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PREFACE (Scope of Linear Algebra) 

Linear Algebra is the study of vectors and linear transformations. The main 

objective of this course is to help students learn in rigorous manner, the tools and 

methods essential for studying the solution spaces of problems in mathematics, 

engineering, the natural sciences and social sciences and develop mathematical 

skills needed to apply these to the problems arising within their field of study;  and 

to various real world problems.   

Course Contents:    

 System of Linear Equations: Representation in matrix form, matrices, 

operations on matrices, echelon and reduced echelon form, inverse of a 

matrix (by elementary row operations), solution of linear system, Gauss-

Jordan method, Gaussian elimination.  

 Vector Spaces: Definition and examples, subspaces. Linear combination and 

spanning set. Linearly Independent sets. Finitely generated vector spaces. 

Bases and dimension of a vector space. Operations on subspaces, 

Intersections, sums and direct sums of subspaces. Quotient Spaces.  

 Inner product Spaces:  Definition and examples. Properties, Projection. 

Cauchy inequality. Orthogonal and orthonormal basis. Gram Schmidt 

Process.  

 Determinants: Permutations of order two and three and definitions of 

determinants of the same order. Computing of determinants. Definition of 

higher order determinants.  Properties. Expansion of determinants.  

 Diagonalization, Eigen-values and eigenvectors  

 Linear mappings: Definition and examples. Kernel and image of a linear 

mapping. Rank and nullity. Reflections, projections, and homotheties. 

Change of basis. Theorem of Hamilton-Cayley.  

Recommended Books:  

 Curtis C. W., Linear Algebra  

 Apostol T., Multi Variable Calculus and Linear Algebra. 

  Anton H., Rorres C., Elementary Linear Algebra: Applications Version 

 Dr. Karamat Hussain, Linear Algebra 

 Linear Algebra by Seymour Lipschutz 

Available at MathCity.org
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Chapter # 1 

SYSTEMS OF LINEAR EQUATIONS 
Systems of linear equations play an important and motivating role in the subject of 

linear algebra. In fact, many problems in linear algebra reduce to finding the 

solution of a system of linear equations. Thus, the techniques introduced in this 

chapter will be applicable to abstract ideas introduced later. On the other hand, 

some of the abstract results will give us new insights into the structure and 

properties of systems of linear equations. All our systems of linear equations 

involve scalars as both coefficients and constants, and such scalars may come from 

any number field F. There is almost no loss in generality if the reader assumes that 

all our scalars are real numbers — that is, that they come from the real field R. 

Linear Equation:                 

It is an algebraic equation in which each term has an exponent of one and graphing 

of equation results in a straight line. 

Or A linear equation in unknowns            is an equation that can be put in 

the standard form                      where            and b are 

constants. The constant    is called the coefficient of    , and b is called the 

constant term of the equation. e.g                        

Solutions of Linear Equation:  

A solution of the linear equation                    is a list of values 

for the unknowns or, equivalently, a vector u in R
n
 , say 

            …        or   ⃗               such that the following 

statement (obtained by substituting ki for xi in the equation) is true: 

                    

In such a case we say that u satisfies the equation. 

Available at MathCity.org
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Example : Consider the following linear equation in three unknowns x, y, z: 

             We note that                 , or, equivalently, the 

vector  ⃗          is a solution of the equation. That is,                   

On the other hand,            is not a solution, because on substitution, we do not 

get a true statement:                       

System of Linear Equations (System in which more than one linear equations involve)  

A system of linear equations is a list of linear equations with the same unknowns. 

In particular, a system of ‗m‘ linear equations L1, L2,..., Lm in ‗n‘ unknowns 

            can be put in the standard form 

                        

                        

::::::::::::::::::::::::::::::::::::::::::::::::::: 

                        

where the aij and bi are constants. The number aij is the coefficient of the unknown 

xj in the equation Li, and the number bi is the constant term of the equation Li.                      

 The system of linear equations is called an     system. It is called a 

square system if     that is, if the number   of equations is equal to the 

number   of unknowns. 

 The system is said to be homogeneous if all the constant terms are zero   

that is, if           …..       Otherwise the system is said to be 

nonhomogeneous (inhomogeneous.). 

 A solution (or a particular solution) of the system (above) is a list of values 

for the unknowns or, equivalently, a vector u in R
n 

, which is a solution of 

each of the equations in the system. The set of all solutions of the system is 

called the solution set or the general solution of the system. 

 A finite set of linear equations is called a system of linear equations, or 

more briefly a linear system. The variables are called unknown. 

 A linear equation does not involve any products or roots of variables. All 

variables occur only to the first power, and do not appear as arguments of 

trigonometric, logarithmic or exponential functions. 

𝑚   No. of equations 

𝑛   No. of unknowns 
𝑎𝑖𝑗𝑥𝑗  𝑏𝑖  
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EXAMPLES FOR LINEAR AND NON – LINEAR EQUATIONS 

          linear 

               not linear 

                linear for constants     

 
 

 
           linear 

                 linear 

                    linear 

           not linear 

              not linear 

            not linear 

 √              not linear 

        √        linear 

                 not linear 

               linear 

   
             not linear 

   
              not linear 

     √     
 

    linear 

  
 

   √       linear 

    (
 

 
)             not linear 

        not linear 

         linear 

 
 

 
            not linear 

TRY OTHERS ALSO!!!!!!!! 

ر  کی پہچان

 

ئ

 

 ن
لی

دو ویری ایبل اکٹھے نہ ہوں۔ ویری ایبل کے ساتھ اس کا ڈیری ویٹو نہ لکھا گیا ہو۔ زیادہ نہ ہو۔ کم  :  ویری ایبل کی پاور ایک سے  

Variable not appears in this form                     √    
 etc. 
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Example: Consider the following system of linear equations: 

                 

                  

                  

It is a     system because it has three equations in four unknowns. Determine 

whether (a)              and (b)               are solutions of the 

system. 

Solution: 

(a) Substitute the values of u in each equation, obtaining 

                       

                         

                         

Yes, u is a solution of the system because it is a solution of each equation. 

(b) Substitute the values of v into each successive equation, obtaining 

                        

                           

No, v is not a solution of the system, because it is not a solution of the second 

equation. (We do not need to substitute v into the third equation.) 

Consistent and Inconsistent Solutions:  

The system of linear equations is said to be consistent if it has one or more 

solutions, and it is said to be inconsistent if it has no solution.  

Underdetermined: A system of linear equations is considered underdetermined if 

there are fewer equations than unknowns.     

Over determined: A system of linear equations is considered over determined if 

there are more equations than unknowns.      
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PRACTICE: (Solution to system of linear equations)  

1. Consider the following system of linear equations: 

             

            

              

Determine whether given 3 – tuples are solutions of the system? 

(a)         

(b)          

(c)          

(d) (
  

 
 

 

 
  ) 

(e)          

 

2. Consider the following system of linear equations: 

          

         

           

Determine whether given 3 – tuples are solutions of the system? 

a) (
 

 
 

 

 
  ) 

b) (
 

 
 

 

 
  ) 

c)         

d) (
 

 
 

  

 
 

 

 
) 

e) (
 

 
 

  

 
  ) 
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If the field F of scalars is infinite, such as when F is the real field R or the complex 

field C, then we have the following important result. 

Result:  Suppose the field F is infinite. Then any system of linear equations has 

(i) a unique solution, (ii) no solution, or (iii) an infinite number of solutions. 

 

 

Remark: (Geometrical Presentation / Graphics) 

Linear system in two unknowns arise in connection with intersection of lines. 

 The lines may be parallel and distinct, in which case there is no intersection 

and consequently no solution. 

 The lines may be intersect at only one point, in which case the system has 

exactly one solution. 

 The lines may coincide, in which case there are infinitely many points of 

intersection (the points on the common line) and consequently infinitely 

many solutions. (in such system, all equations will be same with few 

common factors) 

 

SYSTEM OF 
LINEAR 

EQUATIONS 

CONSISTENT 

UNIQUE 
SOLUTION 

INFINITE 
NUMBER OF 
SOLUTIONS 

INCONSISTENT 

NO SOLUTION 
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Example (A Linear System with one Solution):  

Solve the following system of linear equations: 

        ………..(i)   

        ………..(ii) 

Solution: 

                multiplying with    

Adding (i) with (ii)                      
 

 
 

      
 

 
     

 

 
  

    (  
 

 
   

 

 
)  Geometrically this means that the lines represented by the 

equations in the system intersect at the single point (  
 

 
   

 

 
) 

Example (A Linear System with No Solution):  

Solve the following system of linear equations: 

        ………..(i)   

         ………..(ii) 

Solution: 

                 multiplying with    

Adding (i) with (ii)                           

The result is contradictory, so the given system has no solution. Geometrically this 

means that the lines may be parallel and distinct, in this case there is no 

intersection and consequently no solution. 

 

 

Available at MathCity.org
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Example (A Linear System with Infinitely many Solutions):  

Solve the following system of linear equations: 

          ………..(i)            ………..(ii) 

Solution: 

                 multiplying with    

Adding (i) with (ii)                           

Equation     does not impose any restriction on ‗x‘ and ‗y‘ and hence can be 

omitted. Thus the solution of the system are those values of ‗x‘ and ‗y‘ that satisfy 

the single equation         

Geometrically this means that the lines corresponding to the two equations 

in the original system coincide. And this system will have infinitely many 

solutions. 

How to Find Few Solutions of Such System? 

 Find the value of ‗x‘ from Common equation. 

 Put     ‗t‘ being Parameter (arbitrary value instead of actual value) 

 Replace     in given system. 

 Use              Upon your taste and get different answers. 

 We may apply same procedure by replacing ‗x‘ and ‗y‘ 

Example: Want to find different solutions for problem as follows using 

Parametric Equation (arbitrary equation using Parameter instead of actual value). 

          ………..(i)            ………..(ii) 

Solution: 

   
 

 
 

 

 
   and  put          

 

 
 

 

 
   

    (  
 

 
    )       ,     (  

 

 
    )      

    (   
 

 
     )       
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Example: Want to find different solutions for problem as follows using 

Parametric Equation (arbitrary equation using Parameter instead of actual value). 

           ………..(i)   

            ………..(ii) 

             ………..(ii) 

Solution: 

Since above all equations have same graphics or formation. Therefore will have 

infinitely many solutions. We will solve it using parametric equations. 

In above all equations we have the parallel form          

           and  put            

           

                             

                             

                             

                 {                       }  

TRY OTHERS ALSO!!!!!!!! 

 

General Solution:   

If a linear system has infinitely many solutions, then a set of parametric equations 

from which all solutions can be obtained by assigning numerical values to the 

parameters is called a General Solution of the system.  

 

 

 

How to find solution of more than 

two equations? 

1st method: find x,y,z solving 

equations in pair (Lengthy Process) 

2nd: solve two equations, find x,y and 

put in 3rd equation to get value of z. 

3rd method: observe given equations 

and take common if possible and 

then check all equations are same or 

not, if same then solution will be 

infinite. 
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PRACTICE:  

1. In each part, solve the linear system, if possible, and use the result to 

determine whether the lines represented by the equations in the system have 

zero, one, or infinitely many points of intersection. If there is a single point 

of intersection, give its coordinates, and if there are infinitely many, find 

parametric equations for them.  

a)         and           

b)         and           

c)         and          

 

2. In each part use parametric equations to describe the solution set of linear 

equations. 

a)         b)         

c)               d)                    

e)                 

f)               

g)                   

h)               

 

3. In each part use parametric equations to describe the infinitely many 

solutions of linear equations. 

a)         and           

b)              ,                   and               

c)                and             

d)            ,                and              
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Matrices:  

A matrix A over a field F or, simply, a matrix A (when F is implicit) is a 

rectangular array of scalars usually presented in the following form: 

  [

          

          

    
          

]  

The numbers in the array are called the entries in the matrix. 

Augmented and Coefficient Matrices of a System 

Consider the general system of   equations in   unknowns. 

                        

                        

::::::::::::::::::::::::::::::::::::::::::::::::::: 

                        

Such a system has associated with it the following two matrices: 

  [

            

            

     
            

]  and    [

          

          

    
          

]  [   ]       

The first matrix M is called the augmented matrix of the system, and the second 

matrix A is called the coefficient matrix. 

The coefficient matrix A is simply the matrix of coefficients, which is the 

augmented matrix M without the last column of constants. Some texts write 

  [   ] to emphasize the two parts of M, where B denotes the column vector 

of constants. 

 

 

Coefficient matrix 

Consider a system of linear 

equations 𝑎𝑖𝑗𝑥𝑗  𝑏𝑖  then 

coefficient matrix is 

defined as 𝐴  [𝑎𝑖𝑗] 

Augmented matrix 

Consider a system of linear 

equations 𝑎𝑖𝑗𝑥𝑗  𝑏𝑖  then 

augmented  matrix is 

defined as  

𝐴  [𝑎𝑖𝑗  𝑏𝑖]  
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Example:  

Consider the general system of   equations in   unknowns. 

             

               

               

Then                     [
    
     
     

]   

and                       [
   
    
    

]     

Example:  

Consider  

                   [
    
    
    

]  

Then the general system of   equations in   unknowns is as follows; 
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PRACTICE:  

1. In each part, find a linear system in the unknowns       ….. that 

corresponds to the given augmented matrix.  

a) [
     
     
     

] 

b) [
   
    
   

] 

c) *
        
       

+ 

d) [

      
       
        
       

] 

 

2. In each part, find the augmented  matrix for the given linear system. 

a)        ,       ,        

b)              ,          

c)            ,           ,           

d)      ,       ,        

e)             

               

             

f)              
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Degenerate Linear Equations  A linear equation is said to be degenerate if 

all the coefficients are zero, that is, if it has the form 

                 

The solution of such an equation depends only on the value of the constant b. 

Specifically, 

(i) If b   0, then the equation has no solution. 

(ii) If b = 0, then every vector  ⃗                in R
n
 is a solution. 

The following theorem applies. 

Theorem:  Let   be a system of linear equations that contains a degenerate 

equation L, say with constant b. 

(i) If b   0, then the system   has no solution. 

(ii) If b   0, then   may be deleted from the system without changing the solution 

set of the system. 

Part (i) comes from the fact that the degenerate equation has no solution, so the 

system has no solution. 

Part (ii) comes from the fact that every element in R
n
 is a solution of the 

degenerate equation. 

Leading Unknown in a Non-degenerate Linear Equation 

Let ‗L‘ be a non-degenerate linear equation. This means one or more of the 

coefficients of L are not zero. By the leading unknown of L, we mean the first 

unknown in L with a nonzero coefficient.  

For example, x3 and y are the leading unknowns, respectively, in the equations 

                            and               

We frequently omit terms with zero coefficients, so the above equations would be 

written as                 and            

In such a case, the leading unknown appears first. 
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Linear Combination of System of Linear equations 

Consider the system of   linear equations in   unknowns. Let   be the linear 

equation obtained by multiplying the   equations by constants            

respectively, and then adding the resulting equations. Specifically, let   be the 

following linear equation: 

                                                    

Then L is called a linear combination of the equations in the system. 

EXAMPLE:  Let L1, L2, L3 denote, respectively, the three equations in 

                 

                  

                  

 Let L be the equation obtained by multiplying L1, L2, L3 by 3,   , 4, respectively, 

and then adding. Namely, 

                            

                            

                             

Then Sum will be                             

Then L is a linear combination of L1, L2, L3. As expected, the solution 

             of the system is also a solution of L. That is, substituting ‗u‘ in L, 

we obtain a true statement: 

                                 

The following theorem holds. 

Theorem (when two systems have same solution): Two systems of linear 

equations have the same solutions if and only if each equation in each system is a 

linear combination of the equations in the other system. 
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PRACTICE: Show that if the linear equations  

          

          

Have the same solution set, then the two equations are identical. (i.e.        ) 

 

Equivalent Systems: Two systems of linear equations are said to be equivalent 

if they have the same solutions.  

Elementary Operations (Elementary Row Operations) 

The basic method for solving a linear system is to perform algebraic operations on 

the system that do not alter the solution set and that produce a succession of 

increasingly simpler system, until a point is reached where it can be ascertained 

whether the system is consistent, and if so, what its solutions are. Typically the 

algebraic operations are: 

1. Multiply an equation through by a non – zero constant. 

2. Interchange two equations. 

3. Add a constant times one equation to another. 

Since the rows (horizontal lines) of an augmented matrix correspond to the 

equations in the associated system, these three operations correspond to the 

following operations on the rows of the augmented matrix; 

1. Multiply a row through by a non – zero constant. 

2. Interchange two rows. 

3. Add a constant times one row to another. Or replace an equation by the sum 

of a multiple of another equation and itself. 

These are called Elementary Row Operations on a matrix. 

The main property of the above elementary operations is contained in the 

following theorem. 
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Theorem:  Suppose a system of   of linear equations is obtained from a system 

  of linear equations by a finite sequence of elementary operations. Then   and   

have the same solutions. 

Remark: Sometimes (say to avoid fractions when all the given scalars are 

integers) we may apply step 1 and 3 in one step. 

EXAMPLE:  In the left column we solve a system of linear equations by 

operating on the equations in the system, and in the right column we solve the 

system by operation on the rows of the augmented matrix. 

          

                [
    
     
     

] 

            

 

                       

          

                 [
    
       
     

] 

            

                         

          

                 [
    
       
        

] 

            

 

Available at MathCity.org
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        [

    

   
 

 
 

  

 

        

] 

            

 

                         

          

  
 

 
   

  

 
        [

    

   
 

 
 

  

 

   
 

 
 

 

 

] 

 
 

 
   

 

 
  

 

                    

          

  
 

 
   

  

 
        [

    

   
 

 
 

  

 

    

] 
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        [

  
  

 

  

 

   
 

 
 

  

 

    

] 

     

 

 ( 
  

 
     )  (

 

 
     )    ( 

  

 
     )  (

 

 
     ) 

     

           [
    
    
    

] 

     

Thus, the solution is              

We may write         as a required solution. In the order triple form. 
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PRACTICE:  

1. Find a single elementary row operation that will create a ‗1‘ in the upper left 

corner of the given augmented matrices and will not create any fractions in 

its first rows. 

a) [
      
     
     

] 

 

b) [
      
     
     

] 

 

 

c) [
     
    

     
] 

 

d) [
      
     

      
] 

 

2. Find all values of ‗k‘ for which the given augmented matrices correspond to 

a consistent linear system. 

a) *
    
   

+ 

 

b) *
    
    

+ 

 

 

c) *
    

    
+ 

 

d) *
    
    

+ 
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Systems in Triangular and Echelon Forms 

The main method for solving systems of linear equations, Gaussian elimination, is 

treated in the next Section. 

Here we consider two simple types of systems of linear equations: systems 

in triangular form and the more general systems in echelon form. 

Triangular Form 

Consider the following system of linear equations, which is in triangular form: 

                   

                

               

          

That is, the first unknown x1 is the leading unknown in the first equation, the 

second unknown x2 is the leading unknown in the second equation, and so on.  

Definition: The system in which the first unknown x1 is the leading unknown in 

the first equation, the second unknown x2 is the leading unknown in the second 

equation, and so on. Then such system is called Triangular system.  

(Example given above) 

Thus, in particular, the system is square and each leading unknown is directly to 

the right of the leading unknown in the preceding equation. Such a triangular 

system always has a unique solution, which may be obtained by back-substitution. 

That is, 

(1) First solve the last equation for the last unknown to get     . 

(2) Then substitute this value      in the next-to-last equation, and solve for the 

next-to-last unknown    as follows: 

          or       
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 (3) Now substitute      and      in the second equation, and solve for the 

second unknown    as follows: 

                  or        

 (4) Finally, substitute      ,      and      in the first equation, and solve 

for the first unknown    as follows: 

                       or       

Thus,     ,      ,      and     , or,  equivalently, the vector 

             is the unique solution of the system. 

Remark: There is an alternative form for back-substitution (which will be used 

when solving a system using the matrix format). Namely, after first finding the 

value of the last unknown, we substitute this value for the last unknown in all the 

preceding equations before solving for the next-to-last unknown. This yields a 

triangular system with one less equation and one less unknown. For example, in 

the above triangular system, we substitute      in all the preceding equations to 

obtain the triangular system 

                

             

           

We then repeat the process using the new last equation. And so on. 

PRACTICE: Solve the following Triangular system: (by Back substitution) 
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Pivoting:   

Changing the order of equations is called pivoting. It has two types.

1. Partial pivoting 2. Total pivoting 

 

Partial pivoting:  

In partial pivoting we interchange rows where pivotal element is zero. 

                       In Partial Pivoting if the pivotal coefficient ―   ‖ happens to be zero 

or near to zero, the i
th

 column elements are searched for the numerically largest 

element. Let the j
th  

row (   ) contains this element, then we interchange the ―i
th

‖ 

equation with the ―j
th

‖ equation and proceed for elimination. This process is 

continued whenever pivotal coefficients become zero during elimination. 

 

Total pivoting:  

In Full (complete, total) pivoting we interchange rows as well as column. 

                        In Total Pivoting we look for an absolutely largest coefficient in the 

entire system and start the elimination with the corresponding variable, using this 

coefficient as the pivotal coefficient (may change row and column). Similarly, in 

the further steps. It is more complicated than Partial Pivoting. Partial Pivoting is 

preferred for hand calculation. 

Why is Pivoting important?:  

Because Pivoting made the difference between non-sense and a perfect result. 

Pivotal coefficient:  

For elimination methods (Gauss‘s Elimination, Gauss‘s Jordan) the coefficient of 

the first unknown in the first equation is called Pivotal Coefficient.      
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Back substitution:  

The analogous algorithm for upper triangular system ―    ‖ of the form 

(

                      

                        

                                          
                                

, (

  

  

 
  

,  (

  

  

 
  

,      

Is called Back Substitution. 

The solution ―xi‖ is computed by        

   
   ∑      

 
     

   
                            

Forward substitution 

The analogous algorithm for lower triangular system ―    ‖ of the form 

(

                                   
                             
                                            

                                    

, (

  

  

 
  

,  (

  

  

 
  

,     

Is called Forward Substitution. 

The solution ―xi‖ is computed by         
   ∑      
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Echelon Form, Pivot and Free Variables 

The following system of linear equations is said to be in echelon form: 

                        

                 

              

That is, no equation is degenerate and the leading unknown in each equation other 

than the first is to the right of the leading unknown in the preceding equation. The 

leading unknowns in the system,         , are called pivot variables, and the 

other unknowns, x2 and x5, are called free variables. Those positions in which 

leading 1 occur called pivot positions and pivot column. 

Generally speaking, an echelon system or a system in echelon form has the 

following form: 

                        

    
   

       
     

             

      :::::::::::::::::::::::::::::::::::::::::::::: 

         
   

            

where 1 < j2 < …. < jr and    ,     
 …..,    

 are not zero. The pivot variables are 

  ,    
 …,    

  Note that r   n. 

The solution set of any echelon system is described in the following theorem  

Theorem: Consider a system of linear equations in echelon form, say with ‗r 

equations in ‗n‘ unknowns. There are two cases: 

(i) r = n. That is, there are as many equations as unknowns (triangular form). Then 

the system has a unique solution. 

(ii) r < n. That is, there are more unknowns than equations. Then we can arbitrarily 

assign values to the     free variables and solve uniquely for the ‗r‘ pivot 

variables, obtaining a solution of the system. 
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Suppose an echelon system contains more unknowns than equations. Assuming the 

field F is infinite, the system has an infinite number of solutions, because each of 

the     free variables may be assigned any scalar. 

The general solution of a system with free variables may be described in 

either of two equivalent ways. One description is called the „„Parametric Form‟‟ 

of the solution, and the other description is called the „„Free –Variable Form.‟‟ 

Parametric Form 

Consider we have the system 

                        

                 

              

Assign arbitrary values, called parameters, to the free variables x2 and x5, say 

     and     , and then use back-substitution to obtain values for the pivot 

variables x1, x3, x5 in terms of the parameters ‗a‘ and ‗b‘. Specifically, 

(1) Substitute      in the last equation, and solve for   : 

                     

(2) Substitute         and      into the second equation, and solve for x3: 

                              

 (3) Substitute       ,         ,         ,      into the first equation, 

and solve for x1: 

                                         

Accordingly, the general solution in parametric form is 

          ;       ;         ;         ;      or, equivalently, 

                          where a and b are arbitrary numbers. 

 

 

Procedure 

i. Write given system 

ii. Solve last equation using 

parameter 

iii. Using back substitution 

find variables 
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Free –Variable Form 

Consider we have the system 

                        

                 

              

Use back-substitution to solve for the pivot variables x1, x3, x4 directly in terms of 

the free variables x2 and x5.  

That is, the last equation gives          

Substitution in the second equation yields          

and then substitution in the first equation yields               

Accordingly,              ;     free variable; 

        ;            ;     free variable 

or, equivalently,                                    is the free –

variable form for the general solution of the system. 

We emphasize that there is no difference between the above two forms of 

the general solution, and the use of one or the other to represent the general 

solution is simply a matter of taste. 

Remark: A particular solution of the above system can be found by assigning any 

values to the free variables and then solving for the pivot variables by back 

substitution. For example, setting      and      we obtain 

            ;                  ;                   

Thus,                 is the particular solution corresponding to                 

and     . 

 

 

Available at MathCity.org
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PRACTICE:  

1. Determine the ‗Pivot‖ and ‗Free variables‘ in each of the followings; 

                       

                

             

           

        

     

          

          

           

 

2. Solve using parametric form as well as free variable form assigning Pivot. 
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Echelon Form of a Matrix: 

A matrix is said to be in echelon form if it has the following structure; 

i. All the non – zero rows proceed the zero rows. 

ii. The first non – zero element in each row is 1. 

iii. The preceding number of zeros before the first non – zero element 1 in each 

row should be greater than its previous row. 

For example followings are in echelon form. 

[

    
    
    
    

]  [
    
    
    

]  [
    
    
    

]  

 

Reduced Echelon Form of a Matrix: 

A matrix is said to be in reduced echelon form if it has the following structure; 

i. Matrix should be in echelon form. 

ii. If the first non – zero element 1 in the i
th
 row of matrix lies in the j

th
 column 

then all other elements in the j
th

 column are zero. 

For example followings are in reduced echelon form. 

[
    
    
    

]  [
   
   
   

]  [
    
    
    

]  [
    
    
    

]  

 

Remark about echelon forms: 

i. Every matrix has a unique reduced row echelon form. 

ii. Row echelon forms are not unique. 

iii. Although row echelon forms are not unique, the reduced row echelon form 

and all row echelon forms of a matrix A have the same number of zero rows, 

and the leading 1‘s always occur in the same positions. 
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Row Echelon Form of a Matrix: 

A matrix is said to be in row echelon form if it has the following structure; 

i. If a row does not consists entirely of zeros, then the first non – zero number 

in the row is a 1. We call this a leading 1. 

ii. If there are any rows that consist entirely of zeros, then they are grouped 

together at the bottom of the matrix. 

iii. In any two successive rows that do not consists entirely of zeros, the leading 

1 in the lower row occurs farther to the right than the leading 1 in the higher 

row. 

For example followings are in row echelon form. 

[
   
   
   

]  [
     
    
    

]  [
     
      
     

]  

 

Row Reduced Echelon Form of a Matrix: 

A matrix is said to be in row reduced echelon form if it has the following structure; 

i. If a row does not consists entirely of zeros, then the first non – zero number 

in the row is a 1. We call this a leading 1. 

ii. If there are any rows that consist entirely of zeros, then they are grouped 

together at the bottom of the matrix. 

iii. In any two successive rows that do not consists entirely of zeros, the leading 

1 in the lower row occurs farther to the right than the leading 1 in the higher 

row. 

iv. Each column that contains a leading 1 has zeros everywhere else in that 

column. 

For example followings are in row reduced echelon form. 

[
    
    
     

]  [
   
   
   

]  *
  
  

+  [

      
     
     
     

]  
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PRACTICE:  

Determine whether the matrix is in row echelon form, reduced row echelon form, 

both or neither. 

i. [
   
   
   

]  

ii. [
   
   
   

] 

iii. [
   
   
   

] 

iv. *
    
    

+ 

v. [

     
     
     
     

] 
vi. [

  
  
  

] 

vii. *
     
    

+ 

 

viii. [
   
   
   

] 

 

ix. [
   
   
   

] 

 

x. [
   
   
   

] 

 

xi. [
    
   
   

] 

 

xii. [
   
   
   

] 

 

xiii. [

     
     
     
     

] 

 

xiv. *
     
     

+ 
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Gaussian Elimination 

The main method for solving the general system of linear equations is called 

Gaussian elimination. It essentially consists of two parts: 

Part A. (Forward Elimination) Step-by-step reduction of the system yielding either 

a degenerate equation with no solution (which indicates the system has no 

solution) or an equivalent simpler system in triangular or echelon form. 

Part B. (Backward Elimination) Step-by-step back-substitution to find the solution 

of the simpler system. 

Gaussian Elimination steps (Procedure): 

i. Reduce the augmented matrix into echelon form. In this way, the value of 

last variable is calculated. 

ii. Then by backward substitution, the values of remaining unknown can be 

calculated. 

 

Example: Solve the matrix using Gauss‘s Elimination method. 

[
        
          
         

]  

Solution: Firstly we reduce the given matrix in echelon form. 

Step – I: locate the left most column that does not consist entirely of zeros. 

[
        
          
         

]  

Step – II: interchange the top row with another row, if necessary, to bring a non – 

zero entry to the top of the column found in step – I. 

[
          
        
         

]                 
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Step – III: if the entry that is now at the top of the column found in step – I is ‗a‘, 

multiply the first row by ‗1/a‘ in order to introduce a leading 1. 

[
        
        
         

]            
 

 
    

Step – IV: add suitable multiples of the top row to the rows below so that all 

entries below the leading 1 become zero. 

[
        
        
          

]                    

Step – V: now cover the top row in the matrix and begin again with step – I 

applied to the submatrix that remains or remaining rows. Continue in this way until 

the entire matrix is in row echelon form. 

[

        

     
 

 
  

          

]             
 

 
    

[

        

     
 

 
  

    
 

 
 

]                    

[

        

     
 

 
  

      

]                 

Hence above matrix is in row echelon form.  

Thus corresponding system is  
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Solving for leading variables we obtain and in next line solution using free variable 

           
 

 
                          

           
 

 
       

                                  

Finally we express the general solution of the system parametrically by assigning 

the free variables       arbitrary values ‗r‘ and ‗s‘ respectively. This yield 

                                         

Above is our required solution. 

 

PRACTICE:   

1. Solve the linear system by Gauss‘s Elimination method. 

i.              

               

                

ii.                

                

               

iii.             

               

              

                            

iv.          

             

            

 

2.  Find two different row echelon forms of *
  
  

+ 

 

Available at MathCity.org
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Gauss Jordan Elimination 

Procedure: 

i. In this method we reduce the augmented matrix into reduced echelon form. 

In this way, the value of last variable is calculated. 

ii. Then by backward substitution, the values of remaining unknown can be 

calculated. 

Example: Solve the matrix using Gauss‘s Elimination method. 

[
        
          
         

]  

Solution: Firstly we reduce the given matrix in reduced echelon form. 

Step – I: locate the left most column that does not consist entirely of zeros. 

[
        
          
         

]  

Step – II: interchange the top row with another row, if necessary, to bring a non – 

zero entry to the top of the column found in step – I. 

[
          
        
         

]                 

Step – III: if the entry that is now at the top of the column found in step – I is ‗a‘, 

multiply the first row by ‗1/a‘ in order to introduce a leading 1. 

[
        
        
         

]            
 

 
    

Step – IV: add suitable multiples of the top row to the rows below so that all 

entries below the leading 1 become zero. 

[
        
        
          

]                     
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Step – V: now cover the top row in the matrix and begin again with step – I 

applied to the submatrix that remains or remaining rows. Continue in this way until 

the entire matrix is in row echelon form. 

[

        

     
 

 
  

          

]             
 

 
    

[

        

     
 

 
  

    
 

 
 

]                    

[

        

     
 

 
  

      

]                 

Step – VI:  Beginning with the last non – zero row and working upward, add 

suitable multiples of each row to the rows above to introduce zeros above the 

leading 1‘s.  

[
        
      
      

]               
 

 
    

[
       
      
      

]                    

[
      
      
      

]                    

Hence above matrix is in row reduced echelon form. Thus corresponding system is  

                        

Solving for leading variables we obtain and in next line solution using free variable 
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Finally we express the general solution of the system parametrically by assigning 

the free variables       arbitrary values ‗r‘ and ‗s‘ respectively. These yields 

                                          

Above is our required solution. 

Example:   

Solve the linear system by Gauss‘s Jordan Elimination method. 

                   

                             

                 

                        

Solution: 

[

        
           
         
        

]  

[

        
           
         
        

]                                   

[

        
       
         
        

]                    

[

        
       
       
       

]                                
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[

        
       
       
       

]                 

[
 
 
 
        
       

      
 

 

       ]
 
 
 
             

 

 
    Echelon form. 

[
 
 
 
 
        
       

      
 

 
       ]

 
 
 
 

                    

[
 
 
 
       
       

      
 

 

       ]
 
 
 
                     reduced echelon form. 

Thus corresponding system is  

   
 

 
                            

Solving for leading variables we obtain and in next line solution using free variable 

   
 

 
                           

Finally we express the general solution of the system parametrically by assigning 

the free variables          arbitrary values ‗r‘, ‗s‘ and ‗t‘ respectively. These 

yields 

                                         
 

 
    

Above is our required solution. 

☼ Find reduced row echelon forms of [
   
      
   

] without introducing 

fractions at any intermediate stages. 
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PRACTICE:   

1. Solve the linear system by Gauss‘s Jordan Elimination method. 

 

i.                

                

               

 

ii.             

               

              

                            

 

iii.              

               

                

 

iv.          

             

            

2. Solve the following system for x, y and z. using any method. 
 

 
 

 

 
 

 

 
    

 

 
 

 

 
 

 

 
    

 
 

 
 

 

 
 

  

 
    

Example:  Solve the linear system by Gauss Elimination method. Or show that 

system has no solution. 

[
      
       
       

]   

Solution: 

[
      
       
       

]  [
      
     
     

]                          

 [
      
     
      

]           
 

 
                                  

The matrix is now in echelon form. The third row of the echelon matrix 

corresponds to the degenerate equation                     which has 

no solution, thus the system has no solution. 
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Homogeneous system of linear equations 

A system of linear equations      is said to be Homogeneous if     .i.e. 

   . or A system of linear equations is said to be Homogeneous if the constant 

terms are all zeros; i.e. the system has the form; 

                       

                       

::::::::::::::::::::::::::::::::::::::::::::::::::: 

                       

Remark: 

 Every homogeneous system of linear equations is consistent because all such 

systems have           …..       as a solution. This solution is 

called the Trivial Solution. If there are others solutions, they are called 

nontrivial solutions. 

 Because a homogeneous linear system always has the trivial solution, there 

are only two possibilities for its solutions: 

i. The system has only the trivial solution. 

ii. The system has infinitely many solutions in addition to the trivial 

solution. 

Example:  

Using Gauss Jordan‘s Elimination method matrix [

        
          
         
        

] 

can be converted into row reduced echelon form as [

       
       
       
       

] 

Thus corresponding system is                                  

These yields                                               

Available at MathCity.org
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PRACTICE:   

1) Solve the linear system by any method, Gauss elimination method or Gauss‘s 

Jordan Elimination method 

i.               

                      

                        

 

ii.           

            

               

 

iii.                

                

 

iv.           

              

              

                

v.            

          

              

                

 

vi.              

              

               

                 

                

vii.                  
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viii.            

                     

                

                 

 

ix.            

             

             

 

x.                    

                      find       

                    

 

2) Solve the following systems where ‗a‘ , ‗b‘ and ‗c‘ are constants. 

a)            ,           ,            

b)         ,          

Remark:  A homogeneous system AX = 0 with more unknowns than equations 

has a nonzero solution. 

Nonhomogeneous and Associated Homogeneous Systems 

Let AX = B be a nonhomogeneous system of linear equations. Then AX = 0 is 

called the associated homogeneous system. For example, 

             

              

             

              

show a nonhomogeneous system and its associated homogeneous system. 

Free variable theorem for Homogeneous system: 

If a homogeneous linear system has ‗n‘ unknowns, and if the reduced row echelon 

form of its augmented matrix has ‗r‘ non – zero rows, then the system has     

free variables. 
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Chapter #2 

MATRICES AND MATRIX OPERATIONS 
Matrices:  

A matrix A over a field K or, simply, a matrix A (when K is implicit) is a 

rectangular array of scalars usually presented in the following form: 

  [

          

          

    
          

]  [   ]  

The numbers in the array are called the entries in the matrix. 

Note that  

 the element aij , called the ij-entry or ij-element, appears in row i and column 

j. We frequently denote such a matrix by simply writing   [   ] 

 A matrix with ‗m‘ rows and ‗n‘ columns is called an m – by –n  matrix, 

written    . The pair of numbers m and n is called the size of the matrix.  

 Two matrices A and B are equal, written A = B, if they have the same size 

and if corresponding elements are equal. Thus, the equality of two     

matrices is equivalent to a system of    equalities, one for each 

corresponding pair of elements. 

 A matrix with only one row is called a row matrix or row vector, and a 

matrix with only one column is called a column matrix or column vector. 

 A matrix whose entries are all zero is called a zero matrix and will usually 

be denoted by 0 or  ⃗ . 

 Matrices whose entries are all real numbers are called real matrices and are 

said to be matrices over R. 

 Analogously, matrices whose entries are all complex numbers are called 

complex matrices and are said to be matrices over C. This text will be 

mainly concerned with such real and complex matrices. 
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Square matrix:   

A square matrix is a matrix with the same number of rows as columns. An     

square matrix is said to be of order ‗n‘ and is sometimes called an n-square matrix. 

Diagonal and Trace:   

Let   [   ] be an n-square matrix. The diagonal or main diagonal of A consists 

of the elements with the same subscripts—that is,                

The trace of A, written as        , is the sum of the diagonal elements.                  

Namely,                      

For example     [

     
     
     
     

]   

 Then         {        } and                    

Remark: (Prove Yourself) 

Suppose   [   ] and   [   ] are n – square matrices and ‗k‘ is scalar then 

1)                     

2)              

3)               

4)               
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Addition and Subtraction of matrices: 

If A and B are matrices of same size, then the sum      is the matrix obtained by 

adding the entries of B to the corresponding entries of A,  and  the difference 

    is the matrix obtained by subtracting the entries of B to the corresponding 

entries of A.   

For example 

  [
    

     
     

]   and    [
     
     
     

] 

Then      [
     
    
    

]  and      [
      

      
       

] 

Remark: addition and Subtraction of two matrices will be defined if both matrices 

are equal i.e. having same size and corresponding entries. 

e.g    [
    

     
     

] and   *
  
  

+  are not defined for above operations. 

Scalar Multiplication: 

If A is any matrix and c is any scalar, then the product cA is the matrix obtained by 

multiplying each entry of the matrix A by c. the matrix cA is said to be a Scalar 

Multiple of A.  

For example 

  [
    

     
     

]   and    [
     
     
     

] 

Then       [
      
      

      
] and    [

      
     
      

] 
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Matrix Multiplication (Entry method): 

If A is an     matrix and B is an     matrix, then the product AB is then 

    matrix whose entries are determined as follows; 

To find the entry in the row ‗i‘ and column ‗j‘ of AB, single out row ‗i‘ from 

the matrix A and column ‗j‘ from the matrix B. multiply the corresponding entries 

from the row and column together, and then add up the resulting products. 

For example   if   *
   
   

+   and    [
    
     
    

] 

Then    *
   
   

+ [
    
     
    

] 

[
                                                                                 
                                                                                 

]  

   *
        
       

+  

Row Column Rule (General Product definition):   

If   [   ] is an     matrix and   [   ] is an     matrix, then the product 

AB is then     matrix given as follows; 

                               

Remark: multiplication of two matrices will be defined if number of column of 1
st
 

matrix equals to the number of rows of 2
nd

 matrix. 

Transpose of a Matrix:  If   [   ] is an     matrix, then the transpose of A, 

denoted by    is defined to be the     matrix that results by interchanging the 

rows and columns of A. i.e.              

Like    *
   
   

+  then      [
  
  
  

] 
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PRACTICE:  

1. Suppose that A, B, C, D and E are matrices with the following sizes; 

                

                                                           

In each part, determine whether the given matrix expression is defined. For those 

that are defined, give the size of the resulting matrix. 

i.    

ii.     

iii.      

iv.       

v.       

vi.         

vii.     

viii.    

ix.       

x.        

xi.        

xii.       

 

2. Use the following matrices to compute the indicated expression if it is 

defined. 

  [
  

   
  

]    *
   
  

+    *
   
   

+    [
   

    
   

]  

  [
   

    
   

]  

i.     

ii.     

iii.    

iv.      

v.       

vi.     

vii.          

viii.       

ix.          

x.         

xi.       

xii.       

xiii.       

xiv.        

xv.        

xvi. 
 

 
   

 

 
  

xvii.      

xviii.         

xix.       

xx.         

xxi.              

xxii.             

xxiii.            
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Matrix form of a linear System (Already discussed) 

Consider the general system of   equations in   unknowns. 

                        

                        

::::::::::::::::::::::::::::::::::::::::::::::::::: 

                        

Such a system has associated with it the following form: 

[

          

          

    
          

] [

  

  

 
  

]  [

  

  

 
  

]        

Also 

  [

            

            

     
            

]  and    [

          

          

    
          

]       

The first matrix M is called the augmented matrix of the system, and the second 

matrix A is called the coefficient matrix. 
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PRACTICE:  

1. Express the given linear system as a single matrix equation       

a)               

              

              

 

b)              

               

                  

              

c)               

          

            

         

 

d)                

               

          

 

2. Express the matrix equation as a system of linear equation. 

a) [
    

     
    

] [

  

  

  

]  [
 
 
 

] b) [
    
   

    
] [

  

  

  

]  [
 

  
 

] 

c) [
   
   
     

] 0
 
 
 

1  [
 
 
 

] 

d) [

     
     
    

     

] [

 
 
 
 

]  [

 
 
 
 

] 

 

3. Solve the matrices for ‗a‘, ‗b‘, ‗c‘ and ‗d‘. 

a) *
  

     
+  *

     
      

+ 

b) *
      

        
+  *

  
  

+ 

 

4. Solve the matrices for ‗k‘ if any that satisfy the equation. 

a) [   ] [
   
   
    

] [
 
 
 

]    

b) [   ] [
   
   
   

] [
 
 
 

]    

Available at MathCity.org
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Partitioned Matrices 

A matrix can be subdivided or Partitioned into smaller matrices by inserting 

horizontal and vertical rules between selected rows and columns. 

For example, the following are three possible partitions of a general     

matrix    [

            

            

            

]. 

 

The first is a partition of A into four submatrices                  

  [

            

            

            

]  [
      

      
]  

 

The second is a partition of A into its row vectors           

  [

            

            

            

]  [

  

  

  

]  

 

The third is a partition of A into its column vectors           

  [

            

            

            

]  [      ]  
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Row method 

This will be computed by following procedure. If the system is given as follows; 

[

          

          

    
          

] [

  

  

 
  

]  [

  

  

 
  

]         

Then                           [                      ]  

Or 

                       [       ]  [          ]  

For example   if   *
   
   

+   and    [
    
     
    

] 

Then   *
   
   

+ [
 

  
 

]  [
                     
                     

]  *
  
  

+ 

Column method 

This will be computed by following procedure. If the system is given as above; 

Then                       [                   ]   

Or                  [

  

  

 
  

]   [

   
   

 
   

]  

For example   if   *
   
   

+   and    [
    
     
    

] 

Then   [   ] [
    
     
    

]  [        ]  
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PRACTICE:  

Use the following matrices and either the row method or column method, as 

appropriate, to find the indicated row or column. 

  [
    
   
   

]   and     [
    
   
   

] 

i. The first row of     

ii. The third row of     

iii. The second column of     

iv. The first column of     

v. The third row of     

vi. The third column of     

vii. The first column of     

viii. The third column of     

ix. The second row of     

x. The first column of     

xi. The third column of     

xii. The first row of     
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Linear combination of matrices:  

If             are matrices of the same sizes and            are scalars then an 

expression of the form                     is called a linear combination 

of the matrices            with coefficients            

General form: If   [

          

          

    
          

]    [

  

  

 
  

] 

Then 

    [

                

                

    
                

]    [

   

   

 
   

]    [

   

   

 
   

]      [

   

   

 
   

]  

Matrix product as a Linear combination: 

For example   [
    
    
   

] [
 

  
 

]  [
 

  
  

]  can be written as in linear 

combination   [
  
 
 

]   [
 
 
 

]   [
 

  
 

]  [
 

  
  

] 

Column of a product as a Linear combination: 

Since  *
   
   

+ [
    
     
    

]  *
        
       

+                      

then *
  
 

+   *
 
 

+   *
 
 

+   *
 
 

+  

*
  
  

+  *
 
 

+  *
 
 

+   *
 
 

+   

*
  
  

+   *
 
 

+   *
 
 

+   *
 
 

+  

*
  
 

+   *
 
 

+   *
 
 

+   *
 
 

+  
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PRACTICE:  Use the following matrices and linear combination, to find the 

indicated operations. 

  [
    
   
   

]   and     [
    
   
   

] 

i. Each column vector of     as a linear combination of the column vector of 

  

ii. Each column vector of     as a linear combination of the column vector of 

  

iii. Each column vector of     as a linear combination of the column vector of 

  

iv. Each column vector of     as a linear combination of the column vector of 

  

Column Row expansion 

Suppose that an     matrix A  is partitioned into its ‗r‘ column vectors 

           (each of size     ) and an     matrix B  is partitioned into its ‗r‘ 

row vectors            (each of size     ). Each term in the sum 

                     has size     so that sum itself is  an     matrix. 

So from above discussion we write the column row expansion of AB as follows; 

                     

Question: find the column row expansion of the product; 

   *
  
   

+ *
   

    
+  

Solution: using the column of A and rows of B as follows; 

   *
 
 

+ [   ]  *
 

  
+ [    ]  

   *
   
   

+  *
     
     

+  *
     
    

+  
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PRACTICE:   

Use the column row expansion of AB to express this product as a sum of matrices. 

1)   *
   
   

+   and     *
   

    
+ 

2)   *
   
   

+   and     *
   

    
+ 

3)   *
   
   

+   and     [
  
  
  

] 

4)   *
   
    

+   and     [
   
  
   

] 

Square Root of a Matrix:   

A matrix B is said to be square root of a matrix A if      

1) Find two square roots of     *
  
  

+ 

2) How many different square roots can you find of   *
  
  

+? 

3) Do you think that every     matrix has at least one square root? Explain 

your reasoning. 

 

Properties of matrix arithmetic (addition and scalar multiplication):  

i.          (Commutative law for matrix addition) 

ii.                  (Associative law for matrix addition) 

iii.              (Associative law for matrix multiplication) 

iv.               (Left distributive law) 

v.               (Right distributive law) 

vi.              

vii.              

viii.              

ix.              

x.              

xi.              

xii.             

xiii.                   
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Question: Verify the property             for the following matrices 

  [
  
  
  

]    *
  
  

+    *
  
  

+  

Solution: 

            [
  
  
  

] (*
  
  

+ *
  
  

+)  [
  
  
  

] *
   
  

+  

            [
    
    
  

]  

            ([
  
  
  

] *
  
  

++ *
  
  

+  [
  

    
  

] *
  
  

+  

            [
    
    
  

]  

Hence verified that             

PRACTICE:   

Verify the law given in following lines for given matrices and scalars. 

  *
   
  

+    *
  
   

+    *
  

    
+              

i. Associative law for matrix addition 

ii. Associative law for matrix multiplication 

iii. Left distributive law 

iv.              

v.              

vi.              

vii.              

viii.             

ix.                   

x.         

xi.            

xii.              

xiii.           
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Important Remark:  

In matrix arithmetic, the equality of AB and BA can fail for three reasons; 

i. AB may be defined and BA may not defined ( for example,  if A is     

and B is    ) 

ii. AB and BA may both be defined, but they may have different sizes ( for 

example,  if A is     and B is    ) 

iii. AB and BA may both be defined and have the same size, but the two 

products may be different. (as given below) 

Example:  for given matrices 

  *
   
  

+    *
  
  

+  

   *
   
  

+ *
  
  

+  *
    
   

+  and     *
  
  

+ *
   
  

+  *
  

   
+ 

Clearly       

 

Zero Matrix: A matrix whose entries are all zero is called a zero matrix. 

For example: *
  
  

+  [
  
  
  

]  [ ] 

Remark:  

i. We will denote a zero matrix by O. i.e.   *
  
  

+ 

ii. If we want to mentions size then write as      *
  
  

+ i.e.      

iii. ‗O‘ plays the same role in matrix equation as the number ‗0‘ in the 

numerical equations. i.e.            

iv.       

v.              

vi.         

vii. If                 

viii. If        and     then     but this law does not hold in general. 

ix. If       then      or     but this law does not hold in general. 

Available at MathCity.org
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Failure of Cancellation law:  for given matrices 

  *
  
  

+    *
  
  

+    *
  
  

+  we have        *
  
  

+ 

Although     but cancelling of A from both sides of       does not lead to 

the statement     

Failure of Zero Product with non – zero factors:   

For given matrices     *
  
  

+    *
  
  

+  

We have       but      also     

Identity Matrix: A matrix in which all diagonal elements are 1 and other are zero 

is called the identity matrix. Or the n – square identity or unit matrix, denoted by 

In, or simply I, is the n-square matrix with 1‘s on the diagonal and 0‘s elsewhere. 

The identity matrix I is similar to the scalar 1 in that, for any n-square matrix A, 

         

For example: *
  
  

+  [
   
   
   

]  [ ] 

Remark:  

i. We will denote an identity matrix by I. i.e.   *
  
  

+ 

ii. If we want to mentions size then write as      *
  
  

+ i.e.      

iii.        for example     *
         

         
+ [

   
   
   

]    

iv.        for example     *
  
  

+ *
         

         
+    

v. If R is the reduced row echelon form of an     matrix A , then either R 

has a row of zeros or R is the identity matrix   . 

vi.       and                    

vii.                                 
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PRACTICE:   

1. Compute the given operation using A and B both. 

  *
  
  

+    *
  
  

+  

i.     and     

ii.          and          

2. Show that the matrix   *
  
  

+ satisfies the equation 

                      

3. A square matrix A is said to be idempotent if      

Then Show that if A is idempotent, then so is     

Scalar Matrices:  

For any scalar k, the matrix    that contains k‘s on the diagonal and 0‘s elsewhere 

is called the scalar matrix corresponding to the scalar k.  Observe that    

                That is, multiplying a matrix A by the scalar matrix    is 

equivalent to multiplying A by the scalar k. 

Invertible (Nonsingular) Matrices:  

A square matrix A is said to be invertible or nonsingular if there exists a 

matrix B such that            where   is the identity matrix. If no such matrix 

B can be found, then A is said to be Singular. 

Example: let   *
   

   
+    *

  
  

+ 

Then      *
   

   
+ *

  
  

+  *
  
  

+    

Also     *
  
  

+ *
   

   
+  *

  
  

+    

Remark:  

i. If B and C are both inverse of a matrix A then     

ii. An invertible matrix has exactly one inverse. Denoted as     

iii.             

iv.     
 

 
 for matrices. 
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Theorem (necessary and sufficient condition for the existence of invertible 

matrix):  

The matrix   *
  
  

+ is invertible if and only if          in this case 

    
 

     
*

   
   

+  
 

| |
       

Inverse of a     Matrix: Let A be an arbitrary     matrix, then its inverse 

can be defined as follows;      
 

| |
        

In other words, when | |   , the inverse of a     matrix A may be obtained 

from A as follows: 

(1) Interchange the two elements on the diagonal. 

(2) Take the negatives of the other two elements. 

(3) Multiply the resulting matrix by 
 

| |
 or, equivalently, divide each element by | | 

In case  | |   , the matrix A is not invertible. 

Example: let   *
  
  

+    *
   
   

+ then find         

    
 

| |
       

 

 
*

   
   

+  [

 

 
 

 

 

 
 

 

 

 

]  

For     since | |    therefore B is not invertible. 

 

PRACTICE:  Compute the inverse of the following matrices. 

i. *
   
  

+ 

ii. *
  
  

+ 

iii. *
  
  

+ 

iv. *
  

    
+ 

v. *
        
         

+ 

vi. [

 

 
        

 

 
        

 

 
        

 

 
        

] 
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Solution of a Linear System by Matrix Inversion: 

 Consider we have a system       

 Fins     using formula      
 

| |
       

 Use formula        

 

PRACTICE:   

Find the unique solution of given linear system. 

i.            and           

ii.          and           

iii.          and            

iv.           and          

Theorem:  

If    and   are invertible matrices with the same size then AB is invertible and 

              

Proof:  

Consider                                       

Similarly                                         

Then                                           

Or                                           

                                              

                              

In general                
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Polynomial Matrix:  

If A is a square matrix, say     and if                    is any 

polynomial, then we define the     matrix      to be  

                     

Where   is the     identity matrix. Above expression is called a matrix 

polynomial in A. 

Example:  

Let   *
   
  

+  and              then find       

Solution: given polynomial is              

               *
   
  

+
 

  *
   
  

+   *
  
  

+  

      *
  
  

+     after solving. 

Remark:  

if                 then for square matrix A we can write                 

 

PRACTICE:   

1) Compute      for the given matrix A and the following polynomials; 

                                         

  *
  
  

+  and    *
  
  

+ 

2) Verify the statement                 for the stated matrix A and given 

polynomials; 

                               

i.   *
  
  

+ 

ii.   *
  
  

+ 
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Properties of exponents:  

If A is invertible and ‗n‘ is a non – negative integer, then 

i.     is invertible and           

ii.    is invertible and                   

iii. kA is invertible for any non – zero scalar ‗k‘, then               

 

Example: let   *
  
  

+      *
   

   
+  then 

           *
   

   
+ *

   
   

+ *
   

   
+  *

     
     

+ …….(i) 

Also     *
  
  

+ *
  
  

+ *
  
  

+  *
    
    

+ 

Then         
 

|  |
        

 

                   
*

     
     

+ 

       *
     

     
+   …….(ii) 

Thus from (i) and (ii)                   

 

Theorem: 

If A is invertible matrix, then    is also invertible and               

Proof: since we know that      

Then                          Also                        

Thus                                and             

This implies                

REMEMBER:        [

 

     
 

  

     
  

     

 

     

]         
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PRACTICE (MIXED):   

1) Compute then given operation for following matrices; 

i. *
   
  

+ 

ii. *
  
  

+ 

iii. *
  
  

+ 

iv. *
  

    
+ 

a)               

b)           

c)                   

d)               

 

2) Use the given information to find A 

i.        *
    
   

+ 

ii.         *
     
  

+ 

iii.          *
    
  

+ 

iv.     *
    
  

+ 

 

3) Compute     and     using A and B both. 

  *
  
  

+    *
  
  

+  

 

4) A square matrix A is said to be idempotent if      

Then Show that if A is idempotent, then      is invertible and is its own 

inverse. 

5) Determine whether given matrices are invertible, and if so, find the inverse. 

(Hint: solve AX = I for X by equating corresponding entries on the two sides) 

  [
   
   
   

]    [
   
   
   

] 

6) Give an example of     matrices such that                  
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Elementary Matrices Let   denotes an elementary row operation and let      

denote the results of applying the operation   to a matrix A. Now let   be the 

matrix obtained by applying e to the identity matrix   ; that is,        Then E is 

called the elementary matrix corresponding to the elementary row operation e. 

Note that E is always a square matrix.    

OR A matrix E is called an elementary matrix if it can be obtained from 

an identity matrix by performing a single elementary row operation. 

Examples: Below are four elementary matrices and the operations that produce 

them; 

*
  
   

+   Multiply the 2
nd

 row of    by    

[

    
    
    
    

]      interchange the 2
nd

 and 4
th
 rows of    

[
   
   
   

]      add 3 time the third row of    to the first row. 

[
   
   
   

]     multiply the 1
st
 row of    by 1 

PRACTICE:  Determine whether the given matrix is elementary. 

i. *
  

   
+  

ii. *
   
  

+ 

iii. [
   
   
   

] 

iv. [

    
    
    
    

] 

v. [
   
   
   

] 

vi. [
    
   
   

] 

vii. [
  

 √ 
]

Available at MathCity.org
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A Method for Inverting Matrices (Inversion Algorithm) 

To find the inverse of an invertible matrix A 

 Find a sequence of elementary row operations that reduces A to the identity. 

 Then perform that same sequence of operations on    to obtain     

 For this we will change [    ] to [      ] 

Example: Find the inverse of   [
   
   
   

] 

Solution:   

 [
   
   
   

 
   
   
   

] 

 [
   
    
    

 
   

    
    

]                 

 [
   
    
    

 
   

    
    

]           

 [
   
    
   

 
   

    
     

]        

 [
   
   
   

 
     
      
     

]                  

 [
   
   
   

 
      
      
     

]          

     [
      
      
     

]   

 

 

 

PROCEDURE 

Write given matrix A 

Make form [𝐴  𝐼] 

Use row operation and shift 

identity matrix on left side. 

i.e. [𝐼  𝐴  ] 
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Remark: 

Often it will not be known in advance if a given     matrix A is invertible. 

However, if it is not, then by results (part i, iii); 

A is invertible. Then the reduced row echelon form of A is    

It will be impossible to reduce A to    by elementary row operations. This will be 

signaled by a row zeros appearing on the left side of the partition at some stage of 

the inversion algorithm. If this occurs, then you can stop the computations and 

conclude that A is not invertible. 

Example:  

Find the inverse of   [
   
    

    
] 

Solution:  

[
   
    

    
 

   
   
   

]  

 [
   
     
   

 
   

    
   

]                 

 [
   
     
   

 
   

    
    

]          

Since we obtain a row of zeros on the left side, A is not invertible. 
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PRACTICE:   

1. Find inverse of given matrices, if exists. 

i. *
  
  

+ 

ii. *
   

   
+ 

iii. *
   
    

+ 

iv. *
  

    
+ 

v. [
   
   
   

] 

 

vi. [
     
   

     
] 

 

vii. 

[
 
 
 
 
 

 

 

 
 

 

 
 

 

 

 

 

  
 

 
 

 

 

 

  ]
 
 
 
 

 

 

viii. 

[
 
 
 
 
 

 

 

 
 

 

 
 

 
 

 

 
 

 

  
 

 
 

 

 

 

  ]
 
 
 
 

 

ix. [
   
   
   

] 

 

x. [
√  √  

  √ √  
   

] 

 

xi. [
   
   
   

] 

 

xii. [

    
    
    
    

] 

xiii. [

     
     
    
       

] 

xiv. [

    
    
     
     

] 
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2. Find the inverse of each of the following     matrices, where             

and k are all non – zeros. 

i. [

     
     
     
     

]  

ii. [

    
    
    
    

]  

iii. [

     

     
     
     

]  

iv. [

    
    
    
    

]  

3..Find all values of ‗c‘, if any, for which the given matrix is invertible. 

i. 0
   
   
   

1  ii. [
   
   
   

]  

4..Express the matrix and its inverse as products of elementary matrices. 

i. *
   
  

+ ii. *
  

   
+  

iii. [
    
   
   

]  iv. [
   
   
   

]  

5.. Show that the matrices A and B are row equivalent by finding a sequence of 

elementary row operations that produces B from A, and then use that result to find 

a matrix C such that CA = B. 
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Diagonal Matrix:  

A square matrix in which all the entries off the main diagonal (without main 

diagonal) are zero is called a Diagonal Matrix. Examples are given as follows; 

*
  
   

+ , [
   
   
   

] ,  [

    
     
    
    

] ,   *
  
  

+ 

Remark: 

 A general     diagonal matrix D can be written as 

  [

     
     
    
     

]  

 A diagonal matrix is invertible if and only if all of its diagonal entries are 

non – zero. In this case inverse is   

    

[
 
 
 
 
 

 

  
   

     

 
 

  
   

    

    

   
 

  
   

  
]
 
 
 
 
 

    

 If D is the diagonal matrix and ‗k‘ is a positive integer, then 

   

[
 
 
 
  

    

   
   

    
     

 ]
 
 
 

  

Is Null (Zero) matrix a diagonal matrix? Or why Null (Zero) matrix a 

diagonal matrix? 

A diagonal matrix is one in which all non – diagonal entries are zero. Entries on 

the main diagonal may or may not be zero. Clearly this is also satisfied. Hence, a 

zero square matrix is upper and lower triangular as well as a diagonal matrix. 
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Example: if     [
   
    
   

]  then 

    [

   

  
 

 
 

  
 

 

]      [
   
      
    

]       [

   

  
 

   
 

  
 

  

]  

 

Triangular Matrix:  A square matrix   [   ] that is either upper triangular 

or lower triangular is called Triangular matrix.  

For example; [

          

        

    
      

] 

Lower triangulation matrix: A matrix having only zeros above the diagonal is 

called Lower Triangular matrix. 

(Or)  

A        matrix ―L‖ is lower triangular if its entries satisfy                 

i.e.        [

     
       
         

] 

Upper triangulation matrix: A matrix having only zeros below the diagonal is 

called Upper Triangular matrix. 

(Or)  

A        matrix ―U‖ is upper triangular if its entries satisfy                 

i.e.        [

         

       

     

] 
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REMARKS: 

 A square matrix   [   ] is upper triangular iff all entries to the left of the 

main diagonal are zero. i.e.        if     

 A square matrix   [   ] is lower triangular iff all entries to the right of the 

main diagonal are zero. i.e.        if     

 A square matrix   [   ] is upper triangular iff the     row starts with at 

least     zeros for every  . 

 A square matrix   [   ] is lower triangular iff the     column starts with 

at least     zeros for every  . 

 

PRACTICE:   

1. Classify the matrix as upper triangular, lower triangular, or diagonal, and decide 

by inspection whether the matrix is invertible. (Recall that: diagonal matrix is both 

upper and lower triangular, so there may be more than one answer in some parts.) 

i. *
  
  

+ ii. *
  
  

+ 

iii. [

    
   

  
 

 

] iv. [
    
   
   

] 

v. *
  
  

+ vi. *
   
  

+

vii. [

   

 
 

 
 

    

] viii. [
   
   
   

] 
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2.. Find the product by inspection. 

i. [
   
    
   

] [
  

   
  

]  

ii. *
    

     
+ [

    
   
   

] 

iii. [
   
   
    

] [
       
      

      
] 

iv. [
   
    
   

] [
    
   

     
] [

    
   
   

] 

3.. Find         and      (where ‗k‘ is any integer) by inspection. 

i. *
  
   

+ 
ii. [

    
   
   

] 

iii. 

[
 
 
 
 

 

 
  

 
 

 
 

  
 

 ]
 
 
 
 

 
iv. [

     
     
     
    

] 

 

4.. Compute the product by inspection. 

i. [
   
   
   

] [
   
   
   

] [
   
   
   

] 

ii. [
    
   
   

] [
   
   
   

] [
   
    
   

] 

5..Compute the indicated quantity. 

i. *
  
   

+
  

 

ii. *
  
   

+
    

 



76 
 

Visit us @ Youtube: “Learning With Usman Hamid” 

6.. Multiplying by diagonal matrices compute the product by inspection. 

i. [
   
   
   

] [

  
  
  

] 

ii. [

   
   
   

] [
   
   
   

] 

iii. [

  
  
  

] *
  
  

+ 

iv. [
   
   
   

] [

   
   
   

] 

 

7... Determine by inspection whether the matrix is invertible. 

i. [
    
    
    

] ii. [
    
   
   

] 

iii. [

    
     
     
     

] iv. [

    
      
      
     

] 

 

8… Find the diagonal entries of AB by inspection. 

i.   [
   
    
    

]  and     [
    
   
   

] 

ii.   [
   

    
    

]  and     [
   
   
   

] 
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Symmetric Matrices:  

A matrix A is symmetric if A
T
 = A. Equivalently,   [   ] is symmetric if 

symmetric elements (mirror elements with respect to the diagonal) are equal, that 

is, if each         

Examples:    *
   

   
+  , [

   
    
   

] ,  [

     
     
    
     

] 

Skew Symmetric Matrices:  

A matrix A is skew-symmetric if A
T
 =     or, equivalently, if each          

 Clearly, the diagonal elements of such a matrix must be zero, because 

         implies       

(Note that a matrix A must be square if A
T
 = A or A

T
 =    ) 

Remark: 

 The product of two symmetric matrices is symmetric iff the matrices 

commute. 

 If A is an invertible symmetric matrix, then     is symmetric. 

 If A is an invertible, then     and     are also invertible. 

Theorem: 

If A and B are symmetric matrices with the same size, and if ‗k‘ is any scalar, then 

a)    is symmetric. 

b)     and     are symmetric. 

c)    is symmetric. 

 

 

 

 

Available at MathCity.org
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PRACTICE:    

1) Find all values of unknown constant(s) for which A is symmetric. 

i.   *
   

     
+ ii.   *

    
       

+ 

iii.   [
              
     
    

] 

 

2) Find all values of ‗x‘  for which A is invertible. 

i.   [
       

      

     

] 

ii.   

[
 
 
 
   

 

 
  

   
 

 
 

      
 

 ]
 
 
 
 

 

 

3) Find a diagonal matrix that satisfies the given conditions. 

i.    [
   
    
    

] 

ii.     [
   
   
   

] 

 

4) Let A be     symmetric matrix, then 

i. Show that    is symmetric. 

ii. Show that          is symmetric. 

5) Find an upper triangular matrix that satisfies    *
   
   

+ 

 

6) Find all values of a,b,c and d for which A is skew symmetric. 

  [
                

           
     

] 
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Orthogonal Matrices:  

A real matrix A is orthogonal if        ; that is, if          . Thus, A 

must necessarily be square and invertible. 

Examples:    

[
 
 
 
 
 

 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 

 

 

 ]
 
 
 
 

    

Remark (discussed later): 

Vectors  ⃗    ⃗    ⃗       ⃗   in R
n
 are said to form an orthonormal set of vectors if 

the vectors are unit vectors and are orthogonal to each other. i.e. 

 ⃗    ⃗       {
           
           

   where     is known as Kronecker delta function. 

Theorem: Let A be a real matrix then following are equivalent; 

a) A is orthogonal. 

b) The rows of A form an orthonormal set. 

c) The columns of A form an orthonormal set 

Normal Matrices:   

A real matrix A is normal if it commutes with its transpose A
T
—that is, if 

        .If A is symmetric, orthogonal, or skew-symmetric, then A is normal. 

There are also other normal matrices. 

Examples:  let    *
   
  

+    

     *
   
  

+ *
  

   
+  *

   
   

+  

     *
  

   
+ *

   
  

+  *
   
   

+  
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COMPLEX MATRICES 

A matrix with complex entries is called a complex matrix. Since we know that 

       is a complex number then  ̅      ̅̅ ̅̅ ̅̅ ̅̅       is its conjugate. Then 

the conjugate of a complex matrix A is written as  ̅ is the matrix obtain from A by 

taking the conjugate of each entry in A. i.e. if   [   ] then  ̅  [ ̅  ] 

Remark: 

 The two operations of transpose and conjugation commute for any complex 

matrix. 

 The special notation    is used for the conjugate transpose of A. i.e.  

     ̅     ̅̅̅̅  

 If A is real then         (some author use    instead of   ) 

 

Examples:   

let    *
            

          
+   then     [

       
        
        

] 

Hermitian Matrix:  

A complex matrix A is said to be Hermitian if      

Remember:  

  [   ] is Hermitian iff symmetric elements are conjugate. i.e. if each      ̅   , 

in which case each diagonal element     must be real. 

Examples:  let      [
         

         
       

]    

Clearly the diagonal elements of A are real and the symmetric elements      and 

     ,      and      ,     and    are conjugate. Thus A is Hermitian. 
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Skew Hermitian Matrix:  

A complex matrix A is said to be Skew Hermitian if       

Unitary Matrix:  

A complex matrix A is said to be Hermitian if               i.e.         

Examples:  let      
 

 
[

       
     

        
]    

Clearly                i.e.         this yields A is Unitary matrix. 

Normal Matrices:   

A real matrix A is normal if it commutes with its transpose A
H
—that is, if 

        . 

Examples:  let      *
     

     
+    

Clearly           this yields A is Normal matrix. 

Note:   When a matrix A is real, Hermitian is the same as Symmetric and Unitary 

is the same as Orthogonal. 

 

PRACTICE:    

1) Find    where (a)   *
        
        

+ (b)   [
        

      
      

] 

2) Show that    [

 

 
 

 

 
 

 

 
 

 
 

 
  

 

 
 

 

 
 
] is unitary. 

3) Determine which of the following matrices are normal; 

(a)   *
     

     
+ (b)   *

  
    

+ 
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BLOCK MATRICES 

Using a system of horizontal and vertical (dashed) lines, we can partition a matrix 

A into submatrices called blocks (or cells) of A. Clearly a given matrix may be 

divided into blocks in different ways. For example, 

[

      
      
     
      

]  , [

      
      
     
      

] , [

      
      
     
      

]  

The convenience of the partition of matrices, say A and B, into blocks is that the 

result of operations on A and B can be obtained by carrying out the computation 

with the blocks, just as if they were the actual elements of the matrices. This is 

illustrated below, where the notation   [   ] will be used for a block matrix A 

with blocks Aij 

Suppose that   [   ] and   [   ] are block matrices with the same 

numbers of row and column blocks, and suppose that corresponding blocks have 

the same size. Then adding the corresponding blocks of A and B also adds the 

corresponding elements of A and B, and multiplying each block of A by a scalar 

‗k‘ multiplies each element of A by ‗k‘. Thus, 

    [

                      

                      

    
                      

]  

And      [

             

             

    
             

] 

The case of matrix multiplication is less obvious, but still true. That is, suppose 

that   [   ] and    [   ] are block matrices such that the number of columns 

of each block     is equal to the number of rows of each block     

(Thus, each product UikVkj is defined.)  
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Then 

   [

          

          

    
          

]  where                              

 

Square Block Matrices 

Let M be a block matrix. Then M is called a square block matrix if 

(i) M is a square matrix. 

(ii) The blocks form a square matrix. 

(iii) The diagonal blocks are also square matrices. 

The latter two conditions will occur if and only if there are the same numbers of 

horizontal and vertical lines and they are placed symmetrically. 

Consider the following two block matrices: 

  

[
 
 
 
 
     
     
     
     
     ]

 
 
 
 

  ,   

[
 
 
 
 
     
     
     
     
     ]

 
 
 
 

 

The block matrix A is not a square block matrix, because the second and third 

diagonal blocks are not square. On the other hand, the block matrix B is a square 

block matrix. 

Block Diagonal Matrices 

Let   [   ] be a square block matrix such that the non-diagonal blocks are all 

zero matrices; that is,       when    . Then M is called a block diagonal 

matrix. We sometimes denote such a block diagonal matrix by writing 

                          or                  
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The importance of block diagonal matrices is that the algebra of the block matrix 

is frequently reduced to the algebra of the individual blocks. Specifically, suppose 

      is a polynomial and M is the above block diagonal matrix. Then      is a 

block diagonal matrix, and             (                        ) 

Also, M is invertible if and only if each     is invertible, and, in such a case,     

is a block diagonal matrix, and                 
      

         
     

Analogously, a square block matrix is called a block upper triangular matrix if the 

blocks below the diagonal are zero matrices and a block lower triangular matrix if 

the blocks above the diagonal are zero matrices. 

Example: Determine which of the following square block matrices are upper 

diagonal, lower diagonal, or diagonal: 

  [
   
   
   

]     [

    
    
    
    

]    [
   
   
   

] 

  [
   
   
   

]  

(a) A is upper triangular because the block below the diagonal is a zero block. 

(b) B is lower triangular because all blocks above the diagonal are zero blocks. 

(c) C is diagonal because the blocks above and below the diagonal are zero blocks. 

(d) D is neither upper triangular nor lower triangular. Also, no other partitioning of 

D will make it into either a block upper triangular matrix or a block lower 

triangular matrix. 

Periodic Matrix: A square matrix A is said to be periodic matrix of period k, 

where k is the least positive integer such that        

Idempotent Matrix: A square matrix A is said to be idempotent matrix if      

Nilpotent Matrix: A square matrix A is said to be Nilpotent matrix of index k, 

where k is the least positive integer such that      

Involutory: A square matrix A is said to be Involutory  matrix if      
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Rank of a Matrix:  The rank of a matrix A, written rank A , is equal to the 

number of pivots in an echelon form of A. It is equal to the number of non – zero 

rows in its echelon form. 

The rank is a very important property of a matrix and, depending on the 

context in which the matrix is used; it will be defined in many different ways. Of 

course, all the definitions lead to the same number. 
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Canonical Form of a Matrix 
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Chapter # 3 

VECTOR  SPACES 
This chapter introduces the underlying structure of linear algebra that of a finite 

dimensional vector space. Where vector space is a collection of objects, called 

vectors, which may be added together and multiplied by numbers, called scalars. 

Vectors: Many physical quantities, such as temperature and speed, possess only 

‗‗magnitude.‘‘ These quantities can be represented by real numbers and are called 

scalars. On the other hand, there are also quantities, such as force and velocity, that 

possess both ‗‗magnitude‘‘ and ‗‗direction.‘‘ These quantities, which can be 

represented by arrows having appropriate lengths and directions and emanating 

(originating) from some given reference point O, are called vectors. The tail of the 

arrow is called initial point of the vector and the tip the terminal point of the 

vector. 

Remark: Mathematically, we identify the vector    with its         and write 

           Moreover, we call the ordered triple         of real numbers a point 

or vector depending upon its interpretation. We generalize this notion and call an 

n- tuple              of real numbers a vector. However, special notation may be 

used for the vectors in R
3
 called spatial vectors. 

Vectors in R
n
: The set of all n-tuples of real numbers, denoted by R

n
 is called 

n-space. A particular n-tuple in R
n
 say                 is called a point or 

vector. The numbers    are called the coordinates, components, entries or elements 

of    .  Moreover, when discussing the space R
n
 

 we use the term scalar for the elements of R. 

 Two vectors, u and v, are equal, written u = v, if they have the same number 

of components and if the corresponding components are equal. Although the 

vectors         and         contain the same three numbers, these vectors 

are not equal because corresponding entries are not equal. 

 The vector              whose entries are all 0 is called the zero vector and 

is usually denoted by  ⃗  or 0. 
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VECTOR ADDITION AND SCALAR MULTIPLICATION 

Vector addition: Consider two vectors u and v in R
n
 , say  

 ⃗               and                 then Their sum written  ⃗     , is the 

vector obtained by adding corresponding components from u and v. That is, 

  ⃗                            

Scalar Product: The scalar product or, simply, product, of the vector v by a real 

number k, written kv, is the vector obtained by multiplying each component of  v 

by k. That is,                     

 Observe that u + v and kv are also vectors in R
n
 

 The sum of vectors with different numbers of components is not defined. 

 Negatives and subtraction are defined in R
n
 as follows: 

           and  ⃗      ⃗        The vector –v  is called the negative of 

v, and u – v is called the difference of u and v. 

 Linear combination of the vectors : suppose we are given vectors 

              in R
n
 and scalars            in R. We can multiply the 

vectors by the corresponding scalars and then add the resultant scalar 

products to form the vector 

                        

Such a vector v is called a linear combination of the vectors               

Vectors in R
3
 (Spatial Vectors),     Notation 

Vectors in R
3
, called spatial vectors, appear in many applications, especially in 

physics. In fact, a special notation is frequently used for such vectors as follows: 

i          denotes the unit vector in the ‗x‘ direction: 

j          denotes the unit vector in the ‗y‘ direction: 

k         denotes the unit vector in the ‗z‘ direction: 

Then any vector            in R
3
 can be expressed uniquely in the form 
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n – Space:  If ‗n‘ is a positive integer, then an ordered n – tuple is a 

sequence of ‗n‘ real numbers            . The set of all ordered n – tuples is 

called n – space and is denoted by  R
n
 

 

Finding the components of vectors: 

If a vector in 2 – space or 3 – space is positioned with its initial point at the origin 

of a rectangular coordinate system, then the vector is completely determined by the 

coordinates of its terminal point. We call these coordinates the components of 

vector v relative to the coordinate system. 

 If       
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   denote the vector with initial point              and terminal 

point              then the components of the vector are given by the formula 

      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                       

Example: The components of the vector       
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   with initial point            

and terminal point            are 

      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                                

PRACTICE:    

1) Find the components of the vector       
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

i.                     

ii.                          

iii.                        

iv.                          

 

2) Let  ⃗                   and  ⃗⃗          then find the components of 

i.  ⃗   ⃗⃗   

ii.      ⃗  

iii.    ⃗    ⃗⃗   

iv.        ⃗    ⃗⃗   

3) Let  ⃗                            find scalar ‗a‘ and ‗b‘ so that  

  ⃗                  
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Vector Space: 

 Let V be a nonempty set with two operations: 

(i) Vector Addition: This assigns to any  ⃗       a sum   ⃗        . 

(ii) Scalar Multiplication: This assigns to any     ,     a product       . 

Then V is called a vector space (over the field K) if the following axioms hold for 

any vectors  ⃗      ⃗⃗   : 

  ⃗         ⃗   

  ⃗       ⃗⃗     ⃗       ⃗⃗  

 There is a vector in V, denoted by  ⃗  and called the zero vector, such that, for 

any      ;      ⃗   ⃗        

 For each     ; there is a vector in V, denoted by –   , and called the negative 

of  ⃗ , such that                    ⃗  

 If ‗k‘ is any scalar and    is in V then     is in V. 

    ⃗        ⃗       for  ⃗       and      

                  for      and         

                for      and         

         , for the unit scalar 1 in K. 

The above axioms naturally split into two sets (as indicated by the labeling of the 

axioms). The first four are concerned only with the additive structure of V and can 

be summarized by saying V is a commutative group (Abelian group) under 

addition. This means 

 Any sum            of vectors requires no parentheses and does not 

depend on the order of the summands. 

 The zero vector   ⃗  is unique, and the negative     of a vector    is unique. 

 (Cancellation Law) If  ⃗   ⃗⃗      ⃗⃗ , then  ⃗     

Also, subtraction in V is defined by                , where     is the unique 

negative of   . On the other hand, the remaining four axioms are concerned with the 

‗‗action‘‘ of the field K of scalars on the vector space V.  
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To Show that a Set with two operation is a Vector Space 

 Identify the set V of objects that will become vectors. 

 Identify the addition and scalar multiplication operation on V. 

 Verify remaining axioms. 

 

EXAMPLES OF VECTOR SPACES 

This section lists important examples of vector spaces that will be used throughout 

the text.  

The Zero Vector Space: 

Let  ⃗     and define  ⃗   ⃗   ⃗  also   ⃗   ⃗  for all scalars ‗k‘ then given space V 

will a be vector space and called zero vector space. 

Space K
n
 

Let K be an arbitrary field. The notation K
n
 is frequently used to denote the set of 

all n-tuples of elements in K. Here K
n
 is a vector space over K using the following 

operations: 

(i) Vector Addition:  

                                                 

(ii) Scalar Multiplication:  

                               

The zero vector in K
n
 is the n-tuple of zeros,  ⃗              and the negative of 

a vector is defined by                               
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Space R
n
 

We have to show that is a vector space. Since we know that 

     {                         } 

Let us define addition and scalar multiplication of n – tuples as follows for  ⃗       

 ⃗                                                     

And                                

Firstly we will show that   is an Abelian Group. 

Closure Law: that is   ⃗       we will have  ⃗        

Let  ⃗                                then 

 ⃗                                

 ⃗                              

  Closure Law holds. 

Associative Law: that is   ⃗       ⃗⃗     we will have  ⃗       ⃗⃗     ⃗       ⃗⃗  

Let  ⃗                                  ⃗⃗               then 

 ⃗       ⃗⃗                [                         ]  

 ⃗       ⃗⃗                                       

 ⃗       ⃗⃗   [                                  ]  

 ⃗       ⃗⃗   [                                  ]  

 ⃗       ⃗⃗                                       

 ⃗       ⃗⃗   [                         ]                

 ⃗       ⃗⃗     ⃗       ⃗⃗   

  Association Law holds. 
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Identity Law: that is   ⃗        we will have  ⃗         ⃗     

Let  ⃗                              then 

 ⃗                                                 

 ⃗                      

    ⃗                                              

    ⃗                    

  Identity Law holds. 

Inverse Law: that is            we will have                  ⃗  

Let                                       then 

                                                           

                     ⃗   

                                     

                                          ⃗   

  Inverse Law holds. 

Commutative Law: that is   ⃗        we will have  ⃗         ⃗  

Let  ⃗                                then 

 ⃗                                

 ⃗                                                 

 ⃗                                   ⃗  

  Commutative Law holds. 

Hence given space is Abelian group under addition. 
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Now we will show Scalar multiplication properties. 

 If ‗k‘ is any scalar and    is in V then     is in V. 

Let ‗k‘ is any scalar and                 then  

                                  

    ⃗        ⃗       for  ⃗       and      

   ⃗       [                         ]  

   ⃗      [                           ]    ⃗       

   ⃗        ⃗       

 

                  for      and         

                           

                                     

                 

 

                for      and         

        [             ]                    

               

 

         , for the unit scalar 1 in K. 

                                                     

Hence above all conditions show that      is a vector space. 
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Matrix Space      

The notation      or simply M; will be used to denote the set of all     

matrices with entries in a field K. Then      is a vector space over K with respect 

to the usual operations of matrix addition and scalar multiplication of matrices. 

We will prove it as follows; since we know that 

       [

          

          

    
          

]  [   ]
   

 

Let us define addition and scalar multiplication for  ⃗       

 ⃗     [   ]
   

 [   ]
   

 [       ]
   

 

And       [   ]
   

 [    ]
   

 

Firstly we will show that   is an Abelian group. 

Closure Law: that is   ⃗       we will have  ⃗        

Let  ⃗  [   ]
   

     [   ]
   

 then 

 ⃗     [   ]
   

 [   ]
   

 [       ]
   

     

  Closure Law holds. 

Associative Law: that is   ⃗       ⃗⃗     we will have  ⃗       ⃗⃗     ⃗       ⃗⃗  

Let  ⃗  [   ]
   

     [   ]
   

   ⃗⃗  [   ]
   

 then 

 ⃗       ⃗⃗   [   ]
   

 *[   ]
   

 [   ]
   

+  

 ⃗       ⃗⃗   [   ]
   

 [       ]
   

 [    (       )]
   

  

 ⃗       ⃗⃗   [(       )     ]
   

 *[   ]
   

 [   ]
   

+  [   ]
   

  

 ⃗       ⃗⃗     ⃗       ⃗⃗       Association Law holds. 
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Identity Law:  

that is   ⃗        we will have  ⃗         ⃗     

Let  ⃗  [   ]
   

     [   ]
   

 then 

 ⃗     [   ]
   

 [   ]
   

 [       ]
   

 [   ]
   

     

    ⃗  [   ]
   

 [   ]
   

 [       ]
   

 [   ]
   

     

  Identity Law holds. 

Inverse Law:  

that is            we will have                  ⃗  

Let    [   ]
   

       [    ]
   

 then 

         [   ]
   

 [    ]
   

 [    (    )]
   

 [   ]
   

  ⃗   

       [    ]
   

 [   ]
   

 [        ]
   

 [   ]
   

  ⃗   

  Inverse Law holds. 

Commutative Law:  

that is   ⃗        we will have  ⃗         ⃗  

Let  ⃗  [   ]
   

     [   ]
   

 then 

 ⃗     [   ]
   

 [   ]
   

 [       ]
   

 [       ]
   

  

 ⃗     [   ]
   

 [   ]
   

     ⃗   

  Commutative Law holds. 

Hence given space is Abelian group under addition. 
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Now we will show Scalar multiplication properties. 

 If ‗k‘ is any scalar and    is in V then     is in V. 

Let ‗k‘ is any scalar and    [   ]
   

  then  

     [   ]
   

 [    ]
   

     

    ⃗        ⃗       for  ⃗       and      

   ⃗       *[   ]
   

 [   ]
   

+  

   ⃗      * [   ]
   

  [   ]
   

+    ⃗       

   ⃗        ⃗       

 

                  for      and         

             [   ]
   

  

         [   ]
   

  [   ]
   

  

                 

 

                for      and         

        * [   ]
   

+      [   ]
   

  

               

 

         , for the unit scalar 1 in K. 

       [   ]
   

 [     ]
   

 [   ]
   

     

Hence above all conditions show that        is a vector space. 
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The Vector Space of real valued Functions defined on        

We will prove it as follows; since we know that 

          {                                     } 

Let us define addition and scalar multiplication for  ⃗       

 ⃗                        

And                    

Firstly we will show that   is an Abelian Group. 

Closure Law: that is   ⃗       we will have  ⃗        

Let  ⃗          then 

 ⃗                            

  Closure Law holds. 

Associative Law: that is   ⃗       ⃗⃗     we will have  ⃗       ⃗⃗     ⃗       ⃗⃗  

Let  ⃗            ⃗⃗    then 

 ⃗       ⃗⃗        [   ]                    

 ⃗       ⃗⃗   [   ]           ⃗       ⃗⃗   

 ⃗       ⃗⃗     ⃗       ⃗⃗       Association Law holds. 

Identity Law:  

that is   ⃗        we will have  ⃗         ⃗     

Let  ⃗          then 

 ⃗                                 

    ⃗                              

  Identity Law holds. 
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Inverse Law:   that is            we will have                  ⃗  

Let               then 

         (      )               ⃗   

                             ⃗     Inverse Law holds. 

Commutative Law:   that is   ⃗        we will have  ⃗         ⃗  

Let  ⃗          then 

 ⃗                                      ⃗   

 ⃗         ⃗     Commutative Law holds. 

Hence given space is Abelian group under addition. 

Now we will show Scalar multiplication properties. 

 If ‗k‘ is any scalar and    is in V then     is in V. 

Let ‗k‘ is any scalar and       then                         

    ⃗        ⃗       for  ⃗       and      

   ⃗      [      ]                            

   ⃗        ⃗       

 

                  for      and         

        [      ]                            

                 

 

                for      and         

        [  ]     [     ]                  

               

 

         , for the unit scalar 1 in K. 

         [  ]                         

Hence above all conditions show that           is a vector space. 
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Polynomial Space      

Let      denote the set of all polynomials of the form 

                                  

where the coefficients    belong to a field K. Then      is a vector space over K 

using the following operations: 

(i) Vector Addition: Here           in      is the usual operation of addition of 

polynomials. 

(ii) Scalar Multiplication: Here      in      is the usual operation of the product 

of a scalar ‗k‘ and a polynomial     . 

The zero polynomial      is the zero vector in     . 

Polynomial Space       

Let      denote the set of all polynomials      over a field K, where the degree of 

     is less than or equal to n; that is, 

                   where    .  

Then       is a vector space over K with respect to the usual operations of 

addition of polynomials and of multiplication of a polynomial by a constant (just 

like the vector space     above). We include the zero polynomial 0 as an element 

of      , even though its degree is undefined. 

Fields and Subfields 

Suppose a field E is an extension of a field K; that is, suppose E is a field that 

contains K as a subfield. Then E may be viewed as a vector space over K using the 

following operations: 

(i) Vector Addition: Here     in E is the usual addition in E. 

(ii) Scalar Multiplication: Here    in E, where     and    , is the usual product 

of ‗k‘ and u as elements of E.                   

That is, the eight axioms of a vector space are satisfied by E and its subfield K with 

respect to the above two operations. 
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A Set that is Not a Vector Space 

Show that       is not a vector space under the operation  

 ⃗                   and   ⃗          

We have to show that is a vector space. Since we know that 

Let us consider  ⃗                          

 ⃗                                    

And    ⃗          

   ⃗                          

   ⃗                            actual value. 

   ⃗           

Not satisfy given operation. 

Hence       is not a vector space under the given operation 

 

Some Standard Operations: 

 For     Set of real numbers 

     addition and   ⃗  scalar multiplication. 

 For      Set of ordered pairs of real numbers 

                   and   ⃗            

 For      Set of n – tuples of real numbers 

  ⃗                            

And    ⃗                  
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PRACTICE:    

1) Show that     {                           } is a vector space. 

Or show that space of infinite sequence of real number is vector space. 

2) Show that                                is a vector space under 

defined operation as        and       

3) Show that       is not a vector space under the operation  

 ⃗                   and   ⃗          

4) Show that                          is a vector space under the 

standard operation of addition and scalar multiplication. 

5) Let Show that                                              with 

defined operations                    and   ⃗          

i. Show that not a vector space. 

ii. Compute     and    for                      

6) Show that                          is a vector space or not under 

the operation of addition and scalar multiplication as follows   

                      and   ⃗            

i. Compute     and    for                      

ii. Show that        ⃗  

iii. Show that          ⃗  

7) Show that the set of all pairs of real numbers of the form       is a vector 

space or not with standard operations on   . 

8) Show that the set of all pairs of real numbers of the form       is a vector 

space or not with the operations                        

and               

9) Show that the set of all pairs of real numbers of the form       with     

is a vector space or not with standard operations on   . 

10) Show that the set of all n – tuples of the real numbers of the form 

           is a vector space or not with standard operations on   . 

11) Show that the set of all triples of the real numbers  is a vector space or 

not with standard  vector addition but with scalar multiplication defined by 
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12) Show that      is a vector space. 

Or show that space of     matrices is a vector space. 

13) Show that set of all     invertible matrices with the standard matrix 

addition and scalar multiplication is a vector space or not. 

14) Show that set of all     non singular matrices with the standard 

matrix addition and scalar multiplication is a vector space or not. 

15) Show that set of all     matrices of the form *
  
  

+ with the 

standard matrix addition and scalar multiplication is a vector space or not. 

16) Show that set of all     real matrices of the form *
  
  

+ with the 

standard matrix addition and scalar multiplication is a vector space or not. 

 

17) Show that Function Space  [ ] i.e. set of all function of X into K (an 

arbitrary field) is vector space. 

Or show that  [ ]  {                           } is a vector space. 

18) Show that 

 [   ]  {                                          [   ]} is a vector 

space. 

19) Show that   [   ]  {     [   ]               } is a vector 

space. 

20) Show that the set of all real valued functions   defined everywhere on 

the real line and such that         is a vector space or not with the 

operations                       And                

21) Show that the set of polynomials of the form        is a vector 

space or not with the operation 

                                    

And                           
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Theorem: Let V be a vector space over a field K. 

i. For any scalar     and    ;       

ii. For     and any vector    ;       

iii. If     , where     and    , then     or     

iv. For any     and any    ;                   

And in particular          

Proof: 

Part = i: For any scalar     and    ;       

Since we know that       therefor                 

Adding     on both sides                              

Part = ii: For     and any vector    ;       

We can write                 

 [     ]                    [        ]            

              

Part = iii: If     , where     and    , then     or     

Suppose      and     then there exists a scalar     such that        

Thus                               

Part = iv: For any     and any    ;                   

And in particular          

Using          and          

       [      ]                       

and       [      ]                     

Thus                 and for k = 1 we get          
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Linear Combinations 

Let V be a vector space over a field K. A vector     in V is a linear combination of 

vectors            in V if there exist scalars            in K such that 

                     

Alternatively,    is a linear combination of            if there is a solution 

to the vector equation                     where            are 

unknown scalars. These scalar are called coefficients of linear combination. 

Example:(Linear Combinations in R
n
)  

Suppose we want to express             in R
3
 as a linear combination of the 

vectors            ;            ;             

We seek scalars x, y, z such that                 that is, 

[
 
 

  
]   [

 
 
 

]   [
 
 
 

]   [
 
 
 

]   

or           ,              ,              

(For notational convenience, we have written the vectors in R
3
 as columns, because 

it is then easier to find the equivalent system of linear equations.) Reducing the 

system to echelon form yields 

           

        

          

And then            

        

         

Back-substitution yields the solution               .  

Thus                 
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Remark:  

Generally speaking, the question of expressing a given vector    in K
n
 as a linear 

combination of vectors            in K
n
 is equivalent to solving a system 

     of linear equations, where    is the column B of constants, and the v‟s are 

the columns of the coefficient matrix A. Such a system may have a unique solution 

(as above), many solutions, or no solution. The last case—no solution—means that 

   cannot be written as a linear combination of the v‟s. 

Example:   

Suppose that the vectors  ⃗           and            in R
3
 show that  

 ⃗⃗          is a linear combination of   ⃗  and    and  ⃗⃗            is not a linear 

combination of   ⃗  and    

Solution: In order for  ⃗⃗  to be a linear combination of   ⃗  and   , there must be 

scalars       such that   ⃗⃗     ⃗       that is 

                                                         

Equating corresponding components gives 

          ,           ,           

Solving the system using Gaussian Elimination yields                 

So   ⃗⃗     ⃗      hence  ⃗⃗  is a linear combination of   ⃗  and    

 

Similarly In order for  ⃗⃗   to be a linear combination of   ⃗  and   , there must 

be scalars       such that   ⃗⃗      ⃗       that is 

                                                          

Equating corresponding components gives 

          ,            ,           

Solving the system of equation we notify that this is inconsistent. So no such       

exists. Consequently  ⃗⃗   is not a linear combination of   ⃗  and    
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Example: (Linear combinations in      )  

Suppose we want to express the polynomial              as a linear 

combination of the polynomials 

            ,             ,            

We seek scalars x, y, z such that                 that is, 

                                           …….(i) 

There are two ways to proceed from here. 

(1) Expand the right-hand side of (i) obtaining: 

                                           

Set coefficients of the same powers of ‗t‘ equal to each other, and reduce the 

system to echelon form: 

          ,             and            

Or             ,           and          

Or               ,           and       

The system is in triangular form and has a solution. Back-substitution yields the 

solution             .  Thus,                 

(2) The equation (i) is actually an identity in the variable ‗t‘; that is, the equation 

holds for any value of ‗t‘. We can obtain three equations in the unknowns x, y, z by 

setting ‗t‘ equal to any three values. 

For example, Set     in     to obtain:            

Set     in     to obtain:              

Set      in     to obtain:         

Reducing this system to echelon form and solving by back-substitution again 

yields the solution              

Thus (again),                
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PRACTICE:    

1) Which of the following are linear combination of   ⃗           and 

           ? 

 

i.          ii.         iii.         

 

2) Express the following as linear combination of   ⃗            

            and  ⃗⃗          

 

i.              ii.          iii.         

 

3) Which of the following are linear combination of    *
  

    
+ ,  

  *
   
  

+ and   *
  
  

+? 

i. *
   

    
+  

ii. *
  
  

+ 

iii. *
   
  

+ 

 

4) For what value of ‗k‘ will the vector          in R
3
be a linear combination 

of the vectors                    

 

5) In each part express the vector as a linear combination of  

           ,            ,              

 

i.             

ii.           

iii.   

iv.          

 

6) Let V be a vector space over a field K. Then show that for every       

and    : we have              
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Subspaces 

Let V be a vector space over a field K and let W be a subset of V. Then W is a 

subspace of V if W is itself a vector space over K with respect to the operations of 

vector addition and scalar multiplication on V. 

The way in which one shows that any set W is a vector space is to show that W 

satisfies the eight axioms of a vector space. However, if W is a subset of a vector 

space V, then some of the axioms automatically hold in W, because they already 

hold in V. Simple criteria for identifying subspaces follow. 

Theorem: Suppose W is a subset of a vector space V. Then W is a subspace of V 

iff the following two conditions hold: 

a) The zero vector 0 belongs to W 

b) For every       and    :  

(i) The sum       

(ii) The multiple      

Property (i) in (b) states that W is closed under vector addition and property (ii) in 

(b) states that W is closed under scalar multiplication. Both properties may be 

combined into the following equivalent single statement: 

     For every      ;      , the linear combination         

Now let V be any vector space. Then V automatically contains two subspaces: the 

set {0} consisting of the zero vector alone and the whole space V itself. These are 

sometimes called the trivial subspaces of V. this means that every vector space has 

at least two subspaces. 

The Zero Subspace: 

If V is any vector space and   { } is the subspace of V that contains the zero 

vector only, then W is closed under addition and scalar multiplication  

Since       and      for any scalar ‗k‘ 

Then we call W the zero subspace of V. 

Remember that smallest vector space is { }. 
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Theorem: If   {           } is a non-empty set of vectors in a vector space 

V then the set W of all possible linear combinations of the vectors in S is a 

subspace of V. 

Proof: Let W be the set of all possible linear combinations of the vectors in S 

We must show that W is closed under addition and scalar multiplication. 

To prove closure under addition let  ⃗       as 

 ⃗                     and                         

Then their sum can be written as 

 ⃗                                      

Which is the linear combination of the vectors in S.  

To prove closure under multiplication let  ⃗           as 

 ⃗                      

then       ⃗                            

  ⃗                    

Which is the linear combination of the vectors in S.  

Then W is closed under multiplication. 

Hence W is a subspace of V 

Theorem: If   {          } is a non-empty set of vectors in a vector space V 

and if the set W of all possible linear combinations of the vectors in S is a subspace 

of V then set W is the smallest subspace of V that contains all of the vectors in S in 

the sense that any other subspace that contains those vectors contains W. 

Proof: Let    be any subspace of V that contains all of the vectors in S. Since    

is closed under addition and scalar multiplication, it contains all linear 

combinations of the vectors in S and hence contains W. 
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Theorem: Suppose W is a subset of a vector space V. Then W is a subspace of V 

iff the following two conditions hold: 

For every       and    :  

i. The sum       

ii. The multiple      

Proof: 

Suppose that W is a subspace of V then by definition of a subspace W is a vector 

space over field K and hence given conditions must hold. 

Conversely: 

Suppose that W is a non – empty subset of V such that the conditions (i) and (ii) 

are satisfied then we have to show that W is a subspace of V 

For this let       and since     also                    by (ii) 

So for                    by (i) 

Which shows that W is a subspace of V under addition. 

Now because V is an Abelian group under addition and    so W is also an 

Abelian group under addition. 

Also for     and            by (ii) 

The remaining four conditions of scalar multiplication holds in W because they 

hold in V therefore W is subspace of V. 
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Theorem: Suppose W is a non – empty subset a vector space V. Then W is a 

subspace of a vector space V. If and only if for every      ;      , the 

linear combination          

Proof: Suppose that W is a subspace of V then by definition of a subspace W 

is a vector space over field K and hence given condition must hold. 

Conversely:  Suppose that W is a non – empty subset of V such that the condition 

         is satisfied then we have to show that W is a subspace of V 

For this let        then according to condition  

               

Now take       so that       

This means that for every      ;    , we have      and      

Thus by theorem ―W is a subspace of V iff the following two conditions hold: 

For every       and    :  The sum       and the multiple      ‖ 

  W is a subspace of V 

Theorem:  

Suppose U and W are subspaces of a vector space V. then show that     is also 

a subspace of V. 

Proof:   Suppose that       and          

       also        

         also           being Subspace. 

            

Hence for       and                     

This implies     is a subspace of V 
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Theorem:   

Show that the intersection of any number of subspaces of a vector space V is a 

subspace of V. 

Proof:  Suppose that {        } be any subcollection of subspaces of a vector 

space V over the field K. Then we have to show that is also a subspace of V. 

For this Suppose that       and              

        for all     

          for each     being Subspace.                

This implies        is a subspace of V 

Theorem:   

Suppose U and W are subspaces of a vector space V. then     is also a 

subspace of V containing both U and W. Further     is a smallest subspace of 

V containing both U and W 

Proof:  Given that U and W are subspaces of a vector space V then we can define 

    {           }  

We will prove that     is also a subspace of V 

For this Suppose that       and             

                     where                           

           also             being Subspace. 

                           

                           

                                     

This implies     is a subspace of V 
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Next we will prove that     is a smallest subspace of V containing both U and 

W i.e.        and        

Since                              for all     

        and  similarly        

Hence     is a subspace of V containing both U and W 

Now  

we will prove that     is a smallest subspace of V containing both U and W 

let   be any subspace of V containing both U and W  

then for every               we have              so that        

but          So        

Hence     is a smallest subspace of V containing both U and W 

 

 

 

 

 

 

 

 

 

 

 

 

Only way to learn 

mathematics is to do 

mathematics 
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Examples of nontrivial subspaces follow. 

Lines through the origin are subspace of     and  of    

If W is the line through the origin of either    or   , then adding two vectors on 

line or multiplying a vector on the line by a scalar produces another vector on the 

line, so W is closed under addition and scalar multiplication. Hence a subspace. 

     

Planes through the origin are subspace of    

If u and v are vectors in a plane W through the origin of   , then it is evident 

geometrically that u + v and ku also lie in the same plane W for any scalar ‗k‘. 

thus W is closed under addition and scalar multiplication.  

 

A list of subspace of     and  of    

Subspace of      Subspace of    

{ } { } 

Lines through the origin Lines through the origin 

Planes through the origin 
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A subset of    that is not a subspace of    

Consider    {            } in     This is not a subspace of    because 

it is not closed under scalar multiplication. 

For example:            but               

 

Example: Consider the vector space      and Let U consist of all vectors in R
3
 

whose entries are equal; that is,   {             } 

For example,                                       are vectors in 

U. Geometrically, U is the line through the origin O and the point (1, 1, 1) as 

shown in Figure.  Clearly           belongs to U, because all entries in 0 are 

equal. Further, suppose u and v are arbitrary vectors in U, say,           and 

          . 

Then, for any scalar    , the following are also vectors in U: 

                  and               

Thus, U is a subspace of   . 
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Example: Consider the vector space      And Let W be any plane in R
3
 

passing through the origin, as pictured in Figure. Then          belongs to W, 

because we assumed W passes through, the origin O. Further, suppose u and v are 

vectors in W. Then u and v may be viewed as arrows in the plane W emanating 

from the origin O, as in Figure. The sum     and any multiple ku of u also lie in 

the plane W. Thus, W is a subspace of    

 

PRACTICE:    

1) Use subspace criteria to determine which of the following are subspaces of 

  ? 

a) All vectors of the form         

b) All vectors of the form         

c) All vectors of the form          where       

d) All vectors of the form          where         

e) All vectors of the form         

f) All vectors of the form         where         

g) All vectors of the form         where     

h) All vectors of the form         where             

and            

i) All vectors of the form         where       are rationals 

j) All vectors of the form         where        

k) All vectors of the form         where          

 

2) Show that set of rational numbers Q is not a subspace of R. 

3) The union of any number of subspaces need not to be a subspace. Prove! 
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Subspaces of     

We know that the sum of two symmetric     matrices is symmetric and 

that a scalar multiple of a symmetric     matrix is symmetric. Thus the set of 

symmetric     matrices is closed under addition and scalar multiplication and 

hence is a subspace of    . 

Similarly the sets of upper triangular matrices, lower triangular matrices and 

diagonal matrices are subspaces of    . 

Let       the vector space of     matrices. Let W1 be the subset of all 

(upper) triangular matrices then W1 is a subspace of V, because W1 contains the 

zero matrix 0 and W1 is closed under matrix addition and scalar multiplication; that 

is, the sum and scalar multiple of such triangular matrices are also triangular.  

A subset of     that is not a Subspace 

The set W of invertible     matrices is not a subspace of    , failing on two 

counts; 

 It is not closed under addition 

 It is not closed under scalar multiplication 

We will illustrate this with an example; 

Let us consider two matrices   *
  
  

+ and   *
   
   

+ in     then the 

matrix    is the     zero matrix and hence is not invertible and then     has a 

column of zeros, so it also is not invertible. 

Remark:  

Matrices whose determinant is zero are not subspaces. 
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PRACTICE:    

Use subspace criteria to determine which of the following are subspaces of    ? 

a) The set of all diagonal     matrices. 

b) The set of all     matrices A such that          

c) The set of all     matrices A such that         

d) The set of all symmetric     matrices. 

e) The set of all     matrices A such that       

f) The set of all     matrices A for which       has only the trivial 

solution. 

g) The set of all     matrices A such that       for some fixed 

    matrices B. 

The Subspace         

Since we know that a theorem in calculus ―a sum of continuous functions is 

continuous and that a constant times a continuous function is continuous‖ 

Rephrased in vector language, the set of continuous functions on        is a 

subspace of         we will denote this subspace by         

Remark: 

 A function with continuous derivative is said to be continuously 

differentiable. 

 Sum of two continuous differentiable functions is continuously 

differentiable and that a constant times a continuous differentiable function 

is continuously differentiable. 

 Functions that are continuously differentiable on        form a subspace 

of        . we will denote this subspace by         

 We will denote this subspace by          where the superscript 

emphasizes that the first derivatives are continuous. 

 We will denote this subspace by                   where the 

superscript emphasizes that the   continuous derivatives and the derivatives 

of all orders respectively. 
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The Subspace of all Polynomials:  

Since we know that a polynomial is a function that can be expressed in the form 

                   where            are constants. 

Also we know that ―the sum of two polynomials is a polynomial and that a 

constant time polynomial is polynomial.‖ Thus the set W of all polynomials is 

closed under addition and scalar multiplication and hence is a subspace of 

       . We will denote it by    

 

Degree of Polynomial:    

The highest power of the variable that occurs with a non – zero coefficient.  

For example the Polynomial                    with      has 

degree ‗n‘ 

The Subspace of all Polynomials of degree   n: 

It is not true that the set W of polynomials with positive degree ‗n‘ is a subspace of 

        because the set is not closed under addition. 

For example the Polynomials          and          both have 

degree 2 but their sum has degree 1. 

But for each non – negative integer ‗n‘ the polynomials of degree ‗n‘ or less form a 

subspace of        . We will denote it by    

Example:  

Let       , the vector space     of polynomials. Then the space       of 

polynomials of degree at most ‗n‘ may be viewed as a subspace of     . Let      

be the collection of polynomials with only even powers of ‗t‘. For example, the 

following are polynomials in      : 

               and                    

 (We assume that any constant       is an even power of ‗t‘) Then      is a 

subspace of      . 
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Remark: It is proved in calculus that polynomials are continuous functions and 

have continuous derivatives of all orders on       , thus it follows that    is not 

only a subspace of         but is also a subspace of          

All spaces discussed previously are nested. See follow; 

 

 

PRACTICE:  

1) (Calculus Required) Show that followings set of functions are 

subspaces of        ? 

i. All functions   in         that satisfy        

ii. All functions   in         that satisfy        

iii. All functions   in         that satisfy            

iv. All polynomials of degree 2. 

v. All continuous functions on        

vi. All differentiable functions on        

vii. All differentiable functions on        that satisfy         

 

2) (Calculus Required)    Show that the set of continuous functions        

on [   ] such that ∫     
 

 
     is a subspace of  [   ] 
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3) Use subspace criteria to determine which of the following are subspaces of 

  ? 

i. All polynomials                  for which      

ii. All polynomials                  for which               

iii. All polynomials                  in which             are rational 

iv. All polynomials        in which       are real numbers. 

 

4) Use subspace criteria to determine which of the following are subspaces of 

  ? 

i. All sequences v in    of the form                      

ii. All sequences v in    of the form                      

iii. All sequences v in    of the form                         

iv. All sequences v in    whose components are zero from some point 

on. 

 

5) Let V be a vector space of functions      . Show that W is subspace of 

V where; 

i.   {           }  all functions whose values at 1 is 0. 

ii.   {              }  all functions assigning to same value 

to 3 and 1. 

iii.   {               }  all odd functions. 
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Spanning Sets 

Let V be a vector space over K. Vectors            in V are said to span V or to 

form a spanning set of V if every    in V is a linear combination of the vectors 

           . That is, if there exist scalars            in K such that 

                     

Or if   {           } is a non – empty set of a vector in a vector space V 

then the subspace W of V that consists of all possible linear combinations of the of 

the vectors in S is called the subspace of V generated by S and we say that the 

vectors            span W. we denote this subspace as 

      {          }  or           

Or Let S be a non – empty subset of a vector space V. then the set of all linear 

combinations of finite number of elements of S is called the linear span of S and is 

denoted by 〈 〉 or      or [ ] 

Remarks: 

 Suppose            span V. Then, for any vector w, the set              

also spans V. 

 Suppose            span V and suppose    is a linear combination of 

some of the other v‘s. Then the v‘s without    also span V. 

 Suppose            span V and suppose one of the v‘s is the zero vector. 

Then the v‘s without the zero vector also span V. 

 If   {          } and    {          } are non – empty sets of a 

vector in a vector space V, then     {          }      {          } 

iff each vector in S is a linear combination of those in   , and each vector in 

   is a linear combination of those in S 

Theorem: If S and T are subsets of V then     〈 〉  〈 〉 

Proof: Let   {          } and   {                     } 

Let   〈 〉 then                     a linear combination of vectors 

in S. 

We may write                                a linear 

combination of vectors in T. then this implies   〈 〉 

Hence     〈 〉  〈 〉 
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Theorem:  

Let S be a non – empty set of vectors in a vector space V over a field K. then 〈 〉 is 

a subspace of V containing S and it is the smallest subspace of V containing S. 

Proof: 

Let       and     〈 〉  also         and           then 

                   ∑     

 

   

 

                   ∑     

 

   

 

Now         ∑     
 
      (∑     

 
   )  ∑        

 
    ∑  (    ) 

    

      ∑        
 
    ∑  (    ) 

                   

Which shows that       is a linear combination of vectors in S.  

So       〈 〉 

So       and     〈 〉        〈 〉  〈 〉 is a subspace of V. 

Now we prove that 〈 〉 is the smallest subspace of V containing S. 

If W is any other subspace of V containing S then it contains all vectors of the 

form   ∑     
 
    where      and      

 〈 〉    

Thus 〈 〉 is the smallest subspace of V containing S. 
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The standard unit vectors spans R
n
 

Since we know that standard unit vectors are as follows; 

 ̂                ̂                          ̂               

These vectors span R
n
 since every vector                  in R

n
 can be 

expressed as       ̂     ̂       ̂  which is a linear combination of  

 ̂   ̂     ̂  

Example: Consider            in R
3
 then it can be written as a linear 

combination of standard unit vectors in R
3
 as follows; 

                                        ̂    ̂    ̂   

Example: Consider the vector space V = R
3
 then show that 

 ̂           ̂           ̂          span             in R
3
 

Solution: Since we know that ―The standard unit vectors spans R
n
‖ then we can 

write             as a linear combination of standard unit vectors in R
3
 

                                         ̂    ̂    ̂   

Example: Consider the vector space V = R
3
 then we claim that the following 

vectors also form a spanning set of R
3
 

                                  

Specifically, if            is any vector in R
3
, then 

                                

For example,                           

Example: Consider the vector space V = R
3
 then One can show that            

cannot be written as a linear combination of the vectors 

                                  Accordingly,          do not span R
3
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Testing for spanning: 

Determine whether the vectors                                  span the 

vector space R
3
 

Solution:  

must determine whether an arbitrary vector              in R
3
 can be expressed 

as linear combination                  of the vectors          

Expressing above equation in terms of components gives 

                                          

                                                

              

              

               

This system is consistent if and only if its coefficient matrix 

 [
   
   
   

]  

has a non -  zero determinant.  

But this is not the case here since           

So          do not span R
3
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A geometric view of spanning in R
2
 and R

3
 

a) If v is a non – zero vector in R
2
 or R

3
 that has its initial points at the origin, 

then span{v}, which is the set of all scalar multiples of v, is the line through 

the origin determined by v. 

 

b) If    and    are non-zero vectors in R
3
 that have their initial points at the 

origin, then span{     }, which consists of all linear combinations of    

and    , is the plane through the origin determined by these two vectors. 
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PRACTICE:  

1) In each part determine whether the vectors span R
3
 

a)                                  

b)                                    

 

2)  Suppose                                          then which of 

the following vectors are in span {        } 

a)            

b)           

c)           

d)              

 

3) Show that the yz – plane   {             } is spanned by         and 

         

4) Find an equation of the subspace W of R
3
 generated by 

{                   } 

5) Show that the complex numbers       and       generate the vector 

space C over R. 

6) Let                                      and 

                       then show that 

    {        }      {     }  

7) Show that                                  span R
3
 

8) Find conditions on       so that            in R
3
 belongs to                     

                 where                                    

9) Let S and T be subsets of a vector space V. then show that  

i. 〈 〉  〈 〉  〈   〉 but equality does not hold. 

ii. 〈   〉  〈 〉  〈 〉 but equality does not hold. 

iii. 〈 〉  〈 〉  〈 〉  〈 〉 

iv. 〈〈 〉〉  〈 〉 

10) Suppose {                     } is linearly independent subset 

of V then show that 〈  〉  〈  〉  { }. That is     {  }      {  }  { } 
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A spanning set for       

Consider the vector space         consisting of all polynomials of degree  . 

(a) Clearly every polynomial in       can be expressed as a linear combination 

of the     polynomials               

Thus, these powers of   (where     ) form a spanning set for       . 

We can denote this by writing           {            } 

 

(b) One can also show that, for any scalar  , the following     powers of 

   , that is                          (where         ), also 

form a spanning set for       . 

We can denote this by writing           {                      } 

 

(c) Consider the vector space        consisting of all     matrices, and 

consider the following four matrices in M: 

    *
  
  

+ ,      *
  
  

+ ,     *
  
  

+ ,      *
  
  

+ 

Then clearly any matrix A  in M can be written as a linear combination of the four 

matrices. For example, 

  *
   
  

+                       

Accordingly, the four matrices E11, E12, E21, E22 span M. 

 

PRACTICE:  

1) Show that a vector space        of real polynomials cannot be spanned 

by a finite number of polynomials. 

2) Determine whether the following polynomials span    

i.                   

                         

Available at MathCity.org
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Linear Dependence and Independence 

Let V be a vector space over a field K. The following defines the notion of linear 

dependence and independence of vectors over K. (One usually suppresses 

mentioning K when the field is understood.) This concept plays an essential role in 

the theory of linear algebra and in mathematics in general. 

Definition: We say that the vectors            in V are linearly dependent if 

there exist scalars             in K, not all of them 0, such that  

                    

On the other hand we say that the vectors            in V are linearly 

independent if there exist scalars            in K, all of them 0, such that  

                    

Another definition: If    {           } is a set of two or more vectors in a 

vector space V , then S is said to be linearly independent set if no vector in S can 

be expressed as a linear combination of the others.  

 A set that is not linearly independent is said to be linearly dependent. 

Remark: 

 A set   {           } of vectors in V is linearly dependent or 

independent according to whether the vectors           are linearly 

dependent or independent. 

 An infinite set S of vectors is linearly dependent or independent according to 

whether there do or do not exist vectors           in S that are linearly 

dependent. 

 Warning: The set   {           } above represents a list or, in other 

words, a finite sequence of vectors where the vectors are ordered and 

repetition is permitted. 

 Suppose 0 is one of the vectors           , say     . Then the vectors 

must be linearly dependent, because we have the following linear 

combination where the coefficient of     ; 
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 Suppose v is a nonzero vector. Then v, by itself, is linearly independent, 

because            implies     

Implies a single non – zero vector always linearly independent. 

 Suppose two of the vectors            are equal or one is a scalar multiple 

of the other, say       . Then the vectors must be linearly dependent, 

because we have the following linear combination where the coefficient of 

    ; 

                    

 Two vectors v1 and v2 are linearly dependent if and only if one of them is a 

multiple of the other. 

 If any two vectors out of            are equal say       then 

           are linearly independent because 

                                 

 If the set {           } is linearly independent, then any rearrangement of 

the vectors {    
    

      
} is also linearly independent. 

 If a set S of vectors is linearly independent, then any subset of S is linearly 

independent. Alternatively, if S contains a linearly dependent subset, then S 

is linearly dependent. 

 A set    {           } in a vector space V is said to be linearly 

independent set iff the only coefficients satisfying the vector equation 

                   are                  

 Let V be a vector space over a field F and   {           } be a set of 

vectors in V, then if S is linearly independent then any subset of S is also 

linearly independent. 

 Let V be a vector space over a field F and   {           } be a set of 

vectors in V, then if S is linearly dependent then any subset of S is also 

linearly dependent. 

 A finite set that contains 0 is linearly dependent. 

 A set with exactly one vector is linearly independent iff that vector is not 0. 

 A set with exactly two vectors is linearly independent iff neither vector is a 

scalar multiple of other. 

 If {         } is linearly independent set of vectors, then so are 

{      } {      } {      } {   } {   } and {   } 
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Theorem:  

A set    {           } in a vector space V is said to be linearly independent 

set iff the only coefficients satisfying the vector equation 

                   are                  

Proof:    

Suppose that   {           } is linearly independent. Then we will show that if 

the equation                    can be satisfied with coefficients that 

are not all zero, then at least one of the vectors in S must be expressible as the 

linear combination of the others, thereby contradicting the assumption of linear 

independence. 

To be specific suppose that      then we can rewrite the above equation as  

    
  

  
   

  

  
     

  

  
    

Which expresses    as the linear combination of the other vectors in S. 

Conversely:   We must show that if the only coefficients satisfying  

                   are                  then the vectors in S 

must be linearly independent. But if this were true of the coefficients and the 

vectors were not linearly independent, then at least one of them would be 

expressible as a linear combination of the other, say 

                                

But this contradict our assumption that                    can only be 

satisfied by coefficients that are all zero. 

Thus the vectors in S must be linearly independent. 

Theorem: (Just Statement):  Suppose {          } spans V, and suppose 

{          } is linearly independent. Then    , and V is spanned by a set of 

the form {              
    

        
} 

Thus, in particular,     or more vectors in V are linearly dependent. 
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Theorem:  

Let V be a vector space over a field F and   {           } be a set of vectors in 

V, then if S is linearly independent then any subset of S is also linearly 

independent. 

Proof:    

Here   {           } and {           }         is a subset of S.  

And let                     where    are scalars. 

We may write                                     

But   {           } is linearly independent then               

Hence {           }          is linearly independent. 

 

Theorem:  

Let V be a vector space over a field F and   {           } be a set of vectors in 

V, then if S is linearly dependent then any subset of S is also linearly dependent. 

Proof:    

Here   {           } and {            }  is a subset of S.  

Since   {           } is linearly dependent then 

                   where       for some i 

Now                       where       for some i 

Then {            }   is linearly dependent. 

 

 

 

 



139 
 

Visit us @ Youtube: “Learning With Usman Hamid” 

Theorem:  

A set   {           } of ‗n‘ vectors       in a vector space V is linearly 

dependent iff atleast one of the vectors in S is a linear combination of the 

remaining vectors of the set. 

Proof:   Suppose the set    {           } is linearly dependent. Then there 

exists scalars             at least one of them say    is non – zero such that  

                           

Or                                             

Or     
  

  
   

  

  
     

    

  
     

    

  
       

  

  
   

Which shows that    is a linear combination of the remaining vectors of the set. 

Conversely: 

Suppose that some vector    of the given set is a linear combination of the 

remaining vectors of the set. i.e. 

                                         

Then above equation can be written as  

                                               

Here there is at least one coefficient namely    of    which is non – zero and so 

that {                          } is linearly dependent. 
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Theorem:  

A set   {            } in a vector space V is linearly dependent iff some of 

the vectors say    is a linear combination of the vectors preceding it. 

Proof:   Suppose the set    {           } is linearly dependent. Then there 

exists scalars            at least one of them say    is non – zero such that  

                           ………..(i) 

Let    be the last non – zero scalar in (i) then the terms 

                          are all zeros. 

So the equation (i) becomes 

                   where      

Or     
  

  
   

  

  
     

    

  
     

Which shows that    is a linear combination of the vectors preceding it. 

Conversely: 

Suppose that in   {           } , some of the vectors say    is a linear 

combination of the vectors preceding it. 

                       

Then above equation can be written as  

                               

Or                                           

Here there is at least one coefficient namely    of    which is non – zero and so 

that {           } is linearly dependent. 
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Theorem:  

Let   {           } be a set of vector in R
n
. if     then S is linearly 

dependent. 

Proof:   Suppose that 

                    

                    

   

                    

And consider the equation                    

If we express both sides of this equation in terms of components and then equate 

the corresponding components, we obtain the system; 

                       

                       

          

                       

This is the homogeneous system of ‗n‘ equations in ‗r‘ unknowns             

Since    .  

It follows from theorem ― a homogeneous linear system with more unknowns than 

equations has infinitely many solution‖  that the system has non – trivial solution. 

Therefore   {           } is linearly dependent. 
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Linear independence of the Standard unit vectors in R
n
 

In R
n
 the most basic linearly independent set is the set of standard unit vectors  

              ,                , ……….                

Now we consider the standard unit vectors in R
3
 

           ,           ,           

To prove linearly independent we must show that the only coefficient satisfying 

the vector equation                   are                  

But this become evident by writing the equation in its component form 

                   

Linear independence in R
3
 

Determine whether the vectors                                    are 

linearly independent or linearly dependent in R
3
 

Solution: Consider                  

Rewriting in component form                                          

Equating corresponding components on the two sides yields the homogeneous 

linear system 

                 

                

                 

After solving the system we get      
 

 
           

 

 
         

This shows that the system has non – trivial solution and hence that the vectors are 

linearly dependent. 
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Linear independence in R
4
 

Determine whether the vectors 

                                          are linearly independent or 

linearly dependent in R
4
 

Solution: Consider                  

Rewriting in component form 

                                                  

Equating corresponding components on the two sides yields the homogeneous 

linear system 

                 

               

                   

                  

After solving the system we get                        

This shows that the system has trivial solution and hence that the vectors are 

linearly independent. 

Example: 

Let                               .Then       are linearly dependent, 

because                                               

Example: We show that the vectors                               are 

linearly independent. We form the vector equation           ,   

where x, y, z are unknown scalars. This yield 

 [
 
 
 

]   [
 
 
 

]   [
 
 
 

]     
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Or  

             

               

               

Or  

             

                     

                          

Back-substitution yields            . We have shown that 

           implies             

Accordingly,       are linearly independent. 

Linear Dependence in R
3
 

Linear dependence in the vector space      can be described geometrically as 

follows: 

(a) Any two vectors u and v in    are linearly dependent (not independent) if 

and only if they lie on the same line through the origin O, as shown in Fig. 

 

 

(b) Any three vectors u, v, w in    are linearly dependent (not independent) if 

and only if they lie on the same plane through the origin O, as shown in Fig. 

 

 



145 
 

Visit us @ Youtube: “Learning With Usman Hamid” 

Practice: 

1) In each part, determine whether the vectors are linearly independent or are 

linearly dependent in    

 

a)                           

b)                                    

 

2) In each part, determine whether the vectors are linearly independent or are 

linearly dependent in    

 

a)                                  

b)                                             

c)                                 

d)                                

 

3) Express each vector in                                  as a linear 

combination of other. 

4) For which real value of   do the following vectors form a linearly dependent 

set in   ? 

    (   
 

 
  

 

 
)      ( 

 

 
    

 

 
)      ( 

 

 
  

 

 
  )  

Or  determine   so that the above vectors are linearly dependent in   . 

5) Show that the vectors                  in C
2
 are linearly dependent 

over C but linearly independent over R. 

6) Show that the vectors (  √    √ ) (     √ ) in R
2
 are linearly 

dependent over R but linearly independent over Q. 

7) Show that the vectors                  in C
2
 are linearly dependent over 

the complex field C but linearly independent over the real field R. 

8) Suppose that       are linearly independent vectors.  

Prove that        is linearly independent. 

9) Show that for any vectors       in a vector space V, the vectors         

        form a linearly dependent set. 

10)  Under what conditions is a set with one vector linearly independent? 
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Linear independence for Polynomials 

Consider the vector space         consisting of all polynomials of 

degree  . Show that the polynomials              in       form a linearly 

independent set. 

Solution:   Let                          

And consider                     

Equivalently                    for all ‗x‘ in        

Since we know that a non – zero polynomial of degree ‗n‘ has atmost ‗n‘ distinct 

roots. Then in this case all coefficients in above expression must be zero. For 

otherwise the left side of the equation would be a non – zero polynomial with 

infinity many roots. Thus above equation has only the trivial solution. 

Implies       is the linearly independent set. 

Example:  

Determine whether the polynomials 

                               

Are linearly dependent or linearly independent in    

Solution:  Consider                   

Equivalently                                     

                                              

Since this equation must be satisfied by all ‗x‘ in       , each coefficient must 

be zero. Thus the linear independence or linear dependence of the given 

polynomials hinges on whether the following linear system has a non – trivial 

solution; 

                                       

After solving we will get            . And hence given polynomials form 

linearly dependent set. 
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Example: Determine whether the polynomials 

                                              

Are linearly dependent or linearly independent in    

Solution:  Consider                   

                                                   

                                               

                 

             ……………(i) 

                ……………(ii) 

                 ……………(iii) 

              ……………(iv) 

After solving we will get            . As follows; 

  

    
 

   

    
 

  

   
  

  

  
 

  

  
 

  

 
    

Implies                            

Putting these values in (iii) and (iv) we see equations are not satisfied. They are 

satisfied only when           .  

Hence given polynomials are linearly independent. 

Remember: In    every set with more than three vectors is linearly dependent. 

Practice: In each part, determine whether the vectors are linearly independent 

or are linearly dependent in    

a)                                       

b)                                      
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Linear independence of functions: 

Example: Let V be the real vector space of all functions defined on R into R. 

determine whether the given vectors                           are linearly 

independent or linearly depended in V. 

Solution: Consider               where x,y,z are unknown scalar. 

This implies                  

Thus in this equation we choose appropriate values of ‗t‘ to easily get 

            for example 

i. Substitute     to obtain                    or      

ii. Substitute     to obtain                      or      

iii. Substitute   
 

 
 to obtain       (    )   (

  

 
)      or      

We have shown                  implies               

Thus given vectors are linearly independent. 

Wronskian of Functions: 

If                               are functions that are n – 1 time 

differentiable on the interval       , then the determinant 

     ||

                

                   
    

  
        

         
      

||  

Is called Wronskian of                               

Remember: 

Sometime linear dependence of functions can be deduced from known 

identities. However, it is relatively rare that linear independence or dependence of 

functions can be ascertained by algebraic or trigonometric methods. To make 

matter worse, there is no general method for doing that either. 
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Theorem:  

If the functions             have n – 1 continuous derivatives on the interval 

       and if the Wronskian of these functions is not identically zero on 

      , then these functions form a linearly independent set of vectors in 

           but the converse of this theorem is false. 

Example:  

Use the Wronskian to show that              are linearly independent 

vectors in         . 

Solution:  

The Wronskian of given functions is as follows; 

     |
          

            
|  |

     
     

|              

Consider   (
 

 
)  

 

 
   (

 

 
)     (

 

 
)  

 

 
   

This function is not identically zero on the interval       , thus , the functions 

are linearly independent. 

Example:  

Use the Wronskian to show that                    are linearly 

independent vectors in         . 

Solution:  

The Wronskian of given functions is as follows; 

     |

               

                  

                     
|  |

      

       

       

|          

This function is not identically zero on the interval       , thus , the functions 

are linearly independent. 
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Practice: 

1) Let V be the real vector space of all functions defined on R into R. determine 

whether the given vectors are linearly independent or linearly depended in V. 

i.        

ii.                   

iii.               

iv.                       

v.                          

2) By using appropriate identities, where required, determine which of the 

following sets of vectors in         are linearly dependent. 

i.                       

ii.                    

iii.                      

iv.                        

 

3) Use the Wronskian to show that given functions are linearly independent 

vectors in         . 

i.          

ii.             

iii.            

iv.            

v.                 

vi.                     

 

4) Using the technique of casting out vectors which are linear combination of 

others, find a linearly independent subset of the given set spanning the same 

subspace; 

i. {                                      } in R
3
 

ii. {                   } in the space of all functions from R to R 

iii. {                     } in the space    of all polynomials 
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Basis 

A set   {          } of vectors is a basis of a finite dimensional vector space 

V if it has the following two properties:  

i. S is linearly independent. 

ii. S spans V. 

Or  

A set   {          } of vectors is a basis of a finite dimensional vector space 

V if every      can be written uniquely as a linear combination of the basis vectors. 

Examples of Bases 

This subsection presents important examples of bases of some of the main vector 

spaces appearing in this text. 

Usual or the Standard basis for R
n
 

In R
n
 the most basic linearly independent set is the set of standard unit vectors  

               ,                , ……….,                 

Thus they form a basis for R
n
 that we call the Standard basis for R

n
 

For example, any vector                 in R
n
 can be written as a linear 

combination of the above vectors. i.e.                      

In particular we consider the standard unit vectors in R
3
 

           ,           ,           

And we call the Standard basis for R
3
 

Remark: 

 The number of elements in a basis of a vector space V over F is called 

dimension of V. It is denoted by     . 

 For n – dimensional vector space V, every set   {          } of ‗n‘ 

linearly independent vectors forms a basis for V. 

Available at MathCity.org
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Example: Show that the vectors                                    

form a basis for R
3
 

Solution: We must show that these vectors are linearly independent and span R
3 

To prove linear independence we must show that the vector equation            

                  has only the trivial solution. 

Then                                   

By equating corresponding components on the two sides, we get a linear system; 

              …………..(i) 

                …………..(ii) 

               …………..(iii) 

From (ii) and (iii) 

  

   
 

   

   
 

  

   
    

  

  
 

  

  
 

  

 
                       

Putting these values in equation (i), we see equation (i) is not satisfied. It is 

satisfied only when k = 0. i.e.                Hence given vectors 

                                   are linearly independent. 

Since dimension of R
3
 is ‗3‘ and the number of linearly independent vectors in R

3
 

is also ‗3‘, so the vectors                                    forms a 

basis for R
3
 

Practice: 

1) Show that the given vectors may or may not form a basis for R
2
 or R

3
. 

i.                                  

ii.                   

iii.                                   

iv.                                    

v.                                    

2) In words explain why the matrices                   and                  

are not basis for R
2
 and R

3
 respectively. 
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Usual or the Standard basis for       

Consider the vector space         consisting of all polynomials of degree   or 

less then the set {            } is a basis for         

For this we must show that given polynomials in S are linearly independent 

and span      . 

Clearly every polynomial   in       can be expressed as a linear combination of 

the     polynomials              that is                       . 

Thus, these powers of   (where     ) form a spanning set for       .We can 

denote this by writing           {            } 

 Now we have to show that the polynomials              in       

form a linearly independent set. 

For this let                          

And consider                     

Equivalently                    for all ‗x‘ in        

Since we know that a non – zero polynomial of degree ‗n‘ has atmost ‗n‘ distinct 

roots. Then in this case all coefficients in above expression must be zero. For 

otherwise the left side of the equation would be a non – zero polynomial with 

infinity many roots. Thus above equation has only the trivial solution. Implies 

      is the linearly independent set. 

Thus the set {            } is a basis for         

Practice: 

1) Show that the given polynomials may or may not form a basis for    or   . 

i.                           

ii.                            Hermite Polynomials 

iii.                                  Laguerre Polynomials 

2) Show that {                 } is not a basis. Find a basis for vector space 

V spanned by these polynomials. 

3) In words explain why the polynomials            are not basis for    
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Usual or the Standard basis for     

Show that the following matrices form a basis of the vector space     of all     

matrices over K: 

   *
  
  

+ ,     *
  
  

+ ,    *
  
  

+ ,     *
  
  

+ 

Solution: 

We must show that the given matrices are linearly independent and span     

To prove linear independence we must show that the equation              

                       has only the trivial solution, where 0 is the 

    zero matrix. 

Consider                        *
  
  

+ 

  *
  
  

+    *
  
  

+    *
  
  

+    *
  
  

+  *
  
  

+  

[
    

    
]  *

  
  

+   

Above equation has only trivial solution. i.e.               

Given matrices are linearly independent. 

To prove matrices span     

Consider                        *
  
  

+ 

  *
  
  

+    *
  
  

+    *
  
  

+    *
  
  

+  *
  
  

+  

[
    

    
]  *

  
  

+  i.e. given matrices span     

This show that    *
  
  

+ ,     *
  
  

+ ,    *
  
  

+ ,     *
  
  

+  

Form a basis of the vector space     of all     matrices over K 
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Remark: 

 Vector space       of all     matrices: The following six matrices 

form a basis of the vector space     of all     matrices over K: 

   *
   
   

+ ,       *
   
   

+ ,      *
   
   

+ ,   

   *
   
   

+  ,    *
   
   

+ ,    *
   
   

+ 

 More generally, in the vector space       of all     matrices, let Eij 

be the matrix with ij-entry 1 and 0‘s elsewhere. Then all such matrices form 

a basis of     called the usual or standard basis of     

Practice: 

1) Show that the given matrices may or may not form a basis for     . 

i. *
  
   

+  *
   

   
+  *

   
     

+  *
  

   
+ 

ii. *
  
  

+  *
   
  

+  *
   
  

+  *
  
  

+ 

iii. *
  
  

+  *
   
  

+  *
   
  

+  *
   
  

+ 

 

2) In words explain why the matrices *
  
  

+  *
  

   
+  *

  
  

+  *
  
  

+ are 

not basis for     
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Theorem (Uniqueness of Basis representation):  

If   {            } is a basis for a vector space V, then every vector v in 

V can be  expressed in the form                       in exactly one way. 

Or let   {            } in V is linearly independent then each v of 

       of S is uniquely expressible. 

Proof:    

Since S spans V, if follows from the definition of a spanning set that every vector 

in V is expressible as a linear combination of the vectors in S. To see that there is 

only one way to express a vector as a linear combination of the vector in S, 

suppose that some vector v can be written as; 

                       ……………..(i) 

And also as                        ……………..(ii) 

Subtracting the second equation from the first; 

                                      

Since the right side of the equation is the linear combination of vectors in S, and S 

is linearly independent then; 

                                    

That is                                         

Thus the two expressions for v are the same (unique). 
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Theorem: 

Any finite dimensional vector space contains a basis. 

Proof:    

Let V be a finite dimensional vector space then V should be linear span of some 

finite set. Let {          } be a finite spanning set of V. in case            are 

linearly independent, then they form a basis of V and the proof is complete. 

 Suppose            are not linearly independent. i.e. they are linearly 

dependent, so one of the vectors    is a linear combination of the preceding 

vectors. We drop this vector    from the set and obtain a set of     vectors, 

            . Then clearly any linear combination of            is also a linear 

combination of             . So {            } is also a spanning set for V. 

continuing in this way, we arrive at a linearly independent spanning set 

{          } such that       and so it forms a basis for V. 

Thus every finite dimensional vector space contains a basis. 

Theorem:  

Let V be a vector space of finite dimension ‗n‘. Then, any     or more 

vectors in V are linearly dependent. 

Proof:  

Suppose   {            } is a basis of V. because B spans V, then by lemma 

„Suppose {          } spans V, and suppose {          } is linearly 

independent. Then    , and V is spanned by a set of the form 

{              
    

        
}‟ 

Thus, in particular,     or more vectors in V are linearly dependent. 
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Theorem:  

Let V be a vector space of finite dimension ‗n‘. Then, any linearly 

independent set   {            } with ‗n‘ elements is a basis of V. 

Proof:  

Suppose   {            } is a basis of V. then by lemma  

„Suppose {          } spans V, and suppose {          } is linearly 

independent. Then    , and V is spanned by a set of the form 

{              
    

        
}‟ 

Elements from B can be adjoined to S to form a spanning set of V with ‗n‘ 

elements. Because S already has ‗n‘ elements, S itself is a spanning set of V.  

Thus S is a basis of V. 

Theorem:  

Let V be a vector space of finite dimension ‗n‘. Then, any spanning set 

  {            } of V with ‗n‘ elements is a basis of V. 

Proof:  

Suppose   {            } is a basis of V. and suppose   {            } is 

linearly dependent. Then some    is a linear combination of the preceding vectors. 

By problem “if   {            } spans V then for     the set 

{              } will be linearly dependent and spans V and if    is a linear 

combination of                then   without    spans V” 

Thus V is spanned by vectors in T without    and there are     of them. By 

Lemma „„Suppose {          } spans V, and suppose {          } is 

linearly independent. Then    , and V is spanned by a set of the form 

{              
    

        
}‟‟ the independent set B cannot have more than 

    elements. This contradict the fact B has ‗n‘ elements. 

Thus T is linearly independent and hence T is a basis of V. 
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Theorem:  Suppose S spans a vector space V. Then: Any maximum number of 

linearly independent vectors in S form a basis of V. 

Proof:  Suppose {            } is maximum linearly independent subset of S, 

and suppose     . Accordingly, {              } is linearly independent. No    

can be linear combination of preceding vectors. Hence is   is a linear combination 

of the   . Thus             and hence             

This leads to                      

Thus {  } spans V and as it is linearly independent, it is a basis of V. 

 

Theorem:  Suppose S spans a vector space V. Then: Suppose one deletes from S 

every vector that is a linear combination of preceding vectors in S. Then the 

remaining vectors form a basis of V. 

Proof:  The remaining vectors form a maximum linearly independent subset 

of S; hence by theorem “Suppose S spans a vector space V. Then: Any 

maximum number of linearly independent vectors in S form a basis of V” it is 

a basis of V. 

 

Theorem:  Let V be a vector space of finite dimension and let   {            } 

be a set of linearly independent vectors in V. Then S is part of a basis of V; that is, 

S may be extended to a basis of V. 

Proof:   Suppose   {            } is a basis of V. then B spans V and 

hence V is spanned by      {                         }By theorem 

“Suppose S spans a vector space V. Then: Any maximum number of linearly 

independent vectors in S form a basis of V. And Suppose one deletes from S 

every vector that is a linear combination of preceding vectors in S. Then the 

remaining vectors form a basis of V ” we can delete from     each vector that 

is the linear combination of preceding vectors to obtain a basis    for V. because S 

is linearly independent, no    is a linear combination of preceding vectors.       

Thus    contains every vector in S, and S is the part of the basis    for V 
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Examples: 

(a) The following four vectors in R
4
 form a matrix in echelon form: 

                                               

Thus, the vectors are linearly independent, and, because dimR
4
 = 4, the four 

vectors form a basis of R
4
 

(b) The following     polynomials in       are of increasing degree: 

                               

Therefore, no polynomial is a linear combination of preceding polynomials; hence, 

the polynomials are linear independent. Furthermore, they form a basis of       , 

because dim         . 

(c) Consider any four vectors in R
3
, say 

                                                              

By Theorem “Let V be a vector space of finite dimension „n‟. Then, any     

or more vectors in V are linearly dependent”, the four vectors must be linearly 

dependent, because they come from the three-dimensional vector space R
3
. 
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Dimension 

The number of elements (vectors) in a basis of a vector space V over F is called 

dimension of V. It is denoted by       . 

Engineers often use the term degree of freedom as a synonym for dimension. 

Remark: 

 The vector space {0} is defined to have dimension 0. It is known as zero 

vector space. 

 The simplest of all vector spaces is the zero vector space V = {0}. This 

space is the finite dimensional because it is spanned by vector 0.Since {0} is 

not linearly independent set, thats why V = {0} has no basis. However we 

will find it useful to define empty set   to be a basis for this vector space. 

 Suppose a vector space V does not have a finite basis. Then V is said to be 

of infinite dimension or to be infinite-dimensional. 

           (The standard basis has ‗n‘ vectors) 

 Example: {                       } is the standard basis set of     and  

          

             (The standard basis has ‗n + 1‘ vectors) 

             (The standard basis has ‗mn‘ vectors) 

           are finite dimensional vector space. While 

                                        are infinite 

dimensional vector spaces 

    [    {          }]    it means, the dimension of the space 

spanned by a linearly independent set of vectors is equal to the number of 

vectors in that set. 

 For two finite dimensional subspaces U and W of a vector space V over a 

field F we have                                 

 For two finite dimensional subspaces U and W of a vector space V over a 

field F with     { } and       we have                                   
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Keep in mind: 

 Let V be a vector space such that one basis has ‗m’ elements and another 

basis has ‗n‘ elements. Then    . 

 Every basis of the finite dimensional vector space has the same number of 

elements (vectors). 

 Let V be an n – dimensional vector space, and let {          } be any 

basis then if a set in V has more than ‗n‘ vectors, then it is linearly 

dependent. 

 Let V be an n – dimensional vector space, and let {          } be any 

basis then if a set in V has fewer than ‗n‘ vectors, then it does not span V. 

 (Plus Theorem) Let S be a non – empty set of a vectors in a vector space V 

then if S is linearly independent set, and if v is a vector in V that is outside of 

span(S), then the set   { } that results by inserting   into S is still linearly 

independent. 

 (Minus Theorem) Let S be a non – empty set of a vectors in a vector space 

V then if v is a vector in S that is expressible as a linear combination of other 

vectors in S, and if   { } denotes the set obtained by removing v from S, 

then S and   { } span the same space; that is,               { }  

 Let V be an n – dimensional vector space, and let S be a set in V with 

exactly ‗n‘ vectors. Then S is a basis for V if and only if S spans V or S is 

linearly independent. 

 Let S be a finite set of vectors in a finite dimensional vector space V then if 

S spans V but is not a basis for V, then S can be reduced to a basis for V by 

removing appropriate vectors from S. (This theorem tells that; every 

spanning set for a subspace is either a basis for that subspace or has a basis 

as a subset) 

 Let S be a finite set of vectors in a finite dimensional vector space V then if 

S is linearly independent set that is not already a basis for V, then S can be 

enlarged to a basis for V by inserting appropriate vectors into S. (This 

theorem tells that; every linearly independent set in a subspace is either a 

basis for that subspace or can be extended to a basis for it.)  

  If W is subspace of a finite dimensional vector space V, then W is finite 

dimensional ,               and                   
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An infinite dimensional vector space 

Show that    is an infinite dimensional vector space as it has no finite spanning 

set.  

Solution: 

Arbitrary if we consider a finite spanning set, say   {            } then the 

degree of the polynomials in S would have a maximum value say ‗n‘ and this in 

turn would imply that any linear combination of the polynomials in S would have 

degree at most ‗n‘. Thus there we would be no way to express the polynomial      

as a linear combination of the polynomials in S, contradicting the fact that the 

vectors in S span    

Example:  Let W be a subspace of the real space R
3
. Note that dim R

3
 = 3. The 

following cases apply: 

(a) If       , then   { } , a point. 

(b) If       , then W is a line through the origin 0. 

(c) If       , then W is a plane through the origin 0. 

(d) If       , then W is the entire space R
3
 

 

Example:  Find a basis and dimension of the subspace W of R
3
 where                                         

  {               } 

Solution:   Note that     , because, for example           thus 

        . Note that                   are two independent vectors in W 

thus          and so both vectors                   form a basis of W. 

 

Example:  Find a basis and dimension of the subspace W of R
3
 where                                         

  {             } 

Solution:   The vector              any vector     has the form                        

         . Hence     . Thus   spans W and          
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Example:   

Find a basis and dimension of the solution space of the homogeneous system  

                         

                          

                            

                           

Solution: 

Using Gauss Jordan‘s Elimination method matrix [

        
          
         
        

] 

can be converted into row reduced echelon form as [

       
       
       
       

] 

Thus corresponding system is                                  

These yields                                               

Which can be written in vector form as 

                                             

Or alternatively as 

                                                                      

This shows that the vectors 

                                                        

Span the solution space and are linearly independent (Check!). Thus the solution 

space has dimension 3. 
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Example:(Applying the plus minus theorem)   

Show that         ,         ,       are linearly independent vectors. 

Solution: The set   {     } is linearly independent since neither vector in S 

is a scalar multiple of the other. Since the vector    cannot be expressed as a linear 

combination of the vectors in S, it can be adjoined to S to produce a linearly 

independent set    {  }  {        } 

Example: (Basses by inspection) 

Explain why the vectors           ,          form a basis for R
2
 

Solution: Since neither vector is a scalar multiple of the other, the two vectors 

form a linearly independent set in the two dimensional space R
2
 and hence they 

form a basis by theorem „Let V be an n – dimensional vector space, and let S 

be a set in V with exactly „n‟ vectors. Then S is a basis for V if and only if S 

spans V or S is linearly independent.‟ 

Example: (Basses by inspection): Explain why the vectors             , 

           and             form a basis for R
3
 

Solution: The vectors       form a linearly independent set in the xz – plane. 

The vector    is outside of the xz – plane, so the set {        } is also linearly 

independent. Since R
3
 is there dimensional theorem „Let V be an n – dimensional 

vector space, and let S be a set in V with exactly „n‟ vectors. Then S is a basis 

for V if and only if S spans V or S is linearly independent.‟ Implies that 

{        } is the basis for R
3
 

Example: Determine a basis for the subspace                     of  R
3
 

Solution: Given equation of is                     or         

where ‗y‘ and ‗z‘ are free variables. Then the above equation in vector form can be 

written as                                      

                                               thus given plane is 

spanned by vectors                   and as none of the vector is multiple of the 

other. So that set {                } is linearly independent. Hence 

{                } and dimension of subspace is 2. 
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Practice: 

1) Determine whether                               form a basis of R
4
. If not, 

find the dimension of the subspace they span. 

 

2)  Find a basis and dimension of the subspace W of R
4
 where    

i.    All vectors of the form           

ii.    All vectors of the form           where       and 

      

iii.   {                 } 

iv.   {                    } 

 

3) Find a basis and dimension of the solution space of the homogeneous system. 

i.            

               

              

 

ii.                

                

 

iii.              

              

             

 

iv.                 

                   

 

v.             

               

               

 

vi.         
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4) Determine a basis for the subspace of R
3
 and state its dimension. 

i.   {               } 

ii.   {             } 

iii.                      

iv.                 

v.                         

vi.         
 

  
 

 

 
 

 

 
 

5) Find the dimension of each of the following vector spaces: 

i. The vector space of all diagonal     matrices 

ii. The vector space of all symmetric     matrices 

iii. The vector space of all upper triangular     matrices 

6) Find the dimension of the subspace of P3 consisting of all polynomials 

                 for which      

7) Show that the set W of all polynomials in P2 such that        is a subspace 

of P2. Then make a conjecture about the dimension of W, and conform your 

conjecture by finding a basis for W. 

8) Find a standard basis vector for R
3
 that can be added to the set {     } to 

produce a basis for R
3
 

i.                           

ii.                          

9) Find a standard basis vector for R
4
 that can be added to the set {     } to 

produce a basis for R
4
 where                                  

10) Let {        } be a basis for a vector space V. Show that {        } is 

also a basis, where                            

11) The vectors                          are linearly independent. 

Enlarge {     } to a basis for R
3
 

12) The vectors                            are linearly independent. 

Enlarge {     } to a basis for R
4
 

13) Find a basis for the subspace of R
3
 that is spanned by the vectors; 

                                                

14) Find a basis for the subspace of R
4
 that is spanned by the vectors; 

                                                        



168 
 

Visit us @ Youtube: “Learning With Usman Hamid” 

The following is a fundamental result in linear algebra. 

Theorem (Omit Proof): Let V be a vector space such that one basis has ‗m’ 

elements and another basis has ‗n‘ elements. Then    . 

(A vector space V is said to be of finite dimension ‗n‘ or n-dimensional, written 

       if V has a basis with ‗n‘ elements. Theorem tells us that all bases of V 

have the same number of elements, so this definition is well defined.) 

Theorem:  

Every basis of the finite dimensional vector space has the same number of 

elements (vectors). 

Proof:    

Let a vector space V over field F has two basis   and   with ‗m‘ and ‗n‘ number 

of elements. Since   spans V and   is a linearly independent subset in V, so   

cannot have more than ‗m‘ number of elements 

i.e.     ……………(i) 

now Since   spans V and   is a linearly independent subset in V, so   cannot have 

more than ‗n‘ number of elements 

i.e.     ……………(ii) 

from (i) and (ii)     

Hence the theorem. 
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Theorem:  

Let V be an n – dimensional vector space, and let {          } be any basis then 

if a set in V has more than ‗n‘ vectors, then it is linearly dependent. 

Proof:    

Let    {          } be any set of ‗m‘ vectors in V, where    . We want 

to show that    is linearly dependent. Since   {          } is a basis, each    

can be expressed as linear combination of the vectors in S, say 

                        

                         ………………(i) 

                                                          

                        

To show that    is linearly dependent, we must find scalar           , not all 

zero, such that                     ………………(ii) 

We can write equation (i) in partition as follows 

[          ]  [          ] [

          

          

    
          

]  ………………(iii) 

Since    , the linear system 

[

          

          

    
          

] [

  

  

 
  

]  [

 
 
 
 

]   ………………(iv) 

Has more equations than unknowns and hence has a non – trivial solution  

                     

Creating a column vector from this solution and multiplying both sides of (iii) on 

the right by this vector yields 
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[          ] [

  

  

 
  

]  [          ] [

          

          

    
          

] [

  

  

 
  

]  

By (iv) this simplifies to  [          ] [

  

  

 
  

]  [          ] [

 
 
 
 

]  

[          ] [

  

  

 
  

]  [

 
 
 
 

]  

Which we can writes as                       

Since the scalar coefficients in this equation are not all zero, we have proved that 

   {          } is linearly dependent 

Theorem: 

Let S be a non – empty set of a vectors in a vector space V then if S is linearly 

independent set, and if v is a vector in V that is outside of span(S), then the set 

  { } that results by inserting   into S is still linearly independent. 

Proof:    

Assume that   {          } is a linearly independent set of vectors in V and v 

is a vector in V that is outside of span(S). To show that    {            } is 

linearly independent set we must show that the only scalar that satisfy                  

                         are                                  

But it must be true that        for otherwise we could solve                                    

                         for v as a linear combination of 

          , contradicting the assumption that v is outside of span(S). Thus 

                         simplifies to                    

which, by linear independence of {            } implies that                                   

             

Hence the theorem. 
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Theorem: 

Let S be a non – empty set of a vectors in a vector space V then if v is a vector in S 

that is expressible as a linear combination of other vectors in S, and if   { } 

denotes the set obtained by removing v from S, then S and   { } span the same 

space; that is,               { }  

Proof: 

Assume that   {          } is a set of vectors in V and (to be specific) suppose 

that    is a linear combination of             , say  

                         

We want to show that if    is removed from  , then the remaining set of vectors 

{            } still spans S; that is , we must show that every vector w in 

        is expressible as a linear combination of {            }. But if w is in 

       , then w is expressible in the form 

                             

Or, on substituting                         in above  

                                                 

Which expresses w as a linear combination of {            }.Hence the theorem. 
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In general, to show that a set of vectors {          } is a basis for a vector space 

V, one must show that the vectors are linearly independent and span V, However, 

if we happen to know that V has dimension ‗n‘ (so that {          } contains the 

right number of vectors for a basis), the it is suffices to check either linear 

independence or spanning, the remaining condition will hold automatically. This is 

the content of the following theorem. 

Theorem:  

Let W be a subspace of an n-dimensional vector space V. Then       . In 

particular, if        , then    . 

Proof:  

Because V is of dimension ‗n‘ , any n + 1 or more vectors are linearly dependent. 

Furthermore, because a basis of W consists of linearly independent vectors, it 

cannot contain more than ‗n‘ elements. Accordingly,                        in 

particular, if {          } is a basis of W, then because it is an independent set 

with n elements, it is also a basis of V. Thus     when        

Quotient Space 

Let W be a subspace of V i.e.     then 
 

 
 {                }  then 

    is a subset of V for     then 
 

 
 form a vector space over the same field of V 

with respect to operation defined as; 

i.                     where               

ii.             where                    

Remember: 

i. W is the additive identity of 
 

 
 i.e. W is zero vector of 

 

 
 

ii.                 
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Examples:  

i. Let W be a subspace of a R
3
 spanned by the vector         that is                              

      {       }  {            } then W is the straight line 

through origin and the point        . For any vector            we can 

regard the coset           as the set of vectors obtained by adding the 

vector         to each vector of  . This coset is therefore the set of all 

vectors on the line through the point         parallel to the line  . 

Hence 
  

 
 is the collection of lines parallel to   

ii. Let       {               } then W is the set of all vectors in xy – 

plane and the cosets are the planes parallel to the xy – plane. Thus the 

quotient space 
  

 
 is the collection of planes parallel to xy – plane. 

iii. Let       {       } then for any vector            we have 

                                   and therefore since 

           

             [         ]   [         ]  

                                 

                     

The vectors           and           are therefore also independent 

and hence they for a basis of 
 

 
 

iv. The set P1 is a subspace of P4 form the quotient space 
  

  
  for this we 

consider                                 

Then                                               

                             

So                            spans 
  

  
  

Moreover these are linearly independent so a basis for 
  

  
 is 

{                    }  

v. Let   {          } be a basis for a subspace W of V, and extended 

it to a basis    {                     } of V, then                      

{                } is a basis of 
 

 
 

Available at MathCity.org
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Theorem: Dimension of Quotient Space: 

If W is subspace of a finite dimensional vector space V, then  

i. W is finite dimensional 

ii.               

iii.    
 

 
            

Proof: 

i. Since                 and if W has a basis with n elements. 

Then by theorem “Let W be a vector space such that one basis has m 

elements and another basis has n elements, then m = n.” all basis of 

W have the same number of elements and hence W is finite dimensional. 

ii. If W is finite dimensional, so it has a basis   {          }. Either S 

is also a basis for V or it is not. If so, then         , which means 

that              . If not, then because S is a linearly independent 

set it can be enlarged to a basis for V by theorem “Let S be a finite set of 

vectors in a finite dimensional vector space V then if S is linearly 

independent set that is not already a basis for V, then S can be 

enlarged to a basis for V by inserting appropriate vectors into S” 

But this implies that              . So we have shown that  

              in all cases. 

iii. Let {          } be a basis of W with        and 

{                     } be an extended basis of V with                    

         .  

Then we have to prove that {                } is a basis of 
 

 
 

For this firstly we will show that {                } is linearly 

independent. Consider; 
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Implies                  is a linear combination of            

                                   

                                     

Since {                     } be an extended basis of V so 

                      are linearly independent. 

Implies                                   

Thus {                } is linearly independent. 

 Now we will show that {                } is spans 
 

 
 Consider; 

    be any element of 
 

 
. Here     can be expressed as a linear combination of 

                      .i.e. 

                                     

                                             

                          

                                  

                                  

This shows that {                } is spans 
 

 
 .  

Thus {                } is a basis of 
 

 
 and    

 

 
   

Hence      
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Theorem: If W is subspace of a finite dimensional vector space V, then  

i. W is finite dimensional 

ii.               

iii.                    

Proof: 

i. Since                 and if W has a basis with n elements. 

Then by theorem “Let W be a vector space such that one basis has m 

elements and another basis has n elements, then m = n.” all basis of 

W have the same number of elements and hence W is finite dimensional. 

ii. If W is finite dimensional, so it has a basis   {          }. Either S 

is also a basis for V or it is not. If so, then         , which means 

that              . If not, then because S is a linearly independent 

set it can be enlarged to a basis for V by theorem “Let S be a finite set of 

vectors in a finite dimensional vector space V then if S is linearly 

independent set that is not already a basis for V, then S can be 

enlarged to a basis for V by inserting appropriate vectors into S” 

But this implies that              . So we have shown that  

              in all cases. 

iii. Assume that               and that   {          } is a basis 

for W. If S is not also a basis for V, then being linearly independent S 

can be extended to a basis for V by theorem “Let S be a finite set of 

vectors in a finite dimensional vector space V then if S is linearly 

independent set that is not already a basis for V, then S can be 

enlarged to a basis for V by inserting appropriate vectors into S”. 

But this would mean that              , which contradiction our 

hypothesis. Thus S must also be a basis for V, which means that     

The converse is obvious. 
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Theorem:  

Let V be an n – dimensional vector space, and let S be a set in V with exactly ‗n‘ 

vectors. Then S is a basis for V if and only if S spans V or S is linearly 

independent. 

Proof: 

Assume that S has exactly n vectors and spans V. To prove that S is a basis, we 

must show that S is linearly independent set. But if this is not so, then some vector 

v in S is a linear combination of the remaining vectors. If we remove this vector 

from S, then it follows from theorem; 

 “Let S be a non – empty set of a vectors in a vector space V then if v is a 

vector in S that is expressible as a linear combination of other vectors in S, 

and if   { } denotes the set obtained by removing v from S, then S and 

  { } span the same space; that is,               { } ”   

That the remaining set of    vectors still spans V. But this is impossible since 

theorem “Let V be an n – dimensional vector space, and let {          } be 

any basis then if a set in V has fewer than „n‟ vectors, then it does not span V” 

states that no set with fewer than n vectors can span an n – dimensional vector 

space. Thus S is linearly independent. 

 Assume that S has exactly n vectors and is a linearly independent set. To 

prove that S is a basis, we must show that S spans V. But if this is not so, then 

there is some vector v in V that is not in span(S). If we insert this vector into S, 

then it follows from theorem “Let S be a non – empty set of a vectors in a vector 

space V then if S is linearly independent set, and if v is a vector in V that is 

outside of span(S), then the set   { } that results by inserting   into S is still 

linearly independent”  that this set of     vectors is still linearly independent. 

But this is impossible, since theorem 

 “Let V be an n – dimensional vector space, and let {          } be any basis 

then if a set in V has more than „n‟ vectors, then it is linearly dependent”  

states that no set with more than n vectors in an n – dimensional vector space can 

be linearly independent. Thus S spans V. 
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Theorem:  

Let S be a finite set of vectors in a finite dimensional vector space V then if S 

spans V but is not a basis for V, then S can be reduced to a basis for V by 

removing appropriate vectors from S. (This theorem tells that; every spanning set 

for a subspace is either a basis for that subspace or has a basis as a subset) 

Proof:  

If S is a set of vectors that span V but is not a basis for V, then S is a linearly 

dependent set. Thus some vector v in S is expressible as a linear combination of the 

other vectors in S. By theorem;  

“Let S be a non – empty set of a vectors in a vector space V then if v is a vector 

in S that is expressible as a linear combination of other vectors in S, and if 

  { } denotes the set obtained by removing v from S, then S and   { } 

span the same space; that is,               { } ”   

We can remove v from S, and the resulting set    will still span V. If    is linearly 

independent, then    is a basis for V, and we are done. If    is linearly dependent, 

then we can remove some appropriate vector from    to produce a set     that still 

span V. We can continue removing vectors in this way until we finally arrive at a 

set of vectors in   that is linearly independent and span V. This subset of   is a 

basis for V. 
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Theorem:  

Let S be a finite set of vectors in a finite dimensional vector space V then if S is 

linearly independent set that is not already a basis for V, then S can be enlarged to 

a basis for V by inserting appropriate vectors into S. (This theorem tells that; every 

linearly independent set in a subspace is either a basis for that subspace or can be 

extended to a basis for it)  

Proof:  

Suppose that         . If S is a linearly independent set that is not already a 

basis for V, then S fails to span V, so there is some vector v in V that is not in 

span(S). By the theorem “Let S be a non – empty set of a vectors in a vector 

space V then if S is linearly independent set, and if v is a vector in V that is 

outside of span(S), then the set   { } that results by inserting   into S is still 

linearly independent.” We can inset v into S, and the resulting set    will still be 

linearly independent. If    spans V, then    is a basis for V, and we are finished. If 

   does not spans V, then we insert an appropriate vector into    to produce a set 

    that is still linearly independent. We can continue inserting vectors in this way 

until we reach a set with n already independent vectors in V. this set will be a basis 

for V by theorem “Let V be an n – dimensional vector space, and let S be a set 

in V with exactly „n‟ vectors. Then S is a basis for V if and only if S spans V or 

S is linearly independent.” 
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Sums 

Let U and W be subsets of a vector space V. The sum of U and W, written U + W, 

consists of all sums u + w where     and    . That is, 

    {                   }  

Now suppose U and W are subspaces of V. Then one can easily show that U + W 

is a subspace of V. Recall that       is also a subspace of V. The following 

theorem relates the dimensions of these subspaces. 

Theorem:  

Suppose U and W are finite-dimensional subspaces of a vector space V. Then                 

                              

Proof: 

Suppose {          } be a basis of       , {                     } be a 

basis of   and {                     } be a basis of   

Then we have to show that {                                } be a 

basis of     

Firstly we will show that linearity condition. For this consider; 

                                              

         

                                              

           ……………..(i) 

Since LHS of (i) is in   so does RHS also will be in   

i.e.                      

also                     

therefore                         

as  {          } be a basis of       then for      we have 
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Since {                     } be a basis of   

                          

So that (i) becomes 

                                      

But {                     } be a basis of   

                          

i.e. each            

Hence {                                } is linearly independent. 

 Now we to show spanning condition. For this suppose           

i.e.         . Also we know that  {                     } be a basis of   

and {                     } be a basis of   

Then                                     

And     
      

        
      

      
        

    

Adding both we get 

          
           

             
                 

       
      

        
     

This implies that {                                } spans      

From both conditions we conclude that {                                } 

is a basis of      

Therefore      is finite dimensional. And  
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Example: Let       , the vector space of     matrices. Let U consist of those 

matrices whose second row is zero, and let W consist of those matrices whose 

second column is zero. Then 

  ,*
  
  

+-  ,    ,*
  
  

+- ,     ,*
  
  

+- ,      ,*
  
  

+-                

That is,     consists of those matrices whose lower right entry is 0, and     

consists of those matrices whose second row and second column are zero.                   

Note that         ,         ,           . Also,           , 

which is expected from Theorem. That is, 

                                       

Practice: 

1. Give an example of a vector space V and its subspace W such that V,W and 
 

 
 are infinite dimensional and    

 

 
            

2. Let          be subspaces of a vector space V. Then show that; 

i.     is subspace of   

ii.        are contained in     

iii.     is the smallest subspace containing          

i.e.               

iv.       

 

3. Consider the following subspaces of R
5
; 

                     {                                       }  

                     {                                    }  

Find a basis and the dimension of (a)      (b)       

4. Suppose          are distinct four dimensional subspaces of a vector space 

V, where       . Find the possible dimension of       

 

5. Let            be the subset of all upper and lower triangular matrices of 

     show that both are subspaces of      ,  

find             ,             ,             

also verify                                   
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Direct Sums 

The vector space V is said to be the direct sum of its subspaces U and W, denoted 

by       if every v   V can be written in one and only one way as       

where u   U and w   W. 

The following theorem characterizes such a decomposition. 

Theorem:  

The vector space V is the direct sum of its subspaces U and W if and only if:  

(i)      , (ii)       { }. 

Proof: Suppose       then every v   V can be uniquely written in the form 

      where u   U and w   W. Thus in particular,       

Now suppose v          then 

(i)        where v   U and 0   W. 

(ii)       where 0   U and v   W. 

Thus         and       { } 

 On the other hand, suppose that       , and       { }. Let v   V 

because      , there exists u   U and w   W such that      . We need 

to show that such a sum is unique. Suppose also that         where      U 

and      W then 

           also           

But        U and        W then by       { } 

       and        and so      and      

Thus such a sum for v   V is unique, and       
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Example: Consider the vector space      

(a) Let U be the xy-plane and let W be the yz-plane; that is, 

  {             } and   {             } 

Then       , because every vector in    is the sum of a vector in U and a 

vector in W. However,    is not the direct sum of U and W, because such sums 

are not unique. For example, 

                        and also                          

(b) Let U be the xy-plane and let W be the z-axis; that is, 

  {             } and   {           } 

Now any vector            can be written as the sum of a vector in U and a 

vector in V in one and only one way: 

                         

Accordingly,    is the direct sum of U and W; that is,        

General Direct Sums 

The notion of a direct sum is extended to more than one factor in the obvious way. 

That is, V is the direct sum of subspaces             , written 

                    if every vector v   V can be written in one and only 

one way as               where                      

Theorem:  

Suppose                    . Also, for each k, suppose Sk is a linearly 

independent subset of Wk .Then 

(a) The union        is linearly independent in V. 

(b) If each Sk is a basis of Wk , then      is a basis of V. 

(c)                           
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Theorem: (For two factors) 

Suppose        . Suppose   {          } and    {          } are 

linearly independent subset of        .Then 

(a) The union      is linearly independent in V. 

(b) If each   {          } and    {          } are basis of         , 

then      is a basis of V. 

(c)                

Proof: 

a) Suppose that                                    

Where       are scalars then  

                                            

Where                  and                      

Because such a sum for 0 is unique, this leads to 

                    and                    

Because   is linearly independent for each      and    is linearly independent 

for each      therefore is      is linearly independent. 

b) By theorem ―Suppose        . Suppose   {          } and                  

   {          } are linearly independent subset of        .Then the 

union      is linearly independent in V.‖      is linearly independent, and 

by problem ―Suppose that        are subspaces of a vector space V and that 

  {  } spans U and    {  } spans W. This show that      spans    ‖ 

Thus      is a basis of V. 

c) Suppose        . Suppose   {          } and    {          } 

are linearly independent subset of        .Then If each   {          } 

and    {          } are basis of         , then      is a basis of V. 

then it follows directly               

Theorem: (Just read):  Suppose                 .  

And      ∑        then                       
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Practice: 

1. Consider the following subspaces of R
3
; 

  {             } ,    {       }  (W is yz – plane) 

Show that        

2. Suppose that        are subspaces of a vector space V and that   {  } 

spans U and    {  } spans W. Then show that      spans    . 

 

Cardinality of a vector space V(F): 

Let          and   {          } is any basis of V(F) then cardinality of 

vector space is given as |    |     where   is any prime. 

 

Number of Basis of a vector space V(F): 

Let          then; 

i. Number of distinct basis  
                             

  
 

ii. Number of ordered basis                                

 

Number of subspaces of a vector space V(F): 

Let V(F) be a vector space and    be a subspace  of V(F) . Let          and 

   {          } then 

i. Number of basis in W  
                             

  
 

ii. Number of basis of V selective ‗r‘ linearly independent vectors from V 

 
                             

  
 

iii. Number of subspaces of            
                             

                             
 

where         
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Coordinates 

If   {          } is a basis for a vector space V, and                          

                    is the expression for a vector    in terms of the basis 

S, then the scalars            are called the coordinates of     relative to the 

basis S.  

The vector               in R
n
 constructed from these coordinates is called the 

coordinate vector  ⃗⃗  relative to S; it is denoted by                    

Remark:  

The above ‗n‘ scalars            also form the coordinate column vector 

              of    relative to S. The choice of the column vector rather than the 

row vector to represent v depends on the context in which it is used. 

Coordinates relative to the standard basis for R
n
 

In the special case where V = R
n
 and S is the standard basis, the coordinate vector 

      and the vector    are the same; that is ,          

For example in R
3
 the representation of a vector            as a linear 

combination of the vectors in the standard basis   {     } is             

so the coordinate vector relative to the basis is               which is the same 

as the vector   . 

Example:  

Consider real space R
3
. The following vectors form a basis S of R

3
: 

            ;            ;            

The coordinates of           relative to the basis S are obtained as follows. 

Set               ; that is, set v as a linear combination of the basis 

vectors using unknown scalars x, y, z. This yield 

[
 
 
 

]   [
 

  
 

]   [
 
 
 

]   [
 
 
 

]  
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The equivalent system of linear equations is as follows: 

       

          

     

The solution of the system is            . Thus, 

                

And so                

 

Practice: 

1) Find the coordinate vectors of w relative to the basis   {     } for R
2
 

i.                              

ii.                             

iii.                              

iv.                              

2) Find the coordinate vectors of v relative to the basis   {        } for R
3
 

i.                                                

ii.                                                

iii.                                                   

 

3) Relative to the basis   {     }  {           } of R
2
 , find  the coordinate 

vector of            
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Coordinates relative to the standard basis for Pn 

In the special case where V = Pn the given formula for                     

                        expresses the polynomials as a linear 

combination of the standard basis vectors   {           }. Thus the 

coordinate vectors for   relative to   is                   

Example:  Consider the vector space P2 of polynomials of degree   . The 

polynomials           ,            ,                    

form a basis S of P2 . The coordinate vector     of              relative to S 

is obtained as follows. 

Set               using unknown scalars a,b,c, and simplify: 

                                   

                                

Then set the coefficients of the same powers of ‗x‘ equal to each other to obtain the 

system               ,            ,         

The solution of the system is                 . Thus, 

                 and hence;               

 

Practice: Find the coordinate vectors of p relative to the basis   {        } 

for P2 , P3 and P4 

i.            ,       ,          ,        

ii.           ,         ,             ,          

iii.            ,            ,             ,        

iv.              ,            ,            ,        

v.                ,      ,        ,            , 

            

vi.               ,      ,         ,             , 
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Coordinates relative to the standard basis for M22 

In the special case where V = M22 the representation of a vector                      

  *
  
  

+  could be expressible as  the linear combination of the standard basis 

vectors in matrices as follows; 

   *
  
  

+   *
  
  

+   *
  
  

+   *
  
  

+   *
  
  

+ 

So the coordinate vector of B relative to S is                

Example:   

Consider the vector space M22 . The matrices   

   *
  
  

+     *
   
  

+     *
   
  

+      *
  
  

+ 

form a basis S of M22 . The coordinate vector    of     *
  
   

+ relative to S is 

obtained as follows. 

Set                   using unknown scalars a,b,c,d and simplify: 

*
  
   

+   *
  
  

+   *
   
  

+   *
   
  

+   *
  
  

+  

*
  
   

+  *
          

    
+  

Then set the coefficients of the same powers of ‗x‘ equal to each other to obtain the 

system               ,        ,         ,       

The solution of the system is                          . Thus, 

                         and hence;                                  

(Note that the coordinate vectors of A is a vector in R
4
, because         ) 
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Practice: 

1) Find the coordinate vectors of A relative to the basis   {           } for 

    

i.    *
  
  

+     *
  
  

+     *
  
  

+      *
  
  

+     *
  
  

+ 

ii.    *
  
  

+     *
  
  

+     *
  
  

+      *
  
  

+     *
  
  

+ 

2) Consider the coordinate vector      [

  
 
 
 

]find B if S is the basis in 

*
  
   

+  *
   

   
+  *

   
     

+  *
  

   
+ 
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Geometrical interpretation of the coordinates of a vector relative to a basis S:  

There is a geometrical interpretation of the coordinates of a vector    relative to a 

basis S for the real space R
n
, which we illustrate using the basis S of R

3
 in 

Example the following vectors form a basis S of R
3
: 

            ;            ;            

The coordinates of           relative to the basis S are              . First 

consider the space R
3
 with the usual x, y, z axes. Then the basis vectors determine 

a new coordinate system of R
3
, say with          axes as shown in following 

figure. That is; 

i. The     axis is in the direction of     with unit length |  | 

ii. The     axis is in the direction of     with unit length |  | 

iii. The     axis is in the direction of     with unit length |  | 

Then each vector          , or equivalently the point          in R
3
 will have 

new coordinates with respect to the new          axes. These new coordinates are 

precisely      , the coordinates of     with respect to the basis S, thus as shown in 

example, the coordinates of the point          with the new axes form the vector 
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Chapter # 4 

Inner product spaces 

In this chapter we will generalize the ideas of length, angle, distance and 

orthogonality. We will also discuss various applications of these ideas. 

Norm of Vector:  

Consider a vectors v in R
n
 , then norm, length or size of vector is non – negative 

square root of       denoted by ‖  ‖ and defined as follows; 

‖  ‖  √      √  
    

      
    for                 

Note:  

a) ‖  ‖    

b) ‖  ‖         

c) ‖   ‖  | |‖  ‖ for any scalar ‗k‘ 

d) a vector is said to be unit vector if ‖  ‖    or equivalently         

e) for any non – zero vector v in R
n
 the vector  ̂  

 ⃗ 

‖ ⃗ ‖
 is the unit vector in the 

same direction as    and the process of finding  ̂ is called normalizing    

Example:   

 Consider              in     then ‖  ‖  √            √   

 Also                 in     

Then ‖  ‖  √                  √   

Example (Normalizing a vector):   

Consider              Then ‖  ‖  √            √    

Then clearly  ⃗   ̂  
 ⃗ 

‖ ⃗ ‖
 

 

 
                                                                                     

Thus  ⃗  is the unit vector that has the same direction as             
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PRACTICE: 

Find the norm of    and a unit vector that is oppositely directed to    

i.            

ii.             

iii.                

iv.                

Find   ̂  then change its sign. 

The Standard Unit Vectors in    

Vectors given as follows are called Standard Unit Vectors in R
n
 

 ̂               ̂                     ̂              

Note:  

f)  ̂         ̂        are called standard unit vectors in    

g)  ̂           ̂           ̂          are called Standard unit vectors in    

h) Every vector                 can be expressed as the linear 

combination of standard unit vectors. e.g. 

                   ̂     ̂       ̂  

Like 

                                      ̂    ̂    ̂ 

Also  

                                                       

             ̂    ̂    ̂    ̂  

Distance between vectors:  

Consider two non – zero vectors u and v in R
n
, say   ⃗               and 

                then distance between them is given as follows; 

   ⃗      ‖ ⃗    ‖  √                              
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Example: if   ⃗             and               then 

   ⃗      ‖ ⃗    ‖  √                                    

   ⃗      ‖ ⃗    ‖  √                             √   

PRACTICE: 

1) Evaluate the given expression with  ⃗           ,             and  

 ⃗⃗           

i. ‖ ⃗    ‖ 

ii. ‖ ⃗ ‖  ‖  ‖ 

iii. ‖   ⃗     ‖ 

iv. ‖  ⃗       ⃗⃗ ‖ 

v. ‖ ⃗      ⃗⃗ ‖ 

vi. ‖ ⃗    ‖ 

vii. ‖   ‖   ‖  ‖ 

viii. ‖ ⃗ ‖  ‖  ‖ 

 

2) Evaluate the given expression with  ⃗              ,               and  

 ⃗⃗             

i. ‖  ⃗       ⃗⃗ ‖ 

ii. ‖  ⃗ ‖   ‖  ‖  ‖ ⃗⃗ ‖ 

iii. ‖ ⃗ ‖‖  ‖ 

iv. ‖ ⃗ ‖  ‖    ‖  ‖   ⃗⃗ ‖ 

v. ‖‖ ⃗    ‖ ⃗⃗ ‖ 

 

3) Let              . Find all scalars ‗k‘ such that ‖   ‖    

4) Let                . Find all scalars ‗k‘ such that ‖   ‖    
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Projection of vectors onto (along) another vector:   

Consider two non – zero vectors u and v in R
n
, say   ⃗                                    

and                 then projection of vector  ⃗  onto (along)  a non – zero 

vector    is given as follows; 

      ⃗⃗   ⃗⃗        ⃗⃗  ⃗⃗  
 ⃗⃗   ⃗⃗ 

‖ ⃗⃗ ‖ 
 ⃗⃗  

 ⃗⃗   ⃗⃗ 

 ⃗⃗   ⃗⃗ 
 ⃗⃗   (vector component of  ⃗  onto    ) 

This is also called orthogonal projection of  ⃗  on    

Projection of vectors orthogonal to another vector:   

Consider two non – zero vectors u and v in R
n
, say   ⃗                                    

and                 then projection of vector  ⃗  orthogonal to a  non – zero 

vector    is given as follows; 

 ⃗⃗       ⃗⃗  ⃗⃗   ⃗⃗  
 ⃗⃗   ⃗⃗ 

‖ ⃗⃗ ‖ 
 ⃗⃗     (vector component of  ⃗  orthogonal to    ) 

Example:  

Let  ⃗           and            . Find the vector component of  ⃗  along    and 

the vector component of  ⃗  orthogonal to   . 

Solution: We have  ⃗           and             

 ⃗                                                  

‖  ‖                     

Then the vector component of  ⃗  along (onto)    is as follows; 

     ⃗  ⃗  
 ⃗    

‖  ‖ 
   

  

  
         

 

 
         (

  

 
  

 

 
 
  

 
* 

Also the vector component of  ⃗  orthogonal    is as follows; 

 ⃗       ⃗  ⃗   ⃗  
 ⃗⃗   ⃗ 

‖ ⃗ ‖ 
            (

  

 
  

 

 
 

  

 
)  ( 

 

 
  

 

 
 

  

 
)  
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PRACTICE:  

1) Find ‖     ⃗  ⃗ ‖ for given vectors. 

 

i.  ⃗         and            

ii.  ⃗          and            

iii.  ⃗        and           

iv.  ⃗           and             

 

2) Find the vector component of  ⃗  along    and the vector component of  ⃗  

orthogonal to   . 

i.  ⃗        and           

ii.  ⃗          and           

iii.  ⃗          and            

iv.  ⃗            and                

v.  ⃗             and                
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Field:   A non-empty set F is called a field if 

 F is Abelian group under addition. 

 F – {0} is Abelian group under multiplication. 

 Distributive law holds in F. 

Note: Elements of a Field called Scalars. 

Inner Product Spaces 

Let V be a real vector space. Suppose to each pair of vectors  ⃗       there is 

assigned a real number, denoted by 〈 ⃗    〉 . This function is called a (real) inner 

product on V if it satisfies the following axioms: 

i.  (Linear Property): 〈  ⃗     ⃗     〉   〈 ⃗     〉   〈 ⃗     〉. 

ii.  (Symmetric Property): 〈 ⃗    〉  〈    ⃗ 〉 . 

iii.  (Positive Definite Property): 〈 ⃗   ⃗ 〉   ; and 〈 ⃗   ⃗ 〉    if and only if 

 ⃗   . 

The vector space V with an inner product is called a (real) inner product space. 

Axiom (i) states that an inner product function is linear in the first position. Using 

(i) and the symmetry axiom (ii) , we obtain 

〈 ⃗           〉  〈           ⃗ 〉   〈     ⃗ 〉   〈     ⃗ 〉   〈 ⃗     〉   〈 ⃗     〉  

That is, the inner product function is also linear in its second position. Combining 

these two properties and using induction yields the following general formula: 

〈∑    ⃗    ∑       〉  ∑ ∑     〈 ⃗      〉     

That is, an inner product of linear combinations of vectors is equal to a linear 

combination of the inner products of the vectors. 

We may define above axioms as follows 

i. (Additivity Axiom): 〈 ⃗    ⃗     〉  〈 ⃗     〉  〈 ⃗     〉. 

ii.  (Symmetry Axiom): 〈 ⃗    〉  〈    ⃗ 〉 . 

iii. (Homogeneity Axiom): 〈  ⃗    〉   〈 ⃗    〉 . 

iv.  (Positivity Axiom): 〈 ⃗   ⃗ 〉   ; and 〈 ⃗   ⃗ 〉    if and only if  ⃗   . 
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Because the axiom for a real inner product space are based on properties of the dot 

product, these inner product space axioms will be satisfied automatically if we 

define the inner product of two vectors u and v in R
n
 to be  

〈 ⃗    〉   ⃗                       

This inner product is commonly called the Euclidean Inner Product (or the 

Standard Inner Product) on R
n
 to distinguish it from other possible inner 

products that might be defined on R
n
. We call R

n
 with the Euclidean Inner Product 

Euclidean – n space. 

Example:  

Let V be a real inner product space. Then, by linearity, 

〈                   〉   〈     〉    〈     〉    〈     〉  

 〈     〉    〈     〉    〈     〉  

〈           〉   〈   〉    〈   〉    〈   〉    〈   〉  

      〈   〉   〈   〉    〈   〉 

Observe that in the last equation we have used the symmetry property that  

〈   〉  〈   〉 . 

Norm (length) of a Vector 

By the  axiom 〈 ⃗   ⃗ 〉   ; and 〈 ⃗   ⃗ 〉    if and only if  ⃗   ., 〈 ⃗   ⃗ 〉 is 

nonnegative for any vector  ⃗ . Thus, its positive square root exists. We use the 

notation ‖ ⃗ ‖  √〈 ⃗   ⃗ 〉 and This nonnegative number is called the norm or length 

of  ⃗ . The relation ‖ ⃗ ‖  〈 ⃗   ⃗ 〉 will be used frequently. Also remember a vector 

of norm 1 is called unit vector. 

Distance between two Vectors 

For this we use the notation    ⃗      ‖ ⃗    ‖  √〈 ⃗      ⃗    〉 
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Examples of Inner Product Spaces 

This section lists the main examples of inner product spaces used in this text. 

Although the Euclidean inner product is the most important inner product on 

R
n
. However, there are various applications in which it is desirable to modify the 

Euclidean inner product by weighting its terms differently. More precisely, if 

           are positive real numbers, which we shall call weights, and if 

 ⃗                and                 are vectors in R
n
 , then it can be 

shown that the formula  〈 ⃗    〉                         defines an 

inner product on R
n
 ; it is called the weighted Euclidean inner product with 

weights             . 

Example:    Weighted Euclidean Inner Product 

Let   ⃗          and             be vectors in R
2
. Verify that the weighted 

Euclidean inner product 〈 ⃗    〉              satisfies the four inner product 

axioms. 

Solution 

Axiom 1: If  ⃗  and    are interchanged in this equation, the right side remains the 

same. Therefore, 〈 ⃗    〉  〈    ⃗ 〉 

Axiom 2: If  ⃗⃗         , then 

〈 ⃗      ⃗⃗ 〉                         

〈 ⃗      ⃗⃗ 〉                             

〈 ⃗      ⃗⃗ 〉                               

〈 ⃗      ⃗⃗ 〉  〈 ⃗   ⃗⃗ 〉  〈    ⃗⃗ 〉  

Axiom 3:  〈  ⃗    〉                                    〈 ⃗    〉 

Axiom 4:  〈     〉                     
     

   ; and 〈     〉    if and 

only if      
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Example:   Using a Weighted Euclidean Inner Product 

It is important to keep in mind that norm and distance depend on the inner product 

being used. If the inner product is changed, then the norms and distances between 

vectors also change. For example, for the vectors  ⃗        and           in R
2
 

with the Euclidean inner product, we have ‖ ⃗ ‖  √         

and    ⃗      ‖ ⃗    ‖  ‖      ‖  √         √     However, if we 

change to the weighted Euclidean inner product 〈 ⃗    〉              then we 

obtain ‖ ⃗ ‖  √〈 ⃗   ⃗ 〉  √                √   

and    ⃗      ‖ ⃗ ‖‖ ⃗    ‖  √〈 ⃗   ⃗ 〉  √〈             〉 

   ⃗      √                  √   

Practice: 

1. Let R
2
 have the weighted Euclidean inner product 〈 ⃗    〉              

and let  ⃗        ,          ,  ⃗⃗         and     then compute the 

stated quantities; 

a) 〈 ⃗    〉 

b) 〈     ⃗⃗ 〉 

c) 〈 ⃗      ⃗⃗ 〉 

d) ‖  ‖ 

e)    ⃗      

f) ‖ ⃗     ‖ 

 

2. Let R
2
 have the weighted Euclidean inner product 〈 ⃗    〉  

 

 
           

and let  ⃗        ,          ,  ⃗⃗         and     then compute the 

stated quantities; 

a) 〈 ⃗    〉 

b) 〈     ⃗⃗ 〉 

c) 〈 ⃗      ⃗⃗ 〉 

d) ‖  ‖ 

e)    ⃗      

f) ‖ ⃗     ‖ 
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Euclidean n-Space R
n
 

Consider the vector space R
n
. The dot product or scalar product in R

n
 is defined by 

 ⃗                     . This function defines an inner product on R
n
. 

The norm ‖ ⃗ ‖ of the vector  ⃗  in this space is as follows: 

‖ ⃗ ‖  √ ⃗   ⃗  √  
    

      
   

On the other hand, by the Pythagorean theorem, the distance from the origin O in 

R
3
 to a point             is given by √  

    
    

 . This is precisely the same 

as the above-defined norm of the vector  ⃗             in R
3
. Because the 

Pythagorean Theorem is a consequence of the axioms of Euclidean geometry, the 

vector space R
n
 with the above inner product and norm is called Euclidean n-

space. Although there are many ways to define an inner product on R
n
, we shall 

assume this inner product unless otherwise stated or implied. It is called the usual 

(or standard) inner product on R
n
. 

Remark: Frequently the vectors in R
n
 will be represented by column vectors—that 

is, by     column matrices. In such a case, the formula 〈 ⃗    〉   ⃗     defines the 

usual inner product on R
n
. 

Example:  Let  ⃗                            ⃗⃗              in R
4
. 

(a) Show 〈  ⃗⃗    ⃗⃗   ⃗⃗⃗ 〉   〈 ⃗⃗   ⃗⃗⃗ 〉   〈 ⃗⃗   ⃗⃗⃗ 〉 

By definition,  〈 ⃗   ⃗⃗ 〉               and 〈    ⃗⃗ 〉               

As   ⃗                     Thus, 〈  ⃗       ⃗⃗ 〉                  

Then  〈 ⃗   ⃗⃗ 〉   〈    ⃗⃗ 〉                 〈  ⃗       ⃗⃗ 〉 

 (b) Normalize  ⃗⃗  and  ⃗⃗ : 

Since  ‖ ⃗ ‖  √         √   and ‖  ‖  √           

We normalize  ⃗  and    to obtain the following unit vectors in the directions of  ⃗  

and   , respectively:  

 ̂  
 ⃗⃗ 

‖ ⃗⃗ ‖
 (

 

√  
 

 

√  
 

  

√  
 

 

√  
)  and   ̂  

 ⃗ 

‖ ⃗ ‖
 (

 

 
 

  

 
 

 

 
 

 

 
) 
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Unit Circles and Spheres in Inner Product Spaces 

If V is an inner product space, then the set of points in V that satisfy ‖  ‖    is 

called the unit sphere or sometimes the unit circle in V. In R
2
 and R

3
 these are the 

points that lie 1 unit away from the origin. 

Example:   Unusual Unit Circles in  

(a) Sketch the unit circle in an    coordinate system in  R
2
 sing the Euclidean 

inner product 〈 ⃗    〉           . 

(b) Sketch the unit circle in an     coordinate system in R
2
 using the weighted 

Euclidean inner product  〈 ⃗    〉  
 

 
     

 

 
     

Solution (a) 

If  ⃗        , then ‖ ⃗ ‖  √       , so the equation of the unit circle is 

√       , or, on squaring both sides,         

As expected, the graph of this equation is a circle of radius 1 centered at the origin  

 

Solution (b) 

If  ⃗        , then ‖ ⃗ ‖  √
 

 
   

 

 
   , so the equation of the unit circle is 

√
 

 
   

 

 
     , or, on squaring both sides, 
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Practice: 

1. Compute the quantities using the inner product on R
2
 generated by     

  *
  
  

+   and    *
  
   

+ 

a) 〈 ⃗    〉 

b) 〈     ⃗⃗ 〉 

c) 〈 ⃗      ⃗⃗ 〉 

d) ‖  ‖ 

e)    ⃗      

f) ‖ ⃗     ‖

2. Find ‖ ⃗ ‖ and    ⃗      relative to the weighted Euclidian inner product 

〈 ⃗    〉              on R
2

a)  ⃗         and          

b)  ⃗         and          

3. Sketch the unit circle in R
2
 using the given inner products 

a) 〈 ⃗    〉  
 

 
     

 

  
     

b) 〈 ⃗    〉             
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The Standard Inner Product on     

If                      and                      are 

polynomials in    then the following formula defines an inner product on    that 

we call the standard inner product on    

〈   〉                    

The norm of polynomial   relative to this inner product is  

‖ ‖  √〈   〉  √  
    

      
   

The Evaluation Inner Product on     

If                      and                      are 

polynomials in    and if            are distinct real numbers (called sample 

point) then the formula 〈   〉                                     

defines an inner product on    called the evaluation inner product at            

Algebraically this can be viewed as the dot product in R
n
 of the n – tuples 

(                   ) and (                   ) and hence the first three 

inner product axioms follow from properties of the product. 

The fourth inner product axiom follows from the fact that  

〈   〉  [     ]  [     ]    [     ]     

With equality holding if and only if                        

But a non – zero polynomial of degree ‗n‘ or less can have at most ‗n‘ distinct 

roots, so it must be that     which proves that the fourth inner product axiom 

holds. 

The norm of a polynomial   relative to the evaluation inner product is  

‖ ‖  √〈   〉  √[     ]  [     ]    [     ]   
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Example 

Let    have the evaluation inner product at the points                 

then compute 〈   〉 and ‖ ‖ for the polynomials  

          and             

Solution 

〈   〉                                      

〈   〉                                  

‖ ‖  √[     ]  [     ]    [     ]  √          √   

Practice: 

1. Find the standard inner product on    of the given polynomials 

a)            and          

b)            and             

2. In the following exercise, a sequence of a sample points is given. Use the 

evaluation inner product on    at those sample points to find 〈   〉 for the 

polynomials         and         

a)                       

b)                      

3. Find        and ‖ ‖ relative to the evaluation inner product on    at the 

stated sample points. 

a)            and          

b)            and             

4. Find        and ‖ ‖ relative to the evaluation inner product on    at the 

stated sample points. 

a)                       

b)                      
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Function Space   [   ] and Polynomial Space      

The notation   [   ] is used to denote the vector space of all continuous 

functions on the closed interval [   ] that is, where      . The following 

defines an inner product on   [   ] , where      and      are functions in 

  [   ]: 

〈   〉  ∫           
 

 
  And it is called the usual inner product on   [   ]. 

The vector space      of all polynomials is a subspace of   [   ] for any 

interval [   ], and hence, the above is also an inner product on     . 

Example 

Show that 〈   〉  ∫           
 

 
 defines an inner product on   [   ] 

Solution: Axiom 1: 〈   〉  ∫           
 

 
 ∫           

 

 
 〈   〉 

Axiom 2: 〈     〉  ∫ (         )      
 

 
 

〈     〉  ∫           
 

 
 ∫           

 

 
 〈   〉  〈   〉  

Axiom 3: 〈    〉  ∫            
 

 
  ∫           

 

 
  〈   〉 

Axiom 4: 〈   〉  ∫           
 

 
 ∫        

 

 
   

And   〈   〉        

Norm of a vector in   [   ] 

If   [   ] has the inner product 〈   〉  ∫           
 

 
 then the norm of a 

function        relative to this inner product is  

‖ ‖  ‖ ‖  √〈   〉  √∫           
 

 
 √∫        

 

 
  

And the unit sphere in this space consists of all functions   in   [   ] that 

satisfy the equation ∫        
 

 
   

Available at MathCity.org
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Remember The following define the other norms on   [   ]: 

 ‖ ‖  ∫ |    |  
 

 
  area between the function   and the t-axis 

         area between the functions f and g 

The geometrical descriptions of this norm and its corresponding distance function 

is described below. 

 

 ‖ ‖      |    |   maximum distance between   and the t-axis 

          maximum distance between the functions f and g 

The geometrical descriptions of this norm and its corresponding distance function 

is described below. 
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Example:  

Consider           and         in the polynomial space      with inner 

product 〈   〉  ∫           
 

 
 then find 〈   〉 ‖ ‖ and ‖ ‖ 

Solution: Using defined inner product 

〈   〉  ∫           
 

 
 ∫             

 

 
 ∫            

 

 
  

〈   〉  |
 

 
   

 

 
  |

 

 
  

  

  
  

‖ ‖  〈   〉  ∫           
 

 
 ∫               

 

 
  

‖ ‖  |            | 
      

‖ ‖  〈   〉  ∫           
 

 
 ∫     

 

 
 |

 

 
  |

 

 
 

 

 
  

Then clearly ‖ ‖  √   and ‖ ‖  √
 

 
 

 

 
√  

Practice: 

1. Let the vector space    have the inner product 〈   〉  ∫           
 

  
 then 

find the following for     and      

a) 〈   〉  

b) ‖ ‖ 

c) ‖ ‖ 

d)        

2. Let the vector space    have the inner product 〈   〉  ∫           
 

  
 then 

find the following for       and        

a) 〈   〉  

b) ‖ ‖ 

c) ‖ ‖ 

d)        

3. Use the inner product 〈   〉  ∫           
 

 
 to compute 〈   〉 

a)          and          

b)     and      
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Matrix Space        

Let       , the vector space of all real     matrices. An inner product is 

defined on M by  〈   〉          where, as usual,      is the trace—the sum 

of the diagonal elements.  

If   [   ] and   [   ], then 〈   〉          ∑ ∑       
 
   

 
     

And   ‖ ‖  〈   〉  ∑ ∑    
  

   
 
    

That is, 〈   〉 is the sum of the products of the corresponding entries in A and B 

and, in particular, 〈   〉 is the sum of the squares of the entries of A. 

Practice 

1. Find a matrix that generate the stated weighted inner product on R
2
 

〈 ⃗    〉               and  〈 ⃗    〉  
 

 
           

2. Use the inner product on R
2
 generated by the matrix   *

  
   

+ and 

  *
  

   
+ to find 〈 ⃗    〉 for the vectors  ⃗         and          

Hilbert Space 

Let V be the vector space of all infinite sequences of real numbers              

satisfying  ∑   
  

      
    

    
      

That is, the sum converges. Addition and scalar multiplication are defined in V 

component wise; that is, if                and                

Then                          and                    

An inner product is defined in V by 〈   〉                   

The above sum converges absolutely for any pair of points in V. Hence, the inner 

product is well defined. This inner product space is called    space or Hilbert 

space. 
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Theorem (Algebraic Properties of inner products):  

If  ⃗  and    are vectors in a real inner product space V and if k is a scalar then 

a) 〈 ⃗    〉  〈    ⃗ 〉    

b) 〈 ⃗      ⃗⃗ 〉  〈 ⃗    〉  〈 ⃗   ⃗⃗ 〉 

c) 〈 ⃗      ⃗⃗ 〉  〈 ⃗    〉  〈 ⃗   ⃗⃗ 〉 

d) 〈 ⃗      ⃗⃗ 〉  〈 ⃗   ⃗⃗ 〉  〈    ⃗⃗ 〉 

e)  〈 ⃗    〉  〈 ⃗     〉 

Example: Evaluate 〈 ⃗        ⃗     〉 

Solution 

〈 ⃗        ⃗     〉  〈 ⃗    ⃗     〉  〈      ⃗     〉  

〈 ⃗        ⃗     〉  〈 ⃗    ⃗ 〉  〈 ⃗     〉  〈      ⃗ 〉  〈       〉  

〈 ⃗        ⃗     〉   〈 ⃗   ⃗ 〉   〈 ⃗    〉   〈    ⃗ 〉   〈     〉  

〈 ⃗        ⃗     〉   ‖ ⃗ ‖   〈 ⃗    〉   〈 ⃗    〉   ‖  ‖   

〈 ⃗        ⃗     〉   ‖ ⃗ ‖   〈 ⃗    〉   ‖  ‖   

Practice 

1. Suppose that  ⃗  ,    and  ⃗⃗  are vectors in an inner product space such that  

〈 ⃗    〉    〈    ⃗⃗ 〉     〈 ⃗   ⃗⃗ 〉     ‖ ⃗ ‖    ‖  ‖    ‖ ⃗⃗ ‖      

Then evaluate the given expressions

a) 〈     ⃗⃗    ⃗    ⃗⃗ 〉 

b) ‖ ⃗    ‖ 

c) 〈 ⃗       ⃗⃗    ⃗    〉 

d) ‖  ⃗⃗    ‖ 

2. Expand the followings; 

a) 〈  ⃗     ⃗            〉 

b) 〈  ⃗        ⃗     〉 

c) ‖  ⃗     ‖  
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Cauchy–Schwarz Inequality 

If  ⃗  and    are vectors in a real inner product space V, then 

〈 ⃗    〉  〈 ⃗   ⃗ 〉 〈     〉   or |〈 ⃗    〉|  ‖ ⃗ ‖‖  ‖ 

Proof 

For any real number ‗t‘ consider  〈  ⃗       ⃗    〉    

  〈 ⃗    ⃗    〉  〈     ⃗    〉   〈  ⃗      ⃗ 〉  〈  ⃗       〉     

  { 〈 ⃗   ⃗ 〉   〈    ⃗ 〉}  { 〈 ⃗    〉   〈     〉}     

   〈 ⃗   ⃗ 〉   〈    ⃗ 〉   〈 ⃗    〉   〈     〉     

   ‖ ⃗ ‖    〈 ⃗    〉  ‖  ‖     

Let   
〈 ⃗⃗   ⃗ 〉

‖ ⃗⃗ ‖ 
 then 

 
〈 ⃗⃗   ⃗ 〉 

‖ ⃗⃗ ‖ 
‖ ⃗ ‖   

〈 ⃗⃗   ⃗ 〉

‖ ⃗⃗ ‖ 
〈 ⃗    〉  ‖  ‖     

 
〈 ⃗⃗   ⃗ 〉 

‖ ⃗⃗ ‖ 
  

〈 ⃗⃗   ⃗ 〉 

‖ ⃗⃗ ‖ 
 ‖  ‖     

  
〈 ⃗⃗   ⃗ 〉 

‖ ⃗⃗ ‖ 
 ‖  ‖     

 ‖  ‖  
〈 ⃗⃗   ⃗ 〉 

‖ ⃗⃗ ‖ 
  

 ‖ ⃗ ‖ ‖  ‖  〈 ⃗    〉   

 〈 ⃗    〉  ‖ ⃗ ‖ ‖  ‖   

 |〈 ⃗    〉|  ‖ ⃗ ‖‖  ‖  or 〈 ⃗    〉  〈 ⃗   ⃗ 〉 〈     〉  
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Theorem: Let V be an inner product space, V also a normed space if following 

axioms are true; 

 ‖ ⃗ ‖        ‖ ⃗ ‖     ⃗    

 ‖  ⃗ ‖  | |‖ ⃗ ‖        

 ‖ ⃗    ‖  ‖ ⃗ ‖  ‖  ‖ 

Proof 

 ‖ ⃗⃗ ‖        ‖ ⃗⃗ ‖     ⃗⃗    

Let  ⃗    then ‖ ⃗ ‖  √〈 ⃗   ⃗ 〉    ‖ ⃗ ‖    

If   ⃗    then ‖ ⃗ ‖  √〈 ⃗   ⃗ 〉    ‖ ⃗ ‖    

 ‖ ⃗ ‖        ‖ ⃗ ‖     ⃗     

 ‖  ⃗⃗ ‖  | |‖ ⃗⃗ ‖        

Let ‖  ⃗ ‖  〈  ⃗    ⃗ 〉    〈 ⃗   ⃗ 〉    ‖ ⃗ ‖  ‖  ⃗ ‖  | |‖ ⃗ ‖         

 ‖ ⃗⃗   ⃗⃗ ‖  ‖ ⃗⃗ ‖  ‖ ⃗⃗ ‖ 

‖ ⃗    ‖  〈 ⃗      ⃗    〉  〈 ⃗   ⃗    〉  〈    ⃗    〉  

‖ ⃗    ‖  〈 ⃗   ⃗ 〉  〈 ⃗    〉  〈    ⃗ 〉  〈     〉  〈 ⃗   ⃗ 〉  〈 ⃗    〉  〈 ⃗    〉  〈     〉  

‖ ⃗    ‖  〈 ⃗   ⃗ 〉   |〈 ⃗    〉|  〈     〉  ‖ ⃗ ‖   ‖ ⃗ ‖‖  ‖  ‖  ‖   

‖ ⃗    ‖   ‖ ⃗ ‖  ‖  ‖   ‖ ⃗    ‖  ‖ ⃗ ‖  ‖  ‖  

Theorem of Pythagoras: If  ⃗  and    are orthogonal vectors in a real inner product 

space then ‖ ⃗    ‖  ‖ ⃗ ‖  ‖  ‖   

Proof: Since  ⃗  and    are orthogonal therefore 〈 ⃗    〉    

‖ ⃗    ‖  〈 ⃗      ⃗    〉  〈 ⃗   ⃗    〉  〈    ⃗    〉  

‖ ⃗    ‖  〈 ⃗   ⃗ 〉  〈 ⃗    〉  〈    ⃗ 〉  〈     〉  〈 ⃗   ⃗ 〉  〈 ⃗    〉  〈 ⃗    〉  〈     〉  

‖ ⃗    ‖  〈 ⃗   ⃗ 〉   〈 ⃗    〉  〈     〉  ‖ ⃗ ‖  ‖  ‖     ⃗       
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Inner Product Space Satisfies Parallelogram Equality 

‖ ⃗    ‖  ‖ ⃗    ‖    ‖ ⃗ ‖  ‖  ‖    

Proof:       ‖ ⃗    ‖  ‖ ⃗    ‖   

 〈 ⃗      ⃗    〉  〈 ⃗      ⃗    〉  

 〈 ⃗   ⃗    〉  〈    ⃗    〉  〈 ⃗   ⃗    〉  〈    ⃗    〉  

 〈 ⃗   ⃗ 〉  〈 ⃗    〉  〈    ⃗ 〉  〈 ⃗   ⃗ 〉  〈 ⃗    〉  〈    ⃗ 〉  〈     〉  

 ‖ ⃗ ‖   〈 ⃗    〉  ‖  ‖  ‖ ⃗ ‖   〈 ⃗    〉  ‖  ‖   

   ‖ ⃗ ‖  ‖  ‖          

Polarization Inequality  〈 ⃗    〉  
 

 
 ‖ ⃗    ‖  ‖ ⃗    ‖    

Proof: Consider ‖ ⃗    ‖  ‖ ⃗    ‖   

 〈 ⃗      ⃗    〉  〈 ⃗      ⃗    〉  

 〈 ⃗   ⃗    〉  〈    ⃗    〉  〈 ⃗   ⃗    〉  〈    ⃗    〉  

 〈 ⃗   ⃗ 〉  〈 ⃗    〉  〈    ⃗ 〉  〈 ⃗   ⃗ 〉  〈 ⃗    〉  〈    ⃗ 〉  〈     〉  

 ‖ ⃗ ‖   〈 ⃗    〉  ‖  ‖  ‖ ⃗ ‖   〈 ⃗    〉  ‖  ‖   〈 ⃗    〉  

〈 ⃗    〉  
 

 
 ‖ ⃗    ‖  ‖ ⃗    ‖    

Triangular Inequality for Vectors 

‖ ⃗    ‖  ‖ ⃗ ‖  ‖  ‖  

Proof 

‖ ⃗    ‖  〈 ⃗      ⃗    〉  〈 ⃗   ⃗    〉  〈    ⃗    〉  

‖ ⃗    ‖  〈 ⃗   ⃗ 〉  〈 ⃗    〉  〈    ⃗ 〉  〈     〉  〈 ⃗   ⃗ 〉  〈 ⃗    〉  〈 ⃗    〉  〈     〉  

‖ ⃗    ‖  〈 ⃗   ⃗ 〉   |〈 ⃗    〉|  〈     〉  ‖ ⃗ ‖   ‖ ⃗ ‖‖  ‖  ‖  ‖   

‖ ⃗    ‖   ‖ ⃗ ‖  ‖  ‖   ‖ ⃗    ‖  ‖ ⃗ ‖  ‖  ‖  
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Appolonius Inequality   

‖   ‖  ‖   ‖  
 

 
‖   ‖   ‖  

 

 
     ‖

 
  

Proof:  

‖   ‖  〈       〉  〈     〉  〈     〉  

‖   ‖  〈   〉  〈   〉  〈   〉  〈   〉  

‖   ‖  ‖ ‖   〈   〉  ‖ ‖    ……………..(1) 

‖   ‖  〈       〉  〈     〉  〈     〉  

‖   ‖  〈   〉  〈   〉  〈   〉  〈   〉  

‖   ‖  ‖ ‖   〈   〉  ‖ ‖    ……………..(2) 

Adding (1) and (2) we have 

‖   ‖  ‖   ‖  ‖ ‖   〈   〉  ‖ ‖  ‖ ‖   〈   〉  ‖ ‖   

‖   ‖  ‖   ‖   ‖ ‖   ‖ ‖    ……………..(3) 

Put             in (3) 

‖       ‖  ‖       ‖   ‖   ‖   ‖   ‖   

‖        ‖  ‖    ‖   ‖   ‖   ‖   ‖   

 ‖  
 

 
     ‖

 
 ‖    ‖   ‖   ‖   ‖   ‖   

 ‖  
 

 
     ‖

 
 

 

 
‖   ‖  ‖   ‖  ‖   ‖   

Hence we get 

‖   ‖  ‖   ‖  
 

 
‖   ‖   ‖  

 

 
     ‖
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Examples 

(a)   Consider any real numbers                      . Then, by the 

Cauchy–Schwarz inequality, 

                       
    

      
     

    
      

    

   ⃗       ‖ ⃗ ‖ ‖  ‖    where  ⃗                 

(b)  Let   and   be continuous functions on the unit interval [   ]. Then, by the 

Cauchy–Schwarz inequality, 

*∫           
 

 
+

 
 ∫        

 

 
∫        

 

 
  

  〈   〉   ‖ ‖ ‖ ‖  .  Here V is the inner product space  [   ]. 

Angle between Vectors 

For any nonzero vectors  ⃗  and    in an inner product space V, the angle between  ⃗  

and    is defined to be the angle   such that        and         (
〈 ⃗⃗   ⃗ 〉

‖ ⃗⃗ ‖‖ ⃗ ‖
)  

and cosine of the angle between vectors is defined as       
〈 ⃗⃗   ⃗ 〉

‖ ⃗⃗ ‖‖ ⃗ ‖
 

By the Cauchy–Schwartz inequality,          , and so the angle exists and 

is unique. 

Example 

(a) Consider vectors  ⃗          and             in R
3
. Then  

〈 ⃗    〉            ‖ ⃗ ‖  √    ‖  ‖  √    

Then the angle   between  ⃗  and    is given by         (
 

√  √  
) 

Note that   is an acute angle, because      is positive. 

(b) Let           and         in the polynomial space      with 

inner product 〈   〉  ∫           
 

 
 then 

〈   〉   
  

  
 ‖ ‖  √       ‖ ‖  

 

 
√   

Then the angle   between  ⃗  and    is given by         .
 

  

  

√  (
 

 
√ )

/ 

i.e.        ( 
  

  √  √ 
) 

Note that   is an obtuse angle, because      is negative. 
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(c)  Consider vectors  ⃗  *
  
  

+ and    *
   
  

+ in M22. Then  

〈 ⃗    〉     ‖ ⃗ ‖  √    ‖  ‖  √    

Then the cosine of angle   between  ⃗  and    is given by       (
  

√  √  
) 

i.e.           

Practice 

1) Find the cosine of the angles between the vector spaces with respect to the 

Euclidean inner product. 

a)   ⃗         and          

b)  ⃗           and             

c)  ⃗            and                  

d)  ⃗         and          

e)  ⃗          and             

f)  ⃗             and              

2) Find the cosine of the angles between the vector spaces with respect to the 

Standard inner product on   . 

a)              and            

b)        and            

3) Find the cosine of the angles between the vector spaces with respect to the 

Standard inner product on    . 

a)  ⃗  *
  
   

+ and    *
  
  

+ 

b)  ⃗  *
  

   
+ and    *

   
  

+ 
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Orthogonality 

Let V be an inner product space. The vectors  ⃗        are said to be orthogonal 

and  ⃗  is said to be orthogonal to    if 〈 ⃗    〉    

Orthogonality depends on inner Product 

The vectors are orthogonal with respect to the Euclidean inner product on R
2
 for 

example for  ⃗        and           we have  ⃗       but 

The vectors are not orthogonal with respect to the weighted Euclidean inner 

product 〈 ⃗    〉              for example for  ⃗        and           we 

have 〈 ⃗    〉                       

Orthogonal Vectors in M22 

Let  ⃗  *
  
  

+ and    *
  
  

+ then 〈 ⃗    〉                        

Orthogonal Vectors in P2 

Let P2 have the inner product 〈   〉  ∫           
 

  
 and let     and      

then 〈   〉  ∫          
 

  
 ∫     

 

  
  . Hence given vectors are orthogonal. 

Example 

(a)  Consider the vectors  ⃗                      and  ⃗⃗           in R
3
. 

Then 〈 ⃗    〉    〈 ⃗   ⃗⃗ 〉    〈    ⃗⃗ 〉        

Thus,  ⃗  is orthogonal to    and  ⃗⃗ , but    and  ⃗⃗  are not orthogonal. 

(b) Consider the functions      and      in the vector space  [    ] of 

continuous functions on the closed interval [    ]. Then 

〈         〉  ∫           
 

  
 |

 

 
     |

  

 
    

Thus,      and      are orthogonal functions in the vector space  [    ]. 
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Practice 

1) Determine whether the vectors are orthogonal with respect to the Euclidean 

Inner Product. 

a)  ⃗                       

b)  ⃗                        

c)  ⃗                  

d)  ⃗                        

e)  ⃗                             

f)  ⃗                      

 

2) Determine whether the vectors are orthogonal with respect to the Standard 

Inner Product on P2. 

a)            and         

b)           and            

 

3) Determine whether the vectors are orthogonal with respect to the Standard 

Inner Product on M22. 

a)   *
  

   
+ and   *

   
  

+ 

b)   *
   
   

+ and   *
  

   
+ 

 

4) Show that the vectors are not orthogonal with respect to the Euclidean Inner 

Product on R
2
 and then find a value of ‗k‘ for which the vectors are 

orthogonal with respect to the weighted Euclidean inner product  

〈 ⃗    〉               

a)  ⃗                   

b)  ⃗                  

 

5) Find ‗k‘ so that the vectors  ⃗            and               in R
4
 are 

orthogonal. 
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Remark 

A vector  ⃗⃗               is orthogonal to  ⃗               in R
n
 if 

〈 ⃗   ⃗⃗ 〉                     

That is,  ⃗⃗  is orthogonal to  ⃗  if  ⃗⃗  satisfies a homogeneous equation whose 

coefficients are the elements of  ⃗ . 

Example 

Find a nonzero vector  ⃗⃗  that is orthogonal to  ⃗          and            in R
3
. 

Solution  

Let  ⃗⃗         . Then we want 〈 ⃗   ⃗⃗ 〉    and 〈    ⃗⃗ 〉   . This yields the 

homogeneous system 

          

            

  

Or  

          

               

Here z is the only free variable in the echelon system. Set     to obtain      

and    . Thus,  ⃗⃗           is a desired nonzero vector orthogonal to  ⃗  and   . 
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Orthogonal Complements 

Let S be a subset of an inner product space V. The orthogonal complement of S, 

denoted by    (read ‗‗S perp‘‘) consists of those vectors in V that are orthogonal to 

every vector  ⃗   ; that is,     {     〈    ⃗ 〉                ⃗   }  

Or If S be a subspace of real inner product space V. then the set of all vectors in 

V that are orthogonal to every vector in   is called the orthogonal compliment of S. 

that is,     {     〈    ⃗ 〉                ⃗   } 

Proposition     Let S be a subset of a vector space V. Then    is a subspace of V. 

Proof 

Choose  ⃗       and       then we have to show that   ⃗        

Consider for  ⃗⃗    

〈  ⃗       ⃗⃗ 〉   〈 ⃗   ⃗⃗ 〉   〈    ⃗⃗ 〉               

Implies   ⃗        and hence    is a subspace of V. 

Annihilator   Let Y be a subset of a Hilbert space H, then the set of all vectors of 

H which are orthogonal to Y is called the annihilator of  Y and is denoted by   . 

i.e.    {       }  

Remember 

 The annihilator of     and is denoted by    . i.e.     {        } 

 { }  {      { }}    and    {       }  { } 

Remark: Suppose    is a nonzero vector in R
3
. Then there is a geometrical 

description of   . Specifically,    is the plane in R
3
 through the origin O and 

perpendicular to the vector u. This is shown in Figure. 
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Example  

Find a basis for the subspace    of R
3
, where           . 

Solution  

Consider           and            then 〈 ⃗   ⃗⃗ 〉     

Implies 〈 ⃗   ⃗⃗ 〉          where The free variables are y and z. 

(1) Set         to obtain the solution            . 

(2) Set         to obtain the solution           . 

The vectors    and    form a basis for the solution space of the equation, and 

hence a basis for   . 

Theorem 

Let W be a subspace of V. Then V is the direct sum of W and    ; that is, 

        

Proof 

We know that every set of simple basis can be converted to orthogonal basis by 

Gram Schmidt Orthogonal process. Therefore we can say that there exists an 

orthogonal basis {          } of W. therefore by Basis Extension Theorem 

process we can extend the orthogonal basis set to orthogonal basis set off vector 

space V. i.e. {                    }. 

If     then   ∑     
 
                              

Where                    

                     

                                   

         

Now choose        
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      and       

 〈   〉             { }  

         

Theorem 

Let W be a subspace of V. Then show that      { } 

Proof 

Choose        

      and       

 〈   〉             { }  

Theorem    

Let  Y  be  a subset  of  a  Hilbert  space H.  Then         

Proof    

Let     then 〈   〉    for all      

                   

Theorem    

Let  A and B be subset  of  a  Hilbert  space H. And     Then         

Proof   

Let     and      then 〈   〉    for all     

 〈   〉    for all                 
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Theorem    

Let  A and B be subset  of  a  Hilbert  space H. Then             . 

Proof   

Since       and       then           and           

                ……………..(1) 

Let         this means that      and      then by definition 

〈   〉    for all     and 〈   〉    for all     

Hence 〈   〉    for every       and so by definition          

                ……………..(2) 

From (1) and (2)               

Theorem    

Let  A and B be subset  of  a  Hilbert  space H. Then             . 

Proof   

Since       and       then           and           

               

Theorem    

Let  A be a subset  of a Hilbert space H. Then        . 

Proof   

Since       then                   

Also                    

Hence          
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Theorem    

Let  Y be a subset  of a Hilbert space H. Then      { }. 

Proof   

If        then clearly        { } so the condition is true. 

If        then let        implies     and      and so 〈   〉    i.e. 

‖ ‖        { }    { }       { } 

Theorem    

Let  Y be a subset  of a Hilbert space H. Then    is closed linear subspace of H. 

Proof   

Let        and       then we have to show that          

Since         therefore 〈   〉    and 〈   〉    for every     then 

〈       〉   〈   〉   〈   〉                     . 

This shows that    is linear subspace of H. Now we have to show that    is 

closed. For this we just show      ̅̅ ̅̅ . 

We already know that       ̅̅ ̅̅  …………..(1) 

Now let     ̅̅ ̅̅  then there exists a sequence      in    such that      

Now by using continuity of inner producsts for any     we have  

〈   〉  〈          〉     
   

〈    〉              

Implies that     ̅̅ ̅̅     …………..(2) 

Then      ̅̅ ̅̅  and    is closed subspace of H. 
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Theorem    

Let  Y be a closed linear subspace of a Hilbert space H. Then      { }. 

Proof   

Since we know that if Y be a subset  of a Hilbert space H. Then  

     { }   …………….(1) 

Given that Y is closed linear subspace of H and we also know that    is closed 

linear subspace of H. Let        implies     and      and so 〈   〉    

i.e. ‖ ‖            and             

 { }         …………….(2) 

Combining (1) and (2) we get       { } 

Projection Theorem    

Let  Y  be  any  closed  subspace  of  a  Hilbert  space H.  Then            

Proof   

Suppose      is proper subspace of H then there is a non – zero vector     

such that          . i.e.           

Now          implies            

Also we know           implies             

Then                  { }      a contradiction. 

Hence      is the whole of H. i.e.         since      { } 

Thus         

 

 

 



227 
 

Visit us @ Youtube: “Learning With Usman Hamid” 

Theorem    

Let  Y  be  a closed subset  of  a  Hilbert  space H.  Then         

Or Let W be a subspace of a real finite dimensional inner product space V. 

Then show that         

Proof    

Let     then 〈   〉    for all      

                   

Now let       and Y be a closed subset H also         so;  

For each                          

But        therefore        

                 

But                                    

Hence from both cases      . 

Theorem    

For any complete subspace Y of an inner product space V, Prove that       . 

Proof    

Let     then 〈   〉    for all      

                   

Now let       and Y be a complete subspace of  V also         so;  

For each                              

                 

But                                    

Hence from both cases      . 
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Theorem 

Let S be a subspace of an inner product space V. Then    [       ]  〈 〉  

Proof 

Since   〈 〉 therefore 〈 〉     ………..(1) 

Let      and suppose   {          } then  

        〈 〉  {                      }  

Consider 〈              〉  

   〈    〉    〈    〉      〈    〉  

                        

  〈 〉   

Then       〈 〉  ………..(2) 

From (1) and (2)  

   [       ]  〈 〉   
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Orthogonal Set 

Consider a set   {          } of nonzero vectors in an inner product space V. 

S is called orthogonal if each pair of vectors in S are orthogonal, That is, 

〈     〉              

For example  ̂    ̂   ̂ is orthogonal. 

Orthonormal Set 

Consider a set   {          } of nonzero vectors in an inner product space V. 

S is called orthonormal if S is orthogonal and each vector in S has unit length. i.e. 

〈     〉  {
           
           

       

For example  ̂   ̂   ̂ is orthonormal. 

Example  

(a) Let   {        }  {                       } be the usual basis of 

Euclidean space R
3
. It is clear that  

〈     〉  〈     〉  〈     〉    and 〈     〉  〈     〉  〈     〉    

Namely, E is an orthonormal basis of R
3
. More generally, the usual basis of 

R
n
 is orthonormal for every n. 

(b) Let     [    ] be the vector space of continuous functions on the 

interval        with inner product defined by 〈   〉  ∫           
 

  
. 

Then the following is a classical example of an orthogonal set in V: 

{                                                 }  

This orthogonal set plays a fundamental role in the theory of Fourier series. 
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Theorem  

Suppose S is an orthogonal set of nonzero vectors. Then S is linearly independent. 

Proof 

Let   {          } be an orthogonal set of nonzero vectors, consider for all 

     we have                

〈              〉  〈     〉  

  〈     〉    〈     〉      〈     〉       〈     〉     

  〈     〉        . Hence S is linearly independent. 

Theorem of Pythagoras 

If   and   are orthogonal vectors in a real inner product space then  

‖   ‖  ‖ ‖  ‖ ‖   

Proof: Since   and   are orthogonal therefore 〈   〉    

‖   ‖  〈       〉  〈     〉  〈     〉  

‖   ‖  〈   〉  〈   〉  〈   〉  〈   〉  〈   〉  〈   〉  〈   〉  〈   〉  

‖   ‖  〈   〉   〈   〉  〈   〉  ‖ ‖  ‖ ‖    〈   〉    

Generalized Pythagoras Theorem 

If               are piecewise orthogonal vectors in a real inner product space 

then   ‖∑   
 
   ‖  ∑ ‖  ‖

  
     

Proof 

‖∑   
 
   ‖  〈∑   

 
    ∑   

 
   〉  ∑ ∑ 〈     〉 

   
 
     

‖∑   
 
   ‖  ∑ 〈     〉

 
       〈     〉         

‖∑   
 
   ‖  〈∑   

 
    ∑   

 
   〉  

‖∑   
 
   ‖  ∑ ‖  ‖

  
     



231 
 

Visit us @ Youtube: “Learning With Usman Hamid” 

Orthogonal Basis Set 

Let   {          } be a basis set in an inner product space. Then S is said to 

be orthogonal basis set of vectors if 〈     〉        . 

 Example Let   consist of the following three vectors in R
3
 

                                      

These vectors are orthogonal; hence, they are linearly independent. Thus, S is an 

orthogonal basis of R
3
. 

Suppose we want to write           as a linear combination of         . First 

we set   as a linear combination of          using unknowns          as follows: 

                   

                                       

We can proceed in two ways. 

METHOD 1: Expand equation to obtain the system 

                                               

Solve the system by Gaussian elimination to obtain                . 

Thus,                

METHOD 2: (This method uses the fact that the basis vectors are orthogonal, and 

the arithmetic is much simpler.) If we take the inner product of each side of 

equation with respect to   , we get 

〈    〉  〈                  〉  

〈    〉    〈     〉  or    
〈    〉

〈     〉
 

Here two terms drop out, because          are orthogonal. Accordingly, 

   
〈    〉

〈     〉
 

     

     
 

  

 
   ,    

〈    〉

〈     〉
   ,    

〈    〉

〈     〉
   

Thus, again, we get              . 
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Theorem 

Let            be an orthogonal basis of V. Then, for any    , 

  
〈    〉

〈     〉
   

〈    〉

〈     〉
     

〈    〉

〈     〉
    

Proof 

Let {          } be a basis of V then 

               ……………..(1) 

Consider  〈    〉  〈                     〉 

〈    〉    〈     〉    〈     〉      〈     〉       〈     〉  

〈    〉    〈     〉  or    
〈    〉

〈     〉
                

      
〈    〉

〈     〉
   

〈    〉

〈     〉
     

〈    〉

〈     〉
    

Theorem 

Let {          } form an orthogonal set of non – zero vectors in V. Let     

Then define                   , where  

   
〈    〉

〈     〉
    

〈    〉

〈     〉
      

〈    〉

〈     〉
 then    is orthogonal to {          } 

Proof 

Consider  〈     〉  〈                  〉 

〈     〉  〈    〉    〈     〉    〈     〉      〈     〉       〈     〉  

〈     〉  

〈    〉  
〈    〉

〈     〉
〈     〉  

〈    〉

〈     〉
〈     〉    

〈    〉

〈     〉
〈     〉     

〈    〉

〈     〉
〈     〉  

〈     〉  〈    〉  〈    〉     

Thus    is orthogonal to {          } 
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Fourier coefficient   

The scalar 
〈    〉

〈     〉
 is called the Fourier coefficient of   with respect to   , because it 

is analogous to a coefficient in the Fourier series of a function. This scalar also has 

a geometric interpretation, which is discussed below. 

Projections 

Let V be an inner product space. Suppose   is a given nonzero vector in V, and 

suppose   is another vector. We seek the ‗‗projection of v along w,‘‘ which, as 

indicated in Fig. (a), will be the multiple    of   such that         is 

orthogonal to  . This means 

〈      〉    〈   〉   〈   〉      
〈   〉

〈   〉
  

 

Accordingly, the projection of   along   is denoted and defined by 

             
〈   〉

〈   〉
   

Such a scalar   is unique, and it is called the Fourier coefficient of   with respect to 

  or the component of   along  . 

We define   to be the projection of   along W, and denote it by          , 

as pictured in Fig. 7-2(b). In particular, if                    , where the    

form an orthogonal set, then                             

Here    is the component of   along   , as above. 
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Theorem Suppose    , let   be any vector in V. Show that   
〈   〉

〈   〉
  

〈   〉

‖ ‖ 
 

is the unique scalar such that         is orthogonal to  . 

Proof 

 

Theorem 

Suppose            form an orthogonal set of nonzero vectors in V. Let   be 

any vector in V. Define                         where 

   
〈    〉

〈     〉
    

〈    〉

〈     〉
       

〈    〉

〈     〉
  

Then    is orthogonal to           . 

Proof 

Suppose            form an orthogonal set of nonzero vectors in V. Let   be 

any vector in V. Define                         where 

   
〈    〉

〈     〉
    

〈    〉

〈     〉
       

〈    〉

〈     〉
  Then 

 

Available at MathCity.org



235 
 

Visit us @ Youtube: “Learning With Usman Hamid” 

Question  

Find the Fourier coefficient   and the projection of             along                 

            in R
4
. 

Solution 

 

Gram–Schmidt Orthogonalization Process 

Suppose {          } is a basis of an inner product space V. One can use this 

basis to construct an orthogonal basis {          } of V as follows. Set 

 

In other words, for            , we define 

      (                        )  

Where     
〈    〉

〈     〉
 is the component of    along   . Each     is orthogonal to the 

preceeding w‘s. Thus,            form an orthogonal basis for V as claimed. 

Normalizing each    will then yield an orthonormal basis for V. The above 

construction is known as the Gram–Schmidt orthogonalization process.  
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Remark 

 Each vector    is a linear combination of    and the preceding w‘s. Hence, 

one can easily show, by induction, that each    is a linear combination of 

          . 

 Because taking multiples of vectors does not affect orthogonality, it may be 

simpler in hand calculations to clear fractions in any new   , by multiplying 

   by an appropriate scalar, before obtaining the next     . 

 Suppose            are linearly independent, and so they form a basis for 

           . Applying the Gram–Schmidt orthogonalization process to 

the u‘s yields an orthogonal basis for U. 

Theorem (Proof Ommited)  

Let {          } be any basis of an inner product space V. Then there exists an 

orthonormal basis {          } of V such that the change-of-basis matrix from 

{  } to {  }  is triangular; that is, for            , 

                        

Theorem  

Suppose   {          } is an orthogonal basis for a subspace W of a vector 

space V. Then one may extend S to an orthogonal basis for V; that is, one may find 

vectors            such that {          } is an orthogonal basis for V. 

Proof 
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Example 

Apply the Gram–Schmidt orthogonalization process to find an orthogonal basis 

and then an orthonormal basis for the subspace U of R
4
 spanned by 

 

Example  

Let V be the vector space of polynomials      with inner product  

〈   〉  ∫           
 

  
  

Apply the Gram–Schmidt orthogonalization process to {         } to find an 

orthogonal basis {           } with integer coefficients for      . 

Solution  

Here we use the fact that, for      , 

〈     〉  ∫     

 

  

 |
    

   
|
  

 

 {
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Question 

 

Question 
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Geometrical Interpreatation of the Bessel  Inequality اسکا حل آگے آرہا 

A Geometrical Interpreatation of the Bessel  Inequality is that the sum of the 

squares of the projections of a vector x onto a set of mutually perpendicular 

directions can not exceed the square of the length of the vector itself. 
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Bessel Inequality  

Let (  ) be anorthonormal sequence in an inner product space X. Then for every 

    we have ∑ |〈    〉|  
    ‖ ‖  

Proof   

Let        {          } then for every      we can express  

  ∑     
 
          〈    〉  

We claim that for a particular choice of   . i.e.    〈    〉       but      

then we can obtain     such that           (will show this) 

We first note that  

‖ ‖  〈   〉  〈∑     
 
    ∑     

 
   〉  〈∑ 〈    〉  

 
    ∑ 〈    〉  

 
   〉  

‖ ‖  ∑ 〈    〉 
   〈   ∑ 〈    〉  

 
   〉  ∑ 〈    〉 

   ∑ 〈    〉 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〈     〉  

‖ ‖  ∑ 〈    〉 
   ∑ 〈    〉̅̅ ̅̅ ̅̅ ̅̅ ̅ 

   〈     〉  

‖ ‖  ∑ 〈    〉 
   ∑ 〈    〉̅̅ ̅̅ ̅̅ ̅̅ 

   〈     〉  taking     

‖ ‖  ∑ 〈    〉 
   〈    〉̅̅ ̅̅ ̅̅ ̅̅      

‖ ‖  ∑ |〈    〉|  
    ∑ |〈    〉|  

     ………(1) 

Now consider 

〈   〉  〈     〉  〈   〉  〈   〉  〈  ∑     
 
   〉  ‖ ‖   

〈   〉  〈  ∑ 〈    〉  
 
   〉  ‖ ‖  ∑ 〈    〉 

   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〈    〉  ∑ |〈    〉|  

     

〈   〉  ∑ 〈    〉̅̅ ̅̅ ̅̅ ̅̅ 
   〈    〉  ∑ |〈    〉|  

    ∑ |〈    〉|  
    ∑ |〈    〉|  

     

〈   〉     Implies     

Now       then using Pyhtagorian Theorem  ‖ ‖  ‖ ‖  ‖ ‖   

  ‖ ‖  ‖ ‖  ∑ |〈    〉|  
    ∑ |〈    〉|  

    ‖ ‖   

 ∑ |〈    〉|  
    ‖ ‖   if    . Hence proved. 
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Bessel Inequality (Another Form) 

Suppose {          } is an orthonormal set of vectors in an inner product space 

X. Let     be any arbitrary vector and    be the fourier coefficients of vector   

with respect to    then ∑   
  

    ‖ ‖  

Proof 

Consider  〈  ∑     
 
      ∑     

 
   〉    

〈   〉  〈  ∑     
 
   〉  〈∑     

 
     〉  〈∑     

 
    ∑     

 
   〉     

‖ ‖   〈  ∑     
 
   〉  ∑   

  
   〈     〉     

‖ ‖   ∑   
 
   〈    〉  ∑   

  
   〈     〉     

‖ ‖   ∑   
 
   

〈    〉

〈     〉
 ∑   

  
       

‖ ‖   ∑   
  

    ∑   
  

       

‖ ‖  ∑   
  

       

∑   
  

    ‖ ‖    Hence proved. 
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Orthogonal Matrices 

A square matrix P is orthogonal if P is nonsingular and its transpose is the same as 

its inverse, that is         , or, equivalently, if            . 

Question 

Show that the matrix   

[
 
 
 
 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 
 

 

 ]
 
 
 
 

 is orthogonal. 

Solution 

    

[
 
 
 
 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 
 

 

 ]
 
 
 
 

[
 
 
 
 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 
 

 

 ]
 
 
 
 

 [

   
   

 
 

 
 

]  

Theorem (Keep in mind) 

Let P be a real matrix. Then the following are equivalent:  

(a) P is orthogonal;  

(b) the rows of P form an orthonormal set;  

(c) the columns of P form an orthonormal set. 

(This theorem is true only using the usual inner product on R
n
. It is not true if R

n
 is 

given any other inner product.) 
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Example  

(a)  Let   

[
 
 
 
 

 

√ 

 

√ 

 

√ 

 
 

√ 

 

√ 
 

√ 

  

√ 

  

√ ]
 
 
 
 

. The rows of P are orthogonal to each other and are 

unit vectors. Thus P is an orthogonal matrix. 

(b)  Rotation and Reflection matrices are orthogonal: Let P be a     

orthogonal matrix. Then, for some real number  , we have  

  *
        

         
+ or    *

        
         

+ 

The following two theorems show important relationships between orthogonal 

matrices and orthonormal bases of a real inner product space V. 

Theorem 

Suppose   {  } and    {   } are orthonormal bases of V. Let P be the change- 

of-basis matrix from the basis E to the basis E . Then P is orthogonal. 
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Remember 

 

Theorem 

Let {          } be an orthonormal basis of an inner product space V. Let 

  {   } be an orthogonal matrix. Then the following n vectors form an 

orthonormal basis for V: 

                                       

Proof 
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Question 

Find an orthogonal matrix P whose first row is    (
 

 
 

 

 
 

 

 
) 

Solution 

 

Question 
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Theorem Prove each of the following: 

(a) P is orthogonal if and only if P
T
 is orthogonal. 

(b) If P is orthogonal, then     is orthogonal. 

(c) If P and Q are orthogonal, then PQ is orthogonal. 

Proof 

 

Practice 

Determine whether that matrix is orthogonal. If so find its inverse. 
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Positive Definite Matrices 

Let A be a real symmetric matrix; that is,     . Then A is said to be positive 

definite if, for every nonzero vector u in R
n
,  〈    〉         

Theorem  

A     real symmetric matrix   *
  
  

+  *
  
  

+ is positive definite if and 

only if the diagonal entries   and   are positive and the determinant  

| |               is positive. 

Example  Consider the following symmetric matrices: 

  *
  
  

+      *
   

   
+      *

   
   

+  

A is not positive definite, because | |         is negative. B is not 

positive definite, because the diagonal entry    is negative. However, C is positive 

definite, because the diagonal entries 1 and 5 are positive, and the determinant 

| |        is also positive. 

Question 
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Question 

 

Question 

 

Theorem  

Let A be a real positive definite matrix. Then the function 〈   〉       is an 

inner product on R
n
. 
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Matrix Representation of an Inner Product (Optional) 

Every positive definite matrix A determines an inner product on R
n
. This 

subsection may be viewed as giving the converse of this result. 

Let V be a real inner product space with basis   {          }. The matrix 

  {   } ; where     〈     〉 is called the matrix representation of the inner 

product on V relative to the basis S. 

Observe that A is symmetric, because the inner product is symmetric; that is, 

〈     〉  〈     〉. Also, A depends on both the inner product on V and the basis S 

for V. Moreover, if S is an orthogonal basis, then A is diagonal, and if S is an 

orthonormal basis, then A is the identity matrix. 

Example  

The vectors                                      form a basis S for 

Euclidean space R
3
. Find the matrix A that represents the inner product in R

3
 

relative to this basis S. 

Solution 
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Theorem 

Let A be the matrix representation of an inner product relative to basis S for V. 

Then, for any vectors      , we have 〈   〉  [ ]  [ ] 

where [ ] and [ ] denote the (column) coordinate vectors relative to the basis S. 

 

Theorem 

Let A be the matrix representation of any inner product on V. Then A is a positive 

definite matrix. 
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Chapter # 5 

DETERMINANTS 

Determinant of a matrix  

Each n-square matrix   [   ] is assigned a special scalar called the determinant 

of A, denoted by     or | | or  |

          

          

    
          

| 

Or Let A be a     matrix, i.e.   *
  
  

+ then its determinant could be 

define as follows which is a scalar number  

| |  |
  
  

|         

Remember: We emphasize that an     array of scalars enclosed by straight 

lines, called a determinant of order n, is not a matrix but denotes the determinant of 

the enclosed array of scalars (i.e., the enclosed matrix). 

The determinant function was first discovered during the investigation of systems 

of linear equations. 

Determinants of Orders 1 and 2 

Determinants of orders 1 and 2 are defined as follows: 

|   |       and  |
      

      
|                

Example 
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Determinants of Order 3 

Consider an arbitrary     matrix   [   ]. The determinant of A is defined as 

follows: 

       |

         

         

         

|  

                                                                    

Observe that there are six products, each product consisting of three elements of 

the original matrix. 

Three of the products are plus-labeled (keep their sign) and three of the products 

are minus-labeled (change their sign). 

The diagrams in Fig. 8-1 may help us to remember the above six products in detA. 

That is, the determinant is equal to the sum of the products of the elements along 

the three plus-labeled arrows in Fig. 8-1 plus the sum of the negatives of the 

products of the elements along the three minus-labeled arrows. We emphasize that 

there are no such diagrammatic devices with which to remember determinants of 

higher order. 
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Alternative Form for a Determinant of Order 3 

The determinant of the     matrix   [   ] may be rewritten as follows: 

       |

         

         

         

|  

          |
      

      
|     |

      

      
|     |

      

      
|  

Example 

 

Permutation 
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Sign (Parity) of a Permutation 

Properties of Determinants 

Theorem: The determinant of a matrix A and its transpose A
T
 are equal; that is, 

| |  |  |. 

Proof 

If   [   ] then    [   ] with        , hence 

However, as s runs through all the elements of Sn;       also runs through all 

the elements of Sn. Thus | |  |  | 
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Theorem:  Let A be a square matrix. 

(i) If A has a row (column) of zeros, then | |   . 

(ii) If A has two identical rows (columns), then | |   . 

(iii) If A is triangular (i.e., A has zeros above or below the diagonal), then 

| |   product of diagonal elements. Thus, in particular, | |   , where I 

is the identity matrix. 

Proof 
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Theorem 

Suppose B is obtained from A by an elementary row (column) operation. If two 

rows (columns) of A were interchanged, then | |   | | . 

Proof 
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Theorem 

The determinant of a product of two matrices A and B is the product of their 

determinants; that is,                      

The above theorem says that the determinant is a multiplicative function. 
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Remember (8.27)  Suppose B is row equivalent to a square matrix A. then 

| |    if and only if | |   . 

Theorem 

Let A be a square matrix. Then the following are equivalent: 

(i) A is invertible; that is, A has an inverse     

(ii)      has only the zero solution. 

(iii) The determinant of A is not zero; that is,       . 

 

Lemma 

Let E be an elementary matrix. Then, for any matrix A; |  |  | || | . 
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Theorem 

Suppose B is obtained from A by an elementary row (column) operation. 

(i) If a row (column) of A were multiplied by a scalar k, then | |   | |. 

(ii) If a multiple of a row (column) of A were added to another row (column) 

of A, then | |  | | . 

Proof 
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Minors and Cofactors 

Consider an n-square matrix   [   ]. Let     denote the       square 

submatrix of A obtained by deleting its ith row and jth column. The determinant 

|   | is called the minor of the element     of A. 

Minors and Cofactors 

Consider an n-square matrix   [   ]. Let     denote the       square 

submatrix of A obtained by deleting its ith row and jth column. The determinant 

|   | is called the minor of the element     of A, and we define the cofactor of    , 

denoted by    ; to be the ‗‗signed‘‘ minor: 

           |   |  

We emphasize that     denotes a matrix, whereas     denotes a scalar. 

Example  

Let   [
   
   
   

]. Find the following minors and cofactors:  

(a) |   | and     

(b) |   | and     

Solution 
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Practice 
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Cofactor Expansion of a Matrix A / Determinant using Cofactor 

If A is     matrix, then the number obtained by multiplying the entries in any 

row or column of A by the corresponding cofactors and adding the resulting 

products is called the determinant of A and the sums themselves is called cofactor 

expansion of A, that is  

                             (cofactor expansion along the j
th

 columns) 

                                (cofactor expansion along the i
th
 rows) 

Example (Cofactor Expansion along the First Row) 

Find the determinant of the matrix   [
   

     
    

] by cofactor expansion 

along the first row. 

Solution 

     |
   

     
    

|   |
   
   

|   |
   
   

|   |
    
  

|  

     |
   

     
    

|                     

Example (Cofactor Expansion along the Column) 

Find the determinant of the matrix   [

     
    
     
    

] by cofactor expansion 

along the second column. 

Solution 

Since second column has the most zeros we will expand along the second column,  

       |
    
    
   

|       |
   
  

|              
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Classical Adjoint 

Let   [   ] be an     matrix over a field K and let     denote the cofactor of 

   . The classical adjoint of A, denoted by     , is the transpose of the matrix of 

cofactors of A. Namely,       [   ]
 
 

We say ‗‗classical adjoint‘‘ instead of simply ‗‗adjoint‘‘ because the term 

‗‗adjoint‘‘ is currently used for an entirely different concept. 

Example  

 

 

Theorem 
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Proof 

 

 

Example 

 then we have 
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Procedure 

 Write given system      

 Find | |    |  | |  | 

 Find solution set using   
|  |

| |
   

|  |

| |
 

Example 

Solve the system using Cramer‘s Rule. 

                                                

Solution 

  [
   

    
      

]     [
   

    
     

]  

   [
   

     
     

]     [
   

     
     

]  

   
|  |

| |
  

  

  
 

  

  
      

|  |

| |
 

  

  
 

  

  
      

|  |

| |
 

   

  
 

  

  
  



268 
 

Visit us @ Youtube: “Learning With Usman Hamid” 

Theorem 

A square homogeneous system      has a nonzero solution if and only if 

  | |   . 
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Chapter # 6 

DIAGONALIZATION 

Diagonalizable Matrix  

Suppose an n-square matrix A is given. The matrix A is said to be diagonalizable if 

there exists a nonsingular matrix P such that         is diagonal.  

Similar Matrix  

A matrix B is similar to a matrix A if there exists a nonsingular matrix P such that 

        implies      .  

Diagonalizable Operator  

Suppose a linear operator        is given. The linear operator T is said to be 

diagonalizable if there exists a basis S of V such that the matrix representation of T 

relative to the basis S is a diagonal matrix D. 

Characteristic Polynomial/ Characteristic Matrix/ Characteristic Equation 

Let   [   ] be an n-square matrix over field F. Then the matrix        is 

called characteristic matrix of A and       |    |  is called the characteristic 

polynomial of A. And       |    |     is called the characteristic equation 

of A.  

Example 
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Theorem   

Similar matrices have the same characteristic polynomial. 

Proof 

Let A and B are similar matrix then         and using           

|    |  |            |  |          |  |    ||    |  

|    |  |    |  

Thus Similar matrices have the same characteristic polynomial. 
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Cayley – Hamilton Theorem 

Every matrix A is a root of its characteristic polynomial. 

Or Every Square matrix is zero of its characteristic polynomial. 

Or Every Square matrix satisfies its characteristic equation. 

Or if    characteristic polynomial of a square matrix A, then A is root of   . 

Proof 
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Eigenvalue   

Let A be any square matrix. A scalar   is called an eigenvalue of A if there exists a 

nonzero (column) vector   such that       

Any vector satisfying this relation is called an eigenvector of A belonging to the 

eigenvalue l  . 

Note   

 Each scalar multiple    of an eigenvector   belonging to   is also such an 

eigenvector, because                          

 The set    of all eigenvectors is a subspace of V, called the eigenspace of  . 

  If        ,then    is called an eigenline and   is called a scaling factor. 

 The terms characteristic value and characteristic vector (or proper value and 

proper vector) are sometimes used instead of eigenvalue and eigenvector. 

 

Thus,    and    are eigenvectors of A belonging, respectively, to the eigenvalues 

     and     .  

Question  
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Theorem: Let A be a square matrix. Then the following are equivalent. 

(i) A scalar   is an eigenvalue of A. 

(ii) The matrix        is singular. 

(iii) The scalar   is a root of the characteristic polynomial    of A. 

Proof 

 Theorem: Suppose            are nonzero eigenvectors of a matrix A 

belonging to distinct eigenvalues           . Then            are linearly 

independent. 
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Algebraic multiplicity  

If   is an eigenvalue of a matrix A, then the algebraic multiplicity of   is defined to 

be the multiplicity of   as a root of the characteristic polynomial of A, and the 

geometric multiplicity of   is defined to be the dimension of its eigenspace,      . 

Theorem  

The geometric multiplicity of an eigenvalue   of a matrix A does not exceed its 

algebraic multiplicity. 
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Minimal Polynomial 

A polynomial      is called minimal polynomial of the matrix A if; 

i.      divides the characteristic polynomial      

ii. Each irreducible factor of      divides      

iii.        

Theorem 

The minimal polynomial      of a matrix (linear operator) A divides every 

polynomial that has A as a zero. In particular,      divides the characteristic 

polynomial      of A. 

Proof 
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Theorem 

The characteristic polynomial      and the minimal polynomial      of a matrix 

A have the same irreducible factors. 

Roof 
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Question (PP)   

Find a real orthogonal matrix P for which       is diagonal, where *
  
  

+ 
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Chapter # 7 

LINEAR TRANSFORMATIONS 

 

Examples 
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Example 

 

Example 
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Example 

 

Examples (Zero and Identity Transformations) 
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Theorem 

 

Vector space Isomorphism 
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Kernel and Image of a Linear Mapping 
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Example 

 

 

Theorem 

Let       be a linear mapping. Then the kernel of F is a subspace of V and the 

image of F is a subspace of U. 

Proof 
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Example 

 

Difference between transformation and operator 

If the domain of a function f  is     and the codomain is     (m and n possibly the 

same), then f is called a map or transformation from    to   , and we say that 

the function f  maps    into   . We denote this by writing        . When 

    the transformation          is called an operator on   . 
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Example 

 

Rank and Nullity of a Linear Mapping 

 

Theorem  
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Singular and Nonsingular Linear Mappings, Isomorphisms 
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Theorem 

 

Theorem 
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