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The extension to the concept of complex numbers from that of real numbers was
first necessitated by the solution of algebraic equations.

For example the quadratic equations
xX>+4=0,x>+x+1=0,x>-2x+3=0

Do not possess real roots.

In order to find the solution of these equations, Euler (1707-1783) was first to

introduce the symbol i = V-1 = i? = -1

Gauss (1777-1855) a German mathematician was first to prove in a satisfactory
manner that some algebraic equations with real coefficients have complex roots
in the form x + iy (Note that complex and irrational roots always occur in pairs)

REFERENCE BOOKS:
= Complex variables and applications by J.W.Brown & R.V.Churchill.
= Schaums outlines of complex variables.
» Fundamentals of complex analysis by Dr.Muhammad Igbal.
= Complex analysis with applications by D.G. Zill
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or contact: 0323 — 6032785
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COMPLEX NUMBERS
AND BASIC DEFINATIONS

ORDERED PAIR: A pair (X,¥y) such that (x,y) # (y,X) unless
x =y is called an ordered pair. It can be represented as a point in
complex plane.

*z=(x,y)

o= (0, 1)

ol x=(x0 X

COMPLEX NUMBERS: It can be defined as ordered pairs (X, y) of
real numbers that are to be interpreted as points in the complex plane,
with rectangular coordinates x and vy, just as real numbers x are thought
of as points on the real line.

Or acomplex number is any number of the form z = x + iy where ‘X’
and ‘y’ are real numbers and i is the imaginary unit.

When real numbers x are displayed as points (x, 0) on the real axis, it is
clear that the set of complex numbers includes the real numbers as a
subset.

Complex numbers of the form (0, y) correspond to points on the
y - axis and are called pure imaginary numbers when y = 0. The
y - axis is then referred to as the imaginary axis.

The real numbers x and y are, moreover, known as the real and
imaginary parts of z, respectively; and we write Xx =Re z,y =Imz.
Two complex numbers z; and z, are equal whenever they have the same
real parts and the same imaginary parts. Thus the statement z; - z,
means that z; and z, correspond to the same point in the complex,
or z - plane. Also both will be equal if they have same modulus and
Principal argument



COMPLEX PLANE: The plane at which two lines are mutually
perpendicular at a point O (origin) where x — axis is real line and

y — axis is an imaginary line. Plane also named as Argand plane
(diagram) or Gaussian Plane.

SOME BASIC PROPERTIES

For two complex numbers  z; = (X1, y1) and  zo = (X2,Y2)
(X1, Y1) + (X2, ¥2) = (Xe + X2, Y1 +V2),
(X1, Y1) (X2, Y2) = (X1Xz = Y1Y2, X1y2+ X2Y1).
(X1, 0) + (X2, 0) = (X1 + X2, 0),
(Xl, O)(Xz, 0) = (X1X2, 0)
The complex number system is a natural extension of the real
number system. Also complex cannot be comparable like real
numbers.
Any complex number z = (X, y) can be written z = (x, 0) + (0, y),
and it is easy to see that (0, 1) (y, 0) = (0, y).
Hence z=(x,0)+ (0, 1)(y, 0)
7° =72, = 7%z, etc. and z(zy + 7o) = 221 + 72,
(X +iy1) + (X2 +iy2) = (X1 +X2) +i(y1 +Y2),
(X1 +iy1) (X2 +iy2) = (XaX2 —Y1Y2) +i(Xay2 + X2Y1)
i?=—-1fori=(0,1)
Proof: = (X1, y1)(X2, Y2) = (X1X2 —Y1y2, X1y2 + Xay1)
v i2=0i=0101=0-1,0+0)=(-1,0)=2i2=-1
2yt Zp =2+ 21, 2123 = Z3Z1 (commutative law)
(21+22) +23 =21+ (22 + 23), (2122)Z3 = 21(Z223)  (associative laws)
Z1+Zp=(X+ X2, Y1+ Y2) = (Xe + Xq, Y2+ Y1) =22+ 73
The additive identity 0 =(0,0) and the multiplicative identity
1=(1,0)
There is associated with each complex number z = (X, y) an additive
inverse —z = (—X, —Yy)
For any nonzero complex number z = (x, y) there is a number z™' such

-1 - is i inlicative i -1 (X _¥
that zz = 1. This is multiplicative inverse. And z _(x2+y2'x2+y2)

2;=2,:1= zz(zlzfl) :(21_121)22:21_1(zlzz):zfl'o =0ifz;2,=0
Using the associative and commutative laws for multiplication
(2122)(2324) = (2123)(2224)

2(z1+ 2o+ 23) =221 + 22, + 723

Z1 _ (X1X2+Y1YZ XzY1—X1YZ)

Zy X224y22 7 Xp2+y,?

A set of complex numbers form a field.

Set of complex numbers satisfies scalar multiplication.




Example: Simplify :_—J;ii

4+i  (4+D(2+3i) _ 5+14i

5 +14i
2-3i  (2-30)(2+3i) 13 13 @ 13

Solution:

Example: Write down the binomial expansion form of (z; + z,)"
n
Solution: (z; + z,)" = [ (1 + Z—l)] =z,"(1 + zyz; )

_ (n-1)
(z1+2)" =z, [1 +n(z;z;1) + = (zy231)* +

n—1
(z1+z)" =z, ll +n(z1z; 1) + (T)Zl z;% + - l
nn—1)
(z1+ 2)" =z, + n(z 2 ) + Tzfzg_z + -
n n )
(z1 +2z)" = Z Nc, Z{(Zg_k = Z (k) ZfZg_k
k=0 k=0
Example: Show that (z; + z,)™*! = ym#! (m; 1) zkzm+1-k
Solution:
m _
(21 +2)™ = (2, + Zz)(Z1 +z)" = (21 + Zz) k=0 (k ) zfz3 " Replace
‘k> with
(2, + 2,)™+1 = Z (k) 2oLk +Z 1 mok O k-1’
k=0 °O
(2, + 2,)™+ = Z(k)zlzz m+1- k_l_z Z1Z£n+1 —k
k=0
(Zl + Zz)m+1 — Z£n+1 + z (T]?) m+1 k + Zm+1 + z Zl Z£n+1 -k

o = s 3 [ ()t e

(Zl + Zz)m+1 — (ml': 1) Zfzgn+1 k



Exercises 1: (visit @ Youtube “learning with Usman Hamid”)
1) Verify that
a) (V2—i)—i(1-v2i)=-2i
b) (2,-3)(-2,1) =(-18)

2) Show that
a) Re(iz)=-Imz
b) Im(iz) =Rez.

3) Showthat (1 +z)*=1+2z+ 7%

4) Verify that each of the two numbers z = 1 + i satisfies the
equation z2—2z+2=0.

5) Briefly answer the followings;

a) Write (x,y) + (u, v) = (X, y) and point out how it follows
that the complex number 0 = (0, 0) is unique as an
additive identity

b) Likewise, write (x, y)(u, v)=(X, y) and show that the
number 1= (1, 0) is a unique multiplicative identity.

c) Use—1=(-1,0)andz=(x,Y) toshow that (-1)z = -z

d) Usei=(0,1)andy = (y,0) to verify that
- (iy) = (=y

e) Solve the equation 22+ z + 1 = 0 for z = (x, y) by writing
(X, y)(x,y) +(x,y) +(1,0) =(0,0)
and then solving a pair of simultaneous equations in x
and y.

6) Reduce each of these quantities into real numbers number:

1+Zl 2— l Y
@Zits O l)(2 e © -0

7) Show that 7 =z

8) Prove that if z;2,z3 = 0, then at least one of the three factors is
zero.

9) Derive the |dent|ty( )(ZZ) — (ﬂ)

Z4 Z3Z4
10) Derive the cancellation law 2= =2
ZyZ Zy

11) Use the definition of complex numbers as an ordered pair
of real numbers and prove that
(a,b) = a(1,0) + b(0,1) where (0,1)(0,1) = (—1,0)



VECTORS INTERPRETATION OF COMPLEX NUMBER
(GRAPHICAL REPRESENTATION)

A complex number z = x + iy can be considered as a vector OP in
complex plane whose initial point is the origin and terminal point is the
point P(x,y)

We sometime call OP = x + iy the position vector of ‘P’

For example: z = x + iy and z = —2 + i graphically represented as
below;

(_Zr 1)

When z; = x; +iy; and z; = X + iyp, the sum z3 + 2, = (X1 + X2) +i(y1 + V2)
Corresponds to the point (x; + X2, y1 + y2). It also corresponds to a vector
with those coordinates as its components. Hence z; + z, may be obtained
vectorially as shown in Fig.

y

(6] X

Keep in mind: Two vectors having the same length or magnitude and
direction but different initial points are considered to be equal.

Exercises 2: (visit @ Youtube “learning with Usman Hamid”)
Locate the numbers z; + z, and z; — z; vectorially when

. 2
I 21=21;22=§—l

. z, = (—\/§, 1) ; Zy = (\/§, 0)

iii.  z;=(-31); z,=(1,4)

V. zZ1=x3+iy1 ;2=X1-1y1

v.  perform both indicated operations analytically as well as
graphically for (3 + 4i) + (5 + 2i)
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THE MODULUS OR ABSOLUTE VALUE OF COMPLEX NUMBER
The modulus or absolute value of a complex number z = x + iy is
defined as |z| = /x2 + y?2 which is non — negative real quantity.

Geometrically, the number |z| is the distance between the point (X, y) and

the origin, or the length of the radius vector representing z. It reduces to the

usual absolute value in the real number system when y=0.

The inequality z; < z; is meaningless unless both z; and z, are real, the

statement |z;| < |z,| means that the point z; is closer to the origin than

the point z; is.

Example: Since |- 3 + 2i|= v13 and |1 + 4i|=v17, we know that
the point —3 + 2i is closer to the origin than 1 + 4i is.

Remark: The complex numbers z corresponding to the points lying on
the circle with center zy and radius R thus satisfy the equation |z — zo|= R,
and conversely. We refer to this set of points simply as the circle

|z —2z0|=R.

Example: The equation |z — 1 + 3i|= 2 represents the circle whose center is
Zo = (1, —3) and whose radius isR = 2.

Example: The equation |z — 4| + |z + 4i| = 10 after rearranging
|z -4i| + |z- (—4i)|] = 10 represents the ellipse with foci F(0, 4) and
F'(0,—4)

Example: The equation |z -1| =|z + i| represents the line through the origin
whose slope is —1

Example: The equation |z | + |z -2| = 4 represents the ellipse where |z | is
the distance from origin.

Exercises 3: (visit @ Youtube “learning with Usman Hamid”)
In each case, sketch the set of points determined by the given condition:

@z-1+i|=1
(b) |z +i|<3
(c) [2z-i|= 4
(d) |z — 4i| >4
(&) || =2
(f) g|<z




BASIC PROPERTIES: It also follows from definition that the real
numbers |z|, Re z = x, and Im z =y are related as follows;

= |22 = (Re(2))” + (im(2))"

» Rez<|[Rez|<|z] and Imz<|Imz|<[z].
" |z|?=2zZ

» |z| = 7]

= |22 = (Re(2))’

= |z? = (im(2)°

* |z125] = 74|z,
Proof: |z12;1* = (2122)(2122) = 21Z122Z; = |211%1 2,1 = |212;| = |24]|2,]
z1| _ 1zl .
-l — T Zz 7‘: 0
Z2 |22 ]
Proof: Z1 2 — (Z_l) (Z_l) — Z_lg — _|21|2 = Z1 — @
Z2 Z2 Z2 22 Z2 |22 ] Z3 |Z2|

" |zq + 25| < |z4| + |2| (triangular inequality)
Proof: |z, + z,|% = (2, + 2,)(zy + 2,) = (21 + 2,) (7, + 23)
|z + Zz|2 =212+ 212y + 2221 + 2,2, = |Z1|2 + 212, + 72,7, + |Zz|2

|2y + 2,12 = |z1|? + 2Re(2,23) + | 2,|? ~z+Z=2Re(z)

|21 + 2;|* < |21 |* + 2|21.25| + |2, | ~ |z| = Re(z)
|2y + 2,1% < |z11% + 2|z || 23] + |2,)? wzyzp| = |z4|] 25
|2y + 2,1% < |z11% + 2|z ||z, ] + | 2,]? VARV

|2y + 25| < [lz1] + |2,]]?
|Z1+22|S|Z1|+|Zzl )
|zy + 25 + - zy| < 21| + |25] + -+ |2z,,| in general
n

n
Y
i=1

i=1
" ||Z1| - |Zz|| < |zq — z,|

Proof: consider z; = (z; — 2z3) + 2z, = |z1]| = (21 — z3) + 23|

> |z1] < |21 — 25| + |22] = |21 = |22] < |2 — 75| .o oot (A)
Similarly z, = (z, — z1) + z; = |z,| = |(z; — z1) + 74|

= 2| S |zp — 24| + |z1] = | 23| = |z4] < |- (21 — 22)]

= —[lz1] = 1221l < |21 — 23| = |z1] = |22l = |21 — 23| ........(B)
From (A) and (B) |12y — |z2l| < |2, — |

=

Example: If a point z lies on the unit circle |z| = 1 about the origin,
then |z — 2|=|z+ (—2)|< |z|+|-2|=14+2 =3=|z — 2| <3
And |z — 2| =z+ (=2 =|lzl-|-2l|=11-2]|=1=|z — 2| > 1
Example: If a point z lies on the circle|z| = 2, then

3+z+2% <3|+ lz| +12%| = 13| + 12| + [2%] = 9
>[3+z+2%<9
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Example: If n is a positive integer and P(z) is a polynomial of degree n
then for some positive number R, the reciprocal 1/P(z) satisfies the

inequality |P( )| < whenever |z| > R

lan IR"
Solution: Consider P(z) = ay + a;z + -+ + a,z™ is a polynomial of
degree n.

a an-— .

Takew =— = (D

Then P(z) = (a, +w)z"™ .............(iQ)

(DH)=>wz"=ay+a.z+ayz* + -+ a,z"

= |wz"| = |lag + a1z + a,z% + .. +a,z"|

= |W||Z|”|L <||ao||+ ||a1||z| + ||Clz||Z||2 SR ol [ Y [ ] K
Qo a; an-1

> WS Ept e 21

Note that a sufficiently large positive number R can be found such that each
of the quotients on the right in above inequality is less that the number lan

(2n)
when |z| > R and so
w| < nlgel — 1ol ywhen |z] > R
Gen) ~ 2
Consequently |a,, + w| = ||an| — |w|| > 'anl when |z| > R
(i) = [P (@)] = lan + wllz|" > 22|27 > %Rn When |z| > R
L | <—2_ Whenever |z| >R
P(z) lan|R™
Exercises 4: (visit @ Youtube “learning with Usman Hamid”)

1. Show that Rez < |Rez| < |z|
2. Verify |z,| — |z,| < |z, + z,| involving Re z, Im z, and |z|

R + +
3. When |z5| # |z,| show that e(z1+25) < |z1]+|22]
|z3+24] I3 |+]z4l|

4.1f 2 = —— then find |z|
3+4i
5. Verify that v2|z| > |Re(2)| + |Im(2)|
6. Using mathematical induction show that |z"| = |z|"

7. Show that m| < = when z lies in the circle |z| = 2
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COMPLEX CONJUGATES

The complex conjugate, or simply the conjugate, of a complex
number z = x + iy is defined as the complex number x — iy and is
denoted by z; thatis, z=Xx—1y.

The number z is represented by the point (x, — y), which is the
reflection (mirror image) in the real axis of the point (X, y)
representing z

y

, - )

(@] R X
2N (% -y)

If z; = X +iy; and z; = X, + iy, then

= 7=z
" 1tz =21+ 7;
N2y —Z=21— 7

" 2472y =217

. Z+Z‘=2x=2Re(z):>Re(z)=%

» z—7=2iy=2Im(z)=Im(z) = Zz;lz_

= |If z = Z then complex status of z is that z will be a real number.
i.e. z=1Zziff zis a real. We may say that z is self-conjugate.

= 22 = 72 iff z is either real or pure imaginary.

Example:
—1+3i _ (=1+3i)(2+i) _ —5+5i __ _ .
2—i  (2=D(+D)  |2-i)2 1+

Example: If z is a point inside the circle centered at the origin with
radius 2, so that z < 2, it follows from the generalized triangle
inequality

|23 + 322 —2z+ 1| < |23| + 3|z%| + 2|z| + 1

|23 +322-2z+1| < |zP+3|z? + 2|zl + 1 <25 = |z = |z|*
|z3 +32z2 - 2z+1| < 25
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Exercises 5: (visit @ Youtube “learning with Usman Hamid”)

1.

oo

10.
11.
12.

Show that
i. Z4+31=z-3i
ii. z=-iz
iii. 2+0)2=3-4i
i |2z +5)(V2 —i)| = V3|2z + 5

<

Sketch the set of points determined by the condition;

i. Re(z—1i)=2

ii. |2z—-i|l=4
Show that

I 217373 = 717,73

i. z*t=2*

Verify for non — zero z,, z3

' Z323 Z37Z3

i |2 = 12l
2273 |Z211z3]
Show that |Re(2+Zz+2z3)| <4 when|z| <1
By using mathematical induction show that
| 212373 2y = 212373 . 7y
. z+z,+z3..+z, =27 +2,+ 723 ..+ 7,
For any real numbers " ,a; ;n =1 and for acomplex number
‘z’ show that
g+ a1z + ayz2 + -+ a,z" = ag + 012 + a,2% + -+ + a,z"
Show that the equation |z — z,| = R of a circle centered at z, with
radius R can be written as |z|? — 2Re(zZ;) + |z|? = R?
Show that the hyperbola x? — y2 = 1 can be written as
z2+ 72 =2
Express 2x + y = 5 in terms of complex conjugates.
Express x2 + y2 = 36 in terms of complex conjugates.
If the sum and product of two complex numbers are both real, then
prove that the two numbers must either be real or conjugate.
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ARGUMENT (AMPLITUDE) OF COMPLEX NUMBERS
Let r and 4 be polar coordinates of the point (x, y) that corresponds to
a nonzero complex number z =x+iy. Since x =r cosf and
y = r sin 6, the number z can be written in polar form as
z =1(cosf + isinf)
= If z=0, the coordinate ¢ is undefined; and so it is understood
that z # 0 whenever polar coordinates are used.
= In complex analysis, the real number r is not allowed to be
negative and is the length of the radius vector for z ; that is,
r=|lz| =x%+y2.
= The real number 6 represents the angle, measured in radians,
that z makes with the positive real axis when z is inter preted as a

radius vector (Fig). and 8 = Tan™! (%) is called an argument

of z, and the set of all such values is denoted by arg z.
= The principal value of arg z, denoted by Arg z, is that unique
value 6 such that -z < 6 <. Evidently, then,
argz=Argz+2nz (n=0,%1,%£2,...).
Also, when z is a negative real number, Arg z has value 7, not —.
At origin Arg z not defined.

Some authors use —z < 8 <z but we follow previous one.
y

® Z=XtIiy

.
A\
N X
HOW TO FIND ARGUMENT?
n — -1(Y .
0 =Tan (x) ;o x>0
. 9=7T+Tan‘1(z> ; x<0,y=>0

X

. 9=—7T+Tan‘1(%) ; x<0,y<0
= 0=2; x=0y20

= 0=—§; x=0y<0

» argz=Argz+2nn (
» Argz=argz-2nx (
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Example: Find the argument of the complex number z= -1 —i

Solution: The complex number z = -1 — i, which lies in the third
quadrant, has principal argument —3z/4. That is,
3
Arg(—=1-1i) = —T
It must be emphasized that because of the restriction —z < 8 <z of the

51

principal argument 6, it is not true that Arg(—1 —i) = ”

Nowargz = Argz + 2nm =—%" + 2nm (n=0,%1,%2,..).

EXPONENTIAL FORM

The symbol e’ orexp(i@ ), is defined by means of Euler’s formula as
e = cos @ +i sin @, where @ is to be measured in radians. It enables one
to writS the polar form more compactly in exponential form as

z=re'

Example: Write exponential form of the complex numberz = —1 — i
Solution: Since for the complex number z = —1 — i, which lies in the

9=—%ﬂ Andr =+2
31

. . . 31
Thenz = ret® = —1—i = \/Eel( T) =5>-1—-i= \/Eel(_TJrznn)
(n=0,%1,%2,...).

Note: Expression z = re'® withr =1 tells us that the numbers e” lie
on the circle centered at the origin with radius unity, as shown in Fig.
Values of e are, then, immediate from that figure, without reference to
Euler’s formula. It is, for instance, geometrically obvious that

. in , .
e™ = —1,e 2 = —i,and e =1

X

N




15

Note: The equation z =Re” (0 <0 <2x) isa parametric

representation of the circle|z| = R, centered at the origin with radius R. As

the parameter 6 increases from 0 to 2z, the point z starts from the positive

real axis and traverses the circle once in the counterclockwise direction.

More generally, the circle |z —z 4| = R, whose center is zo and whose

radius is R, has the parametric representation z = zo+Re”’ (0 <60 <2n).

This can be seen vectorially (Fig) by noting that a point z

traversing the circle |z—z,| =R once in the counterclockwise
direction corresponds to the sum of the fixed vector z, and a vector of
length R whose angle of inclination & varies from 0 to 2.

y

Reit

PRODUCTS AND POWERS IN EXPONENTIAL FORM
Simple trigonometry tells us that e has the familiar additive property of
the exponential function in calculus:
"1 e2 = (cos 0, + i sin 61)(cos B, + i sin 6y)
= (cos 0y cos G, — sin Oy sin 6,) + i(sin 64, cos 6, + cos 6 sin 6,)
= Cos(fy + 0,) + i sin(dy + 6,) = e"1+62),
Thus, if z; = rie1 and z, = r,e™2 , the product z;z, has exponential form
= 7,2, = 16101 1,6102 = 11,0101 6102 = (1,1,)ei(01+062),

. oa_ne® o efet®  py 00D g,
z, ryetV2 r,  eV2e—if2 r,T e T
- 1 1e 1 jo- 1
R =_el(0 6)=_e i

z o rei® r r
» Z"=re” (n=0, +1,%£2,..)).
= for n=m+1:
= "= H™ where m=-n=1,2,....

= (z7Hn = [%e—ie]n — [lr]ne—ine
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Example: Write (—1 + i)7 in rectangular form.
Solution:

(147 = (x/_ei(g_"))7 = (23e57) (21/2¢'0)) = —g (21/2¢'()
(- 1+1)7——8[\/—(\/_ \/_)]=—8(1+i)
Exercises 6: (visit @ Youtube “learning with Usman Hamid”)

1. Write (V3 + i) in rectangular form.

2. By writing the individual factors on the left in exponential form,
performing the needed operations, and finally changing back to
rectangular coordinates, show that

I. 1(1—\/—1)(\/—+1)—2(1+\/—1)

. —=1+2i
241
ii.  (V3+i)
iv. (1-+v3) " =2711(=1+ 30
DE MOIVRE’S FORMULA:

Forz"=r"e"” (n=0,+1,+2,...) we have (€“)"=e" (n=0, %1, +2,.)).
When written in the form
(cos@ +isin@)"'=cosnf +isinnd (n=0,£1,%2,..),
This is known as de Moivre’s formula.
Remarks:
= (cos &+ isin6)*=cos 20 +isin 26,
= Or cos’d —sin®6 +i2 sin fcos O = cos 26 + i sin20.
= By equating real parts and then imaginary parts here, we have the
familiar trigono metric identities
cos 20 = cos® § —sin®#,  sin 20 =2 sin 6 cos 6.

Question: Prove de Moivre’s formula
(cos@ +isin@)" =cosnf +isinnd (n=0, +1,+2,...)
Proof : By using mathematical induction we assume that result is true for
the particular posmve integer ‘k’ i.e.

(cos@ +isin 9) =coskf +isink# (k=0,£1,£2,...)

Then multiplying (cos @ +isin @) we get

(cos @ +isin ) = (cosk® +isin k) (cos O +isin )

(cos @ +isin )™ = cos (k+1)0 +i sin (k+1)0

Result is true for n = k+1 and hence proved.

Exercise 7: (visit @ Youtube “learning with Usman Hamid”)
Use de Moivre’s formula to derive the following trigonometric
identities:

(a)cos 30 = cos3 @ —3cos@sin®0;  (b) sin30 =3cos2 Osin 6 —sin .
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ARGUMENTS OF PRODUCTS AND QUOTIENTS
If 2, = i and z, = 1,62 , then expression 21z, = (r1r,)e1+62)
can be used to obtain an important identity involving arguments:
arg(zi1z;) =argzy +argz.

Suppose z3 , z; be two non — zero complex numbers and let ry, r, be the

moduli and 6, , 6, be the arguments. Then 212, = (rir,)e"®1+02)
Then arg(z,12;) =61 + 0, = arg z; + argz,

In general

arg(zizz... . zn) =01+ 6, +....+ ,=arg z; + arg z,+.....+ arg z,

But for principal argument

Arg(zizo ... Zn)# h+O,+....+ 0, # Arg z; + Arg Zo+......+ Arg z,

Also 2 = L oi(01-62) arg (Z—l) =60,—0,=argz, —argz,
Z2 T2 Z2

y ® 717
e, +f’;:
.Zz
e 7
e 7
(0] X
Example:  Show that arg(zsizz) = arg z; + arg

also  Arg(z1zp)+ Arg z; + Argzawhenzy=—landz, = i
Solution: when z; = —1 and z, = i then Arg(z,22)= Arg(-i):—g but
Arg z; + Arg 22:n+§=37” for both we use n =0

Then Arg(zizp)# Arg z, + Arg z;

But for n = 1 we get arg(z1z2) = Arg(zizp) + 2m :—g + 2m = 371:
Then arg(z1z;) =argz; +arg z;

Example: Find the principal argument Arg z when z = f_l
Solution: use arg(z) =arg (i) -arg (-1-i)

And Since Arg(i) = % and Arg(-1-i) =— %ﬂ

one value of arg z is 5z/4 not a principal value

3T

then Arg(ﬁ):%”+2n=_ -

Z;
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Exercises 8: (visit @ Youtube “learning with Usman Hamid”)

1. Find the principal argument Arg z when

-2
I zZ =—=

1+J_L
.. 6
i. z=(V3-1)
2. Find the modulus and argument of the followings
1+2i
. Z= 1-(1-0)2
. 3-i, 3+i
i. z=
2+l 2 i

. Show that (a) [e” |= 1; (b) e =¢”*
. Use mathematical induction to show that

61 e ... gifn = 010yt +0y) (n=2,3,..).
5. Using the fact that the modulus |e®® — 1| is the distance between the
points " and 1 give a geometric argument to find a value of & in the
interval 0 < 6 < 2r that satisfies the equation e — 1| =2 Ans:z

A~ w

MISCELLANEOUS PROBLEMS

s

Example: Find the locus of ‘z’ when arg ( +1) =3

. . z-1 _ x+iy-1 _ (x-D+iy _ x 24y21 , 2y
Solution: consider > z+1  x+iy+1 (x+D+iy  (x241)2+y? (x2+1)2+y2
(2)-r ‘1( =
=>a = R A
"I\z+1 an x2+y?2—-1
T 2y T 2y
=>=-=T n‘l(—):Ta =)=
3 “ x2+y2—1 n(S) x2+y?—1
_ 2y ji . _ . .
=> V3= ryio1 = x? + —FY 1 = 0 an equation of circle.
Example: Find the locus of ‘z’ when |—| =2> ;_i =4

Solution: Since |z|? = zz therefore

z—i)? Z—1I\/Z—1 Z—IN\N/Z—1

: 24:( )( )24=>< )(_ _)24
Z+1 zZ+1/\z+1 Zz+i1/\z+1

> 4|z +4i(Z—-2)+4—z|°+i(Z—2)—1<0

= 3|z +5i(Z—-2)+3<0=3(x?+y%) +5i(-2iy)+3<0

= 3x2 + 3y% + 10y + 3 < 0 which is interior and boundary of circle.

az+b

|—1f0r|z|—1

Solution: Since |z| = 1 s |zIP=1=zz2>72 =§ then

Example: Prove that

__|az+b
az+b’

__|az+b
— |b

-~ +a
z

az+b
bz+a

zl = |z| = 1 as required.
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. (1+it)?—it 5 .
Example: if z = e then prove that the locus of ‘z’ is an ellipse.

Find the semi major and semi minor axis.

(1+it)2—it _ 1-t2 t

Solution:letz =x +iy=>x+iy =———=—5+ti then

L-¢ ‘ I S i
X=——;y= =X =1=
1+ ¢2 1+ ¢2 Y (D2 ' (1/2)2
Hence given equation is an ellipse whose semi major and semi minor
axis are 1 and % respectively.

=1

Example: if z = % then prove that the locus of ‘z’ is a
circle. Find the radius and center of circle. Also calculate the maximum

and minimum distance of ‘z’ from origin.

Solution: letz=x+iy=>x+1iy =%

>A+i)x+iy) =A+i)+B+20)t

> @@—yt)+i(y+xt) =1 +3t)+i(1+2t)

Then comparing real and imaginary parts
=>x—-—yt)=10+3t)....(0)and (y + xt) = (1 + 2¢t) ... ... (ii)

(i)=>(x—yt)=(1+3t):>t=x—1

y+3
(ii):>(y+xt)=(1+2t):>[y+x(;;;)]=[1+2(;;;>]

=>x2+y2+3x+2y—1=0 (Aftersolving)
Hence given equation is a circle.
Now comparing the equation with = ax? + by? + 2gx + 2fy +c =0

We get gz—g, f=1,c=-1
Thus center of circle = (—g,—f) = (2, —1)

radius of circle =\/f? + g? —c = g
maximum distance = OA = AC — OC = g — ?
minimum distance = OB = BC + OC = g + ?
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Example:
Prove that |
holds?
Solution: We have to prove |%| <1l1=|a+b|<|1+ab|
ifla| <1land|b| <1

a+b

| < 1if|a| < 1and|b| < 1 when does equality

Consider
la+b|?>=(a+b)(a+b)=(a+b)(@a+b)=aa+ab+ba+bb
= |la+b|?=lal?+|b|>+ab+ab .......(~0)

Again Consider

|1 +abl?=1+ab)(1+ab)=(1+ab)(1+ab) ~d=a
= |1+ ab|?> =1+ ab + ab + aabb

Adding and subtracting |a|? + |b|? on R.H.S

= |1+ ab|?> = |a|? + |b|?> + ab + ab + 1 + aabb — |a|?> — |b|?
= |1+ ab|? =|a+ b|*>+ 1+ |al|b| — |a]? — |b|? s using (i)
= |1+ ab|? = |a+b|?+ (1 —lal®)(1 - |b]?)

Since 1—|al?>0also1—1|b|>>0
>|1+abl>?=|a+bl>?=>|1+ab|=|a+b|=|a+b|<|1+ab|
Equality will hold if
1—|al?’=0=al?=1=|al|=1alsol1—|b|?=0=|b| =1

Example:
Prove that |z, + z,|? + |z, — z,|?> = 2[|z,]? + |2,|?] and deduce the
result |a + Va2 — b%| + |a — Va2 — b%| = |a + b| + |a — b|
Solution:
L.H.S =|z; + z,|*> + |z, — 2,|?
L.H.S = (z1+ 22)(21 + 22) (21 — 22) (21 — 23)
L.H.S = (21 + 22)(Z1 + Z3) (21 — 22) (71 — Z3)
L.H.S = 2171 + 2175 + 7371 + 2375 + Z1Z7 — Z1Z3 — Z3Z1 — Z3Z5
L.H.S = |z|? + |231? + |211? + |2,]? = 2[|211* + |2,]?] = R.H.S
Now let z; = a + Va? — b%? and z, = a — Va? — b?
Then 1] + 217 = 1 [|z: + 212 + |21 — 2,17] = 2[12a]? + [2vaZ = 57|
= |z11% + |2,|% = 2]al? + 2|a? — b?| ........ (D)
Now [|z1] + |2;1]? = |z11? + |22]? + 2|21 2,| = 2]al® + 2]a® — b?| + 2|b|?
= [lz1] + 12211 = [la + bl + |a — b|]? = |z1] + |2;] = la + b| + |a — b]
Hence |a ++Va? — b2| + |a —Va? —b2| = |a+ b| + |a — b|
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Example:
Represent graphically all points for ‘z’ such that |§| = 2 also find the
centre and radius of the locus of ‘z

T=4s (?i)(ifji)—h‘ (5 (E5) =+

=45 GZ+DE+1) =4Gz-1)E-1)

(z+1) (z+1)

= Lo
z-1) (z-1)
=>zZ+z+Z+1=422—4z—474+4>322—-5(z+2)+3=0
= zZ 5(+‘)+1—0:>( 5)(‘ 5) 25+1—0
ZZ 3Z Z = Z 3 Z 3 9 =

- (-3 e-- 0= (== -

2 2
5 4 . 5 . . 4
= |z — §| = (5) Represents a circle centered at 3 having radius 3

Example:
Find the locus of ‘z’ where z = aCost + bSint where‘t’ is real
parameter and a , b are complex constants.
Solution: Given z = aCost + bSint
Letz=x+1iy,a=ay+ ayi , b=b;+ byi then
x +iy = (a; + ayi)Cost + (b; + b,i)Sint
x +iy = (a,;Cost + b,Sint) + i(a,Cost + b,Sint)
Then comparing real and imaginary parts
x = a,Cost + b;Sint = a,Cost + b;Sint —x =0
y = a,Cost + b,Sint = azCost + b,Sint—y =0

Cost _ Sint
bzx—bly aiy—azx - a,b,—a;bq
Cost 1 Sint 1
= and = =
bzx—bly albz—azbl a;y—azx albz—azbl
b,x—b . aiy—asx
= Cost = -2 gnd = Sint = —2X7%2%
aibz—azb, aibz—azby
2 2
. byx—b a,y—azx
= Cos’t + Sin’t = (—2 1Y ) + (—ly 2 )
aibz—azby aibz—azbq
byx—b1y)?+(a;y—a,x)?
=1= (b 1Y)°+(a1y—azx)

(aybz—azbq)?

= (a;b; — azby)* = (byx — b1y)? + (a1y — azx)?
= [—(azhb; — a1b,)]1? = by2x% + by 2y? — 2bybyxy + a,2y? 4 a,2x2 — 2a,a,xy
= (azb; — a1b;) = (a? + bzz)x2 + (a2 + blz)y2 — 2xy(a,a, + by by)
= [—(azhy — a1b,)]1? = by2x% + by 2y2 — 2bybyxy + a,2y? 4 a,2x2 — 2a,a,xy
= (azb; — a1b;) = (a2 + b,*)x% + (a2 + by ?)y? — 2xy(a,a; + byby)

Given equation is an ellipse because

(ara; + b1by)? — (ai® + by *)(az? + b,*) < 0 (after solving)
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Remark: a curve ax? + by? + 2hxy + 2gx + 2fy +c =0 is
= anellipse if k2 —ab < 0
= ahyperbolaif h2 —ab >0
= aparabolaif h? —ab =0

Example:
Prove that||z;| — |z,|| < |2y + 25| < |z1] + |2,
Proof:
consider z; = (2, + 2,) — 2, = 71| = (21 + z,) — 2z,|
= |z1| <z + 25| + |—25| = |z1| — 122 < |21 + 23] oo ... . (A)

Similarly z, = (z, + z;) — z; = |z3| = (2, + 1) — 74|
= |z < |zp + 24| + |21 = |22] = |z1] < |21 + 2,
= —[lz1] = |22]] < |21 + 25| = |z1] = 22| = —|z1 + 23| ... (B)
From (A) and (B) |lz1] — |z2l| < |21 + 5] v e (D)
Also |z; + 73| < |z1| + |2z5] ... ... (iD)
From (i) and (ii) ||z1] — |z2l| < |21 + 22| < |z4] + |23] ... ... (D)
This is our required result.

Further (in need) since |z,| = |—z,| therefore replacing in (iii)
||Z1| - |—Zz|| < lzy — 23| < |z1| + | —2,]
||le - |Z2|| < |Z1 —Z2| < |le + |Z2| (lv)

From (iii) and (iv) ||21| — Izzl| < |zq+ 23| < |z4] + | 25|

Remark:

maximum value of |z; + z,| = |z1| + | z,|
minimum value of |z, + z,| = ||21| — |22||
Example:

Find maximum and minimum of|z; + z,| for a unit circle. i.e. |z] = 1
Solution:

maximum value of |z; + z;| = |z1| + |z = 11| +|1]| =1+1=2
minimum value of |z, + z,| = ||21| — |Zz|| = ||1| — |1|| =1|1-1|=0
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Exercise 9: (visit @ Youtube “learning with Usman Hamid”)

. z—1 z—i 2
1. Find the locus of ‘z” when |;| <2=>|—| <4

Z+i

2. Prove that |%| < 1if|al < 1and |b| < 1 when does
equality holds?

3. Prove that |%| < 1ifeither |a| = 1 or |b| = 1 what
exception must be made if |a| = |b] =1

4. Provethat |a+ b|?+ |a — b|? = 2[|a|? + |b|?] where ‘a’ and
‘b’ being any complex numbers.

5. Find the locus of ‘z’ where z = at + ? where‘t’ is real

parameter and a , b are complex constants.
6. Find maximum and minimum of|z; + z,| for
|z—2|and |z— (3 +1)|

Availabel on MathCity.org
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ROOTS OF COMPLEX NUMBERS
A number ‘¢’ is called an nth root of a complex number ‘z” if (¢;)" = z
and we write
6+an)

e =zY" ="z = |Z|% [Cos (9+flk") + iSin (9+flk")] = r%ei( n
Where k =0,1,2,3,.....,n— 1
y

7= J-‘:;fﬂ

r
\O x

.(2km
Note: we may use w = ¢!(5%) and use formula Ck = Cowk to

Write roots symbolically.

Cx

VO
%
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Question: Write 2 + 2+/3i into polar form.
Solution: Letz=2+2V3i= |z| =r =4 and 0 =§

then polar form will be z = re'® = 4e's = 4CiS§

HOW TO FIND n"" ROOTS OF COMPLEX NUMBERS?
I.  Write complex number into polar form.
ii.  Use formula

e =2zY" ="z = |Z|% [Co (9+2 ) + iSin (9+an)] = r%ei(mrzlkn)
Where k = 0,1,2,3,.....,n—1

1/4

Example: Find all values of (—16)~", or all of the fourth roots of the

number —16.

Solution: Letz=-16=—-16+0i=|z|=r=16 and 6 =7
then polar form will be z = —16 = re'® = 16e!7+2km

Where k =0,+1,+2,,....,n—1

now to find desired root we use the formula and k = 0,1,2,3
then ¢, = (—16)1/4 = |16 Y4e /(5 ) = 2¢{G+5) 1k = 0,1,2,3
putk=0$c0=2e(4)=2[Cos(z)+i5in(z)]—2[\/_+l—]
=co =V2(1+1)

putk-l:cl—Zel( )—Ze( D) = V2(=1+1)
putk—2:>c2—26(n+27n)—26( D) = V2(=1—-1)

31
putk=3:c3=2e(4 2)—28( 5 = V2(1—1i)
hence c,, ¢4, ¢5, c3 are our required fourth roots of the number —16.
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Example: If 1 = 1 exp[i(0+ 2kx)] (k =0,%1,£2...) then find the
square root of unity.

Solution: Letz=1=14+0i=>|z|=r=1and 08 =0
then polar form will be z = 1 = rei® = 1i(0+2km)
Where k =0,1,+2,,.....,n—1

now to find desired root we use the formula and k = 0,1

then ¢, = (1)/2 = |1|Y2e{(*5) = i .} = 01
putk = 0= ¢, = @ = [Cos(0) +iSin(0)] =1 = ¢y =1

putk =1 = ¢; = e!® = [Cos(m) + iSin(n)] = —
hence c,, c;are our required square root of the unity.

Example: If z = a + i then find the square root of z.
Solution: Letz=a+i=>A(Gay)=|z|=r=la+i| =1Va?+1

and <= Arg(a + i)
then polar form will be z = re'® = a + i = Ae!(*+2km)

Where k =0,+1,+2,,....,n—1
now to find desired root we use the formula and k = 0,1
then ¢, = (a +)V? = \/—e( +k") k=01

putk=0=>c0=\/_e(_) =>c0—\/_e(2)
k=15 c = VAcE™) = VA Gl = —yZeiG) 5 ¢, = —,
Now Euler’s formula tells us that ¢, = VA [Cos (;) + iSin (5)]
Because (a + i) lies above the real axis and we know that 0 <«< 7 so
Cos( ) >0 andSln( )> 0

1+C ('8 o
also we know Cos? 2% and Sin? (2) =

1+Coso< 1-Cosx
= Co =

But by direction cosine Cos «= " 2 therefore

1+Cosx /1i(%) _ [Afa
2 2 4 24
Consequently by using above relation and ¢; = —c, that the two square
roots of (a + i) are i%(\/A +a+ivA—a)

1-Cosx
2
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Co

C=Co

Exercises 10: (visit @ Youtube “learning with Usman Hamid”)
1.Write in polar form. —/3 — i

2.Compute z3 for z = —/3 — i

3.Find the square roots of 2i , 1 —+/3i and express them in
rectangular coordinates.

4.Find three cube roots of z = i

5.Find the four forth rootsof z = 1 + i

6.Find the three cube roots of —8i and express them in rectangular
coordinates and sketch.

7.Find (=8 — 8)Y*, (=13, (=1 + i)¥/3 ,(8)/® and express them
in rectangular coordinates and sketch and identify principal root.

8.Compute the roots of [(—1 + i)/i]*/* and sketch them.
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REGIONS IN THE COMPLEX PLANE

SET OF POINTS (POINT SET): Any collection of points in the
complex plane (2 — dimensional) is called a point set and each point is
called a member or element of the set

NEIGHBORHOOD: An ¢ neighborhood |z — zg|< ¢ of a given point z.
consists of all points z lying inside but not on a circle centered at z, and
with a specified positive radius ¢ (Fig.).

DELETED NEIGHBORHOOD: a deleted neighborhood, or punctured
disk, 0 < |z — zo| <& consisting of all points z in an & neighborhood of z,
except for the point z; itself.

y

INTERIOR POINT: A point z, is said to be an interior point of a set S
whenever there is some neighborhood of z, that contains only points of
S.

EXTERIOR POINT: A point z, is said to be an exterior point of a set S
whenever there is some neighborhood of z, that contains no points of S.

BOUNDRY POINT: A point z; is said to be a boundary point of a set S
whenever there is some neighborhood of z, that contains points belong to
S and points not belong to S.

The circle |z| = 1for instance, is the boundary of each of the sets
lzZl<land |z|<1.

OPEN SET: A set is open if it contains none of its boundary points.
For example |z| < 1

CLOSE SET: A set is closed if it contains all of its boundary points,
and the closure of a set S is the closed set consisting of all points in S
together with the boundary of S. For example |z|< 1
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NOTE: the punctured disk 0 < |z|< 1is neither open nor closed. The set
of all complex numbers is, on the other hand, both open and closed
since it has no boundary points.

CONNECTED SET: An open set S is connected if each pair of points
z; and z, in it can be joined by a polygonal line, consisting of a finite
number of line segments joined end to end, that lies entirely in S.
The open set |z| < 1 is connected. The annulus 1 < |z| < 2 is, of course,
open and it is also connected (see Fig).

DOMAIN: A nonempty open set that is connected is called a domain.
Note that any neighborhood is a domain.

REGION: A domain together with some, none, or all of its boundary
points is referred to as a region.

BOUNDED SET: A set S is bounded if every point of S lies inside some
circle |z| = R; otherwise, it is unbounded. Both of the sets |z < 1 and
|z|< 1 are bounded regions, and the half plane Re z > 0 is unbounded.

ACCUMULATION POINT: A point zq is said to be an accumulation
point of a set S if each deleted neighborhood of z, contains at least one
point of S. It follows that if a set S is closed, then it contains each of its
accumulation points. For if an accumulation point z, were not in S, it
would be a boundary point of S; but this contradicts the fact that a
closed set contains all of its boundary points. Thus a set is closed if and
only if it contains all of its accumulation points.

Evidently, a point z, is not an accumulation point of a set S
whenever there exists some deleted neighborhood of z, that does not
contain at least one point of S. Note that the origin is the only
accumulation point of thesetz, =i/n (n=1, 2,.. .).



30

Example: Sketch the set Im G) >1

Solution: Letforz #0; 1 =2 = 2 = 22
z zZ |z|? x2+y?
1 Y 2 4 02
= Im <—)=—>1=>x +y“+y<0
z) x%+y?

2 2 1 1 2 12 12
=>x +(y. +y+z) <;=>x-0) +(y+5) < (E)
= |z — (— §)| = % Represents the region interior to the circle

Centered at z, = — % with radius%

g o
""""
-------

Exercises 11: (visit @ Youtube “learning with Usman Hamid”)
1. Sketch the following sets and determine which are domains. Also show
either sets are open or closed. Also show sets are either bounded or not.

(@) lz—2+i|<1; b) |2z + 3| > 4,
c)Imz>1; dImz=1;
f) |z 4>z

e)0<argz<z/4 (z # 0)
g) Whether the set -1< Im z <4 is closed?

2. In each case, sketch the closure of the set:
. —nm<argz<m(z+0)
ii. |Re(2)| <|z|
1 1
iii. Re (;) < >

iv.. Re(z?)>0

3. Let S be the open set consisting of all points z such that |z|< 1
or|z-2|< 1. State why S is not connected
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FUNCTIONS OF A COMPLEX VARIABLE

Let S be a set of complex numbers. A function f defined on S is a rule

that assigns to each z in S a complex number w.

The number w is called the value of f at z and is denoted by T (2);

thatis w =T (2). The set S is called the domain of definition of f.

OR  Ifarelation between two complex variables ‘w’and ‘z’ is such that given a
value of ‘z’ there corresponds a unique value of ‘w’ then ‘w’ is said to be a
function of ‘z’ and is usually denoted by w = f (z) and it is a Single valued
function of ‘z’.

Forw =T (z), ‘w’ is called range and a dependent variable, while ‘z’ is
Independent variable.

OR A function whose domain and range are subsets of the set C of complex
numbers is called a complex function.

Remark: It must be emphasized that both a domain of definition and a rule are
needed in order for a function to be well defined. When the domain of definition

is not mentioned, we agree that the largest possible set is to be taken.

Also, it is not always convenient to use notation that distinguishes between a given
function and its values.

SINGLE VALUED FUNCTIONS: For a given complex valued function w = T (z)
If only one value of ‘w’ corresponds to each value of ‘z’, then we say that ‘w’ is a
Single valued function of ‘z” OR that w = f (z) is single valued.

For example f () =Z%is single valued function.

MULTI VALUED FUNCTIONS: For a given complex valued function w = f (2)
If more than one value of ‘w’ corresponds to each value of ‘z’, then we say that ‘w’
is a multi-valued function of ‘z” OR that w = f (z) is multi valued.

For example f (z) =~/ z is two valued function.

Also f (z) = Nz is n - valued function.

Remark:

« Vz = +Vrei’2 is double valued and vz = v e is single valued.

= Whenever we speak of function, we shall, unless otherwise stated, assume
Single valued.

= A multivalued function can be considered as a collection of single valued
Functions, each member of which is called a branch of the function.

It is customary to consider one particular member as a Principal Branch

Of the multivalued function and the value of the function corresponding to
This branch is the Principle value.
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TRANSFORMATION:

Suppose that w = u + iv is a single valued function f at z = x + iy, so that

u + iv = f(x + iy). Each of the real numbers u and v depends on the real
variables x and y, and it follows that T (z) can be expressed in terms of a pair
of real-valued functions of the real variables x and y: f(z) = u(x,y) +iv(x,y).
Then equating we get u = u(x,y) ,v = v(x,y) thus a given point P(Xx, y)
in z — plane correspond a point P’'(u,v) in w — plane and for w = f (2)

thesetu = u(x,y),v = v(x,y) is called transformation and we say

that point P is mapped or transformed into P’ by means of

transformation and P'will called image of P

If the polar coordinates r and @ , instead of x and y, are used, then u + iv = f (re’®)

where w = u + iv and z = re”. In that case, we may write f(z) = u(r,8) +iv(r,6).

Example: Write transformation of f (z) =z°.

Solution: Given W = f (z) =z°.
Su+iv=_(x+iy)?=x%+y?+ 2xyi

>u= ulx,y)= x>+y?, v= v(x,y) = 2xy Required.

Example: Similarly A real-valued function f(z) = |z|2 =x*>+y>+i0

Example: Write transformation of f (z) =z in polar form.
Solution: Given W = f (z) =z°.

S u+iv=(re?®)” = 1220 = v2C0520 + ir2Sin20

>u= u(r,0) = r?Cos28 , v= v(r,0) =r?2Sin26 Required.

Polynomial: If n is zero or a positive integer and if ag, ai, ay,.. . , an
are complex constants, where a,, # 0, the function
P@) =ap+aiz+az’+ - +ap"
is a polynomial of degree n. Note that the sum here has a finite number of terms
and that the domain of definition is the entire z plane.

P(z)

Q(2)

where P(z), Q(z) are polynomials and Q(z) # 0. Polynomials and rational
functions constitute elementary, but important, classes of functions of a
complex variable.

Rational Functions: Functions are defined by w =
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Exercise 12: (visit @ Youtube “learning with Usman Hamid”)
1) For each of the function below, describe the domain of definition
That is understood.

i f(2) = v. f@)=1%
ii. f(z)=Arg G)
ii.  f(2)=—

2) Transform in Cartesian form that is in form of
F(2) =u(x,y) +iv(x,y)
. f@)=z>+z+1
ii. f(z)=§ ; 2+ 0
3) Transform in term of ‘z’ if f(z) = x? — y? — 2y + i(2x — 2xy)
4) Transform in polar formif f(z) = z +§
LIMITS
Let a function T be defined at all points z in some deleted neighborhood
of zp. The statement that the limit of f (z) as z approaches z, is a number wy
or that lim,_,,, f(2) = wy
means that the point w = T (z) can be made arbitrarily close to wy if we choose
the point z close enough to zy but distinct from it.

€, 6 FORM
Statement lim,_,,  f(z) = w, means that for each positive number ¢, there is a
positive number J such that = | F(z) —~wo| < & whenever 0 <|z—zy| < 6.

Geometrically, this definition says that for each ¢ neighborhood
lw —wy| < & of wy, there is a deleted 6 neighborhood 0 < |z —Zzy| < d of 2
such that every point z in it has an image w lying in the ¢ neighborhood (Fig).

Note that even though all points in the deleted neighborhood 0 < |z —z| < o
are to be considered, their images need not fill up the entire neighborhood
lw — wy| < e. If f has the constant value wy, for instance, the image of z is
always the center of that neighborhood.

Note, too, that once a J has been found, it can be replaced by any smaller
positive number, such as 6/2.
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Theorem: when a limit of a function T (z) exists at a point zo, it is unique.
Proof: Suppose that limit is not unique. i.e.
lim f(z) = wy and lim f(z) = w,
Z-Zg Z—Zo
Then, for each positive number &, there are positive numbers J and J; such that
| F(2) —wo| < g whenever 0 <|z—2z) <
| P(2) —wi| <= whenever 0 < |z -z < 61

Sipce by triangular inequality and if 0 < |z —zo| < J where J is

Positive number smaller than Jp and o3

i ~wol =|[ F (2) ~wo] ~[ F(2) ~wa]|<| F (2) ~wol+| F (2) ~wi| <= + ==&,
|W1—W0| <e&.

But |w; —wyg|is a nonnegative constant, and ¢ can be chosen arbitrarily small.
Hence |w;—wg|=0, or w1 =Wy shows that limit is unique.

Example: Show that lim,_,; f(z) = éfor f(z) = % in the open disk |z| < 1
Solution: let |f(z) —5| = | - | =Zlcz2e clzl<isz-1<2€
Hence for any ‘z” and each positive number € we have

|f(z) —%| <€ whenever 0 < |z - 1| <€

Thus condition is satisfied by points in the region |z| < 1 whend = 2¢
or any smaller positive number.
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If limit lim,_,,  f(z) = w, exists, the symbol z — z, implies that z is
allowed to approach z in an arbitrary manner, not just from some particular
direction. The next example emphasizes this.
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Example: Show that lim,_,q f(z) does not exists for f(z) ==
- . - _z __ x+iy

Solution: Given f(z) = 2= iy

let we move along horizontal axisi.e. x > 0andy =0
. . +i +0

Hence lim,._,, f(z) = lim,_, % = zTo =1

let we move along vertical axisi.e.y - 0and x =0
. . x+iy 0+iy

Hence lim,._, f(2) = llmy_,oﬁ = ﬁ =-—1

Since limit is not unique. It does not exist.

y

Z= (0, y)u

(0, 0) z :e(x, 0) X

Theorem: Prove that lim,_,, f(z) = w, exists if and only if
lim(x‘y)ﬁ(xo,yo) ulx,y) = u, and lim(x‘y)ﬁ(xo‘yo) v(x,y) = v, exist.

Proof: Suppose that lim,_,,, f(z) = w, exist then for each positive
number e there exists positive numbers § Such that

|(u + iv) — (ug + ivg)| <€ whenever 0 < |(x +iy) — (xg +iyy)| <&
But lu —uy| < |(u—1up) +i(v—1vy)| < |u—ugl + v — vyl

lu —ug| = |(u +iv) — (uy + ivy)| <€

And v —vo| < [(u—up) +i(v —vo)| < [u—upl + [v — vyl

lv —vo| = [(u + iv) — (uy + ivy)| <€

Whenever 0 < |z —zy| < &

Hence 1im 3y (x,y0) 4(X ) = uo and limy y) - (x,,v,) V(X ¥) = v, eXists.
Conversely: Suppose that limy, ), (xy ) ¥(x,¥) = ug and

lim ) (x0,v0) V(% ¥) = Vo EXist then for each positive number € there exist
positive numbers §; and §,Such that

lu — ugl <§ Whenever 0 <./(x —x0)2 + (y — ¥9)% < &;

lv — vyl <§ Whenever 0 <\/(x—x0)2 +(y—vy9)? <8,

Let § = min(&,, 8,) then consider

|(u +iv) — (up + iv)| = [(w —up) +i(v —vo)| < [u—upl + [v — vyl
|(u+ iv) — (o + ivo)| < lu —upl + v — vo| <+ =€

|(u+ iv) — (ug + ivy)| <€ whenever 0 < |(x +iy) — (xg +iyg)| <&
|f(z2) —wo| <€ whenever 0 < |z — z5| < 6 Thus lim,_,, f(z) = w, exists




36

Theorem: Suppose that lim,_,, f(z) = wy and lim,_,, F(z) = W, exist
Then show that lim,_,, [f(2).F(2)] = [wq. W]

Proof: Suppose that lim,_,, [f(z).F(2)]

And u(x,y) =uand v(x,y) = v Also U = U(x,y) and V = V(x,y) then
f(2).F@)=[(u+iv).(U+iV)] =[wU +vV)+i(vU + uV)]

= lim(x,y)ﬁ(xo,yo) [(wU +vV) + i(vU + uV)]

= [(uoUq + voVo) + i(voUg + uoVo)] = (ug + iv) (Ug + iVy) = wy. W,
Thus lim,_,, [f(2).F(2)] = [wo. W]

Theorem: Suppose that lim,_,,  f(z) = w, and lim,_,, F(z) = W, exist

Then show that lim,_,, i Z; = %
0

Proof: Suppose that lim,_,, [f(2).F(2)]

And u(x,y) =uand v(x,y) = v Also U = U(x,y) and V = V(x,y) then
@ _utiv _ (utin).(U+iV) _ (uU+vV)+i(wU+uV)

F(z)  U+iv  (U+V).U+v)  U+).(U+iV)
= ]m I:(UU+UV)+1'(UU+UV)] _ (uOU0+v0V0)+i(v0Uo+ro0) _ WOW0 _ ﬁ
M Gey)=Coyo) [“wrmwran |~ (Uo+iVo).(Ug+iVp) T woW,  Wo

@ _wo
2720 () Wy
Example: Evaluate lim,_,,;(z* + i)
Solution: Given lim,_,;(z* + i)
lim,_,;4;(z% + 1) = lim(y ), @p[x? —y* +i@xy + D] =0+ 3i = 3i

. n_1 . o
Example: Prove that lim,_, (Z—l) = n when ‘n’ is positive integer,
P

when negative integer, also when a fraction.
Solution: When ‘n’ is positive integer:
n_ _ n-1,,Nn-24...
llmZ—>1 (%) = llmZ—)l [(Z 1)(2 :il + +Z+1) — llmz_)l(zn_l + ZTl—Z + Ve + 7z + 1)
= lim(z™ 1) +lim(z™2) + --- + lim(2) + lim(1)
z-1 z—1 z—1 z-1

=14+1+1+--+1(n—time)=n

= lim

When ‘n’ is negative integer: Putn = —m
. z"—1 . z7Mm—1 . 1-z™ . zZm—1Y ,. 1
limgy (55) = timy o (557) = limgon [ 555 ] = =iy (557) limaen (35)

When ‘n’ is a fraction: Put n = p/q; where p,q are integers and q = 0
. z"—1 . ZP/4-1

lim,; (557) = limgo (57)

Put zY/9 =t = zP/4 = t? and z = t% alsowhenz > 1 thent —> 1

P—q im(tP—1
lim,_,4 (sz/_#) = lim,_, (ﬂ"_:l) = lim,_, (t /t—l) _ F—{?( /t—1)l

7—1 -
Y lim(971/;_4)
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Exercise13: Suppose that lim,_,,  f(z) = wy and lim,_,, F(z) = W, exist
Then show that (Try yourself)

I.
ii.
iii.
iv.
V.
Vi.
Vil.

viii.

Xi.
Xil.
Xiii.
Xiv.
XV.
XVI.
XVil.
XViil.
XiX.
XX.
XXI.
XXil.

XXiil.

11mz—>zo [f(2) + F(2)] = [wo + W]
lim, ., [f(2) = F(2)] = [wo — W]
lim,,, z"=2z," ;n=1,23,... By mathematical induction.

lim,_,, =2 "#0 ;n=123,.. Bymathematical induction.
0 zn

Zon yZ
lim,_,, P(z) = P(z,) where P(z) is a Polynomial of degree ‘n’
lim,_,, Re(z) = Re(z,)
limz_,zo zZ= Z_O
2
llmz_,o =0
lim,_,, [az + b] = [azy + b]
iz3
lim,_; — = =0
@ — P(zo)
27700 Q(zo)
lim,_,, [z + c] = [2o* + c]
lim,_;[x+iQRx+y)]=1+i
lim,_ ;42 + )z =1+3i
lim,_,,;[z> —5z+ 10] =5 — 3i

lim

) (2z+3)(z—-1) 1 11,
lim = — =4 —
Zo=20 2 _9i44 2 4

2

z°+4
lim,_,; — = 4i
. z3+8 3 V3.
lim ==-——]

720t ( )z4+422+16 8 8

3z%-2z Z+_slz 2245 _ 44 4 by using €, § form.

If lim,_,,, f(z) = wy exists then lim,_,, |f(2)| = |w,| also exists.
lim,_,, f(z) = wqiff limy,_q f(zo +Az) = w, When Az = z — z,
lim,_,, f(2).9(z) =0 iflim,_, f(z) = 0 and if there exists a positive
number M such that |g(z)| < M for all ‘z’ in some neighborhood of z,

2
Show that lim,_, f(2z) does not exists for f(z) = (g)

lim,_,;

LIMITS INVOLVING THE POINT AT INFINITY
The complex plane together with the point at infinity is called the extended complex plane.
We say that lim,_., f(z) =lor f(z) - | as z — oo if for each positive number € there
exist positive numbers § such that |[f(z) —l| <€ Whenever  |z| > M
Similarly we say that lim,_,, f(z) = o or f(z) - o as z — z, if for each positive
number e there exist positive numbers § such that

If(z)] >  Whenever 0<|z—2z4|<éd
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Theorem: Show that lim,_,, f(z) = o0 if lim,,, ]% =0

Proof: Suppose that lim,_,, ]% = 0 exists then for each positive
number e there exists positive numbers § Such that

|f() 0| <€ whenever 0 < |z —2z,| <&

lf(2)| > E whenever 0 < |z —zg| <& = lim,,, f(z) = oo exists.
. . iz+3 . 1
Example: if llmz_,_lﬁ = o Since lim,,_; — EAERE)

Theorem: Show that lim,_,o, f(2) = w, if limz_)of(é) = w,

Proof: Suppose that lim,_, f G) = w, exists then for each positive
number e there exists positive numbers § Such that

|f(§) — w0| <€ whenever 0 < [z—0]| <&

Replacing ‘z’ by ‘1/z’

If(2) — wy| <€ whenever |z| > % = lim,_o, f(2) = w, exists.

2 .
2z+i 2+iz

i . —+i .
Example: if lim,. 75 =2 Since lim,of—=lim,o > =2

Theorem: Show that lim,_,., f(z) = oo if limz_,()@ =0
Proof: Suppose that lim,_, % = 0 exists then for each positive

number e there exists positive numbers § Such that
1
()
Replacing ‘z’ by ‘1/z’

|f(2)] >é whenever |z| >§ = lim,_ . f(z) = o exists.

1/zZ+1 — lim z+28
2/23-1 270,

— 0| <€ whenever 0< |z—0| <6

I 2z3-1 . .
Example: if hmz—woZZzT = oo Since lim,,,

Exercise 14: (visit @ Youtube “learning with Usman Hamid”)
47%
i.  Show that lim,_ ., ——= o=
. 1
ii.  Show that hmzﬁl( 5 =

iii.  Show that lim,_, : =

iv.  State why limits involving the points at infinity are unique.
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CONTINUITY:
A complex valued function W = f (2) is said to be continuous at z = z; in
The domain D if lim,_,, f(z) = f(z,) exXists.
Above limit implies three conditions that must be met in order that
f(2) be continuous at z = zg if
I.  f(zo) must exists. i.e. f(z) is defined at z = z
ii.  lim,,, f(z) = wy must exists.
iii.  The value and limit agree at z = zpi.e. lim,_,, f(z) = f(zo)
If these conditions not satisfy then function is said to be discontinuous.
€,6 FORM
A complex valued function W = T (2) is said to be continuous at z = z; if
for each positive number ¢, there is a positive number ¢ such that
| F(z) —T(20) | <& whenever |z—z) <.
Note that this is simply the definition of limit and removal of the
restriction that z # z,

Remark:
= A complex valued function W = f (z) is said to be continuous at in
the domain D if it is continuous at each point of the domain
= For continuous function we may write lim,_,,, f(z) = f(lim,,, z)
= Iflim,, f(2) = wo butlim,_,, f(z) # f(zo) then discontinuity is
known as Removable discontinuity.

Theorem: Prove that W = f(z) is continous if and only if its real and
Imaginary Parts are continuous.
Proof: Suppose that W = f(z) is continuous then lim,_,, f(z) = f(zo) = wy
exist then for each positive number € there exists positive numbers § Such that
|(u + iv) — (ug + ivy)| <€ whenever |(x +iy) — (xg +iyy)| <8
But lu —uy| < |(u—1up) +i(v—1v9)| < |u—ugl + v — vyl
lu —ug| = |(u+iv) — (uy + ivy)| <€
And v — vy < |[(u—up) +i(v —vy)| < [u—up| + |v — vyl
lv — vyl = [(u+ iv) — (ug + ivy)| <€ Whenever |z —z,| <
Hence lim . y) - (x,,30) U ¥) = U and limy 3y (x,y0) V(X ¥) = Vg EXIsts.
And real and Imaginary Parts are continuous.

Conversely: Suppose that real and Imaginary Parts of function are continuous
and 1lim g, ) (xg,y0) ¥ ¥) = ug and limy, 5y (xy ) V(% ¥) = g eXist then for
each positive number € there exist positive numbers §; and §,Such that
lu —up| < ; Whenever  \/(x —x0)2 + (y — ¥0)% < &,

lv — vl <§ Whenever \/(x—xo)z + (y—y)? <8,
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Let § = min(8,, 8,) then consider

|(u+iv) — (up + ive)| = |(w —up) +i(v —vo)| < [u—upl + [v — vyl
|(u+ iv) — (o + ivo)| < lu —upl + [v — vo| <+ =€

|(u+ iv) — (ug + ivy)| <€ whenever |(x +iy) — (xo +iyy)| <6
|f(z) — f(zo)| <€ whenever |z —2z,| <6

Thus  lim,,, f(2) = f(zo) = wy exists thus W = f(z) is continuous.

Question: Show that f(z) = Z is continuous on C.
Solution: let z, € C then z, = X, + iy, and given f(z) = Z then
I f(20) =% = Xo +1y, = xo —ly,. i.e. f(2) is defined at z = zo
. lirnz—>zo fl2) = 1imz—>(xo+iy0) Z= m = Xo —iyo
iii.  The value and limit agree at z = zpi.e. lim,_,,  f(z) = f(z,)
Hence f(z) = z is continuous on C.
Exercise 15: Show that given functions are continuous at z = z, or not?
i f(2)=|z|*atz =z, ii. f(z)=2z%atz =z,
ii. f(z)=z*—-iz+2atzg=1—1
iv.  f(z) =z?intheregion |z| <1

z2+4 . . _(zZ  z#i
V. f(z)={ﬁ 2% —2 vI- f(z)_{o z=i
-5 z=-2

Vi,  f(z)=eY? atz=0

3z%-223+82%2-2z+45 . . . .
viii.  f(z) = 2222 4tz = i is removable discontinuous.

z—i

UNIFORM CONTINUITY:
A complex valued function W = f (2) is said to be uniformly continuous in a
Domain D if for each positive number ¢, there is a positive number ¢ such that
| F(z1) —F(z2) | <e whenever |z;-2z)<o.

Remark:
= in continuity of function ¢ depends upon ¢ as well as on a particular
point z,

= |n Uniform continuity of function ¢ depends upon ¢ but not on a
Particular point z,

= Uniform continuity is a property of a function on a set. And is a
Global property. But continuity can be defined at a single point and
Is a local property.

= Uniform continuity of a function at a point have no meaning.

= Continuous function on a closed and bounded region will be
Uniformly continuous.
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Question: Let R consists of set of all points ‘z” such that 0 < |z| < 1 and

f(z) = z2. Verify that function is uniformly continuous.

Solution: Given that f(z) = z%, 0 < |z| < 1and z;,z, € Rthen

0<|z4l <1, 0<|z,] <1

Consider |f(z;) — f(z2)| = |21% — 2,°%| = (21 — 2,) (21 + 2,)| = |21 — 25|24 + 2,]
Since 0 < |z;| <1, 0 < |z;| < 1 therefor

If (z1) — f(z)| < 2|21 — 25| vz +zp| =1+1] =2

If(z)) — f(z,)] <26  Whenever |z, —z,| <6 ==:
If (z)) — f(2,)] < z.g Whenever |z, —z,| < 8 =
lf(z1) = f(z)l <€ Whenever |z, —z,| <&
f(z) = z? is uniformly continuous on R

Note that in expression |f(z;) — f(z,)| < 2|z, — z,| equality will hold when
|le = 1,|Zzl = 1

SEROR SN

Exercise 16: Show that given functions are uniformly continuous at z = z, or not?
. 1. . .
. f(2)= —in the region |z| < 1 (not continuous)
ii. f(z)=2z%-1intheregion|z| <4

Theorem: A composition of continuous functions is itself continuous.

Proof: Suppose that g[f(z)] be a continuous function defined for all f(z) in the
Neighborhood of f(z,) then by definition;

lglf (2] — glf (2]l <€ whenever  |f(z) — f(zo)l <V ....... (i)
Similarly suppose that f(z) be a continuous function defined for all z in the
Neighborhood of z, then by definition;

If(z) — f(z)l <y whenever |z —zol <& ........ (i1)
Combining (i) and (ii)
lglf (D] = glf(z)]l <€ whenever |z —z,| <&

Hence composition of continuous functions is itself continuous.

y v \Y

clf@)
~olf)] |
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Theorem: If a function T (z) is continuous and nonzero at a point zo ,
Then f(z) # 0 throughout some neighborhood of that point.
Proof: Suppose that function f (z) is continuous and nonzero at a point zo ,
and f(z) = 0 throughout some neighborhood of that point. Then by definition
of continuity

lf(z) — f(zp)| <€ whenever |z — 25| < 68
take € = 'f(zﬂ and f(z) = 0 then
If(zp)] < 'f(zi)' whenever |z — zy| < & Which is contradiction.

Hence If a function f (2) is continuous and non-zero at a point zo ,
Then f(z) # 0 throughout some neighborhood of that point.

Theorem: If a function T (z) is continuous throughout a region R that is

Both closed and bounded. Then there exist a non-negative real number M
such that |f(z)| < M for all point z’ in R.

Proof: Suppose that function f(z) = u(x,y) + iv(x,y) is continuous. Then |f(z)|
Will be continuous throughout R and thus reaches a maximum value (say) M
somewhere in R. then |f(z)| < M for all point ‘z’ in R. And we will say that f is
bounded on R.

DERIVATIVES:
Given W = f(z) be asingle valued function defined in a domain D and let
z, be any fixed point in D. Then W = f(z) is said to have a derivative at
z, if the following limits exists.

af _ dw _ . _1: f(2)—f(2o)
dz _ dz f (ZO) = 11mz—>zo 7o
Or f'(zo) = limazo W where Az = z — z,
£
1Q ‘ '

.\\‘\' B: —————————

) X
€,6 FORM

A complex valued function W = T (z) is said to be a derivative at z = z; if
for each positive number ¢, there is a positive number ¢ such that

|%£((,Z())_f’(z‘))| <& whenever 0<|z-2z| <.
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Remark:

I. Instantaneous rate of change of one variable with respect to other
Variable is called derivative and method to find derivative is called
Differentiation or Differentiability.

ii. Graphically, the derivative of a function corresponds to the slope of its
tangent line at one specific point.

N\

iii. Since W = f(z) defined through a neighborhood of ‘z’ therefore the
Number f(z, + Az) is always defined for |Az| sufficiently small.

Theorem: Prove that W = f(z) is differentiable then it will be continuous.
Proof: Suppose that W = f(z) is differentiable at a point zo then
fI(ZO) = limz—>zo f(Zz:i(ZO)

Now we have to proveothat f(z) is continuous.

Consider f(z) — f(zy) = L2, 7,

Z—Z
Then lim,._,, [f(2) — f(zo)] = lim,_,, %

[Lim,_,,, f(2)] — f(z0) = f'(20) x 0 = [lim,_,,, f(2)] — f(z,) = 0
= lim,_,,, f(2) = f(zo) = W = f(2) is continuous
Remark: Convers of above theorem is not true.

xlim,_,, z— z,

Question: Show that f(z) = Z is continuous but not differentiable.
Solution: let z, € C then z, = x, + iy, and given f(z) =z then
. f(zg) =79 =Xg +1yy = Xg — iy i.€. f(2) is defined at z = z4
. 1imz—>zo f(Z) = 1imz—>(xo+iy0) Z= m =Xo —1yp
iii.  The value and limit agree at z = zpi.e. lim,_,,  f(z) = f(z,)
Hence f(z) = z is continuous on C.
Now for Differentiability.
f'(zo) = limz—)zo fe)flz) li =0

. 7=7Zg
z-zZy . 11rnz—>zo >
Letz—zy =Azthenif z - z5then Az — 0

Z—Zg z—Zzy Z—2Zo

= f'(zo) = limp, Lo i—j = +1i.e. when ‘Az’ is real then limitis ‘1’ and
when ‘Az’ is imaginary then limit is * — 1’ therefore

limit does not exist and function is not differentiable.

REMARK: Atz = 0 the function is continuous as well as differentiable.
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Question: Show that f(z) = |z|? = zzZ is continuous but not differentiable.
Solution: let z, € C and given f(z) = |z|? then
i.  f(zo) = lzol%. i.e. f(2) is defined at z = 7
i, 1imgog, £(2) = lim,_, |2|? = |7,/
iii.  The value and limit agree at z = zpi.e. lim,_,, f(2) = f(zo)
Hence f(z) = |z|? is continuous on C.
Now for Differentiability.

' : f@)=f(zo) . |z|?~|zo? ; 2Z—ZoZg
Zg) = lim — =1 —=1i
f ( 0) Z—Zg —2Zp Z—Z —Zo Z—Zg 2
, RT 2Z—7Zg+ZZg—ZoZg _ 1. Z(z-29)+29(Z-Zg) __ 1. _ . z9(Z=Zp)
f'(zo) = lim,_,,, p— = lim,_,,, p = lim,_,, |Z + v

Letz —zy = Azthenifz - z,then Az - 0

’ . — (Az)
= f'(z4) = limp, 0 [Z + ZOAZZ

when ‘Az’ is real then limit is ‘Z + z,” and
when ‘Az’ is imaginary then limit is ‘Z — z,’
Therefore limit does not exist and function is not differentiable.
REMARK: At z = 0 the function is continuous as well as differentiable.
Question: Show that f'(z) = —Zizwhen f(z) = i ateachz # 0
Solution: by using the definition

, s f(z+Az2)-f(z) _ S | -t
f'(2) =limy,_ Az = limyz9 [(z+Az) zl Az = limyzo [(Z+AZ)Z]

= f'(2) = —i ateachz # 0
Exercise 17: (visit @ Youtube “learning with Usman Hamid”)

i.  Show that f'(z) = 2z when f(z) = z? ateachz # 0
ii. Find f'(z) when

a) f(z)=(§z3—$)4 b) f()_TZ)Z
¢) f(z)=3z2—-2z+4 d) f(z) =(2z2+i)°
&) f(2) == 2% 3
n f@=22" a0
ili.  Suppose that f(zy) = g(zp) =0and f'(z,) and g'(z,) exist, where

g'(zo) # 0 then show that lim,_,, ;E—ZZ)) = ;,Z";
0

22
iv.  Show that f'(0) does not exist when f(z) = {? z#0
0 z=0
Show that f'(z) does not exist at any point ‘z” when
a) f(Z) = Rez ) f(z) =1z
b) f(z) =Imgz d) f(z) = arg(z)

Availabel on MathCity.org
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CHAPTER

2

ANALYTIC FUNCTIONS

ANALYTIC /REGULAR /HOLOMORPHIC FUNCTION

A complex valued function W = f(z) is said to be Analytic in domain D if
i. W = f(z)issingle valued.

ii. W = f(z) isdifferentiable in domain D.

CAUCHY RIEMANN EQUATIONS

Let f(z) = u + iv be a complex valued function, whose first order partial derivative

exists, then following pair of equations is called CR equation;

u, =v, and u, = -v,
a

D
We may also write a—: == and

a_u _ v
ady ady ox

CAUCHY-RIEMANN EQUATIONS IN RECTANGULAR COORDINATES
(necessary condition)

Suppose that f (z) = u(x, y) + iv(X, y) and that f'(z) exists at a point zy
Then the first-order partial derivatives of uand v must exist at (Xo, Yo),
Thenthey must satisfy the Cauchy-Riemann equations i.e.u, = v, and u, = —v,

Proof: Given that f'(z) exists at a point zo f'(z,) = lima,_¢ _f(ZO“AAZ;‘f(Zo)
We have to prove u, = v, and u, = —v,
Consider f'(zy) = hmmow

zZ
= £'(2o) = limy, o [u(xO+Ax,yo+Ay)+iv(xO+§§f;A;Ay)]—[u(xO,yo)+iV(xo,yo)]
Along horizental axis: Take Ax - 0 and Ay =0

= f,(ZO) = limAx—>0 [u(xo+Ax,yo)+iv(xo+Ax,yo) ]~ [ulxo,y0) +iv(xo,yo)]

= f'(2¢) = limyy0 Ax
= fI(ZO) — llmAx_)O [u(x0+Ax'y0)_u(x0!y0)] + illmAx_)O

Ax
= f'(29) = Uy (X0, Y0) + 1V (X0, Y0) wor vov vv v wee o (D)

Ax
[u(xo+Ax,y0)—1u(xg,¥0)] +i[v(xo+Ax,y0)—v(x0,Y0)]

[v(xo+Ax,y0)—iv(x0,y0)]
Ax
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Along vertical axis: Take Ay - 0 and Ax =0

= '(zo) = limAy—>0 [U(XO'yO'l'Ay)‘l'iU(xO:yl;)‘:i;’)]—[U(XO,yo)+iU(x0,y0)]

= f'(2,) = limAy—>0 [u(xo,J/O+A3/)—u(xo,YO)]iZ;[V(xo;J’o+AJ/)—U(XO,3/0)]
/ 1 [u(xo,yo+Ay)—ulxo,yo)l |, . 1. [v(x0,y0+Ay)—v(x0,¥0)]
= ['(20) = limyy o iny + lAl)l]r_T}O iny
/ Y [u(xo,y0+Ay)—1u(x0,y0)] . [v(x0,y0+AY)—v(x0,50)]
= f'(z0) = —ilimyy,_g Ay + Al)llr_r)lo Ay
= f'(z0) = —iuy(x0,¥0) + vy (x0,¥0) = Vy — iUy o ev e (UD)

Comparing real and imaginary parts of (i) and (ii) we get
u, = v, and v, = —u, Wwhich are CR equations.
We may also write u, = v, and u, = —v,

Theorem (sufficient condition)

Suppose that f (z) = u(x, y) + iv(X, y) is defined throughout some neighborhood
Of a point zp and the first-order partial derivatives of u and v must exist at (Xo, Yo),
Also Cauchy-Riemann equations u, = v, and u, = —v, hold

Then f'(z) exists at a point zo

Proof:

Suppose that CR equations holds i.e. u, = v,, and u, = —v, and continuous

Consider

f(zo +Az) — f(z0) =

[uxo + Ax, yo + Ay) + iv(xo + Ax, yo + Ay)] — [u(xo, ¥0) + iv(x0, ¥0)]
Adding and subtracting u(x, + Ax, y,) and v(xy, yo + Ay)

f(zo+Az) = f(zo) =

[ulxo + Ax, yo + Ay) — ulxg + Ax, yo) + ulxo + Ax, ¥o) — u(xg, ¥o)]

‘S*‘_i [v(xo + Ax, yo + Ay) — v(X0, Yo + Ay) + v(x0, Y0 + Ay) — v(x0, Y0)]
Ince
u(xo + Ax,yo + Ay) —u(xo + Ax,yo) = Ayu, + €,Ay
u(xy + Ax, yo) — u(xg, yo) = Axu, + €,Ax
v(xg + Ax, yo + Ay) — v(xg,yo + Ay) = Axv, + €3Ax
v(x0, Yo + Ay) — v(xg,¥0) = Ayvy + €,Ay

Then f(zo+Az) — f(zp) =

[Ayuy + e,Ay + Axu,, + ezAx] + i[Axvx + e3Ax + Ayv), + €4Ay]
using CR equationsi.e. u, = v, and u, = —v,
Then f(zo+Az) — f(zg) =

[—Ayv, + €;Ay + Axu, + €,Ax] + i[Axv, + €3Ax + Ayu, + €,AY]

= [u,(Ax + iAy) + iv, (Ax + iAy) + Ax (e, + ie3) + Ay(e; + iey)]
= [u,(Ax + iAy) + iv,(Ax + iAy) + AxS; + AyS,]
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Dividing by Az = Ax + iAy
f(20+Az)—f(20) __ [ux(Ax+iAy)+ive(Ax+iAy)+Ax6; +Ay6,]

Az Ax+ilAy
f(zO+Az)—f(zo) _ [uxtive)(Ax+iAy)+Ax51+AyS;]
Az Ax+ilAy
f(zo+Az)—f(zo) _ Ax61+Ayd,
Az = (U +ivo) + Ax+ilAy
f(zo+A2)—f(z9) _ . _ Ax8+Ayé,
Az Uy +102) = Ax+ilAy
f(zo+82)—f(z9) _ ; | Ax51+Ay62| |Ax| |Ay|
| Az Uy +1y)| = Ax+idy | — |Ax+LAy| |Ax+iAy|
f(zo+B2)—f(20) _ ; | |Ax] _layl
" Uy +ivy)| <61+, <e - Axtiny] <1 also At ity

= f'(z0) =uy +ive O = f'(29) = uy —iu, 0or = f'(z0) = v, —iu,
This is the definition of differentiability.
Remark:
i. IfW = f(2) isanon - constant real valued function (say) f(z) = |z|?
Then CR equations do not hold.
ii. IfW = f(z) is aconstant real valued function then CR equations hold.
iii. IfW = f(2) then CR equations do not hold.
iv. Ifafunction is analytic, CR equations necessarily hold, but if
CR equations are satisfied for a function then the function may
or may not be analytic.
v. Ifafunction involves z then without verifying CR equations we can
Say the function is non — analytic.

vi.  We may use u,(0,0) = lim,_,, Ux0)-u0) H¢ origin
[u(x+Ax,0)—u(0,0)]

and vice versa.
Ax

Instead of u,(0,0) = limy,_,g

Example: Since the function f(z) = 2% = x* — y* + i2xy

is differentiable everywhere and that f'(z) = 2z.Verify that the CR equations
are satisfied everywhere.

Solution: write u(x,y) =x*—y* and  v(X, y) =2xy.

Thus uyx = 2X = vy, Uy = =2y = —Vy.

Moreover, f'(z) = 2x +i2y = 2(x +iy) = 2z. i.e. f'(z) exists.
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x3(14+0)-y3(1-i) 0
Example: Prove that for the function f(z) = { x2+y? d
0 z=0
CR equations are satisfied at z = 0 but function is not differentiable
I.e. not analyticatz =0

3 N a3(1—3 3_.,3 (.3 3
Solution: Given that f(z) = =#0=r°0=0 _ (@-y?)+il*+y7)

x2+y2 x2+y2

_ x3—y3 _ x3+y3
Then u(x,y) = ry? also v(x,y) = ry?
Then at origin

. 0)—u(0+0 . 3
= u,(0,0) = lim,_, % = llmx_)();;—x =1

— 1 u(0.)~u(0+0) _ | -y _

= u,(0,0) =limy_o————=1lim,o5-=—

y
v(x,0)—v(0+0) _ ;. x>
" = lim,_,o a5 1

(0,,)—v(0+0) . 3
voy)7vliTl) hmy_’oy};__y =1
Thus u, = v, and u, = —v, i.e. CR equations hold.
Now for Differentiability at origin i.e. z =0:
(3-y3)i(@d+y3) ()

LN s f@-f©0) _ . x2ty?
f'(0) =lim,_, 7—0 = lim;_o x+iy T (). (x2+y2)

= 1,(0,0) = lim,_

= 1,(0,0) = limy_>0

Case |: Takey =x
' RT 2ix3
£7(0) = limyo 2x3(140)  (1+0)

Case ll: Takey=0andx - 0
, . x3(1+0) }
f (0) = llmx%OT =1+
= f'(O) does not exists. Hence CR equations are true function is not analytic.
Example: Prove that for the function f(z) = e* = e*(Cosy + iSiny)
CR equations are satisfied at z = 0 and also function is analytic at origin.
Solution: Given that f(z) = e*(Cosy + iSiny) = e*Cosy + ie*Siny
Then u(x,y) = e*Cosy also v(x,y) = e*Siny
Then at origin
= ux(0,0) = liInx—)O x—0

u(0,y)—u(0+0) __ lim 0 Cosy—1
—r = ys

v(x,0)—v(0+0) __ lim OH =0
e = X0 =

TEDCED = Jimy 22 = im0 52 = 1
Thus u, =wv, and u, = —v, i.e. CR equations hold.
Now for Differentiability at origin i.e. z =0:
f'(2) = uy +ivy = e*Cosy + ie*Siny = e*(Cosy + iSiny)
= f'(0) = [e*(Cosy + iSiny)|, = 1 CR equations are satisfied at z = 0 and also function is analytic at origin.

u(x,0)—u(0+0) — lim e*—1 -1
x

=Siny __ 0

= u,(0,0) = limy_,o T

= 1imy_)0
= 1,(0,0) = lim,_
= 1,(0,0) = lim,_,
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Exercise 18: (visit @ Youtube “learning with Usman Hamid”)

1.

Prove that for the function f(z) = |Z|? if CR equations are

Satisfied but f'(z) does not exists at any non — zero point.

Z—Z

Prove that for the function f(z) = {? z#0 cRr equations are satisfied but
0 z=0

f'(0) does not exists at any non — zero point.

Prove that for the function f(z) = \/|xy| is not analytic at the origin
Although the CR equations are satisfied at origin.
x2y3(x+iy)

Examine the nature of the function f(z) = { x4+y10 z#0
0 z=0
in a region including the origin.
xy?(x+iy) £ 0
Prove that for the function f(z) = { x2+y% z is not
0 z=0

Analytic at the origin Although the CR equations are satisfied at origin.

Prove that for the function f(z) = {eOZ z ¢00 is not analytic
Z =
at the origin Although the CR equations are satisfied at origin.
For the function f(z) = x3 + i(1 — y)® Prove that f'(z) Exists only when z = i
For the following functions show that f’(z) does not exist as CR equations are not
satisfied.
. fe)=z2
ii. f(z2)=z-z
iii.  f(2) =2x + ixy?
iv. f(2) =e¥e™
Show that f’(z)and its derivative " (z) exist every-where
and find f"'(z) when _
@ f(2) =iz+2 (b)f(z) =e e "
) f(z) =2° (d) f(z) =cosxcoshy —isinxsinhy.

10. Determine where f'(z)exists and find its value when;

(@) f(z) =1/z  (b) f(2) =x®+iy? ) f(2)=zImz.

11. Show that the function f(z) = x + 4iy is nowhere differentiable.
12. Show that the function f(z) = z? + z is analytic.
13. Show that the function f(z) = 2x2 + y + i(y? — x) is not analytic.
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Example: Prove that the essential characteristic for a function to be analytic

. : . . _
Is that it is a function of ‘z’ alone, it does not involve Z or a_]; =0=f;

Solution: Given that f(z) is analytic. u, = v, and u, = —v,

Weknowthatz-x+ly andz-x—tythenx—%z_ alsoy—z z
1
xz-—g al:? yz_af_a_Z af @

. _ x y _ 1 1 .
C0n5|derE—a.E+5.£=>fZ—_fx.xZ—+fy.yZ——5fx—ny ......... (1)
Now f, —ux+ivx also f, —uy+ivy
D=>f,= —f —= ——(ux+wx) (uy+ivy)

After using CR equatlons e u, = vy and Uy = —Vy

1
2 _0=>;—O fz

L : )
fz= Eux +%vx _%vx -
Remark: If a function involve z then without verifying CR equations we can
Say the function is non - analytic.

For example: f(z) = Sin(16x + 24iy) = Sin(20z — 4Zz) involves Z therefore
It is non — analytic.

Exercise 19: (visit @ Youtube “learning with Usman Hamid”)
1) Without verifying CR equations , Prove that following function
are non — analytic.
i. f(z2)=Sin(37x + 35iy)
ii. f(z2) =Cos(7x + 5iy)
iii.  f(z) = Sin(x —iy)

iv. W =2ix
v. W =-4y
vii W =|z|

2) Show that each of these functions is nowhere analytlc
@f(@) =xy +iy (b)fF@=2xy+i(x*~y?*)  (c) f(2) =e’e™

Theorem: If f'(z) = 0 everywhere in a domain D, then f(z) must be constant.
Proof: Since f(z) is analytic. Therefore CR equations hold. i.e.

Uy =1y, and u, = —vy
nowlet f(z) =u+iv....... (1)
>fl@=utive=20=u,+ivy,=2u,=0,v,=02u=c, V=0
= f(2) =c1 +icy > f(2) = c3 = constant
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POLAR FORM OF CAUCHY RIEMANN EQUATIONS:
We know that f (z) = u(x, y) + iv(X, y)
And x = rCos8,y = rSin6 therefore we may write
f(z) = u(r, ) +iv(r, 0)

alsowe have x2 + y2 =r2and @ = Tan™?! (%)
and uy = v, and v, = —u,

- ino
NOW uy = u, 7y + ugBy = u, (f) +up ( 3;2) = u.CosO — ug (Sm )

"

Uy = Uy + UgOy, = ur( ) + ug (xzjy ) u,Sinf + ug (cOse)

Uy = UpTy + Vg0, = 1, ( ) (x2+ ) v,.C0s0 — vg (51:9)
) ( ) 1,.Sinf + vy (Cosg)

Uy — vy = u,Cosf —ug (ﬂ) — 1,.5inf — vg (Corse) ......... (1)

Uy + Uy, = 1,.Cos6 — (Sm ) + u,.Sinf + ug (6059) ......... (i1)

Multiplying (i) With Cos6@ and (ii) with Sinf and adding

u,(Cos?6 + Sin?0) — Ug%(COSZH + Sin?%0) > u, = %ve

Multiplying (i) with Sin6 and (ii) with Cosf and subtracting

—Ug %(COSZH + Sin?%60) — v,.(Cos?0 + Sin?6) = v, = —%ug

Thus required CR Equations in Polar form are as follows

vy =1t + Vg0, = vr(

1 1
U, =-vg and vy = —-Ug

LAPLACE EQUATION IN POLAR FORM

1 . 1 ..
We know that u, = “Vg e () and v, = —Ug...oonnnn (i1)
Differentiating (1) w1th ‘r’ and (i1) with ‘6’
1 1

Upr = =5V T 2Vrg covvnnnn. (ii1)
and v,g = —-Ugg = ~Vrg = ——=Ugg ~X ing with=

ro = — Uee = Vrog = — S Uge X 1NG ;

1 1

(111) = Upy = —r—zvg - r_2u99

—_1 1 . _1
3urr—_;ur_r_zué?é? "ur_;ve

= U + %ur + rlzugg = 0 is required polar form of Laplace equation.

Remark: Suppose that f(z) = u(r, 8) + iv(r, ) be defined throughout some
€ neighborhood of a non — zero point zo Then the first-order partial derivatives
of uand v must exist at (ro, 8, ) and continuous Thenthey must satisfy
the Cauchy—Riemann equations i.e.ru, = vg and ug = —rv,. and f'(z) exists
and f'(z) = e ¥(u, + iv,)
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Example: Show that if CR equations hold for f(z) = le ;z #+ 0 then

f'(z) exists.
. . . _ i _ 1 _ i —i20 _ l T
Solution: Given that f(z) = == —(rew)z =e = (Cos26 — iSin20)
Then u 605229 and v = Sm229
T T
Then ru, = — 262229 vg and ug = — 25:229 -1V,
Since CR equations hold therefore f'(z) exists. And given as follows;
N —if —ig (__ 2Cos20 25in20 5 -ipe® 2 2
fl(z) =e ¥ (u,+iv,) =e ( —— i r3 ) = —2e T ey @

Example: Show that for (z) = zz = rzez ; f'(2) exists.
Solution: Given that f(z) = 7= \/_ez = x/?(Cosg + iSin%)

Then u = WCOS% and v = \/FSinE

Vr 6 Vr.. 6
Then ru, = 7Cosz =vg and ug = —7Sln5 = —rv,

Since CR equations hold therefore f'(z) exists. And given as follows;
f'(z) = e_ie(ur + ivr)' =e 0 (—Cos + LﬁSlne) 2\/_ e~t0 (Cos + iSin )

2Vr
i0
= — —i6 2 = 1 — 1
f (Z) e .ez Zﬁeg 2D

Exercise 20: Show that for given f(z); f'(z) exists.
i f(2)= i ;2% 0
ii. f(2)= e‘ieCos(lnr) + ie"Sin(Inr)
iii. f@)=1;z%0 iv.  f(z)=3re's
v. Ifnis real prove that f(z) = r™*(Cosn6 + iSinn®) is analytic exceptr =0
Also calculate f'(z)

ENTIRE FUNCTIONS: A function that is analytic at each point in the entire plane.
For example: f(z) = %;z # 0 is analytic at each non — zero point in the

Finite plane and f'(z) = —le and it is entire. But f(z) = |z|? is not
Analytic anywhere since its derivative exists only atz =0
Exercises 21: (visit @ Youtube “learning with Usman Hamid”)
1. Verify that each of these functions is entire:
(@) f(z) =3x +y +i(3y —x) (b) f(z) =sinxcoshy +icosxsinhy
(c) f(z) =e”?sinx —ie” cosx (d) f(z) = (" —2)e™*e™
2. State why a composition of two entire functions is entire.
Also, state why any linear combination ¢, ¥1(2)+ ¢, F,(z) of two entire
functions, where c; and ¢, are complex constants, isentire.
3. If ‘g’ is entire then discuss f(z) = (iz”> +2)g(z)
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REGULAR POINT:
If a function is analytic at a point zy and also is analytic at some point in
Every neighborhood of z, then z, is called regular point of function.

SINGULAR POINT (SINGULARITY):
If a function fails to be analytic at a point z but is analytic at some point in
Every neighborhood of z, then zq is called Singular point of function.

For example: z = 0 s singular point of f(z) = %

On the other hand f(z) = |z|? has no singular points as it is nowhere
analytic.

Exercises 22: (visit @ Youtube “learning with Usman Hamid”)
1) In each case, determine the singular points of the function and state why the
function is analytic everywhere except at those points:

i. f(2)= Z(ZZZZ++11)

i, f(2) =
. f(2) = ﬁ
v, @)=

HARMONIC FUNCTIONS

A real-valued function H of two real variables x and y is said to be harmonic

in a given domain of the xy plane throughout that domain,

if it has continuous partial derivatives of the first and second order and satisfies
the partial differential equation Hyx(X,y) +Hyy(X,y) =0,

known as Laplace’s equation.

Importance: Harmonic functions play an important role in applied mathematics.
For example, the temperatures T (X, y) in thin plates lying in the xy plane are
Often harmonic. A function V (X, y) is harmonic when it denotes an electrostatic
potential that varies only with x and y in the interior of a region

of three-dimensional space that is free of charges.

Example: Verify that the function U (x, y) = e* Cosy is harmonic.
Solution: Given that U (x, y) = &* Cosy

=> Uy, =e*Cosy = Uy, =e*Cosy

also = U, =—e*Siny = U,, =—e*Cosy

= Uy + Uy, =e*Cosy—e*Cosy=0=>Uy,+ Uy, =0

= U (x, y) = €* Cosy is harmonic.
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Example: Verify that the function T (x, y) = e sin x is harmonic in
any domain of the xy plane and, in particular, in the semi-infinite vertical strip
O<x<my>0.

Solution:
Tux(X, y) + Tyy(X, y) =0,
Toay :O’ T(n-’y):O7
Téx, Og =sinx, Iirlo'g(x,y) =0,

which describe steady temperatures T (X, y) in a thin homogeneous plate in the
xy plane that has no heat sources or sinks and is insulated except for the stated
conditions along the edges.

Theorem: If a function f (z)=u(X, y)+iv(X, y) is analytic in a domain D,
then its component functions u and v are harmonic in D.
Proof: Suppose that f is analytic in D, then the first- order partial derivatives
of its component functions must satisfy the CR equations throughout D:
I.e. Ux = Vy, and Uy = — Vy
Differentiating both sides of these equations with respect to x, we have
Uxx = Vyx, and Uyx = — Vxy
Likewise, differentiation with respect to y
Uxy = Vyy, and Uyy = — Vyy
NOW Uy + Uy =0 and Vyx + Vyy =0
That is, u and v are harmonic in D.

Example: The function f (z)=e Y sinx - ie Y cos x is entire,
It must be harmonic in every domain of the xy plane.

. . 1 x?—y? . 2xy .
Example: The function /~ (2) = 5 = Gy LGy 19
analytic at every non — zero pointi.e. z # 0 then

x2—y? —-2xy

U=——-== and v=——=
(x2+y2)2 (x2+y2)2

In the Xy — plane that does not contain the origin.

are harmonic throughout any domain

HARMONIC CONJUGATES (CORRESPONDING CONJUGATES)

If two given functions u and v are harmonic in a domain D and their first-order
partial derivatives satisfy the Cauchy—Riemann equations throughout D, then
v is said to be a harmonic conjugate of u.

Remark: A function f(z)=u(x, y)+iv(x, y) is analytic in a domain D
if and only if v is a harmonic conjugate of u.

Availabel on MathCity.org
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Example: Suppose that u(x, y) =x*—y? and v(X, y) =2xy.

Since these are the real and imaginary components, respectively, of the entire
Function f (z) = z, then v is a harmonic conjugate of u throughout the plane.
But u cannot be a harmonic conjugate of v then function 2xy + i(x* — y?)

is not analytic anywhere.

METHOD TO FIND HARMONIC CONJUGATE:

For a given real valued function u(x, y)

I.  Find u, and then using CR equation write u, = v,

ii. Integrate w.r.to ‘y’ to get v(x,y) but a constant also appear.
iii.  Differentiate w.r.to ‘x’ to get v,
iv.  To find constant appear in previous step using CR equation write v, = —u,,

v.  After putting the value of constant finally get v(x,y)

Example: Find harmonic conjugate for U (x, y) = €* Cosy
Solution: Given that U (x, y) = &* Cosy
=>U,=¢e*Cosy =U,=e*Cosy=V,
Integrate w.r.to 'y’ = V(x,y) = e*Siny + g(x)
Differentiate w.r.to ‘x* =V, (x,y) = e*Siny + g'(x)
using CR equation = V,, = —=U, = —U, = e*Siny + g'(x)
>V,y=—Uy=>—eSiny=e*Siny+ g () =>9gx)=0=gx) =c
After putting the value of constant finally get
=V (xy) =e*Siny+c
Example: Prove that the function U (x, y) = € Cosy is harmonic. Find its
Corresponding conjugate and construct the original function.
Solution: Given that U (x, y) = &* Cosy
This function is already proved in previous steps that this is Harmonic
Also we find its corresponding conjugates.
To construct original function.
Since= f(2)=U (x,y)+iV (x,y)
= f (2) = e¥Cosy + ie*Siny + ic = f (2) = e*(Cosy + iSiny) + ¢’
sf@=eeY+c=etV+c =e?+c >f(2)=e?+c
Exercise 23: Prove that the given function is harmonic. Find its
Corresponding conjugate and construct the original function.
i u(x,y) =x3—3xy?

ii.  u(xy) =e*(xCosy — ySiny)

iii. u(r,0) =r"Cosno

Iv. u(x,y) =2x(1-vy)

V. u(xy) = 2x —x° +3xy?

vi. u(Xx,y)=sinhxsiny
vii.  u(x,y) = y/(x* +y?)



Example: Prove that a harmonic function satisfies the formal differential
2

. 9°U
Equation Pt 0
o*u | 2*U

Solution: Since U is harmonic therefor — +-—=0 ......... (1)
~ ~ ax ay
Sincex=2Zandy =2~
2 2i

Therefore 2 = 240x 4 oUoy _ o0 _ 100 10U
9z  oxdz  odyadz 9z 20x @ 2idy
’u @ (aU) . (aZU ax d*U ay) . (OZU ax  9%U ay)

0z0z 9z \ 9z 2 \9x2 9z 6y6x az dydx 0z 6y2 az

U 1010*0 i 9*U 1 9%U 1 U
=>—=-(-=F5—= — = +=—

9z0z 2\29x2 2 6y6x 2 dydx = 2i dy?

9’U __19*v i d*U | i aZ 19%U

9z0z 4 0x2  49ydx  409ydx = 4 9y?

?u 1 (azu aZU) a%u . i
= =-—4+—=)= =0 s using (i

9z0Z 4 \9x2 + ay? 0z0z g ()

METHOD OF CONSTRUCTING AN ANALYTIC FUNCTION;
For a given real valued function u(x, y)
i.  Find u,(z,0) and u,(z, 0)
. f'(2) = uy(z,0) —iuy(z0)
iii.  Tofind f(2) integrate f'(z)

Example: Verify that the function U (x, y) = SinxCoshy is harmonic.
And find analytic function.
Solution: Given that U (x, y) = SinxCoshy
= U, = CosxCoshy = Uy, = —SinxCoshy
also = U, = SinxSiny = U,, = SinxCoshy
= Uy + Uy, = =SinxCoshy + SinxCoshy = 0= Uy + Uy, =0
= U (X, y) = SinxCoshy is harmonic.
Now u,(z,0) = Cosz and u,(z,0) =0
Then f'(z) = uy(z,0) — iuy(z,0) = Cosz —i0 = f'(z) = Cosz
Integrate w.r.to ‘z’ = f(z) = Sinz which is required.
Exercise 24: Verify that the given function is harmonic.
And find analytic functlon

i ulxy = x2+y

i. wv(xy =x3-3xy*?-5y

iii.  u(x,y)=e*[(x? —y?)Cosy + 2xySiny|

iv.  u(xy)=x3-3xy>+3x2-3y*+1

V. u(x,y) = log,_/x2 +yZinthedisk |z—1| <1

vi. uxy) = Coshzl;-fzost
vii.  u(xy)=x*-3xy?+3x+1
viii.  u(x,y) =y3 —3x%y

56
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LEVEL CURVES: A level curve of a real valued function U(x,y) defined in a
Domain D is given by the locus of a point (x,y) in D such that U(x,y) =C
Where C is constant.

Likewise we can consider a level curve of V(x,y) in D

i.e. V(x,y) = K Where K is constant.

Example: Sketch the level curves of the function f (z) = z2;z# 0
Solution: Given f (z) = z? = x*> — y? + i2xy

Put U(x,y) =x%2—y?=C; and V(x,y) = 2xy = C,

These are the required level curves and are Rectangular Hyperbolas.

ORTHOGONAL SYSTEM: The families of curves U(x,y) = C;and V(x,y) = C,
Avre said to form an orthogonal system if the curves intersect at right angles at each
Of their point of intersection.

CONDITION TO FIND ORTHOGONALITY OF LEVEL CURVES

Consider U(x,y) = 61

Differentiating we get + ZU Zy 0= % = aU/a—u = my = —a—U/a—U
Also V(x,y) = C,

v, ovdy y__ v, — _a_V f’_V
Differentiating we get + 3y dx =0=_—= ax/ay =>my =——/-
Now the two famllles of curves intersect orthogonally if

aou ,aU av ,ov
mymy = —1= (= 52/50) (= 5:/5,) = -
QU av | UV
o T Ty ay = = 0 this is required condition.

Example: If w = - ! then show that level curves U = CiandV = C,

Are orthogonal circles which pass through the origin and have their centers
On x —axis and y- - axis.

Z zZ _ x-ly _  x . =y

ion: Gi _1_z_z
Solution: Given w = - =~ = = x2+y = tiae
Here U(x,y) = 2+y
When U = r 61 = C; = 5— = C;(x* + y?) — x = 0 and pass through

Origin having centre (— Cy, O)

alsoV = =C, > C, = 5— = C,(x* + y*) + y = 0 and pass through

+
Origin havmg centre (0,5 Cz)
For Orthogonality:
UV | UV _ y2-x? 2xy —2xy y?-x?
dx 0x ay 0y (x2+y2)2x2+y2 = x2+y2 (x2+y2)2
Thus level curves are orthogonal.




58

Example: If f(z) = E then find the level curves U = Cyand V = C,
Also verify that level curves form an orthogonal system.

; 2 2_ i(—
Solution: Given f(z) = 22 = &y (x®+y?-16)+i(~8y)

z—4  (x-d+iy (x—4)2+y?
x?+y?-16 -8y
Here U(x,y) = 5,z 4 V(0Y) = o5ss
When U = 22271 — ¢ & ¢ (x2 +y2 —8x +16) —x2 — y> + 16 = 0
= Goarzeyz 12 Xty x Ty B

= (C1— Dx%+ (C; — 1)y? —8C1x+ 16C, + 16 = 0 which is circle.
Origin having centre G Ci, 0)

Also V = % = C, = C,(x? + y?> — 8x + 16) + 8y = 0 which is also circle.
For Orthogonality:

augv | UV _ —8x2+8y%+64x-128 16(x—4) —-16(x—-4) 8x%+8y%+64x—128 ~0

0x 0x = 0y dy [(x-9)2+y2]12  "[(x-92+y2]2  [(x-49)2+y2]2"  [(x-4)2+y?]?

Thus level curves are orthogonal.

Example: If f(z) = U + iV be an analytic function of z = x+iy then show that
The curves U = C,and V = C, intersect at right angle.
Solution: Given f(z) to be analytic. Then CR equations hold.

. au av . v _a_U .
Le. S =5, (i) and — = 3y (iD)
i i i i au av au av
multiplying (i) and (ii) we get ——— = ~ o
HE+EX =0 required condition of orthogonality of two curves.

dx 0x dy dy

Problem: Prove that an analytic function with constant modulus is constant.
Solution: Since f is analytic in D, then itmustsatisfy the CR equations

i.e.ux=vy,and vy =-uy andalso |[f(z)| =C'" > u? +v* =C....... (Q)
differentiating (i) w.r.to X = 2uu, + 2vv, = 0 = uu, + v, = 0 ... .... (ii)
likewise differentiating (i) w.r.toy = 2uu, + 2vv, = 0 = uu, + vv, =0
= —uv, + vu, =0 .......(iii) using CR equations.

Multiplying (i1) by ‘v’ and (ii1) by ‘v’ and then adding we get

= u,(u? +v?) = 0= (u? + v?) # 0 using ()thenu, =0

= u, = 0 = v, =’v’ is independent of x and *v’ is independent of y.
Multiplying (ii) by ‘v’ and (iii) by ‘u’ and then subtracting we get

= v, (u? +v2) = 0> (u? + v?) # 0 using (i)then v, =0

= v, = 0 = —u,, =’V’ is independent of x and ‘U’ is independent of y.
Thus ‘v’ and ‘v’ are both independent of x and y.

Therefore u and v are constants.

Ultimately f(z) = u + iv = Constant
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Problem: Investigate the value of z for which W = U + iV is not analytic
When z = SinhUcosV + iCoshUsinV
Solution: Given z = SinhUCosV + iCoshUsinV

;—VZV = Z—i = CoshUCcosV + iSinhUsinV ............(1)
Also z2 = (SinhUcosV + iCoshUsinV)?
z% = Sin*hUcos?V — Cos?hUsin?V + 2isinhUcosVcoshUsinV ... ... ... ... (ii)

~ Cos?hU — Sin’hU = 1
(ii) = z? = (Cos?hU — 1)cos?V — (1 + Sin?hU)sin?V + 2isinhUcosVcoshUsinV
= z2 = Cos?hUcos?V — cos?V — sin®*hU — Sin>hUVsin?V + 2isinhUcosVcoshUsinV
= z2 = Cos?hUcos?V — Sin*hUVsin?V + 2isinhUcosVcoshUsinV — (cos?V + sin?hU)

2 2
:zz=(coshUcosV+isinhUsinV)2—1=>zz=(§—VZV) —1:(5—;) =1+ z2
:>d—W_+ T+2>% =4 L

dz dw 1+z2
—doesnoteX|stswhen1+z =0=2z2=-1=2>z=+i

Therefor function is not analytic when z = +i where z = SinhUcosV + iCoshUsinV

Exercise 25: (visit @ Youtube “learning with Usman Hamid”)
Investigate the value of z for which W = f(z) ceases to be analytic where
i. z=-e Y(—cosu+ isinu)
ii. z=SinuCoshv + iCosusinhv

UNIQUELY DETERMINED ANALYTIC FUNCTIONS
Suppose that a function f is analytic throughout a domain D and f(z) =0at
each point z of a domain or line segment contained in D.
Then f(2)=0in D; thatis, f(2) isidentically equal to zero throughout D.

Remark:
= A function that is analytic in a domain D is uniquely determined over D
by its values in a domain, or along a line segment, contained in D.
= Reflection Principle :Suppose that a function T is analytic in
some domain D which contains a segment of the x axis and whose
lower half is the reflection of the upper half with respect to that axis

Then f(2) = f(2)
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Problem: If f(z) = U + iV is an analytic function of ‘z’ in any domain then
prove that V2|f(2)|? = p?|f(2)|P~2|f'(z)|?* also deduce for p = 2.

Solution: Suppose f(z) = U + iV

=S |f@)| =VUZ+V2 = |f(IP = U2+ VP2 ... (z)

§|f(z)|p—E(U2+V2)2_ QUU, +2VVy = p (U2 +V) (UU,+VVy)

IS

= 2|f@f =p(U? +V) (UU+VV,)

_ P2 q
= L@l = 2(ZIf@f) =p (52 2)(U2+V2)2 QUU, + 2VV)(UU, +VV,)
+p(U2+V2) 2 (UUxx+U Uy +VVi + V. V)
|f(Z)|p—p(p 2)(U? +V) (UU +VV )2

+p(U? + VZ) 2 (UUxx F UL+ Vi + Vie?) i, (ii)
Similarly

If(z)l” =pp—2)(U*+V ) (UU +VV,)?
+p(UZ +Vv2)T (UUyy + U2+ TV + 157 s (iii)

Now we know that
02

02
V|f(2)IP = (g+g) If (2P = If( )P + If(Z)Ip
Then using equation (ii) and (iii) we get
p—4
Vf(DIP =p(p —2)(U*+V?)z (UU, +VV,)?
p-2
+p(U2+ V%) 7 (UUyy + U + Vi + Vi)
b4 2
+p(p — 2)(U? + vz (UU, + V1)
-
+p(U%+V?) = (UU,, + U, + Vvyy +1,°%)
V2|f ()P = p(p — 2)(U% + V)7 [(UU +VV)2 + (UU, + VY )2]
+p(U? + VZ)T(UUxx + U2+ vax + V2 4+ UUy,, + U2 + VY, +1,,7)
V2|f ()P = p(p — 2)(U% + V)7 [(UU +VV)2 + (UU, + VY )2]
+p(U? + VZ)T[U(Uxx +Uyy) +V(Vex + V) + U2 + V2 + U2 + 1

Since Uy, + Uy, = 0 = Vi, + 1}, and Function is analytic. Therefore CR equation
Will be satisfied i.e. U, =V, and V, = —U,, or U,, = —V, then

p—4

V2 f ()P =pp —2)(U?+V?) 2z [(UU, + VV,)* + (=UV, + VU,)?]
p-2

+p(U2+ V%) z [U0) +V(0) + U,” + V> + V.2 + U,
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= p(p—2)(UZ+V?) 7 [UZU + V22 4 2UVU,V, + UV + V2U,°

+p(U? + VZ)pT_Z[Zsz + 2V,%]

V()P =p(p —2)(U2 + V)T [UZ(U +V,.2) + V(U + 1,7

+2p(U? + VZ) 2 [ Uy + V7]
VI @IP = p(p — 2)(U2 + V)7 [(Uy2 + V2) (U2 + V)

+2p(U? + VZ)pZ;Z[UxZ + 147
VZIF@)IP = p(p — 2)(U% +V2)'% (U, +12)

+2p(U + VD) T [U + V%
V2If ()P = p(U2 + V)T (U2 +V2)[p — 2 +2]
V2 If(2)IP = p?(U% +VD)'T (U2 + 1,2

VZIf (@) = p?If @ P72 ()|
Whenp =2

V2If(2)|* = 22| f(D|*21f"(D)?
VIf (DI = 4If' DI

- 2UVUxVx]

Practice:
If f(z) is an analytic function of ‘z’ in any domain then prove that

(5 + 22) [Re(FD)I” = 21 ()2
Solution: Suppose f@)=u+iv
= |Re(f(2))|=u=> |Re(f(z))|2 =u?>=5=u? (say)

= Sy = 2Ully = Sy = 2(Utlyy, +u2) and Sy, = 2uu, = Sy, = 2(uuy, +u?)
= Syx + Sy = (i + i) = 2(Ulyy + u2) + Z(uuyy + uf,)

= (— + —) |Re(f(z))| = 2wy + uyy) + (u2 +u2)]

= (@+—) |Re(f(z))| =2(u2 +u?) S Uy + Uy =0

Hence (—+—) |Re(F(2)|” = 2If' @)
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CHAPTER

3

ELEMENTARY FUNCTIONS

THE EXPONENTIAL FUNCTION
We define here the exponential function e* by writing
e’ =¢e*e” where (z=x+iy),
Where Euler’s formula gives €” = cos y +isiny and y is to be taken in radians.

Remark: '
. e“=pePwherep=ce*andgp =y
ii. |e?| =e*

iii. arg(e?)=y+2nmt ;n=0,+£1,42,.............
iv. eZie?2 = e%1t%  (addition theorem)

V. Z% =e/1™%
vi. e% # 0ase”* isnever zero.
vii. e%=1
viii. e%= eiz
IX. %ez = e” everywhere in the ‘z’ plane.
X. ez+21‘ti = eZ
Xi. eT=—1lande?™ =1
xii. e@ U= _1 :n=0,4+1,42,.............
xiii. e converges absolutely.

Example: Find numbers z = x + iy such that e’ = 1 +i

Solution: Given that e* =1 +i

>e¥e” =1+ i

Then |e?]| = e* =2 = x = InV2 =§ln2

and arg(e?) = 0 + 2nm = §+ 2nmw = (Zn +%)7r m=0+1,4+2,...
now we know that z = x + iy

then after putting the values

z=x+iy=1m2+(2n+3)mi ;n=0+1L,42. ...
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Property: Provethate? =1 iff z=2kmi ;k=0,+1,%2,..........
Solution: Consider e’ = 1 Then we have to prove z = 2kmi
Now as e? = 1= e*e” = 1= e*(Cosy + iSiny) = 1
= e*Cosy +ie*Siny = 1+ 0i
e*Cosy =1...... (1) e*Siny=0...... (i1)
((i)=e*#0=>Siny=0=>y=Sin"1(0)=>y=nr;n=0,+1,+2, ......
(i) @ e*Cosy =1 = e*Cosnmt =1 = e*(—1)" = €°
>(-D"=1ifn=2k ;k=0,+1,+2,+3..........
Thus e* = % = x = 0 and therefore y = nm = 2kn
Hence z = x + iy = 2kmi
For Sufficient Condition:
Given z = 2kmi then we have to show that e” = 1
Let e? = e2*m = Cos2km + iSin2kmr = 1+ 0

= e? = 1 asrequired

Property: Prove that et = e?2 if z; = z, + 2kmi

Solution: Consider e?t = e*2 Then we have to prove z = 2kmi
Now as e?1 = ¢%2 = ¢%21722 = |1 = e(x1—x2)+i(Y1—Y2) =1

= e*17%2[Cos(y; — ¥;) + iSin(y; —y2)] = 1+ 0i

e*17*2 Cos(y; —y,) =1...... (1) e*r ™2, Sin(y; —y,)=0...... (ii)
(i) 2 e* ™2 % 0= Sin(y; —y;) = 0= (y1 — ;) = Sin™1(0)
>, —y)=nr;n=0,%+1,%2,......

(i) = e*r 2 Cos(y, —y,) = 1= e*17%2 Cosnmt = 1 = e*17%2, (—1)" = ¢
=>(D"=1ifn=2k ;k=0,+1,+2,+3..........

Thuse*r™2 = e > x;, —x, = 0> x; = x,

and therefore z; — z, = (x; — x3) + i(y; —y,) = 0 + i2kn

Hence z; — z, = 2kmi = z, = z, + 2kmi

Property: Prove thate” = —1 iff z= 2k + Dmi ;k=0,+1,12,........
Solution: Consider e = —1 Then we have to prove z = (2k + 1)mi
Now as e? = —1 = e¥e? = —1 = e*(Cosy + iSiny) = — 1
= e*Cosy +ie*Siny = —1+0i
e*Cosy =—1...... (i) e*Siny=0...... (ii)
((i)=e*#0=>Siny=0=>y=Sin"1(0)=>y=nr;n=0,+1,+2, ......
(i) = e*Cosy = —1 = e*Cosnt = —1 =2 e*(—1)" = —¢*
>(1D)"=-1ifn=Q2k+1) ;k=0,+1,+2,43..........
Thus e* = % = x = 0 and therefore y = nm = 2k + 1)
Hence z = x + iy = (2k + 1)mi
For Sufficient Condition:
Given z = (2k + 1)mi then we have to show that e? = —1
Let eZ = e@k+D = Cos(2k + 1)1 + iSin(2k + 1) = —1 + 0i

= e’ = —1 asrequired
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Property: Prove that e =i iff z = G + Zn) i ;n=0,1+1,+2,..

Solution: Consider e* = i Then we have to prove z = G + Zn) i
Now as e? =i = e*e?” = | = e*(Cosy + iSiny) = i

= e*Cosy +ie*Siny =0+ i
e*Cosy =0 ...... (i) e*Siny=1...... (ii)
()=>e*#0=Cosy=0=y=Cos1(0)=>y= G+2n)n
(it) = e*Siny = 1= e*Sin (5 +2n)m = 1 = e*(1)" = €°
Thuse* =e’=>x =0

Hencez=x+iy=0+ G+2n)ni

For Sufficient Condition:
Given z = G + Zn) mi then we have to show that e? = i

1 .
Let e? = G20 — (s (l + Zn)n + iSin (l + Zn)n =0+i
2 2
= e? = [ asrequired

PERIODIC FUNCTION: A function f(z) is said to be periodic if there
exists a non — zero constant A (complex) such that f(z + 1) = f(2)
Thus A is called period of the function.

Property: Prove that e is periodic function.

Solution: if f(z) = e” then we have to show the periodic value of e*
Consider f(z+ 1) = f(2) = e?** = e”

Ifz=0then = e’ =e® > et =1

Since A is complex valued therefor A = a +if5 ........... (1)

Thene? =1 = e**# =1 = e*(Cosp + iSinB) = 1 + 0i
e%Cosp=1...... (i) e*Sinf=0...... (iii)
(iii))2e*#20=2Sinf=0=>B=Sin"(0)=>B=nr;n=0,+1,+2, ...
(ii) > e%Cosp =1 = e%Cosnt =1 = e*(—1)" = €°
>(-D"=1ifn=2k ;k=0,1£1,+2,+3..........

Thus e® = e° = a = 0 and therefore § = n = 2kn

Hence A = a + iff = 2kni

Now e? is periodic functions as

f(2) = f(z+ 1) = e? = et = 772k = oZ(Cos2km + iSin2km)

= et = eZ(1 + 0i) = e”™* = e% Thus A = 2kmi is period of e?

Fork =1, A = 2mi is Simple, Fundamental or Primitive period of e“ and the
other periods are A = 4mi, A = 6mi, A = 8mi etc

Remark: The periodicity of the exponential function does not appear in the
real domain, since the periods of the function are all imaginary.
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Property: Prove that (e?) = e?

Solution: L.H.S = (e?) = (eXtW) = e¥e™ = e*(Cosy — iSiny)
R.H.S = &% = e**W = e¥e™ VW = e*(Cosy — iSiny)

Hence the result.

REMARK: eZ is not an analytic function because z is involved.

Exercises 26: (visit @ Youtube “learning with Usman Hamid”)

i
ii.
iii.
iv.
V.
Vi.

Vil.

viii.

Xi.
Xii.
xiii.
Xiv.
XV.

XVi.
XVii.

Prove that Exp(iz) and Exp(-iz) are regular functions of ‘z’

Prove that e = Cosz + iSinz

Prove that e~ = Cosz — iSinz

Prove that |eZ — 1| < |z|el?!

State why the function f (z) = 222 —3 —ze* +e * is entire.

Show in two ways that the function f (z) = exp(z?) is entire. What is
itsderivative?

Show that (a) exp(2 +3xi) =—€?

) exp(2) = 51+

(c) exp(z + i) = —expz.

show that the function f(z) = exp Z is not analytic anywhere.
Write [exp(2z +1i)| and [exp(iz?)| in terms of x and y. Then show that
lexp(2z + i) + exp(iz?)| < e® +e 29

Show that [exp(z2)| < exp(|z|2)

Prove that |exp(-2z)| < 1l ifandonly if Rez >0

Find all values of ‘z’ such that

(@e'=-2 (b)e’*=1+i (c)exp(2z—1)=1

Show that if e” isreal, then Imz = nx (n = 0, 1, £2,...)

If € is pure imaginary, what restriction is placed on z?

Write Re(e¥?) in terms of x and y. Why is this function harmonic in
every domain that does not contain the origin?

ShowthateZ = e? & z=nr ; n=0,+1,42,.....

Consider the exponential function f(z) = e* on which points it is
differentiable.
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THE LOGARITHMICFUNCTION

The multivalued logarithmic function of a nonzero complex variable z = re®®
can be defined as follows

logz=Inr+i(0 +2nz) or logz=In|z|+iarg(z) ;n=10,+1,%2,...

The principal value of logz is defined as follows
Logz=Inr+i@ or Logz=In|z|+i@

Remarks:
= Every non — zero complex number has infinitely many logarithms
which differs from one another by an integral multiple of 27z
= ‘Ln’ is logarithm with base 10 i.e. common log while ‘In’ is
natural logarithm with base ‘e’.

Example: if z = —1 —+/3ithen r =|z| =2 and 6 = —2z/3 then find its
logarithm.

Solution: Giventhatz = —1 —+/3ithen r =2 and 6 = —2z/3 then using the
formula we get required logarithm i.e.

logz=In|z|+i(@ + 2nm) ;n=0,+1,%2, ...

log(—1 —+v3i)=In2+i(-2m/3 + 2nm) ;n=0,+1,+2, ...

log(-1 —V3i)=In2+2(n—3)mi ;n=0,%1,+2, ..

Example: Find that log1= 0

Solution: using logz=In|z| +i(@ + 2nmT) ;n=0,+1,12, ...
logl=1In1+i(0+2nn) =2nni (n=0,£1,%£2,...).
As anticipated, log 1 = 0.

Example: Find that log (—1) = zi

Solution: using logz=In|z| +i(@ + 2nmT) ;n=0,1+1,12, ...
log(-1) =Inl+i(m +2nn) =(2n+L)mi (n=0, £1,%£2,...)

and that log (-1) = 7i.

Example: Show that Log [(1 + i)?] = 2Log(1 + i)
Solution: using Logz=Inr+i 8
L.H.S = Log[(1+1)?] = Log (2i) = In2 + ig

R.H.S =2Log(1+1{) =2 (lm/i+ zg) = In2 + i As required.
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Example: Show that Log [(—1 + i)?] # 2Log(—1 + i)
Solution: using Logz=Inr+i @
L.H.S = Log[(=1+i)?] = Log (=2i) = In2 — ig

R.H.S =2Log(-1+1) =2(InvZ+ %) =m2 + 1<
Hence the result.

Example: Show that log (i)? # 2logi

Solution: using logz =In|z| +i(0 +2nx)
L.HS=1logi?=1log(—1)=Q2n+ Dmi ;n=0,4+1,42, ...

R.H.S = 2logi = 2 [lnl +i (§+ 2nrr)] =@n+Dmi ;n=04+1,42, ...
Hence the result.

BRANCHES AND DERIVATIVES OF LOGARITHMS

= A branch of a multiple-valued function f is any single-valued
function F that is analytic in some domain at each point z of which
the value F (z) is one of the values of f.

= The function Logz = Inr +io (r > 0,—m <6 <m s
called the principal branch of logarithmic function.

= A branch cut is a portion of a line or curve that is introduced in order
to define a branch F of a multiple-valued function f .

= Points on the branch cut for F are singular points of F , and any point
that is common to all branch cuts of T is called a branch point.

= The origin is evidently a branch point for branches of the multiple-
valued logarithmic function.

Example:
Show that log (i)? = 2logi whenthe branch Logz = Inr + i6

(r>07<¢6 <%”) is used.

Solution: using logz=In|z| +i(0 +2nx)
L.H.S =logi*? =log(—1) =Inl+ i = mi
R.H.S = 2logi = 2[In1 + zg] = mi
Hence the result.

Example: Find the value of log (=1 + i)
Solution: using logz =In|z| +iarg(z)
log(—=1+i)=InvV2+i(mr—m/4)

log (-1 + 1) =Inv2 +i
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Exercises 27: (visit @ Youtube “learning with Usman Hamid”)

1.

Show that

(a) Log(—ei) = 1—i(r/2) (b) Log(1—i) =5 In2 — =i

2.
2)

b)
c)

3.
4

10.
11.
12.
13.
14.
15.

16.
17.

18.
19.

Show that
loge=1+2nmi (n=0, £1, £2,..))

log i = (2n + %) mi (N=0,+1,2,.)
log (—1 + V/3i) = In2 + 2(n+§) i (n=0,+1,+2,..)

Show that Log (i)® # 3Logi

. Show that log (i)? # 2logi whenthe branch Logz = Inr + i8

(r > 0,‘%” <0< 1%”) is used.

Find all roots of the equation log z = iz/2. Ans.z=1.

Show that Re [log(z — 11)] =12 In[(x — 1)°+y°]  (z # 1). Why must
this function satisfy Laplace’s equation when z#1?

Show that log (i)/? = %logi

Show in two ways that the function In(x* + y?) is harmonic in every
domain that does not contain the origin.

Find that log (i) = i z/2

(1)Y= e (n =0, +1, +2,...)

Find the value of Log (—1 — i)

Find the value of Log (1 —1i)

Find the value of (1 + i)

Find the value of eL09(1+

Find the value of (=1 + i)}

Show that (1 + i) = exp (— % + Znn) exp (llnTZ) (n=0,+1,%2,..)
Show that = exp[(4n + 1)] (n=0,£1, £2,..)

Find the value of (V3 + )"
Explain the following paradox

i = log(—1) = %log(—l)2 = %log(O) =0
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SOME IDENTITIES INVOLVING LOGARITHMS
If z; and z, denote any two nonzero complex numbers, then
» log(z1zp) =logz; +log z;

» log(z1/z2) =logz; - log z,

» arg(z1zp) =argz; +argz;

» In|z1zo| +iarg(z122) = (In|z1|+iargzy) + (In]zo|+iarg zy)
n "=e"7 (n=0+1,42,..)

" z””: exp(1/n logz) ;n=123,....andz#0

Example: Show that log(z1z,) =logz; +logz, whenz; =z, = —1
Solution: Since we know that log 1 = 2nzi and log(—1) = (2n +1)xi,
wheren=0, 1, £2,. ...

then log (z1z;) = log (1) = 2nzi and using the values n = 0 we get
log(zizz) =0

and logz; + logz; = mi- mwi forn=0and n = -1 respectively.
Then clearly log(z1z;) = log z; + log z,

But

If, on the other hand, the principal values are used then statement is not always
true i.e.

Log(zizz) =0 and Logz; +Logz,=2xzi for n=0

Property: Prove that log(z;z,) = log z; + log z,
Proof: letz, = x; +iy, and z, = x, + iy,

Then zyz, = (x1%; — y1¥2) + i(x2y1 + y2%41)
Now using the formula log z = In |z| +iarg(z)
L.H.S =logz,z, =In|z,z,| +iarg(z;z,)

log 217, =3 Inl(xf + yP) (& +y3)] + itan™"

and for R.H.S consider

log z; =In |z;| +iarg(z;) = 5 In[(x} + y})] + itan™* (2)
1

xz)’l"‘)’le)
X1X2—=Y1Y2

log 7, =In |, +iarg(z) = 3 il +yP)] + itan™* (2)

R.H.S = logz; +log z, =%ln[(xf +y3H)(x2 + y2)] + itan™? (
Hence proved.

x2y1+y2x1)
X1X2=Y1Y2
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Property: Prove that W = log z is an analytic function.

Proof: (to prove given function is analytic we will show that function is

differentiable and satisfies the CR equations.)

Let f(z)=W = logz= f'(z) = i = Given function is differentiable.

For CR Equations:

Since f(z) = logz=u+iv=In|z| + iarg(z)

Su+iv= %ln[(x2 +y?)] + itan™? G)

Comparing real and imaginary parts

Su= %ln[(x2 +y3)], v=tan™?! (
X

PR e i e

S Uy = v, and Uy, = —Vy

CR equations are satisfied. Therefore W = log z is an analytic function.

RIL
—

<
I
<

> U, =

- x2+y2

Example: An identity which occurs in the quantum theory of Photoionization

. \ib g
is () = e 00t @ ;g beR verify iti111

ia+1
Solution:
-1\ _ ia=1\P] _ iblog(te=2 ,
(ia+1) = exp [lOg (ia+1) ] =e (‘a+1) .............. (l)

Now consider log (%) = log(ia — 1) — log(ia + 1)

log (ia—l) _ [ln lia — 1| + iarg (_il)] — [ln lia + 1| + iarg (%)]

ia+1
log CZI) =Inlia—1| + i(mr —tan™'a) —In |ia + 1| — itan""a
log (l:a_l) = im —itan"'a — itan"'a = im — 2itan"'a

ia+1

ia—1 _ . E _ 1 _ . 1
log (MH) _~b21 (2 tan a) = 2iCot™"(a)
(l) N (l:a—l)l _ eib(ZiCOt_l(a)) — e—ZbCOt_l(a) . iz N

ia+1

. 1 w2
Example: Prove that Re[(1 + i)!°90+D] = 2392 ¢ 715, Cos (%logz)
Solution:
Let (1 + i)!°90+) = exp|log(1 + )90 +D] = exp[log(1 + i).log(1 + i)]
. 2

(14 )P90+D = expllog(1 + )]? = exp [ln |1+ i| + itan™t G)]

. i [1 .2
(1+0)'090*D = exp |-log2 + lz]

Nlog(1+i) _ (1 2 . m\? 1 T
(1 +0)°9% Y = exp _(2 logZ) + (l 4) + 2 (2 logZ) (l 4)]

~log(1+i) — l 2 _ ”_2 i
a1+ =exp|; (log2) o tis logZ]

. [ 2
(14 i)1090+D = exp %(logZ)(logZ) — ?—6 + i%logZ]
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2
jloge) ™ %log2

(1 + l)log(lﬂ) _ e(logz)4 e 16.e'a
(log2) _m™
(1 + i)+ = e(logz)“l T [Cos (ElogZ) + iSin Glogz)]

Liogz) _m* Llogz) _m*

e10g2)¥" o715 Cos( logZ) +ie(10g)T " RSln( logZ)
Taklng only real part, we get the required.

71'2
Re[(1+ i)l9(+D] = 231992 ¢35 Cos GlogZ)

COMPLEX EXPONENTS (THE POWER FUNCTION)
When z # 0 and the exponent ¢ is any complex number, the function z° is
defined by means of the equation

7C = oC log where log z denotes the multiple-valued logarithmic function.

Remark:
= for two functions f(z) and g(z) we can write
[f(z)]g(Z) = eloglf @I9D _ ,g9@)iogf(2)
= if ‘¢’ is not a rational number then
ec09% = exp[c{ln |z| + i(arg(z) + 2nm)}] ;n=10,+1,42........
has an infinite number of values.

d d c d
n 0= _eclogz — _eclogz n 2z = czlogc

dz dz z dz
= The principal value of z° occurs when log z is replaced by Log z as

follows z¢ = ecLog?

= zCisanalytic. As its derivative exists.

»  z¢ = ecLogZ glso called the principal branch of the function z° on the
domain|z| >0, < Argz<m

Example: Find the principal value of (i)'
Solution: we may write it = g9t
Now as logi = In |i| + i(arg(i) + 2nn) = (Zn +l) wi ;n=0,+1,+2, ...

Then it —exp[ (2n+ )m]—exp[ (2n+ ) ] n=0,+1,4+2,........

Then principal value will be it = exp (— g) in=0,+1,42, ........
Note that the values of i’ are all real numbers.

Example: Find the principal value of ( 1)/m

Solution: we may write (—1)1/* = elog(-1)
Now log(—1) = In |-1| + i(arg(—=1) + 2nm) = (2n + 1)mi

Then (=1)Y™ = exp E 2n + 1)7Ti] =exp[(2n+1)i];n=0,+1,%2, ...
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Example: Find the principal branch of z**

2
Solution: we may write z%/3 = e3
Now logz = In |z| + iarg(2)

logz

Then z2/3 = 51997 = exp Eln |z] + iéarg]

z%/3 = exp Elnr + i%@] = exp [lnsi/r_2+ ige]

223 = Vr2exp (i?) = W[Cos?+ iSin?] , principal value.
This function is analytic in the domainr >0, z <0 <=«

3 .
Example: Evaluate Lne(“i’”) (this is common logarithm)
3 . 3 .
Solution: we may write Lne(13m) — loge(1+5m)
(1+§Tti) 1 E7'ri 1 E7ri
loge\" 27"/ = log(e .ez )= loge™ + loge2
3 .
loge(HEm) =1+log [Cos%n + iSin%n] =1 +1log[0 — i] = log(—i)

Lne(”%m) =1- i%

Example: Consider the nonzero complex numbers z; = 1+i, Z;=1-1i
then show that (z;z,)"! = z,'z,"
Solution:

When principal values of the powers are taken,

(2,2,)} = 21 = €109 2 = ¢i(In 2+i0) — i In 2

And

71" = giLog(1+i) = gi(INV2+in/8) = g—m/Agi(In 2)/2
25" = oiL0g(1-i) = i(INVZ - in/4) = gn/Agi(In 2)/2

ThUS (lez)i = ZliZZi

Example: Consider the nonzero complex numbers z, =1-i, z3=-1 —i.
then show that (z,23)! = z,'z5'e 2"

Solution:

When principal values of the powers are taken,

(2,21 = (-2)i = €lL09(-2) = ¢i(In 2+i7) = o~7¢i In 2
And

73t = oiLog(-1- i) = gi(INV2-i37/4) = *i(In 2)/2
Zy' = giL0g(1-i) = i(INV2 - in/8) = gm/Agi(In 2)/2

Thus (z,23)" = z,'z3'e ™2™
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Exercises 28: (visit @ Youtube “learning with Usman Hamid”)
1) Find the principal value of

(@) ()" ©) (1 —i)"

) [e/2(-1 V3D ] ™ (d) (—1)

2) Show that (-1 +v/3i)*? = + 2¢/2.

3) Show that the results;

a) (—1+v3i)** = [(-1 +V/3i)*]¥2 finding the square roots of —1++v/3i

b) (-1 +V3i)¥? = [(-1 +V3i)"?]? finding the cube roots of —1+/3i

4) Find all the solutions of W = i* and prove that the values can be
arranged in an infinite geometric progression.

5) Examine the validity of the equation logz* = 4logz by taking

different values of ‘z’

6) Prove that Yo, L™ = ¢

n!

TRIGONOMETRIC FUNCTIONS
The sine and cosine functions of a complex variable z are defined as

lZ_e—lZ elZ+e—lZ

and Cosz =

follows: Sinz = £

Remark
» e“=cosz+isinz
sin(iy) = i sinhy and  cos(iy) = coshy
sinz=sinxcoshy +icos x sinhy
cosz=cos xcoshy—isinxsinhy
» |Sinz|? = Sin’x + Sin%hy
» |Cosz|?> = Cos?x + Sin’hy
= Sinz and Cosz are not bounded on the complex plane.
= The zeros of Sinz and Cosz in the complex plane are same as the zeros
of Sinx and Cosx on the real line (discussed in next theorems)
» |Sinz| = |Sinx| and [Cosz| = |Cosx]|

Property: Sinz is periodic function with primitive period 2.

Proof:

For periodic function we have f(z + 1) = f(z) then

Sin(z+ 1) = Sin(z)

Putz=0 = Sin(1) =Sin(0) > Sinti=0=>A=nm.......... (1)

Now as we have Sin(z + 1) = Sin(z)

= Sin(z + nm) = Sin(z)

= SinzCosnm + CoszSinnm = Sin(z) = Sinz(—1)" 4+ Cosz(0) = Sin(z)
= Sinz(—1)" = Sin(z) this condition will hold if ‘n’ is even. i.e. n = 2k
()=>A=2knr ;k=0,+1,42,..........

Hence Sinz is periodic function with primitive period 2.
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Property: Cosz is periodic function with primitive period 2.

Proof: For periodic function we have f(z + 1) = f(z) then

Cos(z+ 1) = Cos(2)

Putz=0 = Cos(1) =Cos(0) > CosA=1=>A=nm.......... Q)

Now as we have Cos(z + 1) = Cos(z)

= Cos(z + nm) = Cos(z)

= CoszCosnm — SinzSinnm = Cos(z) = Cosz(—1)" + Sinz(0) = Cos(z)
= Cosz(—1)™ = Cos(z) this condition will hold if ‘n’ is even. i.e. n = 2k
()=A=2knr ;k=0,+1,%2,..........

Hence Cosz is periodic function with primitive period 2.

Zero of a Function:
The values of ‘z” for which f(z) = 0 are called zeros of f(z)

Property: Sinz=0& z=nn;n=0,11,%2,......0r find zeros of Sinz.
Proof: consider Sinz = 0

= Sin(x + iy) = 0 = SinxCosiy + CosxSiniy = 0

= SinxCoshy + iCosxSinhy = 0 + 0i

= SinxCoshy =0 ....... (1) CosxSinhy =0 ....... (i1)

(i) = Coshy #0,Sinx =0=>x =nn

(ii) = CosxSinhy = 0 = CosnnSinhy = 0 = (—1)"Sinhy =0

= (-1)"# 0 ,Sinhy =0= %[ey —eV]=0=>[e”—-e?]=0
eV =1=e"2y=0

Now we know that z = x + iy thereforez =nm; n=0,%t1,£2,.....
Conversely: consider z =nm  Then Sinz = Sinnm = 0 as required.

Property: Cosz = 0 & z = 2207 n=0,41,+2,.....

Or find zeros of Cosz.

Proof: consider Cosz =0

= Cos(x +iy) = 0 = CosxCosiy — SinxSiniy = 0

= CosxCoshy — iSinxSinhy = 0 + 0i

= CosxCoshy =0 ....... (1) SinxSinhy =0 ....... (i1)

(i) :>Coshy¢0,Cosx=O:>x=(2n+1)n

(Zn;rl)n.Sinhy =0= 1.Sinhy =0
= Sinhy =0 :%[ey—e-y] =0=[eY—e?]=0
SeV=1=e"2y=0

Now we know that z = x + iy therefore =
@n+in

(ii) = SinxSinhy = 0 = Sin

n+1)m

;n=0,+1,%2,......

@n+)m

Conversely: consider z = Then Cosz = Cos = (0 as required.




Problem: Find all solutions to Sinz = 2i

Proof: consider Sinz = 2i

= Sin(x + iy) = 2i = SinxCosiy + CosxSiniy = 2i

= SinxCoshy + iCosxSinhy = 0 + 2i

= SinxCoshy =0 ....... (1) CosxSinhy =2 ....... (i1)
(i) = Coshy #0,Sinx =0=>x =nn

(ii) = CosxSinhy = 2 = CosnnSinhy = 2 = (—1)"Sinhy = 2
= (—1)" # 0 ,Sinhy = 2 :%[ey —eV]=2=>e¥—eV =4
=e? —4e¥ —1=0=e” =2++/5 byquadratic formula.
>y= log(Z + \/3)

Now we know that z = x + iy therefore z = nmr + ilog(2 £ V5)

Problem: Find all solutions to Cosz = 5

Proof: consider Cosz =5

= Cos(x +iy) = 5= CosxCosiy — SinxSiniy = 5

= CosxCoshy — iSinxSinhy = 5 + 0i

= CosxCoshy =5 ....... (1) SinxSinhy =0 ....... (i1)
(ii) > Sinhy # 0,Sinx =0=>x =nm

(i) = CosnmCoshy =5 = (—1)"Coshy =5

> (—1)"#0 ,Coshy =5=>-[e¥ +e?]=5=>¢” —e™¥ = 10
= e —10e¥+1=0=eY =5+ 26 by quadratic formula.
>y = log(S + 2\/5)

Now we know that z = x + iy therefore z = nm + ilog (5 + 2V6)

Exercises 29: (visit @ Youtube “learning with Usman Hamid”)
1) Show that |sin z|>|sinx|; and |cos z|>|cos x|.

2) Show that [sinhy|<|sinz|<coshy; and |[sinhy|<|cosz|< coshy.
3) Show that neither sinz nor cosz is an analytic function of z anywhere.
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4) Find all roots of the equation sinz = cosh 4 by equating the real parts and

then the imaginary parts of sin z and cosh4.
5) Find all solutions to Sinz = 5
6) Find all solutions to Cosz = 2

Availabel on MathCity.org
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HYPERBOLIC FUNCTIONS
For a complex variable z we can define:

Sinhz = 2= and Coshz = <+~
Remark
» ¢’ =sinhz + coshz
» sinh(iz) = isinz and  cosh(iz) = cosz

» |Sinhz|? = Sinhx + Sin?y

* |Coshz|? = Sin*hx + Cos?y

= Sinhz and Coshz are both analytic.

= —isinh(iz) =sinz, cosh(iz) = cosz

= —jisin(iz) =sinhz, cos(iz) = coshz

= Hyperbolic functions are analytic except for those values of ‘z” which

are excluded by definition.
z

Property:
Sinhz=0oz=nmi;n=0,%+1,+2,......0r find zeros of Sinhz.
Proof: consider Sinhz = 0

Z_,-Z
e“—e 27z

= =02e’—e?=02e’=e?2e¥=¢"=0=e?

>2z=2nnmi=>z=nni ;n=0,+1,+2,...........
Conversely: consider z = nmi
Then Sinhz = Sinhnmi = iSinnm = 0 as required. Since sinh(iz) = i sinz

Property:
Coshz=0¢&z= (g + nn) i;n=04+1,+2,......0r find zeros of Coshz.
Proof: consider Coshz = 0

e?+e™?

=0>e’+e?=0=2e’=—e"?
:>eZZ=—e°=—1=ez(5+nﬂ)i:>22=2(§+nn)i=>Z=(§+nn)i
n=0+1,+2,............

Conversely: consider z = (g + nn) i

Then Coshz = Cosh (g + nn) i = Cos (g + nn) = 0 as required. Since
cosh(iz) = cosz
Property: Sinhz is periodic function with primitive period 2kmi.
Proof: For periodic function we have f(z + 1) = f(z) then
Sinh(z + 1) = Sin(z)

e)‘—e

Putz=0 = Sinh(1) = Sin(0) = Sinhi =0 = . =0=2el—e*=0

et =e0=0=e2" 2 2) =2nmi = A =nni ;n =2k i.e Even
= Sinh(z + 1) = Sinh(z + nmi) = Sinh(z + 2kni) = Sinh(z)
Hence Sinhz is periodic function with primitive period 2kri.
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Property: Coshz is periodic function with primitive period 2kri.
Proof: For periodic function we have f(z + 1) = f(z) then

Cosh(z + 1) = Cos(z)

Putz=0 = Cosh(1) = Cos(0) = CoshA =1 = A= Cos~ (1) = nmi
=> A =nmi ;n =2k i.e. Even

= Cosh(z + 1) = Cosh(z + nmi) = Cosh(z + 2kmni) = Cosh(z)
Hence Coshz is periodic function with primitive period 2kri.

Problem: Find all solutions to Sinhz = —i

Proof: consider Sinhz = —i

= Sinh(x + iy) = —i = SinhxCoshiy — CoshxSinhiy = —i
= SinhxCosy — iCoshxSiny =0 — i

= SinhxCosy =0 ....... (1) CoshxSiny =1 ....... (i1)
(i) = Sinhx # 0,Cosy =0=>y = (2n+ 1)%

(ii) = CoshxSin(2n + 1)% =1

Now two cases arises;

Case — | : when Sin(2n + 1)% =-1

= Coshx.(—1) =1 = Coshx = —1=> exze_x =—1l=2ef+e™*=-2
= e* = —1 = x = log(—1) not possible.
Case — Il : when Sin(2n + 1)% =1

eX+e ™™

= Coshx.1=1= Coshx =1= =1l=e*+e™*=2
>e*=1=2x=1log(1)=>x=0

Hence z=x+iy=0+Qn+1)Zi=2z=n+1)i

Exercises 30: (visit @ Youtube “learning with Usman Hamid”)

1. Why is the function sinh(e”) entire? Write its real component as a
function of x andy, and state why that function must be harmonic
everywhere.

Prove that |Sinhz|? = Sinh?x + Sin?y
Prove that |Cosz|? = Sinh?x + Cos?y

Sin2x+iSinh2
Prove that Tanz = DMEXFIMALY
Cos2x+Cosh2y

Prove that if Tanh(x + iy) = u + iv then
Sinh2x Sin2y
=— - andy=—"—-—
Cos2x+Cosh2y Cos2x+Cosh2y
Find all solutions to Sinhz = —1

Find all solutions to Sinhz =
Find all solutions to Coshz =
Find all solutions to Coshz = —2

g b~ o

l
1
2

© o No
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INVERSE TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS
= In order to define the inverse sine function sin™ z,
we write w=sin"'z when z =sinw.
elwzle Y W _emiW = iy o (ei"")2 —2ize™ —1=0
Thene" =iz + (1 -2 by quadratic formula.
ore“=z+i(1-2)" by quadratic formula.
where (1 - z%)"2 s, of course, a double-valued function of z.
Taking logarithms of each side of above equation
log(e™) = log(iz £ V1 — z2)
= iw = log(iz +V1-— zz)
sin"tz = =i log[iz + (1 - Z°) where w = sin”" z
sintz==ilogfiz+ (1 =22)Y*] + nai  where (n =0, 1, +2,...). in general
Remember that sin™ z is a multiple-valued function, with infinitely
many values at each point z.

7Z =

1/2
]

= |n order to define thellnverse cosine function cos™
we write w =cos ~z when z = cosw.

eV oW 4 oW — 27 o (e”"’) —2ze™ +1=0
TheneV =z +i(1-2z)Y? by quadratic formula.
or e“=z+i(1-29" by quadratic formula.
where (1 - z%)"2 s, of course, a double-valued function of z.
Taking logarithms of each side of above equation

log(e™) =log(z + V1 — 22)
= iw = log(z £ iV1 — 22)

Z =

costz=-ilog[lz+i(1-7)"*] wherew=cos™z
costz==ilog[z+i(1=2z)"*] + nzi where (n =0, +1, +2,...). in general
= In order to define the inverse tangent function tan™ z
wewrite w=tan"'z when z = tanw.
eiw_e—iw eiw+e—iw 1

- i(eiw+e—iw) eiW_e—iw E
eWye—iW oW _p—iw _ 1+iz 2etW _ 1+iz N QZiW _ 1+iz
e‘W+e“W—e‘W+e“W 1-iz 2e"W 1z 1-iz
2iw = lo ( ) Sw= —lo (1+i2) =Llo (H—Z)

g 9 1-iz 2 g i-z

tan 1z = - log (if)

tan~1z = —log( ) +nzi where (n=0, £1, £2,...). in general
Remember that tan™* z is a multiple-valued function, and each branch is single
valued in z — plane, cut along the imaginary axes except from the argument
fromi to-i
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Example: This example shows that sin~'z is multivalued.
Show that Sin™*(—i) = nr + i(— D™ n(1++v2) ;n=0,%1,+2,........
Proof:

Since we know that sin"*z = =i log[iz + (1 - z%)"4]
Thus Sin~'(—i) = —ilog(1 + v2)
But log(1+v2) = In(1+v2) + 2nmi n=011, %2 ...

Also log(1-v2)=in(N2-1)+ Q@n+ Vi ;n=0,%1,£2,........
Thus log(1++v2) = (—D)"n(1+V2) +nni  ;n=0,%1,+2,........
Hence Sin~'(—i) =nm+i(-1)"n(1++v2) ;n=0,%1,+2,.......

Remember in this question we use

(V2 -1) = In= = —In(1+2)

Remark
= Sinh~'z =log(z +Vz2 + 1)
= Cosh™'z=log(z +Vz2 — 1)
» Tanh 'z = %log (E)

1-z

Exercises 31: (visit @ Youtube “learning with Usman Hamid”)
1. Find all the values of
(@) tan~1(2i)  (b) tan~L(1+i) (c) cosh™(-1) (d)tanh™* 0.
2. Solve the equation sin z = 2 for zby
i. equating real parts and then imaginary parts in that
equation;
ii. using expression for sin”'z
3. Solve the equation Cos z = /2 for zby
i. using expression for sin~*z
ii. using expression for cos™ z
iii. using expression for tan™* z
iv. using expression for cosh™
4. Find Sin~1V/5
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INTEGRALS

Integrals are extremely important in the study of functions of a complex
variable. The theory of integration, to be developed in this chapter, is noted for

its mathematical elegance. The theorems are generally concise and powerful,

and many of the proofs are short.

DERIVATIVES OF FUNCTIONS w (t)
In order to introduce integrals of f(z) in a fairly simple way, we need

first consider derivatives of complex-valued functions w of a real variable
‘t”. For a complex valued function w(t) = u(t) +iv(t), where the functions

to

u and v are real-valued functions of t . The derivative of the function is

defined as w'(t) or %w(t) orw'(t) =u'(t) +iv'(t)

Example.

For a function w(t) = u(t) +iv(t), show that % [w(®)]? = 2w(@®w'(t)
Solution.

Consider [w(t)]? = [u(t) + iv(t)]? = u? — v? + 2iuv

% [w(®)]? = [u? —v?] + 2i[uv]’ = 2uu’ — 2vv’ + 2i[uv’ + u'v]

LWOF = 2(u + W)@ + iv") = 2w(OW(©)

. d
Example. For z, = xo + iy, , Show that Eezot = zye%ot

Solution.
Consider eZot = e®o+o)t = pXoteiVot = eXotCosy t + ie*otSiny,t

%ezot = [e*otCosy,t] + i[e*°tSiny,t]’

%ez(’t = (xo + iyg)(e*°tCosyyt + ie*°tSiny,t)
%ezot = (x + iyg)eXoteivot

iezot = 7z e%0t

dt
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Example: Suppose that w(t) is continuous on an interval a <t < b; that
is, its component functions u(t) and v(t) are continuous there. Even if
w'(t) exists when a <t < b, the mean value theorem for derivatives no
longer applies. To be precise, it is not necessarily true that there is a

number ‘c’ in the interval a < t < b such that w'(c) =% .
Verify!tiin
Solution.

To see this, consider the function w(t) = e" on the interval 0 < t < 2z,
When that function is used, |w’(t)|= |ie" |= 1;

and this means that the derivative w’(c) is never zero,

while  w(2z) — w(0) = 0.

Then
w(b)-w(a) _ w(Cm)-w(0) o 0
b-a 2m—0 T om

So there is no number ‘¢’ such that given expression holds.

Exercise: (visit @ Youtube “learning with Usman Hamid”)
Use rules in calculus to establish the following rules when w(t) = u(t) + iv(t)
is a complex-valued function of a real variable t and w'(t) exists:

a) % [zow(t)] = zow'(t) Forz, = x, + iy, a complex constant.
b) % [w(—t)] = —w'(—t) where w'(—t) denotes the derivative of
w(—t) with respect to ‘t’ evaluated at ‘ — t’
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DEFINITE INTEGRALS OF FUNCTIONS w(t)

When w(t) is a complex-valued function of a real variable t and is written
w(t) = u(t) +iv(t), where uand v are real-valued, the definite integral of
w(t) overaninterval a < t < b is defined as

b b b
fw(t) dt = fu(t) dt+ifv(t) dt

Provided the individual integrals on the right exist.

Remarks:
i, Re[ w()dt=[ Relw(t)ldt andIm [ w(t)dt = [ Im[w()]dt
ii.  Improper integrals of w(t) over unbounded intervals are defined in a
similar way.
iii.  The existence of the integrals of u and v in definition is ensured if
those functions are piecewise continuous on the interval a <t < b
Such a function is continuous everywhere in the stated interval except
possibly for a finite number of points where, although discontinuous.
iv.  The fundamental theorem of calculus, involving antiderivatives, can,
moreover, be extended so as to apply to integrals To be specific,
suppose that the functions w(t) = u(t) + iv(t) and
W (t) = U (t) + iV (t) are continuous on the intervala<t<b. If
W'(t) = w(t) whena<t<b,then U'(t) = u(t) and
V'(t) = v(t). Hence, in view of definition

[Pw(@®de = [U®1L +iV(©)13 = [U®) + V(B)] - [U(a) + iV(a)]

Then J; w(t) dt = W (b) — W (b) = [W(£)]}

v.  We know that the mean value theorem for derivatives in calculus does
not carry over to complex-valued functions w(t). similarly, the mean
value theorem for integrals does not carry over either. Thus special care
must continue to be used in applying rules from calculus.

vi.  Definite integrals of a real variable does not extend straight way to the
domain of complex variable. Whereas in case of complex variables the
path of definite integral may be along any curve joining the points.
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V3 .
Example: Evaluate [, /1 git gy
Solution:

s .

fo /a ett dt = fon/‘*(Cost + iSint) dt

T , b3 T T T

fon;“eltd = fo /4 Cost dt + ifo /4 Sint dt = |Sint|} — i|Cost|;
4 it g 1 1

J,*etd —ﬁ+l( 5+ 1)

Another method:
/4- lt —

f dt i 0 i i

L
i
et de =1 (G 5+ 1) = 5+ ( 1)
tetd =g i(-5+1) i

Example:

Suppose that w(t) is continuous on an interval a <t < b; that is, then
show that, it is not necessarily true that there is a number ‘¢’ in the interval
a<t<bsuchthat [ w(®)dt=w(c)(b-a).

Solution. _

To see this, consider the function w(t) = e" on the interval 0 < t < 2z. With
a=0,b=2nm

Then [Tw(t)dt = ["etdt =
But for any number ‘c’ such that 0 <c <2z
lw(c)(b —a)| = |eic|2n

Thus L.H. S+ R.H.S
Hence the result.

elt

lt 21

=0
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Exercise 32: (visit @ Youtube “learning with Usman Hamid”)
1. Evaluate the following integrals;

a) fol(l +it)%dt
2
b) [7(3-1) dt
0) fO"/e ei2t gt
d) [“e?dt (Rez>0)

2. Show that if ‘m’ and ‘n’ are integers then
fzneimee—ine do = { 0 when m#n
0 2r when m=n

3. Ifwehave [ e@+D¥ dx = ["e*Cosx dx + i [, e*Sinx dx then
Evaluate the two integrals on the right here by evaluating the single
integral on the left and then using the real and imaginary parts of the
value found.

4. Letw(t) = u(t) + iv(t) denote a continuous complex-valued function
defined on an interval —-a<t<a.
a. Suppose that w(t) is even; that is, w(—t) = w(t) for each point
t in the given interval. Show that
a

fw(t) dt =2 f w(t) dt

—-a 0
b. Show that if w(t) is an odd function, that is
w(—t) = —w(t)for each point t in the given interval, then
a

fw(t) dt =0

Suggestion: In each part of this exercise,_use the corresponding property of
integrals of real-valued functions of t , which is graphically evident.
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CONTOURS

Integrals of complex-valued functions of a complex variable are defined on
curves in the complex plane, rather than on just intervals of the real line.
Classes of curves that are adequate for the study of such integrals are
introduced in this section.

SUB DIVISION OF THE INTERVAL [a,b]
Suppose [a,b] be a closed interval and a,b € R and divide [ab] into

n — subintervals as [a = ty, t;], [t1, to],ecvenvnennn... ,[tn—1,tn, = b] where
to,ty, to, tspennnnn. t,—1,t, are intermediate points between a = t,and t,, = b
such that a=ty<t;<t,<.... <th.1<t,=b then the set

S = {ty, ty, ty, ... t,_1,tn}is called the subdivision of the interval [a,b]

NORM OF SUB DIVISION OF THE INTERVAL [a,b]
Suppose [a,b] be a closed interval and a,b € R and divide [ab] into

n — subintervals as [a = ty, t;], [t1, ta],evevenennnn.. ,[tn—1,tn = b] where
to,ti,toyeennnnn. tn.—1, t, are intermediate points between a = tyand t,, = b then
the greatest of the numbers t; —to, t; — tq,......... ,tn — tn—q IS called the

norm of the subdivision ‘S’ and is usually denoted by |S| or [|S|land it is the
maximum length of the subintervals of an interval [a,b]

LOCUS OF A POINT
It is a path traced by a point moving under certain given conditions.

ARC / CURVE
A set of points z = (x, y) in the complex plane is said to be an arc/ curve if
x = x(1), y=y(t) (astsb),

where x(t) and y(t) are continuous functions of the real parameter t . It is the
locus of the point whose coordinates can be expressed in the form of a single
parameter.
For example:

i. x=r1Cosh,y =rSind = x> + y? = r? defines a circle.

ii. x=aCosh,y =bSin6 = Z—z + Z—j = 1 defines an ellipse.
Keep in mind: arc and curve are different but we use here in same manner. As
curvature of arc remains fixed while curvature of curve vary with its length.

This definition establishes a continuous mapping of the interval

a <t < b into the xy, or z, plane; and the image points are ordered according to
increasing values of t . It is convenient to describe the points of C by means
of the equation z=12(t) (a=t=<b), where z(t) = x(t) + iy(t).
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CLOSED ARC / CLOSED CURVE
A curve traced by a function z = z (t) such that the initial point and the terminal
point are the same then the curve is called a closed curve. e.g. circle or ellipse.

SIMPLE ARC / SIMPLE CURVE
The arc C is a simple arc, if it does not cross itself ; that is, C is simple if
z(ty) # z(t;) when t1# t;

JORDAN ARC / JORDAN CURVE

Named for C. Jordan (1838-1922), pronounced jor-don

A curve which is simple as well as closed is called Jordan curve.

Or When the arc C is simple except for the fact that z(b) = z(a), we say
that C is a simple closed curve, or a Jordan curve. Such a curve is
positively oriented when it is in the counterclockwise direction.

The geometric nature of a particular arc often suggests different
notation for the parameter t in equation z=1z(t) (as<t<bh).
This is, in fact, the case in the following examples.

Example: The polygonal line defined by means of the equation
={x+ix when) <x <1

x+i whenl<x<?2
and consisting of a line segment from 0to 1 + i followed by one from 1 +i to

2 + i (Fig.) is a simple arc.

y
1

(0] 1 2 X

Example: The unitcircle z=¢” (0<6<2x) about the origin is a simple
closed curve, oriented in the counterclockwise direction. So is the circle
z=12o+Re” (0<0<2x), centered at the point z, and with radius R .

= The same set of points can make up different arcs.
Example: Thearc  z=¢"(0 < §<27) is not the same as the arc described

by equationz = e (0 < #<2z) .The set of points is the same, but now the
circle is traversed in the clockwise direction.
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Example: The pointsonthearc z=¢%’ (0<0<2z) are the same as those
makingup thearcs z=e” (0<#<2z) andz=e™ (0<6<2x). Thearc
here differs, however, from each of those arcs since the circle is traversed twice
in the counterclockwise direction.

Remark: The parametric representation used for any given arc C is, of course,
not unique. It is, in fact, possible to change the interval over which the
parameter ranges to any other interval.

For an arc C representing by z = z(t) if we have z'(t) = x'(t) + iy'(t)
Then arc is then called a differentiable arc, and the real-valued function

1Z'(6) | =/ 1x'(®)|2 + [y’ (£)|? is integrable over the interval(a < t < b).

SMOOTH CURVE

If z = z(t) be a complex valued function and a curve is traced in the
interval I = [a, b], Further if z'(t) exists and z'(t) # 0

also continuous on the closed interval then we say that z = z(t) is
forming a smooth curve or regular curve.

PIECEWISE SMOOTH (ARC) CURVE / CONTOUR

A contour, or piecewise smooth arc, is an arc consisting of a finite number of

smooth arcs joined end to end.

Hence ifequationz =z(t) (a < t < b) represents a contour, z(t) is

continuous, whereas its derivative z'(t) is piecewise continuous.

For example, The polygonal line defined by means of the equation
={x+ix when0 <x <1

x+i whenl<x<?2
and consisting of a line segment from 0to 1 + i followed by one from 1 +i to

2 + i (Fig.) is a is contour.

y
1+i 2+i
1,
0 1 2 X
INVERSE OF THE CURVE

If the curve C is traced by z = f(t) in the interval | = (a,b) then the inverse of
C is denoted by C which is traced by z = g(t) such that g(t) = (a + b — t).
Both contours C and C are the inverse of each other but represents the same
curves traced in opposite direction
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Remark:
The length of a contour or a simple closed contour is the sum of the lengths
of the smooth arcs that make up the contour.

The points on any simple closed curve or simple closed contour C are
boundary points of two distinct domains, one of which is the interior of C and
is bounded. The other, which is the exterior of C, is unbounded. It will be
convenient to accept this statement, known as the Jordan curve theorem, as
geometrically evident; the proof is not easy.

CONTOUR INTEGRALS

We turn now to integrals of complex-valued functions f of the complex
variable z. Such an integral is defined in terms of the values f (z) along a
given contour C, extending from a point z = z; to a point z = z, in the
complex plane. It is, therefore, a line integral ; and its value depends, in
general, on the contour C as well as on the function f .

Suppose that the equation  z = z(t) (a <t <Db) represents a
contour C, extending from a point z; = z(a) to a point z, = z(b). We assume
that T [z(t)] is piecewise continuous on the interval a <t <b and refer to the
function T (z) as being piecewise continuous on C. We then define the line
integral, or contour integral, of T along C in terms of the parameter t

b
fof@adz= [ flaen 7@ de

a
Note that since C is a contour, z'(t) is also piecewise continuous on
a < t <b; Definite integrals in calculus can be interpreted as areas, and they
have other interpretations as well. Except in special cases, no corresponding
helpful interpretation, geometric or physical, is available for integrals in the
complex plane.

If C has the representation z = z(t) (a < t <b) then representation for the - C
isz= z(—t) (a< t<b)givenas follow

y

7

0 X

Also if €4 is the contour from z, to z, and C, is the contour from z, to z;
then the resulting contour will called a Sum and can be written as € = C; + C,



89

PROPERTIES:
In stating properties of contour integrals we assume that all functions f(z) and
g(z) are piecewise continuous on any contour used.

I f zof (2)dz = z, J(@)dz

i, fc[f(z)+g(z) ldz = [ f(2)dz + [ g(2)dz

ii. [ f(2)dz =[] flz(-0] Lz (-0 dt = — [ f[z(-t)] 2/ (=t) dt
iv. [ _f(2dz=-{ flz(D)]Z@)dc fort=—t

v. J_Jf@dz=—[_f(2)dz

Vi. fcf(z)dz = fclf(z)dz + fczf(z)dz forC =C, +C,
Vii. fcf(z)dz = fclf(z)dz + fczf(z)dz Fo +fcnf(z)dz

INTEGRATION CAN BE REGARDED AS SUMMATION:
Let f(z) be a complex valued function in the interval | = [a,b] then

[} f(2)dz = fat;to f(2)dz + ffj F@dz+reenn.. + f;”j” f(2)dz
And limeo Xheq f (2) Az = [ f (2)dz
Where Az, = z;, — Zj_4 and o= max(S;, Sy, ...,Sy)

REDUCTION OF COMPLEX INTEGRAL INTO REAL INTEGRAL.:
Let f(z) be a complex valued functioni.e. f(z) = U(x,y) + iV(x,y) and
z=x+1iyalsodz = dx + idy then

fcf(z)dz = fC(U +iV)(x + idy)

| f@)dz = [ (Udx —Vdy) +if (Udy + Vdx) after solving

Property: Let the function f(z) is piecewise continuous on any curve C then
| J(2)dz = — ) J(2)dz where ¢ denotes the curve C traversed in the negative
direction.

Proof:
Since we know that [ _f (2)dz = lime_g 271 f (Zn-j+1) (Zn=j — Zn—j+1)
1] S (@)dz =lime_o X7 Sz )( ]) puttingn = 2j — 1

fgf(z)dz = hmo(—>0 Z} 1f( )(Z ) = _fcf(Z)dZ
Thus fc_f(z)dz = —fcf(z)dz
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LINEARITY PROPERTY:

Let the functions f(z) and g(z) are piecewise continuous on any contour then
J [ f(2) + Bg(2)]dz = [ f(2)dz + B[ .g(z)dz

Proof:

L.H.S = fc[oc f(2) + Bg(z)]dz = limy_o Xi=q1[x f(2) + Bg(2)] Az,

= limy0 Xi=1 f(2) Azy + B lim,o Xi=1 g9(2) Azy

= [_f(2)dz+ B[ g(z)dz=R.H.S

Thus [ [ f(2) + Bg(2)ldz =« [ f(2)dz + [ g(z)dz

SOME EXAMPLES

The purpose of this and the next section is to provide examples of the
definition of contour integrals and to illustrate various properties that were
mentioned.

Example:
Let C be any piecewise smooth curve joining two points z, and z, then prove
that

ng, — 1
fCZ dz = n+1
not go through the point z = 0 if ‘n’ is negative

[z7*1 — z8*1] and n # —1 where ‘n’ is an integer and C does

Solution: Suppose C (curve from z, to z,) has been traced by z = z(t) and is a
piecewise function. So dz = z'(t) then

[ zndz = [z 7 (Ode = |22

n+1
This equation does not depend upon the particular curve C joining points from
Zy to Zn-

Zn

1
= E[zﬂ“ —zJ*1] forn # —1

If ‘2’ is closed curve then  $ _z"dz = ﬁ [zt —z§* ] =0=> ¢ z"dz =0

If n =0 then fczodz = fzzon dz = IZIZ‘ =2z, — Zy
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Example: Evaluate fomzzdz where C consists of OA, AB, OB, OAB

and OABO.
1+i =B(1,1)

0(0,0) A(L,0)

Solution: Let z = x + iy = dz = dx + idy then

[ 22dz = [+ iy)?(dx +idy) = [T (0% = y? + i2xy) (dx + idy)

integral along OA:
forthisputy =0= dy=0,x=t=>dx =dtwhere0<t<1

1
fclzzdz = fol t2 dt = | .

31p

integral along AB:

forthisputx =1= dx=0,y=t=>dy =dtwhere0 <t <1
2 _ 1 2 . . — 1 2 . _1 .
fczz dz = [[(1—-t*+i2t)(idt) = i [{(1 —t +i2t)dt = Z[-3 + 2i]

integral along OB:
forthisputx =t = dx =dt,y=t=>dy=dtwhere0 <t <1

[, zdz = [, (€% — £ + i2¢?)(dt + ide) = %[—1 +1]
integral along OAB:

fc4zzdz = fclzzdz + fczzzdz = §+§[—3 + 2i] = —§+§i
integral along OABO:

[ 2?dz = [ z2dz - [ z?dz=-2+2i+2-2i=0

Since the contour is closed therefore its integral is zero.
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Example:

Prove that the value of the integral fci dz when C is a semicircular arc
|z| =1 from —1 to 1 is —mi or wi according as the arc lies above or below the
real axis.

Solution:

Since we know that for a unit circle z = e = dz = ie'd6

Case — | : Consider the circle above real axis from —1 to 1
L=[)-dz=—i[ e ®edo = —i [ do = —mi

Case — Il : Consider the circle below real axis from —1to 1

L=f" dz=if"ee®do=i["do=mi

For the completer circle we may write as follows;
5565 dz =—-1, + I, = —(—mi) + (mi) = 2mi

Example:

Evaluate | (z—zy)"dz where C is a circle centered at z, having radius ‘r’
also check the result for n = —1 aswell as n # —1 where ‘n’ is an integer.
Solution:

Incase of circle |z—zy| =r=>z—zy=re® 2 z=2,+71e!%;0<6 < 2m
. . n+1 . 2
J (z —zy)"dz = fozﬂ(rele)n(irewde) _ ;T |el(n+1)9|0"
Whenn = —1:
Mz —20)"Vdz = [ (rei®) (ire'?dd) = 2mi
0 0 0
Whenn # —1:
27T n+1 . 2T
| (z=z))"dz = [ (z — zp)"dz = _1;1+1 |e‘(”+1)9|O =0
Hence we can conclude that
.r.Tl+1

. 27T
mlel(n+1)9|0 ;fOT' nez

[z =zo)"dz = { o ;forn=—1
0 ;form# —1
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Exercise 33: (visit @ Youtube “learning with Usman Hamid”)

I.
ii.
iii.
Iv.
V.

Vi.

Vii.

viil.

Xi.

Xii.

Xiii.
Xiv.

Prove that [ _ f (2)dz = |, f(2)dz
Evaluate f z2dz where C consists of OA, AB and OB.
Evaluate f (z + 1)dz where Curve is from (1,—1) to (1,1)

Evaluate f_ii e3?dz where Curve is from (0,—1) to (0,1)

(x2-iy®) . .
Evaluate chdz where C is the lower half of the circle |z| = 1
fromz=-1toz=1
Find the value of the integral fclzl dz when C is
a) Linefromz=-1toz=1
b) The semi-circle |z| =1fromz=—-1toz=1
c) The circle |z| = r with arbitrary initial and final points.
Find the value of the integral fci dz when C is a semicircular arc

|z| =1 from 1 to —1 according as the arc lies above or below the real
axis.

Find the value of the integral fc% when C is a square described in the
positive sense with sides parallel to the axis and of length 2a and
having its center at the origin.

Evaluate fCIZI dz where C is a circle |z — 1| = 1 described in the
positive sense.

Find the value of the integral folﬂ(x —y+ix?)dz

I.  along the straight linez=0to z = 1+i
ii.  along the imaginary axisfromz=0toz =i
iii.  along a line parallel to the real axis from z =i toz = 1+i

‘0’ and final point is ‘1°. What restrictions must be imposed on?
Evaluate folﬂ(z — 1)dz on the curve y = x?
Find the value of the integral [ _f(z)dz where C consists of OABO
with f(z) =y — x — i3x?

y
i A B +i

C1

C




XV.

XVI.

XVil.

XViil.

XiX.

a)

XX.

XXI.

XXil.

XXIil.

XXIV.
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Find the value of the integral fcz‘dz when C is the right hand half
z = 2el? ;(—% <6< g) of the circle |z| =2 from z=-2i to

z = 2i

2i

=2i

1

Find the value of the integral fc — dz where Cis acircle |z| = 2

Find fcRe(z)dz where C denoted the unit circle described in the
positive sense fromz =1toz =1
Evaluate [_f (2)dz with £ (2) = % with the curve

(@) the semicirclez=2¢e" (0<6<7);

(b) the semicirclez=2¢e" (x < 0 < 2x);

(c) the circlez=2¢" (0< 0 <2x).
Evaluate [ _f (2)dz with £ (z) = z — 1 with C is the arc from
z =0 to z =2 consisting of
the semicirclez=1+¢" (x <0< 27);
the segment z = x (0 < x < 2) of the real axis.
Evaluate [_f (2)dz with f(z) = = exp(zZ) and C is the boundary of
the square with vertices at the points 0,1, 1 + i, and i, the orientation
of C being in the counterclockwise direction.
Evaluate fcf(z)dz where f(z) is defined by means of the

. 1 wheny < 0

equations f(z) = {4 when);/ > 0
toz =1+ ialong the curve y = x°.
Let C, denote the circle centered at z, with radius R and use the
parameterization z = z, + Re!® ; —m < 6 < 7 to show that

0 rn==1,+2,.......
- n—1 — ] a4, 1 4,
fCo(Z Zo ) dz {Zﬂi ;n=20

Evaluate fcf(z)dz with f(z)=1 and C is an arbitrary contour
from any fixed point z; to any fixed point z, in the z plane.

Evaluate fcz‘dz where z=t?+itand Cisfrom z=0t0oz =4+ 2i
along

a) Linefromz=0toz=2i

b) Linefromz =2itoz =4+ 2i

and Cisthearcfromz=-1-i
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UPPER BOUNDS FOR MODULI OF CONTOUR INTEGRALS
We turn now to an inequality involving contour integrals that is extremely
important in various applications.

Lemma: If w(t) is a piecewise continuous complex-valued function defined
onanintervalast<b, then|fab w(t)dt| < fablw(t)ldt

Proof: Consider fab w(t)dt = ryeife = |fab w(t)dt| =1

Now from fab w(t)dt = rpetfo = ry = fab e~ Pow(t)dt

Now the left-hand side of this equation is a real number, and so the right-hand
side is too. Thus, using the fact that the real part of a real number is the
number itself, we find that

7o = Re fabe_ieow(t)dt =71y = fab Re[e~"%ow(t)]dt

But Re[ePow(t)] < |e~ow(t)| = |e]Iw ()| = w(b)]

> 1o = [ Re[e"Pow(D)]dt < [ lw(D)|dt

Hence | fabw(t)dt| < [MIw(®ldt

A Bounding Theorem: (ML inequality) Let C denote a contour of length
L, and suppose that a function T (z) is piecewise continuous on C. If M is a
nonnegative constant such that |F(z)]<M  for all points z on C at
which f (2) is defined, then |[_f(2)dz| < ML.

Proof:

we know that fcf(z)dz = limg_o Xp=q f(Zk) Az, = YR=q f(2x) Azg

= |fcf(Z)dZ| = |Xk=1f (@) Azy| < XR-1lf (Zp)1|AzZ]

= |fcf(Z)dZ| < |f ()| Zk=1182,| = Mfcds = ML

= |[ f(@dz| < ML as required.
Remarks:

i. |dz| =d|z|

ii. |dz|=ds

ii. L=[ds=/|dz|
iv. [ f(@dz| < [ If@)lldz]
v. M=|f(2)
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Example : Let C be the arc of the circle |z| = 2 from z=2 to z=2i that

lies in the first quadrant (Fig). Then show that fc ZZ:I dz| < i—z
y

2i

(0] 2 X
Solution: This is done by noting first that if z is a point on C, then

lz—=2|=|z4+(-2)|<|z|+|-2|=2+2=14
1

And |z* + 1| = ||z*| - 1| = 15> —< 15
|z%+1]
. _ _lz=2| _ |z=2] i
Thus when C lies on C, M= |f(z)| = Z4+1| = S 1

Now since z = z(t) = dz = z'(t)dt also z = re'® = |z|ei®
Then z = 2e%% = |dz| = |2ie?d8| = 2d8

>L= fcds = fcldzl = 2f05d9 =m andusing M =1i5
Then according to ML inequality | _f(z)dz| < ML

z—2 41T
= dz| <—
fC z4+1 15

Example : Prove that |fi2+izi2dz| <2

Solution: consider a smooth curve AB from A(0,1) and B(2,1) in whichy =1,
x=tand0 <t <2
Now |z2| = x% + y? = |2?| = y?

Fory:1’X:tand0StS2=>|Z2|21=>12|Z_12|=>|Z—12|S1
Hence
Thus when C lies on C, M=|f(2)| = ziz <1

NowFory=1x=tand0 <t <2

=>L=[,ds = [,dz| = [ |dx+dy| = [ |dt + 0| = [ dt = [ dt =2
Then according to ML inequality | _f(2z)dz| < ML

= |7 S dz| < 2

72
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Example :Evaluate |/ _zdz| where C is a semi unit circle.

Solution: for semi unit circler =1 x = Cosf,y =Sinfand 0 <0 <7

Now |Z] =[x Tyl = |x2 +y?| = |r?| =1

Hence M = |f(2)| =1z] <1

Now For x = Cos8 = dx = —Sinf,y = Sinf > dy =Cosfdand0 <0 <m
>L=[,ds=]ldz| = [ ldx+idy|= [ d6 = [ do =m

Then according to ML inequality |fcf(z)dz| <ML

= |[ zdz| <n

Exercises 34: (visit @ Youtube “learning with Usman Hamid”)
1. ||f |z = 2

2. Find an upper bound for | rr +1||f lz| =1

3. Find an upper bound for the modulus of 3z% + 2z + 1 if lz]| <1

4. Find an upper bound for the absolute value of 95 dz where C is
circle |z—2| =2

5. Without evaluating the integral for arc of the circle |z| = 2 from z=2 to
z=2i, show that

Lz <= i
6. Prove that |fc(x + lyz)dzl < m where C is a semi-circle z = +i as

ends of the diameter.
7. Without evaluating the integral for C as the line segment from z =i to

z=1, showthat |fczi4dz| < 42

8. Show that if C is the boundary of the triangle with vertices at the points 0,
3i, and — 4 oriented in the counterclockwise direction (see Fig), then
|/ (e — 2)dz| < 60

y

3i

4 0 X

9. Find an upper bound for ¢_. Z“;—Zldz where C is the circle |z| = 4



Example: Let Cg is the semicircular path z=Re"” (0< 0 <x),

Fromz = Rtoz = —R where R > 3 then show that

. z+1
llmR_wo fcRde =0

Solution: We observe that if z is a point on Cr then
lz+ 1| <|z|+|1|=|z|+1=R+1

And |z2 + 4| > ||z%| - 4| =R*-4=>——<R?*-4
|z +4I
Also |22 + 9| = [|z?| — 9| = R? 9=>|2+9|§R2—9
Thus when <z’ lies on Ckg,
_ |f(Z)| _ z+1 | _ |z+1] R+1
- T z24+4)(22+9)| T |22+4/|22+9] — (R2-4)(RZ-9)
=>L=[,ds =[1ldz|=R [, d6 =nR

. R+1
and using M = MR = m

Then according to ML inequality | _f(z)dz| < ML

z+1 R+1
|fCR (z2+4)(z2+9) dz | - (R2—4)(R2—9)'T[R
|f z+1 < n(R?+R) 1/R4 . ”(%"‘%)

CR (z2+4)(z2+9) 2zl = (R2-4)(R2-9) 1/R4 - (1_1)(1_1)

R2 R2

. (z+1)dz z+1 .
= jm |fCR (z2+4)(z2+9) |R1_r>§ofCR Grns Y S Am (i-
= limpoe | s dz =0

Cr (zZ+4)(22+9)

98
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Exercises 35: (visit @ Youtube “learning with Usman Hamid”)
i. Let Cris the upper half of the circle |z| = R (R > 2) taken in
counterclockwise direction then show that

|f 2z%2-1 < nR(2R?+1)
Cr z4+5z2+4 ~ (R2-1)(R?*-4)
72—
Also show that limg_,o, [ . ————dz =0

CR z4+5z2+4

ii. LetCristhecircle |z| = R (R > 1) taken in counterclockwise
direction then show that

|f logzdz|<2 (n+linR)

Also show that limp .., [ logz dz =0

iii. LetC,isthecircle |z| = p (0 <p <1) taken in counterclockwise

direction and supposed that f(z) is analytic in the disk |z| < 1 then show
that

|fcpz_1/2f(z)dzl <2nM.[p
Also show that limcp_m fcpz‘l/zf(z)dz =0



100

ANTIDERIVATIVES

Our next theorem is useful in determining when integration is independent of
path and, moreover, when an integral around a closed path has value zero.

The theorem contains an extension of the fundamental theorem of calculus
that simplifies the evaluation of many contour integrals. The extension
involves the concept on an antiderivative of a continuous function f (z) on
a domain D, or a function F(z) such that F'(z) = f(z) forall zin D.

Note that an antiderivative is, of necessity, an analytic function.

INDEFINITE INTEGRAL OR ANTIDERIVATIVE OR PRIMITIVE
Let T (z) be a single valued analytic function on a domain D, then a
function F(z) is said to be an indefinite integral or antiderivative or
primitive of f (z) if F(z) is analyticon D and F'(z) = f(z) forallzin D
Note: if F'(z) = f(z)then F(z) = [ f(2)dz+ ¢

FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS FOR
COMPLEX NUMBERS

Suppose that a function f(z) is an analytic function in a simply connected
domain D, if z;,z, € R then

[,: f@dz = [F(DI7: = F(2,) = F(2)
where F (2) is the antiderivative of f(z)

Proof:

Let p(2) = fzzl f(@dz ................ (i)
=>p(z=2)= fjl f(@Ddz=0................ (ii)
And= @(z=12)=["f(2)dz ............... (iii)
Subtracting (ii) from (iii)

= 0(z,) — o(z,) = f f(2)dz ................ (iv)

Now by definition of antiderivative F(z) = ¢(z) + ¢

= F(z1) = ¢(z1) + ¢ and F(z) = ¢(z;) + ¢

= F(z1) = F(2) = 9(z1) + c —9(22) — c = ¢(2z1) — ¢(23)
Hence

) = [,” f(D)dz = |F(D)|3; = F(z) — F(21)
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Example: The continuous function f(z) = e™ evidently has an antiderivative
F(z) = 67 throughout the finite plane.
Hence

. 1/2
fil/z e™dz =

i

TL’Z

A

(e —em) =2 (i+1) =—(1+1)

Example:
. 1 f . .
Show that for the function f(z) = = which is continuous everywhere except at
the origin fczlzdz = 0 where Cis a unitcircle |z] = 1
OR  show that fczizdz = 0 where C isa unitcircle |z] =1

Solution:
Given that curve is unitcircle i.e. |z| = 1

Thenz = e® = dz = ie'?dd also 0 < 0 < 2m
21
1 2n1 2n1619d9 2 _ e~i0
Then f, bdz = [ Ldz = [" 50 = i [T ei0dg = i |0
27
_ 6’9 _ —ig|2m _ -2 0 — »0 _ p—21m — _
fczdz il— O——|el|0 =—(e7"—e)=el—e2"=1-1=0
1 _
Hence Jo7dz=0

Example: If f(z) = éthen Jf@dz = 2mifor|z| =1

Solution:

Given that curve is unit circle i.e. |z| = 1

Thenz =e'® = dz = ie'ds also0 <6 <2
Then [ 2dz = ["Ldz = ("% = (7" 4 = 1913
Hence S Sf(@dz =2mi

Exercise 36: (visit @ Youtube “learning with Usman Hamid”)
1. Use antiderivatives to show that for every contour C extending from a

point z; to a point z, is should be [ z"dz = n—Jrl(z’Z“f1 —zi*1)
2. By finding antiderivative evaluate each of the following;
: 1+ ,
i f, 7%dz
.. T+2i z
ii. [, " Cos (E) dz

i, [(z-2)%dz
3. Show that fco(z — z9)"1dz = 0 where C, is any closed contour which

does not pass through the point Zy.
4. Evaluate the integral fc( dz where C is closed contour enclosing

the point z = a interpret the result whenn=1,23,......
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GREEN’s THEOREM (weaker version of Cauchy Fundamental theorem)
If C is a curve enclosing the area S then

JMdx +Ndy = [ (aN Z—ny/') dxdy
where M = M(x,y) and N = N(x,y) are functions of ‘x’ and ‘y’ and have
continuous first order partial derivatives.

Proof:
Consider a closed curve enclosed by the surface S.

Y2 1€
A
yq|d
X1
Consider
oM YZaM V2
I 5 dxdy f(y dy) dx = [ MGy dx

ff dxdy f [M(x,y2) — M(x,y1)] dx

IS5 dxdy = [ M(x,y,) dx = [ M(x, 1) dx

ff dxdy JucsM e, y)dx — [, .M (x,y)dx

Il 55 dxdy = = BCAM o, y)dx = J 4 pp M, y)dx = =[50y M(x,y)dx

f M(x y)dx = —ff dxdy ........... (A)
Now consider

[ 3 dxdy = [; ([2* 5 dx) dy = [;INGx, )3 dy

ay
ﬂ dxdy f [N(x2,y) — N(xq,¥)] dy
IS dxdy = [ N(xz,y) dy — f; N(x1,y) dy
[ Sldxdy = [, NG y)dy = [N (x,y)dy
Jf 2 Zdxdy = | DACN YAy + [ pp Ny = [, cap NG y)dy
f N(x y)dy = ff dxdy ........... (B)
Adding (A) and (B)
J . M(x,y)dx + [ _N(x, y)dy——ff dxd +ff dxdy

aN

Hence [ Mdx + Ndy = [[ (———)d xdy

ox
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SIMPLY CONNECTED DOMAINS/ REGIONS

A simply connected domain D is a domain such that every simple closed
contour within it encloses only points of D. The set of points interior to a
simple closed contour is an example. The annular domain between two
concentric circles is, however, not simply connected.

OR A region in which every closed curve can be shrunk to a point without
passing out of the region.

CAUCHY FUNDAMENTAL THEOREM

Let D be a simply connected region and f(z) be a single valued continuously
differentiable function on D then fcf(z)dz = 0 where C is any closed contour
contained in D.

OR . Ifafunction f is analytic and continuous at all points interior to and

on a simple closed contour C, then fcf(z)dz =0

Proof: Let [ f(2)dz = [ _(u+ iv)(dx + idy)

fcf(z)dz = fcudx —vdy + ifcudy +vdx oo (i)
By using Green’s theorem

J udx —vdy = [[ . (—v —wy)dxdy .............(ii)
Also fcudy + vdx = ffR(ux — vy)dxdy SRR (11}

Using (ii) and (iii) in (i)

| f@dz = [[ (—ve —uy)dxdy +iff ,(u, — v, )dxdy

CR equations hold for given function being Analytic then u, = v,,u, = —v,
| f@dz = [[ (uy —uy)dxdy +iff (v, —vy)dxdy

| f(2)dz=0 as required.

REMARK:
= The conditions stated in CFT are only sufficient but not necessary.
= CFT is more useful in Applied Mathematics because the continuity of
four partial derivatives u,, u,, v, v, is generally assumed on physical
ground.
= Goursat (E.Goursat (1858-1936), pronounced gour — sah.)
was the first to prove that the condition of continuity on £’ can be
omitted. Its removal is important and will allow us to show, for
example, that the derivative £’ of an analytic function f is analytic
without having to assume the continuity of £, which follows as a
consequence. Statement is as follows;
Cauchy Goursat Theorem. If a function f is analytic at all points interior
to and on a simple closed contour C, then fcf(z)dz =0.
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Example: If C denotes any closed contour lying in the open
. Sinz
disk |z| < 2 then evaluatefcmdz

Solution: Since the disk is a simply connected domain and the two
singularities z = £3i of the integrand are exterior to the disk. So given function
is non — analytic on these. Then by Cauchy Fundamental Theorem

f Sinz dz = 0

€ (z2+9)2

Sinhz+e%+z
fC (z2-4)(z2+9)
Solution: Since the four singularities z =2, £3i of the integrand are exterior
to the disk. So given function is non — analytic on these. Then by Cauchy
Fundamental Theorem

Sinhz+e?+z
fc (z2-4)(z2+9) dz =0

Example: If Cis a curve such that |z| = 2 then evaluate [

Example: If Cis a unit circle then evaluate

Coshz+e?
€ (z+5)(z+3)
Solution: Since the two singularities z = —5, —3 of the integrand are exterior
to the disk. So given function is non — analytic on these. Then by Cauchy

Fundamental Theorem ICMdz =0
(z+5)(z+3)
Exercise 37: (visit @ Youtube “learning with Usman Hamid”)

1. show that if C is positively oriented simple closed contour, then the
area of region enclosed by C can be written as Zil ) Zdz

Evaluate gﬁcg where C is the ellipse (x — 2)? + % (y—5)2=1

3. Show that fcf(z)dz = 0 when the contour C is the unit circle
|z| = 1 in either direction with the following functions;

i f(2)= z2 iv. f(z) = Sechz

.. AR V. f(z)=Tanz
N fl2) =z Vi, f(2) =log(z+2)
i f(2) =
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Corollary: Afunction T thatisanalytic throughout a simply connected
domain D must have an antiderivative everywhere in D.

Corollary: Entire function always possesses antiderivatives.

MULTIPLY CONNECTED DOMAINS

A domain that is not simply connected is said to be multiply connected.

OR A domain or region in which every closed curve cannot be shrunk to a
point without passing out of the region.

CONSEQUENCES OF CAUCY FUNDAMENTAL THEOREM

Corollary: Let C; and C, denote positively oriented simple closed contours,
where C is interior to C, (Fig). If a function f is analytic in the closed region
consisting of those contours and all points between them, then

[, f@dz=f, fz)dz

y

C,

(ED

This corollary is known as the principle of deformation of paths since it tells
us that if C4 is continuously deformed into C,, always passing through points at
which f is analytic, then the value of the integral of f over C; never
changes.

Corollary: Let C; and C, denote positively oriented simple closed contours. If
a function T is analytic in the closed region consisting of those contours and

all points between them, then f; f(z)dz will be independent of path from all
these points.
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CAUCHY INTEGRAL FORMULA
Let ¥ Dbe analytic everywhere inside and on a simple closed contour C,
taken in the positive sense. If zy is any point interior to C, then

f) =gl odz  OR [ L2 dz = 2mif (z)
Proof:
y

o

Let C, denote a positively oriented circle |z — z,| = p, where p is small
enough that C, is interior to C (see Fig).Since the quotlent f() Is analytic

between and on the contours C, and C but not on z, , it follows from the
principle of deformation of paths that

f(Z) f(z)
J.Cz -z fC z—2,
f(Z) f(Z) f(zo)+f(zo) f(2)=f(z0) f(zo)
szz _f z—2, d_f z—z, d+f zd
f(Z) f(Z) f(2)—f(20)
fCZZ f z—2p dz +f(ZO)fCZZ
f( ) .
Jem Z dz =1, +f(zo)12 .......... @)
f(@)—f(z0) f(2)—f(20) f(Z) f(Zo)
Now, = [ DO E 4y = 1y = |f, LOLE gy < [ |HOLE gz
_ _ 1 L =
= Ll = 1f@ = fel 2] [, ldzl < 2" pdo = 2mp
:»11<27Tp—>0asp—>OWith |Z—ZO| =p=2z—2z,=pe
_ ; anpe
Now I, = fcp p dz = [ —df = 2mi
= fc;(? dz=0 +f(zo).2m
—40
Hence Flzo) = — [ . L2 q, OrR [, 12  dz = 2mif (29)

2mi” C z—z,

This formula tells us that if a function f is to be analytic within and on a
simple closed contour C, then the values of T interior to C are completely
determined by the values of £ on C. It can be used to evaluate certain
integrals along simple closed contours.
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Remark:

If in the quotlent f( )

the polynomial g(z) is linear of the form z — z, and the

contour contains the point z = z, then we shall apply Cauchy Integral Formula
and if g(z) is not linear we shall split it into partial fraction to get linear
factors.

Example: Evaluate the integral [

dz where C be the positively

¢ ( z 9)
oriented circle |z|= 1 about the origin.
Solution:
Cosz
) . Cosz _ (z2+9) _ f(Z)
Since for the function g(z) = s e point z = 0 lies inside the

circle |z|= 1 and is Singular points, also f(z) is analytlc inside and on C so by
using Cauchy Integral Formula

f f(z) dz = 2mif (z,)

Cosz

Cosz _ (z%2+9) _ , _ 2mi
= [, o9 4z = fC—z—o dz = 2mif (0) ==

Cos2z+Cosh2z

Example: Evaluate the integral fc dz where C: |z| =

Solution:
Since for the function g(z) = M @ point z = 0 lies inside the
circle |z|= 1 and is Singular points so by using Cauchy Integral Formula

f f(z) dz = 2mif (z,)

fc CosZz+Cosh22d — 27Tif(0) = 47

—iz+4

Example: Evaluate the mtegralf (2+1)

dz where C isacircle |z]|= 2
Solution:

Since for the function g(z) = prs zf;’ points z = 0, +i lies inside the circle
|z|= 2 and are Singularities so by using Cauchy Integral Formula

(2) . .
fcfz dz = 21if (Zg) wevvee... (i)
Now by using partial fraction
omintd _ é z ¢ - 3 > 2 after solvin
z(z2+1) (z+)  (z- l) - (z+i) = (z—0) g
9Z —lZ+4
(l):f ~oim @ f ~dz +fc(+)dz+f —dz
= [, Z 222 47 = 42mif (0)] + 3[2mif (=] + 2[27if ()] = 187i

Z(Zz+1)
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Exercise 38: (visit @ Youtube “learning with Usman Hamid”)

1.

Evaluate [ c li; where C is the part of the parabola y = 4 — x? from
A(2,0) to B(—2,0)
Evaluate fc szﬁ where C is the square having corners (0,0),

(—-2,0), (—-2,-2),(0,—-2)

Let C denote the positively oriented boundary of the square whose
sides lie along the lines x = £ 2 and y = + 2. Evaluate each of these
integrals:

fcﬁdz ©) fC2z+1 z
2 Cosh
f Coi‘z d) fc%dz
C z(z2+8)
Tan(g) _
fcmdz, —2<xy<?2
Find the value of the integral of g(z) around the circle |z —i| =2 in

the positive sense when;
a) 9(2) =

z2+4

b) g(2) = m

Let C be the circle |z|= 3, described in the positive sense. Show that if
2_¢_
9(2) = [(Z=2ds; |z] # 3

then g(2) = 8xi. What is the value of g(z) when |z| > 3?
Let C be any simple closed contour, described in the positive sense in
the z plane, and write

s3+2s

g(Z) = fC (5_2)3 dS
Show that g(z) = 6xiz when z is inside C and that g(z) = 0 when z is outside.

7.

8.

9.

Show that if T is analytic within and on a simple closed contour C
and zg is not on C then

[ LDy, [ @

Cz-2z C (z-20)?

Evaluate [ .xydx + x?dy where C is the graph of y = x3
-1<x<2

Evaluate 5ﬁcxdx where C is the circle defined by x = Cost,y = Sint
with0 <t < 2m

10. Evaluate [.zdz where Cis given by x = 3t,y = t?with—1 <t <4
11. Evaluate $.~ dz Cis the circle x = Cost,y = Sint with 0 <t < 2
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AN EXTENSION OF THE CAUCHY INTEGRAL FORMULA

OR DERIVATIVES OF AN ANALYTIC FUNCTION

The Cauchy integral formula can be extended so as to provide an integral
representation for derivatives of T at zo.

THEOREM:

Let T be an analytic everywhere inside and on a simple closed contour C,
taken in the positive sense. If z, is any point interior to C then

Frze) === —L9 47 in =012 e

2mi” C (z—z )n"’1
Proof:
Since T is analytic everywhere inside and on a simple closed contour C,
taken in the positive sense. And z, is any point interior to C then by using
Cauchy Integral Formula

() )
fo) = E2dz (i)
fFo+h) =—[ L9 qz ... (i) forz=2z,+honC

2mi” C z—(zp+h)

Since we know that f’(zo) = limy,_, f(zo+h)=f(z)

h
= f'(z0) = l1mh—>0 [f(Zo + h) — f(2,)]
= f'(20) = limp_ > [Zm . Z_’;Z(jih) i dz] using (i), (ii)
= f'(20) = limpoo o [ of ()2 | s = Z}ZO]
= f'(zy) = limy, Zim /. % after solving
> f'(z0) = o= J % fl(zo) =], (f (_Z;j; ................ (iif)
Let= f'(zo+h) =5 [ - jl(zZ)fer)) ................ (iv)

fr(zo+h)—f1(zp)

Since we know that f”(zo) = limy_,q -

= f"(z0) = l1mh—>0 [f (zo +h) — f'(20)]

Lf f(@)dz —f f(2)dz
2mi~ € (Z—(Zo+h)) 2mi” C (z—2zp)2

" ) 11 1
= f (Zo) = llmh—>0 Eﬁfcf(z)dz [(Z (z 0+h))2 - (Z—Zo)z]

] using (iii), (iv)

) 1
= f'(z0) = llmh_)oz

) 2 ( (zo+ ))f(z)dz .
= f = limy,_,g— after solvin
f (ZO) lmh 0 27Ti fc (Z—(Zo+h)) (Z—Zo)z g
" _ L (z—z0)f(z)dz " f(2)
= f (ZO) 2mi [IC (Z—ZO)Z(Z—Zo)Z] = f (ZO) 27l fC (z-z )2+1
Continuing in this manner we can get the required. i.e.
Frze) =2 —L9 47 n =012 0.

2mi ¥ C (z—zg)nt1
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Remark:

We can compare this result with real variable theory that * if the derivative of a
function exists its further derivative may or may not exists” unlike complex
variables theory that “ if a function is analytic at a point, all its other
derivatives exist at that point”.

Example:

Evaluate the integral f —2%*3 4z where C encloses the pointz =1.

Solution: Given thatf(z) = 6z —2z+5;n=2,z=1
=>f'(z)=12z-2=f"(z2)=12> f"(1) =12

Now by using the formula f"(z,) = Efc%d
" —-2Z+5 " 622 —ZZ+5
- f (1) 2mi fc (Z 1)2+1 dz = f (1) 2me (z— 1)2+1

" 2z+5 6z%2-27+5
ﬁT[lf (1) fcdeﬁfcde:].ZT[l

Example:

e??+Sinz
Z+1)%

Solution: Given thatf(z) =e?2 +Sinz ;n=3,zy=—1

= f'(z) = 2e%? + Cosz = " (z) = 4e?*? — Sinz = "' (z) = 8e?? — Cosz

= f""(-1) = 8e7%2 — Cos(-1)

Now by using the formula f"(z,) = — JD_ g,

2mi” C (z—zg)"*1

= f""(— )—_f e’ +S”§Z+1d = (= 1)__f e? +Sl7’LZ

2mi 2wi” € (z41)%

Evaluate the integral [ .

dz where C encloses the point z = —1.

T _ e +sz e??+Sinz o, _2
ﬁglf (_1)_fC(z+—1)4de>fC(z+—1)4dZ_§l(86 —COS(—l))

Exercise 39: (visit @ Youtube “learning with Usman Hamid”)
1. If C is the positively oriented unit circle |z|= 1 then evaluate the

2
integral [ = dz

2. Letzp be any point interior to a positively oriented simple closed

contour C. Then show that fczd—z = 2mi also [, . iz _,
—40

—zg)+1
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SOME CONSEQUENCES OF THE EXTENSION

We turn now to some important consequences of the extension of the Cauchy
integral formula in the previous section.

Theorem (just read): If a function f is analytic at a given point, then its
derivatives of all orders are analytic there too.

Corollary (just read): If a function f = ¢ + i is analytic at a given
point, then its components z¢, 1> have continuous partial derivatives of all
orders at that point.

The proof of the next theorem, due to E. Morera (1856-1909),
depends on the fact that the derivative of an analytic function is itself analytic.
MORERA’s THEOREM
(may be regarded as converse of Cauchy Fundamental Theorem)

Let f be continuous on a domain D. If fcf(z)dz = 0 for every closed
contour C in D, then f is analytic throughout D.
Proof:
Let z, = a be a fixed point and z be a variable point in D, also let C be a
closed curve consisting of C; and —C, then by using consequence of Cauchy
Fundamental theorem | o f(2dz = Je f(2)dz

Z+h

Let F(z) = fz Sf®ade ... (and F(z+h) = [~ f(O)dt ........ (ii)

z+h

=>F(z+h)—F(z) = f L f@dt - f LS @®dt

= F(z+h) —F(z) = fz+hf(t)dt +! f(t)dt

= F(Z +h) = F(2) = [ f(t)dt + f”" fdt = [ fOdt
= 2[F(z+h) - F(2)] = —fz+hf(t)dt

>=[F(z+h) - F@] - f(2) =1 [/ f(©)dt - f(2)

= 2[F(z+h) - F@)] - f(2) =+ [7" f(©)dt L2

= 2[F(z+h) - F(2)] - f@) = =7 Fedt - —f

Where we use the fact h = fz "dt ; the length of interval

= L FG+n) ~F@ = f@) =[] f@de — [ f ]

= 2[F(z+h) - F(] - f(2) =3 [[77((©) - f(2))t]

F(z+h)—F(z) f( )| _ |l [fz+h(f(t) —f(Z))dt”

w F@| <3 177F® - F@ld < e

F(z+h’z -F(2) —f(z)| < e limy_ F(z+h) F(z) _ f( )

= F'(2) = f(z) > T isanalytic throughout D

z+h

f(z)dt

=

=
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CAUCHY’s INEQUALITY
Suppose that a function f is analytic inside and on a positively oriented

circle C, centered at zo and with radius R (Fig). If M denotes the maximum
n'M

value of | ¥ (2)| on C,then |f™(zy)| < -
OR
Suppose that a function f is analytic on a closed contour C: |z — z,| = R

and f(z) is bounded i.e. |f(2)| < M then |f"(zo)| < =

y
C

(0] X

Proof: if f(z) is analytic and C: |z — z,| = R then by using the result

n C f(@)
f ( 0) 2mi ¥ C (z—zg)t1 dz
(o)l = | o LD da| < @l

27 C(z Zo)n+1 2m|i] C |z—z|n+1
Sincelil=1,|f(z)|<Mand C:|z—zy| =R also

f |dz| = 2mR (circle circumference) therefore

n' M27R n'M
|fn(ZO)| 27-[ Rn+1 - R_n

Thus [f™(z0)] < %

Rn
Cauchy Inequality is called an immediate consequence of the expression
i) == L2 4z in =012 ..

2mi” C (z—zo)"+1

Remark:
e As R — o, f"(zy) = 0
e Cauchy’s inequality can be used to show that no entire function except a
constant is bounded in the complex plane.

ENTIRE FUNCTION:

A function which is analytic everywhere in the complex plane is called Entire
Function, for example: All polynomials and Transcendental Functions are
entire functions.
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LIOUVILLE’S THEOREM

If a function T is entire and bounded in the complex plane, then f(z) is
constant throughout the plane.

Proof:

Since f(z) is analytic everywhere in the complex plane and it is bounded
therefore by using Cauchy inequality

" (z)l < 55 where C:|z — z4| = R
Putn=1and z, = zthen |f'(2)| S%
If R > oo, f'(z) > 0 meansthat f(z) is constant.

REMARK:

Sometime this question appears in the form

Prove liouville’s theorem by using Cauchy integral formula. Also show that
derivative of the function vanishes identically.

In this situation, 1% take Cauchy integral formula, take its absolute value and
proceed.

FUNDAMENTAL THEOREM OF ALGEBRA:

Any polynomial P (z) = ag + a1z + axz> + - - - +anz" (@, # 0) of degree n (n = 1)
has at least one zero.

That is, there exists at least one point z such that P (z) =

Proof:

We shall use Liouville’s Theorem in order to prove this theorem and we
shall prove it by contradiction.

Suppose that theorem is false so that P (z) # 0 for any ‘z’ then the function

f(z) = |s analytic everywhere.
= f (Z) =

1
P(z) a0+a12+a222+~~~+anzn

ﬁﬂ@—ﬁ[

Hence for every € > 0 there exists § > 0 such that |f(2)| < e for |z] > §
Also f(z) is continuous in the bounded closed domain |z| < &, therefore there
exists a number C such that |f(z)| < C for |z]| < §

Let M = max(e, C) then |f(2)| = |$| < M for every ‘z’
Hence by Liouville’s Theorem f(z) is constant. But P(z) is not constant for
n=0,1,2,3,.......... Anda, #0

Therefore P(z) must be zero for at least one value of ‘z’. and the equation
P(z) = 0 must have at least one root.

1

a9
Zn+zn 1

+

-0 as z >
an+ +an
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Remark:
Every polynomial P (z) = ap + a1z + az> + --- + a,2" (a, # 0) of degree n
(n = 1) has exactly ‘n’ roots.

Corollary(just read):

Suppose that a function T is continuous on a closed bounded region R and
that it is analytic and not constant in the interior of R. Then the maximum
value of |[f (z)| in R, which is always reached, occurs somewhere on the
boundary of R and never in the interior.

Lemma:
Suppose that |f(z)| < |f(z,)| at each point z in some neighborhood
|z —z,] < & inwhich f is analytic. Then f (z) has the constant value
T (z0) throughout that neighborhood.

This lemma can be used to prove the following theorem, which is
known as the maximum modulus principle.
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MAXIMUM MODULUS PRINCIPLE
If a function T is analytic and not constant in a given domain D, then | (2)|
has no maximum value in D. That is, there is no point z, in the domain such
that |F (z)| £ |F (z0)| for all points z in it.

OR If a function f is analytic within and on a simple closed curve then
|F (2)| attain its maximum value on the C (not inside)

Proof:

Since T is analytic therefore it is continuous on and within C, then f attain its
maximum value on and within C.

Now we have to show that |F (z)| attain its maximum value on C (not inside)
Suppose that T (z) is not constant. Then consider it attains its maximum value
within C not on the boundary of C.

ie. |[f(z)| =M whenz=awithinC ............. )

let C; be another circle inside C centerd at ‘a’

since T (z) is not constant and it attains its maximum value at ‘a’

therefore there must exists z = b inside C; such that |f(b)| < M

let |f(b)| =M — € wheree >0

also as |f(z)| is continuous at z = b then for any € > 0 there exists § > 0 such

that || ()| — I (B)I| < g whenever |z — b| < &

therefore ||f(2)| — I WI| = If@DI = If @)

F@I=1f DI <=2 If@I<IfFBI+:2 If (DI <M —e+2
z|f(z)|<M—— ............. (ii)

=>fz)=M = f (z) attain its maximum value at ‘b’

If C, be another circle inside C; centerd at ‘b’ and |f(z)| < M at all ‘z” except
‘b’. then draw another circle C5 with radius r = |b — a|lying within C, so that
on this we have |f(z)| < M —%

f f(Z)

Csza

Now by Cauchy Integral Formula  f(a) =

2mi
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Thenputz—a=re? = z=a+re® = dz=ireds
i0 ) '

Then f(a) = o [ AL irei®do = = [27 f(a + ret®)do
> f@) =5, f(a+re®)do + 5 [ f(a+re®)do
= 1f @l = |5 f; fla+re®)do +5 [ fa+ret®)ds)|
= 1@ < 5=y 1F(a+ rei®)]do + - [7|f(a +rei®)|ds

1 1 (2
> 1f @l <5 f5 (M =%)do +-- [ Mdo

= If (@1 < 5= (M =) 1815 + 5 MI01Z" = 2-(M = £) () + - M(2m—o)

21
Mx xXE Mx xX€E
=>|f(0f)|<2_7_r___E+M_Z:>|f(a)I<M_E ............. (iii)
From (i) and (iii)
M=|f(2)|<M- Z—; a contradiction.

So If T is analytic within and on a simple closed curve then |F (z)| attain its
maximum value on the C (not inside)

MINIMUM MODULUSPRINCIPLE
If ‘m’ is the minimum value of |f(z)| inside and on C then unless f is
constant |f(z)| > m for every point z = z, inside C

OR If a function T is analytic within and on a closed curve and let
f(z) # 0 inside C then f(z) must attain its minimum value (say) ‘m’ on C
(not inside)

Proof:
Since f is analytic inside and on C and f(z) # 0 therefore ]% is analytic on
and within C. then by maximum modulus principle |f(_lz)| cannot attain its

maximum value inside C and consequently |f(z)| cannot attain its minimum
value inside C. also f(z) is continuous on and within C therefore |f(z)| must
attains its minimum value at some point on C (not inside)

Exercise 40: Find the maximum modulus of f(z) = 2z + 5i on the closed
circular region defined by |z| < 2



117

POISSONS’ INTEGRAL FORMULA
Let £(z) be analytic in the region |z| < p and let |z| = re®® be any point of
this region. Then
211 R?—1r2 ;

(«,«319) 271' R2—2r1(i’Cos(<p)—9)+r2f(Reup) d(p
Where R is any number suchthatr <R < p
Proof:
Let C denote the circle [w| = R suchthat |z| =r < R < p also |z| = re'’ is
any point of the region |z| < p where r < R < p. Hence by Cauchy Integral
Formula We get

i

f(W) .
f@=—[.t"d e (i)
Let|z|?=zZ=R?=>z= R; lies outside the C, so that the function f(";)z is
W——

analytic on and within C. therefore by Cauchy Fundamental Theorem

f(y~—ffw> w=0

21 sz

f( _ .
2mf o w=0 (i1)
Subtracting (||) from (ii) f(z)—0= mecl‘:](WZ) —i.f f(W)zd
f(2) = z—mf l—— — Rzlf(w)dw me [—]f(w)dw
Now using z = re'?,z = re™",w = Re'?,dw = iRe'?dgp
_ 21 Teie—rf—zig N
:f(Z) 2mt fo (R ip_ rele)( R_zw) f(Rel(p)LRel(pd(p
—R2 re
1 2w —Zio , .
= =— Le—— Re'?)Re'?d
f(Z) anO _(Rei(p_reig)(rRe“:’::il:—RZ)]f( € ) e @
[ 12_R2 e
>f@ =50 el | f(Re!®)Redy

re=if —Re—l(l’)

_(Rei‘P—reie)Rei‘P< —0

r2—R?

>f@) ="

re_ie—Re_i‘P) f(Re”p)d(p

re‘ie(Rei‘P—rei9)< —%
- re

1 p2m 2_R2? .
= f(Z) = gfo :(Rei(p_Tei;)(re—iB_Re—up)] f(Rel(p)d(p
1 2 r2_R2 .
= 1@ ==k {(—)}]f (et )de

o 1) = [ e )

R2-2rRCos(p—0)+r?



118

CHAPTER

5

SERIES

This chapter is devoted mainly to series representations of analytic functions.
We present theorems that guarantee the existence of such representations, and
we develop some facility in manipulating series.

SEQUENCES
A sequence z, is a function whose domain is the set of natural numbers and
range is a subset of complex numbers.

CONVERGENCE OF SEQUENCES

An infinite sequence 21,22,y Zn,- .. of complex
numbers has a limit z if, for each positive number &, there exists a positive
integer ng such that |zn — z|<e&  whenever n > ng.

Geometrically, this means that for sufficiently large values of n, the points
z, lie in any given ¢ neighborhood of z (Fig.). Since we can choose ¢ as small
as we please, it follows that the points z, become arbitrarily close to z as their
subscripts increase. Note that the value of ng that is needed will, in general,
depend on the value of ¢.

y

(0] X

A sequence can have at most one limit. That is, a limit z is unique if it exists.
When that limit exists, the sequence is said to converge to z ; and we write
lim z, =z

n—->oo

If the sequence has no limit, it diverges.
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Theorem: (Criteria for Convergence)
Suppose that z, = x, +iy, (n=1,2,...) and z=x +1iy. Then
lim, o z, = z ifand only if lim, ., x, =x and lim,e Y =¥

Proof: To prove this theorem, we first assume that conditions lim,,_, z, = z
hold, there exist, for each positive number &, positive integers n; and n, such

that lx, — x| < g whenever n>n;

And ly. =yl <> whenever  n>n,

Hence if ng is the larger of the two integers n; and n,,

lx, — x| <§ and |y, — vl <§ whenever  n>ng

Since |z, — | = 1Gen + i) = (¢ + )] = |Gt = ) + i = )|

|z, — 2| <§+§=£ whenever  n >ng

limyoz, =2 holds

Conversely, if we start with condition lim,,_,, z,, = z , we know that for each
positive number ¢, there exists a positive integer ng such that

|(Xn +1yn) — (X +1y)| < & whenever n > n,.

But [Xn = X|= |(Xn =X) +i(Yn =) |= (X +iyn) = (X +iy)]

ANd |yn =y[= |(Xa = X) +i(yn = Y)[= |(Xn +iyn) = (X +iY)[;

and this means that |x, — X|<e& and |y, —y|<e& whenever n >ng
that is, conditions lim,,_,. x,, = x and lim,,_,., y, = y are satisfied.

Example:

Show that the sequence z, = -1 + i——

Solution:

lim,_ [ 141

Another way:

|2 = (D] = |-

Example:

Show that the sequence z, = ——- Converges to = + ~ i
i g Zn = n+2ni 9 5 5l

Solution:

] 3+ni ] _ 4. n(3+i) CG+)] 2, 1.
Limyysco [n+2ni] = limy oo In(1+21)l ity co I(ln+_21) s + 5t

- 1) ;n=1,273,.. Convergesto —1

()n

] = lim, oo [—1] + i lim,yo, [(‘nﬁ] = —14i0=-1

1 1
— (- 1)|—| —|—§<s whenevern>ﬁ
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SERIES
Sum of the terms of the sequence z,, = z3 + 2, +- - - +z, +- - - iscalled
seriesand it isrepresented as Y.p1Z, = Z1+ Zp+- - -+ Zpt+ ...

CONVERGENCE OF SERIES
An infinite series Yo 1z, = 21+ 2+ - -+ 23+ - -
of complex numbers converges to the sum S if the sequence
Sy = g=1Zn= VAR %Y SRR VAN (N:1,2,.. )
of partial sums converges to S; we then write }7_,z, = S
Note that since a sequence can have at most one limit, a series can
have at most one sum. When a series does not converge, we say that it
diverges.

Theorem: Suppose that z,=x,+iy, (n=1,2,...)and S =X +1iY.
ThenYp1zp =S e Xpixp =X and X,y =Y

This theorem tells us, of course, that one can write

Y1 +iyn) = 201Xy i X0=1 Y

This theorem can be useful in showing that a number of familiar properties
of series in calculus carry over to series whose terms are complex numbers. To
illustrate how this is done, we include here such properties and present them as
corollaries.

Convergent Test: If a series of complex numbers converges, the nth term
converges to zero as n tends to infinity.

i.e. if Y71 z, converges then lim,,_,,, z, = 0 (Converse not holds)
Divergent Test: If lim,,_,o z, # 0 then }.;"_; z, diverges

Absolutely Convergent Series: The absolute convergence of a series of
complex numbers implies the convergence of that series.

i.e. if Yo—qlz,| converges then Serie Y, z, is said to be absolutely
convergent.

Conditionally Convergent Series:
If Y o—q1lz,| diverges but the Series Y.;°_; z, Converges itself then it is said to
be conditionally convergent.

Remark:

Inreal analysis |a, —L|<eeo L—-—t<a,<L+e=>a,€|L—¢L+¢g
But in complex analysis we cannot write as z, € |[L — &, L + [

In complex analysis, when |z,, — L| < € then there exists a disk or circle such
that |z, — L| = € and in this circle |z,, — L| < € is valid.
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GEOMETRIC SERIES

Any series of the form Yo az"'=a+az+az?+az3+......... is called
Geometric Series. It is Convergent Series and its sum is Yo, az" ! = 1i

—Z

OSCILLATORY SERIES
Any series is said to be Oscillatory if neither the partial sum tends to finite and
definite limit nor tends to +co0 or —oo rather oscillate between two numbers.

POWER SERIES

Any series of the form

Yo oan(z—zg)"=ag+ a1 (z—zy)' + ay(z —zp)* + ......... is called
Power Series.

DE - ALEMBERT OR RATIO TEST
Suppose that Y..>_, z,, is a complex series such that lim,,_, .

Zn+1

= L then

i. If L < 1 then series will be absolutely convergent.
ii. IfL>1 orL = oo then series will be divergent.
iii. If L =1 then test fail.

ROOT TEST
Suppose that ¥&_, z,, is a complex series such that lim,,_,¢ |z, |*/™ = L then
i. If L <1 then series will be absolutely convergent.
ii.  If L > 1 then series will be divergent.
iii.  If L =1 then test fail
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ABSOLUTE AND UNIFORM CONVERGENCE OF POWER SERIES
This section and the three following it are devoted mainly to various properties
of power series.

We recall that a series of complex numbers converges absolutely if the series of
absolute values of those numbers converges. The following theorem concerns
the absolute convergence of power series.

Theorem:

If a power series Yo a,(z — zo)" = ag + a,(z — zp)* + a,(z — z)?* +.....
converges when z = z; (z1 # o), then it is absolutely convergent at each point z
in the open disk |z — zp| < Ry where Ry = |z1 — z¢|

y

(0] X

The theorem tells us that the set of all points inside some circle centered at z
is a region of convergence for the power series , provided it converges at some
point other than zo. The greatest circle centered at zo such that series converges
at each point inside is called the circle of convergence of series. The series
cannot converge at any point z, outside that circle, according to the theorem ;
for if it did, it would converge everywhere inside the circle centered at z, and
passing through z,. The first circle could not, then, be the circle of
convergence.

Theorem:

If z; is a point inside the circle of convergence |z — z,| = R of a power
series Yo—, a,(z — z,)™ then that series must be uniformly convergent in the
closed disk |z = zo|< Ry, where Ry = |z — 7|

y
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CONTINUITY OF SUMS OF POWER SERIES
A power series Yo—, a,(z — zy)™ represents a continuous function S(z) at each
point inside its circle of convergence |z — zp|= R.

INTEGRATION AND DIFFERENTIATION OF POWER SERIES

Let C denote any contour interior to the circle of convergence of the power
series Yoo a,(z — zy)™, and let g(z) be any function that is continuous on C.
The series formed by multiplying each term of the power series by g(z) can be
integrated term by term over C; that is,

[ 9@S(@)dz = ¥i-oanf 9(2)(z = zo)" dz

Corollary:
The sum S(z) of power series Yo, a,(z — zy)™ is analytic at each point z
interior to the circle of convergence of that series.

Theorem:
The power series Y7, a,(z — z,)™ can be differentiated term by term. That is,
at each point z interior to the circle of convergence of that series

§'(2) = En=onan(z — z))"™

REMARK:

= Expansion of an analytic function in a power series is unique.

= Every power series represents an analytic function inside its circle of
convergence.

= The sum function f(z) of the power series }.;—,a,z™ represents an
anlytic function inside its circle of convergence. Further, every power
series possesses derivatives of all order within its circle of convergence
and these derivatives are obtained through term by term differentiation
of the original series.

= Differentiated power series has the same radius of convergences as the
original power series.

= Integrated power series has the same radius of convergences as the
original power series.

RADIUS OF CONVERGENCE AND DISC OR CIRCLE OF
CONVERGENCE

A circle centered at z, having radius R > 0 for which the power series

Yo an(z — zy)™ converges at every point within the circle |z — z,| = R then
R is called Radius of convergence and Region or Domain of convergenc is
defined as |z — zy| < R
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HOW TO FIND RADIUS OF CONVERGENCE?
Suppose Yoo an(z — zy)™ is a power series.

Zn+1

=L or lim, o|z,|"" = L then

If lim,,_,o

Radius of Convergence = R =
nn
Example:  If X372, (1 + %) z" then find circle of convergence.

nn
Solution: Since £ a,(z — 20)" = X (1+3)  (z—0)"
n‘l’l
=>an=(1+%) &ZOZO
By Root test; lim, e |2, | =
1/n

S L=t (1427 = time|(142) =6 wea, =z,

Then Radius of convergence = R = % = é

Circle of Convergence is |z —zg] =R = |z — 0] === |z] ==

Example:

If Yoo (_;)n (z — 2i)™ then find disk and region of convergence.

Solution: Since Y% an(z — 20)" = Lo - (z — 20)"

>a, = % & zy = 2i
By Ratio test; lim,, e [ = L
—1D"+1 "
= L =limy L |F5r we may use a,, = z,
n
>L=1
Then Radius of convergence = R = 1=1

L
Circle of Convergence is|z—zy| =R =|z—-2i| =1
Region (domain) of Convergence is |z —zy| <R = |z —2i| < 1

Remark:
The power series Yo an(z — zy)™ at z, = 0 In the complex plane.
= Either converges for all values of z
= Orconvergesonlyforz=0
= Or converges for z in some region.



Example:

Prove that if R = lim,,_,o, |aa—" z" has radius of
n+1

convergence R.

Solution: Suppose u,, = a,z" then u,,; = a,;,2"*?!

By Ratio test; lim,,_, =1L

A1zt
anpzh

For convergence L < 1
=L = %lzl < 1=|z| <R hence proved.

Un+1

n
An+1

= L =lim,_, = lim,,_, |z| = |z|

Example:
Prove that the two series

. 1.3.5..2n-17 (1-2)" . 1.3.5.2n-1] (z—-1)"
Z"=°[ 2.4.6..21 ] n and Z"=°[ 2.4.6..2n ] n

have same circle of convergence.

Solution: Since 3%, a,(z — zy)" = ¥, [1'23;;2’2‘;1] D%z —1)n
_ [135.2n-1] (-D)" __[135..2n-1)(2n+1)] (-)"*?

= an = [ 2.4.6..2n ] n & ey = [ 2.4.6..2n(2n+2) n+1

By Ratio test; lim,, e Z’;—“ =1

[L35"(2n—1X2n+1ﬂ(—1)n+1
2.46.2n(2n+2) 1 n+1

[1.3.5...211—1](—1)”
246.2n ] n

= L =1lim,_ we may use a,, = z,

= L1 =1
Then Radius of convergence = R, = Li =1
1

Also Since Y7o bp(z — zp)™ = Zi’f:o[ a0

13.5..2n-1]1 1.3.5..2n-1)(2n+1)] 1

= = |——-7] - = D —

by [ 2.4.6..2n ]n b1 [ 2.4.6.2n(2n+2) In+1
Zn+1 — L

1.3.5..2n-1

|2z -1"

By Ratio test; lim,,_,

1.3.5..2n-1)(2n+1)] 1

[ 2.4.6.2n(2n+2) In+1
1.3.5..2n—1
[ 2.4.6.2n ]_

= L =1lim,_ we may use b, = z,

= Lz = 1
Then Radius of convergence = R, = Li =1

2

= R; = R, hence both series have same circle of convergence.
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Exercise 41: (visit @ Youtube “learning with Usman Hamid”)

1. 0f Yoo 0 — then find radius and disk of convergence. Where the series

converges for all ‘z

2. If Yy_on!z™ then find radius and disk of convergence. Where the series
converges only for all ‘z=0’

3. If Yoz then find radius and disk of convergence. Where the series
converges for ‘z’ in some region in the complex plane.

4. If Yo-o(log)™z™ then find disk of convergence (if possible).
If Yo_o(3 +4i)"z™ then find disk of convergence.

Prove that the series 1 + f—iz + w 24 has unit radius of

1.2.c(c+1)
convergence.
7. Calculate the radius of convergence of the series
1 13 5 , 135 3
1 Zz+—2.25.8 2+—2.5 z +2

.. z2 z3 z"
Il. Z+ o + ? Fo + T
... n!
iii. ;’{;Oﬁzn

© iTl+2
iv.  YnmoomZ

o z
v Zn=o 1+in?

) b b)(a—2b
vi. Yo 1anz —Z+a 2% + azhazzb) );az) iy

Vii. Yo anz™ Zn_l(n + )"z

k(k— k(k—4)(k—
viii.  Yroanz"=1—kz+ ( 4) 2% + X 43)!( D73 4
- z2 Z4 Z6
1X. Zn 0anZ _1_E+Z_a+ ........
z3  z5 77
X. Z;’fzoanz”=z—§+;—;+ ........

Xi. Y oanz'=1+z+21z2431z3+ ........
8. Calculate the domain of convergence of the series

. w 135....2n-1) [1-z\"
L D ()

" o 2p\"
s ()
9. Prove that the domain of convergence of the series ¥, (L;ll) is
given by |z +i| <5

10. Prove that the series Y. n— 0 nlog
convergence except at z = —1

(z)" converges everywhere on the circle of

2 3
11. Prove that the series z + Z; + Z? +..... converges in domain |z| < 1 except at
z = -1

n
12. Prove that the series Y.p—, 3" G) converges absolutely.
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ABEL’s THEOREM (M — TEST ):

If a power series centered at z, converges at z; # z, then the series absolutely
converges for every ‘z’ for which |z — zy| < |z; — 7|

Proof: Consider a power series Yo, a,(z — zy)™ is a convergent series at z;
then lim,_|a,(z; —2z,)™ =0 by convergence test

Implies that sequence of nth partial sum is bounded such that

lan(z1 — z)" | <M

_ n _ n M|z—z|"
= [anll(z1 = 20)"| <M = lag] < = = lanllz = 20" < T22n
n z=7o |"
= lan(z —2zp)"| <M
Z1=Zo
[o0) n [o's) Z—2Zy n .
= Yoolan(z — )| < M Y, s e (1)
_,n —z 11 —z5 |2 . . .
Now 32o || =1+ == N is geometric series
Z1=20 Z1—29p Z1—Zo
which is convergent under the condition - Z" <1
1740

therefore by comparison test
() = Xo=olan(z —2zy)™| is convergent series.
= Yoo an(z — o)™ is absolutely convergent series.

CAUCHY’s HADAMARD THEOREM

For every series Y, a,z™ there exsists a number R such that 0 < R < oo
called radius of convergence then the series converges absolutely for every
|z| <R

Proof:

For series Yo, a,z" there exsists a number R = %Where L = lim, e |a, |

=>L= % = lim,_la,|"’® and |z| <R then there exists a number
psuchthat |z|<p <R

1 1 1 1 n
5 p<R=3 <2 |apV" <22 Janl < = lagllzl <5
|z|™
Tn=olanz"| < Xnio—r
Sj w 2™ _ |zt | |z]? . o .
ince anop—n =1+ o + ra Fon, is geometric series which is

convergent under the condition |z| < p = % <1

therefore by comparison test
Ymeolanz™| is convergent series.
= Yoo anz™ is absolutely convergent series for every |z| < R
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TAYLOR SERIES:

Suppose a power series Y,,—o a,(z — z¢)™ represents a function within the
circle of convergence |z — zy| = R then following series is known as
Taylor series in complex analysis;

N (@) .
f2) =) =z —20)
n=0
SPECIAL CASE: When z, = 0 then Taylor Series becomes Maclaurin Series

i.e.
o )
f(2) = Z Y (2)
n=0
TAYLOR SERIES THEOREM

Suppose that afunction f isanalytic throughoutadisk |z — z,| < R, centered
atzo and with radius R (Fig.). Then T (z) has the power series representation

@) =55l ® -zt vith a, =1
That is, series f(z) = Zn=0f r(l!ZO) (z — zy)™ converges to T (z) when z lies
in the stated open disk. y

y

Proof:

Let C be a circle |z — z,| < R centered at z, having radius R. also condiser
z, = zy + h be another point inside the circle C. also function is analytic in
domain D. then by using Cauchy Integral Formula

_ 1 f(2)
f(ZO + h) 271'l fC z—(zg +h)
f(2)
f(ZO + h) Zm fC (z—2¢)— h
f(zo+h) = f @ dz

2mi

C(z z)[l— h ]

—Zo

Flao+h) =, 221 -] ar ... (i
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Consider
[ h1t h h2 A pt1
_1 — ey =1+ rz0 T a0 Gz T oz +
r h 1—1 h hZ hTL hTL+1 h
_1 B z—2] =1+ z—2 (z—zp)? (z—zy)™ (z—zy)nt1 _1 + z—2 +
hZ
N
_ h 1—1 _ 1 + hZ hTL hTL+1 _ h ]—1
Z—Z Z—Zy (z—2z9)? (z=zp)" (z—zo)™*1 L Z—Zg
L 140 h2 h" Rt 'Z—ZO—h]_1
Z—2Zp - Z—Zo (z-2p)? (z—zp)" (z—zp)™*1 L z—2,
i h1t o h h2 ™ R+ (z—70)
s [ S (@z-2g)" ' (2-20)"+1(z—29h)
[ [ h h2 R pnt1 .
1=l =1t w0 2o | Gzar=zem (1)
f(2) [ h 2 R
(l) = f(ZO + h) 27T lfc (Z—Z ) + ( _ZO)Z + (Z_Zo)n
hn+1 d
(z—zO)n(z—zO—h)] z
f(z) f(2) f(2)
= f(ZO t h) 2mi fC (z—zg ) Zm fC (Z—zo)2 Zm fC (z—z9)3 dz + -+
h" f(2) "1 f(2)
2mi? C (z—zo)nt1 zZt 2mi ¥ C (z—zy)"*t1(z—zy—h) dz
h hz _, A"
f(zo+h) = f(z) + Ef (zo) + ;f (zo) + -+ Efn(zo) + R, ....(111)

_ hn+1 f(Z)
Where R, = pyral ol TS Yo dz
Now we will prove R, » 0asn = o

_ hn+1 f(Z)
= |Rn| | 2mi fc (z—zg)™*1(z—zg—h) dZ|
Rt f(2) |dz| R+t
= |R | s 27T|l|f (z—z¢g—h)| |z—z4|*1 27|i|
n

= |R,| <X anlanH (2nR) = Mh( )

= |R,| <Mh(E) —»0asn—- o
Then equation (iii) becomes

fao+ 1) = fz0) + 2 f(20) + 2 f"(20) ++ + 2 f7(20)

f(2) =

oo f (zo) (

n!

— )"

with

RN+1 f |dZ|

z—2y=h
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Any function which is analytic at a point z, must have a Taylor series about
Zo. For, if T is analytic at zo, it is analytic throughout some neighborhood
|z — zy| < € of that point; and ¢ may serve as the value of Ry in the
statement of Taylor’s theorem. Also, if f is entire, R can be chosen
arbitrarily large ; and the condition of validity becomes |z — z,| < o0. The
series then converges to T (z) at each point z in the finite plane.

When it is known that f is analytic everywhere inside a circle centered at
Zo, convergence of its Taylor series about z, to T (z) for each point z within
that circle is ensured; no test for the convergence of the series is even
required. In fact, according to Taylor’s theorem, the series converges to
T (2) within the circle about zo whose radius is the distance from z; to the
nearest point z; at which f fails to be analytic.

Example

Expand f(z) = e* using Maclaurin series in the form of infinite series.
Also find the region of convergence when z, = 0

Solution:

Given f(z) =e*=f(0) =1

flz)=e*=>f(0)=1

f'@)=e*=f"(0)=1

Continuing in this manner f"(z) =e*= f*(0) =1

Using Maclaurin series f(z) =y f (0)( )ik

n!

=Y 0 =1+z + + + ................ Required series.

Now conS|der Zn Oan =Zn o_

1
ian=a,an+1 &ZO 0

(n+1)'
By Ratio test; lim,,_,

1
(n+1)!
1
n!

Zn+1

=1L

n

= L =1lim,_ we may use a,, = z,

>L=-=0

o)

Then Radius of convergence = R = % = o0
Region (domain) of Convergence is |z — zy| < R = |z| <
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Exercise 42: (visit @ Youtube “learning with Usman Hamid”)
Expand f(z) at z, = 0 using Maclaurin series in the form of infinite series.

i 12_2” 0Z" —1+Z+Z +z3 4 (Iz| < 1)
.. n Z2MH 23 z5
ii.  Sinz=y_,(—1) (2n+1)' =z _§+§+ ................ (lz] < )
— yo n 2 _EZ
iii. Cosz=Y,_,(—1) e =1 > + T e (lz]| < =)
. ) I z3 45
V. SlnhZ—Zn=om—Z+§+a+ ................ (|Z|<00)
o PN _ g2 2
V. Coshz = Zn=0@ =1+ TRATRLERERITITPPRRRRPs (|z] < =)
. 2y oo ZAn+1
VI. zCosh(z*) = Zn=0m (|z] < =)
.. z 0
vii.  —= Yo Z"
viii. e?Sin3z i~ Cosh(2z)
eZ
z .. e? -
X T (|Z| < \/E) Xil. e o o z"
xi. 222 (171 < 1)
' Z3_EZS
Xiii. m=2${’=o(n+ Dn+2)z" (Jz| < 1)
- Sinhz
Xiv. 1+z (Iz| < 1)
XV. z(z2+1) (0< |zl <1)
xvi. e?Sinz (|z| < )
s ez
xvii.  — (lz| < 1)

Example: Expand f(z) = Sinz using Taylor’s series when z, = %
Solution:  Given f(z) = Sinz = f (%) = =
f'(z) = Cosz=> f' G) = \/1_5
f'(z) = =Sinz = f" (%) -
f'""(z) = —Cosz= f"" (%) = —%
Continuing in this ...................

T n
Using Taylor’s series f(2) = Yoy f (ZO)( —Z)" =Y " )(z - E)

n! 4

f(2) = Sinz = \/_ \/1_( g) — % (z — %)2 ................ Required series.

sl
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Exercise 43: (visit @ Youtube “learning with Usman Hamid”)

Vi.
Vii.

viii.

Expand f(z) = log(1 + z?) using Taylor’s series when z, = 1 and
prove that it can be written as log(1 + z2) = ay + Yo, ay(z — 1)
and calculate a,, a,,

Expand f(z) = log(1 + z) using Taylor’s series when z, = 0 and
find the region of convergence.

Expand f(z) = Ziz using Taylor’s series when z, = 0

Expand f(z) = log(z) using Taylor’s series when z, = —1 + i and
find the radius of convergence.

Expand f(z) = (1 +i)z? — 2z + 4i using Taylor’s series when
Zo=1-—1

Expand f(z) = Sinhz using Taylor’s series when z, = mi

Expand f(z) = Cosz using Taylor’s series when z, = g

Expand f(z) = ﬁ using Taylor’s series when z, = 3

(Z;P” (Jz — 1] < )

7 n
Show that i = iz;fzo(—n"(n +1) (72) (lz=2| < 2)

Obtain the Taylor’s Series e” = e X\;_,
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LAURENT SERIES

If a function T fails to be analytic at a point zy, one cannot apply Taylor’s
theorem at that point. It is often possible, however, to find a series
representation for f (z) involving both positive and negative powers of
(z — z5).We now present the theory of such representations, and we begin
with Laurent’s theorem.

Theorem:

Suppose that a function f is analytic throughout an annular domain
r<|z—z,| <R, centered at zo , and let C denote any positively oriented
simple closed contour around zp and lying in that domain (Fig). Then, at
each point in the domain, f (z) has the series representation

0= ate— +Z (Z_Z v

n=0

_ 1 f(2) f(2)
Where a, = mec s dz and by fc o
o Forn=0,123,....cccc........ o
y
ot X
PROOF:

Let €4 and C, be two concentric circles forming the annular domain D such
that r < |z — zy| <R then suppose that z = z, + h is a point in this annular
domain D so f is analytic in this annular domain. So by using C. I. Formula

_ 1 S L _ 1 f(2) 1 f(z)
f(ZO + h) 27T fC Z_(Zo+h) d —_ i fCZ Z—(Zo+h) dZ " fcl Z_(Zo+h)
f(Z0+h)—11+12 ................. (A)

_ 1 f(2)
Now let I = mecz Pam——
— f(2)
T 2mi f h ] dz
—Zo 1
f(2) h 1™ .
== fcz et L z] dz ... (1)
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Consider
r h 1—-1 n h2 XL pntl
_1 e B 1+ Py - TR — e
r h 1—1 h hZ hTL hTL+1 h
_1 B z—2] =1+ z—2 (z—zp)? (z—zy)™ (z—zy)nt1 _1 + z—2 +
hZ
]
1—1 2 n n+1 -1
_ h -1 + h h h . h ]
Z—Z Z—Zy (z—2z9)? (z=zp)" (z—zo)™*1 L Z—Zg
L L h2 A" a1 'z—zo—h]‘1
Z—2Zp - Z—Zo (z-2p)? (z—zp)" (z—zp)™*1 L z—2,
PR h h2 ™ R+ (z—70)
-1 Z—Zo =1+ Z—Zg (z-20)? + (z—zp)™ (z—20)"*1(z—2zo—h)
[ [ h h2 R pntt .
1= Tt emy T Y e T e W)
) f(2) [ h 2 R pn+1 ]
(l) = 11 2mi fC (z-2zp) z—z (z—zp)? (z—zp)™ (z-z¢)™(z—2z¢9—h) dz
_i f@ @) f@)
= 11 T omi sz (z—zo) Zm sz (z—zo)2 Zm sz (z—z9)3 dz + -+
nn @ P+t @
2mi Y C2 (z—z)"t? dz + 2mi sz (z—zo)"*t1(z—z9—h) dz
h ., hz _, A"
11 =f(Z0)+;f (Z0)+?f (Z0)+"'+Efn(20)+Rn ........... (“l)

_ pntl f(Z)
Where Rn T omi J'Cz (z—2zp)"*1(z—2p—h) dz
Now we will prove R, » 0asn = o

_ hn+1 f(Z)
= |Rn| | 2mi sz (z—2zg)"*1(z—2zp—h) dZ|
hn+1 f(Z) |dZ| hn+1
= |R | < 27T|l|fc2 (z—z9g—h)| |z—z4|*1 27‘[|l|Rn+1f IdZI
n n

= |R,| <X anlanH (2nR) = Mh( ) = |R,| <Mh(E) >0asn— o

Then equation (iii) becomes

h h2 n
I = f(2) +§fl(20)+zf”(zo)+ IRMETTIE +_!fn(Zo)
I = Z?f:o%(z —zy)" with z—2z,=h
Iy = Y50 an(z — 2o)" ith ["(z)
1 = Zn=0an{Z ZO) Wi a, = ol
; _ -1 f(2) 1 f(2
Now consider = 2mi” C1 z—(z9+h) T 2mi fC1 Zo—2z+h
_ f _f@
T 2miY G h[ tho]
f@[,  z-z -1 .
27n fcl h h ] dz . (IV)
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Consider
r 1-1 2 n n+1
_Z7Z¢ _ Z—Zg (z—2) (z—2o) (z—zo)
1-=2 =1+—"+——+ - et
1—-1 2 n n+ilr
—Zg _ Z—Zg (z—2) (z—zo) (z—z0) Z—Zg
h —1+—h +—h2 + .-+ ™ R _1+ N +
(Z_;Z")z + - ] .........
r -1 2 n n+ir -1
Z—Zg _ Z—Zg (z—20) (z—2p) (z—2o) _Z7Zg
_1 nl = 1+ h + h2 Tt hn + hn+1 _1 h ]1
-1 2 n n+1ir -
z—2g . z—2, (z-2zp) (z-zp) (z-zp) h—z+z,
_1 h | =1+ h + h2 Tt hn + nntt | n ]
r 1—-1 2 n n+1
Z—Zg z— Zo (z—2zp) (z—zp) (z—2zp)
1-50 =1 R R T v)
, _ 1 f(Z) z— Zo (z— Zo) (z— Zo) (z—zp)"+!
(iv)y=1 = py— C1 . [1 + +——++ + hn(h—z+zo)]
= 12 =
1 2 _ 3
o f @2 + o [ D@ = 2072 + s [ @) = 200z +
1 o 1 f@(z=20)"
T 2mih™ fC1f(Z) (Z ZO) dz + 2mihnt1 fC1 (h—z+zg)
:>12::
1[1 f(2) f(2) f(2)
h [% fC1 (z—zp)~ 141 dz ] Tz [Zm fC1 (z—zo)—2+1] dz + 5 [Zm C1 (z—2z¢)~ 3+1] T
1[1 f(2) f(2)(z=20)"*!
hn [%IQ (z—z ) n+1] thn’r1 fC1 z—(zo+h) dz
= —b1 + bz + b3 + - + b + RTl ........... (V|)
_ n+1
Where R, = — ! (Z)(Z —Zo)

2ihm+1 Y €1 z—(zo+h)
Now we will prove R, » 0asn = o

_ f(2)(z—zp)™*!
= |Rn| - |27tih"+1 fC1 z—(zo+h)

1 f(2) | n+1
= |Rn| = 21't|i|h"+1 fC1 z—(z¢+h) IZ ZOI IdZI <

dz|

rn+1J'Cl|dZ|

21T hn+1

= |R,| <

Mr™1(2nr) = Mr( )n

27T hn+1
n
= |R,| <Mr(z) —-0asn —- o
Then equation (vi) becomes
== _bl + bz + b3 + -+ _b
2=Zn=1h_nbn$11 Zn 1(Z Z)n
Using both values in (A) we get the required

f(z):Zan(z—zo)"+z(Z_b#

n=0
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Remark:

= Uniqueness property of Laurent’s Theorem:
suppose f(z) = Yme—wan(z — 29)™ ; r |z — z5|< <R then the series
is necessarily identical with the Laurent’s Series for f(2)

= Uniqueness property of Taylor’s Theorem:
suppose f(z) = Ym=oan(z — zp)™ ; r < |z — zy| <R then the series is
necessarily identical with the Taylor’s Series for f(2)

= Suppose that f(2) = Ype—wapz™ and g(z) = Y= —w bpz™ be two
Laurent’s Series expansions which converges in the same annulus then
their Product f(z). g(z) also converges and represents the Laurent’s
Series expansion.

= |f z replace byi in a given function f(z) then f(z) does not change.

Thenwe have a,, = b, = a_,

» Finding Laurent’s Series if condition appears in the form |z — zy| < R
then take constant as common and no need to take variable in most
cases while if condition appears in the form |z — zy| > R then take
variable as common necessarily from denominator.

Example:

Show that f(2) = —— = S2.o Sy when 0 < |z] < 4
Solution:

Giventhat f(2) = o zz= [i__] 42[1——]_1
0= gl

)= = A

n-—1
Thus £(z) = —— = X o g When 0 < |z] < 4
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Exercise 44: (visit @ Youtube “learning with Usman Hamid”)

1.

10.

11.

12.
13.

. 1
For the function f(z) = o
in the punctured disk 0 < |z| <1

3 find the Laurent’s series representation

For the function f(z) = ﬁnd the Laurent’s series representation
in the punctured disk 1 < |z -2 <2

i -1 , :
For the function f(z) = T find the Laurent’s series

representation in the regions 1 < |z|] < 2
Find a representation for the function f(z) = g when D: |z| < 1

(z-n"
Show that T -3 Zn 02 T 2G-D)

For the function f(z) = m find the Laurent’s series

representation in the regions |z| <1,1<|z| <3, |z| >3 and
0<l|z+1|<2

For the function f(z) = m find the Laurent’s series

representation in the regions |z| <1,1<|z| <2, |z| > 2

For the function f(z) = m

representation in the regions |z| < 1,1 < |z| <2, |z| >2
For the function f(z) = 22_1
inthe region 1 < |z| < 2

Prove that the Laurent’s Series expansion of f(z) = — for region

hn
2n+1

when0 < |z—1| < 2

find the Laurent’s series

> find the Laurent’s series representation

|z| > |h| is given by Yo7,

Show that Laurent’s series is the power of z + 1 which represents the
. zZ+1

function f(Z) = m

f(2) = S %5 o(1 — 22 4 5.3M) (z + 1)~
1

Expand f(z) = pro—

Expand f(z) = Zii:)

in the region [z + 1| > 3 is

for the annular domain 1 < |z — 1]
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Example:
. Z+1 . .
For the function f(z) = Z—i-l find the Laurent’s series representation in the

punctured disk 0 < |z| < o0
Solution:

Given function f(z) = E has the singular point z = 1 and analytic in the
given domain and The representation of f(z) in the unbounded domain

0 < |z| < oo is a Laurent Series and the fact that |§| < 1 when ‘z’ is a point in
given domain then replacing ‘z’ with ‘1/z’

=5 === (1+ )= - (1+ )T

f@)=(1+ )Znon—2n0n+2non+1 since a, = by, = a_,,
f(Z)—ZnO +Zn1 =1+4+2)7 1—forn 1’ in place of ‘n’

Exercise 45: (visit @ Youtube “learning with Usman Hamid”)
. 1
1. For the function f(z) = v
representation in the region 1 < |z| < o
2. For the function f(z) = ZZSlTl( ) find the Laurent’s series
representation in the domain 0 < |z| < o
. -1 ’ .
3. For the function f(z) = Yo find the Laurent’s series
representation in the region 2 < |z| < o
. 1
4. For the function f(z) = 707
representation in the region 1 < |z| < o
1 1

5. Find a representation for the function f(z) = : =71 in

find the Laurent’s series

find the Laurent’s series

negative powers of ‘z’ that is Vahd when 1< |z| < o
6. Show that f(2) = e'/* = ¥ — when 0 < |z| < oo

_ ED"(n-1) _
7. Show thatz—2 =Yy on whenl<|z—1| <o

z2n—

8. Given series expansion Sinz = Z,‘;‘;O(—l)”“ for |z| < o0

n-1)!
then find the 1% three non — negative terms of the Laurent’s Series
expansion of Cosecz about point z = 0.

9. Expand f(z) = e3Z for the domain 0 < |z| <

Availabel on MathCity.org
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Example:

Show that f(z) = Cos (z + i) can be expand as a Laurent’s Series

f(2) = ap + 32, a, (zn + Zin) where a, = — [*" Cos(2C0s6) Cosnfd@

Solution: Given that f(z) = Cos (z + i) and f isnon—analyticatz= 0
1. - . 1 1

Put z = —in given function then f(z) = Cos (; + z) = Cos (z + ;)

f(z) = fe) =>a, =b, sinceb, =a_,

then Laurent’s Series will be expand as

f(2) = Liemco n(z — 2p)"

f(z2) =Ym—wanz™ forzy =0

f@=aptazt a1z  +az2+a_,z7%2+. ..o

f@=a+az' +F+az? +F 4+
f(Z) =ap+ 27?:1 anzn + az;nn =apt Z?ﬁ:lanzn +;l_;1 Sy =by=a_y
f(z) =ag+ Yn=1ay (Z” + zin)

Now we will find a,

. _ f(2)
Since we know that a,, = —fc o
Cos(z+ ) 1 Cos( +%) .
=— — e dz = ay = —Je—ntdz (i)
Put
z= eie,i =e W=y +l =e +e7% =2C0s0,dz = ie?dh; 0 < 6 < 27
21
) 1 Cos(2Cos80) 1 .
(iD)=a, = f ey ( 9d9) = —nf Cos(2Cos0)e 040

0
=>a, = ifozn Cos(2Cos8)(Cosnb — iSinnh)do

>, = = [ Cos(2Cos6)CosnBde — é J." Cos(2Cos6)Sinn6de
>a, = ifozn Cos(2Cos0)Cosnbdb — i] ......... (i)

To get required value of a,, we just show I =0

Let I = [ Cos(2C0s6)Sinngdo

I = fozn Cos[2Cos(2m — 0)]Sinn(2mr — 6)dO - foaf(z)dz = foaf(a —2)dz
I = [ Cos[2Cos(2m — 6)]Sin(2nm — n6)d6

I = [ Cos(2C0s8) (~SinnB)dg = — [ Cos(2Cos6)Sinndd6 = —
[+1=2[=0=>1=0

(i) @ a, = ifozn Cos(2Cos0)CosnBdO which is our required.

21l
0



140

Exercise 46: (visit @ Youtube “learning with Usman Hamid”)
1. Show that f(z) = e"**Z can be expand as a Laurent’s Series
f(2)=a¢+ Yo anz™ + ;’—Z determine a,, and b,

1
2. Show that f(z) = ec(z+3) can be expand as a Laurent’s Series
f(2) = ¥iganz™ + Yoy 2= for |z| > 0 where

1

2T
a, =— [ e?¢os% CosnfHdo
20

3. Show that f(z) = Cos (c (z + i)) = Y o ApZ"
where a,, = ifozn Cosh(2Ccos8) Cosnd®  when z # 0
k 1
4. Show that f(z) = e2*2) = ¥ a.z"
where a,, = fozn Cos(nf — kSind) do
5. Prove that the Laurent’s Series of f(z) =
o Bn n-
form £(2) = Sz 2 271
Where BO = 1,31 = _%'BZ = %,B3 = 0,B4 = _g

30
while numbers B,, are called Bernolli Numbers.
6. Find the Principle Part of the Laurent’s Series of;

i f(2) = 55 about z, = 2
ii. f(z) = Cotmz about z, = n (arbitrary)

1
e?-1

about z, = 0 is of the
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CHAPTER

0

RESIDUES AND POLES

The Cauchy—Goursat theorem states that if a function is analytic at all points
interior to and on a simple closed contour C, then the value of the integral
of the function around that contour is zero. If, however, the function fails to be
analytic at a finite number of points interior to C, there is, as we shall see in
this chapter, a specific number, called a residue, which each of those points
contributes to the value of the integral. We develop here the theory of residues;
and, in next Chapter we shall illustrate their use in certain areas of applied
mathematics.

ISOLATED SINGULAR POINTS

Recall that a point z; is called a singular point of a function f if f fails to

be analytic at zo but is analytic at some point in every neighborhood of z,.
A singular point z, is said to be isolated if, there is a deleted

neighborhood 0 < |z — zp| < ¢ of zo throughout which f is analytic.

z-1
z5(z2+9)

Example:  The function f(z) =

points z=0 and z = *3i.

Example: The function f(z) = - :
L

"(Z)
= 1/n(n =1, 2,.. .). Each singular point except z = 0 is isolated. The
singular point z = 0 is not isolated because every deleted ¢ neighborhood
of the origin contains other singular points of the function.

More precisely, when a positive number ¢ is specified and m is any
positive integer such that m > 1/, the fact that 0 < 1/m < ¢ means that the
point z = 1/m lies in the deleted ¢ neighborhood 0 < |z| < ¢ (Fig).

has the three isolated singular

has the singular points z=0and z
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Example:

The origin z = 0 is asingular point of the principal branch

Logz=Inr+if (r>0,-7<6 <x) ofthelogarithmic function. It is not,
however, an isolated singular point since every deleted ¢ neighborhood of it
contains points on the negative real axis (see Fig) and the branch is not even
defined there. Similar remarks can be made regarding any branch
logz=Inr+i6 (r>0, a <6< a+2x) of the logarithmic function.

y

In this chapter, it will be important to keep in mind that if a function is analytic
everywhere inside a simple closed contour C except for a finite number of
singular points z3, z2,..., Z,, those points must all be isolated and the deleted
neighborhoods about them can be made small enough to lie entirely inside C.
To see that this is so, consider any one of the points z. The radius ¢ of the
needed deleted neighborhood can be any positive number that is smaller than
the distances to the other singular points and also smaller than the distance
from z to the closest point on C.

Finally, we mention that it is sometimes convenient to consider the point
at infinity as an isolated singular point. To be specific, if there is a positive
number R; such that f is analytic for R; < |z| < o , then f is said to
have an isolated singular point at zy = oo.
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RESIDUES
When z; is an isolated singular point of a function T, there is a
positive number R, such that T is analytic at each point z for which

0<|z—zy|<Ra. Consequently, T (z) has a Laurent series representation
b1 b, by

— n see s
f(2)=Yr0an(z—2y)" + +oo "E + -+ Ga" + .-+ where the
coefficients a, and b, have certaln integral representations.

In particular
LD gy =123, )

217:1 C(z —zg)~ Nl
Where C is any positively oriented simple closed contour around z, that
lies in the punctured disk 0 < |z —z,| < R, (Fig). When n=1, this
expression for b, becomes

b, = —fcf(z)dz = fcf(z)dz = 2mib;

21l
in above

The complex number by, which is the coefficient of o
Zo

expansion, is called the residue of f at the isolated smgular point zo, and
we shall often write b; = Res,—, f(z)
Then = [ f(2)dz = 2miRes,_, f(z)
Sometimes we simply use B to denote the residue when the function f
and the point z are clearly indicated. Last Equation provides a powerful
method for evaluating certain integrals around simple closed contours.

y

O X
DEFINATION: If a function ¥ has an isolated singularity at a point
z =z, then f has Laurent’s expansion as follows;
f(2) =Ym0an(z—2y)" + 2,‘;‘;1( — then coefficient by of =3 is
—40

called Rasidue of a function f(z) at z = zy and it is denoted by
bl = (fr ZO) or bl = Reszzzof(z)
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Example: Find the residue of f(z) = D@3
L e -t
Solution: Given f(2) = ——-—=;
1 _ 1 _ -1

atz=1.

f@) = eve= =~ eve-eD) ~ 2-12(1-%52)

f(2) = 2(z- 1)2 (1 N (Z;))_l

_ (z-1) . (z—1)?
f() 2(21)2(1+ 2 + 22 + )

-1 1
2(z— 1)2 T 4(z-1) 8

f(2) =

1 1

_ _ 2 2 1
f(2) = (z—1)2 T (z-1) 8

This is Laurent Series expansion in |Z;—1| <lor0<|z—-1| < 2andby

definition of residue Res(f,1) = _%

Example: Find the residue of f(z) = ﬁ atz=0.

Solution: Given f(z) =

Sinhz
1 1
f(2) = - Fa—-
zZ zZ VA zZ
?+? Z[l‘l‘(a*‘;‘l‘"')]

f@=1+(%+ 4+)]
flz) =1 [1—(3|+ o) o]
f@=2+Z+ %t

This is Laurent’s Series expansion at z = 0
Then by definition of residue b, = (f,0) =1

Keep in mind: Pole is a finite order singularity. We will discuss it later.

144



145

THEOREM (Residue of a function at a pole of order ‘n”)
If f(2) has a pole of order ‘n’ at z = z, then

1 . dn1
Res(f,zo) = -5 1im,, o5 [(Z — 20)" f(2)]
Proof:

If f(2) has a pole of order ‘n’ at z = z, then the Laurent’s Series expansion
will be as follows;

) b
f(2) =Xoar(z — zp)F + Zﬁ=1ﬁ
— — 70 bz
f(f) = ay(z — 29)" + a4 ( —20)? + o+
(z—zp)™

Multiplying both sides by (z — z,)™
(z—2)"f(2) = ap(z—z)" + a1(z — 2p)"" L + a,(z — z)™2 + - +
bl(Z —_ Zo)n 1 + bz(z —_ Zo)n 2 + -+ b ................. (1)

Now differentiating (i) w.r.to ‘z’ (n 1 tlme)

= [(z = 2)"f(2)] = nag(z — 2o)"™* + (n + 1)ay (z — z0)"
+Mm+2)a,(z—zy)" P+ -+ (n—1)b(z— zy)" % +

(n —2)by(z—2))" 3+ -+ by +0

2,2 (2= 20" f(D)] = n(n —1)ag(z — 20)™" 2+ n(n+1)a(z — 7)™

+m+1)n+2)a,(z—z)"+ -+ (m—1)n—2)b(z— 2z )" 3 +

(m—2)(n—3)by(z—2z)" *+ -+ b, +0+0

Continuing in this manner we get

e [(z = 29)"f(2)] = [n(n— 1) ......3.2.1]ag(z — zy)" "D 4+ ... 4

[(m—1)(n—2)....3.21]b,(z — zx)™ ™

n-1
71 [(z = 2p)"f(2)] =nlag(z —z,) + (n—1)!b,
Applying Zlir? on both sides

n-1
lim [z — )" f (] = Jim [nlao(z — 20) + (n = 1)1by]
lim [z~ )" f (] = 0+ (= )by

lim 5 [(z = 2)"f(2)] = (n—1)1b,

2-70 Az 1

M,y o [(z = 20)"f ()] = by = Res(f, zo)
ﬁhmz—mo %n__ll [(Z - Zo)nf(z)]

(n—1)!l

Hence we get the result. Res(f, zy) =



Remark:
i.  If function has a simple pole at z = z, then

Res(f,zo) = lim[(z — z,)f(2)]
9(2)
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ii.  Fora quotient function f(z) = P where ‘g’ and ‘h’ are analytic at
z = zy then Res(f,zg) = f((zzo))
"Zg

iii. A function which has more than one poles is called Meromorphic

function.

VA
z2+16

Example: Find the residue of f(z) = at all poles.

Z

Solution: Given f(z) = 116 GraDa—a])

has two poles of order 1 (simple poles) at z = +4i

Then by using Residue formula for Simple pole at z = z,
Res(f» zp) = limz—>zo [(z - ZO)f(Z)]

= " . Z 1
RBS(f, —41) = lim,,_4; [(Z +40) (z+4i)(z—4i)] T2

Res(f,4i) = lim,_,; [(Z — 4i)

;] _1
(z+4i)(z-4))] ~ 2

Cosz

Example: Find the residue of f(z) =—F——atz=nm

22(z-1)
Solution: Given f(z) = % hasasimplepoleatz =n
Then by using Residue formula for Simple pole at z = z,
Res(f,zo) = limzazo[(z — 2o)f (2)]
Res(f,m) = lim,_.[(z — m)f (2)]

Cosz ] __ Cosm

Res(f,m) = lim, . [ (2 — 1) s = 5

Res(f,m) = ;—;

is a meromorphic function and
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Example:
Find the residue of f(z) = W atz =0, mi
Solution:

. e? . . . _
Given f(z) = prrommnrill L meromorphic function and has two polesat z = 0
and z = mi

z = 0 isapole of order 2
And

z = mi is a pole of order 4

By using formula Res(f, z,) = llmz_)ZO :n_ -[(z — zp)"f(2)]
1 d*1
Res(f,0) = G—gy;lim 2= [(z = 0%/ ()]
Res(f,0) = ! llmi[ ze—z.] = limi e—z]
sodz|l z%*(z—mi)*l z-odzl(z— mi)*
e(z-mi—4)] _ m—4i

Res(f,0) =lim,_,

(=)’ after solving

Also Res(f, i) = ——1lim,,_, ; : [z — ) *f (2]

(4- 1)'
z

1
Res(f,mi) = — h m-.s [(Z —mi)* m]

ReS(f’ T[l) B EZl—ﬂTl dZ3 |:sz|
(m3-18m)+(6m?—24)i
615

Res(f,mi) =

after solving
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Exercise 47: (visit @ Youtube “learning with Usman Hamid”)
1. Find the residue of f(z) = Tanhz by finding its zeros.

2. Find the residue of f(z) = Tanz by finding its zeros.

3. Find the residue of the following functions

. _z . 1
l. f(Z) =i VII. f(Z) = Sinz
.. __ Sinz __ Sin2z
i f(2) =5 viii.  f(2) =
iii.  f(2) =27 Sin(=) ix. f(2) = SinzSin(5)
. 1 )
V. fl2) = z2Sinz X. f(z)= Z_BeT
z%-4 .
v. f@ =55 xi. f(z)= %
Vl f(Z) = Cotz .. 72474
il f(2) =5
4. Find the residue of f(z) = z73CoseczCosechz at origin.
5. Find the sum of residue of f(z) = 241+1 at poles.
6. Prove that residue at z = ai of f(z) = —o_ js & (nat2)
. Prove that residue at z = ai of f(z = St o

7. Find the residue of the following functionsatz =0

i f(2) =

1

i.  f(z2)= zCos(i)

iii.  f(z2) =

iv.  f(2)="F
Sinhz

V. f(Z):m
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CAUCHY’s RESIDUE THEOREM

If, except for a finite number of singular points, a function f is analytic
inside a simple closed contour C, those singular points must be isolated.
The following theorem, which is known as Cauchy ’s residue theorem, is a
precise statement of the fact that if f is also analytic on C and if C is
positively oriented, then the value of the integral of f around C is 2z
times the sum of the residues of T at the singular points inside C.

Theorem. Let C be a simple closed contour, described in the positive sense.
If a function f is analytic inside and on C except for a finite number of
singular points zx (k = 1, 2,. .., n) inside C (Fig), then

n

[ f(2)dz =2mi ) Res(f,z)
c ; k

y
O X

Proof:

LetCi,CyCsy envnnnnnn . , C,, are the circles with center z;, z,, z3, ....... , Zn

and radius of each is ‘r’ as ‘r’ is so small that these circles do not overlap and
lies inside C.

Now [.f(2)dz = [ ¢ f(2)dz + f o f@dz+....... +/ o f@dz ... @)

Suppose f(z) has a pole (finite order singularity) of order ‘m” at z = z; then
the Laurent’s Series expansion will be

0 bn

= ZLn=04n\Z — %o n=17,_. n
f(2) = Xn=0an(z — 2p)™ + 27

(z—2zo)

— -y ) .
Let f(2) = [@(2) = Yoo an(z — o)™ + s i + T

b b bm
fclf(z)dz = fclqo(z)dz + fcl idz + fcl —(Z_ZZO)Z dz + -+ fcl — dz
By using the following two results;

_ 1 _(2mi  ifm=1
Je,9@dz=0and [ oomdz = {0 if m=1

by by
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Then fclf(z)dz =0 + by (21i) + by(0) + +++ + by, (0)

[o,f @dz = by (2mi)

fclf(z)dz = 2miRes(f, z;)

Similarly fczf(z)dz = 2miRes(f, z,)

And continuing in this manner we get fcnf(z)dz = 2miRes(f, z,)

Using all values in (i)
J f(2)dz = 2miRes(f, z1) + 2miRes(f, z;) +......... +2miRes(f, z,)

J f(2)dz = 2mi[Res(f, z;) + Res(f, z,) + - + Res(f, z,)]
Jf(@)dz = 2mi ¥}_, Res(f,z,)  required result.

Example: Evaluate the integral fcmw with C: |z| = 3

Solution: Given f(z) = is a meromorphic function and has two

__t
(z-1)(z—-2)?
polesatz=1and z = -2

z = 1issimple pole And z = —2is a pole of order 4

For simple poles using Res(f, zo) = lim,_,, [(z — zo) f(2)]
Res(f,1) = lim,_, [(z —1) m] -1

. 1. an-t
By using formula Res(f, zy) = mhmz_)zc ey [(z —zy)"f(2)]
2-1

1
Res(f,—2) —( )| _) P

[(z +2)*f(2)]

1 . d
Res(f,—2) = — hm - [(Z + 2)2 "Dz - 2)2] = Jm = [(z —1)

Res(f,—2) =lim,,_, [#} = —% after solving

Now | dz = 2mi Y%_, Res(f, zy)

__r
C (z-1)(z-2)?

fcmdz = 2mi[Res(f,1) + Res(f,—2)] =0

[,m———5dz=0

C (z-1)(z-2)?
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z%2-z+1

Ty dzwithC:|z| =5

Example: Evaluate the integral [

z%—z+1

Solution: Given f(Z) = m

has three polesat z = 1, z = 4 and

z = —3 of order 1 (Simple poles)

For simple poles using Res(f, zo) = lim,_,, [(z — zo) f(2)]

. z%-z+1 z%—z+1 1
Res(f,1) = lim, [(Z -1 (z-1)(z—4)(z+3) = lim;_. -0+l T 12
. z2—z+1 T -z+1 | _ 13
Res(f,4) = lim,_, [(2—4)m = lim., —(Z D+l 21
. z2—z+1 z2—z+1 13
Res(f,—3) = lim,_,_3 [(Z"' 3) (z-1)(z—4)(z+3) = lim;,_3 @-D@e-9l " 28

z%—z+1

Now fC (z-1)(z—4)(z+3)

dz = 2mi Ys_, Res(f, zy)
2_z+1
f z°-z+

Cmdz = 2mi[Res(f,1) + Res(f,4) + Res(f,—3)] =1

f z%-z+1 2
C (z-1)(z—4)(z+3)
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RESIDUE AT INFINITY

Suppose that a function T is analytic throughout the finite plane except for
a finite number of singular points interior to a positively oriented simple
closed contour C. Next, let R; denote a positive number which is large
enough that C lies inside the circle |z| = R; (see Fig.). The function f is
evidently analytic throughout the domain R; < |z| < oo and is said to be an
isolated singular point of f.

Now let Cy denote a _circle |z| =Ry, oriented in the clockwise direction,
where Rg > R1. The residue of T at infinity is defined by means of the

equation
fcof(Z)dZ = 2miRes,_of (z) = —2miRes,_, [ L (l)]

z2 z

y

We may use theorem as follows to use the Cauchy’s Residue theorem since
it involves only one residue.

Theorem.

If a function f is analytic everywhere in the finite plane except for a finite
number of singular points interior to a positively oriented simple closed
contour C, then

fcf(z)dz = 2miRes,— [Zizf G)]

Remark:
If want to check the behavior of function at infinity then

i, Make substitution z = =

w
ii.  Investigate the behavior of new function at w = 0 actually that is
zZ =

Availabel on MathCity.org



Exercise 48: (visit @ Youtube “learning with Usman Hamid”)
Evaluate the integral | .——— dz where C is closed contour encloses

1.

10.

11.

12.

13.

C(z2+
the point z = —ai

Je

Evaluate the integral f (1—dz where C is a unit circle.

Evaluate the integral fCC —

Evaluate the integral [ dz with C: |z — 2| =

C3(
2z+3

Evaluate the integral [ . TG

dzwithC:|z| =3

Evaluate the integral fcﬁdz with C: |z| = 1 and deduce that

fn 1+2Cos6

6=0
0 5+4Cosf

12z-7

Evaluate the integral [ . rrOTERT

dz with C: |z| = 2

12z-7

CdeWith C:lz+i] =43

Evaluate the integral |

Evaluate the integral f dz with C: |z| = 2

1)”

Evaluate the integral | dz with Cis acircle x? + y% = 2x

C(‘*l)

Evaluate the integral fcmdz with C: |z — 2| = =

Evaluate the integral | —dz where neNand C is a simple

c 2(
closed curve surrounding the origin and
(1) ‘a’ is inside C (i) ‘a’ is outside C

Evaluate the integral gﬁc m dz where

153

dz where Cisaunitcirclei.e.|z| =1

i. Cistherectangle definedby x =0,x =4andy=-1,y =1

ii. Cisthecircle |z] =2
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Exercise 49: (visit @ Youtube “learning with Usman Hamid”)
1. Evaluate the integral

Evaluate the integral [ Cosh( )dz with C:|z| = 1
Evaluate the integral f o dz with C: lz—2|=1

=1

2

3

4. Evaluate the mtegralf d with C: |z| = 2

5. Evaluate the integral fcf(z)dz with C: |z| = 3 in the positive sense.

L [ =%
i. f(2)= W
i, f(z) = z2ez

. zZ+1
V.

z2-2z

6. Evaluate the integral fcf(z)dz with C: |z| = 2 in the positive sense.
- Z5
i f(2)= m
. f( ) _-1+zz
iii.  f(2) = ;
7. Evaluate the integral [

z3(1-32)

CZII;ﬂ;;;;;;CkZVV“h C:|Z|:: 3

8. Evaluate the integral | =2

ZERO OF A FUNCTION:
A number z = z, is called zero of a function f(z) if (zo) = 0 . further we can
say that an analytic function f(z) has a zero of order ‘n’ at point z = z; if
f(Zo) = 0 fI(Z()) = O,f”(Zo) = 0, .,fn_l(ZO) = 0 but fn(Zo) *0
Remark:
i.  Afunction f(z) is analytic in some disk |z — zy| < R has a zero of
order ‘n’ at z = z, iff f(z) can be written as f(z) = (z — zy)"@(2)
where @(z) is analytic at zo and ¢@(zy) # 0
ii.  Azero of order one is called simple zero.
iii. A zero of order ‘n’ is called a zero of multiplicity ‘n’

Example:
i. For(z) =z-3i;zy,=3iwehave f(zy) = 0but f'(zy) # 0 then
zy = 3i is a simple zero of given function.
i. For(z)=(z—-i)3;zy=1i
we have f(zq) = 0,f'(z9) = 0,f"(z9) = 0 but f""'(z,) + 0 then
zy = i is azero of order 3 or zero of multiplicity 3.
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SINGULARITY:
If a complex valued function f(z) failed to be analytic at point z = z, then
this point is said to be singular point or singularity.
Example:
i.  Function f(z) = ZeTZI iIsnon—analyticat zg =1s0 zo=11isa
singularity of f(z)
ii.  Function f(z) = % is non —analyticat zg =050 zyp =0isa
singularity of f(z)
iii.  Function f(z) = eﬁ isnon —analyticat zg =2s0 zyp =2isa
singularity of f(z)

TYPES OF SINGULARITES

SINGULARITIES

[ ~

b NON ISOLATED

ISOLATED SINGULARITIES
SINGULARITIES )

I '
1 1 1
REMOVEALE ol ESSENTIAL
SINGULARITIES SINGULARITIES

/ / S
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ISOLATED SINGULARITIES:
A point z = z, is said to be an isolated singularity of a function f(z) if f(z)
is analytic at each point in the neighborhood of z = z, except at z = z,
Example:

i.  Function f(z) = ﬁ isnon —analyticat zo =150 zo = 1isan

isolated singularity of f(z)
.. . 1 . . 1
ii.  Function f(z) = S lshon —analyticat z, = L ok=11,42,...

S0 zy = % is an isolated singularity of f(z)

NON — ISOLATED SINGULARITIES:
A point z = z, is said to be a non — isolated singularity of a function f(z) if in
the neighborhood of z = z,, there exists other points where f(z) is not
analytic.
Example:
i.  Function f(z) = logz isnon—analyticat zg =0s0 zo =0isa
non — isolated singularity of f(z) there exist also other points where the
function will be non — analytic.

ii.  Function f(z) = Wlnz isnon —analyticat zg =0s0 zog =01isa
non — isolated singularity of f(z) there exist also other points where the
function will be non — analytic.

REMOVEABLE (ARTIFICIAL) SINGULARITIES:
A point z = z, is said to be a removable singularity of a function f(z) if the

principle part of Laurent’s Series expansion contains no term.

. . b

i.e.  for Laurent’s Series f(z) = Yoo @n(z — zo)™ + Z,‘fﬂﬁ
—40

we have the form as follows;

o)

f@) =) anz—2z0)"

n=0
Example:
i.  Function f(z) = % has removable singularity at zo = 0
. Sinz 1 z3  z5 Z7 z2  z* 26
Slnce_f(z) = T -—;[Z—;+§—;+"'] = 1—;+E—;+
contains no Principle Part.
ii.  Function f(z) = 1_:2052 has removeable singularaity at zy = 0
. 1-Cosz 1 z2 z* . ..
Since f(z) = —% =3 . Tg - containsno Principle Part.
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Riemann’s Theorem:

Suppose that a function f (z) is bounded analytic in some deleted
neighborhood 0 < |z — z,| <€ of z, . if f(2) is not analytic at z,
then it has a removable singularity there.

Proof:
Suppose thatf (z) is not analytic at z, then the point z, must be an
isolated singularity of f(z) And f(z) is represented as follows;

f) = Z an(z = 20" +Z EEAT

n=0

Throughout the deleted nelghbourhood 0 < |z—zy| <€e. If C denotes a
positively oriented circle |z — zy| = p where p <€ then we may

write by = o [, L2 ()Z)M z (=123, )

= |by| = 271_”. fc e _fZ(Z))_nH dz

> linl = o] Sl @ | oo

= Ibyl <57 ,lf ol s <gmmmldd @l =m
= |by| < (2mp) = Mp™ = |by| < Mp™ (0=123,............. )

21'L'|l| —n+1
Since the coefficients b, are constants and since p can be choosen
orbitrarily small, we may conclude that b, =0 ;(n=12,3,..) in
Laurent’s Series (given above).

This tells us that z, is a removable singularity of f£(z) and proved the theorem.
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POLE
A point z = z, is called pole of order ‘n’ of a function f(z) if the principle
part of Laurent’s Series expansion contains finite numbers of terms.

i.e. For Laurent’s Series f(z) = Y0 an(Z — 2o)™ + Y1 @ bZ" "
we have the form as follows;
o k
n bn
f@) =) anz—zo"+ ) —2=
(z — zy)
n=0 n=1
Example:
i.  Function f(z) = % has a pole of order ‘3’ at zo = 0
Sinz z5 Z7 1 1 z z3
SlnCEf(Z) ————[ ——+E—;+"'] —Z—3—E+a—;+"'

contains finite terms.
ii.  Function f(z) = ﬁ has a pole of order ‘1’ at zy = 3

ESSENTIAL SINGULARITIES:
A point z = z; is called pole of order ‘n’ of a function f(z) if the principle
part of Laurent’s Series expansion contains infinite numbers of terms.

ie.  for Laurent’s Series f(2) = Yii-o @n(z — 20)" + Tii - -
0
we have the form as follows;

o)

b,
f(2z) = zan(l—zo)"‘FZm
n=1

n=0
Example:
1 1 1 .
i.  Function f(z) = Sm( ) —satas has an essential

singularity at zo = 0
ii.  Function f(z) = e'/* =1+~ 1 ﬁ + F + -+~ has an essential
singularity at zy = 0

Remark:
i.  Afunction f(z) is analytic in adomain 0 < |z — zy| < R has a pole of

order ‘n’ at z = z, iff f(z) can be written as f(z) = (z)) where

@(z) is analytic at zy and @(zy) # 0
ii.  Ifthe functions g&h are analytic at z = z, have a zero of order ‘n’ at

z = zy and g(z,) # 0 then the function f(z) = % has a pole of order

‘n’ at z = z,
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Remark:
If want to check the behavior of function at infinity then

i. Make substitution z = E

w
ii.  Investigate the behavior of new function at w = 0 actually that is
zZ=00

Example:

Find the nature of singularity of the function f(z) = e?? atz = «
Solution:

Given that f(z) = e*?

Make substitution z = Vlv (%) = e?/" thenw = 0 is singularity.

|
U
\'\

= g(w) has an essential singularity atw = 0
= f(2) has an essential singularity at z = oo

Example:

Find the nature of singularity of the function f(z) = z*(z+ 1) atz =
Solution:

Given that f(z) = z%(z + 1)

. . 1 1 1 /1 .
Make substitution z = ” =>f (;) = ﬁ(; + 1) then w=0 is
singularity.
1 /1 1 (1+w 1+w
Let g =5(5+1) =5 (50) =%
1+w o(w)

=>gw) = W =07 (w=0) (say)

= g(w) has a pole of order 3atw = 0
= f(z) has a pole of order 3at z = o
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Exercise 50: (visit @ Youtube “learning with Usman Hamid”)
1.  Discuss the nature of singularity of the given functions

L f0) = @ =

i, f(z) = =5 Vi f(z) =5
) i Vii.  f(z) = el/?
iii.  f(z2) =ez
iv. f(2) =Tanz viii.  f(2) = z2(11—z)
i f(Z) _ z2+z-2

z+1

X. f(z)=5in(i);z=1
2. Find the zeros and discuss the nature of singularity of
2. (1
f@ =% sim(5)
1
3. Let f(z) = ez show that there are infinite number of zero’s in every

neighbourhood of z = 0 which satisfy eé =-1

4.  Determine Poles and order of each Pole of given functions;

i. f(z)=Cotz
i ) =22
i, f(Z) - zzslinz

5. Find the zero’s and poles with their orders and essential singularity of

f(z) = (zZil)z Sin G)

6. Ineach case, write the principle part of the function at its isolated
singular point and determine whether that point is a removable singular
point, an essential singular point or a pole.

@) =5

i f(2) =5
i, f(z) = e

iv. f(z)=Sin(i);z=1
V. f(z)=Tanz
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INTERESTING FACT

A function f is said to be meromorphic in a domain D if it is
analytic throughout D except for poles. Suppose now that f is
meromorphic in the domain interior to a positively oriented simple closed
contour C and that it is analytic and nonzero on C. The image I' of C
under the transformation w = f (z) is a closed contour, not necessarily
simple, in the w plane (Fig.). As a point z traverses C in the positive
direction, its images w traverses I' in a particular direction that determines
the orientation of I'. Note that since ¥ has no zeros on C, the contour T
does not pass through the origin in the w plane.

2y

X u
0 e
r

Let wp and w be points on T, where wy is fixed and ¢ is a value of arg wo.
Then let arg w vary continuously, starting with the value ¢o, as the point w
begins at the point wp and traverses I' once in the direction of orientation
assigned to it by the mapping w = f (z). When w returns to the point wy,
where it started, arg w assumes a particular value of arg wp, which we
denote by ¢;. Thus the change in arg w as w describes T once in its
direction of orientation is ¢; — @o. This change is, of course, independent
of the point wy chosen to determine it. Since w = T (z), the number ¢; — ¢o
is, in fact, the change in argument of f (z) as z describes C once in the
positive direction, starting with a point z,; and we write

Acarg T(2) = g1 — ¢o.
The value of A-arg T (z) is evidently an integral multiple of 2z, and the

integer iACarg T (z) represents the number of times the point w winds

around the origin in the w plane. For that reason, this integer is sometimes
called the winding number of ' with respect to the origin w = 0. It is positive
if I winds around the origin in the counterclockwise direction and negative if it
winds clockwise around that point. The winding number is always zero when I'
does not enclose the origin.
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The winding number can be determined from the number of zeros and poles
of T interior to C. The number of poles is necessarily finite. Likewise, with
the understanding that f (z) is not identically equal to zero everywhere else
inside C, it is easily shown that the zeros of f are finite in number and are
all of finite order.

Suppose now that f has N zeros and P poles in the domain interior to C.
We agree that T has mg zeros at a point zo if it has a zero of order mg there;
and if f has a pole of order mj, at zo, that pole is to be counted mj times.

The following theorem, which is known as the argument principle,
states that the winding number is simply the difference N — P .

ARGUMENT PRINCIPLE THEOREM.

Let C denote a positively oriented simple closed contour, if f (2)

meromorphic function inside C and has no zero’s on C then
ERPPNO
2mi~ ¢ f(2)

Where N is number of zero’s and P is number of poles inside C.

Proof:

Construct the following figure;

dz=N-P

Con5|der z= al,L = 123 .m are the zeros of f(z) then N=Y"n;
(r;be the order of a;) and z = bl ;i =1,23,.....n are the poles of f(z) then
P=3",s; (s;bethe order of b;) where each zero and pol enclosed by circle
A, Ay, .. A, and Bl,Bz, ...... , B, respectively. Where p is the radius of

each circle with centre, zero’s and poles.

We have to prove e fc ’;'((ZZ)) dz =2

In this case we have a multlply connected region where C contain many circles
inside. So by using consequence of Cauchy Fundamental Theorem;

[ f1@ oy .
anfo()d llanfA f()d +2112 LfBlf(z) ........ (1)

Since z = a; is the zero of order r; of f(z)

then we can write a function f(z) = (z — a;)"ip(2)
= logf(z) = log(z—a;)"i + logp(z)

= logf(z) = rjlog(z — a;) + logp(z)




fr(2) T @'(2)
= =
fz) z-a;  @(2)

f1(z) Ti @' (2)
:fAlf(Z)d f d +f (Z)d
f'(Z) . T % (Z) .
> Ja @ ° =J A7 %% “Ja o 2=0

Now consider z — a; = pe'?,dz = ipe'®dd ;0<6 <2r

1@ g, = i o0 f12) : .
fAl f( ) J‘Aipewl lpEl d0 = fA f( ) dZ lrifAide = 27Tl7‘i
f'(Z) . o
2m fAl f(z) - lT‘f id@ =T
f’(Z)
Xt py fAL f(z) D AT (A)

Also Since z = b; are the poles of order s; of f(z)
¢(2)
(z—by)si
= logf(z) = logp(z) —log(z — b;)*!
= logf(z) = logp(z) — silog(z — b;)
@) _9'@ s
f@ 9@

then we can write a function f(z) =

zZ—b;
f'(Z) @ (Z) _Si
> 5782 = L gy 42 = I oy 02
£1(2) i ) '@ 5 _
=>fB f(Z)d fszle o =0

Now consider z — b; = pe‘9 dz = ipe'?dd ;0<0 <2n
= fB @ g, - f 19 ipeido = [ f'(z)d —is;f , A6 = —2mis;

f@) Bi (@)
f12) R
= fBL f(z) dz = —lSl-f idH = —s;
1@ 4
Sy, 4z =~ RS (B)

Using (A) and (B) in (i) we get

’ m n
I LRI
2mi” ¢ f(2) Lt LT
@ =1 =1
f1(z
Or szcf(z)d N—P

163
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ROUCHES THEOREM

Rouché ’s theorem is a consequence of the argument principle. It can be useful
in locating regions of the complex plane in which a given analytic function has
zeros.

Theorem:

Let C denote a simple closed contour, and suppose that two functions f (z)
and g(z) are analytic inside and on C also |g(2)| < |f(z)| on C.
then f(z) + g(z) and f(z) have the same number of zeros inside C.

The orientation of C in the statement of the theorem is evidently
immaterial. Thus, in the proof here, we may assume that the orientation is
positive.

Proof:

Let F(2) = %5 = g(2) = (). F(2) = g = fF

If N, and N, are the number of zeros inside C of f + g and f respectively,
then by using Argument Principle Theorem (using the fact that
function has no poles inside C)

— N, = f+9' _ 1 I
N, N2—2m Cf+g f dz

R S VAL
Ny — N T 2mi’Cl f+g f]dz

_ 1 _f+fF+F’f fr . _ 1 1 '
Nl_NZ_EC_W ]dZ g—fF:>g —fF+Ff

_ _ 1 (' (1+F)+FIf _ ﬂ]
Ny — N, = 2mi? €l fF(1+F) f dz
N =1 _f’ Fr
Ny —N; = 2mi? C (1+F) f me [(1+F)

Nl—szﬁch [1+ F] 'dz

N, — N. =if F[1-F+F*—F3+--]d
1 2T 2mi’c z

i(—l)" F"] dz

1 !/
N1—N2:2_7n.fCF

Nl - N2 == O
Ny =N, hence proved
Where we used the fact |g(2)| < |f(2)| = :ig: <1=|F|<1onC

then Y.72,(—=1)™ F™ is a uniform convergent series being Geometric.
Then X2, (-1)"F* =0
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CHAPTER

7

APPLICATIONS OF RESIDUES
CONTOUR INTEGRATION

We turn now to some important applications of the theory of residues, which
was developed in Chap. 6. The applications include evaluation of certain types
of definite and improper integrals occurring in real analysis and applied
mathematics.

TYPE - I:
If we have an integral of the form fOZ"F(SinH, CosB) d6 where F is a rational
function of Sinf and Cos68 then we can solve it using following procedure.

; dz . . dz

» Putz=e ;0<0<2n=>=Z=ie? =iz =df ==
dae iz

z+z71

_ -1
» PutSing = % and Cos@ =

= Rewrite the integral in the form foan(H) do = fCF(z)dz where C is
positively oriented unit circle |z| = 1

= Calculate the poles of F(z). Say at zy, z, z5,......... select those poles
which lie in the unit circle |z| = 1. Then find the residues at the
selected poles R, (F, zy), R, (F, z;) etc.

= Using Cauchy Residue Formula make the form as follows;
2

n
J F(SinB,CosH) do = ch(z)dz = ZNiZ R;
0 j=1
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dae 2T

a+bCOSe \/az_bz Where a > b > 0

Example: Prove that f
Solution:
dz

1 d . .
" Putz=e? ;0<O<2m=>Z=ie =iz »do ="

-1

= (Cosf = zz

dz
dae

. . . 21
= Rewrite the integral in the form fo o fcm where C
2
is positively oriented unit circle |z| =1
2 2 _ 1
fO a+bC059 fC bzz+2az+b f F(z)dz with F(Z) bz2+2az+b

= To Calculate the poles of F(z)

Firstly we will find the roots of bz% + 2az + b that will be as follows;

—atva?-b? . —a+VaZ-p? —a-Va?-p2
——,—— Wemay write these as x= - B = -

Sincea>b>0=|p|>1,xpf=1as|x| <1
Here z = o is the only simple pole which lie inside the Ci.e. |z| = 1
= Res(F, %) = lim,_«[(z—x)F(2)] = lim,_« [(z—oc)

bz2+2az+ b]

1 _ 1 s 17
= Res(F, %) = lim,_« [(z ) 719(2_00(2_[),)] = lim,_« [b(z_ﬁ)] =5
- Res(F,o)= —+ _=__1

Zb\jaz b ZJaz—bz

. Using Cauchy ReS|due Formula make the form as fO||OWS'

e _2 1
fo 2¥DhCosd — fCF(Z)dZ == >< 2mi X Res(F,xX) == >< 2mi X o
f deé __2m

0 a+bCosH 2

a?-b

ae

a+bSind = Va2-p2 where a > b >0

Likewise: we can Prove that [,

. 2m ao _ 2ma
Example: Prove that [ ——"—= = —= "7
Solution:

. 2t do 2T
Since we know that [~ ——— = ——
ao _ _l 2ma : : . [P
= Jo ~aTpcosarz = "7 : 3-2a taking derivative w.r.to ‘a
()
do 2na

= 2= 3/2
" (a+ bCosBH) (az _ bz) /
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dae na

Example: Prove that f 0 Tarcosor = -z ¢>1
. s ao _ 2ma
Solution: Since we know that fo (@tbCoso” — @—pyr
f de f do _ 2ma
0 ((7L-i—bC059)2 0 (a+bCos6)? 5, 2\3/2
(@)
do na daeo ma

f() (a+bCosB)2 (az—b2)3/2 fO (a+6059)2 ( 2_1)3/2 using b=1

Vi

Example: Prove that fo 5+3COSG .

de 2
Solutlon' Since we know thatf e \/%

0 5+3Cosf \/52_32_ 4 0 5+3Cos6 2

usinga =5,b =3

daé 2m
Example: Prove that f o~ s Where —1<a <1
Solution:
= Putz=e? ;0<0<2m>L=ief =iz 5dg=%
de iz

-1

. Z—Z
= Sing = Y

dz

de Z :
— = | . —— %, Where Cis
1+asin6 1+a( = )

positively oriented unit circle lz| =1
2fCF(Z)dZ with F(z) =

= Rewrite the integral in the form fozn

1

+(%i)z—1
= To Calculate the poles of F(z)
Firstly we will find the roots of z? + ( )z — 1 that will be as follows;

-1+V1-a?) . 1+V1-a?) . -1-V1-a?) .
(—) i we may write these as oc= (T) i,B = (—)l

a a
Since |x| < 1las|B|>1
Here z = o is the only simple pole which lie inside the Ci.e. |z|] = 1

]

= ReS(F, OC) = limz_,(x [(Z— )m] = hmz_m( [(Z ] (o ﬁ)
1

1
= Res(F,x) = =
(¥, 9 L= 2iJ1-a2
l

_2
fO 1+aSm6 fC 22+

= Res(F, %) = lim,_«[(z—X)F(2)] = lim,_« [(z—oc)

m|N»—\

. Using Cauchy Residue Formula make the form as follows;

do 2fCF(z)dz——mexRes(F oc)_—><2m><

1
fo a+bCosO

2 az_bZ

f e [] — 2n
0 1+aSind = J1—q2
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Exercise 51: (visit @ Youtube “learning with Usman Hamid”)

2
1. Prove that f0n1—2aC;:see+a2 =" where —1<a <1 orlal <1
2. Prove that f;”HZZnB = 2?"
3. Provethat [ 1+§i(129 =\2n
2
4. Prove that fozn—gii;izz = 3?”
5. Provethat [ 1+Zfos9 = Tz_naz where -1 <a <1
6. Prove that fO" Sin*"0do = Zz(j(nn)'!)z m wheren =1,2,3, ...
7. Prove that f:%= 0
8. Provethat f)' == = Wherea >0
9. Evaluate by means of contour integration f:ﬂ where a? > 0
1-2aCos6+a?
10. Prove that [ gifciiz ==
2 _ 2
11. Prove that [ 1_2220352‘;;2 = "“:;p Jwhere 0 < p < 1
n

12. Evaluate the integral " (racost)TCosnb yg

o 3+2Cos6 o
13. Prove that [ e“**®Cos(n6 — Sind) df = =
14. Prove that [ e°*® Cos(Sin8)Cos6 df = m

27 da _ n(2a+b)
15. Prove that [, GTDCoT 0T = i)
16. Prove that fOZ” Cos*™0do = %Zn wheren = 1,2,3, ...
17. Prove that [, S0 = ©
18. Prove that fOZ”% = %
19. Prove that f02”1+:fose = \/%Where a>0a*<1
20. Prove that f;”% ==
21. Prove that [ —2 _ = 2%

0 (24Cos6)2 _ 33
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TYPE - 1I:
If we have an integral of the form fooof(x) dx or ffooof(x) dx then we can
solve it using following procedure.

= Replace ‘x’ by ‘z’ in the integrand and test whether zf(z) = 0 as
|z| - oo

= Find the poles of f(z), locate those poles which lie in the upper half
plane. Find the residue at the located poles.

= Use formula [° f(x)dx=2mi¥R* or [”f(x)dx=miyR*
where Y R* denotes sum of residues at poles lying in the upper half
plane.

Remark:
= No poles lies on the real axis.
= Let f(2) =% where P(z) and Q(z) are polynomials such that

Q(z) = 0 has no real roots. And the degree of P(z) is at least 2 less
than that of Q(z) sothat zf(z) - 0 as |z| = o

00 dx 3

Example: Prove that iy

Solution:
» Replace ‘x’ by ‘z’ in the integrand and test whether zf(z) - 0 as
|z| - oo

Given f(x) = (x241r1)2 = f(2) = ﬁ = zf(z) = Zﬁ

Clearly zf(z) » 0 as |z| - o

» Find the poles of f(z), locate those poles which lie in the upper half
plane.
The poles of f(z) are at z = +i of order 3. The only pole which lies in
the upper half plane is z = i of order 3.

= Find the residue at the located poles. i.e. z = i of order 3

; 1.. dz , 1
Res(f,i) = Zlim,_,; — [(Z - lﬁm}

N 1. da? 1 ]1_ 6
Res(f,1) = 2 limz o [(z+i)3] T 32

= Useformula [°_ f(x)dx = 2mi ¥, R*

© dx  _ , 6 _ 3m .
I 7 =2Mi X oo =5 as required.




170

Example: Prove that f0°° xfa4 = 2\/;4 where a >0
Solution:
= Replace ‘x’ by ‘z’ in the integrand and test whether zf(z) - 0 as
|z| - oo
Given f(x) = m s>f(@)=0m=2@)=2 (Z4+a4)

Clearly zf(z) » 0 as |z| - o
» Find the poles of f(z), locate those poles which lie in the upper half

plane.
The poles of f(z) are the roots of z* + a* =0
. Q@n+1Dmi
s>zt =—atszt=qate®tDmi5 z=q¢ ¢ ;n=0,1.23
moosmi o sm 7m L
The poles are at aes,ae + ,ae ™+ ,ae +« . The only pole which lies in the

i 3mi

upper half plane are ae+,ae™+
= Find the residue at the located poles
Letz = B denote any one of these poles. Such that in z* + a* = 0 we have

B4
Res(F.6) = lim,.p |z~ B) pms| 35 form
Res(f,B) = hmz_)ﬁ [ﬁ] = # = % =8 34 = —q*

pp”
Sum of Residues = Y R* = —ﬁ[ﬁ] = —4% eT + 6321]
m o mi
Sum of Residues = Y R* = —ﬁ[“;—jdf X 20
Sum of Residues = Y Rt = —mS %=—%\/i_ 2\/_+a4
= Use formulaf f(x) dx = mZR+
f(;’°x4‘f:‘a4 =X o= as required.
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Exercise 52: (visit @ Youtube “learning with Usman Hamid”)

1. Evaluate the following integrals.
foo dx @

i =
0 x6+1 3

(00}

f() (x2+1)2
co dx _n\/f_ T
Mo Zi= 7% =272

. x%dx L3
V. fO x6+1

y foo xzdx _m
. 0 (x2+1)(x2+4) 6

vi foo—zdx =—
' 0 (x2+9)(x2+4)2 T 200
vii. [ -z
) °0x2+2x+2 5
viii.  [7 —-Z
' o (x2+1)(x2+2x+2) 5
2. Prove that [ mﬁ = é Provided that R(a) is positive. What is

the value of this integral if R(a) is negative?

3. Evaluate the following integrals.
i J-oo x*dx  _m
' 0 x%—6x2+425 20

% xSdx _ 3\2m

0

(x*+a*)?2 ~ 16a

[es) xdx T
. fO 2+1)(x2+2x+2) "5
. oo _ T
V. f °O(a+bx2)4 " 16a3/2p5/2

) x*dx _ n(a+2b)
Vi f—oo(x2+a2)(x2+b2)2 " 2ab3(a+b)?
Vi.

f—OO (x2+1)(x2+9) dx

vii. [ OOx4+1
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TYPE - Il1:

If we have an integral of the form f Px) PC)

© Q(x) © Q(x)
—Sinmx dx where then we can solve it using

Cosmxdx or . == Sinmx dx or

o P(x) P(x)
fo e )Cosmxdx or fO 200

following procedure.
» Replace ‘X’ by ‘z’ in the integrand f(x) = PE ;
by eimz

= Find the poles of f(z)e'™Z, locate those poles which lie in the upper
half plane. Find the residue at the located poles.

= Then by Cauchy Residue theorem use the following formulae

fjomf(x)Sinmx dx = ImQmni ). R)
ffooof(x)Cosmx dx = Re(2mi ), R)
J,” f()Sinmx dx = Im(mi ¥ R)
J,” f(x)Cosmx dx = Re(mi ¥ R)

and Sinmx or Cosmx

Remark:
= P(x) and Q(x) are polynomials such that Q(x) = 0 has no real roots.
And the degree of Q(x) exceeds the degree of P(x)
= Jordan’s Inequality:

%ssmesewhereosesg
Or [e®modg<= ;R>0

Or [ze®mPdp<— ;R>0
2R
= Jordan’s Lemma:
if f(z) is complex valued function such that f(z) - 0 as z - o and
f (z)is the meromorphic in the upper half plane then
limg_, [ f(2)e™*dz =0
where C denotes the semi-circle |z| = R; Im(z) > 0

Or if a function f(z) is analytic at all points in the upper half plane
that are exterior to the semi circle |z| = R, . and if C, denotes a semi
circle z = Re'® (0 < 6 < 1) where R > R, then for all points z on Cg
there will be a positive constant My such that

If(z)] < Mg and limgz,, Mg =0
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C d S a
Example Evaluate [,”=2"—= and deduce the value of Imw where
a’ and ‘m’ are constants.
Solution:
Cosmxd eimzg
= The given integral [°=2"~= becomes [ z—af

= The poles of f(z)e‘mz = 22+a2

= z2 =
z = ai of order 1.

Res(f,ai) = lim,_;

[ —ai)

2=0

—a? = z = tai. The only pole which lies in the upper half plane is

lmZ

z2+az] ~ 2ai
= Then by Cauchy Residue theorem use the following formulae
fooof(x)Cosmx dx = Re(mi Y R)
0 -ma
f Cosmxdx _ Re (T[i « & ' ) _ T ,-ma
0  aZ+4x? 2ai 2a
. L co —Sinmx.xdx _ T —ma(_
Diff. w.r.to ‘m> we get Jo =g =z M ()
J-oo xSinmxdx T _mg
0  a?+x2 2
Example: Prove that [* — o5 z (ﬁ — ﬁ) ;a>b>0
P o (x2+a?)(x2+b%) _ a?~bZ\ b al’
Solution:
Cosxdx e?dz
The glven Integral f m becomes fcm
. imz _ ___e¥dz _ . _ ,
The poles of f(z)e'™ = ey ez = tal, z +bi

The only pole which lies in the upper half plane are z = ai, bi of order 1.

Res(f,ai) = lim,_; _(Z —ai) %
Res(f, ai) = lim,q; :(Z —ai) o al)(z-ll-zadlj(zz+b2)]
Res(f, ai) = lim,q; _(z+ai)lz:22+b2) - 2ai(ia_2a—a2)
Res(f, bi) = lim,_p; [ (2 = bD) e
Res(f,bt) = lim,_,; :(Z — bi) (z—bi)(:-ll-zbi)z(zz+a2)]
Res(f, bi) = lim,_, :(z+bj;z:22+a2) - 2bi(il_2b—b2)

o (x2+a2?)(x%2+b2)

Then by Cauchy Residue theorem use the following formulae
fjooof(x)Cosmx dx = Re(2mi ), R)
()
b a

Cosxdx — Re [Zﬂi 5 ( -b

—-a e

+ 2bi(a2—b2))] -

T
a2—p2

e
2ai(b2—a?)



0o xSin2xd —
Example: Prove that [ Z22 = re=2V3
Solution:
Sin2xd i2zg
= The given integral [, =2== becomes [ .= o

imz _ 2" _
The poles of f(z)e™ = 22+3 “are z = +V3i

The only pole which lies in the upper half plane is z = v/3i of order 1.

Res(f, \/§i) = lim,_, ; (z — \/—l) lZZ]

z2+3
12z
Res(f’ \/§l) = lim,_, 3 ( \/—l) (z- \/—1)(z+\/—1)]
i . [ i2z \/—1612\/—1 \/—lelz‘/ii 1
Res(f, \/§l) = lim,_, (z+x/_l)] (V3i+v3i) ~ 2V3i =3¢ 273
Then by Cauchy Residue theorem use the following formulae

[= fG)Sinmx dx = Im(2mi 3, R)

co xSin2xdx U
J ——=1Im [Zm X=e 2*/5]
- x“+43 2
co xSin2xdx . -
) =2 = Im|nie ?V3] = me=?V3
- x°+43

oo xSin2xdx _ T _3,/3

S =7e

0 x2+3 2

Or
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Exercise 53: (visit @ Youtube “learning with Usman Hamid”)
1. Evaluate the foIIowmg mtegrals

Vi.
Vii.

viii.

foo Cosax e —a

0 x2+1

foo Cosaxdx

0 (x2+b2)2 4b3
oo xSinaxdx _ .

Jo 22 = ZeASina ;a >0
- xX*+4 2

foo x3Sinaxdx
0e]

:a>0
Z (1+ab)e™® ;a>0b>0

———=me % Cosa ;a>0
xX*+4
Sinxdx

= —Z5Sin2
e
=z ~(Sin1 + Cos1)

f © x2+4x+5
foo xSinxdx

-0 x24+2x+2
xSinaxdx

e oo
oo x3Sinaxdx
fO (x2+1)(x2+49)
(x+1)Cosxdx
©  x2+4x+5

I~
f Cosxdx

® (x+a)2+b?

=277
=777

= ;(SinZ — Cos2)
=777 ;b>0

2. Evaluate the following integrals.

Vi.
Vii.

viil.

Xi.

Xii.

o aCosx+xSinx
[ ———d
—o0 2+a2
foo Cosmx
x4+x2+1
foo xSinax
0 x4+x2+1
foo Cosmx
x4+a4
foo Cosax

0 x4+4
foo xSinxdx

(x2+4+1)(x2+4)
foo Cos? xdx
0 (x2+1)2
foo xSlnxdx
0 (x%2+a 2)2
foo Sinxdx
°<>x2 2x+5
%3
Sinxdx —7279
0 (x2+a?)(x2+b2?)

[o'e) 2
Prove by contour integration | log(1+x?)

0 (1+z2)
[ 50 gy =277
0 x249

im >0

x ;a=4

=777

x:;a>0

x:;a>0

= nlog?2
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JORDAN’S INEQUALITY: (1* method)

According to this inequality % < Sinf <6 where0 <0 <
Proof:

We know that 0 < 0 < g then Cos6O decreases steadily and consequently the

mean ordinate of the graph of y = Cosx over the range 0 < x < 6 also

decreases steadily. But this mean ordinate is
(%]

1fC J _Sin@
7 osxdx = 0

SIE

0
From above when 0 < 6 S% implies

AN

< —5‘;‘9 <1

= % <SinB <6 as required.

JORDAN’S INEQUALITY: (2" method)
According to this inequality

Jy e Rsimbap <= R>0 or [Ze RSN dg < = R>0
R 0 2R

Proof: Consider the following figure;

¥

yvesin# H
‘
)'=%f~’ i
0 z ”\ | <
We first note from the graph of the functions y = Sinf and y = %
that 2 < Sinf when 0< 6 <2
Consequently e~RSinf < e_¥ when 0 < 6 Sg where R > 0

S [Ze RS de < [Te~w df =1 (1—eR) ;R>0

z
: Vs
—RSinf < ___ .
> Of e R dg < R>0
This is another form of inequality fone‘RSi”" do < % ; R > 0, since the

graph of y = Sin6 is symmetric with respect to the vertical line 6 = g on the
interval 0 <0 <m
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JORDAN’S LEMMA:(1* method)
If f(z) is complex valued function such that f(z) - 0 as z » o and f(z) is
the meromorphic in the upper half plane then

limg_, [ f(2)e™*dz =0
where C denotes the semi-circle |z| = R; Im(z) > 0

Proof: Consider f(z) has no singularities on C for sufficiently large values of
R. Since limg_ f(z) = 0 we have for a given €
Therefore |f(z)| <ewhen|z| =R <R, ;Ry>0
Now let C denote any semi-circle with radius R. let z = Re®® then we get
V3

fcf(z)eimzdz=ff(Reie)eimRewRieie do
0
T

fcf(Z)eimde — f e—mRSL'nGeimRCost(ReiG)RieiB de
0

|fcf(z)eimzdz| =

T

-]- e—mRSinBeimRCost(ReiB)RieiB de
0

T

Ucf(z)eimzdzl < f|€_mRSin9||€imRCOSG||f(Rei9)| |R||i||ei6|d9
0

T

T

2

|fcf(Z)eimZdZ| < f e—mRSinB € RdO =2 € Rfe—mRSinB de
0 0

T

2
|fcf(z)eimzdz| <2E€ Rfe—mRSine do

0

Using Jordan inequality % < Sinf <6 where0 <0 < g
: 20 e mRE ? mE
:>|fcf(Z)€imZdZ|SZERfe_mR?(w:ZER72 =———(emR-1)
0 _mRﬁ m

- |[ofeedr| <55 (1 —e ) <IF a5 R~ o
= [e™f(z)dz >0 as €0 as required.
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JORDAN’S LEMMA: (2" method)

If a function f(z) is analytic at all points in the upper half plane that are
exterior to the semi circle |z| =R, . and if C, denotes a semi circle
z = Re'® (0 < 6 < m) where R > R, then for all points z on Cx there will be a
positive constant My such that

lf(z2)| <Mz and limg_,,, Mg =0

Proof: Consider the following figure;

3

-

(9

Ko

if }(23- is énalytic at all points in the upper half plane that are exterior to the
semi circle |z|=R, . and if Cr denotes a semi circle
z = Re'® (0 < 6 < m) where R > R, the we write

fCRf(Z)eimZdz = fonf(Reie)eimReleRieie de

Since |f(Re'®)| < My and |eimRe“’ < @-MRSIng

Also using Jordan inequality % < Sinf <6 where0 <0 <
= |[ ¢, f(remdz| < MgR [} e"™RSn0 d < e
= [ 6™ f(z)dz—>0 as Mp —» 0 as required.

NS

Availabel on MathCity.org
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MISCELLANEOUS PROBLEMS

EXAMPLE: Under the transformation (w + 1)2z = 4. Prove that if ‘w’

describes a unit circle then “z’ describes a parabola.

Solution: Consider (W + 1)?z =4 =>z=

Dorelf=—2 _  wz=ref w=el
(ei?+1)

. 2
. (el +1) /4 _ i w (C050 iSin6)

_ 4
w+1)2

2)—Sin2 iSj iSi .
- 1+Cos“@p—Sin <p+2CosZ;p+2sz(p+215m(pCos<p — %(COS@ _ lSlTlH)
Comparing real and imaginary parts

>-Co0s0 = L+Cos’g— s;n2¢+2c¢)s¢ 2Cosq 1+COS"’ ........... (ii)
> —1Sing = BILTBMOLO _ Sing 1“"“" ........... (iif)
Squaring and adding (ii) and (iii)

= (C0526 + Sin%6) = 1(1 + Cosp)?(Cos?p + Sin%¢p)

2 2 — 4
= (1 + Cosp)-=r = T5tosg?
2

=T = Ttose This is the equation of parabola in z — plane.

- 1 o 1
EXAMPLE: Prove that Cotz = -+ 2z %7 ————

zCosz—Sinz

Solution:  Consider f(z) = Cotz — é -

zCosz—Sinz (O

6) = limz_)o

zSinz
—zSinz+Cosz—Cosz (0)

0

lim z) = lim
z—0 f( ) z-0  Ssinz zCosz+Sinz

—zCosz—-Sinz
lim z) = lim =-=0
z-0 f( ) z-0 Cosz—zSinz+Cosz 2

Since f(0) = 0, therefore there is no singularity at z = 0, and the poles of
f(z)areatz =nm; n=+1,1%2, ...
Res(f,nm) = lim,_,,, [(z — nm) M] (9)

zSinz 0
. —zSinz+Cosz—Cosz zCosz—Sinz
Res(f,nm) = lim,_,,, [(z — nm). ]

zCosz+Sinz " zSinz

T zCosz—Sinz] _ nu(-1)" _
Res(f‘ TlT[) - hmz_’n” [zCosz—Sinz] T oan(-0n 1
Now using formula f(z) = f(0) + ¥ _ by, [Z_la + ai
1 1 1
f(Z) - 0 + Zn__oo 1 [Z nT[ ] ZTL 1 [Z —Nn1 E z+nm o E]
f(2) = 22557 s = Cotz = = 225701 s

(o)

1 1
ﬁCOtZ—E'i' 2Z;1m
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For video lectures
@ You tube visit

Learning with Usman Hamid

visit facebook page “mathwath”
or contact: 0323 — 6032785

Availabel on MathCity.org



