 1) = {((1,-1),(1,-1))
d@, ) = /3(1)(Q) +2(-1)(-1) =5

Practice:

1. Let R? have the weighted Euclidean inner product (i, 7) = 2u,v, + 3u,v,
and letu = (1,1), v = (3,2) , w = (0,—1) and k = 3 then compute the
stated quantities;

a) (U, V) d) 17l
b) (k¥,w) e) d(d, D)
c) (U +v,w) f) |lid — k7|

2. Let R? have the weighted Euclidean inner product (i, #) = %ulv1 + 5u,v,
and letu = (1,1), v = (3,2) , w = (0,—1) and k = 3 then compute the
stated quantities;

a) (U, v) d) (7|
b) (kW) e) d(@, )
c) (U + v, w) f) [l — kvl
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Euclidean n-Space R"
Consider the vector space R". The dot product or scalar product in R" is defined by

U.V = U vy + UV, + - + u,v,. This function defines an inner product on R".
The norm [|u]| of the vector 1 in this space is as follows:

|l = Vi.id = Ju? +u? + - +u2

On the other hand, by the Pythagorean theorem, the distance from the origin O in

R® to a point P(uy, uy, u3) is given by /u? + u2 + u2. This is precisely the same
as the above-defined norm of the vector # = (u;,u,, uz) in R®. Because the
Pythagorean Theorem is a consequence of the axioms of Euclidean geometry, the
vector space R" with the above inner product and norm is called Euclidean n-
space. Although there are many ways to define an inner product on R", we shall
assume this inner product unless otherwise stated or implied. It is called the usual
(or standard) inner product on R".

Remark: Frequently the vectors in R" will be represented by column vectors—that
is, by n x 1 column matrices. In such a case, the formula (1, ¥) = u” ¥ defines the
usual inner product on R".

Example: Let# = (1,3,—-4,2), % = (4,—2,2,1),w = (5,—1,—-2,6) in R*.

(a) Show (31 — 2V, W) = 3(U, W) — 2(¥, W)

By definition, (i,W) = 5—-3+8+12=22and(y,w) = 20+2—4+6 = 24
As 3t — 2¥ = (=5,13,—16,4) Thus, (3% — 2¥,w) = —25—13 + 32 + 24 = 18
Then 3(ii, W) — 2(%, W) = 3(22) — 2(24) = 18 = (3u — 2%, W)

(b) Normalize u and v:

Since ||u]|=vV1+9+16+4=+30and||¥||=V1i6+4+4+1=5

We normalize 1 and v to obtain the following unit vectors in the directions of %
and v, respectively:

ﬁ_ﬁ_(l 3 -4 z)andﬁ_ﬁ_(4—221)
~llal - \v30’v30’ V30’ V30 19l \s’5’5’s
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Unit Circles and Spheres in Inner Product Spaces

If V is an inner product space, then the set of points in V that satisfy ||¥]] = 1 is
called the unit sphere or sometimes the unit circle in V. In R? and R® these are the
points that lie 1 unit away from the origin.

Example: Unusual Unit Circles in

(a) Sketch the unit circle in an xy —coordinate system in R? sing the Euclidean
inner product (i, V) = uyv; + u,v,.
(b) Sketch the unit circle in an xy —coordinate system in R? using the weighted

Euclidean inner product (i, v) = %uﬂ?l + iuzv2
Solution (a)

If i = (x,y) , then [|u]| = /x2 + y? , so the equation of the unit circle is
Jx% 4+ y2% =1, or, on squaring both sides, x? + y? =1

As expected, the graph of this equation is a circle of radius 1 centered at the origin

&Y &

i il _
.y

ey
3

{(f)y The unit civele with
ithe norm

(et} Thie vunit cirele with

the BEuclidian norm R I
Euf =" g CT
fug = i+ + 1 B

Solution (b)

If i = (x,y) , then ||u]| = Exz + iyz , S0 the equation of the unit circle is
1 5, , 1 5 - : 1212 _
JX o yi= 1, or, on squaring both S|des,5x tLy° = 1
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Practice:

1. Compute the quantities using the inner product on R* generated by

A= [i ﬂ and B = B _01]
a) (U, V) d) 17l
b) (kv,w) e) d(u,v)
c) U+ B, w) ) |1Z — k3|

2. Find ||u]| and d (u, V) relative to the weighted Euclidian inner product
(ﬁ, 7_7’) = 2u1v1 + 3u2172 on R2
a) u=(-3,2)and v = (1,7)
b) © =(—1,2) and v = (2,5)
3. Sketch the unit circle in R? using the given inner products
- > 1 1
a) (u,v) = SVt Ul

b) (ﬁ, 1_7)) == Zulvl + u, v,

204
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The Standard Inner Product on P,,

If p=a,+ax+a,x*+--+a,x™ and q = by + byx + byx? + -+ b,x™ are
polynomials in P,, then the following formula defines an inner product on P,, that
we call the standard inner product on P,,

(p,q) = apby + a;b; + -+ a,b,

The norm of polynomial p relative to this inner product is

Ipll = Vip.q) = Jai +af + -+ a2
The Evaluation Inner Product on P,,

If p=a,+ax+a,x*+--+a,x™ and q = by + byx + byx? + -+ b,x™ are
polynomials in P,, and if x,, x4, ..., x,, are distinct real numbers (called sample

point) then the formula (p,q) = p(xo)q(xo) +p(x1)q(x1) + -+ + p(x)q(x5)
defines an inner product on P,, called the evaluation inner product at x,, x4, ..., X,

Algebraically this can be viewed as the dot product in R" of the n — tuples

(p(x0), p(x1), ., p(xp)) and (q(x0),q(x1), ..., q(x,)) and hence the first three
inner product axioms follow from properties of the product.

The fourth inner product axiom follows from the fact that
(p,p) = [P(x0)]* + [p(x)]* + -+ [p(xn)]* 2 0
With equality holding if and only if p(x,) = p(x;) =+ p(x,,) =0

But a non — zero polynomial of degree ‘n’ or less can have at most ‘n’ distinct
roots, so it must be that p = 0 which proves that the fourth inner product axiom
holds.

The norm of a polynomial p relative to the evaluation inner product is

Ipll = V{p,p) = VIp(x0)]? + [p(x)]? + - + [p(x,)]?

Visit us @ Youtube: “Learning With Usman Hamid”



206

Example

Let P, have the evaluation inner product at the points x, = —2,x; = 0,x, = 2
then compute (p, q) and ||p|| for the polynomials

p=px)=x?and gq=q(x) =1+x

Solution

(P, q) = p(x0)q(xo) + p(x1)q(x1) + -+ + p(xp)q ()
(p.q) =p(=2)q(=2) + p(0)q(0) + p(2)q(2) =8

Ipll = VIpGo)]? + p(x)]? + -+ + [p(x,)]2 = V42 + 02 + 42 = 442

Practice:

1. Find the standard inner product on P, of the given polynomials
Q) p=-2+x+3x?and q =4 — 7x?
b) p=-5+2x+x%?and q =3 + 2x — 4x?

2. In the following exercise, a sequence of a sample points is given. Use the
evaluation inner product on P; at those sample points to find (p, q) for the
polynomials p = x + x3and q = 1 + x?

a) xo=—-2,%,=—1,x,=0,x3=1
b) xo =—1,x;, =0,x, = 1,x3 = 2

3. Find d(p,q) and ||p|| relative to the evaluation inner product on P, at the

stated sample points.
a) p=—-2+x+3x?and q =4 — 7x?
b) p=-5+2x+x%?and q =3 + 2x — 4x?

4. Find d(p,q) and ||p]| relative to the evaluation inner product on P; at the
stated sample points.

Q) xo=-2,x,=—1,%x,=0,x3=1
b) xo =—-1,x;, =0,x, = 1,x3 = 2
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Function Space C = [a, b] and Polynomial Space P(x)

The notation C = [a, b] is used to denote the vector space of all continuous
functions on the closed interval [a, b] that is, where a < x < b. The following
defines an inner product on C = [a,b] , where f(x) and g(x) are functions in
C = [a,b]:

(f,g)= f;f(x)g(x)dx And it is called the usual inner product on C = [a, b].

The vector space P(x) of all polynomials is a subspace of C = [a, b] for any
interval [a, b], and hence, the above is also an inner product on P(x).

Example
Show that (f, g) = [,/ f(x)g(x)dx defines an inner product on € = [a, b]
Solution: ~ Axiom1:  (f,g) = [; f(x)g(x)dx = [} g(x)f ()dx = (g, f)
Axiom 2 (f + g, h) = [ (F(x) + h(x)) g (x)dx

(f +9.) = [, FERG)dx + [ gGR()dx = (f, k) + (g, h)

Axiom3:  (kf,g) = [, kf ()g(x)dx = k [} f(x)g(x)dx = k(f,g)

Axiom4:  (f,f) = [ fFOf()dx = [ f2(x)dx > 0
And f.fl=0sf=0
Norm of a vector in C = [a, b]

If C = [a, b] has the inner product (f, g) = f:f(x)g(x)dx then the norm of a
function f = f(x) relative to this inner product is

IFll, = Il = VF ) = Jff FOOf (X)dx = Jff f2(x)dx

And the unit sphere in this space consists of all functions f in C = [a, b] that
satisfy the equation f;’ f2(x)dx =1

Avail able at MathGty.org Visit us @ Youtube: “Learning With Usman Hamid”



208

Remember The following define the other norms on C = [a, b]:

“ ||fll, = f(flf(x)ldx = area between the function f and the t-axis
» d,(f,g) =area between the functions f and g

The geometrical descriptions of this norm and its corresponding distance function
Is described below.

D _a

) ] £y is shoded. b & ghis shaded.

A £

b ! o \-_.",,/ \“"-._..-.f; F.f

" ||flle = max(|f(x)]) = maximum distance between f and the t-axis
» d.(f,g) = maximum distance between the functions f and g

The geometrical descriptions of this norm and its corresponding distance function
Is described below.

fin

glt)
L

a \\/ b i a \J/ b r

@ 1l (b) dlf, g)
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Example:

Consider f(x) = 3x — 5 and g(x) = x? in the polynomial space P(x) with inner
product (f, g) = fglf(x)g(x)dx then find (f, g), I[f1l and || gl

Solution: Using defined inner product

(f.9) = [, F)g(x)dx = [} (3x — 5)(x?)dx = [, (3x® — 5x?)dx

¢.0)= x5 =5
IFI12 = (f, ) = [} FQOf()dx = [)(9x% — 30x + 25)dx

112 = |3x3 — 15x2% + 25x|§ = 13

lglI2 = (g.9) = [} 9CIgCdx = f xtdx = [2x5 =1
I 99 Og g 0 5 0 5

Then clearly ||f]| = V13 and ||g|| = \E =-v5

Practice:

1. Let the vector space P, have the inner product (p, q) = f_llp(x)q(x)dx then
find the following for p = 1 and q = x?

a) (p.q) c) liqll
b) lipll d) d(p.q)
2. Let the vector space P; have the inner product (p, q) = f_llp(x)q(x)dx then
find the following for p = 2x3and g = 1 — x3
a) (p,q)
b) lipll
c) liqll
d) d(p.q)
3. Use the inner product (f, g) = folf(x)g(x)dx to compute (f, g)
a) p = Cos2nx and q = Sin2nx
b) p=xandq = e*
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Matrix Space M = Mm,n

Let M = Mm,n, the vector space of all real m x n matrices. An inner product is
defined on M by (4, B) = tr(BTA) where, as usual, tr( ) is the trace—the sum
of the diagonal elements.

If A = [aij] and B = [bl]]1 then (A,B) = tT'(BTA) = 121 1al] ij
And ||AlI2 =(4,A) =YY", D=1 alzj

That is, (4, B) is the sum of the products of the corresponding entries in A and B
and, in particular, (4, A) is the sum of the squares of the entries of A.

Practice

1. Find a matrix that generate the stated weighted inner product on R?

- >

(u,v) = 2u v, + 3u,v,  and (U, vy = %ulv1 + 5u,v,

2. Use the inner product on R? generated by the matrix A = [;L _13] and

B = [_21 é] to find (u, v) for the vectors i = (0,—3) and v = (6,2)

Hilbert Space

Let V be the vector space of all infinite sequences of real numbers (a,, a,, as, ...)
SatiSfying Zfil aiz = a% + a% + a% + .. < 00

That is, the sum converges. Addition and scalar multiplication are defined in V
component wise; that is, if u = (aq, a,,as, ...) and v = (by, by, b3, ...)

Then u+v= ((,ll + bl' a, + bz, as + b3, ...)and ku = (kal, kaz, ka3, ...)
An inner product is defined in V by (u, v) = a,b,, a,b,, azbs, ...

The above sum converges absolutely for any pair of points in V. Hence, the inner
product is well defined. This inner product space is called [, —space or Hilbert
space.
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Theorem (Algebraic Properties of inner products):

If 2 and v are vectors in a real inner product space V and if k is a scalar then

a) (0,3) =(#,0)=0

b) (@, B + W) = (U, B) + (U, W)
Q) @B —w) = (U B — (W
d) (@ — 3, W) = (@, W) — (B, W)
e) k@, ) = (W, kD)

Example: Evaluate (i — 2v, 3u + 47)

Solution

(i — 27,34 + 4B) = (U, 3U + 43) — (28, 31 + 49)

(U —20,3U + 47) = (U, 3U) + (U, 47) — (27, 3u) — (27, 47V)
(U —20,3U + 47) = 3(U, u) + 4(u, V) — 6(V, U) — 8(V, V)
(U — 20, 3U + 49) = 3||Ull* + 4(u, v) — 6(u, v) — 8]|9||?

(U — 27, 3U + 49) = 3||ul|* — 2(4, v) — 8]|7||?

Practice

1. Suppose that 2 , ¥ and w are vectors in an inner product space such that
WU, v) =2,(v,w) = —6,(t,w) = =3, [lill = L, |I7ll = 2,[W]| =7
Then evaluate the given expressions
a) (20 —w, 3u + 2w)

b) IIz + V|
c) (U—v—2w,4U + V)
d) 112w — 7|

2. Expand the followings;

a) (5171 + 81_1,)2, 61_7)1 - 71_7)2)
b) (3u + 57, 4u — 6v)
c) |I2u — 37|
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Cauchy-Schwarz Inequality
If 2 and ¥ are vectors in a real inner product space V, then
W, 0)* < (@, u)Xv,7)* or (@) < [Vl

Proof

—

For any real number ‘t’ consider (tu — ¥, tU — ¥) = 0
=t(u,tu—v)— D, tu—v)=t{tu — v, U) —(tu —v,v) = 0
= t{t(u,u) — 1(v,u)} — {t(u,v) — 1V, ¥)} =0

= t2(U,u) — t(V,U) — (U, V) + 1B, V)= 0

= t2||u]|? = 2tu, D) + ||9]|? = 0

(u,9)
1]l

Lett = then

(17,1_5)2 — (ﬁ,a) - > -
= ||ul? —2=—(U, D)+ |IB||? =0
[l (1]l

_ @y @y

llull llull

+ 7)1 = 0

(U, p)*
112

= + 7|2 =0

4 (ﬁ"—j)z
= ||19)? = —=
191 = e

= [Zl1I¥11° = (4, 9)?
= (U, 7)* < |[all*[Iv]|*

= @) <[zl or @ V) < (U u)*D,v)°
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Theorem: Let V be an inner product space, V also a normed space if following
axioms are true;

= lull =0 ; |lull=02u=0
= ||k#©| = |k|||E|| ;Vk € F
I | YA | R v | I [

Proof
= |u]|=0 ; |[ull=0=2u=0
Let = O then ||Z|| = /(@,©) > 0 = ||@]| > 0
If %=0then||d|| =/ @d)=0=|zEl=0
> il =0 ; |lil=0ei=0
= ||kull = |kl|[ull ;vk € F
Let || k|12 = (kT, ki) = kk(@, @) = k2||E||% = ||kl = |k|||E]| ; Yk € F
= i+ < [l + 19l
W+ D)2 =@+ v,uU+V)=UU+ D)+ Du+D)
%+ B2 = (@, 0) + (U B) + (B, 1) + (B, D) = (@, 0) + (U D) + @) + (B, D)
4 + 9117 < (4, ) + 2|4, v)| + (7, v) = [[d]|* + 2[[Z[I7]] + 7]

12+ 9l1* < ([l + I91D* = 11 + 6l < ||l + 119l

Theorem of Pythagoras: If # and v are orthogonal vectors in a real inner product
space then |4 + 7]|? = ||u]|? + ||7]|?

Proof: Since 1 and v are orthogonal therefore (i, v) = 0

W+ D)2 =@+v,uU+V)=UU+ D)+ (DuU+D)

U + v||? = (U, d) + (U, V) + (U, u) + (U, V) = (U, u) + (U, ) + (U, D) + (¥, D)

I8 + ?II? = (@, d) + 2(4, 9) + (¥, 9) = |[Ell* + |D]>° ~uv=0
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Inner Product Space Satisfies Parallelogram Equality
I + 9% + [l — 2117 = 2(llzll* + I1911*)

Proof: L.H.S=|u+7|?*+||u-7|?
=U+v,u+v)+U—7V,U— D)
=(UWuUu+v)+@D,u+v)+Uu—v)—(V,uUu—7D)

= (U, u) + (U, v) + (v, u) + (U, u) — (U, v) — (v, u) + (v, V)
= [ldll* + 2(d, v) + I9]1* + [[Zll* — 2, 9) + |91

= 2(J[all* + IPII*) = R.H.S

Polarization Inequality (@, ) =+ (i + Bl — i - 51|
Proof: Consider ||u + 9|2 — ||u — V||?
U+ D0+ — @ —3,4— D)

=
=Uu+v)+@u+v)—Uu—v)+@uUu—7v)

= (U, u) + (U, v) + (¥, u) — W, u) + U, v) + (¥,d) — (D, V)

= |[Ell* + 243, 9) + 19]1? — [Ill* + 2(1, v) — [|19]]* = 4(u, D)
(@, By = < (Il + 3|2 - 1@ — 51|
Triangular Inequality for Vectors
i + vl < [[dll + 17|

Proof

W+ D)2 =@+v,uU+V)=UU+ D)+ (DuU+D)

U + v||? = (U, d) + (U, V) + (U, u) + (U, V) = (U, u) + (U, ) + (U, D) + (¥, D)
lu + vI1* < (@, u) + 2|u, V)| + (&, v) = [|ldll* + 2||zlll|Z] + 19117

12 + 912 < (Il + I91D* = 11 + 9l < [l + 190l
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Appolonius Inequality

lz =l + llz =yl = 2lx =2 + 2 |z =2+ )|
Proof:

Ix + ¥l = +yx+y) = (x+y) +{(nx+y)

Ix + ylI> = (x2) + {x ) + (v, %) + (3, %)

I+ ylIZ = 112 + 260 9) + IVI1Z e (1)
Ix=ylI* =(x—yx—y) =(xx—y) = (y.x - y)

lx = ylI> = (xx) = (x,y) = (v, x) + (v, 9)

lx —ylI? = lIxl|? = 2{x,y) + Y12 (2)
Adding (1) and (2) we have

lx + Yl + llx = yI1? = llxlI* + 2¢x y) + [IyII* + 1x]1? = 2¢x, y) + [IyI?
lx + ylI? + llx — ylI? = 2|lxI? + 2llyll? oo (3)
Putx =z—x,y=2z—-1yin(3)

lz—x+z-yll* +llz—x—z+yl|* =2llz = x||* + 2|z — ylI?

122 = e + DI + ll=x + I = 2llz = %12 + 211z = yII?
1 2 2 2 2
4|z=3G+»| +l-x+yI? =2z —xlI* + 2llz -
1 2 1 2 2 2
2||z =5 G+ +5lx =17 = llz = xI2 + Il =y
Hence we get

lz =%l + llz = y1I? = 2lix = yl2 + 2|7 =2 e+ )|
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Examples

(@) Consider any real numbers a4,a,,...,a,, by, by, ...,b,. Then, by the
Cauchy-Schwarz inequality,
(ayb; + ayb, + -+ a,b,)?* < (a2 +az + -+ a2)(b? + b2 + .-+ b32)
= (U.9)? < [[dll*I7]1* where i = (a;) , ¥ = (b)

(b) Let f and g be continuous functions on the unit interval [0,1]. Then, by the
Cauchy—Schwarz inequality,

[folf (t)g(t)dt]2 < [, f2Dadt [ gt
= ({(f.g)% < lIfII*llgll? . Here V is the inner product space C[0,1].

Angle between Vectors

For any nonzero vectors % and ¥ in an inner product space V, the angle between u
and ¥ is defined to be the angle 6 suchthat 0 <@ <m and 6 = Cos™* (_<“-”> )

il
(U.D)

and cosine of the angle between vectors is defined as Cosf = BT

By the Cauchy-Schwartz inequality, —1 < Cos6 < 1, and so the angle exists and
IS unique.

Example

(a) Consider vectors @ = (2,3,5) and ¥ = (1, —4,3) in R®. Then
(U.7) =2—12+15 =5, ||d|| = V38, 7|l = V26
Then the angle 8 between % and ¥ is given by 8 = Cos™? (

5 )

(b) Let f(t) = 3t — 5 and g(t) = t? in the polynomial space P(t) with
inner product (f. g) = folf(t)g(t)dt then
(f.9)=—=, Ifl =Vi3, ligl=:v5

11
Then the angle 8 between i and ¥ is given by 6 = Cos™? <\/1_3 2 >

ie. 6 =Cos™ ! (— 12\/5%\/3)

Note that 6 is an obtuse angle, because Cos# is negative.
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: N ) L, _[-1 071,
(c) Consider vectors u = [3 4] and v = [ 3 2] in M»,. Then

(i.7) = 16, |1dll = V30, ||7]| = V14
Then the cosine of angle 6 between % and v is given by Cos6 = (\/3_(1)\6@)
i.e. Cosf = 0.78

Practice

1)

2)

3)

Find the cosine of the angles between the vector spaces with respect to the
Euclidean inner product.

a) u=(1,-3)andv = (2,4)

b) u = (—1,52)and v = (2,4,-9)

c) u=(1,01,0)and v = (-3,—-3,—-3,-3)

d) 4= (-1,0)and v = (3,8)

e) u

Find the cosine of the angles between the vector spaces with respect to the
Standard inner product on P,.

a) p=—-1+5x+2x?andq = 2 + 4x — 9x?

b) p=x—x%?andq =7 + 3x + 3x?

Find the cosine of the angles between the vector spaces with respect to the
Standard inner product on M,,.

9i=f &Jmar=]l ;
12 4

-1 3 Y 1]

b) u 4 2

]andﬁz
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Orthogonality

Let V be an inner product space. The vectors u, v € V are said to be orthogonal
and u is said to be orthogonal to v if (#. v) = 0

Orthogonality depends on inner Product

The vectors are orthogonal with respect to the Euclidean inner product on R? for
example for ¥ = (1,1) and ¥ = (1,—1) we have u. ¥ = 0 but

The vectors are not orthogonal with respect to the weighted Euclidean inner
product (u.v) = 3u,v; + 2u,v, for example for ¥ = (1,1) and v = (1,—1) we
have (. v) = 3(1)(1) + 2(1)(-1) =1 #0

Orthogonal Vectors in My,

[0 2

Letﬁ=[i g]andﬁ— 0 0

] then (. ) = 1(0) + 0(2) + 1(0) + 1(0) = 0
Orthogonal Vectors in P,

Let P, have the inner product (p, q) = f_llp(x)q(x)dx and let p = x and q = x?

then (p, q) = f_ll(x)(xz)dx = f_ll x3dx = 0. Hence given vectors are orthogonal.

Example

(a) Consider the vectors % = (1,1,1),7 = (1,2,—3) and W = (1,—4,3) in R®.
Then (i, ¥) = 0,(u,w) = 0,(V,w) = —16 # 0
Thus, 1 is orthogonal to ¥ and w, but ¥ and w are not orthogonal.

(b) Consider the functions sint and cost in the vector space C[—m,m] of
continuous functions on the closed interval [—m, ]. Then
(Sint, Cost) = f_nn SintCostdt = |§Sin2t|nn =0

Thus, sint and cost are orthogonal functions in the vector space C[—m, 7r].
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Practice

1) Determine whether the vectors are orthogonal with respect to the Euclidean
Inner Product.
a) u=(-13.2),v=(042-1)

b) u=(-2,-2,-2),v=(1,1,1)

c) u=(ab),v=(=b,a)

d) U = (uq,u,,u3), v = (0,0,0)

e) u=(—4,6,—-10,1),v = (2,1,—2,9)

f) 4= (ab,c),v=(-c0,a)

2) Determine whether the vectors are orthogonal with respect to the Standard
Inner Product on P..
a) p=-1—x+2x?and q = 2x + x2
b) p=2-3x+x?andq =4 + 2x — 2x?

3) Determine whether the vectors are orthogonal with respect to the Standard
Inner Product on M.

D u=[% glav=[
) u=[> andv=[" 2

4) Show that the vectors are not orthogonal with respect to the Euclidean Inner
Product on R? and then find a value of ‘k’ for which the vectors are
orthogonal with respect to the weighted Euclidean inner product
(U. V) = 2uy vy + ku,v,

a) u=(13),v=(2-1)
b) u=(2,—4),v = (0,3)

5) Find ‘k’ so that the vectors % = (1,2,k,3) and ¥ = (3,k,7,—5) in R* are
orthogonal.
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Remark

A vector w = (x4, X5, ..., x,,) is orthogonal to 4 = (ay, a,, ...,a,) in R" if
(U,W) = a;x; + ayx, + -+ apx, =0

—

That is, w is orthogonal to u if W satisfies a homogeneous equation whose
coefficients are the elements of .

Example
Find a nonzero vector w that is orthogonal to % = (1,2,1) and ¥ = (2,5,4) in R
Solution

Let w = (x,y,z). Then we want (#,w) =0 and (v,w) = 0. This vyields the
homogeneous system

x+2y+z=0 Or
2x +5y+4z=0 x+2y+z=0
y+2z=0

Here z is the only free variable in the echelon system. Set z = 1 to obtain y = —2
and x = 3. Thus, w = (3,—2,1) is a desired nonzero vector orthogonal to 1 and .
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Orthogonal Complements

Let S be a subset of an inner product space V. The orthogonal complement of S,
denoted by S+ (read ‘S perp’’) consists of those vectors in V that are orthogonal to
every vector i € S; thatis, St = { € V:(¥,u) =0 for everyi € S}

Or If S be a subspace of real inner product space V. then the set of all vectors in
V that are orthogonal to every vector in S is called the orthogonal compliment of S.
thatis, St ={D € V:(¥,U) =0 for everyiu € S}

Proposition Let S be a subset of a vector space V. Then S+ is a subspace of V.
Proof

Choose 1, v € S and o, § € F then we have to show that < il + BV € S

Consider forw € S

(< U+ Bv, W) = (U, W) + B{v,w) =x (0) + B(0) =0

Implies < 1 + v € S and hence S+ is a subspace of V.

Annihilator LetY be a subset of a Hilbert space H, then the set of all vectors of
H which are orthogonal to Y is called the annihilator of Y and is denoted by Y.
ie. Yi={xeH:xlY}

Remember

= The annihilator of Y+ and is denoted by Y*t.ie. Yt ={x e H:x 1L Y1}
» {0} ={xeH:x1{0}}=HandH' ={x € H:x L H} = {0}

Remark: Suppose u' is a nonzero vector in R®. Then there is a geometrical
description of ut. Specifically, u* is the plane in R® through the origin O and
perpendicular to the vector u. This is shown in Figure.
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Example

Find a basis for the subspace u* of R?, where u = (1,3, —4).
Solution

Consider w = (x,y,z) and u = (1,3,—4) then (&, w) = 0

Implies (i, W)x + 3y — 4z = 0 where The free variables are y and z.
(1) Sety = 1,z = 0 to obtain the solution w; = (—3,1,0).

(2) Set y = 0,z = 1 to obtain the solution w, = (4,0,1).

The vectors w, and w, form a basis for the solution space of the equation, and
hence a basis for u*.

Theorem

Let W be a subspace of V. Then V is the direct sum of W and W+ ; that i,
V=wew-

Proof

We know that every set of simple basis can be converted to orthogonal basis by
Gram Schmidt Orthogonal process. Therefore we can say that there exists an
orthogonal basis {uq,u,,...,u,.} of W. therefore by Basis Extension Theorem
process we can extend the orthogonal basis set to orthogonal basis set off vector
space V. i.e. {uy, Uy, oo, Uy, Uppq, ooe ) Up }e

IfveVthenv =XT < u; =X uy + -+ Uy +Kpyq Upyq + oo+, Uy
Where «¢; u; +X, uy + -+, u, €W

=0,y Uppp + oo+, U, € WH

=00 Uy + oo+ Uy + Xy g Upyg + o+, Uy EW + WH
>V=w+wt

Now choose x e W n W+
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>x€eW and x e W+
>{(xx)=0=2x=0=>WnWt={0}

>V=wewt

Theorem

Let W be a subspace of V. Then show that W n W+ = {0}
Proof

Choose x e W n W+

>x€W and x e Wt
>((xx)=0=2x=0=>WnWwt={0}

Theorem

Let Y be asubset of a Hilbert space H. Then Y c Y+
Proof

Letx € Y then(x,y) =0 forally € Y*
>x1lYt=sxeyttsycytt

Theorem

Let A and B be subset of a Hilbert space H. And A € B Then B+ c At
Proof

Let A € B and x € B then (x,y) = 0forall y € B

=>(x,y)=0forallye A=>x € At = B+t c A
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Theorem

Let A and B be subset of a Hilbert space H. Then (4 U B)* = At n B+,
Proof

SinceAcAuBandB < AUuBthen(AUuB)t c Atand (AU B)* c B
s (AuB)tcAtnBt (1)

Let x € A+ N B+ this means that x € A and x € B then by definition
(x,uy=0forallue Aand (x,v) =0forallve B

Hence (x, v) = 0 for every v € A U B and so by definition x € (A U B)+

>A*nNnBtc(AuB)t (2)
From (1) and (2) (AuB)t=AtnB?
Theorem

Let A and B be subset of a Hilbert space H. Then At U B+ € (4 n B)L.
Proof

SinceANBcAandANnB c BthenAt € (AnB)tand Bt € (An B)?
> A'UBtc(4AnB)*

Theorem

Let A be asubset of a Hilbert space H. Then At = A+,

Proof

Since A € At then (A1)t € AL = AL c 4t

Also AL c (AL)HL = AL c Attt

Hence At = At+4
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Theorem

Let Y be asubset of a Hilbert space H. ThenY nY+ < {0}.

Proof

IfY nYL = ¢ thenclearly Y n Y1 = ¢ < {0} so the condition is true.

IfYnYyt#gthenletx €Y nYLimpliesx € Yandx € Y+ and so (x,x) = 0 i.e.
Ix[|?=0=>x=0€{0}=>x€{0}=>YnY*c{0}

Theorem

Let Y be asubset of a Hilbert space H. Then Y+ is closed linear subspace of H.
Proof

Let x,y € Y+ and «, B € F then we have to show that & x + fy € Y+

Since x,y € Y+ therefore (x,u) = 0 and (y,u) = 0 for every u € Y then

(< x + By,u) =x{(x,u)+B{(y,u)=0>xx+py LY > x+ By €Y',

This shows that Y+ is linear subspace of H. Now we have to show that Y+ is
closed. For this we just show Y+ = Y.

We already knowthat Y+cyYLl ... (1)
Now let x € Y then there exists a sequence (x,,) in Y+ such that x,, = x
Now by using continuity of inner producsts for any u € Y we have

(x,u) = (lim, o, X, ,u) = lim{x,,u) =0=>x 1LY >xeY*
n—>00

Implies that Yyicyt 2)

Then Y+ =YL and Y+ is closed subspace of H.
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Theorem

Let Y be a closed linear subspace of a Hilbert space H. Then Y n Y+ = {0}.
Proof

Since we know that if Y be a subset of a Hilbert space H. Then
ynytc{oy ... (1)

Given that Y is closed linear subspace of H and we also know that Y+ is closed
linear subspace of H. Let x € Y n Y+ impliesx € Y and x € Y+ and so (x,x) = 0
e x]?°=0=>x=0=>0€Yand0eYt=0eyYny?

>{0}cYnyt )

Combining (1) and (2) we get Yynyt={0}

Projection Theorem

Let Y be any closed subspace of a Hilbert space H. Then H=Y @ Y?
Proof

Suppose Y + Y+ is proper subspace of H then there is a non — zero vector z € H
suchthatz L (Y +Y1).ie.ze (Y +YH)t

NowY € (Y + Y1) implies (Y + Y1)t c v+

Also we know Y+ € (Y + Y1) implies (Y + YH)t c vyt

Thenze (Y + YY)t c Yyt nytt = {0} = z = 0 a contradiction.
Hence Y + Y1 isthe wholeof H.i.e. H= Y + YtsinceY n Y+ = {0}

ThusH=Y @Y+
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Theorem
Let Y be aclosed subset of a Hilbert space H. Then Y =Y+t

Or Let W be a subspace of a real finite dimensional inner product space V.
Then show that (W)t =W

Proof

Let x € Y then(x,y) =0forally e Y*

>x1lYt=>xeytHtsycytt

Now let x € Y+ and Y be a closed subset Halso H = Y @ Y+ so;
Foreachx eY* CH; x=y+z:yeY,zeY?

ButY c Y+t thereforey € Y4+

>z=x—yeY¥tt=z1vd
ButzeYl=z1lz=2z=0>z=x—-y=0>x=y=>xeY=>vcy
Hence from both cases Y =Y+t

Theorem

For any complete subspace Y of an inner product space V, Prove that Y = Y1+,
Proof

Let x € Y then (x,y) = 0 forall y e Y

>x1lYt=sxeytHt=sycytt

Now let x € Y+ and Y be a complete subspace of ValsoV = Y @ Y+ so;
Foreachx eYt cV;, x=y+zyevycvyttzevt
>z=x—y€eY¥tt=z1vt
ButzeYl=>z1lz=2z=0>z=x—-y=0>x=y>x€eY=>vcy

Hence from both cases Y = Y1+,
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Theorem

Let S be a subspace of an inner product space V. Then St = [span(S)]t = (S)*
Proof

Since S € (S) therefore (S)* € S+ ........... (1)

Letu € St and suppose S = {uy, u,, ..., u, } then
span(S) = (S) = {o<; uy +<, Uy + -+, U, : K€ F}
Consider (o¢; uy + -+, U, ;)

=0o¢; (U, u) +%5 (Uy, u) + -+ +C,. (U, u)

=o¢; (0) +o¢, (0) 4+ -4, (0) =0

u € (S)*

Then Stc(S)*t........... (2)

From (1) and (2)

§+ = [span($)]*+ = (S)*
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Orthogonal Set

Consider a set S = {uy, u,, ..., u,.} of nonzero vectors in an inner product space V.
S is called orthogonal if each pair of vectors in S are orthogonal, That is,

(ui,uj)=0 ;i:/:j
For example i + 2j + k is orthogonal.
Orthonormal Set

Consider a set S = {uy, u,, ..., u,.} of nonzero vectors in an inner product space V.
S is called orthonormal if S is orthogonal and each vector in S has unit length. i.e.

(0 ;i#j
ww = ;2

For example i + j + k is orthonormal.

Example

(a)Let E ={e;, ey,e3} =1{(1,0,0),(0,1,0),(0,0,1)} be the usual basis of
Euclidean space R®. It is clear that
(e1,€2) = (e1,e3) = (ez,e3) = 0and (ey, e;) = (ey,e3) = (e, e3) =1
Namely, E is an orthonormal basis of R®. More generally, the usual basis of
R" is orthonormal for every n.

(b) Let V = C [—m, ] be the vector space of continuous functions on the
interval —m < t < m with inner product defined by (f, g) = J_f(©)g(t)dt.
Then the following is a classical example of an orthogonal set in V:
{1, cos t,cos 2t,cos 3t,...,sin t, sin 2t,sin 3t,...}

This orthogonal set plays a fundamental role in the theory of Fourier series.
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Theorem
Suppose S is an orthogonal set of nonzero vectors. Then S is linearly independent.
Proof

Let S = {u,, u,,...,u,.} be an orthogonal set of nonzero vectors, consider for all
«;E F we have o¢; uy + - 4+, u,, = 0,

(0¢1 Uy + -+ 40 U, u) = (0p, ;)

oy (Uqg, Uy) +¢, Uy, up) + oo o (U, up)+. ..+, (U, u;) =0

o¢; (u;, u;) = 0 =>o¢;= 0. Hence S is linearly independent.

Theorem of Pythagoras

If x and y are orthogonal vectors in a real inner product space then

lx + ylIZ = llxII* + llyll?

Proof: Since x and y are orthogonal therefore (x,y) =0

lx+ylI? =(x+y,x+y) =(xx+y)+{yx+y)

lx + ylI? = (6, x) + (6, ¥) + (v, %) + (v, ) = (6, x) + (0, ) + (0, 9) + (v, y)
lx +ylI* = (6,x) + 2009y + oy = lIxlI? + lIylI2 = (xy) =0
Generalized Pythagoras Theorem

If x,,x5,x3,...,x, are piecewise orthogonal vectors in a real inner product space
then [IX72; xl1? = Xisq llx 1

Proof

1T 212 = (X0, Ty ) = S0, T, %)
IX5, %017 = Xy, )~ {xpx) =050 #f
IXi s %117 = (X xi, X )

%70 %17 = 2o llxll?
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Orthogonal Basis Set

Let S = {uy,u,, ..., u,.} be a basis set in an inner product space. Then S is said to
be orthogonal basis set of vectors if (u;, u;) ; Vi # j.

Example Let S consist of the following three vectors in R®
w, =(1,21); u, = (2,1,4); uz = (3,2,1)

These vectors are orthogonal; hence, they are linearly independent. Thus, S is an
orthogonal basis of R®.

Suppose we want to write v = (7,1,9) as a linear combination of u,, u,, u;. First
we set v as a linear combination of u,, u,, us using unknowns x;, x,, x5 as follows:

V= XUy + XUy + X3 U3

(7,19 =x,(1,2,1) + x,(2,1,4) + x5(3,2,1)

We can proceed in two ways.

METHOD 1: Expand equation to obtain the system

X1 +2x,+3x3=7 ;2x1+x,—2x3=1; x1—4x,+x3=7

Solve the system by Gaussian elimination to obtain x; = 3,x, = —1,x3 = 2.
Thus, v=3u —u, +2u,

METHOD 2: (This method uses the fact that the basis vectors are orthogonal, and
the arithmetic is much simpler.) If we take the inner product of each side of
equation with respect to u;, we get

(v, u;) = (xquy + XUy + X3 Us, U;p)

_ (V,U,i)

(v, u;) = x;(uy, u;) o X =

Here two terms drop out, because u4, u,, us are orthogonal. Accordingly,

_ {vuq) _ 74249 _ 18 _ {vup) 1 _ {vugz) _

X; = = =—=3,x, = = Xq = =
L7 uguy) — 14441 6 2T (upu,) 37 (uzus)

Thus, again, we get v = 3u; —u, + 2 us.
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Theorem

Let uq, u,, ..., u, be an orthogonal basis of V. Then, forany v € V,

— (U,U.l) (U,U.z> Ve (U;un)
u; + Uy + -+ )

n (uq,uq) 1 (uz,uz)

Proof

Let {uy, u,, ..., u, } be a basis of V then

Consider (v, u;) = (Xq Uy + ==+ +; u; + -+, Uy, U;)

(v, u;) =X {uq, U;) +% (Uy, u;) + - +0¢ (U, up)+. ..+, (Uy, Uy)

(v,u;) .
(U, ui) =0Ci (ui, ui) or °<i= m ,'Vl = 1,2,3,
(v,uq) (v,uz) (v,up)
M= v = mnW F gy e T iy U
Theorem

Let {u,, u,,...,u,} form an orthogonal set of non — zero vectors in V. Let v €V
Then define v’ = v — (o¢; uy + -+ +o<,, u,,), where

_ (vu) _ {vup) _ vy
T )’ T ) T ()

then v’ is orthogonal to {u,, u,, ..., u,}

Proof

Consider (v, u;) = (v — (¢ Uy + -+, uy), u;)

(V' up) = (v, uy) —o¢g (ug, uy) =Ky (Uy, ) — =+ = (U, Up)—. .. — Xy (Up, Up)
(v,» u;) =

) <v u2> (v ()
(vlu ) <u u >( 11 ) ( Z’u ) <ul < l' ) . (un’un) (un' un)

(vli ui) = (U, ui) - (U, ui) =0

Thus v’ is orthogonal to {u,, u,, ..., u,}
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Fourier coefficient

(v,u;)
(uiug)
is analogous to a coefficient in the Fourier series of a function. This scalar also has
a geometric interpretation, which is discussed below.

The scalar

is called the Fourier coefficient of v with respect to u;, because it

Projections

Let V be an inner product space. Suppose w is a given nonzero vector in V, and
suppose v is another vector. We seek the ‘‘projection of v along w,”” which, as
indicated in Fig. (a), will be the multiple cw of w such that v' =v —cw is
orthogonal to w. This means

_ _ _ _ {vw)
(v—cw,w)=0=>(v,w)—c(w,w)=0=c¢c = o)
P
o v - proj (v, W)
proj (v, W) o

(k)

Accordingly, the projection of v along w is denoted and defined by

(v,w)

(w,w)

proj(v,w) = cw =

Such a scalar c is unique, and it is called the Fourier coefficient of v with respect to
w or the component of v along w.

We define w to be the projection of v along W, and denote it by proj(v, W),
as pictured in Fig. 7-2(b). In particular, if W = span (w;, w,, ..., w,.), where the w;
form an orthogonal set, then  proj(v,W) = c;w; + c,wy, + -+ + ¢, W,

Here c; is the component of v along w;, as above.
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(vyw) _ (v,w)

Theorem  Suppose w # 0, let v be any vector in V. Show that ¢ = oy Wl

Is the unique scalar such that v’ = v — cw is orthogonal to w.

Proof

In order for ¢ to be orthogonal to w we must have

(v—ew, wj=0 o (ow)—efww)=0 o {vw) =clww

(. w) W
Thus, e——. Conversely, suppose ¢ = ——. Then
{w, w‘!- (w,w)’ tik
(v—cw, w)={nw) —clww) ={uw - i (wow) =10
(w,w)
Theorem

Suppose wy, w,, ..., w,. form an orthogonal set of nonzero vectors in V. Let v be
any vector in V. Define v’ = v — (c;wy + cow, + -+ + ¢, w,.) Where

. = (U,Wl) — (U,W2> — (U'WT>
1 (wywy)’ 2 (wawy) " (Wr,Wy)

Then v' is orthogonal to wy, w,, ..., w,..
Proof

Suppose wy, w,, ..., w,. form an orthogonal set of nonzero vectors in V. Let v be
any vector in V. Define v’ = v — (c;w; + c,w, + -+ + ¢, w,.) Where

(U,Wl) — (U,W2>

(v, Wr)
w2 = o) ) weey Cp = Then

(Wy,wy)

C1:

Fori=1,2....,r and using (w;, w;) =0 for i  j, we have

(=cpwy =%y —oe = gy, W) = (LW} — ey {wy, ) — oo = 5) — 2 = G (0, )
= {vwj) = 0= —glwywy) ==, 0
= (v.wy) — e (wy wy) = (1) — {— wi,wy) =10

b

The theorem is proved.
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Question

Find the Fourier coefficient ¢ and the projection of v = (1,2,3,4) along
w = (1,2,1,2) in R*.

Solution

Compute (1) =1 - 4438 =8 and o] = 1 +4+ 144 =10, Then

i
]

(=-

|

and prﬂj(-y:w):fw: (- i.' _%:_E)

e,

Gram-Schmidt Orthogonalization Process

Suppose {v4, v,, ..., U, } is a basis of an inner product space V. One can use this
basis to construct an orthogonal basis {w,, w,, ..., w,, } of V as follows. Set

W|='ﬂ|

W_E:'UE-{

T BT {wi.w M {Wa, Wy} :
w, = H o= {ﬂn W|} “"l — {HMWI} Wz _____ {ﬂmwn—l} W,
{Wl Wl} {Wz:wz {Wn-l:wn-l}

In other words, for k = 2,3,...,n, we define
Wi = Vg — (Craws + CraWa + -+ + 1 Wi—1)

(UIWT>
<WT'WT>
preceeding w’s. Thus, w;, w,, ..., w,, form an orthogonal basis for V as claimed.
Normalizing each w; will then yield an orthonormal basis for V. The above

construction is known as the Gram-Schmidt orthogonalization process.

Where ¢i,; = is the component of v, along w;. Each w;, is orthogonal to the
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Remark

= Each vector wy, is a linear combination of v, and the preceding w’s. Hence,
one can easily show, by induction, that each wy, is a linear combination of
V1, Vs, «ory U

= Because taking multiples of vectors does not affect orthogonality, it may be
simpler in hand calculations to clear fractions in any new w;, by multiplying
wy, by an appropriate scalar, before obtaining the next wy, 4.

= Suppose u4,u,, ..., u, are linearly independent, and so they form a basis for
U = span (u;). Applying the Gram-Schmidt orthogonalization process to
the u’s yields an orthogonal basis for U.

Theorem (Proof Ommited)

Let {v,, v,, ..., v, } be any basis of an inner product space V. Then there exists an
orthonormal basis {u,,u,, ..., u,} of V such that the change-of-basis matrix from
{v;} to {u;} istriangular; that is, for k = 1,2,...,n,

uk =Ock1 171 +Ock2 172 + b +0Ckk Vk
Theorem

Suppose S = {wy, w,, ..., w,.} is an orthogonal basis for a subspace W of a vector
space V. Then one may extend S to an orthogonal basis for V; that is, one may find
vectors w,, 1,, ..., w,, such that {w,, w,, ..., w,, } is an orthogonal basis for V.

Proof
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Example

Apply the Gram-Schmidt orthogonalization process to find an orthogonal basis
and then an orthonormal basis for the subspace U of R* spanned by

n=({l,L11) v ={1.2,4,5), vy =(1,—3,—4,-2)
(1) Firstsetw, =v, ={L1, 11}
{21 Compute
{15, 9} 12
- W|=1‘.i'2——wl=|[—23—],l,2}
{wi,wi} 4

Setw, =1{-2,—-1,1,2).
{3) Compute

{1, W} w, = {1, Wy} Wy = 1y = {-S}wl _ (=7} Wy = {a 17 _ 13 1)
{wi, ) {wy, Wy} 4 10

R T LR TR

Clear fractions to obtain wy = {—6,—17, —13.14).

Thus, w,, w,,wy form an orthogona! basis for /. Normalize these vectors to obtain an crthonormal basis
{#:43, 105} of U. We have Jlun || =4, [Iwa]|” = 10, [ws]* =910, s0

1 1 1
H1=E(13]:1,1), uzz_(_zt-lslez]: 14!3:—(1{‘!,—1?,—13,14}

V10 V910

Example

Let V be the vector space of polynomials f(t) with inner product

(f.9)= [, fF()g(t)dt

Apply the Gram-Schmidt orthogonalization process to {1,t,t2,t3} to find an
orthogonal basis {fy, f1, f>, f3} with integer coefficients for P;(t).

Solution

Here we use the fact that, for r + s = n,

;whennis even

! tn+1 1 2
(t7,t5) = ft"dt = {

-1

n+1f_ 0 :whennis odd
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(1) First set f; = 1.

fr. 1%
{(2) Cumpute!={1'—1'1{1}=r—'l}=r. Set fi =1t
(3} Compute

LB o (B
(lrl} -,'J" f}

Multiply by 3 to obtain 5 = 3:° = 1.

2
(- @) =2 -S()+0(0) = —3

(4} Compuie

(. 1)
L

= =0{(1) -

{r. 32 =-1)
{32 =1, 342 =1}

{£.4)
{64y

() =037 = 1) =1 — 2t

(1) =45 (g) - (32 — 1)

LH|M]L|-||_M

Muliiply by 5 to obtain f; = 5% — 3.
Thus, {1, 7. 377 —1, 57 — 3t} is the reguired orthogonal basis.
Question

Consider the vector space P(t) with inner product (f.g) = In t)dt. Apply the Gram-
Schmidt algorithm to the set {I.£,} to obtain an orthogonal set { fofi- o} with integer

coefficients.
First set f; = 1. Then find

Clear fractions to obtain f; = 2r — 1. Then find

2 (i1 2-1)

_<1:1;“"'_{2f—1 Zr—l‘s(

! 1
A-1)=r-2(1)- %{2;—1]—9—:4-1
3 b

Clear fractions to obtain f; = 62 — 6r + 1. Thus, {1, 2t —1, 6% — 61+ 1} is the required orthogonal set.

Question
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. Consider the subspace I/ of R* spanned by the vectors:
1‘1I=[\1'.1.'l:1}1 1:'2={1:|..2:4J.. ?-?3,:(1.-21_4:_3)

Find (a) an orthogonal basis of U/; (b) an orthonormal basis of U.
(a) Use the Gram—Schmidt algorithm. Begin by setting w, =1 = (1,1.1,1). Next find

(19, Wy} . B
Uy —- fw={1 12,4 ——(L,1,LL1)={-1.-1.0,2
s~ o = (1,1,2.4) =5 (L 1L 1) = (-1,-1,02)

Set w, = (—1,-1,0,2). Then find

W ) W -4 -9
i FL;,W], Wy — {53,11*2} Wy = {1:2:_4: _3} _u{lt 1.1, ]j _u{_lz_l-.ﬂ-.z}
(v, wy) (w3, 4 b

L]

={z:1
).

Clear fractions to obtain wy = (1.3, —6.2). Then wy, wy, wy form an orthogonal basis of U

=3,1)

Geometrical Interpreatation of the Bessel Inequality (.TZ7 g

A Geometrical Interpreatation of the Bessel Inequality is that the sum of the
squares of the projections of a vector x onto a set of mutually perpendicular
directions can not exceed the square of the length of the vector itself.
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Bessel Inequality

Let (e;) be anorthonormal sequence in an inner product space X. Then for every
x € Xwehave  YpLil(x, e}l < [lx]|?

Proof
Let Y,, = span{e, e,, ..., e, } then for every y € Y,, we can express
Y =Xk=1 %X €k ;%= (Y, e)

We claim that for a particular choice of ;. i.e. <, = (x,e;) : x EXbutx ¢ Y,
then we can obtain y € Y, such that z = (x — y) L y (will show this)

We first note that

V117 =y, ¥) = (k=1 Xk e, Zim=1 Xm €m) = (Zi=1{x, ex)er, Xm=1(x, emdem)

Y117 = Xk=1(x, ex) (e, Zm=1{X, em)em) = Xi=1(x, ex) Xin=1(X, en) (ex, €m)
Y112 = Zho1(x, e) Tm=1(x, €m) (ex, em)

IylI? = TR (x, ey X0_.(x, ex) {er, )  takingm = k

IylI? = Ziecalx, ex) (x, e ) (1)

IylI? = XR=1lCx e)]? = BRoal(x el e (1)

Now consider

(z,y) = (x = y,9) = (x,¥) = (1, ¥) = (x, Zk=1 %k &) — Yl

(z,y) = (6, Thoa(x, eder) — Iyl = Xpoo(x, en) (x, exc) — Xioql(x, exc)|?
(z,y) = Z=1m (x, e) — Li=1l{x, ex)? = Tz l{x, exd)? — Tz lx, ex)]?
(z,y) =0 Impliesz L y

Now z = x — y then using Pyhtagorian Theorem ||z]|? = ||x||? = ||y|I?

0 < IzII? = llxII* = XR=1l{x, e = Tk=1l{x, e)1* < lIx]I?

= Yo x, e ? < |lx||? if n > oo. Hence proved.
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Bessel Inequality (Another Form)

Suppose {e;, e,, ..., ;. } is an orthonormal set of vectors in an inner product space
X. Let x € X be any arbitrary vector and c; be the fourier coefficients of vector x
with respect to e, then 3% _, cZ < ||x||?

Proof

Consider (x — X1 Cx€xk,X — Xp=1Cke€r) =0

(2, x) = (2, Xk=1 Cxex) — (Xk=1 Cker » X) + (Xk=1 Ckex » k=1 Cx€x) = 0
llxl1? = 2¢x, Xz crew) + Tie=1 cic (e ) = 0

%117 — 2 Xfoq ci (X, €x) + X Cit (eps k) = 0

(xe)
x> — 2 Xkzq Ck torer) £ +Zk 1CF =0

Ix||? = 2 Xfoy cf 4+ XhorcF =0
lIx]|? = Xro1c2 =0

r=1CF < |Ix|I? Hence proved.
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Orthogonal Matrices

A square matrix P is orthogonal if P is nonsingular and its transpose is the same as
its inverse, thatis P~ = PT | or, equivalently, if PPT = PTP =1,

Question
3 2 ¢
[7 7 7}
Show that the matrix P = —g ; % Is orthogonal.
llZ 6 _Ejl
7 7 7
Solution
3 6 2 3 2 6
7 = 5|F7 7| ;poo
T_|_& 3 &2 3 2|_-(0 1 0
PP 7 7 77 7 7| 6
2 2 _3lls & _3 [0 70
7 7 7 7 7

Theorem (Keep in mind)

Let P be a real matrix. Then the following are equivalent:
(a) P is orthogonal,

(b) the rows of P form an orthonormal set;

(c) the columns of P form an orthonormal set.

(This theorem is true only using the usual inner product on R". It is not true if R" is
given any other inner product.)
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Example
1 L i]
Vi V3 3
(@ LetP =10 \/—15 \/—15| The rows of P are orthogonal to each other and are
Ii e |
%z % =

unit vectors. Thus P is an orthogonal matrix.
(b) Rotation and Reflection matrices are orthogonal: Let P be a 2 X 2

orthogonal matrix. Then, for some real number 8, we have
__[CosB Sinf __[CosB  Sin6
b= [—Sine CosH] or P = Sind —Cos6

The following two theorems show important relationships between orthogonal
matrices and orthonormal bases of a real inner product space V.

Theorem

Suppose E = {e;} and E' = {¢';} are orthonormal bases of V. Let P be the change-
of-basis matrix from the basis E to the basis E . Then P is orthogonal.

Slppose
Egzbﬂgl'['bEEI'['""I’hIJtEm iI=1:"':H'

Using Problzm 7.18(b) and the fact that £’ is orthonormal, we get
5 =g F) Buby 4+ baby 4+ 4 bby
Let B= by] be the matrix of the coefficients in 1), (Then P = B.) Suppose BA™ = ::] Then
= bybyy + boby 4+ 4 bybyy

By (2) and (3), we have ¢;; = dy;. Thus, BB =1, Accordingly, B is orthogonal, and hence, P = BT is
orthogonal.
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Remember

7.18. Suppose £ = {e,.4,,..., e} is an orthonormal bagis of V. Prove

(a) Forany u € ¥, we have u = {u. e e, + {.eyte, + - + {1, e e .
(b) {aye,+ - tae,. be +--+he)=ab +aby+---+ab,
(c) Forany u, v € ¥, we have {u, v} = {u, e\ {v.e)+---+ {u.e }{v.e).

Theorem

Let {e,,e,,...,e,} be an orthonormal basis of an inner product space V. Let
P ={aij} be an orthogonal matrix. Then the following n vectors form an
orthonormal basis for V:

e’i = a6, + ayie, + -+ age, ;i=12,..,n
Proof

i [a;ﬂ,-] be an orthogonal matrix. Then the following n vectors form an orthonormal basis for 7

Prove Theorem 7.13: Let {e,.....e_} be an orthonormal basis of an inner product space 7. Let
e=a8 +aye o tag, =120

Because {g;} is orthonormal, we get, by Problem 7.18(b),

" 52 oo
(el ) = @y + ayty + - + 4,8, = (G, G)

where C; denotes the ith column of the orthogonal matrix = [a;]. Because P is orthogonal, its columns
form an orthonormal set. This implies (e, e} = (C;, G;) = d;. Thus, {&}} is an orthonormal basis.
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Question
Find an orthogonal matrix P whose first row is u; = (% , % , g)
Solution

First find a nonzero vector w, = (x,.z) that is orthogonal to u;—that is, for which

2y 2z
ﬂ:{u]:wz}=§+%+?=ﬂ or  x+2y4+2z:=0

One such solution is w, = (0, 1, —1}. Normalize w, to obtain the second row of P:

uy = (0, lr'r""/i_]fr\ﬁj

Next find a nonzero vector wy = (x,).z) that is orthogonal to both &, and w,—that is, for which

x 2y 2=
O0={.wy) ==+ =—+=—=10 or x+2y+22=10
S Tal
; B4 ¥
D= w}=—m——=10 or —z=10
(tz; Ws ) 2 2 y
Set z = —| and find the solution w, = (4,—1, —1). Normalize w, and obtain the third row of #; that is

Uy = {41(@.‘_1#(‘\"@.‘_1!(@}'

2

L]
Ne]

Thus, = 0 13’1’5 —1;’\/5
4/3v2 —1/3v2 —1/3v2

We emphasize that the above matrix £ is not unigue.

Question
I I

LetdA= |1 3 4| Determine whether or not: () the rows of 4 are orthogonal;
7 =5 2

(b) 4 is an orthogonal matrix; (c) the columns of 4 are orthogonal.

(a) Yes, because (1.1.-1)-(1.3.4)=14+3-4=0, (1.1-1})-(7,-5.2)=T7-5-2=0, and

(1,3.4)+(7.-5,2)=T7-154+8=0.
(b) No, because the rows of 4 are not unit vectors, for example, (1.1, -1 }] =|+1+1=3.
(c) No; for example, (1.1.7)- (1.3.-5)=1+3-35=-31 #0.
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Theorem  Prove each of the following:
(a) P is orthogonal if and only if PT is orthogonal.
(b) If P is orthogonal, then P~ is orthogonal.

(c) If P and Q are orthogonal, then PQ is orthogonal.

Proof

(a) We have (PT)" = P, Thus, P is orthogonal if and only if PPT = 1 if and only if PTPT =1 if and only if
PT is orthogoral.

(b) We have P* = P, because P is orthogonal. Thus, by part (2), P~ is orthogonal.

() We have PP =P and 07 =0, Thus, (PQ)(PQ)" = POOTPT = POQ-'P~" = 1. Therefor,
(FQ)lr = {PQ]_], and so P() is orthogonal.

Practice

Determine whether that matrix is orthogonal. If so find its inverse.

1 o‘g 2 . o
. ; ‘9‘.\_'\ ( i ? — ‘
1. (a) 0 --i.f L L. (B i x:4 ? i
L . | %
2. (a) 1 O-] © -ty 20
a £ V5 PV
{0 IJ ) 1Y e
- LZ: 7=
—0 1 ; —; H— LT
vz ; R 7 A
{ 3 3 1
! f i 1 H H
0 0 | e I
1 1 i 17 = -
rz 2 3 T 1 0 0 0 5
1 _s ! 1 1 i o i
4 (a) 2 6 6 5 b) 0 73 z Y i
1 1 1 5 { 0 2 0
2 r3 € — & 7 o i
J 1 1 i
2 ¢ -3 & 0 x5z 0
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Positive Definite Matrices

Let A be a real symmetric matrix; that is, AT = A. Then A is said to be positive
definite if, for every nonzero vector u in R", (u, Au) = uTAu >0

Theorem

A 2 x 2 real symmetric matrix A = [Z Z] = [Z Z IS positive definite if and

only if the diagonal entries a and d are positive and the determinant
|A] = ad — bc = ad — b? is positive.

Example  Consider the following symmetric matrices:
~mn 31. .11 -21. ~_11 =2
A_[3 4]'3_[—2 3]'6_[—2 5]

A is not positive definite, because |A| = 4 —9 = —5 is negative. B is not
positive definite, because the diagonal entry —3 is negative. However, C is positive
definite, because the diagonal entries 1 and 5 are positive, and the determinant
|C] =5 —4 = 1isalso positive.

Question

Which of the following symmetric matrices are positive definite?

j 4 g =3 Sl | 3 D
@ A=[4 5]’“’} 3:[_3 5 © c=[] _3],@ D=[5 9]

Use Theorem 7.14 that a 2 ¥ 2 real symmetric matrix is positive definite if and only if its diagonal
entries are positive and if its determinant is positive.

a) No, because [4| = 15— 16 = -1 is negative.
b) Yes.
¢) No, because the diagonal entry —3 is negative,

(
(
(
(d) Yes.
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Question

Find the values of k that make each of the following matrices positive definite:

2 -4 4 k ko5
g g ® B= L) Ol
(a) First, & must be positive. Also, |4] = 2k — 16 must be positive; that is, 2k — 16 > 0. Hence, £ > &,
(b) We need |B| = 36— & positive; that is, 36 — & > 0. Hence, k' < 36 or -6 < k < 6,

(c) C can never be positive definite, because C has a negative diagonal entry —2,

(2) A=

Question

Find the matrix 4 that represents the usual inner product on R? relative to each of the following
bases of R*: [::'-1:] {1"[ = (1.'3}: th = (2, 5}}; (b) {W| = {1.'2)'. w, = (4, ”2)}'

(a) Compute {v;,v})=14+9=10, {v.12) =24+ 15=17, (1, 1) =4+ 25 = 29. Thus,

10 17]
A_[n 29]

5 0

ompute (wy Wy =14+4=5, (w.wy) =4 —4= W, W) = —+ 4 = 2. us, A= L

b) Conpute {(w;,w)) =14+4=35, (w.wy 44{],2.21642GThAﬂm
(Because the basis vectors are orthogonal, the matrix A is diagonal.)

Theorem

Let A be a real positive definite matrix. Then the function (u,v) = uTAv is an
inner product on R".

For any vectors #;. u,, and »,
(10, + 155, ¥) = () +uy) v = (u] + 1l )dv =l v+l dv = {u), v) + {4y, v)
and, for any scalar & and vectors u. v,
(e, vy = {bur)" Av = k" Av = k{u. v)

Thus [1,] is satisfied.

Because ¥” Av is a scalar, {uTA ‘L'}T = 1’ Av. Also, AT = 4 because A is symmetric. Therefore,

(. v) = T Av = (1T AW = vTATu"™ = o7 Au = {v,u)

Thus, [I,] is satisfied.

Last, because 4 is positive definite, X” AX > 0 for any nonzero X £ R™. Thus, for any nonzero vector
v, (v, v} = vT 4w = 0. Also, {0.0) = 0740 = 0. Thus, [I] is satisfied. Accordingly, the function {, v) = 4v
is an inner product.

Visit us @ Youtube: “Learning With Usman Hamid”



249

Matrix Representation of an Inner Product (Optional)

Every positive definite matrix A determines an inner product on R". This
subsection may be viewed as giving the converse of this result.

Let V be a real inner product space with basis S = {u,,u,, ..., u,,}. The matrix
A= {aij} , where a;; = (u;,u;) is called the matrix representation of the inner
product on V relative to the basis S.

Observe that A is symmetric, because the inner product is symmetric; that is,
(u;, u;) = (u;,u;). Also, A depends on both the inner product on V and the basis S

for V. Moreover, if S is an orthogonal basis, then A is diagonal, and if S is an
orthonormal basis, then A is the identity matrix.

Example

The vectors u, = (1,1,0) ,u, = (1,2,3),u; = (1,3,5) form a basis S for
Euclidean space R®. Find the matrix A that represents the inner product in R®
relative to this basis S.

Solution

First compute each {;. ;) to obtain

) =1+140=2, {t,0) =1 +2+0=3, {1y} = 143 +0=4
{t, i) =1+4+9=14, {tn, i) =146+15=22, (i, i) = 149425 =33
2 3 4
Thend= (3 4 22|, Asexpected, 4 is symmetric,
4 21 35
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Theorem

Let A be the matrix representation of an inner product relative to basis S for V.
Then, for any vectors u, v € V, we have (u, u) = [u]TA[v]

where [u] and [v] denote the (column) coordinate vectors relative to the basis S.

Prove Theorem 7.16: Let A4 be the matrix representation of an inner product relative to a basis § of
V. Then, for any vectors u, v € ¥, we have

(e, 1) = [u] o]
Suppose § = {w. Wy, ... W, } and A = [k;]. Hence, k; = (w;, w;). Suppuse

= awy + apwy + -+ a,w, and v= h]w] + hawy + -+ Byw,
Then {w,v) = Ezab Wi W) (1)
i=lj=1
On the other hand,
ki kg by
by & b,
T 11 A3z
Al = (@, a,)
'Ern] kn?_ n
h
h H R
(E ﬂ] il Eazkﬂ zﬂa zw) = E;Z;az!::lkzj [2)
i= J=li=

Equations {1) and (2) give us our result.

Theorem

Let A be the matrix representation of any inner product on V. Then A is a positive
definite matrix.

Prove Theorem 7.17: Let 4 be the matrix representation of any inner product on V. Then 4 15 a

positive definite matrix.
Because (w,, wj) = {w;, w;) for any basis vectors w; and w, the matrix A is symmetric. Let X' be any
nonzero vecmr in R". Then [u)=2X for some nonzero vector u € V. Theorem 7.16 tells us that
XTAX = [ Alu] = (w,4) > 0. Thus, 4 is positive definite.
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CHAPTER # 5

DETERMINANTS

Determinant of a matrix

Each n-square matrix A = [aij] Is assigned a special scalar called the determinant

A1 Age A1n

Az1 Q22 = A
of A, denoted by detAor |A| or | : ik

An1 Anz  *° Qnn

Or Let A be a 2x2 matrix, i.e. A = [? Z] then its determinant could be

define as follows which is a scalar number
_la b| _ _
|A| = |c d| = ad — bc

Remember:We emphasize that an n X n array of scalars enclosed by straight
lines, called a determinant of order n, is not a matrix but denotes the determinant of
the enclosed array of scalars (i.e., the enclosed matrix).

The determinant function was first discovered during the investigation of systems
of linear equations.

Determinants of Orders 1 and 2

Determinants of orders 1 and 2 are defined as follows:

aijp aq2

a1| = a;; and | | = Q1Ary — A1, 0
a1 11 Ay Qoo 11422 1221
Example

(a) Because the determinant of order 1 is the scalar itself, we have:

det(27) = 27, det(=7) = -1, det(t =3} =¢t—3
(b) ‘i z‘=5(e]—3(4}=30—12=15= ‘_i §’=21+10=31
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Determinants of Order 3

Consider an arbitrary 3 x 3 matrix A = [a;;]. The determinant of A is defined as
follows:
11 Q12 Qg3

A1 Az Az
31 Az Az

det(A) =

det(A) = a1102,033 + (120230371 + Q13021037 — 13022031 — Q1201033 — Q11023037

Observe that there are six products, each product consisting of three elements of
the original matrix.

Three of the products are plus-labeled (keep their sign) and three of the products
are minus-labeled (change their sign).

The diagrams in Fig. 8-1 may help us to remember the above six products in detA.
That is, the determinant is equal to the sum of the products of the elements along
the three plus-labeled arrows in Fig. 8-1 plus the sum of the negatives of the
products of the elements along the three minus-labeled arrows. We emphasize that
there are no such diagrammatic devices with which to remember determinants of
higher order.

2 1 1 3 2 1
EXAMPLE 8.3 Letd = {U 5 —2] and & = {—4 5 -1 ] . Find det(4) and det(5).
1 -3 4

Use the diagrams in Fig. 8-1:

det{4) = 2(5)(4) + 1{=2){1) + 1{=3){0) — 1{5)(1) — (-3)(-2)(2) —4(1)(0)
=40—2+4+0-5-12-0=21
det(B) = 60 —4 + 12 — 10 — 9432 = 8]

Visit us @ Youtube: “Learning With Usman Hamid”



253

Alternative Form for a Determinant of Order 3

The determinant of the 3 x 3 matrix A4 = [a;;] may be rewritten as follows:

ay1 Qg2 Qg3
det(A) = |Qz1 Qzz Q23
az1 Az dzgz
Ay dAp3 a1 dz3 az1 Ay
det(4) = a | |—a | | a | |
(4) Hlas, azz 12]asz; ass Blaz, asz;
Example
1 2 3 1 2 3 | 2 3 l 2 3

4 =2 I|=14 -2 31—-2|14 -2 3| 4+3|4 -2 3
0 5 -1 0 5 -1 0 5 -1 0 5 -1
4 -2
g 5

%+ 3
o —1

43

§ g
— 1{2—15) — 2(—4 + 0) +3(20+0) = —13 + 8 + 60 = 55

Permutation

A permutation ¢ of the set {1,2,...,n} is a one-to-one mapping of the set onto itself or, equivalently, a
rearrangement of the numbers 1,2.....n. Such a permutation o is denoted by

:r—(] 2 n) of  F=jihj where j; = (i)
i e e !

The set of all such permutations is denoted by §,, and the number of such permutations is n!. If ¢ € §,.
then the inverse mapping a~' € 5,; and if 7, 7 € 5,,, then the composition mapping ¢ o 7 € §,. Also, the
identity mapping ¢ = g0 6™ €§,,. (In fact, e = 123...n.)

EXAMPLE 8.5
(a) There are 2! =21 =2 permutations in 5,; they are 12 and 21.

(b) There are 3! =3.2-1 =6 permutations in 5,; they are 123, 132, 213, 231, 312, 321,
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Sign (Parity) of a Permutation

Consider an arbitrary permutation ¢ in S,, say ¢ = jj; ---j,- We say ¢ is an even or odd permutation
according to whether there is an even or odd number of inversions in g. By an inversion in ¢ we mean a
pair of integers (i. k) such that i > &, but [ precedes & in ¢. We then define the sign or parity of ¢, written

sgn g, by

_ 1 if & iseven
SBREC=3_1 if gisodd

EXAMPLE B.6

{a) Find the sign of & = 35142 in §;.
For each element &, we count the number of elements ¢ such that { > & and { precedes & in g. There are

2 numbers (3 and 5) greater than and preceding 1,
3 numbers (3, 5, and 4) greater than and preceding 2.
| number (5) greater than and preceding 4.

{There are no numbers greater than and preceding either 3 or 5.) Because there are, in all, six inversions, o is
even and sgn g = L.

{(b) The identity permurtation € = 123...# is even because there are no inversions in &.

{c) In %;, the permutation 12 is even and 21 is odd. In 55, the permutations 123, 231, 312 are even and the
permutations 132, 213, 321 are odd.

{d) Let t be the permutation that interchanges two numbers i and j and leaves the other numbers fixed. That is,

A (j) =1, k) =4k, where kH£ij
We call t a ransposition. 1f { < j, then there are 2{ f — i) — 1 inversions in 1, and hence, the transposition z
is odd.

Properties of Determinants

Theorem: The determinant of a matrix A and its transpose A" are equal; that is,
|A] = 1A"].

Proof

If A = [aij] then AT = [bl]] with bl] = aji, hence

AT = 3 (sen 0)brcquybac)  *Buoiy = L (SE0 6)a5011180)2 *** Batn
EES_H I'-TESM

=g} = =
Let r=¢™". By Problem 8.21 sgn t=sgn &, and @,y 10,191 " ** Qppmyn = Qprp1y@az) ** * Do) Hence,

47| = Zj (S0 )@ 1)@z Betn)
o5,

However, as s runs through all the elements of S,; T = o~ also runs through all
the elements of Sn. Thus |4| = |AT|
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Theorem: Let A be a square matrix.

(i)  If A hasarow (column) of zeros, then |A| = 0.

(i) If A has two identical rows (columns), then |A| = 0.

(i) If A is triangular (i.e., A has zeros above or below the diagonal), then
|A| = product of diagonal elements. Thus, in particular, |I| = 1, where |
Is the identity matrix.

Proof

(i) Each term in |4| contains a factor from every row, and so from the row of zeros. Thus, each term of |4
is zero, and so |4| =0.
(i) Suppose [ +1+#0 in K. If we interchange the two identical rows of 4, we still obtain the matrix 4.
Hence, by Problem 8.23, |4| = —|4|, and so [4| = 0.
Now suppose 14+1=0in X. Then sgn ¢ =1 for every ¢ € §,. Because 4 has two identical

rows, we can arrange the terms of 4 into pairs of equal terms. Because each pair is 0, the daterminant
of 4 18 zero,

(iif) Suppose 4 = [a] is lower triangular, that is, the entries above the diagonal are all zero: a; =10
whenever i < . Consider a term ¢ of the determinant of 4:

t = (sgn ff}ﬂl;'lﬁzf. gy, where  a=ijyeee,

Suppose i # 1. Then | < i} and so a}; = 0; hence, ¢ = 0. That is, each term for which i, # 1 is
zer0.

Now suppose i} = I but iy # 2. Then 2 < iy, and so ay;, = 0; hence, £ = 0. Thus, each term
for which i, # 1 or iy # 2 is zero.

Similarly, we obtain that each term for which i, #1 or iy £20r ... ori, #n is zer.
Accordingly, |4| = ayay -+ a,, = product of diagonal elements.
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Theorem

Suppose B is obtained from A by an elementary row (column) operation. If two
rows (columns) of A were interchanged, then |B| = —|A] .

Proof

We prove the theorem for the case that two columns are interchanged. Let 1 be the transposition that
interchanges the two numbers corresponding to the two columns of A that are interchanged. If 4 = [ﬂg] and
B = [b,], then b; = a;. Hence, for any permutation ,

bfﬁ[tjbh[ﬂ} H 'brm(n} =)o) (120 6)(2) " Dnfro o))
Thus,
1B =2 (20 6)bigiybasta)*Buotn) = 2 (BN 6)01(z0 6111 @0fe0 c)(2) " Onfes )

s, gel,

Because the transposition 7 is an odd permutation, sgn(te ¢) = (sgn 1)(sgn o) = —sgn a. Accordingly,
spn ¢ = —sgn (70 ¢), and so

B =~ 2 58072 0)Ja1ce ynyateo i) oo it
oES,

But as o runs through all the elements of §,, 7o ¢ also runs through all the elements of §,. Hence, |B| = —|4|.
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Theorem

The determinant of a product of two matrices A and B is the product of their
determinants; that is, det(AB) = det(A)det(B)

The above theorem says that the determinant is a multiplicative function.

8.36. Prove Theorem 8.12: Suppose M is an upper (lower) triangular block matrix with diagonal blocks

det(M) = det(4, ) det(4) - - det(4,)
We need only prove the theorem for n = 2—that is, when M is a square matrix of the form

M= [A i . The proof of the general theorem follows easily by induction.

3

Suppose A = [a] is r-square, B = [b] s s-squate, and M = [my] is n-square, where n=r+s. By
definition,

det(M) = )., (sgn 6)m; fyymiagia) M

oS,

Ifi > randj <r, then my = 0. Thus, we need only consider those permutations ¢ such that
o{r+lr+2,... r+st={r+lr+2..r+s}  ad  ofl,2....r}={l2,...,1}
Let ¢)(k) = (k) for k <r, and let oy (k) = o(r+ k) — r for k <. Then
(8B ) m1yagy Mgty = (S8 01 ), 1, 1) g, 5 (80 O)Brcy )Py By

which implies det(M) = det(4) det(B).
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Remember (8.27) Suppose B is row equivalent to a square matrix A. then
|B| = 0 ifand only if |A| = 0.

Theorem
Let A be a square matrix. Then the following are equivalent:

(i)  Adsinvertible; that is, A has an inverse A™1
(i)  AX = 0 has only the zero solution.
(ili)  The determinant of A is not zero; that is, detA # O.

The proof is by the Gaussian algorithm. If 4 is invertible, it is row equivalent to I. But |/| # 0. Hence,
by Problem 8.27, |4] # 0. If 4 is not invertible, it is row equivalent to a matrix with a zero row. Hence,
det(4) = 0. Thus, (i) and (iii) are equivalent

If AX = 0 has only the solution X' =0, then 4 is row equivalent to [ and 4 is invertible. Conversely, if
A is invertible with inverse 47!, then

X=I=(4"AX=4""4x)=47"0=0
is the only solution of AX = 0. Thus, (i) and (ii) are equivalent.
Lemma

Let E be an elementary matrix. Then, for any matrix A; |[EA| = |E||A| .

Consider the elementary row operations: (i) Multiply a row by a constant k # 0,
(ii) Interchange two rows, (iii) Add a multiple of one row to another.

Let £, E,, E; be the corresponding elementary matrices That is, £, E,, E; are obtained by applying the
above operations to the identity matrix /. By Problem 8.25,

|E)| = Kjl| =F, By = —|l] = -1, | =] =1

Recall (Theorem 3.11) that £,4 is identical to the matrix obtained by applying the cotresponding operation
to A. Thus, by Theorem 8.3, we obtain the following which proves our lemma:

[E14| = k|A| = |Ey|l4]; |Exd| = -] = |E,| 4], |Esd| = |A] = 1]4] = |E5|}4]
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Theorem
Suppose B is obtained from A by an elementary row (column) operation.

(i) Ifarow (column) of A were multiplied by a scalar k, then |B| = k|A]|.
(i) If a multiple of a row (column) of A were added to another row (column)
of A, then |B| = |A] .

Proof

(ii) Ifthe jth row of 4 is multiplied by &, then every term in |4| is multiplied by k, and so |B| = k|4|. That is,

Bl =Y. (sgno)ay ay, -~ (kay ) -y =k, (sgn @)ayay, -0y = k|4

i
g

(iif) Suppose ¢ times the kth row is added to the jth row of A. Using the symbol * to denote the jth position
in a determinant term, we have

—————

1B =3 (sgn o)ay; @y, - {ca, +“;5.) ety

n
7

= CE (Sgn fr)a]!'lfizi-z .e &;;; e,
[

iy il "

, + Y (sgn o)ay ay, - ay -+ ay
7

The first sum is the determinant of a matrix whose kth and jth rows are identical. Accordingly, by
Theorem 8.2(ii), the sum is zero. The second sum is the determinant of 4. Thus, [B| = ¢- 0+ [4] = |4].
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8.29. Prove Theorem 8.4: |4B| = |4]|B|.

If 4 is singular, then AB is also singular, and so |48| = 0= |4||B|. On the other hand, if 4 is
nonsingular, then 4 = E,, - - - E,E|, a product of elementary matrices. Then, Lemma 8.6 and induction yields

|AB| = |E, - - EyE\B| = |E,| --- |E,||E\||B] = |4||B]|

8.30. Suppose P is invertible. Prove that [P~!| = |P|_1.

P'P =1 Hence, 1=l = [P'P| = |P~"||P|,and s0 |[P~"| = |P|”".

8.31. Prove Theorem 8.7: Suppose 4 and B are similar matrices. Then |4| = |B|.

Because 4 and B are similar, there exists an invertible matrix P such that B = P~'4P. Therefore, using
Problem 8.30, we get [B| = |[P~'AP| = |P~!||4||P| = |4||P~"||P = |4].

We remark that although the matrices P~' and A may not commute, their determinants |P~!| and |4| do
commute, because they are scalars in the field K

8.34. Prove Theorem 8.9: A(adj 4) = (adj 4)4 = |4|I.
Let 4 = [a;] and let A(adj 4) = [b,]. The ith row of 4 is
(ailia:'l'.'"'fain) [1)

Because adj 4 is the transpose of the matrix of cofactors, the jth column of adj 4 is the tranpose of the
cofactors of the jth row of A:

.
(Aj:‘rijZ:' "1AjnJ [2)
Now bi}.: the ij entry in A(adj 4), is obtained by multiplying expressions (1) and (2):
by = aydy +apdy ++- +ayd,,

By Theorem 8.8 and Problem 8.33,

oo [l ifi=)
FTY 0 if P4

Accordingly, A(adjA4) is the diagonal matrix with each diagonal element |4|. In other words,
A(adj 4) = |A|/. Similarly, (adj A)4 = |4|{.
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Minors and Cofactors

Consider an n-square matrix A = [aij]. Let M;; denote the (n— 1) —square
submatrix of A obtained by deleting its ith row and jth column. The determinant
|M;;| is called the minor of the element a;; of A.

Minors and Cofactors

Consider an n-square matrix A = [aij]. Let M;; denote the (n— 1) —square
submatrix of A obtained by deleting its ith row and jth column. The determinant
|M;;| is called the minor of the element a;; of A, and we define the cofactor of a;;,

denoted by 4;;; to be the *‘signed’” minor:
Ay = (D)™ | My

We emphasize that M;; denotes a matrix, whereas A;; denotes a scalar.

Example
1 2 3

LetA=1|4 5 6]. Find the following minors and cofactors:
7 8 9

(@) |[My3]| and A3
(b) [M34]| and A3,

Solution
128 |, , _
(a) My =|4 5 6|=|, ; =8—14=—6, andso Ay = (=1)"7IMy| = —(-6) =6
789
23 153 .
(b) [My|=|4 5 6|=], 1r55‘=12—l§=—3. andso Ay, =(-1) " M5 =+(-3]=-3
JNENe -
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Practice
Let
1.
1 =2
A= & 7
—3 1

(a) Find all the minors of 4.

(b) Find all the cofactors.

Let
N I T
0 0 —3

A=
4 0
4 2

Fiiid

(@) MyzandCys

(b) Mqyzand C'py

(c) M and Cxg

(d) Moy and Cyy

262
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Cofactor Expansion of a Matrix A / Determinant using Cofactor

If A is n X n matrix, then the number obtained by multiplying the entries in any
row or column of A by the corresponding cofactors and adding the resulting
products is called the determinant of A and the sums themselves is called cofactor
expansion of A, that is

detA = a,;Cyj + ay;Cyj + - + a,;Cy; (cofactor expansion along the j™ columns)
detA = a;,Cyy + a;Cip + -+ a;,Ci,  (cOfactor expansion along the i rows)

Example (Cofactor Expansion along the First Row)

3 1 0
Find the determinant of the matrix A =|-2 —4 3 ] by cofactor expansion
5 4 =2
along the first row.
Solution
3 1 0
-4 3 -2 3 -2 —4
detA=|-2 -4 3|[=3 -1 +0
2 - 31=3[00 B[l Sl
3 1 0
detA=|-2 -4 3|[=3(-4)-1(-11)+0=-1
5 4 =2

Example (Cofactor Expansion along the Column)

1 0 0 -1
. : : 31 2 2 -
Find the determinant of the matrix A = 10 -2 1 by cofactor expansion
2 0 0 1

along the second column.
Solution

Since second column has the most zeros we will expand along the second column,

1 0 -1 A
detA=1[1 -2 1 =1.—2.|2 1|=—2(1+2)=—6
2 0 1
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Classical Adjoint

Let A = [a;;] be an n X n matrix over a field K and let 4;; denote the cofactor of
a;;. The classical adjoint of A, denoted by adj4, is the transpose of the matrix of

cofactors of A. Namely, adjA = [Aij]T

We say ‘‘classical adjoint’” instead of simply ‘‘adjoint’ because the term
“‘adjoint’’ is currently used for an entirely different concept.

Example
2 3 =4
letd=|0 -4 2 |. The cofactors of the nine elements of 4 follow:
1 =1 5
-4 2 0 2 0 —4
All—‘l‘_r] 5‘:_18 Au:—"‘l 5‘:2 Au:‘F“l _1‘:4
3 -4 2 =4 2 3
Azl—‘_"_’] 5‘:‘—11 A11:+‘1 5‘:14 Azg— ‘1 _1‘:5
3 -4 5 - 5 B
443[—+_"4 2‘=~—1ﬂ. A32=—F‘D 2‘_ 4 A33 ‘I“U _4‘——8

The transpose of the above matrix of cofactors yields the classical adjoint of 4; that is,

~18 —11 =10
adjd=| 2 14 —4
4 5 -8

Theorem

Let 4 be anv square matrix. Then
Afad] 4) = (adj 4)4 = |A|f
where [ is the identity matrix. Thus, if 4| == 0,

1 1

= 7 (adi )
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Proof

Let A = [ay] and let A(adj A) = [by]. The ith row of 4 is

I:aﬂ'.afl'.'“:ﬂa'n;l I:l:I

Because adj 4 is the transpose of the matrix of cofactors, the jth column of adj 4 is the tranpose of the
cofactors of the jth row of A:

;
{AJ':A'H! ukk '.-"Ij.'f} (2]
Now by, the if entry in 4(adj 4), is obtained by multiplying expressions (1) and (2):

by =aydp +apdp +-- +apdp

By Theorem 8.8 and Problem 8.33,

b= Al ifi=j

10 ifiE
Accordingly, A(adj4) is the diagonal matrix with each diagonal element |4|. In other words,
Aladj 4) = |4]. Similarly, (adj A)4 = |4]1.

Example
2 3 -4
letd= 10 —4 2
1 -1

then we have

det(d) = —40+6+0—16+4+0=—46

Thus, 4 does have an inverse, and, by Theorem 8.9,

g Il 5

| [ -1 - 2 B =

-1 _ ¢ _ _ L 7 7
2 g 4

4 5 =8 ~3% —k
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Cramer's Rule

If Ax =Y is a system of y linear equations in y unknowns such that det( 4) = () then the system has a unique solution.
This solution is

) det{ ) _ de(dy)

I

B T
where 4; is the matrix obtained by replacing the entries in the jth column of A by the entries in
the matrix

Proof If det{ 4) # (), then 4 is invertible, and by Theorem 1.6.2,x = A~lpis the unique solution of 4¢ =1. Therefore, by
Theorem 2.1.2 we have

Oy Cy o D[]
T Ty o= Db

x=A"lh = —L_agji b= —1

det(4) T | I
_Clﬂ (o = cm“bn_
Multiplying the matrices out gives
5101 + 3031 + = o+ by Ct |

1 |90 +Cn+~+5,000

I=————

det(4)

8101y + 2903+ 4 byl

The entry in the [th row of x is therefore

_ 331(:'1}' - bgl:'gj oo EJ'HCH}-
U= Bt (4) (1
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Now let
2| aj7 = ay-| by afj4 - ayy
ag ay - -1 by agp

Byl Qp] = dy-] by Dyl Ay

Since A}- differs from 4 only in the jth column, it follows that the cofactors of entries 3y, by,-- by, It Aj are the same as the
cofactors of the cotresponding entries in the jth colutnn of 4 The cofactor expansion of det( 44;) along the jth column is
therefore

det(dy) = biChy + 105+ + bl

Substituting this result in 11 gives

re detf4;)
P det(4)
Procedure
= Write given system AX = B
= Find |A| # 0, |A,l, |4, |
.« Find solution set using x = 1z — 14!
Find solution set using x = Ay =
Example

Solve the system using Cramer’s Rule.

x1+2X3=6 ; —3X1+4x2+6x3=30 ; —X1—2x2+3x3=8

Solution
1 0 2 6 0 2
A=|-3 4 6,4, =130 4 6
-1 -2 31 8 -2 31
1 6 2 1 0 6
A,=|=3 30 6|,4,=|-3 4 30
-1 8 31 -1 -2 8
_Ml__s0_10 Wl _72_18 gl _152 38
x1_|A|_ 44_11’x2_|A|_44_11’ x3_|A|_44_11
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Theorem

A square homogeneous system AX = 0 has a nonzero solution if and only if
D =|A| =0.

i+ y+ z= 3
EXAMPLE 8.12 Solve the system using determinants { x—2y—3z=-1
L+ y-z= 3

First compute the determinant D of the matrix of coefficients:

] E
D=|1 -2 3|=2-6+1+44+3+1=4%
2 1 =l
Because D # 0, the system has a unique solution. To compute A,, N,, N,, we replace, respectively, the coefficients
of x, y.z in the matrix of coefficients by the constant terms. This yields

a0 ok I ¥ | } k9
N=|-1 -1 -3|=10 N,=|1 =1 =3[=-1t N=|l =2 -1|=15
3 1 -1 2 3 -1 2 i3

Thus, the unique solution of the system s x=N,/D=4, y=N,/D=-2, z=N,/D=13; that is, the
vector 1 = (4,-2.3).

x+y+z=1
8.10. Consider the system { x+ky+z=1
i+ythkz=1

Use determinants to find those values of & for which the system has

(2} a unique selution, (b) more than one solution, (c) no solution.

(a) The system has a unique solution when D # 0, where D is the determinant of the matrix of coefficients.
Compute

=Bl —k—k—k= -3+ 2=tk— 1k +2)

k
D=|1
l

1
k
1

Fr it

Thus, the system has a unique solution when
(k—17(k+2)#0, whenk#landk+#2

(b and ¢) Gaussian elimination shows that the system has more than one solution when £ = |, and the
system has no solution when & = -2.
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CHAPTER # 6

DIAGONALIZATION

Diagonalizable Matrix

Suppose an n-square matrix A is given. The matrix A is said to be diagonalizable if
there exists a nonsingular matrix P such that B = P~1AP is diagonal.

Similar Matrix

A matrix B is similar to a matrix A if there exists a nonsingular matrix P such that
B = P71AP implies PB = AP.

Diagonalizable Operator

Suppose a linear operator T: V — V is given. The linear operator T is said to be
diagonalizable if there exists a basis S of V such that the matrix representation of T
relative to the basis S is a diagonal matrix D.

Characteristic Polynomial/ Characteristic Matrix/ Characteristic Equation

Let A = [a;;] be an n-square matrix over field F. Then the matrix M = tI — A is
called characteristic matrix of A and A,(t) = |tI — A| is called the characteristic
polynomial of A. And A,(t) = |tI — A| = 0 s called the characteristic equation
of A.

Example
[1 3 » -
Letd= . j.{ts characteristic polynomial 1s
t_l _3 3
Alt) =t = 4| = 1 (s =(t=-1(t=3)-12=r-6bt-17
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Characteristic Polynomials of Degrees 2 and 3

There are simple formulas for the characteristic polynomials of matrices of orders 2 and 3.

(a) Suppose 4 = [a” a”}. Then

#31 .y
A() = £ — (ay; +ay)t + det(d) = £ — tr(4) t + det(4)
Here tr{4) denotes the trace of A—that is, the sum of the diagonal elements of 4.
40 iz 2
(b) Suppose 4 = | @y a3 sy |. Then
dy  dy A

A(f) = £ —1r(d) 2 + () + Agy 4 A3 )t — det(4)

(Here 4, 455, A5y denote, respectively, the cofactors of a,;, @;, @ta3.)

EXAMPLE 9.3 Find the characteristic polynomial of each of the following matrices:
3 .3 7 -1 5 =2

(@) We have tr{4) =5+ 10 =15 and |4| = 50 — 6 = 44; hence, A(r) + ¢ — 157 + 44,
(b) We have tr{B) =7+ 2 =29 and |B| = 14 + 6 = 20; hence, A{r) =& — 9r + 20.
() Wehave r{C)=5—4=1and |C|=-20+8 = —12; hence, A{t) =1* —1 - 12.

L o TR o R L

1 1
EXAMPLE 9.4 Find the characteristic polynomial of 4 = |0 3
1 3

We have tr(4) = 1 +3 + 9 = 13. The cofactors of the diagonal elements are as follows:

P 2
1 9

3 2

39 ‘=1 AH:‘

Au:‘ ‘=21= A22=‘

Thus, 4; + 43, + 453 =31 Also, 4| =274+24+0-6—-6—0=17. Accordingly,

Af)=r =137 + 311 - 17

Visit us @ Youtube: “Learning With Usman Hamid”



271

9.1. Letd— [f‘ 'i] . Find £(A), where

(a} F{)=2—3¢t+7, (BY Fl)y=r7F —6r4+13
: L —2][1 -z 7 1z
= a = . T
First find 42 [ 5} [4 5:| [ 24 1?:| hen

2 C[=7 —12 B 7 0] _[-3 —6
(a) flA)=4 —3“‘+”—[24 1?]+[_12 _15]+[0 ?]_[12 9}

7 12 6 12 13 o0 a0
() f{A}=A2_5A+13"=[24 1?}+[—24 —3n]+[n 13]2[{] D]

[Thus, 4 is a root of f{7).]

9.2. Find the characteristic polynomial At} of each of the following matrices:

2 5 7 =3 3 -2
@ A=[4 1},(1:-) B=[5 _2],(3;. C=[g _3]

Use the formula () = & — ow{M) : + |M| for a 2 = 2 matrix AM:

(a) tr{fd)=2+1=3, |d] =2 — 20= —1§, 50 A{ty =1 —3r— 18
() w(B)=7—2=35, |B] = —14 4+ 15 =1, 50 Aty =+ —5r 41
(€) {Ch=3—-3=40, |C| = —8+18=29, so Al)=¢F+9

9.3. Find the characteristic polynomial At} of each of the following matrices:

1 6 =2
(a) 4= by B=|-3 2 D
0 3 —4

Use the fornmla A{r) = @ —we{d)? + (4, + 4o, +45;)7 — | 4], where 4, is the cofactor of &, in the
3 % 3 marix 4 = fag].

() tr{d)=14+04+5=46,

>l —
RE iy
T Y

0 4 1 3 1 2
Ay Ay tAp=-35, and  |4]=48+36—16— 30 =38
Thus. Alf) =7 — 67 —35:—38
(b) {B)=1+2—d=—1
2 0 1 -2 L &
BI]:‘S _4‘:_E: 322:|u _4|:_4.‘ 333:‘_3 2‘:2‘0

Thus, A =7+ -81+62
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Remark: Suppose 4 = ay] is a triangular matrix. Then ¢f — 4 is a triangular matrix with diagonal
entries ¢+ — a,;; hence,

i»
At) = det(tf — A) = (1 —an){t = ap) -+ (£ = tp)
Observe that the roots of A(¢) are the diagonal elements of 4.
EXAMPLE 9.2 Let 4 = [l ﬂ [ts characteristic polynomial is

t=1 =3

Alty= |t - 4| = g

‘:(ﬁl)[r—-Sj—lE:F—ﬁt—-?

As expected from the Cayley-Hamilton theorem, 4 is a root of A(r); that s,
13 18 -6 —I18 -7 0 0 0
NN AR {7 A | =
i) =d=oad—~ Y l24 3?] + l—?A —3[]] i [ 0 ﬂ?] lﬂ U]

9.4. Find the characteristic polynomial A(t} of each of the following matrices:

285 1 1 1 1 2 2
1 4 2 2 03 3 4
@A=14 g ¢ _s|"® B=1g § 5 5
00 2 3 00D 0 6

{a) A is block triangular with diagonal bBlocks

2 5 B -5
.r‘i] = |: ] E“d AZ = [ :|
1 4 2 3

Thus, A(D) = Ay ()4, (1) = (P — 62 £ 3)(2 — 91+ 28)

(b) Because B is trianpgular, A{r) = (r — 1)(r — 3){r — 5){z — 6).

Theorem

Similar matrices have the same characteristic polynomial.

Proof

Let A and B are similar matrix then B = P~*AP and using tI = P~1tIP
|tI — B| = |P~1tIP — P"1AP| = |P~1(t] — A)P| = |P~1P||t] — A|
|t] — B| = |t] — A|

Thus Similar matrices have the same characteristic polynomial.
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Cayley — Hamilton Theorem

Every matrix A is a root of its characteristic polynomial.

Or  Every Square matrix is zero of its characteristic polynomial.

Or  Every Square matrix satisfies its characteristic equation.

Or if At characteristic polynomial of a square matrix A, then A is root of At.

Proof
Let 4 be an arbitrary n-square matrix and let A(r) be its characteristic polynomial, say,
A= -4|=f4a "+ taria,

Now let B(f) denote the classical adjoint of the matrix #/ — 4. The elements of B(r) are cofactors of the
matrix tf — A and hence are polynomials in t of degree not exceeding 1 — 1. Thus,

B(t)=8 '+ 1B 4B,

where the B, are n-square matrices over K which are independent of 1. By the fundamental property of the
classical adjoint (Theorem 8.9), (#f — 4)B(r) =] - A]l, or

(ﬂ —A](E”_lfn_l e E]f +B{|] = {IH +ﬂu_]fu_l + e '['ﬂ]f '|'ﬂ{|).|r

Remaoving the parentheses and equating corresponding powers of  yields

Byy=1 B ,-4B=al, ..., B-4AB=ql -AB=ug
Multiplying the above equations by 4", 4", ..., 4. I, respectively, yields
SBop=Ad BB o=a Ay AB-ABi=ady  =ABy=gl

Adding the above matrix equations yields 0 on the left-hand side and A(4) on the right-hand side; that is,
0=A"+a, 4"+ +ad+al

Therefore, A(4) =0, which is the Cayley-Hamilton theorem.
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Eigenvalue

Let A be any square matrix. A scalar A is called an eigenvalue of A if there exists a
nonzero (column) vector v such that Av = Av

Any vector satisfying this relation is called an eigenvector of A belonging to the
eigenvalue | A.

Note

» Each scalar multiple kv of an eigenvector v belonging to A is also such an
eigenvector, because A(kv) = k(Av) = k (Av) = A(kv)

= The set E; of all eigenvectors is a subspace of V, called the eigenspace of A.

» |fdimE, = 1,then E, is called an eigenline and A is called a scaling factor.

= The terms characteristic value and characteristic vector (or proper value and
proper vector) are sometimes used instead of eigenvalue and eigenvector.

EXAMPLE 5.5 Letd = [; Ll,] and let ¥, = [_é] and v, = [:]Thm

R 1 B EE R R P R

Thus, v, and v, are eigenvectors of A belonging, respectively, to the eigenvalues
A =1land A, = 4.

Question
Show that a matrix 4 and ifs transpose 4" have the same characteritic polynomial,

. T . i
By the transpose operation, (f — ) =t/ — A" =1/ - AT, Because a matrix and its transpose have
the same determinant,

A ()= =A=12-4) | = - =0
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Theorem: Let A be a square matrix. Then the following are equivalent.

(i)  Ascalar Ais an eigenvalue of A.
(i)  The matrix M = A — Al is singular.
(ili) The scalar A is a root of the characteristic polynomial At of A.

Proof

The scalar / s an eigenvaluz of 4 1f and only 1f there exists a nonzero vector v such that
Av=iv o (dju-dv=0 o (d-App=0

or 1] — 4 is singular. In such a case, 2. is a oot of A(r) = [t - 4|. Also, vis in the eigenspace £, of / if and
only 1f the above relations hold. Hence, v is a solution of (2 - A)X =1,

Theorem: Suppose v,,v,,..,V, are nonzero eigenvectors of a matrix A
belonging to distinct eigenvalues A4,4,,...,4,. Then v;,v,,..,v, are linearly
independent.

Suppose the theorem is not true. Let v, v5,.... v, be a minimal set of vectors for which the theorem is
not true. We have s > 1, because v, # 0. Also, by the minimality condition, v5,....v, are linearly
independent. Thus, v, is a linear combination of w,,.... v, say,

U =ayty +ayty e a (1)

{where some a; # 0). Applying T to (1) and using the linearity of T yields

T(w)=T(gv, +agus+-+au) =aT () +aT () + - +aT(v) (2)
Because v; is an eigenvector of T belonging to }_j: we have TI:'L}-:I = ﬁjwj. Substituting in (2) yields
AU = apiaty +ayigty 4 b @i, (3)
Multiplying (1) by 4, yields
AU =ity F @by agi v (4)

Setting the right-hand sides of (3) and (4) equal to each other, or subtracting (3) from (4) yields

ay(hy — L) + a5 — )+ g {dy — Ay, =0 (5)
Because 1, tq,.... ¥, are linearly independent, the coefficients in (5) must all be zero. That is,
ay(iy — 42) =0, as(i) —43) =10, a4y —25) =0

However, the /; are distinct. Hence 4, — }_J- #0 for j> 1. Hence, o, =0, g, =0....,a, =0. This
contradicts the fact that some a, = 0. The theorem is proved.
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Algebraic multiplicity

If A is an eigenvalue of a matrix A, then the algebraic multiplicity of A is defined to
be the multiplicity of A as a root of the characteristic polynomial of A, and the
geometric multiplicity of A is defined to be the dimension of its eigenspace, dimkE;.

Theorem

The geometric multiplicity of an eigenvalue A of a matrix A does not exceed its
algebraic multiplicity.

Suppose the geometric multiplicity of £ is ». Then its eigenspace E; contains r linearly independent

eigenvectors w,.... v, Extend the set {;} to a basis of ¥, say, {v;,.... 0, w.....w }. We have
T(v) = 4wy, T(v;) = i1y, - T(v,) = iv,,
Tlw))=ayv - +apu+byw 4L bw,
T(wy) =gy v + - agi +byywy 4o+ bW,

T{Wsj =aqly + -+ dpty+ h:lw] e b:sw:
i,

Then M = [ 0

g] is the matrix of 7 in the above basis, where 4 = faz-j-]T and 8 = [b;]".

Because M is block diagonal, the characteristic polynomial (7 — )" of the block A/, must divide the
characteristic polynomial of M and hence of 7. Thus, the algebraic multiplicity of 2 for T is at least r, as
required.
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Minimal Polynomial
A polynomial m(t) is called minimal polynomial of the matrix A if;

I. m(t) divides the characteristic polynomial A(t)
ii.  Each irreducible factor of A(t) divides m(t)
iii. m@A)=0

Theorem

The minimal polynomial m(t) of a matrix (linear operator) A divides every
polynomial that has A as a zero. In particular, m(t) divides the characteristic
polynomial A(t) of A.

Proof

Suppose f{¢) is a polynomial for which f{4] = 0. By the division algorithm, there exist polynomials
g(t) and #{¢) for which f(1) = m{t)g(r) + r(t) and r{t) = 0 or deg r{t) < deg m(t). Substituting { = 4 in this
equation, and using that f{4) = 0 and m(4) = 0, we obtain #(4) = 0. If (1) # 0, then r(1) is a polynomial
of degree less than m(1) that has 4 as a zero. This contradicts the definition of the minimal polynomial. Thus,
r(t) =0, and so f{r) = m{t)q(t); that is, m(t) divides /(7).

9.34. Let m(z) be the minimal polynomial of an n-square matrix 4. Prove that the characteristic
polynomial A(t) of 4 divides [m(1)]".

Suppose m(t) = 1"+ eyt"' + -+ + ¢, 1t + ¢,. Define matrices &; as follows:

_Eﬂ = j B0 I = Bﬂ

.E]=A+C].Ir B0 CLI=B]—A=E]—ABD

B, =Afed+ e so el = B, — A{A +ef) =B, — AB,

B,y =A"'4ed 2+t |{ so e d=8. — 48
Then
—AB, = d— (A e A Lo At e ) =cd —mld) = e

Set B)=1r""By+7 B, +--+1B, ,+B, ,
Then

(U —A)B{)=(By+ "By +++ +1B, ) — (' ABy + 4B, + -+ 48, )
=By L7 (B, —AB)) + 7 72(B, —AB,) + - +1(B,_, — AB, ;) — AB,_,
=T+l U+t I+ 4o, il +cd =mt)

Taking the determinant of both sides gives |t/ — 4||B(z)| = |m{¢)i| = [m()]". Because |B(z)| is a poly-
nomial, |t — 4| divides [m{1)]"; that is, the characteristic polynomial of 4 divides [m{1)]".
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Theorem

The characteristic polynomial A(t) and the minimal polynomial m(t) of a matrix

A have the same irreducible factors.

Roof

Suppose f 1] 1 an irreductble polynomial. If () divides m{t), then f () also divides A(r) [because m(1)
divides A(r). On the other hand, if f{7) divides A(7),then by Problem 9.34, /(1) also divides fm(t)]". But (1)
Is Imeducible; hence, f(1) also divides m(r). Thus, m(t) and A(r) have the same imeducible factors,

t 2 2 =5
EXAMPLE 9.11 Find the minimal polynomial m(ifj of 4 = |3 7 —15].
1 2 —4
First find the characteristic polynomial A(r) of 4. We have
trli_r"'!]:j. All+‘422+‘433:2_3+32?1 E.nd |_r‘"1|:3

Hence,

A= =52 +Tt—3=(t—1)(t—3)

The minimal polynomial m(¢) must divide A(r). Also, each irreducible factor of A(r) (ie,, 7 — 1 and 1 — 3) must
also be a factor of m(t). Thus, m(1) is exactly one of the fellowing:

fO=0=3)t-1) o g=(-3)-1)

We know, by the Cayley-Hamilton theorem, that g(4) = A(4) = 0. Hence, we need only test f{z). We have

12 =51[-12 =57 [0oo00
fl)=(-NA4-30)=3 6 -15| 3 4 -15|=1{0 0 0
12 =5/l 12 <7] (0o

Thus, /(1) = m{) = (t=1)(t = 3) = = 4+ 3 is the minimal polynomial of 4.
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9.28. Find the minimal polynomial m(¢) of each of the following matrices:

1 2 3
5 1 o i)
(a) A=[ 1,(13) B=10 2 3|, C=l ]
307 L : 3] 2

(a) The characteristic polynomial of 4 is A(f) = # — 12t + 32 = (t — 4){z — 8). Because A(r) has distinct
factors, the minimal polynomial m(r) = A(r) = ©# — 121 4+ 32.

(b) Because B is triangular, its eigenvalues are the diagonal elements 1,2,3; and so its characteristic
polynomial is A(r) = (t — 1}{t — 2){t — 3). Because A(r) has distinct factors, m(t) = A{t).

(c) The characteristic polynomial of CisAlf) =# — 61+ 9=t - 3}2. Hence the minimal polynomial of C
isf(n)=r—3org(f)=(1— 3)1. However, f(C) # 0; that is, € — 37 # 0. Hence,

m(t) =g(t) = Alr) = (1= 3)"

EXAMPLE 9.9 Letd = [_3 _E , 2 real symmetric matrix. Find an orthogonal matrix P such that P~'4P is

diagonal,
First we find the characteristic polynomial A(f) of 4. We have

t(d)=245=7 U=10-4=6 s A)=>r-Tt+6=(-6)-1)
Accordingly, 4, = 6 and 7, = | are the eigenvalues of 4.

(a) Subtracting £, = 6 down the diagonal of 4 yields the matrix

= [mz s

= "] and the homogeneous system

A nonzero solution 1s %, = (1,-2).

Question (PP)

1 2

Find a real orthogonal matrix P for which P~ AP is diagonal, where [2 1
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CHAPTER # 7

LINEAR TRANSFORMA TIONS

DEFINITION:  Let ¥ and U be vector spaces over the same field K. A mapping F: ¥ — U is called a
linear mapping ot linear transformation if it satisfies the following two conditions:

(1) For any vectors v,w € V, F(v+w) = F(v) + F(w).
(2) For any scalar k and vector v € ¥, F(kv) = kF ().

Namely, F: ¥ — U is linear if it ““preserves” the two basic operations of a vector space, that of
vector addition and that of scalar multiplication.

Examples

(2) Let F: R = R® be the “projection” mapping into the xy-plane; that is, F is the mapping defined by
F(x,y,2) = (x,3,0). We show that F is linear. Let v = (a,b,c) and w= (¢, §',¢). Then

Flu+w)=Fla+d, b+b, c+c)=(a+d, b+h, 0)
= (a,b,0) + (d,4,0) = F(v) + F(w)
and, for any scalar £,
Flkv) = F(ka, kb, ke) = (ka, kb, 0) = k(a, b,0) = kF(v)
Thus, F is linear.

(b) LetG: R* — R* be the ““translation” mapping defined by G(x,y) = (x + 1, y+2). [That is, G adds the vector
(1,2) to any vector v = (x,y) in R%] Note that

G(0) = G(0,0) = (1,2) £0

Thus, the zero vector is not mapped into the zero vector. Hence, G is not linear.
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Example

Suppose the mapping F: R? — R? is defined by F(x,y) = (x +y, x). Show that F is linear.

We need to show that F{v+ w) = F(v) + F{w) and F{kv) = &F(v), where  and v are any elements of
R? and k is any scalar. Let v = (a.5) and w = (&', 5'). Then

v+w=(a+d, b+4) and  kv= (ka, kb)
We have F(v) = (a+b.a) and F(w) = (d' + #',&'). Thus,
Flv+w)=Fla+d, b+¥)=(a+d +b+V, a+d)
=(a+b, a)+(d +¥, a)=Flv)+F(w)
and
Flky) = Fka, kb) = (ka + kb, ka) = k{a + b, a) = kF(v)

Because v, w, k were arbitrary, F is linear,

Example

. Suppose F : R® — R? is defined by F(x.y.2) = (x +y+2, 2x = 3y +4z). Show that F is linear.

We argue via matrices. Writing vectors as columns, the mapping F may be written in the form
T
F(u) = dv, where v =[x,y.z] and

.
‘4‘[2 -3 4]

Then, using properties of matrices, we have

Flu+w)=A{v+w) =4v+Aw=F(v) + Fw)

and Fkv) = A{kv) = k(4v) = kF(v)

Thus, F is linear.
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Example

. Show that the following mappings are not linear:
(a) F:R?* — R? defined by F(x.y) = (xp.x)
(b) F:R® — R® defined by F(x,y) = (x+ 3, 2p. x+y)
() F:R3 — R? defined by F(x.y.z) = (x|, vy +z)
(a) Let v=(1,2) and w = (3.4); then v+ w = (4. 6). Also,
Flv)=(1(2).1) =(2,1) and Fiw) = (3(4).3) =(12,3)
Hence,
Flu4+w) = (4(6).4) = (24.6) # F(v) + F(w)
(b) Because F{0.0) = (3,0.0) # (0.0,0), F cannot be linzar.
(c) Let v=(1,2,3) and & = —3. Then kv = (-3, -6, —9). We have
F(v)=(1.5) and AiF(v)=-3(1.5)=(-3.-13).
Thus,
Flkv) =F(—3.—6.—9) = (3. —15) # kF (v}

Accordingly, F is not linear.

Examples (Zero and Identity Transformations)

(a) Let F: V' — U be the mapping that assigns the zero vector 0 € U to every vector v € V. Then, for any vectors
v,w € V and any scalar k € K, we have

Flu+w)=0=040=F(p)+F(w) and F(kv) =0=£k0=kF(v)
Thus, F is linear. We call F the zero mapping, and we usually denote it by 0.

(b) Consider the identity mapping [: V' — ¥, which maps each v € ¥ into itself. Then, for any vectors v,we V
and any scalars ¢, b € K, we have

I{av+ bw) = av+ bw = al(v) + bl (w)

Thus, [ is linear.
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Theorem

Suppose a linear mapping F: ¥ — U is one-to-one and onto. Show that the inverse mapping
F=':U =V is also linear.

Suppose u. ' £ [J. Because F is one-to-one and onto, there exist unique vectors v, v’ € ¥ for which
F(v) = u and F(v') = . Because F is linear, we also have

Flv+d)=F(u)+F(t) =u+¢  and  Flkv) = kF(v) = ku
By definition of the inverse mapping,
Flly=vw FI() =0, Flu+d) = v+ o, F' (k) =k
Then
FUudd)=v+vV=FYu)+F ') and F'{k)=kv=4F"(u)

Thus, £~ is linear.

Vector space Isomorphism

DEFINITION: ~ Two vector spaces V' and U over K are isomorphic, written V 2 U, if there exists a
bijective (one-to-one and onto) linear mapping F: V' — U. The mapping F is then
called an isomorphism between V and U.

Consider any vector space ¥ of dimension n and let § be any basis of V. Then the mapping
v [

which maps each vector v € 7 into its coordinate vector [v], is an isomorphism between ¥ and K"
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Projection Operators

Consider the operator 7 p2 __, p? that maps each vector into its orthogonal projection on the x-axis (Figure 4.2.3). The

equations relating the components of x and y = T(x) are

wi=x= x+0y
wy=0=0r+ 0y (12)
or, in matrix form,
Wil |1 Offx
w0 oY (13)
'
? (1))
|
|
|
v
—s
w (x. 0
Figure 4.2.3

The equations in 12 are linear, so T is a linear operator, and from 13 the standard matrix for T'is

Y

In general, a projection operator (more precisely, an erthogonal projection operator) on R2 or &3 is any operator that maps
each vector into its orthogonal projection on a line or plane through the origin. It can be shown that such operators are linear.
Some of the basic projection operators on g2 and g3 are listed in Tables 4 and 5.

Kernel and Image of a Linear Mapping
Let F: ¥ = U be a lincar mapping, The kernel of F, written Ker F, is the set of
elements in / that map into the zero vector 0 in U that is

Ket F={ve V:Flz) =0}
The image (of range) of F, written Im F, is the set of image points in U that i,

[m F = {u € U: there exists v € ¥ for which F(v) = u}
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Example

(2) Let F: R} — R be the projection of a vector v into the xy-plane [as pictured in Fig. 5-2(a)]; that is,
Flx.y.z) = (x.3,0)

Clearly the image of F is the entire xy-plane—that is, points of the form (x, y, 0). Moreover, the kernel of F is
the z-axis—that is, points of the form (0,0, ¢). That is,

ImF ={(a,b,c):c=0} =xyplane and Ker F={(a,b,c):a=0b=0} =zaxis
(b) Let G: R* — R? be the linear mapping that rotates a vector v about the z-axis through an angle # [as pictured in
Fig. 5-2(b)]; that is,
G(x,y,z) = (xcosf —ysinf, xsinf +ycosh, z)

(Observe that the distance of a vector v from the origin O does not change under the rotation, and so only the zero
vector 0 is mapped into the zero vector 0. Thus, Ker G = {0}. On the other hand, every vector u in R? is the image
of a vector v in R° that can be obtained by rotating u back by an angle of 0. Thus, Im G = R’, the entire space.

Theorem

Let F: V — U be a linear mapping. Then the kernel of F is a subspace of V and the
Image of F is a subspace of U.

Proof

Now suppose that v, 75, ..., v, span a vector space ¥ and that F: ¥ — U is linear. We show that
F(v,),F(w),...,F(v,) span Im F. Let u € Im F. Then there exists v € V' such that F(v) = u. Because
the #;’s span ¥ and v € V, there exist scalars a, ay, ... ,a,, for which

v=a4yv T a1 a,,
Therefore,

u=F(v) =Flayy + a0y +--- +a,,) =aF(v) + aF (1) +-- +a,F(v,)
Thus, the vectors F(v,), F(w,),...,F(v,) span Im F.
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Example

. Let F: R* — R? be the linear mapping defined by
Flx.y,z.t) =(x—y+z+t x+2z—t, x+y+3z—731)
Find a basis and the dimension of (a) the image of F, (b) the kernel of F.
(a) Find the images of the usual basis of R*:
F(1.0,0,0) = (1.1,1). F(0.0,1,0) = (1.2.3)
F(0,1,0,0) = (—1.0.1), F(0,0,0,1) =(1,—1,-3)

By Proposition 5.4, the image vectors span Im . Hence, form the matrix whose rows are these image
vectors, and row reduce to echelon form:

i i 0§ E OB i i d g
S i 3 0o 1 2 01 2
i =2 3|l 5 1 21|06 an
B cd el 0 —2 —4 00 0

Thus, (1,1, 1) and (0, 1, 2) form a basis for Im F; hence, dim{Im F) = 2.
(b} Set F{v) =0, where v = {x,). z, t); that is, set
Fix,yozi)=(x—y+z+5 x+2z—¢, x+y+3z—31) = (0,0.0)

Set corresponding entries equal to each other to form the following homogeneous system whose solution
space is Ker F:

CE E‘:G _ =z f:ﬂ

x—y4+ z+4 x—y+ z4 SRR 2]

x +2z— =0 or ¥y+ z—2r=20 or 4 9 i
— 2=

x4 y+3z—3r=0 Y427 —dr =0 g

The free variables are z and ¢. Hence, dim(Ker F) = 2.

(i) Setz= —1, =0 to obtain the solution (2.1, —1,0).
(ii) Setz=0, r=1 to ohtain the solution (1,2,0, 1)

Thus, (2, 1. —1.0) and {1,2,0, 1) form a hasis of Ker F.
[As expected, dim({Im F) + dim(Ker F)} = 2 + 2 = 4 = dim R®, the domain of F.]

Difference between transformation and operator

If the domain of a function f is R™ and the codomain is R™ (m and n possibly the
same), then f is called a map or transformation from R™ to R™, and we say that
the function f maps R™ into R™. We denote this by writing f: R™ - R™. When
m = n the transformation f: R™ — R™ is called an operator on R".
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Example

The equations
wy==x1+xz
Wo = 3x1x3
Wiy = ;rlz - Ffzz
define a transformation 7 g2 __, 3. With this transformation, the image of the point (x1, x7) 18
4 2
T(xy, xg) = (x14x3, 312y, 2] =15

Thus, forexample, 771, =21 = (=1, =6, =3}

Rank and Nullity of a Linear Mapping

Let F: ¥ — U be a linear mapping. The rank of F is defined to be the dimension of its image, and the
nullity of F is defined to be the dimension of its kemel; namely,

ank(F)=dim(ImF) and  nullity(F) = dim(Ker F)
Theorem

Let }° be of finite dimension, and let F: ¥ — [ be linear. Then
dim ¥ = dim(Ker F) + dim{Im F} = nullity(F) + rank(F)

Suppose dim{Ker F) =r and {w,...., w,} is a basis of Ker F, and suppose dim(Im F} =5 and

{t7,...,04;} i a basis of ImF. (By Proposition 5.4, ImF has finite dimension.) Because every
u#; € Im F, there exist vectors vy,.... v, in ¥ such that F{w;) =, ..., F(v,) = u,. We claim that the set
B={wp ... Wt v}

is a hasis of F; thar is, (i) 8 spans F; and (ii) 8 is linearly independent. Once we prove (i) and (ii), then
dim ¥ =r+s5 = dim{Ker F) + dim{Im F).

(i) BspansV.Letwv & V. Then F{v) € Im F. Because the 1; span Im F, there exist scalars a,, ..., a; such
that F{v) =au, ++ - +au. Set i =ayv; + -+ +a,v, — v. Then
F(t) = Flayjv, +--+auv, —v) =a,F(v,) +---+aF{v)—Flv)
=a; +--+au, — Flu) =0
Thus, © € Ker F. Because the w; span Ker F, there exist scalars b;, ..., b, such that
= bhw +o+hw, = a4 ar — v
Accordingly,

v=a v 4+ tat, — bhwp — - — b,

Thus, & spans F.
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{ii) B is finearly independent. Suppose
ow +e w4y ey =0 (1)
where x;.); € K. Then
0=F(0) =Flxywy + -+ xw. -y +- - Ly

=x,F{w) + o+ F(w) + 0 F () + -0+ 0 F () (2)
But F(w;) =0, since w;cKerF, and F(1;) =1 Substituting into (2), we will obtain
¥, + -+, =0. Since the t; are linearly independent, each ¥ =0 Substitution into (1) gives
W, + -+ +xw, =0 Since the w; are linearly independent, each x;=0. Thus B is linearly
independent.
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EXAMPLE 5.9 Let F : R* — R’ be the linear mapping defined by
Flapzt) =(x—y+z+t, 2=243+4t, Ix—-3y+4z451)

(a) Find a basis and the dimension of the image of £
First find the image of the usual basis vectors of R*,

F(1,0,0,0) = (1.2,3), F(0,0,1,0) = (1,3.4)
F(0,1,0,0)=(-1,-2,-3),  F(0,0,0,1)=(1.4,5)

By Propasition 5.4, the image vectors span Im F. Hence, form the matrix 3 whose rows are these image vectors
and row reduce to echelon form:

I 2 3 2 3 1 2 3
V= -l =2 =3 N 000 N 0 1l
) I3 4 01 1 0 0 0
L4 5 0 2 2 0 0 0

Thus, (1,2,3) and (0,1, 1) form a basis of Im F. Hence, dim({Im F) =2 and rank(F) = 2.

(b) Find a basis and the dimension of the kernel of the map F.
Set F(v) =0, where v = (x,y,2.1),

Flxpz,)=(x=y+z+e, x=2p+3z+4t, 3x=3y+4z45) =(0,0,0)

Set corresponding components equal to each other to form the following homogeneous system whose solution
space is Ker F:

Y= 94 izt k=0 rt=p+z+ t=10
L-y+3iz+4=0 o z+2t=0 or
3x=3y+4dz+5t=0 z+2t =10

r=y+z+ t=10
z+2t=0

The free variables are y and 1. Hence, dim(Ker F) = 2 or nullity(F) = 2.
(i) Set y = 1, 1 = 0 to obtain the solution (-1, 1,0.0),
(i) Set y =0, r =1 to obtain the selution (1,0,-2, 1).
Thus, (—1,1.0.0) and (1.0.-2.1) form a basis for Ker F.
As expected from Theorem 3.6, dim(Im F) + dim{Ker F) = 4 =dimR".
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Singular and Nonsingular Linear Mappings, Isomorphisms

Let F: V= U be a linear mapping. Recall that F(0) = 0. F is said to be singular if the image of some
nonzero vector ¢ is (—that i, if there exists v # 0 such that F(v) = 0. Thus, F: ¥ = U is nonsingular if
the zero vector 0 is the only vector whose image under F is 0 or, in other words, if Ker F = {0},

5.24. Determine whether or not each of the following linear maps is nonsingular. If not, find a nonzero
vector v whose image is (.

(a) F:R? = R? defined by F(x,y) = (x—y, x—2y).
(b) G: R’ — R* defined by G{x,y) = (2x — 4y, 3x - 6y).

(a) Find Ker F by setting F(v) =0, where v = (x, ),

3 e xr— y=0 x—y=0
(x—y. x-2)=(0,0) oor Bl y=0
The only solution is x = 0, y = 0. Hence, F is nonsingular.
(b) Set G{x.y) = (0.0) to find Ker G
) b x—dy=10 _
(2x—dy, 3x—6y)=(0.0) or Yok or x—2y=0

The system has nonzero solutions, because y is a free variable. Hence, G is singular. Let y = 1 to obtain
the solution » = (2, 1}, which is a nonzero vector, such that G(v) = 0.

5.26, Let G: R* - R’ be defined by Glx.y) = (x +, x =2y, 3x+)).
(a) Show that G is nonsingular. (h) Find a formula for G,
(2) Set G{x.y) =(0.0.0) to find Ker G. We have
4y, x-2p +y)=(0.0,0) o  x+y=0 x-2=0, Ix+y=0

The only solutien is x = 0, y = 0; hence, G 1s nonsingular.

(b) Although G is nonsingular, it is not invertible, becanse R? and R® have different dimensions. (Thus,
Theorem 5.9 does not apply.) Accordingly, G does not exist.
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Theorem

Prove Theorem 5.7: Let F: ¥V — U be a nonsingular linear mapping. Then the image of any
linearly independent set is linearly independent.

Suppose v, Uy...., v, are linearly independent vectors in V. We claim that F{v, ), F{3)...., F(u,) are

; H T H

also linearly independent. Suppose o F(v) + @ F (0} + -+ + @, F(1,) = 0, where &; € K. Because F is
linear, F{av; +ayty + -+ +ayv,) = 0. Hence,

vy + &ty oo+ a,, EKer F

But F is nonsingular—that is, Ker F = {0}. Hence, a;v; + a;17 + -+ +a,t, = 0. Because the ; are
linearly independent, all the a, are 0. Accordingly, the F/(v;) are linearly independent. Thus, the theorem is
proved.

Theorem
Prove Theorem 5.9: Suppose ¥ has finite dimension and dim ¥ = dim U Suppose F: V — U/ 1s
linear. Then £ 1s an 1somorphism if and only if F' 1s nonsingular.

If F is an isomorphism, then only 0 maps to 0; hence, F is nonsingular, Conversely, suppose F i3
norsingular. Then dim(Ker F) = 0. By Theorem 5.6, dim ¥ = dim(Ker F) + dim(Im F). Thus,

dmU =dm¥ = dim(Im F)

Because [ has finite dimension, [m F = [/, This means F maps ¥ onto L[ Thus, F is one-to-one and onto;
that 1s, F 15 an isomorphism,
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