
  

COMPLEX 
ANALYSIS 
MUHAMMAD USMAN HAMID  

 

Available on  MathCity.org



1

 

 

                                                 

COMPLEX ANALYSIS 

 
MUHAMMAD USMAN HAMID 

  University of  S a r g o d h a  

SAIMA AKRAM 
  University of  G u j r a a t  

 

 

The extension to the concept of complex numbers from that of real numbers was 

first necessitated by the solution of algebraic equations. 

For example the quadratic equations 

                             
Do not possess real roots. 

In order to find the solution of these equations, Euler (1707-1783) was first to 

introduce the symbol   √          

 

Gauss (1777-1855) a German mathematician was first to prove in a satisfactory 

manner that some algebraic equations with real coefficients have complex roots 

in the form      (Note that complex and irrational roots always occur in pairs) 

 

REFERENCE BOOKS: 

 Complex variables and applications by J.W.Brown & R.V.Churchill. 

 Schaums outlines of complex variables. 

 Fundamentals of complex analysis by Dr.Muhammad Iqbal. 

 Complex analysis with applications by D.G. Zill 

 

 

For video lectures 
@ You tube visit 

Learning with Usman Hamid 
visit facebook page “mathwath” 

or contact: 0323 – 6032785 
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C H A P T E R   

            1 
       COMPLEX NUMBERS 
AND BASIC DEFINATIONS 

 

 
ORDERED PAIR:  A pair (x, y) such that (x, y)   (y, x) unless               

x = y is called an ordered pair. It can be represented as a point in 

complex plane. 
 

 
    

 
 

  

 

COMPLEX NUMBERS:  It can be defined as ordered pairs (x, y) of 

real numbers that are to  be interpreted as points in the complex plane, 

with rectangular coordinates x and y, just as real numbers x  are thought  

of as points  on the  real line.  

Or a complex number is any number of the form        where „x‟ 

and „y‟ are real numbers and   is the imaginary unit. 

 When real numbers x are displayed as points (x, 0) on the real axis, it is 

clear that the set of complex numbers includes the real numbers as a 

subset.  

 Complex numbers of the form (0, y) correspond to  points  on  the            

y - axis  and  are  called  pure imaginary numbers  when      y   0. The               

y - axis is then referred to as the imaginary axis. 

 The real numbers x and y are, moreover, known as the real and 

imaginary parts of z, respectively; and we write x = Re z, y = Im z. 

 Two complex numbers z1 and z2 are equal whenever they have the same 

real parts and the same imaginary parts. Thus the statement z1 = z2 

means that z1 and z2 correspond to the same point in the complex, 

or z - plane. Also both will be equal if they have same modulus and 

Principal argument  

y 

z = (x, y) 

i = (0, 1) 

O x = (x, 0) x 
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COMPLEX PLANE:  The plane at which two lines are mutually 

perpendicular at a point O (origin) where x – axis is real line and                   

y – axis is an imaginary line. Plane also named as Argand plane 

(diagram) or Gaussian Plane. 

 
                        SOME BASIC PROPERTIES 

For two complex numbers      z1 = (x1, y1) and z2 = (x2, y2) 

 (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), 

 (x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 +   x2y1 ). 

 (x1, 0) + (x2, 0) = (x1 + x2, 0), 

 (x1, 0)(x2, 0) = (x1x2, 0). 

 The complex number system is a natural extension of the real 

number system. Also complex cannot be comparable like real 

numbers. 

 Any complex number z = (x, y) can be written z = (x, 0) + (0, y), 

and it is easy to see that (0, 1) (y, 0) = (0, y).  

Hence     z = (x, 0) + (0, 1)(y, 0) 

 z
2
 = zz, z

3
 = z

2
z, etc. and  z(z1 + z2) = zz1 + zz2 

 (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2), 

 (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 +   x2y1) 

             (   ) 
Proof:   (x1, y1)(x2, y2) = (x1x2 − y1y2 , x1y2 +   x2y1) 

        (   )(   )  (        )  (     )         
 z1 + z2 = z2 + z1, z1z2 = z2z1  (commutative law) 

 (z1 + z2) + z3 = z1 + (z2 + z3), (z1z2)z3 = z1(z2z3)   (associative laws) 

 z1 + z2 =(x1 + x2, y1 + y2) = (x2 + x1, y2 + y1) = z2 + z1 

 The additive identity 0 =(0,0) and the multiplicative identity               

1= (1,0) 

 There is associated with each complex number  z = (x, y) an additive 

inverse −z = (−x, −y) 

 For any nonzero complex number z = (x, y) there is a number z
−1

 such 

that    zz
−1

 = 1. This is multiplicative inverse. And     .
 

     
 

  

     
/ 

 z2 = z2 ·1 = z2(z1z1
−1) =(z1

−1z1)z2=z1
−1(z1z2)=z1

−1.0 = 0 if z1z2 = 0 

 Using the associative and commutative laws for multiplication 

(z1z2)(z3z4) = (z1z3)(z2z4) 

 z(z1 + z2 + z3) = zz1 + zz2 + zz3 

 
  

  
 .

         

  
    

  
         

  
    

 / 

 A set of complex numbers form a field. 

 Set of complex numbers satisfies scalar multiplication. 
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Example: Simplify 
   

    
 

 

Solution: 
   

    
 

(   )(    )

(    )(    )
 

     

  
 

 

  
 

  

  
  

 

Example: Write down the binomial expansion form of  (     )
  

Solution: (     )
  0  .  

  

  
/1

 

   
 (      

  )    

  (     )
    

 0   (    
  )  

 (   )

  
(    

  )   1 

(     )
    

 [   (    
  )  

 (   )

  
  
   

    ] 

(     )
    

   (    
   )  

 (   )

  
  
   

      

(     )
  ∑   

 

   

  
   

    ∑.
 
 
/

 

   

  
   

    

 

Example: Show that  (     )
    ∑ .

   
 

/   
     

   
                                                                                                         

Solution: 

(     )
    (     )(     )

  (     )∑ .
 
 
/ 

     
   

     

(     )
    ∑.

 
 
/

 

   

  
   

      ∑.
 
 
/

 

   

  
     

    

(     )
    ∑.

 
 
/

 

   

  
   

      ∑.
 

   
/

 

   

  
   

      

(     )
      

    ∑.
 
 
/

 

   

  
   

        
    ∑.

 
   

/

 

   

  
   

      

(     )
      

    ∑0.
 

   
/  .

 
 
/1

 

   

  
   

        
    

(     )
    .

   
 

/   
   

      

 

 

 

 

 

 

 

 

Replace 

„k‟ with 

„k-1‟ 
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Exercises 1: (visit @ Youtube “learning with Usman Hamid”) 

1) Verify that  

a) (√   )   (  √  )       

b) (    )(    )  (    ) 
 

2) Show that 

a) Re(iz) = − Im z  

b) Im(iz) = Re z. 

 

3) Show that (1 + z)
2
 = 1 + 2z + z

2
. 

 

4) Verify that each of the two numbers z = 1 ± i satisfies the 

equation    z
2
 − 2z + 2 = 0. 

 

5) Briefly answer the followings; 

a) Write (x, y) + (u, v) = (x, y) and point out how it follows 
that the complex number 0 = (0, 0) is unique as an 

additive identity 
b) Likewise, write (x, y)(u, v)=(x, y) and show that the  

number   1= (1, 0) is a unique multiplicative identity. 

c) Use −1 = (−1, 0) and z = (x, y) to show that (−1)z = −z. 

d)  Use   (   ) and   (   ) to verify that                      

– (  )  (  )  
e) Solve the equation z

2
 + z + 1 = 0 for z = (x, y) by writing 

(x, y)(x, y) + (x, y) + (1, 0) = (0, 0) 
and then solving a pair of simultaneous equations in x 

and y. 

 

6) Reduce each of these quantities into real numbers number: 

(a) 
    

    
 

   

  
   (b)  

  

(   )(   )(   )
    (c)  (   )  

7) Show that  
 

 
 ⁄
   

8) Prove that if z1z2z3 = 0, then at least one of the three factors is 

zero. 

9)  Derive the identity .
  

  
/ .

  

  
/  .

    

    
/ 

10) Derive the cancellation law  
   

   
 

  

  
 

 

11) Use the definition of complex numbers as an ordered pair 

of real numbers and prove that 

   (   )   (   )   (   )        (   )(   )  (    )
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VECTORS INTERPRETATION OF COMPLEX NUMBER                                 

(GRAPHICAL REPRESENTATION) 

A complex number        can be considered as a vector   ⃗⃗⃗⃗⃗⃗  in 

complex plane whose initial point is the origin and terminal point is the 

point  (   )  

We sometime call   ⃗⃗⃗⃗⃗⃗        the position vector of „P‟ 

For example:        and        graphically represented as 

below; 

 

 

 

 

 

 

 

 

 

                       When z1 = x1 + iy1 and z2 = x2 + iy2, the sum z1 + z2 = (x1 + x2) + i(y1 + y2) 

Corresponds to the point (x1 + x2, y1 + y2).  It also corresponds to a vector 

with those coordinates as its components. Hence z1 + z2 may be obtained 

vectorially as shown in Fig. 

 

 

 

   

 

 

 

Keep in mind: Two vectors having the same length or magnitude and 

direction but different initial points are considered to be equal. 

 

 

Exercises 2: (visit @ Youtube “learning with Usman Hamid”)  

  Locate the numbers z1 + z2 and z1 − z2 vectorially when 

i.       ;     
 

 
   

ii.    ( √   ) ;     (√   ) 

iii.    (    ) ;     (   ) 

iv. z1 = x1 + iy1  ; z2 = x1 - iy1  

v. perform both indicated operations analytically as well as 

graphically for (    )  (    ) 

 

y 

(–2, 1) 
1 z = (x, y) 

–2 O x 

y 

z2 

z2 

z1 

O x 
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THE MODULUS OR ABSOLUTE VALUE OF COMPLEX NUMBER                                  

The modulus or absolute value of a complex number        is 

defined as | |  √      which is non – negative real quantity.

 Geometrically, the number  | |  is the distance between the point (x, y) and 

the origin, or the length of the radius vector representing z. It reduces to the 

usual absolute value in the real number system when y=0.  

 The inequality z1 < z2 is meaningless  unless  both  z1  and  z2  are  real,  the  

statement  |  |  |  | means that the point z1 is closer to the origin than 

the point z2 is. 

 

Example: Since |− 3 + 2i |= √   and |1 + 4i |=√  , we know that                         

the point −3 + 2i is closer to the origin than 1 + 4i is. 

 

Remark: The complex numbers z corresponding to the points lying on   

the circle with center z0 and radius R thus satisfy the equation |z − z0 |= R, 

and conversely. We refer to this set of points simply as the circle   

|z − z0 |= R. 

Example: The equation |z − 1 + 3i |= 2 represents the circle whose center is 

z0 = (1, −3) and whose radius is R = 2. 

Example: The equation |z − 4| + |z + 4i | = 10 after rearranging                      

|  –   |    |  – (    )|       represents the ellipse with foci F(0, 4) and   

  (    ) 

Example: The equation |z -1| =|z + i| represents the line through the origin 

whose slope is −1 

Example: The equation |z | + |z -2| = 4 represents the ellipse where |z | is 

the distance from origin. 

 

Exercises 3: (visit @ Youtube “learning with Usman Hamid”)  

 In each case, sketch the set of points determined by the given condition: 

(a) |z − 1 + i |= 1  

(b) |z + i |≤  3  

(c) |2z - i |= 4 

(d) |z − 4i| ≥ 4 

(e)  |
   

   
|    

(f)  |
   

   
|    
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BASIC PROPERTIES: It also follows from definition that the real 

numbers |z|, Re z = x, and  Im z = y are related as follows; 

 | |  (  ( ))
 
 (  ( ))

 
  

 Re z ≤ |Re z |≤  |z| and Im z ≤ |Im z |≤  |z|. 

 | |    ̅ 
 | |  | ̅| 

 | |  (  ( ))
 
 

 | |  (  ( ))
 
 

 |    |  |  ||  | 
Proof: |    |

  (    )(    )̅̅ ̅̅ ̅̅ ̅̅ ̅      ̅̅ ̅    ̅̅ ̅  |  |
 |  |

  |    |  |  ||  | 

 |
  

  
|  

|  |

|  |
          

Proof: |
  

  
|
 

 .
  

  
/ .

  

  
/

̅̅ ̅̅ ̅
 

  

  

  ̅̅ ̅

  ̅̅ ̅
 

|  |
 

|  | 
 |

  

  
|  

|  |

|  |
 

 |     |  |  |  |  |   (triangular inequality) 

Proof: |     |
  (     )(     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (     )(  ̅    ̅) 

|     |
      ̅      ̅      ̅      ̅  |  |

      ̅      ̅̅̅ ̅̅ ̅̅  |  |
   

|     |
  |  |

     (    ̅)  |  |
                       ̅     ( )  

|     |
  |  |

   |    ̅|  |  |
                                     | |    ( )  

|     |
  |  |

   |  ||  ̅|  |  |
                          |    |  |  ||  |  

|     |
  |  |

   |  ||  |  |  |
                                    |  ̅|  |  |  

|     |
  ,|  |  |  |-

                                                        
    |     |  |  |  |  |  
|         |  |  |  |  |   |  |   in general 

 |∑  

 

   

|  ∑|  |

 

   

 

 ||  |  |  ||  |     | 
Proof: consider    (     )     |  |  |(     )    | 
 |  |  |     |  |  |  |  |  |  |  |     |      ( ) 
Similarly     (     )     |  |  |(     )    | 
 |  |  |     |  |  |  |  |  |  |  | (     )|  
  ,|  |  |  |-  |     |  |  |  |  |   |     |       ( ) 

From (A) and (B)  ||  |  |  ||  |     | 
 

Example: If a point z lies on the unit circle | |    about the origin, 

then   |     |  |   (   )|   | |  |   |         |     |    

                     And |     |  |   (   )|  || |  |   ||  |    |    |     |    

Example: If a point z lies on the circle| |   , then     

|      |  | |   | |  |  |  | |   | |  |  |      

 |      |    
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Example: If n is a positive integer and P(z) is a polynomial of degree n 

then for some positive number R, the reciprocal    ( ) satisfies the 

inequality |
 

 ( )
|  

 

|  |     whenever  | |    

Solution: Consider  ( )              
  is a polynomial of 

degree n. 

Take   
  

   
  

       
    

 
      ( ) 

Then   ( )  (    )           (  ) 

( )                
       

  

 |   |  |          
         

 | 
 | || |  |  |  |  || |  |  || |

    |    || |
    

 | |  
|  |

| | 
 

|  |

| |   
   

|    |

| |
 

Note that a sufficiently large positive number R can be found such that each 

of the quotients on the right in above inequality is less that the number  
|  |

(  )
 

when  | |    and so 

| |   
|  |

(  )
 

|  |

 
   when  | |    

Consequently  |    |  ||  |  | ||  
|  |

 
  when  | |    

(  )  |  ( )|  |    || |  
|  |

 
| |  

|  |

 
    When  | |    

  |
 

 ( )
|  

 

|  |  
   Whenever  | |    

 

Exercises 4: (visit @ Youtube “learning with Usman Hamid”) 

1. Show that     |   |  | | 
2. Verify |  |  |  |   |     | involving Re z, Im z, and |z| 

3. When |  |  |  | show that  
  (     )

|     |
 

|  | |  |

 ||  | |  ||
 

4. If   
  

    
 then find | | 

5. Verify that √ | |  |  ( )|  |  ( )| 
6. Using mathematical induction show that  |  |  | |  

7. Show that  |
 

        
|  

 

 
  when z lies in the circle  | |    
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COMPLEX CONJUGATES 

The complex conjugate, or simply the conjugate, of a complex 

number        is defined as the complex number x − iy and is 

denoted by   ̅;    that is,   ̅= x − iy. 

The number   ̅ is represented by the point (     ), which is the 

reflection (mirror image) in the real axis of the point (x, y) 

representing z 

 

 

 

 

 

 

 

If z1 = x1 + iy1 and z2 = x2 + iy2, then 

  ̿    

      ̅̅ ̅̅ ̅̅ ̅̅ ̅    ̅    ̅ 

      ̅̅ ̅̅ ̅̅ ̅̅ ̅    ̅    ̅ 

     ̅̅ ̅̅ ̅̅    ̅  ̅ 

 .
  

  
/

̅̅ ̅̅ ̅
 

  ̅̅ ̅

  ̅̅ ̅
 

 | ̅|  | | 
   ̅  | |  

    ̅        ( )    ( )  
   ̅

 
 

    ̅         ( )    ( )  
   ̅

  
 

 If    ̅ then complex status of z is that z will be a real number. 

i.e.     ̅ iff z is a real. We may say that z is self-conjugate. 

     ̅  iff z is either real or pure imaginary. 

Example:  
     

   
 

(     )(   )

(   )(   )
 

     

|   | 
       

Example: If z is a point inside the circle centered at the origin with 

radius 2, so that z < 2, it follows from the generalized triangle 

inequality 

 |           |  |  |   |  |   | |    

|           |  | |   | |   | |           |  |  | |  

|           |     

  

 

 

 

 

y 

z 
(x, y) 

O 
– 

x 

z 
(x, – y) 
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Exercises 5: (visit @ Youtube “learning with Usman Hamid”) 

1. Show that  

i.  ̅    ̅̅ ̅̅ ̅̅ ̅̅       
ii.   ̅     ̅ 

iii. (   ) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅       

iv. |(  ̅   )(√   )|  √ |    | 
 

2. Sketch the set of points determined by the condition; 

i.   ( ̅   )    

ii. |    |    
3. Show that 

i.       ̅̅ ̅̅ ̅̅ ̅̅    ̅  ̅  ̅ 

ii.   ̅̅ ̅   ̅  

4. Verify for non – zero       

i. .
  

    
/

̅̅ ̅̅ ̅̅ ̅̅
 

  ̅̅ ̅

  ̅̅ ̅   ̅̅ ̅
 

ii. |
  

    
|  

|  |

|  ||  |
 

5. Show that  |  (   ̅    )|     when | |    

6. By using mathematical induction show that 

i.          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    ̅  ̅  ̅    ̅̅ ̅ 

ii.             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    ̅    ̅    ̅     ̅̅ ̅ 

7. For any real numbers ∑   
 
            and for a complex number 

„z‟ show that         

                  ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅        ̅     ̅
       ̅

   

8. Show that the equation |    |    of a circle centered at    with 

radius R can be written as  | |     (   ̅)  |  |
     

9. Show that the hyperbola         can be written as               

    ̅    
10. Express 2x + y = 5 in terms of complex conjugates. 

11. Express           in terms of complex conjugates. 

12. If the sum and product of two complex numbers are both real, then 

prove that the two numbers must either be real or conjugate. 
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ARGUMENT (AMPLITUDE) OF COMPLEX NUMBERS 

Let r and θ be polar coordinates of the point (x, y) that corresponds to 

a nonzero complex number         Since          and   

            , the number z can be written in polar form as 

(1)      (                ) 
 If z = 0, the coordinate θ is undefined; and so it is understood 

that     whenever polar coordinates are used. 

 In complex analysis, the real number r is not allowed to be 

negative and is the length of the radius vector for z ; that is, 

   | |  √      .  

 The real number θ represents the   angle, measured in radians, 

that z makes with the positive real axis when z is inter preted as a 

radius vector (Fig). and         .
 

 
/ is called an argument     

of z, and the set of all such values is denoted by arg z. 

  The principal value of arg z, denoted by Arg z, is that unique 

value   such that −π <   ≤ π. Evidently, then, 

 arg z = Arg z + 2nπ (n = 0, ±1, ±2,...). 

Also, when z is a negative real number, Arg z has value π, not −π. 

At origin Arg z not defined. 

Some authors use −π ≤   < π but we follow previous one.  

 

 

 

 

    

 

 

HOW TO FIND ARGUMENT? 

        .
 

 
/              

          .
 

 
/                   

           .
 

 
/                   

   
 

 
            

    
 

 
             

 arg z = Arg z + 2nπ (n = 0, ±1, ±2,...). 

 Arg z =  arg z - 2nπ (n = 0, ±1, ±2,...). 

 

 

 

 

y 

z = x + iy 

r 

x 
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Example: Find the argument of the complex number  z = −1 − i  

Solution: The complex number  z = −1 − i , which lies in the third 

quadrant, has principal argument −3π/4. That is, 

   (    )   
  

 
 

It must be emphasized that because of the restriction −π <   ≤ π of the        

principal argument  , it is not true that    (    )  
  

 
 

                          Now                       
  

 
       (n = 0, ±1, ±2,...). 

  

 EXPONENTIAL FORM 

The symbol e
iθ

, or exp(iθ ), is defined by means of Euler’s formula as 

(3) e
iθ

 = cos θ + i sin θ,  where θ  is to be  measured in radians. It enables one 

to write  the polar form  more compactly in exponential form as                  

z = re
iθ

 

 

Example: Write exponential form of the complex number z = −1 − i 

Solution: Since for the complex number z = −1 − i, which lies in the  

   
  

 
  And   √  

Then               √   . 
  

 
/       √   . 

  

 
       /

 

 (n = 0, ±1, ±2,...). 

 

Note: Expression          with r = 1 tells  us  that the  numbers  e
iθ

 lie  

on the  circle centered at the origin with radius unity, as shown  in  Fig. 

Values of  e
iθ

  are, then, immediate from that figure, without reference to 

Euler‟s formula. It is, for instance, geometrically obvious that               

            
  

                 

y 

1 

O x 
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Note:  The equation     z = Re
iθ

 (0 ≤ θ ≤ 2π)    is a parametric 

representation of the circle| |   , centered at the origin with radius R. As 

the parameter θ increases from 0 to 2π, the point z starts from the positive 

real axis and traverses the circle once in the counterclockwise direction. 

More generally, the circle   |     |   , whose center is z0 and whose 

radius is R, has the parametric representation   z = z0 + Re
iθ

    (0 ≤ θ ≤ 2π). 

                This can be seen vectorially (Fig) by noting that a point z 

traversing the circle |     |    once  in the  counterclockwise 

direction corresponds to  the  sum  of  the fixed vector z0 and a vector of 

length R  whose angle of inclination θ  varies from 0 to 2π. 

 

 

 

  

 

 

 

 

 

                        PRODUCTS AND POWERS IN EXPONENTIAL FORM 

Simple trigonometry tells us that e
iθ

 has the familiar additive property of 

the exponential function in calculus: 

e
iθ

1 e
iθ

2 = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2) 

           = (cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2) 

           = cos(θ1 + θ2) + i sin(θ1 + θ2) = e
i(θ

1+θ2). 

Thus, if z1 = r1e
iθ

1 and z2 = r2e
iθ

2 , the product z1z2 has exponential form 

 z1z2 = r1e
iθ1 r2e

iθ2 = r1r2e
iθ1 eiθ2 = (r1r2)e

i(θ1+θ2). 

 
  

  
 

   
   

 
   

    
  
 
  
 
          
 
    

 
     

 
  
 
  
 
  (     )

 
   

 
  
 
  
  (     ) 

     
 

 
 

    

     
 
 
 
  (   )  

 
 
 
     

 z
n
 = r

n
e

inθ
 (n = 0, ±1, ±2,...). 

 for       n = m + 1:  

zm+1 = zmz = rmeimθreiθ = (rmr)ei(mθ +θ) = rm+1ei(m+1)θ . 

 z
n
 = (z

−1
)

m
  where   m = −n = 1, 2,. ..  . 

 (   )  0
 
 
 
    1

 

 0
 
 
 
1
 

      

 

 

 

 

y 

z 

 

z0 

O x 
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Example: Write (    )  in rectangular form. 

 Solution:      

  (    )  .√   .
  

 
//

 

 (      ) .      .
 

 
//    .      .

 

 
//  

  (    )    0√ .
 

√ 
 

 

√ 
/1    (   ) 

Exercises 6: (visit @ Youtube “learning with Usman Hamid”) 

1. Write (√   )
 
 in rectangular form. 

2. By writing the individual factors on the left in exponential form, 

performing the needed operations, and finally changing back to 

rectangular coordinates, show that 

i.  (  √  )(√   )   (  √  ) 

ii. 
  

   
      

iii. (√   )
 
     

iv. (  √  )
   

     (   √  ) 

DE MOIVRE’S FORMULA: 

For z
n
 = r

n
e

inθ
 (n = 0, ±1, ±2,...) we have   (e

iθ
 )

n
 = e

inθ
 (n = 0, ±1, ±2,..). 

                        When written in the form 

(cos θ + i sin θ )
n
 = cos nθ + i sin nθ (n = 0, ±1, ±2,...), 

This is known as de Moivre’s formula.  

Remarks:  
 (cos θ + i sin θ )

2
 = cos 2θ + i sin 2θ,  

 Or  cos
2
 θ − sin

2
 θ + i2 sin θcos θ = cos 2θ + i sin 2θ.  

 By equating real parts and then imaginary parts here, we have the 

familiar trigono metric identities                                                            

cos 2θ = cos
2
 θ − sin

2
 θ, sin 2θ = 2 sin θ cos θ.  

 

                          Question: Prove de Moivre‟s formula                                        

                                      (cos θ + i sin θ )
n
 = cos nθ + i sin nθ (n = 0, ±1, ±2,...) 

  Proof : By using mathematical induction we assume that result is true for                   

the particular positive integer „k‟ i.e. 

(cos θ + i sin θ )
k
 = cos kθ + i sin kθ (k = 0, ±1, ±2,...) 

Then multiplying (cos θ + i sin θ ) we get 

(cos θ + i sin θ )
k+1

 = ( cos kθ + i sin kθ) (cos θ + i sin θ ) 

(cos θ + i sin θ )
k+1

 = cos (k+1)θ + i sin (k+1)θ 

Result is true for n = k+1 and hence proved. 

 

Exercise 7: (visit @ Youtube “learning with Usman Hamid”)            

Use de Moivre‟s formula to derive the following trigonometric 

identities: 

(a) cos 3θ = cos3 θ − 3 cos θ sin
2
 θ ; (b) sin 3θ = 3 cos2 θ sin θ − sin

3
 θ . 
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                          ARGUMENTS OF PRODUCTS AND QUOTIENTS 

If z1 = r1e
iθ

1 and z2 = r2e
iθ

2 , then expression  z1z2 = (r1r2)e
i(θ

1+θ2) 

can be used to obtain an important identity involving arguments: 

(3) arg(z1z2) = arg z1 + arg z2. 

Suppose z1 , z2 be two non – zero complex numbers and let r1 , r2 be the 

moduli and  θ1 , θ2 be the arguments. Then    z1z2 = (r1r2)e
i(θ

1+θ2)  
     Then arg(z1z2) = θ1 + θ2 = arg z1 + argz2 

              In general  

arg(z1z2…. zn) = θ1 + θ2 +….+   = arg z1 + arg z2+..…+ arg zn 

But for principal argument  

Arg(z1z2 ……. zn)   θ1 + θ2 +….+     Arg z1 + Arg z2+...…+ Arg zn 

Also 
  

  
 

  
 
  
  (     )     .

  

  
/                   

 

 

 

 

 

 

 

 

 

 

 

Example: Show that arg(z1z2) = arg z1 + arg z2                                               

also      Arg(z1z2)  Arg z1 + Arg z2 when z1 = −1 and z2 = i 

Solution: when z1 = −1 and z2 = i then Arg(z1z2)= Arg(-i)= 
 

 
 but       

Arg z1 + Arg z2 =   
 

 
 

  

 
  for both we use n = 0 

Then Arg(z1z2)  Arg z1 + Arg z2 

But for n = 1 we get arg(z1z2) =  Arg(z1z2) +    = 
 

 
     

  

 
 

Then arg(z1z2) = arg z1 + arg z2 

 

                      Example: Find the principal argument Arg z when   
 

    

                       Solution: use  arg(z) = arg (i) - arg (-1-i) 

  And Since Arg(i) = 
 

 
 and Arg(-1-i) = 

  

 
 

one value of arg z is 5π/4 not a principal value  

then     .
 

    
/  

  

 
     

  

 
 

 

 

y z1z2 

z2 

z1 

O x 
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Exercises 8: (visit @ Youtube “learning with Usman Hamid”) 

1. Find the principal argument Arg z when 

i.   
  

  √  
 

ii.   (√   )
 
 

2. Find the modulus and  argument of the followings 

i.   
    

  (   ) 
 

ii.   
   

   
 

   

   
 

3. Show that (a) |e
iθ

 |=  1;   (b)    ̅̅ ̅̅  = e
−iθ

 . 

4. Use mathematical induction to show  that 

e
iθ

1 e
iθ

2 ···  e
iθ

n = e
i(θ

1+θ2+···+θn) (n = 2, 3,.. .). 

5. Using the fact that the modulus  |      |  is the distance between the 

points e
iθ

 and 1 give a geometric argument to find a value of θ in the 

interval 0   θ < 2π that satisfies the equation  |      |        Ans: π 

 

MISCELLANEOUS PROBLEMS 

Example: Find the locus of „z‟ when    .
   

   
/  

 

 
 

Solution: consider 
   

   
 

      

      
 

(   )   

(   )   
 

       

(    )      
  

(    )     

    (
   

   
)       (

  

       
) 

 
 

 
      (

  

       
)     .

 

 
/  

  

       
 

 √  
  

       
       

 

√ 
       an equation of circle.  

 

Example: Find the locus of „z‟ when |
   

   
|    |

   

   
|
 

   

Solution: Since | |    ̅   therefore 

|
   

   
|
 

   (
   

   
) .

   

   
/

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
   (

   

   
) (

 ̅   

 ̅   
)    

  | |    ( ̅   )    | |   ( ̅   )      

  | |    ( ̅   )       (     )    (    )      

                 which is interior and boundary of circle. 

 

Example: Prove that  |
    

  ̅  
|        | |    

Solution: Since | |    | |      ̅   ̅  
 

 
   then 

|
    

  ̅  
|  |

    
 

 
     

|  |
    

    
  |  | |    as required. 



19 

 

                                                 

Example: if     
(    )    

    
 then prove that the locus of „z‟ is an ellipse. 

Find the semi major and semi minor axis. 

Solution: let             
(    )    

    
 

    

    
  

 

    
   then 

   
    

    
     

 

    
          

  

( ) 
 

  

(   ) 
   

Hence given equation is an ellipse whose semi major and semi minor 

axis are 1 and ½ respectively. 

 

Example: if     
(   ) (    ) 

    
 then prove that the locus of „z‟ is a 

circle. Find the radius and center of circle. Also calculate the maximum 

and minimum distance of „z‟ from origin. 

Solution: let             
(   ) (    ) 

    
   

 (    )(    )  (   )  (    )    
 (    )   (    )  (    )   (    )   
Then comparing real and imaginary parts 

 (    )  (    )   ( )    (    )  (    )  (  ) 

( )  (    )  (    )    
   

   
 

(  )  (    )  (    )  [   (
   

   
)]  [   (

   

   
)] 

                   (After solving) 

Hence given equation is a circle. 

Now comparing the equation with                      

We get     
 

 
            

Thus                  (     )  .
 

 
   /          

                 √        
√  

 
  

                          
√  

 
 

√  

 
  

                          
√  

 
 

√  
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Example:  

Prove that   |
   

   ̅ 
|    if | |    and | |    when does equality 

holds? 

Solution: We have to prove |
   

   ̅ 
|    |   |  |   ̅ |            

if | |    and | |    

Consider 

 |   |  (   )(   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (   )( ̅   ̅)    ̅    ̅    ̅    ̅ 

 |   |  | |  | |    ̅   ̅      ( ) 

Again Consider 

 |   ̅ |  (   ̅ )(   ̅ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (   ̅ )(    ̅)        ̿    

 |   ̅ |      ̅   ̅    ̅  ̅  
Adding and subtracting  | |  | |  on R.H.S 

 |   ̅ |  | |  | |    ̅   ̅      ̅  ̅  | |  | |  

 |   ̅ |  |   |    | || |  | |  | |               ( ) 
 |   ̅ |  |   |  (  | | )(  | | ) 

Since    | |           | |     
             |   ̅ |  |   |  |   ̅ |  |   |  |   |  |   ̅ | 

Equality will hold if 

   | |    | |    | |           | |    | |     

 

Example:  

Prove that   |     |
  |     |

   ,|  |
  |  |

 - and deduce the 

result |  √     |  |  √     |  |   |  |   | 
Solution: 

               |     |
  |     |

  

      (     )(     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (     )(     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

      (     )(  ̅    ̅̅̅)(     )(  ̅    ̅̅̅) 

          ̅      ̅̅̅      ̅      ̅̅̅      ̅      ̅̅̅      ̅      ̅̅̅ 

      |  |
  |  |

  |  |
  |  |

   ,|  |
  |  |

 -        

Now let      √      and      √      

    Then |  |
  |  |

  
 

 
,|     |

  |     |
 -  

 

 
0|  |  | √     |

 
1 

 |  |
  |  |

   | |   |     |      ( ) 

     Now ,|  |  |  |-
  |  |

  |  |
   |    |   | |   |     |   | |  

               ,|  |  |  |-
  ,|   |  |   |-  |  |  |  |  |   |  |   | 

 Hence |  √     |  |  √     |  |   |  |   | 
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Example:  

Represent graphically all points for „z‟ such that |
   

   
|    also find the 

centre and radius of the locus of „z‟. 

Solution: Consider |
   

   
|
 

   .
   

   
/ .

   

   
/

̅̅ ̅̅ ̅̅ ̅
   .

   

   
/ .

 ̅  

 ̅  
/    

 
(   )

(   )
 
( ̅   )

( ̅   )
   (   )( ̅   )   (   )( ̅   ) 

   ̅     ̅       ̅       ̅       ̅   (   ̅)      

   ̅  
 

 
(   ̅)      (  

 

 
) ( ̅  

 

 
)  

  

 
     

 (  
 

 
) ( ̅  

 

 
)  

  

 
   (  

 

 
) ( ̅  

 

 
)  

  

 
 

 |  
 

 
|
 

 .
 

 
/
 

 Represents a circle centered at 
 

 
 having radius 

 

 
 

 

Example:  

Find the locus of „z‟ where                where„t‟ is real 

parameter and a , b are complex constants. 

Solution: Given               
Let                              then  

      (      )     (      )     

      (             )   (             ) 
Then comparing real and imaginary parts 

                                   

                                   

 
    

       
 

    

       
 

 

         
  

 
    

       
 

 

         
      

    

       
 

 

         
  

      
       

         
           

       

         
  

              .
       

         
/
 

 .
       

         
/
 

  

   
(       )  (       )

 

(         ) 
  

 (         )
  (       )

  (       )
   

 , (         )-
    

      
              

      
            

 (         )  (  
    

 )   (  
    

 )      (         ) 

 , (         )-
    

      
              

      
            

 (         )  (  
    

 )   (  
    

 )      (         ) 
Given equation is an ellipse because 

(         )
  (  

    
 )(  

    
 )     (after solving) 
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Remark: a curve                          is  

 an ellipse if         

 a hyperbola if         

 a parabola if         
 

Example:  

Prove that||  |  |  ||  |     |  |  |  |  | 
Proof:  

consider    (     )     |  |  |(     )    | 
 |  |  |     |  |   |  |  |  |  |  |     |      ( ) 

Similarly     (     )     |  |  |(     )    | 
 |  |  |     |  |   |  |  |  |  |  |     |  

  ,|  |  |  |-  |     |  |  |  |  |   |     |      ( ) 

From (A) and (B)  ||  |  |  ||  |     |     ( ) 

Also |     |  |  |  |  |     (  ) 

From (i) and (ii)  ||  |  |  ||  |     |  |  |  |  |     (   ) 

This is our required result. 

 

Further (in need) since |  |  |   | therefore replacing in (iii) 

||  |  |   ||  |     |  |  |  |   |  

||  |  |  ||  |     |  |  |  |  |     (  )  
 

From (iii) and (iv)  ||  |  |  ||  |     |  |  |  |  | 
 

Remark: 

                 |     |  |  |  |  |  
                 |     |  ||  |  |  ||  

 

Example:  

Find maximum and minimum of|     | for a unit circle. i.e. | |    

Solution: 

                 |     |  |  |  |  |  | |  | |         

                 |     |  ||  |  |  ||  || |  | ||  |   |     
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Exercise 9: (visit @ Youtube “learning with Usman Hamid”) 

1. Find the locus of „z‟ when |
   

   
|    |

   

   
|
 

   

2. Prove that   |
   

   ̅ 
|    if | |    and | |    when does 

equality holds? 

3. Prove that   |
   

   ̅ 
|    if either | |    or  | |    what 

exception must be made if | |  | |    

4. Prove that   |   |  |   |   ,| |  | | -  where „a‟ and 

„b‟ being any complex numbers. 

5. Find the locus of „z‟ where       
 

 
 where„t‟ is real 

parameter and a , b are complex constants. 

6. Find maximum and minimum of|     | for      

|   |     |  (   )| 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Availabel on MathCity.org
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 ROOTS OF COMPLEX NUMBERS 

A number „  ‟ is called an nth root of a complex number „z‟ if (  )
    

and we write 

         √ 
 

 | |
 

 0   .
     

 
/      .

     

 
/1   

 

   .
     

 
/
 

Where                   

 

 

 

 

 

 

     

 

 

 

Note: we may use    
    .

   

 
/
 and use formula        

  to   

    Write roots symbolically. 

 

 

 

   

 

y 

r 

O x 

ck–1 

y 

ck n 

O 
  
n 

r 
x 
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Question: Write    √   into polar form. 

Solution: Let      √   | |             
 

 
                        

then polar form will be           
 

      
 

 
 

HOW TO FIND n
th

 ROOTS OF COMPLEX NUMBERS? 

i. Write complex number into polar form. 

ii. Use formula 

                                   √ 
 

 | |
 

 0   .
     

 
/      .

     

 
/1   

 

   .
     

 
/
      

                            Where                   

 

Example: Find all values of (−16)
1/4

, or all of the fourth roots of the 

number −16. 

Solution: Let              | |                         

then polar form will be                (     )                     

Where                      

now to find desired root we use the formula and            

then    (   )    |  |
 

 ⁄   .
     

 
/     .

 

 
 

  

 
/                  

put           .
 

 
/    0   .

 

 
/      .

 

 
/1    0

 

√ 
  

 

√ 
1  

    √ (   ) 

put          
 .

 

 
 

 

 
/
   

 .
  

 
/
 √ (    )   

put           .
 

 
 

  

 
/     .

  

 
/  √ (    )   

put           .
 

 
 

  

 
/     .

  

 
/  √ (   )   

hence              are our required fourth roots of the number −16. 
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   Example: If 1 = 1 exp[i(0 + 2kπ)] (k = 0, ±1, ±2 .. .) then find the 

square root of unity. 

Solution: Let          | |                        

then polar form will be             (     )                     

Where                     

now to find desired root we use the formula and       

then    ( )    | |
 

 ⁄   .
     

 
/    (  )              

put          ( )   ,   ( )      ( )-           

put          ( )  ,   ( )      ( )-       

hence      are our required square root of the unity. 

 

 Example: If z = a + i then find the square root of z. 

Solution: Let         (   )  | |    |   |   √               
        (   ) 

then polar form will be               (     )   
Where                          

now to find desired root we use the formula and       

then    (   )    √   .
 

 
   /              

put        √   .
 

 
/
      √   .

 

 
/
   

       √   .
 

 
   /  √   .

 

 
/  ( )   √   .

 

 
/           

Now Euler‟s formula tells us that     √  0   .
 

 
/      .

 

 
/1 

Because  (   ) lies above the real axis and we know that       so 

   .
 

 
/            .

 

 
/     

also we know     .
 

 
/  

      

 
  and     .

 

 
/  

      

 
 

    √  [√
      

 
  √

      

 
]  

But by direction cosine       
 

 
 therefore  

√
      

 
 √  .

 

 
/

 
 √

   

  
  

Consequently by using above relation and        that the two square 

roots of (   ) are  
 

√ 
(√     √   ) 
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c 

 

 
 
 
Exercises 10: (visit @ Youtube “learning with Usman Hamid”) 

1. Write in polar form.  √    

2. Compute    for     √    

3. Find the square roots of        √   and express them in 

rectangular coordinates. 

4. Find three cube roots of     

5. Find the four forth roots of       

6. Find the three cube roots of       and express them in rectangular 

coordinates and sketch. 

7. Find (     )     (  )    (    )       ( )      and express them 

in rectangular coordinates and sketch and identify principal root. 

8. Compute the roots of  ,(    )  -    and sketch them. 

    

 

                                                                 
             

  

 

 

 

 

 

 

 

 

 

y 

c0 

1 0 = –c  
A x 
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REGIONS IN THE COMPLEX PLANE 

 

             SET OF POINTS (POINT SET): Any collection of points in the 

              complex plane (2 – dimensional) is called a  point set and each point is  

              called a member or element of the set 

              

             NEIGHBORHOOD: An ε neighborhood  |z − z0| < ε  of a given point z0.       

           consists of all points z lying inside  but  not  on  a  circle centered at z0 and     

            with a specified positive  radius ε  (Fig.).  

 

DELETED NEIGHBORHOOD: a deleted neighborhood, or punctured 

disk, 0 < |z − z0| < ε consisting of all points z in an ε neighborhood of z0 

except for the point z0 itself. 

 

 

 

 

 

 

 

 

 

 

INTERIOR POINT: A point z0 is said to be an interior point of a set S 

whenever there is some neighborhood of z0 that contains only points of 

S.  

 

EXTERIOR POINT: A point z0 is said to be an exterior point of a set S 

whenever there is some neighborhood of z0 that contains no points of S. 

 

BOUNDRY POINT: A point z0 is said to be a boundary point of a set S 

whenever there is some neighborhood of z0 that contains points belong to 

S and points not belong to S. 

The circle | |   for instance, is the boundary of each of the sets                   

|z| < 1 and   |z|≤ 1. 

 

OPEN SET: A set is open if it contains none of its boundary points.               

For example |z| < 1   

 

CLOSE SET:  A set is closed if it contains all of its boundary points, 

and the closure of a set S is the closed set consisting of all points in S 

together with the boundary of S. For example |z|≤ 1 

y 

|z – z0| 

z 


z0 

O x 
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NOTE: the punctured   disk 0 < |z|≤ 1is neither open nor closed. The set 

of all complex numbers is, on the other hand, both open and closed 

since it has no boundary points. 

 

CONNECTED   SET: An open set S is connected if each pair of points 

z1 and z2 in it can be joined by a polygonal line, consisting of a finite 

number of line segments joined end to end, that lies entirely in S.                

The open set |z| < 1 is connected. The annulus 1 < |z| < 2 is, of course, 

open and it is also connected (see Fig). 

 

 

 

 

 

 

 

 

 

 

DOMAIN: A nonempty open set that is connected is called a domain. 

Note that any neighborhood is a domain.  

 

REGION: A domain together with some, none, or all of its boundary 

points is referred to as a region. 

 

BOUNDED SET: A set S is bounded if every point of S lies inside some 

circle |z| = R; otherwise, it is unbounded. Both of the sets |z| < 1 and   

|z|≤ 1 are bounded regions, and the half plane Re z     0 is unbounded. 

 

ACCUMULATION POINT: A point z0 is said to be an accumulation 

point of a set S if each deleted neighborhood of z0 contains at least one 

point of S. It follows that if a set  S  is closed, then it contains each of its 

accumulation points.  For if  an  accumulation point z0 were not in S, it 

would be  a boundary point of  S; but this  contradicts the  fact that a 

closed set contains all of its boundary points. Thus a set is closed if and 

only if it contains all of its accumulation points. 

Evidently, a point z0 is not an accumulation point of a set S  

whenever there exists some deleted neighborhood of z0 that does not 

contain at least one point of S. Note that the origin is the only 

accumulation point of the set zn = i / n (n = 1, 2,.. .). 

 

 

y 

z2 

z1 
O 1 2 x 
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Example: Sketch the set    .
 

 
/    

Solution: Let for       
 

 
 

 ̅

  ̅
 

 ̅

| | 
 

    

      

    (
 

 
)  

  

     
             

                                      .     
 

 
/  

 

 
 (   )  .  

 

 
/
 

 .
 

 
/
 

  

      |  . 
 

 
/|  

 

 
 Represents the region interior to the circle       

       Centered at     
 

 
 with radius 

 

 
 

                                             y 

                                     
                                 o x 

                                                              
 

 
 

 

 

 

 

Exercises 11: (visit @ Youtube “learning with Usman Hamid”) 

1. Sketch the following sets and determine which are domains. Also show 

either sets are open or closed. Also show sets are either bounded or not. 
(a) |z − 2 + i |≤  1; (b) |2z + 3| > 4; 

c) Im z > 1; (d) Im z = 1; 
(e) 0 ≤ arg z ≤ π/4 (   ) (f) |z − 4| ≥ |z|. 
(g) Whether the set -1≤ Im z <4 is closed? 
 

2. In each case, sketch the closure of the set: 

i.           (   ) 

ii. |  ( )|  | | 

iii.    .
 

 
/  

 

 
 

iv.    (  )    
 

3. Let S be the open set consisting of all points z such that |z|< 1               

or |z-2|< 1.         State why S is not connected
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FUNCTIONS OF A COMPLEX VARIABLE 

Let S be a set of complex numbers. A function f defined on S is a rule 

that assigns to each z in S a complex number w.  

The number w is called the value of f at z and is denoted by f (z); 

that is  w = f (z). The set S is called the domain of definition of  f . 

OR If a relation between two complex variables „w‟and „z‟ is such that given a  

value of „z‟ there corresponds a unique value of „w‟ then „w‟ is said to be a 

function of  „z‟ and is usually denoted by  w = f (z) and it is a Single valued 

function of „z‟. 

For w = f (z), „w‟ is called range and a dependent variable, while „z‟ is 

Independent variable. 

OR A function whose domain and range are subsets of the set C of complex 

numbers is called a complex function. 

 

Remark: It must be emphasized that both a domain of definition and a rule are 

needed  in order for a function to be well defined. When the domain of definition         

is not  mentioned, we agree that the largest possible set is to be taken. 

Also, it is not always convenient to use notation that distinguishes between a given 

function and its values. 

 

SINGLE VALUED FUNCTIONS: For a given complex valued function w = f (z) 

If only one value of „w‟ corresponds to each value of „z‟, then we say that „w‟ is a  

Single valued function of „z‟ OR that w = f (z) is single valued. 

For example f (z) = z
2 

is single valued function. 

 

MULTI VALUED FUNCTIONS: For a given complex valued function w = f (z) 

If more than one value of „w‟ corresponds to each value of „z‟, then we say that „w‟ 

 is a multi-valued function of „z‟ OR that w = f (z) is multi valued. 

For example   ( )   √    
is two valued function. 

Also   ( )   √ 
   

is n - valued function. 

 

Remark: 

 √    √      ⁄  is double valued and √   √      ⁄  is single valued. 

 Whenever we speak of function, we shall, unless otherwise stated, assume  

Single valued. 

 A multivalued function can be considered as a collection of single valued 

Functions, each member of which is called a branch of the function. 

 It is customary to consider one particular member as a Principal Branch 

Of the multivalued function and the value of the function corresponding to 

This branch is the Principle value. 
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TRANSFORMATION: 

Suppose that w = u + iv is a single valued function f at z = x + iy, so that 

u + iv = f (x + iy).  Each of the real numbers u and v depends on the real 

 variables x and y, and it follows that f (z) can be expressed in terms of a pair 

 of real-valued functions of the real variables x and y:  f (z) = u(x, y) + iv(x, y). 

Then equating we get     (   )      (   ) thus a given point P(x, y) 

 in z – plane correspond a point   (   ) in w – plane and for w = f (z) 

the set     (   )      (   ) is called transformation and we say 

that point P is mapped or transformed into    by means of  

transformation and   will called image of     

If the polar coordinates r and θ , instead of x and y, are used, then u + iv = f (re
iθ

) 

where w = u + iv and z = re
iθ

. In that case, we may write   f (z) = u(r,θ) + iv(r,θ). 

 

Example: Write transformation of  f (z) = z
2
. 

 Solution: Given W =  f (z) = z
2
. 

      (    )             
     (   )               (   )        Required. 

 

Example: Similarly A real-valued function  f (z) = |z|2 = x
2
 + y

2
 + i0 

 

Example: Write transformation of  f (z) = z
2
 in polar form. 

 Solution: Given W =  f (z) = z
2
. 

      (    )
 
                         

     (   )                 (   )            Required. 

 

Polynomial: If n is zero or a positive integer and if a0, a1, a2,.. . , an 

 are complex constants, where       , the function 

P (z) = a0 + a1z + a2z
2
 +· · · + anz

n
 

is a polynomial  of degree n. Note that the  sum here has a finite number of terms  

and that the domain of definition is the entire z plane.  

 

Rational Functions: Functions are defined by   
 ( )

 ( )
 

 where  ( )  ( ) are polynomials and  ( )    . Polynomials and rational 

 functions constitute elementary, but important, classes of functions of a 

 complex variable.  
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                          Exercise 12: (visit @ Youtube “learning with Usman Hamid”) 

1) For each of the function below, describe the domain of definition  

That is understood. 

i.  ( )  
 

    
 

ii.  ( )     .
 

 
/ 

iii.  ( )  
 

   ̅
 

iv.  ( )  
 

  | | 
 

2) Transform in Cartesian form that is in form of 

 f (z) = u(x, y) + iv(x, y) 

i.  ( )         

ii.  ( )  
 ̅ 

 
          

3) Transform in term of „z‟ if  ( )            (      ) 

4) Transform in polar form if  ( )    
 

 
 

                        LIMITS 

Let a function f be defined at all points z in some deleted neighborhood 

of z0. The statement that the limit of  f (z) as z approaches z0 is a number w0 

 or that          ( )      

means that the point w =  f (z) can be made arbitrarily close to w0 if we choose 

the point z close enough to z0 but distinct from it.  

          
Statement         ( )     means that for each positive number ε, there is a 
 positive number δ such that      | f (z) − w0| < ε   whenever   0 < |z − z0| < δ. 

 

Geometrically,  this  definition  says  that  for  each  ε  neighborhood 

  |    |     of w0, there is a deleted δ neighborhood 0 < |z − z0| < δ of z0 

 such that every point z in it has an image w  lying in the ε  neighborhood (Fig). 

 

 Note that even though all points in the deleted neighborhood 0 < |z − z0| < δ  

are to be  considered, their images need not fill up the entire neighborhood 

 |    |   . If f has the constant value w0, for instance, the image of z is 

 always the center of that neighborhood.  

Note, too, that once a δ has been found, it can be replaced by any smaller  

positive number, such as δ/2. 

 

 

 

 

 

 

y 

z0 z 

O x 

v 

w 

w0 

O u 
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Theorem: when a limit of a function f (z) exists at a point z0, it is unique. 

Proof: Suppose that limit is not unique. i.e. 

   
    

 ( )              
    

 ( )     

Then, for each positive number ε, there are positive numbers δ0 and δ1 such that 

                           | f (z) − w0| < 
 

 
  whenever 0 < |z − z0| < δ0 

a

n

d 

 

| f (z) − w1| < 
 

 
           whenever      0 < |z − z0| < δ1. 

Since by triangular inequality and if 0 < |z − z0| < δ where δ is 

Positive number smaller than δ0 and δ1 

|w1 − w0| = |[ f (z) − w0] − [ f (z) − w1]| ≤ | f (z) − w0| + | f (z) − w1| <
 

 
 

 

 
 = ε. 

|w1 − w0| < ε. 

But |w1 − w0| is  a  nonnegative  constant,  and  ε  can  be  chosen  arbitrarily  small. 

Hence  |w1 − w0| = 0, or w1 = w0  shows that limit is unique. 

 

Example: Show that        ( )  
 

 
 for  ( )  

  ̅

 
 in the open disk | |    

Solution: let | ( )  
 

 
|  |

  ̅

 
 

 

 
|  

|   |

 
          | |    |   |     

Hence for any „z‟ and each positive number   we have 

| ( )  
 

 
|     whenever    |   |    

Thus condition is satisfied by points in the region  | |    when δ = 2ε  

or any smaller positive number. 

 

 

 

δ = 2ε 

  

 

 

 

 

 

If limit         ( )     exists, the symbol      implies that z is  

allowed to approach z0 in an arbitrary manner, not just from some particular  

direction. The next example emphasizes this. 

 

 

 

 

 

 

y 

z 

O 1 x 

v 

–i 

2 f(z) 
 

O u 
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                      Example: Show that        ( ) does not exists for  ( )  
 

 ̅
  

                       Solution: Given  ( )  
 

 ̅
 

    

    
  

                       let we move along horizontal axis i.e.             

                      Hence        ( )        
    

    
 

   

   
   

                      let we move along vertical axis i.e.             

                      Hence        ( )        
    

    
 

    

    
    

                       Since limit is not unique. It does not exist.

 

 

 

 

 

 

 

 

   

 Theorem: Prove that         ( )     exists if and only if    

    (   ) (     )  (   )     and    (   ) (     )  (   )     exist. 

 Proof: Suppose that         ( )     exist then for each positive  

 number   there exists positive numbers   Such that  

  |(    )  (      )|     whenever    |(    )  (      )|    

But |    |  |(    )   (    )|  |    |  |    |                                                   
|    |  |(    )  (      )|    

And |    |  |(    )   (    )|  |    |  |    |                                                   
|    |  |(    )  (      )|    

Whenever    |    |    

Hence    (   ) (     )  (   )     and    (   ) (     )  (   )     exists. 

 Conversely:  Suppose that    (   ) (     )  (   )     and 

    (   ) (     )  (   )     Exist then for each positive number   there exist 

  positive numbers    and   Such that  

 |    |  
 

 
 Whenever   √(    )  (    )     

 |    |  
 

 
 Whenever   √(    )  (    )     

 Let      (     ) then consider  

 |(    )  (      )|  |(    )   (    )|  |    |  |    | 

 |(    )  (      )|  |    |  |    |  
 

 
 

 

 
   

 |(    )  (      )|     whenever    |(    )  (      )|    

 | ( )    |     whenever    |    |    Thus          ( )     exists 

y 

 
z = (0, y) 

(0, 0) z = (x, 0) x 
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 Theorem: Suppose that         ( )                   ( )      exist 

 Then show that          
, ( )  ( )-  ,     - 

 Proof: Suppose that         
, ( )  ( )-  

 And  (   )    and  (   )    Also    (   ) and    (   ) then 
  ( )  ( ) ,(    ) (    )-  ,(     )  (     )-  

     (   ) (     )
,(     )   (     )- 

  ,(         )   (         )-  (      )(      )         

 Thus         
, ( )  ( )-  ,     -  

 Theorem: Suppose that         ( )                   ( )      exist 

 Then show that          

 ( )

 ( )
 

  

  
 

 Proof: Suppose that         
, ( )  ( )-  

 And  (   )    and  (   )    Also    (   ) and    (   ) then 

 
 ( )

 ( )
 

    

    
 

(    ) (    )

(    ) (    )
 

(     )  (     )

(    ) (    )
 

     (   ) (     ) 0
(     )  (     )

(    ) (    )
1  

(         )  (         )

(      ) (      )
 

    

    
 

  

  
 

         

 ( )

 ( )
 

  

  
 

                   Example: Evaluate         ( 
   )        

                   Solution: Given         ( 
   )                                                                     

            ( 
   )     (   ) (   ), 

      (     )-          

 Example: Prove that        .
    

   
/     when „n‟ is positive integer,  

 when negative integer, also when a fraction. 

                  Solution: When „n‟ is positive integer: 

               .
    

   
/        0

(   )(               )

   
1        ( 

              )   

    
   

(    )     
   

(    )       
   

( )     
   

( ) 

          (      )    

               When „n‟ is negative integer: Put        

               .
    

   
/        .

     

   
/        0

    

  (   )
1         .

    

   
/       .

 

  
/   

          

               When „n‟ is a fraction: Put n = p/q; where p,q are integers and     

      .
    

   
/        .

      

   
/  

Put                                                 

      .
      

   
/        .

    

    
/        (

    
   ⁄

    
   ⁄

)  [
   
   

. 
   

   ⁄ /

   
   

. 
   

   ⁄ /
]  

      .
      

   
/  

 

 
    

  



37 

 

                                              

   

 Exercise13: Suppose that         ( )                   ( )      exist 

 Then show that (Try yourself) 

i.        
, ( )   ( )-  ,     - 

ii.        
, ( )   ( )-  ,     - 

iii.             
                   By mathematical induction. 

iv.        

 

  
 

 

       
                      By mathematical induction. 

v.         ( )   (  )  where P(z) is a Polynomial of degree „n‟ 

vi.          ( )    (  ) 

vii.         ̅   ̅  

viii.       
 ̅ 

 
   

ix.        
,    -  ,     - 

x.       
     

   
   

xi.        

 ( )

 ( )
 

 (  )

 (  )
 

xii.        
,    -  ,  

   - 

xiii.         ,   (    )-      
xiv.         (   )       

xv.         , 
       -       

xvi.         
(    )(   )

       
  

 

 
 

  

 
  

xvii.        
    

    
    

xviii.    
    

 .
 
 
/

    

         
 

 

 
 

√ 

 
  

xix.       
                

   
       by using     form. 

xx. If         ( )     exists then        
| ( )|  |  | also exists. 

xxi.         ( )     iff          (     )      when          

xxii.         ( )  ( )     if         ( )    and if there exists a positive 

number M such that | ( )|    for all „z‟ in some neighborhood of     

xxiii. Show that        ( ) does not exists for  ( )  .
 

 ̅
/
 

 

                  

             LIMITS INVOLVING THE POINT AT INFINITY 

The complex plane together with the point at infinity is called the extended complex plane. 

            We say that         ( )    or   ( )            if for each positive number   there 

            exist positive numbers   such that   | ( )   |    Whenever | |    

             Similarly we say that          ( )    or   ( )             if for each positive          

            number   there exist positive numbers   such that  

     | ( )|       Whenever   |    |    
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 Theorem: Show that         ( )                 

 

 ( )
     

 Proof: Suppose that         

 

 ( )
    exists then for each positive  

 number   there exists positive numbers   Such that  

  |
 

 ( )
  |     whenever    |    |    

 | ( )|  
 

 
  whenever    |    |               ( )    exists. 

 Example: if         
    

   
                  

   

    
     

  

 Theorem: Show that        ( )                  .
 

 
/       

 Proof: Suppose that         .
 

 
/      exists then for each positive  

 number   there exists positive numbers   Such that  

  | .
 

 
/    |     whenever    |   |    

 Replacing „z‟ by „1/z‟ 

 | ( )    |     whenever  | |  
 

 
             ( )     exists. 

 Example: if        
    

   
                  

 

 
  

 

 
  

       
    

   
     

 

 Theorem: Show that        ( )                
 

 .
 

 
/
     

 Proof: Suppose that        
 

 .
 

 
/
    exists then for each positive  

 number   there exists positive numbers   Such that  

  |
 

 .
 

 
/
  |     whenever    |   |    

 Replacing „z‟ by „1/z‟ 

 | ( )|  
 

 
  whenever  | |  

 

 
            ( )      exists. 

 Example: if        
     

    
                  

      

      
       

    

    
     

  

 Exercise 14: (visit @ Youtube “learning with Usman Hamid”) 

i. Show that       
   

(   ) 
   

ii. Show that       
 

(   ) 
   

iii. Show that       
    

   
   

iv. State why limits involving the points at infinity are unique. 
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                   CONTINUITY: 

A complex valued function W = f (z) is said to be continuous at z = z0 in 

The domain D if          ( )   (  ) exists. 

Above limit implies three conditions that must be met in order that 

  ( ) be continuous at z = z0 if 

i.  (  ) must exists. i.e.  ( ) is defined at z = z0  

ii.         ( )     must exists. 

iii. The value and limit agree at z = z0 i.e.         ( )   (  ) 

If these conditions not satisfy then function is said to be discontinuous. 

         

A complex valued function W = f (z) is said to be continuous at z = z0 if 

for each positive number ε, there is a positive number δ such that 

      | f (z) − f (z0) | < ε   whenever   |z − z0| < δ. 

Note that this is simply the definition of limit and removal of the  

restriction that      

 
Remark: 

  A complex valued function W = f (z) is said to be continuous at in 

the domain D if  it is continuous at each point of the domain 

 For continuous function we may write         ( )   (        ) 

 If         ( )     but         ( )   (  ) then discontinuity is 

known as Removable discontinuity. 

  

 Theorem: Prove that    ( ) is continous if and only if its real and 

  Imaginary Parts are continuous. 

 Proof: Suppose that    ( ) is continuous then         ( )   (  )      

 exist then for each positive number   there exists positive numbers   Such that  

  |(    )  (      )|     whenever  |(    )  (      )|    

But |    |  |(    )   (    )|  |    |  |    |                                                   
|    |  |(    )  (      )|    

And |    |  |(    )   (    )|  |    |  |    |                                                   
|    |  |(    )  (      )|      Whenever  |    |    

Hence    (   ) (     )  (   )     and    (   ) (     )  (   )     exists. 

 And real and Imaginary Parts are continuous. 

             Conversely: Suppose that real and Imaginary Parts of function are continuous 

  and    (   ) (     )  (   )     and    (   ) (     )  (   )     exist then for 

  each positive number   there exist positive numbers    and   Such that  

 |    |  
 

 
 Whenever √(    )  (    )     

 |    |  
 

 
 Whenever √(    )  (    )     
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 Let      (     ) then consider  

 |(    )  (      )|  |(    )   (    )|  |    |  |    | 

 |(    )  (      )|  |    |  |    |  
 

 
 

 

 
   

 |(    )  (      )|     whenever  |(    )  (      )|    

 | ( )   (  )|     whenever  |    |    

 Thus          ( )   (  )     exists thus    ( ) is continuous. 

 

Question: Show that  ( )   ̅ is continuous on C. 

Solution: let                      and  given  ( )   ̅  then  

i.  (  )    ̅̅ ̅        
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅        . i.e.  ( ) is defined at z = z0  

ii.         ( )       (      )  ̅        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅          

iii. The value and limit agree at z = z0 i.e.         ( )   (  ) 

Hence  ( )   ̅ is continuous on C. 

 Exercise 15: Show that given functions are continuous at      or not? 

i.  ( )  | |  at      ii.  ( )     at      

iii.  ( )          at        
iv.  ( )     in the region | |    

v.  ( )  {
    

    
             

               
 vi.  ( )  2 

            
            

 

vii.  ( )       
 at     

viii.  ( )  
                

   
 at     is removable discontinuous. 

 

                     UNIFORM CONTINUITY: 

A complex valued function W = f (z) is said to be uniformly continuous in a  

Domain D if for each positive number ε, there is a positive number δ such that 

      | f (z1) − f (z2) | < ε   whenever   | z1 – z2| < δ. 

 
Remark: 
 in continuity of function δ depends upon ε as well as on a particular 

 point    

 In Uniform continuity of function δ depends upon ε but not on a 

Particular point    

 Uniform continuity is a property of a function on a set. And is a 

Global property. But continuity can be defined at a single point and 

Is a local property. 

 Uniform continuity of a function at a point have no meaning. 

 Continuous function on a closed and bounded region will be  

Uniformly continuous.  
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Question: Let   consists of set of all points „z‟ such that    | |    and  

 ( )    . Verify that function is uniformly continuous. 

Solution: Given that  ( )       | |    and                 

  |  |       |  |    

Consider  | (  )   (  )|  |  
    

 |  |(     )(     )|  |     ||     | 
Since    |  |       |  |    therefor 

| (  )   (  )|   |     |   |     |  |   |    

| (  )   (  )|     Whenever   |     |    
 

 
 

| (  )   (  )|    
 

 
 Whenever   |     |    

 

 
 

| (  )   (  )|    Whenever   |     |    

 ( )     is uniformly continuous on R 

Note that in expression | (  )   (  )|   |     | equality will hold when 

|  |     |  |   . 

 

                Exercise 16: Show that given functions are uniformly continuous at      or not? 

i.  ( )  
 

 
 in the region | |    (not continuous) 

ii.  ( )       in the region | |    

 

Theorem: A composition of continuous functions is itself continuous. 

 

Proof: Suppose that  , ( )- be a continuous function defined for all  ( ) in the  

Neighborhood of  (  ) then by definition; 

                 | , ( )-   , (  )-|     whenever | ( )   (  )|    ……..(i) 

Similarly suppose that  ( ) be a continuous function defined for all   in the  

Neighborhood of    then by definition; 

                 | ( )   (  )|     whenever |    |       ……..(ii) 

      Combining (i) and (ii)    

| , ( )-   , (  )-|     whenever |    |    

Hence composition of continuous functions is itself continuous. 

 

y 

z z0 

 

O x 

v 

f (z0) 

O 
f (z) 

u 

V 


g[ f(z)] 
 

g[ f(z0)] 

O U 
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                  Theorem: If a function f (z) is continuous and nonzero at a point z0 , 

Then  ( )    throughout some neighborhood of that point. 

                     Proof: Suppose that function f (z) is continuous and nonzero at a point z0 , 

                    and  ( )    throughout some neighborhood of that point. Then by definition  

                   of continuity 

                   | ( )   (  )|     whenever |    |    

                     take   
| (  )|

 
       ( )     then  

                     | (  )|  
| (  )|

 
  whenever |    |      Which is contradiction.  

                     Hence If a function f (z) is continuous and non-zero at a point z0 , 

                    Then  ( )    throughout some neighborhood of that point. 

  

                    Theorem: If a function f (z) is continuous throughout a region R that is  

                   Both closed and bounded. Then there exist a non-negative real number M 

                   such that | ( )|    for all point ‘z’ in R. 

                     Proof: Suppose that function  ( )   (   )    (   ) is continuous. Then | ( )| 
                    Will be continuous throughout R and thus reaches a maximum value (say) M  

                     somewhere in R. then | ( )|    for all point „z‟ in R. And we will say that   is  

                    bounded on R. 

 

                    DERIVATIVES: 

Given    ( ) be a single valued function defined in a domain D and let  

   be any fixed point in D. Then    ( ) is said to have a derivative at  

   if the following limits exists. 
  

  
 

  

  
   (  )         

 ( )  (  )

    
  

Or    (  )         
 (     )  (  )

  
 where          

 

 

 

 

 

 

 

 

 

         

A complex valued function W = f (z) is said to be a derivative at z = z0 if 

for each positive number ε, there is a positive number δ such that 

      | 
 ( )  (  )

    
 −   (  )| < ε   whenever  0 < |z − z0| < δ. 

 

y 



O x 
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              Remark:  

i. Instantaneous rate of change of one variable with respect to other  

Variable is called derivative and method to find derivative is called  

Differentiation or Differentiability. 

ii. Graphically, the derivative of a function corresponds to the slope of its 

tangent line at one specific point. 

 

 

 

 

 

 

 

iii. Since    ( ) defined through a neighborhood of „z‟ therefore the 

                             Number   (     ) is always defined for |  | sufficiently small. 

 

                  Theorem: Prove that    ( ) is differentiable then it will be continuous. 

                     Proof: Suppose that    ( ) is differentiable at a point z0 then 

                     (  )         

 ( )  (  )

    
  

                    Now we have to prove that  ( ) is continuous. 

                       Consider   ( )  (  )  
 ( )  (  )

    
      

                     Then        
, ( )   (  )-         

 ( )  (  )

    
             

                      [        ( )]   (  )    (  )    [        ( )]   (  )    

                               ( )   (  )     ( ) is continuous 

                       Remark:  Convers of above theorem is not true. 

 
     Question: Show that  ( )   ̅ is continuous but not differentiable. 

     Solution: let                      and given  ( )   ̅  then  

i.  (  )    ̅        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅        . i.e.  ( ) is defined at z = z0  

ii.         ( )       (      )  ̅        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅          

iii. The value and limit agree at z = z0 i.e.         ( )   (  ) 

Hence  ( )   ̅ is continuous on C. 

Now for Differentiability. 

   (  )         

 ( )  (  )

    
        

 ̅   ̅̅ ̅

    
        

    ̅̅ ̅̅ ̅̅ ̅

    
 

Let         then if      then       

    (  )          
  ̅̅̅̅

  
    i.e. when „  ‟ is real then limit is „1‟ and  

when „  ‟ is imaginary then limit is      therefore  

limit does not exist and  function is not differentiable. 

REMARK:  At     the function is continuous as well as differentiable. 
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    Question: Show that  ( )  | |    ̅ is continuous but not differentiable. 

     Solution: let       and given  ( )  | |   then  

i.  (  )  |  | . i.e.  ( ) is defined at z = z0  

ii.         ( )         
| |  |  |

   

iii. The value and limit agree at z = z0 i.e.         ( )   (  ) 

Hence  ( )  | |  is continuous on C. 

Now for Differentiability. 

   (  )         

 ( )  (  )

    
        

| |  |  |
 

    
        

  ̅     ̅̅ ̅

    
 

                 (  )         

  ̅  ̅    ̅       ̅̅ ̅

    
        

 ̅(    )   ( ̅   ̅̅ ̅)

    
        0 ̅  

  (    ̅̅ ̅̅ ̅̅ ̅)

    
1 

Let         then if      then       

    (  )          0 ̅  
  (  ̅̅̅̅ )

  
1 

when „  ‟ is real then limit is „ ̅    ‟ and  

when „  ‟ is imaginary then limit is „ ̅    ‟  

Therefore limit does not exist and function is not differentiable. 

REMARK:  At     the function is continuous as well as differentiable. 

    Question: Show that   ( )   
 

  
 when  ( )  

 

 
  at each     

     Solution: by using the definition  

   ( )         
 (    )  ( )

  
        0

 

(    )
 

 

 
1  

 

  
        0

  

(    ) 
1 

   ( )   
 

  
  at each     

                    Exercise 17: (visit @ Youtube “learning with Usman Hamid”) 

i. Show that   ( )     when  ( )      at each     

ii. Find   ( ) when 

a)  ( )  .
 

 
   

 

   
/
 

 b)  ( )  
 

(    ) 
 

c)  ( )           d)  ( )  (     )  

e)  ( )  
   

    
       

 

 
 

f)  ( )  
(    )

 

  
        

iii. Suppose that   (  )   (  )    and   (  )      
 (  ) exist, where 

  (  )    then show that         

 ( )

 ( )
 

  (  )

  (  )
 

iv. Show that    ( ) does not exist when  ( )  {
 ̅ 

 
           

            
 

v. Show that    ( ) does not exist at any point „z‟ when  

a)  ( )      

b)  ( )       

c)  ( )  | | 
d)  ( )     ( )

Availabel on MathCity.org
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C H A P T ER   

2 
ANALYTIC FUNCTIONS 

 
                    ANALYTIC / REGULAR / HOLOMORPHIC FUNCTION 

                    A complex valued function     ( ) is said to be Analytic in domain D if 

i.    ( ) is single valued. 

ii.    ( ) is differentiable in domain D. 

                     

                     CAUCHY RIEMANN EQUATIONS 

                     Let  ( )       be a complex valued function, whose first order partial derivative  

                     exists, then following pair of equations is called CR equation; 

                            and          

                     We may also write   
  

  
 

  

  
  and  

  

  
  

  

  
 

 

                      CAUCHY–RIEMANN EQUATIONS IN RECTANGULAR COORDINATES 

                      )necessary condition( 

                       

                       Suppose that f (z) = u(x, y) + iv(x, y) and that   ( ) exists at a point z0 

                     Then the first-order partial derivatives of u and v must exist at (x0, y0),  

                               Then they must satisfy the Cauchy–Riemann equations i.e.      and                    

 

                       Proof: Given that   ( ) exists at a point z0   (  )         
 (     )  (  )

  
 

We have to prove        and          

Consider    (  )         
 (     )  (  )

  
 

      (  )         
, (           )   (           )- , (     )   (     )-

      
 

                       Along horizental axis: Take               

                          (  )         
, (        )   (        )- , (     )   (     )-

  
 

                          (  )         
, (        )  (     )-  , (        )  (     )-

  
 

                          (  )         
, (        )  (     )-

  
         

, (        )   (     )-

  
 

    (  )    (     )     (     )       ( )  
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                        Along vertical axis: Take               

                          (  )         
, (        )   (        )- , (     )   (     )-

   
 

                          (  )         
, (        )  (     )-  , (        )  (     )-

   
 

                          (  )         
, (        )  (     )-

   
     

    

, (        )  (     )-

   
  

                          (  )           
, (        )  (     )-

  
    

    

, (        )  (     )-

  
 

   (  )      (     )    (     )                  (  ) 

                        Comparing real and imaginary parts of (i) and (ii) we get 

        and             which are CR equations. 

 We may also write        and          

                        

                      Theorem (sufficient condition)      

 

                    Suppose that f (z) = u(x, y) + iv(x, y) is defined throughout some neighborhood 

                    Of a point z0 and the first-order partial derivatives of u and v must exist at (x0, y0), 

                   Also Cauchy–Riemann equations        and          hold  

                   Then   ( ) exists at a point z0 

                      

                       Proof: 

                  Suppose that CR equations holds i.e.        and          and continuous  

                  Consider 
       (     )  (  )   

      , (           )    (           )-  , (     )    (     )-  
Adding and subtracting  (        )      (        ) 
   (     )  (  )   

      , (           )   (        )   (        )   (     )- 
  , (           )   (        )   (        )   (     )-  
Since  

 (           )   (        )            

 (        )   (     )            

 (           )   (        )            

 (        )   (     )            

Then   (     )  (  )   

      [                   ]   [                   ]  

using CR equations i.e.        and           

Then   (     )  (  )   

      ,                    -   ,                   - 
 ,  (      )     (      )    (      )    (      )- 

 ,  (      )     (      )           - 
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Dividing by           
 (     )  (  )

  
 [  (      )    (      )          ]

      
  

 (     )  (  )

  
 [(      )(      )          ]

      
  

 (     )  (  )

  
 (      ) 

         
      

  

 (     )  (  )

  
 (      )  

         
      

  

|
 (     )  (  )

  
 (      )|  |

         
      

|    
|  |

|      |
   

|  |

|      |
  

|
 (     )  (  )

  
 (      )|           

|  |

|      |
         

|  |

|      |
    

    (  )          or      (  )         or      (  )         

This is the definition of differentiability. 

Remark: 

i. If    ( ) is a non – constant real valued function (say)   ( )  | |   

Then CR equations do not hold. 

ii. If    ( ) is a constant real valued function then CR equations hold. 

iii. If    ( ̅) then CR equations do not hold. 

iv. If a function is analytic, CR equations necessarily hold, but if  

CR equations are satisfied for a function then the function may 

 or may not be analytic. 

v. If a function involves  ̅ then without verifying CR equations we can 

Say the function is non – analytic.  

vi. We may use   (   )        
 (   )  (   )

 
 at origin 

Instead of   (   )         
, (      )  (   )-

  
 and vice versa. 

 

 

Example: Since the function f (z) = z
2
 = x

2
 − y

2
 + i2xy 

is differentiable everywhere and that   ( )    .Verify that the CR equations 

are satisfied everywhere. 

Solution: write u(x, y) = x
2
 − y

2
  and v(x, y) = 2xy. 

Thus ux = 2x = vy, uy = −2y = −vx. 

Moreover,    ( ) =  2x + i2y = 2(x + iy) = 2z. i.e.   ( )  exists. 
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Example: Prove that for the function  ( )  {
  (   )   (   )

               

                 
 

CR equations are satisfied at     but function is not differentiable 

 i.e. not analytic at     

Solution: Given that   ( )  
  (   )   (   )

      
(     )  (     )

       

Then   (   )  
     

      also  (   )  
     

       

Then at origin  

   (   )        
 (   )  (   )

 
       

  

    
    

             (   )        
 (   )  (   )

 
       

   

    
      

        (   )        
 (   )  (   )

 
       

  

    
    

           (   )        
 (   )  (   )

 
       

  

    
    

  Thus         and          i.e. CR equations hold. 

Now for Differentiability at origin i.e. z =0: 

  ( )        
 ( )  ( )

   
       

(     )  (     )

       

    
 

(     )  (     )

(    ) (     )
  

Case I: Take y = x 

  ( )        
    

   (   )
 

 

(   )
  

Case II: Take y =0 and     

  ( )        
  (   )

   (   )  

    ( ) does not exists. Hence CR equations are true function is not analytic. 

Example: Prove that for the function  ( )       (          ) 
CR equations are satisfied at     and also function is analytic at origin. 

Solution: Given that   ( )    (          )                 

Then   (   )         also  (   )         

Then at origin  

   (   )        
 (   )  (   )

 
       

    

 
    

   (   )        
 (   )  (   )

 
       

      

 
       

     

 
    

   (   )        
 (   )  (   )

 
       

   

 
    

   (   )        
 (   )  (   )

 
       

    

 
       

    

 
    

  Thus         and          i.e. CR equations hold. 

Now for Differentiability at origin i.e. z =0: 

  ( )                          (          )   
   ( )  |  (          )|    CR equations are satisfied at     and also function is analytic at origin. 
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                Exercise 18: (visit @ Youtube “learning with Usman Hamid”) 

1. Prove that for the function   ( )  | |  if CR equations are 

                           Satisfied but   ( ) does not exists at any non – zero point. 

2. Prove that for the function  ( )  {
 ̅ 

 
             

                 
  CR equations are satisfied but 

  ( ) does not exists at any non – zero point. 

3. Prove that for the function  ( )  √|  |  is not analytic at the origin 

                           Although the CR equations are satisfied at origin. 

4. Examine the nature of the function  ( )  {
    (    )

      
             

                 
    

                           in a region including the origin. 

5. Prove that for the function  ( )  {
   (    )

     
            

                 
  is not  

                           Analytic at the origin Although the CR equations are satisfied at origin. 

6. Prove that for the function  ( )  { 
    

             
                 

  is not analytic 

                            at the origin Although the CR equations are satisfied at origin. 

7. For the function  ( )      (   )   Prove that   ( ) Exists only when     
8. For the following functions show that   ( ) does not exist as CR equations are not 

satisfied. 

i.  ( )   ̅ 
ii.  ( )     ̅ 

iii.  ( )            

iv.  ( )         

9. Show that   ( )and its derivative    ( ) exist every-where 

and find    ( ) when 

(a) f(z) = iz + 2 (b) f(z) = e
−x

e
−iy

 

(c) f(z) = z
3
  (d) f(z) = cos x cosh y − i sin x sinh y. 

 

10. Determine where   ( )exists and find its value when; 

                                 (a) f(z) = 1/z      (b) f (z) = x
2
 + iy

2
 (c) f (z) = z Im z. 

 

11. Show that the function   ( )        is nowhere differentiable. 

12. Show that the function   ( )       is analytic. 

13. Show that the function   ( )         (    ) is not analytic. 
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Example: Prove that the essential characteristic for a function to be analytic 

 Is that it is a function of „z‟ alone, it does not involve  ̅    
  

  ̅
     ̅  

Solution: Given that  ( ) is analytic.        and          

We know that              ̅       then   
    ̅

 
         

    ̅

  
 

  ̅  
 

 
  also    ̅   

 

  
 

Consider 
  

  ̅
 

  

  
 
  

  ̅
 

  

  
 
  

  ̅
   ̅       ̅       ̅  

 

 
   

 

  
   ………(i) 

Now             also            

( )    ̅   

 
   

 

  
    

 
(      ) 

 

  
(      )  

After using CR equations. i.e.         and          

  ̅  
 

 
   

 

 
   

 

 
   

 

 
     

  

  ̅
     ̅  

 

Remark: If a function involve  ̅  then without verifying CR equations we can  

Say the function is non  - analytic. 

For example:  ( )     (        )     (      ̅) involves  ̅ therefore 

It is non – analytic. 

 

Exercise 19:  (visit @ Youtube “learning with Usman Hamid”) 

1) Without verifying CR equations , Prove that following function 

      are non – analytic. 

i.   ( )     (        ) 

ii.   ( )     (      ) 
iii.   ( )     (    ) 
iv.       

v.       

vi.   | | 
 

2) Show that each of these functions is nowhere analytic: 

(a) f(z) = xy + iy   (b) f (z) = 2xy + i(x
2
 − y

2
) (c) f (z) = e

y
e

ix
 

 

Theorem: If   ( )    everywhere in a domain D, then  ( ) must be constant. 

Proof: Since  ( ) is analytic. Therefore CR equations hold. i.e. 

         and          

now let  ( )       ……..(i) 
   ( )                                         
  ( )          ( )               
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POLAR FORM OF CAUCHY RIEMANN EQUATIONS: 

We know that f (z) = u(x, y) + iv(x, y) 

And                 therefore we may write 

f (z) = u(r,  ) + iv(r,  ) 

also we have          and        .
 

 
/ 

and         and          

now                 .
 

 
/    .

  

     /           .
    

 
/  

               .
 

 
/    .

 

     
/           .

    

 
/  

               .
 

 
/    .

  

     
/           .

    

 
/  

               .
 

 
/    .

 

     
/           .

    

 
/  

               .
    

 
/           .

    

 
/ ………(i) 

               .
    

 
/           .

    

 
/ ………(ii) 

Multiplying (i) with      and (ii) with      and adding 

  (   
        )    

 

 
(           )     

 

 
    

Multiplying (i) with      and (ii) with       and subtracting 

   
 

 
(           )    (   

        )      
 

 
    

Thus required CR Equations in Polar form are as follows 

   
 

 
    and      

 

 
   

 

LAPLACE EQUATION IN POLAR FORM  

We know that     
 

 
   ………(i) and      

 

 
  ………(ii) 

Differentiating (i) with „r‟ and (ii) with „ ‟ 

     
 

     
 

 
    ………(iii)   

and       
 

 
    

 

 
     

 

                 
 

 
  

(   )       
 

  
   

 

  
     

       

 
   

 

  
         

 

 
   

     
 

 
   

 

  
       is required polar form of Laplace equation. 

 

Remark: Suppose that  f (z) = u(r,  ) + iv(r,  ) be defined throughout some 

                         neighborhood of a non – zero  point z0 Then the first-order partial derivatives 

                      of u and v must exist at (r0,    ) and continuous Then they must satisfy 

                      the Cauchy–Riemann equations i.e.       and          and   ( ) exists 

                      and   ( )      (      ) 
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Example: Show that if CR equations hold for  ( )  
 

  
      then 

   ( ) exists. 

Solution: Given that  ( )  
 

   
 

(    )
  

 

   
     

 

  
(            )  

Then   
     

           
     

   

Then      
      

  
    and      

      

  
      

Since CR equations hold therefore   ( ) exists. And given as follows; 

  ( )      (      )      . 
      

  
  

      

  
/             

  
  

 

(    )
   

 

  
  

Example: Show that for ( )   
 

   
 

  
  

  ;    ( ) exists. 

Solution: Given that  ( )   
 

  √  
  

  √ .   
 

 
     

 

 
/  

Then   √    
 

 
         √    

 

 
 

Then     
√ 

 
   

 

 
    and      

√ 

 
   

 

 
      

Since CR equations hold therefore   ( ) exists. And given as follows; 

       ( )      (      )      .
 

 √ 
   

 

 
  

 

 √ 
   

 

 
/  

 

 √ 
    .   

 

 
     

 

 
/   

  ( )  
 

 √ 
      

  

  
 

 √  
  
 

 
 

  ( )
  

Exercise 20: Show that for given  ( );    ( ) exists. 

i.  ( )  
 

        

ii.  ( )         (   )          (   ) 

iii.  ( )  
 

 
      iv.  ( )  √ 

 
  

 

  

v. If n is real, prove that  ( )    (            ) is analytic except r = 0 

Also calculate   ( ) 
 

ENTIRE FUNCTIONS: A function that is analytic at each point in the entire plane. 

For example:  ( )  
 

 
     is analytic at each non – zero point in the 

Finite plane and   ( )   
 

  
 and it is entire. But  ( )  | |  is not  

Analytic anywhere since its derivative exists only at z = 0 

Exercises 21: (visit @ Youtube “learning with Usman Hamid”) 

1. Verify that each of these functions is entire: 

(a) f(z) = 3x + y + i(3y − x) (b) f(z) = sin x cosh y + i cos x sinh y 

(c) f(z) = e
−y

 sin x − ie
−y

 cos x (d) f(z) = (z
2
 − 2)e

−x
e

−iy
 

2. State why a composition of two entire functions is entire. 

Also, state why any linear combination  c1 f1(z)+ c2 f2(z) of two entire  

functions, where c1 and c2 are complex constants, is entire. 

3. If „g‟ is entire then discuss f(z) = (iz
2
 +z)g(z) 
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REGULAR POINT: 

If a function is analytic at a point    and also is analytic at some point in  

Every neighborhood of    then    is called regular point of function. 

 

SINGULAR POINT (SINGULARITY): 

 If a function fails to be analytic at a point    but is analytic at some point in  

Every neighborhood of    then    is called Singular point of function. 

For example:      is singular point of  ( )  
 

 
  

On the other hand  ( )  | |  has no singular points as it is nowhere 

analytic. 

 

Exercises 22: (visit @ Youtube “learning with Usman Hamid”) 

1) In each case, determine the singular points of the function and state why the 

function is analytic everywhere except at those points: 

i.  ( )  
    

 (    )
  

ii.  ( )  
    

       
  

iii.  ( )  
    

(   )(       )
  

iv.  ( )  
    

(   )(    )
  

 

HARMONIC FUNCTIONS 

A real-valued function H of two real variables x and y is said to be harmonic 

in a given domain of the xy plane throughout that domain,  

if it has continuous partial derivatives of the first and second order and satisfies 

the partial differential equation  Hxx(x, y) + Hyy(x, y) = 0, 

known as Laplace’s equation. 

 

Importance: Harmonic functions play an important role in applied mathematics.  

For  example, the temperatures T (x, y) in thin plates lying in the xy plane are 

Often harmonic. A function V (x, y) is harmonic when it denotes an electrostatic

 potential that varies only with x and y in the interior of a region  

of three-dimensional space  that is free of charges. 

 

Example: Verify that the function U (x, y) =  e
x
 Cosy is harmonic. 

Solution: Given that U (x, y) =  e
x
 Cosy  

                               

 also                                

                                    

  U (x, y) =  e
x
 Cosy is harmonic. 
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Example: Verify that the function T (x, y) =  e
−y

 sin x is harmonic in 

 any domain of the xy plane and, in particular, in the semi-infinite vertical strip 

 0 < x < π, y > 0. 

  Solution: 
Txx(x, y) + Tyy(x, y) = 0, 

T (0, y) = 0, T (π, y) = 0, 
T (x, 0) = sin x, lim  T (x, y) = 0, 
                   →∞ 

which describe steady temperatures T (x, y) in a thin homogeneous plate in the 

xy plane that has no heat sources or sinks and is insulated except for the stated 

conditions along the edges. 

 

Theorem: If a function f (z)=u(x, y)+iv(x, y) is analytic in a domain D, 

 then its component functions u and v are harmonic in D. 

Proof: Suppose that f is analytic in D, then the first- order partial derivatives  

of its component functions must satisfy the CR equations throughout D: 

(1) i.e. ux = vy, and uy = − vx 

Differentiating both sides of these equations with respect to x, we have 

uxx = vyx, and  uyx = − vxx 

Likewise, differentiation with respect to y  

(2) uxy = vyy,  and uyy = − vxy 

Now   uxx + uyy = 0 and vxx + vyy = 0 

That is, u and v are harmonic in D. 

 

Example: The function f (z)= e
−y

 sin x - ie
−y

 cos x  is  entire, 

It must be harmonic in every domain of the xy plane. 

Example: The function   ( )  
 

   
     

(     )   
   

(     )  is 

 analytic at every non – zero point i.e.     then 

  
     

(     ) 
         

    

(     ) 
 are harmonic throughout any domain 

In the xy – plane that does not contain the origin. 

 

HARMONIC CONJUGATES (CORRESPONDING CONJUGATES) 

If two given functions u and v are harmonic in a domain D and their first-order 

partial derivatives satisfy the Cauchy–Riemann equations throughout D, then 

 v is said to be a harmonic conjugate  of  u.  

 

                     Remark: A function   f (z)=u(x, y)+iv(x, y) is analytic in a domain D 

if and only if v is a harmonic conjugate of u. 

 

 

Availabel on MathCity.org
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                       Example: Suppose that u(x, y) = x
2
 − y

2
  and v(x, y) = 2xy. 

Since these are the real and imaginary components, respectively, of the entire 

Function f (z) = z
2
, then v is a harmonic conjugate of u throughout the plane. 

But u cannot be a harmonic conjugate of v then function 2xy + i(x
2
 − y

2
) 

 is not analytic anywhere. 

METHOD TO FIND HARMONIC CONJUGATE: 

For a given real valued function  (   ) 
i. Find    and then using CR equation write       

ii. Integrate w.r.to „y‟ to get  (   ) but a constant also appear. 

iii. Differentiate w.r.to „x‟ to get    

iv. To find constant appear in previous step using CR equation write        

v. After putting the value of constant finally get  (   ) 
 

Example: Find harmonic conjugate for U (x, y) =  e
x
 Cosy  

Solution: Given that U (x, y) =  e
x
 Cosy  

                                  

Integrate w.r.to „y‟    (   )          ( )  
Differentiate w.r.to „x‟      (   )           ( ) 
using CR equation                      ( ) 

                         ( )    ( )     ( )     

After putting the value of constant finally get  
   (   )            

Example: Prove that the function U (x, y) =  e
x
 Cosy is harmonic. Find its  

Corresponding conjugate and construct the original function. 

Solution: Given that U (x, y) =  e
x
 Cosy  

This function is already proved in previous steps that this is Harmonic 

Also we find its corresponding conjugates. 

To construct original function. 

Since    ( )    (   )    (   ) 
   ( )                       ( )    (          )     
   ( )                              ( )        
Exercise 23: Prove that the given function is harmonic. Find its  

Corresponding conjugate and construct the original function. 

i.    (   )          

ii.    (   )    (           ) 
iii.   (   )               

iv.  u(x, y) = 2x(1 − y) 

v. u(x, y) = 2x − x
3
 + 3xy

2
 

vi. u(x, y) = sinh x sin y 

vii. u(x, y) = y/(x
2
 + y

2
)
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Example: Prove that a harmonic function satisfies the formal differential 

Equation  
   

    ̅
   

                       Solution: Since U is harmonic therefor     
   

    
   

       ………(i) 

                        Since   
   ̅

 
 and   

   ̅

  
    

                    Therefore 
  

  ̅
 

  

  

  

  ̅
 

  

  

  

  ̅
 

  

  ̅
 

 

 

  

  
 

 

  

  

  
 

                         
   

    ̅
 

 

  
.
  

  ̅
/  

 

 
.
   

   

  

  
 

   

    

  

  
/  

 

  
.

   

    

  

  
 

   

   

  

  
/  

                         
   

    ̅
 

 

 
.
 

 

   

   
 

 

 

   

    
/  

 

  
.
 

 

   

    
 

 

  

   

   
/  

                         
   

    ̅
 

 

 

   

    
 

 

   

    
 

 

 

   

    
 

 

 

   

     

                         
   

    ̅
 

 

 
.
   

    
   

   /  
   

    ̅
              ( ) 

METHOD OF CONSTRUCTING AN ANALYTIC FUNCTION; 

For a given real valued function  (   ) 
i. Find   (   ) and   (   )  

ii.   ( )    (   )     (   ) 

iii. To find  ( ) integrate   ( ) 
 

Example: Verify that the function U (x, y) = SinxCoshy is harmonic. 

And find analytic function. 

Solution: Given that U (x, y) = SinxCoshy 
                                       
 also                                   

                                           

  U (x, y) = SinxCoshy is harmonic. 

Now    (   )       and   (   )    

Then   ( )    (   )     (   )            ( )       

Integrate w.r.to „z‟   ( )        which is required. 

Exercise 24: Verify that the given function is harmonic. 

And find analytic function. 

i.   (   )  
 

      

ii.  (   )             

iii.   (   )     ,(     )            - 

iv.  (   )                    

v.   (   )     √      in the disk |   |    

vi.   (   )  
     

            
 

vii.  (   )               

viii.  (   )          
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LEVEL CURVES: A level curve of a real valued function U(x,y) defined in a  

Domain D is given by the locus of a point (x,y) in D such that  U(x,y) = C 

Where C is constant. 

Likewise we can consider a level curve of V(x,y) in D 

i.e. V(x,y) = K Where K is constant. 

Example: Sketch the level curves of the function   ( )          

Solution: Given   ( )                

Put  (   )            and   (   )         

These are the required level curves and are Rectangular Hyperbolas. 

 

ORTHOGONAL SYSTEM: The families of curves  (   )    and  (   )     

Are said to form an orthogonal system if the curves intersect at right angles at each 

Of their point of intersection. 

CONDITION TO FIND ORTHOGONALITY OF LEVEL CURVES 

Consider  (   )     

Differentiating we get 
  

  
 

  

  

  

  
   

  

  
  

  

  
 

  

  
      

  

  
 

  

  
 

Also  (   )     

Differentiating we get 
  

  
 

  

  

  

  
   

  

  
  

  

  
 

  

  
      

  

  
 

  

  
 

Now the two families of curves intersect orthogonally if 

        . 
  

  
 

  

  
/ . 

  

  
 

  

  
/      

  

  

  

  
 

  

  

  

  
   this is required condition.    

Example: If   
 

 
 then show that level curves     and      

Are orthogonal circles which pass through the origin and have their centers  

On x – axis and y- - axis. 

Solution: Given    
 

 
 

 ̅

  ̅
 

 ̅

| |
 

    

      
 

       
  

       

Here  (   )  
 

      and  (   )  
  

      

When   
 

            
 

        ( 
    )      and pass through 

Origin having centre .
 

 
    / 

also   
  

     
       

  

     
   ( 

    )      and pass through 

Origin having centre .  
 

 
  / 

For Orthogonality: 
  

  

  

  
 

  

  

  

  
 

      

(     ) 
   

     
 

    

     

      

(     ) 
           

Thus level curves are orthogonal.     
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Example: If  ( )  
   

   
 then find the level curves     and      

Also verify that level curves form an orthogonal system. 

Solution: Given   ( )  
   

   
 

(   )   

(   )   
 

(        )  (   )

(   )      

Here  (   )  
        

(   )     and  (   )  
   

(   )     

When   
        

(   )    
      ( 

          )             

 (    )   (    )                  which is circle. 

Origin having centre .
 

 
    / 

                  Also   
   

(   )    
      ( 

          )       which is also circle. 

For Orthogonality: 

              
  

  

  

  
 

  

  

  

  
 

                

,(   )    - 
 

  (   )

,(   )    - 
 

   (   )

,(   )    - 
 
               

,(   )    - 
           

Thus level curves are orthogonal.    

 

Example: If  ( )       be an analytic function of z = x+iy then show that 

The curves     and      intersect at right angle. 

Solution: Given  ( ) to be analytic. Then CR equations hold. 

i.e. 
  

  
 

  

  
   ( ) and 

  

  
  

  

  
   (  ) 

multiplying (i) and (ii) we get  
  

  

  

  
  

  

  

  

  
 

  

  

  

  
 

  

  

  

  
    required condition of orthogonality of two curves.    

 

Problem: Prove that an analytic function with constant modulus is constant. 

Solution: Since f is analytic in D, then it must satisfy the CR equations  

(3) i.e. ux = vy, and vx = - uy  and also | ( )|               ( ) 

(4) differentiating (i) w.r.to x                          (  ) 

(5) likewise differentiating (i) w.r.to y                        

(6)               (   )   using CR equations. 
(7) Multiplying (ii) by „u‟ and (iii) by „v‟ and then adding we get 
(8)    ( 

    )    (     )          ( )          
(9)          ‟u‟ is independent of x and „v‟ is independent of y. 

(10) Multiplying (ii) by „v‟ and (iii) by „u‟ and then subtracting we get 
(11)    ( 

    )    (     )          ( )          
(12)           ‟v‟ is independent of x and „u‟ is independent of y. 

(13) Thus „u‟ and „v‟ are both independent of x and y. 
(14) Therefore u and v are constants. 

(15) Ultimately  ( )                
(16)  
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Problem: Investigate the value of z for which W = U + iV is not analytic 

When                        

(17) Solution: Given                        

(18)  
  

  
 

  

  
                           ( ) 

(19) Also    (                    )  

(20)                                                    (  ) 
(21)                  

(  )     (        )      (        )                           

                                                               

                                                  (            ) 

    (                    )       .
  

  
/
 

   .
  

  
/
 

       

 
  

  
  √     

  

  
  

 

√    
  

                           
  

  
 does not exists when                   

                  Therefor function is not analytic when      where                        

 

Exercise 25: (visit @ Youtube “learning with Usman Hamid”) 

 Investigate the value of z for which    ( ) ceases to be analytic where  

i.      (           ) 
ii.                        
 

                    

 

 UNIQUELY DETERMINED ANALYTIC FUNCTIONS 

                 Suppose that a function f is analytic throughout a domain D and f (z) = 0 at  

                        each point z of a domain or line segment contained in D. 

              Then f (z) ≡ 0 in D; that is, f (z) is identically equal to zero throughout D. 

 

                Remark: 

 A function that is analytic in a domain D  is uniquely determined   over D 

by its values in a domain, or along a line segment, contained in D. 

 Reflection Principle :Suppose that a function f is analytic in 

some domain D which contains a segment of the x axis and whose 

lower half is the reflection of the upper half with respect to that axis 

Then   ( )̅̅ ̅̅ ̅̅   ( ̅) 
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Problem: If  ( )       is an analytic function of „z‟ in any domain then 

  prove that    | ( )|    | ( )|   |  ( )|  also deduce for p = 2. 

Solution:  Suppose  ( )       

 | ( )|  √      | ( )|  (     )    …………..(i) 

 
 

  
| ( )|

 
  

 
.     

/

 
 
  

(         )   .     
/

   
 

(       )  

 
 

  
| ( )|

 
  .     

/

   
 

(       )  

 
 
 

   | ( )|
 
  

  
.
 

  
| ( )|

 
/   .

   

 
/ .     

/

   
 

  
(         )(       )  

      (     )
   

 (                   )      

 
 
 

   | ( )|
 
  (   ) .     

/

   
 

(       )
      

     (     )
   

 (       
         

 )…………..(ii) 

Similarly 

 
 
 

   | ( )|
 
  (   ) .     

/

   
 

(       )
 
     

     (     )
   

 (       
         

 )…………..(iii) 

Now we know that 

  | ( )|  .
  

    
  

   / | ( )|  
  

   
| ( )|  

  

   
| ( )|   

Then using equation (ii) and (iii) we get 

  | ( )|   (   )(     )
   

 (       )
   

  (     )
   

 (       
         

 )  

  (   )(     )
   

 (       )
 
  

  (     )
   

 (       
         

 )  

  | ( )|   (   )(     )
   

 0(       )
  (       )

 
1  

  (     )
   

 (       
         

         
         

 )  

  | ( )|   (   )(     )
   

 0(       )
  (       )

 
1  

  (     )
   

 [ (       )   (       )    
    

    
    

 ]  

Since                   and Function is analytic. Therefore CR equation  

Will be satisfied i.e.       and        or        then 

  | ( )|   (   )(     )
   

 ,(       )
  (        )

 -  

  (     )
   

 [ ( )   ( )    
    

    
    

 ]  
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  (   )(     )
   

 0    
 
     

 
             

 
     

 
        1  

  (     )
   

 [   
     

 ]  

  | ( )|   (   )(     )
   

 [  (  
    

 )    (  
    

 )]  

   (     )
   
 [  

    
 ] 

  | ( )|   (   )(     )
   

 [(  
    

 )(     )]  

   (     )
   
 [  

    
 ] 

  | ( )|   (   )(     )
   

 (  
    

 )  

   (     )
   
 [  

    
 ] 

  | ( )|   (     )
   

 (  
    

 ),     -  

  | ( )|    (     )
   

 (  
    

 )  

  | ( )|    | ( )|   |  ( )|   

When p = 2 

  | ( )|    | ( )|   |  ( )|   

  | ( )|   |  ( )|   
 

Practice: 

If  ( ) is an analytic function of „z‟ in any domain then prove that  

  .
  

    
  

   / |  ( ( ))|
 
  |  ( )|   

Solution:  Suppose  ( )       

 |  ( ( ))|    |  ( ( ))|
 
          (   )  

              (       
 )   and                 (       

 ) 

         .
  

    
  

   /    (       
 )   (       

 )  

 .
  

    
  

   / |  ( ( ))|
 
  [ (       )  (  

    
 )]  

 .
  

    
  

   / |  ( ( ))|
 
  (  

    
 )                

Hence .
  

    
  

   / |  ( ( ))|
 
  |  ( )|  
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C H A P T ER   

3 
ELEMENTARY FUNCTIONS 

 

  

             

 THE EXPONENTIAL FUNCTION 

We define here the exponential function e
z
 by writing 

(1) e
z
 = e

x
e

iy
 where (z = x + iy), 

Where Euler‟s formula gives e
iy
 = cos y + i sin y  and  y  is to be taken in radians. 

 

Remark: 

i.         where      and     

ii. |  |     

iii.    (  )                    …………. 

iv.                 (addition theorem) 

v. 
   

   
        

vi.      as    is never zero. 

vii.      

viii.     
 

   

ix. 
 

  
      everywhere in the „z‟ plane. 

x.           

xi.        and        

xii.  (    )                   …………. 

xiii.    converges absolutely. 

Example:  Find numbers z = x + iy such that e
z
 = 1 + i 

Solution:  Given that e
z
 = 1 + i   

                   

Then |  |     √      √  
 

 
    

and    (  )        
 

 
     .   

 

 
/               … 

now we know that             

then after putting the values 

           
 

 
    .   

 

 
/                ………. 
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Property:  Prove that       iff                     ………. 

Solution:  Consider e
z
 = 1 Then we have to prove        

Now as                  (          )     

                       
         ……(i)             ……(ii) 

(  )                     ( )                   …… 

( )                       (  )      

 (  )    if                    ………. 

Thus            and therefore          

Hence             
For Sufficient Condition: 

Given         then we have to show that      

Let                             

           as required 

 

Property:  Prove that          if               
Solution:  Consider         Then we have to prove        

Now as                     (     )  (     )      

       ,   (     )      (     )-         
          (     )    ……(i)              (     )    ……(ii) 

(  )              (     )    (     )       ( )                      
 (     )                 …… 

( )            (     )                          (  )      

 (  )    if                    ………. 

Thus                           

and therefore       (     )   (     )         

Hence                       
 

Property: Prove that        iff    (    )                 … 

Solution:  Consider e
z
      Then we have to prove   (    )   

Now as                    (          )      

                        
          ……(i)             ……(ii) 

(  )                     ( )                   …… 

( )                         (  )       

 (  )     if   (    )               ………. 

Thus            and therefore      (    )  

Hence        (    )   
For Sufficient Condition: 

Given    (    )   then we have to show that       

Let     (    )      (    )      (    )        
            as required 
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Property: Prove that       iff    .
 

 
   /                  

Solution:  Consider e
z
 =   Then we have to prove   .

 

 
   /   

Now as                  (          )    
                      
         ……(i)             ……(ii) 

( )                     ( )    .
 

 
   /   

(  )                .
 

 
   /      ( )      

Thus             

Hence          .
 

 
   /   

For Sufficient Condition: 

Given    .
 

 
   /   then we have to show that      

Let     .
 

 
   /      .

 

 
   /      .

 

 
   /      

           as required 

 

PERIODIC FUNCTION:  A function  ( ) is said to be periodic if there 

exists a non – zero constant   (complex) such that  (   )   ( )  

Thus   is called period of the function. 

 

Property: Prove that     is periodic function. 

Solution:  if   ( )     then we have to show the periodic value of    

Consider  (   )   ( )          

If z =0 then               

Since   is complex valued therefor        ………..(i) 

Then                (          )       
         ……(ii)             ……(iii) 

(   )                     ( )                   … 

(  )                       (  )      

 (  )    if                    ………. 

Thus            and therefore          

Hence              
Now    is periodic functions as 

  ( )   (   )                    (              ) 

        (    )           Thus        is period of    

For k = 1 ,       is Simple, Fundamental or Primitive period of    and the 

other periods are                   etc 

 

Remark: The periodicity of the exponential function does not appear in the 

real domain, since the periods of the function are all imaginary. 
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Property: Prove that (  )̅̅ ̅̅ ̅̅    ̅   

Solution:       (  )̅̅ ̅̅ ̅  (     )̅̅ ̅̅ ̅̅ ̅̅ ̅̅           (          )  

        ̅       ̅̅ ̅̅ ̅̅ ̅           (          )  
Hence the result. 

REMARK:   ̅ is not an analytic function because  ̅ is involved. 

 

Exercises 26: (visit @ Youtube “learning with Usman Hamid”) 

 

i. Prove that Exp(iz) and Exp(-iz) are regular functions of „z‟ 

ii. Prove that                 

iii. Prove that                  

iv. Prove that |    |  | | | | 

v. State why the function f (z) = 2z
2
 − 3 − ze

z
 + e

−z
 is entire. 

vi. Show in two ways that the function f (z) = exp(z
2
) is entire. What is 

its derivative? 

vii. Show that  (a) exp(2 ± 3πi) = −e
2  

 

(b) exp.
     

 
/ =√

 

 
(1 + i) 

  (c) exp(z + πi) = − exp z. 
viii. show that the function f(z) = exp  ̅ is not analytic anywhere. 

ix. Write |exp(2z + i)| and |exp(iz
2
)| in terms of x and y. Then show that 

|exp(2z + i) + exp(iz
2
)| ≤  e

2x
 + e

−2xy
 

x. Show that |exp(z
2
)| ≤  exp(|z|2)  

xi. Prove that |exp(−2z)| < 1 if and only if Re z > 0 

xii. Find all values of „z‟ such that  

(a) e
z
 = −2  (b) e

z
 = 1+    (c) exp(2z − 1) = 1 

xiii. Show that if e
z
 is real, then Im z = nπ (n = 0, ±1, ±2,...) 

xiv. If e
z
 is pure imaginary, what restriction is placed on z? 

xv. Write Re(e
1/z

) in terms of x and y. Why is this function harmonic in 

every domain that does not contain the origin? 

xvi. Show that    ̅̅ ̅̅     ̅                         
xvii. Consider the exponential function  ( )     on which points it is 

differentiable.
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THE LOGARITHMIC FUNCTION 

The multivalued logarithmic function of a nonzero complex variable          

can be defined as follows 

log z = ln r + i(  + 2nπ)  or    log z = ln | | + iarg( )              … 

 

The principal value of logz is defined as follows 

Log z = ln r + i    or    Log z = ln | | + i   

 

Remarks:   

 Every non – zero complex number has infinitely many logarithms 

which differs from one another by an integral multiple of 2πi 

 ‘Ln‟ is logarithm with base 10 i.e. common log while „ln‟ is 

natural logarithm with base „e‟. 

 

Example: if          √   then r =| | = 2 and   = −2π/3 then find its 

logarithm. 

Solution: Given that         √   then r = 2 and   = −2π/3 then using the 

formula we get required logarithm i.e. 

log z = ln | | + i(       )              … 

log (    √  ) = ln   + i(           )              … 

log (    √  ) = ln   + 2.  
 

 
/                … 

Example: Find that  log 1 = 0 

Solution: using  log z = ln | | + i(       )              … 

log 1 = ln 1 + i(0 + 2nπ) = 2nπi (n = 0, ±1, ±2,...). 

As anticipated, log 1 = 0. 

 

Example: Find that log (  ) = πi 

Solution: using  log z = ln | | + i(       )              … 

log(−1) = ln 1 + i(π + 2nπ) = (2n + 1)πi (n = 0, ±1, ±2,...) 

and that log (−1) = πi. 

 

Example: Show that Log ,(   ) -      (   )  
Solution: using  Log z = ln r + i   

          ,(   ) -      (  )       
 

 
   

          (   )   .  √   
 

 
/       

 

 
  As required.  
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Example: Show that Log ,(    ) -      (    )  
Solution: using  Log z = ln r + i   

          ,(    ) -      (   )       
 

 
   

          (    )   .  √   
  

 
/       

  

 
   

Hence the result. 
 

Example: Show that log ( )         
Solution: using  log z = ln | | + i(  + 2nπ)  

                 (  )  (    )                  … 

             0     .
 

 
    /1  (    )                  … 

Hence the result. 
 

BRANCHES AND DERIVATIVES OF LOGARITHMS 

 A branch of a multiple-valued function f is any single-valued 

function F that is analytic in some domain at each point z of which 

the value F (z) is one of the values of f .  

 The function                      (                ) is 

called the principal branch of logarithmic function. 

 A branch cut  is a portion of a line or curve that is introduced in order 

to define   a branch F of a multiple-valued function f . 

 Points on the branch cut for F are singular points of F , and any point 

that is common to all branch cuts of  f  is  called a branch point.  

 The origin is evidently a branch point for branches of the multiple-

valued logarithmic function. 

 

Example:  

Show that log ( )         when the branch                       

 (      
 

 
      

  

 
) is used. 

Solution: using  log z = ln | | + i(  + 2nπ)  

                 (  )             

             0     
 

 
1     

Hence the result. 

 

Example:  Find the value of  log (    )   
Solution: using  log z = ln | | + iarg( )  

log (    ) = ln √  + i(      )  

log (    ) = ln √  + 
  

 
i 
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Exercises 27: (visit @ Youtube “learning with Usman Hamid”) 
1. Show that 

(a) Log(−ei) = 1  (   ) (b) Log (   ) = 
 

 
        

 

 
  

 
2. Show that 
a) log e = 1 + 2nπi (n = 0, ±1, ±2,...) 

b) log i = .   
 

 
/    (n = 0, ±1, ±2,...) 

c) log (   √  ) =      .  
 

 
/    (n = 0, ±1, ±2,...) 

 
3. Show that Log ( )        
4. Show that log ( )         when the branch                       

 (      
  

 
      

   

 
) is used. 

5. Find all roots of the equation log z = iπ/2.        Ans. z = i. 
6. Show that  Re [log(z − 1)] = 1/2

 
ln[(x − 1)

2
 + y

2
] (z   1). Why must 

this function satisfy Laplace‟s equation when z 1? 

7. Show that log ( )    
 

 
      

8. Show in two ways that the function ln(x
2
 + y

2
) is harmonic in every 

domain that does not contain the origin. 

9. Find that log ( ) = i π/2  

10. (−1)
1/π

 = e
(2n+1)i

 (n = 0, ±1, ±2,...) 

11. Find the value of  Log (    )   

12. Find the value of  Log (   )   
13. Find the value of  (   )    

14. Find the value of     (   )   

15. Find the value of  (    )    

16. Show that (   )     . 
 

 
    /    . 

   

 
/  (n = 0, ±1, ±2,...)   

17. Show that 
 

  
    ,(    ) -  (n = 0, ±1, ±2,...)   

18. Find the value of  (√   )
   

   

19. Explain the following paradox 

        (  )  
 

 
   (  )  

 

 
   ( )     
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SOME IDENTITIES INVOLVING LOGARITHMS 

If z1 and z2 denote any two nonzero complex numbers, then 

 log(z1z2) = log z1 + log z2 

 log(z1/z2) = log z1 - log z2 

 arg(z1z2) = arg z1 + arg z2 

 ln |z1z2| + i arg(z1z2) = (ln |z1|+ i arg z1) + (ln |z2|+ i arg z2) 

 z
n
 = e

n
 
log

 
z
 (n = 0 ± 1, ±2,.. .) 

 z
1/n 

= exp(1/n logz) ; n = 1,2,3,. .. . and     

 

Example: Show that log(z1z2) = log z1 + log z2  when z1 = z2 =    

Solution: Since we know that   log 1 = 2nπi and log(−1) = (2n + 1)πi, 

where n = 0, ±1, ±2,. .. . 

 then  log (z1z2) = log (1) = 2nπi    and using the values n = 0 we get 

log(z1z2) = 0  

and  log z1 + log z2      –      for n = 0 and n = -1 respectively. 

Then clearly log(z1z2) = log z1 + log z2   

But 

If, on the other hand, the principal values are used then statement is not always 

true i.e. 

Log(z1z2) = 0 and Log z1 + Log z2 = 2πi   for  n = 0 

 

Property: Prove that log(z1z2) = log z1 + log z2 

Proof:   let           and            

Then        (         )   (         ) 
Now using the formula log   = ln | | + iarg( ) 

L.H.S = log      = ln |    | + iarg(    ) 

log      = 
 

 
  ,(  

    
 )(  

    
 )-        .

         

         
/ 

and for  R.H.S consider 

 log    = ln |  | + iarg(  ) = 
 

 
  ,(  

    
 )-        .

  

  
/  

log    = ln |  | + iarg(  ) = 
 

 
  ,(  

    
 )-        .

  

  
/  

R.H.S = log z1 + log z2 = 
 

 
  ,(  

    
 )(  

    
 )-        .

         

         
/ 

Hence proved. 
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Property: Prove that  W = log z is an analytic function. 

Proof: (to prove given function is analytic we will show that function is 

differentiable and satisfies the CR equations.) 

Let   ( )              ( )  
 

 
   Given function is differentiable. 

For CR Equations: 

Since  ( )                  | |        ( ) 

      
 

 
  ,(     )-        .

 

 
/  

Comparing real and imaginary parts 

   
 

 
  ,(     )-           .

 

 
/  

    
 

     
    

 

     
       

 

     
     

  

     
  

                        

CR equations are satisfied.  Therefore  W = log z is an analytic function. 

 

Example: An identity which occurs in the quantum theory of Photoionization 

is .
    

    
/
  

          ( )           verify it!!!! 

Solution:  

.
    

    
/
  

    [   .
    

    
/
  

]        .
    

    
/     …………..(i) 

Now consider      .
    

    
/     (    )     (    )  

   .
    

    
/  0   |    |        .

 

  
/1  0   |    |        .

 

 
/1  

   .
    

    
/     |    |     (        )     |    |            

   .
    

    
/                                   

   .
    

    
/    .

 

 
       /         ( )  

( )  .
    

    
/
  

    .       ( )/           ( )           

Example: Prove that    [(   )   (   )]   
 

 
       

  

      .
 

 
    /  

Solution:  

Let (   )   (   )     [   (   )   (   )]     ,   (   )    (   )- 

(   )   (   )     ,   (   )-     0   |   |          .
 

 
/1

 

  

(   )   (   )     0
 

 
        

 

 
1
 

  

(   )   (   )     [.
 

 
    /

 

   . 
 

 
/
 

  .
 

 
    / . 

 

 
/]  

(   )   (   )     0
 

 
(    )  

  

  
  

 

 
    1  

(   )   (   )     0
 

 
(    )(    )  

  

  
  

 

 
    1  
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(   )   (   )   (    )
 
 
(    )

   
  

     
 

 
    

  

(   )   (   )   (    )
 
 
(    )

   
  

   0   .
 

 
    /      .

 

 
    /1  

  (    )
 
 
(    )

   
  

      .
 

 
    /    (    )

 
 
(    )

  
  

     .
 

 
    /  

Taking only real part, we get the required. 

  [(   )   (   )]   
 

 
       

  

      .
 

 
    /  

 

COMPLEX EXPONENTS  (THE POWER FUNCTION) 

When     and the exponent c is any complex number, the function z
c
  is  

defined by means of the equation  

  zc = ec log  where log z denotes the multiple-valued logarithmic function. 

 

Remark: 

 for two functions  ( ) and  ( ) we can write 

 , ( )- ( )      , ( )- ( )
   ( )    ( ) 

 if „c‟ is not a rational number then 

           , *   | |     (   ( )     )+-  ;          …….. 

has an infinite number of values. 

 
 

  
   

 

  
       

 

 
        

 

  
          

 The principal value of z
c
 occurs when log z is replaced by Log z as 

follows           

    is analytic. As its derivative exists.  

           also called the principal branch of the function z
c
 on the 

domain | |              

 

Example: Find the principal value of (i)
i
  

Solution: we may write           

Now as         | |   (   ( )     )  .   
 

 
/                … 

Then       0 .   
 

 
/   1     0 .   

 

 
/  1             …….. 

Then principal value will be        . 
 

 
/                       …….. 

Note that the values of    are all real numbers. 
 

Example: Find the principal value of (  )     

Solution: we may write (  )     
 

 
   (  )

 

Now    (  )     |  |   (   (  )     )  (    )    

Then (  )       0
 

 
(    )   1     ,(    )  -             … 
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Example:  Find the principal branch of z
2/3

  

Solution: we may write       
 

 
    

 

Now         | |      ( )  

Then       
 

 
        0

 

 
   | |   

 

 
    1 

        0
 

 
     

 

 
  1     0  √   

  
 

 
  1  

     √   
   . 

  

 
/  √   

0   
  

 
     

  

 
1  , principal value. 

This function is analytic in the domain r > 0, π <   < π 

 

Example:  Evaluate Ln .  
 

 
  /

  (this is common logarithm) 

Solution:   we may write Ln .  
 

 
  /      .  

 

 
  /

 

    .  
 

 
  /     .    

 

 
  /            

 

 
  

  

    .  
 

 
  /       0   

 

 
      

 

 
 1       ,   -     (  )  

   .  
 

 
  /     

 

 
  

 

Example: Consider the nonzero complex numbers   z1 = 1 + i, z2 = 1 – i 

then show that (    )
    

   
  

Solution:    
When principal values of the powers are taken, 

(z1z2)
i = 2i = eiLog 2 = ei(ln 2+i0) = ei ln 2 

And  

  
  = eiLog(1+i) = ei(ln√ +iπ/4) = e−π/4ei(ln 2)/2 

  
  = eiLog(1-i) = ei(ln√  - iπ/4) = eπ/4ei(ln 2)/2 

Thus (    )
    

   
  

 

Example: Consider the nonzero complex numbers   z2 = 1 – i ,  z3 = −1 − i. 

then show that (    )
    

   
      

Solution:    
When principal values of the powers are taken, 

(z2z3)
i = (−2)i = eiLog(−2) = ei(ln 2+iπ) = e−πei ln 2 

And  

  
  = eiLog(-1- i) = ei(ln√ -i3π/4) = e

3π/4

ei(ln 2)/2 

  
  = eiLog(1-i) = ei(ln√  - iπ/4) = eπ/4ei(ln 2)/2 

Thus (    )
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Exercises 28: (visit @ Youtube “learning with Usman Hamid”) 
1) Find the principal value of 

     (a) (  )   

     (b) [   (   √  ) ]
   

  

      (c) (1 − i)
4i

 

      (d) (  )   

2) Show that (−1 +√ i)
3/2

 = ± 2√ . 

3) Show that the results; 

a) (−1 +√ i)
3/2

 = [(−1 +√ i)
3
]

1/2
 finding the square roots of −1+√   

b) (−1 +√ i)
3/2

 = [(−1 +√ i)
1/2

]
3
 finding the cube roots of −1+√   

4) Find all the solutions of      and prove that the values can be 

arranged in an infinite geometric progression. 

5) Examine the validity of the equation             by taking 

different values of „z‟ 

6) Prove that ∑
(    ) 

  
 
       

 

TRIGONOMETRIC FUNCTIONS 

The sine and cosine functions of a complex variable z are defined as 

follows:       
        

  
    and        

        

 
  

Remark

 e
iz
 = cos z + i sin z 

 sin(iy) = i sinhy and cos(iy) = coshy 

 sin z = sin x cosh y + i cos x sinh y 

 cos z = cos x cosh y − i sin x sinh y 

 |    |               

 |    |               
 Sinz and Cosz are not bounded on the complex plane. 

 The zeros of Sinz and Cosz in the complex plane are same as the zeros 

of Sinx and Cosx on the real line (discussed in next theorems) 

 |    |  |    |  and  |    |  |    | 
 

Property:      is periodic function with primitive period   . 

Proof:    

For periodic function we have  (   )   ( ) then 

   (   )     ( )  
Put z = 0      ( )     ( )              ……….(i) 

Now as we have     (   )     ( ) 
    (    )     ( )  
                        ( )      (  )      ( )     ( )  
     (  )     ( )  this condition will hold if „n‟ is even. i.e. n = 2k 

( )                      ………. 

Hence      is periodic function with primitive period   . 
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Property:      is periodic function with primitive period   . 

Proof:       For periodic function we have  (   )   ( ) then 

   (   )     ( )  
Put z = 0      ( )     ( )              ……….(i) 

Now as we have     (   )     ( ) 
    (    )     ( )  
                        ( )      (  )      ( )     ( )  
     (  )     ( )  this condition will hold if „n‟ is even. i.e. n = 2k 

( )                      ………. 

Hence      is periodic function with primitive period   . 

 

Zero of a Function:  

The values of „z‟ for which  ( )    are called zeros of  ( ) 

 

Property:                        …...Or find zeros of Sinz. 

Proof:   consider        

    (    )                           

                            
             …….(i)                 …….(ii)    

( )                       
(  )                           (  )          

 (  )              
 

 
,      -    ,      -     

               

Now we know that        therefore      ;                …... 

Conversely:   consider         Then              as required. 

 

Property:          
(    ) 

 
                      …... 

Or find zeros of Cosz. 

Proof:   consider        

    (    )                           

                            
             …….(i)                 …….(ii)    

( )                   
(    ) 

 
  

(  )                 
(    ) 

 
                    

         
 

 
,      -    ,      -     

               

Now we know that        therefore  
(    ) 

 
 ;           …... 

Conversely: consider   
(    ) 

 
  Then         

(    ) 

 
   as required. 
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Problem: Find all solutions to           
Proof:   consider         
    (    )                             
                            
             …….(i)                 …….(ii)    

( )                       
(  )                           (  )          

 (  )              
 

 
,      -              

                  √    by quadratic formula. 

      (  √ )  

Now we know that        therefore          (  √ ) 

 

Problem: Find all solutions to          

Proof:   consider        

    (    )                           

                            
             …….(i)                 …….(ii)    

(  )                       
( )               (  )          

 (  )              
 

 
,      -               

                    √    by quadratic formula. 

      (   √ )  

Now we know that        therefore          (   √ ) 

 

 

Exercises 29: (visit @ Youtube “learning with Usman Hamid”) 

1) Show that        |sin z |≥ |sin x|;    and       |cos z |≥ |cos x|. 

2) Show that     |sinh y |≤  |sin z |≤ cosh y ;  and   |sinh y |≤  |cos z |≤  cosh y. 

3) Show that neither sin  ̅ nor cos  ̅ is an analytic function of z anywhere. 

4) Find all roots of the equation sin z = cosh 4 by equating the real parts and 

then the imaginary parts of sin z and cosh4. 

5) Find all solutions to          

6) Find all solutions to          

 

 

 

 

 

 

 

Availabel on MathCity.org
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HYPERBOLIC FUNCTIONS 

For a complex variable z we can define:                                                     

      
      

 
    and         

      

 
  

Remark

 e
z
 = sinhz + coshz  

 sinh(iz) = i sinz and cosh(iz) = cosz 

 |     |               

 |     |               
 Sinhz and Coshz are both analytic. 

 −i sinh(iz) = sin z, cosh(iz) = cos z 

 −i sin(iz) = sinh z, cos(iz) = cosh z 

 Hyperbolic functions are analytic except for those values of „z‟ which 

are excluded by definition.  

z . 

Property: 

                         …...Or find zeros of Sinhz. 

Proof:   consider         

 
      

 
                                   

                           ……….. 

Conversely:   consider           
Then                        as required. Since sinh(iz) = i sinz 

 

Property: 

          .
 

 
   /              …...Or find zeros of Coshz. 

Proof:   consider         

 
      

 
                     

              .
 

 
   / 

      .
 

 
   /     .

 

 
   /    

           ………… 

Conversely:   consider   .
 

 
   /       

Then           .
 

 
   /      .

 

 
   /    as required. Since 

cosh(iz) = cosz 

Property:       is periodic function with primitive period     . 
Proof:    For periodic function we have  (   )   ( ) then 

    (   )     ( )  

Put z = 0       ( )     ( )          
      

 
            

                                       i.e. Even 

     (   )      (     )      (      )      ( )  
Hence       is periodic function with primitive period     . 
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Property:       is periodic function with primitive period     . 
Proof:    For periodic function we have  (   )   ( ) then 

    (   )     ( )  
Put z = 0       ( )     ( )                 ( )      
               i.e. Even 

     (   )      (     )      (      )      ( )  
Hence       is periodic function with primitive period     . 

 

Problem: Find all solutions to            
Proof:   consider          
     (    )                                 
                           
             …….(i)                 …….(ii)    

( )                   (    )
 

 
  

(  )          (    )
 

 
    

Now two cases arises; 

Case – I : when     (    )
 

 
    

       (  )              
      

 
              

             (  ) not possible. 

Case – II : when     (    )
 

 
   

                    
      

 
            

            ( )      

Hence              (    )
 

 
    (    )

 

 
   

 

Exercises 30: (visit @ Youtube “learning with Usman Hamid”) 

1. Why is the function sinh(e
z
) entire? Write its real component as a 

function of x and y, and state why that function must be harmonic 

everywhere. 

2. Prove that |     |               

3. Prove that |    |               

4. Prove that      
             

            
 

5. Prove that if      (    )       then 

    
      

            
 and   

     

            
 

6. Find all solutions to            

7. Find all solutions to           

8. Find all solutions to        
 

 
 

9. Find all solutions to          
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INVERSE TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 
 In order to define the inverse sine function sin

−1
 z, 

 we write    w = sin
−1

 z when z = sin w. 

  
        

  
              (   )

 
             

Then e
iw

 = iz   (1 − z2
)

1/2
 by quadratic formula. 

Or e
iw

 = z   i (1 − z2
)

1/2
 by quadratic formula. 

where (1 − z2
)
1/2

 is, of course, a double-valued function of z.  

Taking logarithms of each side of above equation 

   (   )     (   √    )  

       (   √    )  

sin
−1

 z = −i log[iz   (1 − z2
)

1/2
] where w = sin

−1
 z 

sin
−1

 z = −i log[iz   (1 − z2
)

1/2
] + nπi      where (n = 0, ±1, ±2,...). in general 

Remember that sin
−1

 z is a multiple-valued function, with infinitely 

many values at each point z. 

 
 In order to define the inverse cosine function cos

−1
 z,  

we write     w = cos
−1

 z when z = cos w. 

  
        

 
             (   )

 
            

Then e
iw

 = z   i (1 − z2
)

1/2
 by quadratic formula. 

Or    e
iw

 = z   i (1 − z2
)

1/2
 by quadratic formula. 

where (1 − z2
)
1/2

 is, of course, a double-valued function of z.  

Taking logarithms of each side of above equation 

   (   )     (   √    )  

       (   √    )  

cos
−1

 z = −i log[z   i (1 − z2
)

1/2
] where w = cos

−1
 z 

cos
−1

 z = −i log[z   i (1 − z2
)

1/2
] + nπi     where (n = 0, ±1, ±2,...). in general 

 
 In order to define the inverse tangent function tan

−1
 z,  

we write     w = tan
−1

 z when z = tanw. 

  
        

 (        )
 

        

         
 

  
  

                 

                 
 

    

    
 

    

     
 

    

    
      

    

    
  

       .
    

    
/    

 

  
   .

    

    
/  

 

 
   .

   

   
/  

       
 

 
   .

   

   
/  

       
 

 
   .

   

   
/ + nπi     where (n = 0, ±1, ±2,...). in general 

Remember that tan
−1

 z is a multiple-valued function, and each branch is single 

valued in z – plane, cut along the imaginary axes except from the argument 

from    to –   
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Example: This example shows that sin
−1

 z is multivalued. 

Show that      (  )      (  )     (  √ )      ;n = 0, ±1, ±2,…….. 

Proof:     

Since we know that  sin
−1

 z = −i log[iz + (1 − z2
)

1/2
] 

Thus       (  )       (  √ ) 

But     (  √ )    (  √ )        ;n = 0, ±1, ±2,…….. 

Also     (  √ )    (√   )  (    )   ;n = 0, ±1, ±2,……… 

Thus     (  √ )  (  )   (  √ )      ;n = 0, ±1, ±2,…….. 

Hence        (  )      (  )     (  √ )      ;n = 0, ±1, ±2,…….. 

 

Remember in this question we use 

  (√   )    
 

  √ 
    (  √ )  

 

Remark

            (  √    )  

            (  √    ) 

         
 

 
   .

   

   
/ 

 

Exercises 31: (visit @ Youtube “learning with Usman Hamid”) 

1. Find all the values of 

    (a) tan−1(2i) (b)  tan−1(1 + i) (c) cosh
−1

(−1) (d) tanh
−1

 0. 

2. Solve the equation sin z = 2 for z by 

i. equating real parts and then imaginary parts in that 

equation; 

ii. using expression for sin
−1

 z 

3. Solve the equation Cos z = √  for z by 

i. using expression for sin
−1

 z 

ii. using expression for cos
−1

 z 

iii. using expression for tan
−1

 z 

iv. using expression for cosh
−1

 

4. Find       √  
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     C H A P T E R   

               4 
       INTEGRALS 

 
Integrals are extremely important in the study of functions of a complex 

variable. The theory of integration, to be developed in this chapter, is noted for 

its mathematical elegance. The theorems are generally concise and powerful, 

and many of the proofs are short. 

 

DERIVATIVES OF FUNCTIONS w (t ) 

In order to introduce integrals of f(z) in a fairly simple way, we need to 

first consider derivatives of complex-valued functions   of a real variable 

„t’. For a complex valued function   w(t) = u(t) + iv(t), where the functions 

u and v are real-valued functions of t . The derivative of the function is 

defined as   ( ) or 
 

  
 ( ) or   ( )    ( )     ( ) 

 

Example.    

For a function w(t) = u(t) + iv(t), show that  
 

  
, ( )-    ( )  ( ) 

Solution.    

Consider , ( )-  , ( )    ( )-             
 

  
, ( )-  ,     -    ,  -              ,       -  

 

  
, ( )-   (    )(      )    ( )  ( )  

 

Example.   For           , show that  
 

  
        

    

Solution.    

Consider       (      )                                   
 

  
     ,          -

   ,          -
   

 

  
     (      )( 

                     )   
 

  
     (      ) 
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Example:   Suppose that w(t) is continuous on an interval       ; that  

is, its component functions u(t) and v(t) are continuous there. Even if 

  ( ) exists when a < t < b, the mean value theorem for derivatives no 

longer applies. To be precise, it is not necessarily true that there is a 

number „c’ in the interval a < t < b such that     ( )  
 ( )  ( )

   
 . 

Verify!!!!!!!! 

Solution.    

To see this, consider the function w(t) = eit
 on the interval 0 ≤ t ≤ 2π.  

When that function is used, |  (t)|= |ieit
 |= 1;  

and this means that the derivative   ( ) is  never zero,  

while  w(2π) − w(0) = 0. 

Then  
 ( )  ( )

   
 

 (  )  ( )

    
 

 

  
    

So there is no number „c‟ such that given expression holds.  

 

Exercise: (visit @ Youtube “learning with Usman Hamid”) 

Use rules in calculus to establish the following rules when w(t) = u(t) + iv(t) 

is a complex-valued function of a real variable t and   ( ) exists: 

a) 
 

  
,   ( )-      ( )  For           a complex constant. 

b) 
 

  
, (  )-     (  )  where   (  ) denotes the derivative of 

 (  ) with respect to „t‟ evaluated at      
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DEFINITE INTEGRALS OF FUNCTIONS w(t ) 

When w(t) is a complex-valued function of a real variable t and is written           

w(t) = u(t) + iv(t),  where u and v are real-valued, the definite integral of 

w(t) over an interval        is defined as 

∫ ( )

 

 

   ∫ ( )

 

 

    ∫ ( )

 

 

   

 

Provided the individual integrals on the right exist. 

 

Remarks: 

i.   ∫  ( )
 

 
   ∫   , ( )-

 

 
    and   ∫  ( )

 

 
   ∫   , ( )-

 

 
   

ii. Improper integrals of w(t) over  unbounded  intervals  are  defined  in  a  

similar way. 

iii. The existence of the integrals of u and v in definition is ensured if 

those functions  are  piecewise  continuous  on  the interval      
            Such a function is continuous everywhere in the stated interval except          

            possibly for a finite number of points where, although discontinuous. 

iv. The fundamental theorem of calculus, involving antiderivatives, can, 

moreover, be extended so as to apply to integrals To  be specific, 

suppose that   the functions   ( )   ( )    ( ) and                

  ( )      ( )       ( ) are continuous on the interval a ≤ t ≤ b. If 

  ( )   ( ) when a ≤ t ≤ b, then    ( )   ( ) and  

   ( )   ( ).   Hence, in view of definition 

∫  ( )
 

 
   , ( )- 

   , ( )- 
  , ( )    ( )-  , ( )    ( )-  

 

             Then ∫  ( )
 

 
    ( )   ( )  , ( )- 

 

 
v. We know that the mean value theorem for derivatives in calculus does 

not carry over to complex-valued functions w(t). similarly, the mean 

value theorem for integrals does not carry over either. Thus special care 

must continue to be used in applying rules from calculus. 

vi. Definite integrals of a real variable does not extend straight way to the 

domain of complex variable. Whereas in case of complex variables the 

path of definite integral may be along any curve joining the points. 

 

 

 

 

 

 



83 

 

                                                 

Example: Evaluate  ∫    
 

 ⁄

 
   

Solution: 

∫    
 

 ⁄

 
   ∫ (          )

 
 ⁄

 
    

∫    
 

 ⁄

 
  ∫     

 
 ⁄

 
    ∫     

 
 ⁄

 
   |    | 

 

   |    | 

 

   

∫    
 

 ⁄

 
  

 

√ 
  . 

 

√ 
  /  

 

Another method: 

∫    
 

 ⁄

 
   |

   

 
|
 

 

 
 

 
 
 
 

 
 

  

 
 

 

 
.   

 

 
     

 

 
/  

 

 
  

∫    
 

 ⁄

 
   

 

 
.

 

√ 
 

 

√ 
  /  

 

√ 
 

 

 
.

 

√ 
  /  

∫    
 

 ⁄

 
  

 

√ 
  . 

 

√ 
  /     

 

 
    

 

Example:    

Suppose that w(t) is continuous on an interval       ; that  is, then 

show that, it is not necessarily true that there is a number „c’ in the interval 

a < t < b such that   ∫  ( )
 

 
    ( )(   ) .  

Solution.    

To see this, consider the function w(t) = e
it
 on the interval 0 ≤ t ≤ 2π. With 

         

Then    ∫  ( )
 

 
   ∫      

 
   |

   

 
|
 

  

    

But for any number „c‟ such that 0 < c < 2π 

| ( )(   )|  |   |    

Thus                

Hence the result. 
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Exercise 32:   (visit @ Youtube “learning with Usman Hamid”) 

1. Evaluate the following integrals; 

a) ∫ (    ) 
 

 
   

b) ∫ .
 

 
  /

  

 
   

c) ∫     
 

 ⁄

 
   

d) ∫      

 
        (     ) 

2. Show that if „m‟ and „n‟ are integers then 

 ∫            

 
   2

                   
                    

 

 

3. If we have ∫  (   )  

 
   ∫       

 

 
    ∫       

 

 
   then 

Evaluate the two integrals on the right here by evaluating the single 

integral on the  left and then using the real and imaginary parts of the 

value found. 
 

4. Let w(t) = u(t) + iv(t) denote a continuous complex-valued function 
defined on an interval −a ≤ t ≤ a. 

a. Suppose that  w(t) is  even;  that  is,  (  )   ( ) for each point 

t in the given interval. Show that  

∫ ( )

 

  

    ∫ ( )

 

 

  

b. Show that if w(t) is an odd function, that  is                    

 (  )    ( )for each point t in the given interval, then 

∫ ( )

 

  

     

Suggestion: In each part of this exercise, use the corresponding property of                    

integrals of real-valued functions of t , which is graphically evident.
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CONTOURS 

Integrals of  complex-valued functions of  a complex  variable are defined on 

curves  in the complex plane, rather than on just intervals of the real line. 

Classes of curves that are adequate for the study of such integrals are 

introduced in this section. 

 

SUB DIVISION OF THE INTERVAL [a,b] 

Suppose [a,b] be a closed interval and       and divide [a,b] into                        

n – subintervals as ,       - ,     - …………….  ,         -  where 

            ……..         are intermediate points between     and      

such that             ……..           then the set                       

  *                  + is called the subdivision of the interval [a,b] 

 

NORM OF SUB DIVISION OF THE INTERVAL [a,b] 

Suppose [a,b] be a closed interval and       and divide [a,b] into                        

n – subintervals as ,       - ,     - …………….  ,         -  where 

         ……..         are intermediate points between     and      then 

the greatest of the numbers             ………         is called the 

norm of the subdivision „S‟ and is usually denoted by | |    ‖ ‖and it is the 

maximum length of the subintervals of an interval [a,b] 

 

LOCUS OF A POINT 

It is a path traced by a point moving under certain given conditions. 

 

ARC / CURVE 

A set of points z = (x, y) in the complex plane is said to be an arc/ curve if 

x = x(t), y = y(t) (a ≤ t ≤ b), 

where x(t) and y(t) are continuous functions of the real parameter t . It is the 

locus of the point whose coordinates can be expressed in the form of a single 

parameter. 

For example: 

i.                          defines a circle. 

ii.                 
  

   
  

     defines an ellipse. 

Keep in mind: arc and curve are different but we use here in same manner. As 

curvature of arc remains fixed while curvature of curve vary with its length. 

This definition establishes a continuous mapping of the interval                        

a ≤ t ≤ b into the xy, or z, plane; and the image points are ordered according to 

increasing values of t . It is convenient to describe the points of C by means 

of the equation            z = z(t) (a ≤ t ≤ b), where  z(t) = x(t) + iy(t). 
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CLOSED ARC / CLOSED CURVE 

A curve traced by a function z = z (t) such that the initial point and the terminal 

point are the same then the curve is called a closed curve. e.g. circle or ellipse. 

 

SIMPLE ARC / SIMPLE CURVE 
The arc C is a simple arc, if it does not cross itself ; that is, C  is simple  if 
 (  )   (  ) when t1  t2 
 
JORDAN ARC / JORDAN CURVE 
Named for C. Jordan (1838–1922), pronounced   jor-don 

A curve which is simple as well as closed is called Jordan curve. 
Or When the arc C  is simple  except for the fact that  ( )      ( ), we  say  
that  C  is  a  simple closed curve,  or  a  Jordan  curve. Such a curve is 
positively oriented when it is in the counterclockwise direction. 

 

The geometric nature of a particular arc often suggests different 

notation for  the parameter t in equation    z = z(t) (a ≤ t ≤ b).  

This is, in fact, the case in the following examples. 

 

Example:  The polygonal line defined by means of the equation  

  2
                  
                  

 

and consisting  of a line segment from 0 to 1 + i  followed by one from 1 + i  to        

2 + i (Fig.) is a simple arc. 

 

 

 

 

 

 

 

 

Example: The unit circle     z = eiθ
 (0 ≤ θ ≤ 2π)   about the origin is a simple 

closed curve, oriented in the counterclockwise direction. So is the circle              

z = z0 + Re
iθ

  (0 ≤ θ ≤ 2π), centered at the point z0 and with radius R . 

 

 The same set of points can make up different arcs.                                

 

Example: The arc      z = e−iθ
 (0 ≤ θ ≤ 2π)  is not the same as the arc described 

by equation z = eiθ
 (0 ≤ θ ≤ 2π)  . The set of points is the same,  but now the 

circle is traversed in the clockwise direction.

y 

1 
1 + i 2 + i 

O 1 2 x 
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Example: The points on the arc      z = ei2θ
 (0 ≤ θ ≤ 2π)    are the same as those 

making up the arcs     z = eiθ
 (0 ≤ θ ≤ 2π)   and z = e−iθ

   (0 ≤ θ ≤ 2π). The arc 

here differs, however, from each of those arcs since the circle is traversed twice 

in the counterclockwise direction. 

 

Remark: The parametric representation used for any given arc C is, of course, 

not unique. It is, in fact, possible to change the interval over which the 

parameter ranges to any other interval. 

For an arc C representing by    ( ) if we have    ( )      ( )       ( ) 

Then arc is then called a differentiable arc, and the real-valued function 

|  ( ) |  √ |  ( )|    |  ( )|   is integrable over the interval(a ≤ t ≤ b).  

 

SMOOTH CURVE 

If     ( ) be a complex valued function and a curve is traced in the 

interval   ,   -, Further if   ( ) exists and   ( )    

also continuous on the closed interval then we say that    ( ) is 

forming a smooth curve or regular curve. 

 

PIECEWISE SMOOTH (ARC) CURVE / CONTOUR 

A contour, or piecewise smooth arc, is an arc consisting of a finite number of 

smooth arcs joined end to end.  

Hence if equation z = z(t) (a ≤ t ≤ b) represents a contour, z(t) is 

continuous, whereas its derivative   ( ) is piecewise continuous. 

For example, The polygonal line defined by means of the equation  

  2
                  
                  

 

and consisting  of a line segment from 0 to 1 + i  followed by one from 1 + i  to        

2 + i (Fig.) is a is contour. 

 

 

 

 

 

 

 

INVERSE OF THE CURVE 

If the curve C is traced by    ( ) in the interval I = (a,b) then the inverse of 

C is denoted by  ̅ which is traced by    ( ) such that   ( )  (     ). 

Both contours C and  ̅ are the inverse of each other but represents the same 

curves traced in opposite direction

 

 

y 

1 
1 + i 2 + i 

O 1 2 x 



88 

 

                                                 

Remark: 

The length of a contour or a simple closed contour is the sum of the   lengths 

of the smooth arcs that make up the contour. 

The points on any simple closed curve or simple closed contour C are 

boundary points of two distinct domains,  one of which is the interior of C  and 

is bounded. The other, which is the exterior of C, is unbounded. It will be 

convenient to accept this statement, known as the Jordan curve theorem, as 

geometrically evident; the proof is not easy. 

 

CONTOUR INTEGRALS 

We turn now to integrals of complex-valued functions f of the complex 

variable z. Such an integral is defined in terms of the values f (z) along a 

given contour C, extending from a point z = z1 to a point z = z2 in the 

complex plane. It is, therefore, a line integral ; and its value depends, in 

general, on the contour C as well as on the function f .  
 
Suppose that the equation       z = z(t) (a ≤ t ≤ b) represents a 

contour C, extending from a point z1 = z(a) to a point z2 = z(b). We assume 
that f [z(t)] is piecewise continuous on the interval a ≤ t ≤ b and refer to the 
function f (z) as being piecewise continuous on C. We then define the line 
integral, or contour integral, of f along C in terms of the parameter t 

∫
 
 ( )   ∫ , ( )-   ( )

 

 

   

Note that since C is a contour,   ( ) is also piecewise continuous on                     

a ≤ t ≤ b; Definite integrals in calculus can be interpreted as areas, and they 

have other interpretations as well. Except in special cases, no corresponding 

helpful interpretation, geometric or physical, is available for integrals in the 

complex plane. 

 

If C has the representation z = z(t) (a ≤ t ≤ b) then representation for the –   

is     (  )     (      ) given as follow

 

 

 

 

 

 

 

 

Also if    is the contour from    to    and    is the contour from    to    

then the resulting contour will called a Sum and can be written as         
 

y 

C 
z2 

– C 

z1 

O x 
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PROPERTIES: 

In stating properties of contour integrals we assume that all functions  ( ) and 

 ( ) are piecewise continuous on any contour used. 

i. ∫
 
   ( )     ∫ 

 ( )   

ii. ∫
 
, ( )   ( )-   ∫

 
 ( )   ∫

 
 ( )   

iii. ∫   ( )   ∫  , (  )-
 

  
  (  )

  

  
    ∫  , (  )-   (  )

  

  
   

iv. ∫
  

 ( )    ∫  , ( )-   ( )
 

 
     for      

v. ∫
  

 ( )    ∫
 
 ( )   

vi. ∫
 
 ( )   ∫

  
 ( )   ∫

  
 ( )    for         

vii. ∫
 
 ( )   ∫

  
 ( )   ∫

  
 ( )   ………….. ∫

  
 ( )   

 

INTEGRATION CAN BE REGARDED AS SUMMATION: 

Let  ( ) be a complex valued function in the interval I = [a,b] then 

∫  ( )  
 

 
 ∫  ( )  

  

    
 ∫  ( )  

  

  
 …………. ∫  ( )  

    

    
 

And        ∑  (  )
 
       ∫

 
 ( )   

Where             and      (          ) 
 

REDUCTION OF COMPLEX INTEGRAL INTO REAL INTEGRAL: 

Let  ( ) be a complex valued function i.e.  ( )   (   )    (   ) and 

       also            then 

∫
 
 ( )   ∫

 
(    )(     )  

∫
 
 ( )   ∫

 
(       )   ∫

 
(       )  after solving 

 

 

Property: Let the function  ( ) is piecewise continuous on any curve C then  

∫
 ̅
 ( )    ∫

 
 ( )   where  ̅ denotes the curve C traversed in the negative 

direction. 

Proof:  

Since we know that ∫
 ̅
 ( )         ∑  (      )

 
   (           ) 

∫
 ̅
 ( )         ∑  (  )

 
   (       )   putting        

∫
 ̅
 ( )          ∑  (  )

 
   (       )   ∫

 
 ( )    

Thus ∫
 ̅
 ( )    ∫

 
 ( )   
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LINEARITY PROPERTY:  

Let the functions  ( ) and  ( ) are piecewise continuous on any contour then 

∫
 
,  ( )    ( )-    ∫

 
 ( )    ∫

 
 ( )   

Proof:  

      ∫
 
,  ( )    ( )-         ∑ ,  ( )    ( )- 

        

        ∑  ( ) 
              ∑  ( ) 

        

  ∫
 
 ( )    ∫

 
 ( )          

Thus   ∫
 
,  ( )    ( )-    ∫

 
 ( )    ∫

 
 ( )   

 

SOME EXAMPLES 

The purpose of this and the next section is to provide examples of the 

definition of contour integrals and to illustrate various properties that were 

mentioned. 

 

Example:  

Let C be any piecewise smooth curve joining two points    and    then prove 

that 

∫
 
     

 

   
,  

      
   -  and       where „n‟ is an integer and C does 

not go through the point     if „n‟ is negative 

 

Solution: Suppose C (curve from    to   ) has been traced by z = z(t) and is a 

piecewise function. So        ( ) then 

∫
 
     ∫ , ( )- 

  

  
  ( )   |

, ( )-   

   
|
  

  
 

 

   
,  

      
   -  for      

This equation does not depend upon the particular curve C joining points from 

   to   . 

If „z‟ is closed curve then       
 
     

 

   
,  

      
   -     

 
        

If n = 0 then  ∫
 
     ∫   

  

  
 | |  
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Example: Evaluate ∫     
   

 
 where C consists of OA, AB, OB, OAB  

and OABO. 

     1+i =B(1,1)   

   

 

 

 

                                         

O(0,0)   A(1,0)   

 

Solution: Let                             then  

∫     
   

 
 ∫ (    ) (       )

   

 
 ∫ (          )(       )

   

 
  

integral along   ⃗⃗⃗⃗⃗⃗ :  

for this put                     where       

∫
  
     ∫   

 

 
   |

  

 
|
 

 

 
 

 
  

integral along   ⃗⃗⃗⃗⃗⃗ :  

for this put                     where       

∫
  
     ∫ (        )(    )

 

 
  ∫ (        )  

 

 
 

 

 
,     -  

 

integral along   ⃗⃗⃗⃗⃗⃗ :  

for this put                      where       

∫
  
     ∫ (          )(       )

 

 
 

 

 
,    -  

integral along    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗:  

∫
  
     ∫

  
     ∫

  
     

 

 
 

 

 
,     -   

 

 
 

 

 
   

integral along     ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗:  

∫     
   

 
 ∫

  
     ∫

  
      

 

 
 

 

 
  

 

 
 

 

 
     

Since the contour is closed therefore its integral is zero. 
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Example:  

Prove that the value of the integral ∫
 

 

 
     when C is a semicircular arc  

| |    from    to   is     or    according as the arc lies above or below the 

real axis. 

Solution:  

Since we know that for a unit circle                 

Case – I : Consider the circle above real axis from    to   

   ∫
 

 
  

 

 
   ∫          

 

 
   ∫   

 

 
      

Case – II : Consider the circle below real axis from    to   

   ∫
 

 
  

  

 
  ∫          

  

 
  ∫   

  

 
     

For the completer circle we may write as follows; 

 
 

 

 
             (   )  (  )       

 

 

Example:  

Evaluate ∫
 
(    )

    where C is a circle centered at    having radius „r‟ 

also check the result for        as well as      where „n‟ is an integer. 

Solution:  

In case of circle |    |                        ;        

∫
 
(    )

    ∫ (    )
 
(       )

  

 
 

    

   
|  (   ) |

 

  
  

When       : 

∫ (    )
    

  

 
 ∫ (    )

  
(       )

  

 
      

When     : 

∫
 
(    )

    ∫ (    )
   

  

 
 

    

   
|  (   ) |

 

  
    

Hence we can conclude that 

∫
 
(    )

    {

    

   
|  (   ) |
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Exercise 33: (visit @ Youtube “learning with Usman Hamid”) 

i. Prove that ∫
  
 ( )   ∫

  
 ( )   

ii. Evaluate ∫     
   

 
 where C consists of OA, AB and OB. 

iii. Evaluate ∫ (    )  
   

   
 where Curve is from (    ) to (   ) 

iv. Evaluate ∫
 

  

    
 where C is a circle |   |    

v. Evaluate ∫      
 

  
 where Curve is from (    ) to (   ) 

vi. Evaluate ∫
 

(      )

 
   where  C is the lower half of the circle | |     

from      to     

vii. Find the value of the integral ∫
 
| |     when C is  

a) Line from      to     

b) The semi-circle | |    from      to     

c) The circle | |    with arbitrary initial and final points. 

viii. Find the value of the integral ∫
 

 

 
     when C is a semicircular arc  

| |    from   to    according as the arc lies above or below the real 

axis. 

ix. Find the value of the integral ∫
 

  

 
 when C is a square described in the 

positive sense with sides parallel to the axis and of length 2a and 

having its center at the origin. 

x. Evaluate ∫
 
| |     where C is a circle |   |    described in the 

positive sense. 

xi. Find the value of the integral ∫ (       )  
   

 
 

i. along the straight line z = 0 to z = 1+i 

ii. along the imaginary axis from z = 0 to z = i  

iii. along a line parallel to the real axis from z = i to z = 1+i 

xii. Find all possible values of ∫
 

  

    
 is a smooth curve with initial point 

„0‟ and final point is „1‟. What restrictions must be imposed on? 

xiii. Evaluate ∫ (   )  
   

 
 on the curve      

xiv. Find the value of the integral ∫
 
 ( )   where C consists of OABO 

with  ( )           

 

 

 

 

 

 

 

y 

i 
A 

C1 

B 
1 + i 

C2 

O x 
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xv. Find the value of the integral ∫
 
 ̅   when C is the right hand half  

           . 
 

 
   

 

 
/ of the circle | |    from       to 

     
 

 

 

 

 

 

 

xvi. Find the value of the integral ∫
 

 

    
     where C is a circle | |    

xvii. Find ∫
 
  ( )    where C denoted the unit circle described in the 

positive sense from     to     

xviii. Evaluate ∫
 
 ( )   with  ( )  

   

 
 with the curve 

(a) the semicircle z = 2 e
iθ

 (0 ≤ θ ≤ π); 

(b) the semicircle z = 2 e
iθ

 (π ≤ θ ≤ 2π); 

(c) the circle z = 2 e
iθ

 (0 ≤ θ ≤ 2π). 

xix. Evaluate ∫
 
 ( )   with  ( )      with C is the arc from 

z = 0 to z = 2 consisting of 

a) the semicircle z = 1 + eiθ
 (π ≤ θ ≤ 2π); 

b) the segment z = x (0 ≤ x ≤ 2) of the real axis. 

xx. Evaluate ∫
 
 ( )   with f(z) = π exp(π ) and C is the boundary of 

the square with vertices at the points 0, 1, 1 + i, and i, the orientation 

of C being in the counterclockwise direction. 

xxi. Evaluate ∫
 
 ( )   where  f(z) is defined by means of the 

equations  ( )  {
              
             

 and C is the arc from z = −1 − i 

to z = 1 + i along the curve y = x3
. 

xxii. Let    denote the circle centered at    with radius R and use the 

parameterization                     to show that 

  ∫
  
(     )

      2
                              
                                         

 

xxiii. Evaluate ∫
 
 ( )    with f(z)=1 and C is an arbitrary contour 

from any fixed point z1 to any fixed point z2 in the z plane. 

xxiv. Evaluate ∫
 
 ̅   where          and C is from      to        

along 

a) Line from     to      
b) Line from      to        

y 

2i 
C 

O x 

–2i 
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UPPER BOUNDS FOR MODULI OF CONTOUR INTEGRALS 

We turn now to an inequality involving contour integrals that is extremely 

important in various applications. 

 

Lemma: If w(t) is a piecewise continuous complex-valued function  defined  

on an interval a ≤ t ≤ b, then|∫  ( )  
 

 
|  ∫ | ( )|  

 

 
 

Proof:  Consider  ∫  ( )  
 

 
    

    |∫  ( )  
 

 
|     

Now from ∫  ( )  
 

 
    

       ∫       ( )  
 

 
 

Now the left-hand side of this equation is a real number, and so the right-hand 

side    is too. Thus, using the fact that the real part of a real number is the 

number itself, we find that 

     ∫       ( )  
 

 
    ∫   [      ( )]  

 

 
  

But   [      ( )]  |      ( )|  |     || ( )|  | ( )| 

    ∫   [      ( )]  
 

 
 ∫ | ( )|  

 

 
  

Hence |∫  ( )  
 

 
|  ∫ | ( )|  

 

 
 

 

A Bounding Theorem: (ML inequality) Let C denote a contour of length 

L, and suppose that a function f (z) is piecewise continuous on C. If M is a 

nonnegative constant such that |f (z)| ≤ M  for all points z on C at 

which f (z) is defined, then   |∫
 
 ( )  |    . 

Proof:  

we know that ∫
 
 ( )         ∑  (  )

 
       ∑  (  )

 
       

 |∫
 
 ( )  |  |∑  (  )

 
      |  ∑ | (  )||   |

 
     

 |∫
 
 ( )  |  | (  )| ∑ |   |

 
     ∫

 
       

 |∫
 
 ( )  |       as required. 

 

 

Remarks: 

i. |  |   | | 
ii. |  |     

iii.   ∫
 
   ∫

 
|  | 

iv. |∫
 
 ( )  |  ∫

 
| ( )||  | 

v.   | ( )| 
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Example :  Let C  be the arc of the circle  | |    from z=2 to z=2i    that 

lies in the first quadrant (Fig). Then show that |∫
 

   

    
  |  

  

  
 

 

 

 

 

 

 

Solution: This is done by noting first that if z is a point on C,  then 

|   |  |  (  )|  | |  |  |         

And |    |  ||  |   |     
 

|    |
    

Thus when C lies on C,    | ( )|  |
   

    
|  

|   |

|    |
 

 

  
 

Now since    ( )       ( )   also        | |    

Then        |  |  |       |      

   ∫
 
   ∫

 
|  |   ∫   

 

 
 

    and using    
 

  
 

Then according to ML inequality |∫
 
 ( )  |     

 |∫
 

   

    
  |  

  

  
  

 

Example : Prove that |∫
 

    
   

 
|    

Solution: consider a smooth curve AB from A(0,1) and B(2,1) in which y = 1, 

x = t and       

Now  |  |        |  |      

For y = 1, x = t and       |  |      
 

|  |
 

 

|  |
   

Hence  

Thus when C lies on C,    | ( )|  |
 

  |    

Now For y = 1, x = t and       

   ∫
 
   ∫

 
|  |  ∫

 
|     |  ∫

 
|    |  ∫

 
   ∫   

 

 
    

Then according to ML inequality |∫
 
 ( )  |     

 |∫
 

    
   

 
|     

 

 

 

 

 

 

 

y 

 
2i 

C 

O 2 x 
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Example :Evaluate |∫
 
 ̅  | where C is a semi unit circle. 

Solution: for semi unit circle r =1               and       

Now  | ̅|  |    ̅̅ ̅̅ ̅̅ ̅̅ |  |     |  |  |     

Hence    | ( )|  | ̅|    

Now For                                and       

   ∫
 
   ∫

 
|  |  ∫

 
|      |  ∫

 
   ∫   

 

 
    

Then according to ML inequality |∫
 
 ( )  |     

 |∫
 
 ̅  |     

 

Exercises 34: (visit @ Youtube “learning with Usman Hamid”) 

1. Find an upper bound for |
  

       
|if | |    

2. Find an upper bound for |
  

       
|if | |    

3. Find an upper bound for the modulus of          if | |    

4. Find an upper bound for the absolute value of   
    

       
   where C is 

circle  |   |    

5. Without evaluating the integral for arc of the circle  | |    from z=2 to 

z=2i , show that 

i. |∫
 

   

    
  |  

  

 
 ii. |∫

 

 

    
  |  

 

 
 

6. Prove that |∫
 
(      )  |    where C is a semi-circle      as 

ends of the diameter. 

7. Without evaluating the integral for C as the line segment from     to 

z=1 , show that  |∫
 

 

    |   √  

8. Show that if C  is the boundary of the triangle with vertices at the points 0, 

3i, and     oriented in the counterclockwise direction (see Fig), then 

|∫
 
(    ̅)  |     

 

 

 

 

 

 

 

9.  Find an upper bound for  
 

  

   
   where C is the circle  | |    

 

 

 

 

 

y 

3i 

–4  O x 

C 
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Example: Let CR is the semicircular path   z = Re
iθ

 (0 ≤ θ ≤ π), 

From     to       where     then show that 

      ∫
  

   

(    )(    )
    

 

 

 

 

               

 

Solution: We observe that if z is a point on CR  then 

|   |  | |  | |  | |         

And |    |  ||  |   |       
 

|    |
      

Also |    |  ||  |   |       
 

|    |
      

Thus when „z‟ lies on CR, 

  | ( )|  |
   

(    )(    )
|  

|   |

|    ||    |
 

   

(    )(    )
  

   ∫
 
   ∫

 
|  |   ∫   

 

 
      

and using       
   

(    )(    )
 

Then according to ML inequality |∫
 
 ( )  |     

 |∫
  

   

(    )(    )
  |  

   

(    )(    )
     

 |∫
  

   

(    )(    )
  |  

 (    )

(    )(    )

 
  ⁄

 
  ⁄

 
 .

 

   
 

  /

.  
 

  /.  
 

  /
  

    
   

|∫
  

(   )  

(    )(    )
|  |    

   
∫
  

   

(    )(    )
  |     

   

 .
 

   
 

  /

.  
 

  /.  
 

  /
    

       ∫
  

   

(    )(    )
     

 

 

 

 

 

 

 

 

 

 

 

 

 

y 

CR 

–R O R x 
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Exercises 35: (visit @ Youtube “learning with Usman Hamid”) 

i. Let CR is the upper half of the circle   | |      (   ) taken in 

counterclockwise direction then show that 

|∫
  

     

        
  |  

  (     )

(    )(    )
  

Also show that       ∫
  

     

        
     

 

ii.  Let CR is the circle   | |      (   ) taken in counterclockwise 

direction then show that 

|∫
  

    

    |    .
     

 
/  

Also show that       ∫
  

    

       

 

iii.  Let    is the circle   | |      (     ) taken in counterclockwise 

direction and supposed that  ( ) is analytic in the disk | |    then show 

that 

|∫
  

      ( )  |     √   

Also show that        ∫
  

      ( )    



100 

 

                                                 

ANTIDERIVATIVES 

Our next theorem is useful in determining when integration is independent of 

path and, moreover, when an integral around a closed path has value zero. 

The theorem contains an extension of the fundamental theorem of calculus 

that simplifies the evaluation of many contour integrals. The extension 

involves the concept on an antiderivative of a continuous function f (z) on 

a domain D, or a function F (z) such that   ( )   ( ) for all z in D.  

Note that an antiderivative is, of necessity, an analytic function. 

 

INDEFINITE INTEGRAL OR ANTIDERIVATIVE OR PRIMITIVE 

Let f (z) be a single valued analytic function on a domain D, then a 

function F (z) is said to be an indefinite integral or antiderivative or 

primitive of f (z) if F (z) is analytic on D and   ( )   ( ) for all z in D 

Note: if   ( )   ( ) then  ( )  ∫ ( )     

 

FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS FOR 

COMPLEX NUMBERS 

Suppose that a function f (z) is an analytic function in a simply connected 

domain D, if         then  

∫  ( )  
  

  
 | ( )|  

    (  )   (  ) 

where F (z) is the antiderivative of f (z) 

Proof: 

Let  ( )  ∫  ( )  
 

  
  …………….(i) 

  (    )  ∫  ( )  
 

  
   …………….(ii) 

And   (    )  ∫  ( )  
  

  
 …………….(iii) 

Subtracting (ii) from (iii) 

  (  )   (  )  ∫  ( )  
  

  
 …………….(iv) 

Now by definition of antiderivative  ( )   ( )    

  (  )   (  )     and   (  )   (  )    

  (  )   (  )   (  )     (  )     (  )   (  )  
Hence  

(  )  ∫  ( )  
  

  
 | ( )|  

    (  )   (  )  
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Example:  The continuous function  ( )      evidently has an antiderivative 

 ( )  
   

 
 throughout the finite plane.  

Hence 

∫      
   

 
 |

   

 
|
 

   

 
 

 
(         )  

 

 
(   )  

 

 
(   )  

 

Example:  

Show that for the function  ( )  
 

   which is continuous everywhere except at 

the origin ∫
 

 

  
     where C is a unit circle | |    

OR show that ∫
 

 

  
     where C is a unit circle | |    

Solution: 

Given that curve is unit circle i.e. | |    

Then                 also        

Then ∫
 

 

  
   ∫

 

  
    

  ∫
      

    
  
   ∫         

   | 
   

  
|
 

  

 

∫
 

 

  
    | 

   

  
|
 

  

  |    |
 

  
  (       )                 

Hence   ∫
 

 

  
     

 

Example: If  ( )  
 

 
 then ∫

 
 ( )       for | |    

Solution: 

Given that curve is unit circle i.e. | |    

Then                 also        

Then ∫
 

 

 
   ∫

 

 
    

  ∫
      

   
  
   ∫     

   | | 
   

Hence   ∫
 
 ( )       

 

Exercise 36: (visit @ Youtube “learning with Usman Hamid”) 

1. Use antiderivatives to show that for every contour C extending from a 

point    to a point    is should be  ∫
 
      

   
.  

      
   / 

2. By finding antiderivative evaluate each of the following; 

i. ∫     
   

 
 

ii. ∫    .
 

 
/   

    

 
 

iii. ∫ (   )   
 

 
 

3. Show that ∫  
(    )        where    is any closed contour which 

does not pass through the point   . 

4. Evaluate the integral ∫ 
 

(   ) 
   where C is closed contour enclosing 

the point z = a interpret the result when n = 1,2,3,……
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GREEN‟s THEOREM (weaker version of Cauchy Fundamental theorem) 

If C is a curve enclosing the area S then 

∫
 
         

 
.
  

  
 

  

  
/       

where    (   )        (   ) are functions of „x‟ and „y‟ and have 

continuous first order partial derivatives. 

Proof: 
Consider a closed curve enclosed by the surface S. 

 

          c  C 

             A         B 

          d 

D 

         a    b 

                           
 

Consider 

 
 

  

  
     ∫ .∫

  

  
  

  

  
/

 

 
   ∫ | (   )|  

   

 
    

 
 

  

  
     ∫ , (    )   (    )-

 

 
    

 
 

  

  
     ∫  (    )

 

 
   ∫  (    )

 

 
    

 
 

  

  
     ∫

   
 (   )   ∫

   
 (   )    

 
 

  

  
      ∫

   
 (   )   ∫

   
 (   )    ∫

     
  (   )    

∫
 
  (   )     

 

  

  
        ………..(A) 

Now consider 

 
 

  

  
     ∫ .∫

  

  
  

  

  
/

 

 
   ∫ | (   )|  

   

 
    

 
 

  

  
     ∫ , (    )   (    )-

 

 
    

 
 

  

  
     ∫  (    )

 

 
   ∫  (    )

 

 
    

 
 

  

  
     ∫

   
 (   )   ∫

   
 (   )    

 
 

  

  
     ∫

   
 (   )   ∫

   
 (   )    ∫

     
 (   )    

∫
 
  (   )    

 

  

  
        ………..(B) 

Adding (A) and (B) 

∫
 
  (   )   ∫

 
  (   )     

 

  

  
      

 

  

  
      

Hence ∫
 
         

 
.
  

  
 

  

  
/      
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SIMPLY CONNECTED DOMAINS/ REGIONS 

A simply connected domain D is a domain such that every simple closed 

contour within it encloses only points of D. The set of points interior to a 

simple closed contour is an example. The annular domain between two 

concentric circles is, however, not simply  connected. 

OR A region in which every closed curve can be shrunk to a point without 

passing out of the region. 

 

CAUCHY FUNDAMENTAL THEOREM 

Let D be a simply connected region and  ( ) be a single valued continuously 

differentiable function on D then ∫
 
 ( )     where C is any closed contour 

contained in D. 

OR . If a function f is analytic and continuous at all points interior to and 

on a simple closed contour C, then ∫
 
 ( )     

 

Proof: Let  ∫
 
 ( )   ∫

 
(    )(      ) 

∫
 
 ( )   ∫

 
         ∫

 
        ……………(i) 

By using Green‟s theorem 

∫
 
         

 
(      )     ……………(ii) 

Also ∫
 
         

 
(     )     ……………(iii) 

Using (ii) and (iii) in (i) 

∫
 
 ( )    

 
(      )        

 
(     )      

CR equations hold for given function being Analytic then              

∫
 
 ( )    

 
(     )        

 
(     )      

∫
 
 ( )       as required. 

 

REMARK: 

 The conditions stated in CFT are only sufficient but not necessary. 

 CFT is more useful in Applied Mathematics because the continuity of 

four partial derivatives             is generally assumed on physical 

ground. 

 Goursat (          (    –    )                     ) 
 was the first to prove that the condition of continuity on    can be 

omitted. Its removal is important and will allow us to show, for 

example, that the derivative    of an analytic function f is analytic 

without having to assume the continuity of   , which follows as a 

consequence. Statement is as follows; 

Cauchy Goursat Theorem. If a function f is analytic at all points interior 

to and on a simple closed contour C, then ∫
 
 ( )    . 
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Example:    If C denotes any closed contour lying in the open 

disk   | |      then evaluate ∫
 

    

(    ) 
   

Solution: Since the disk is a simply connected domain and the two 

singularities  z = ±3i of the integrand are exterior to the disk. So given function 

is non – analytic on these. Then by Cauchy Fundamental Theorem 

∫
 

    

(    ) 
      

 

 

 

 

 

 

 

 

 
 

 

 

Example:   If C is a unit circle then evaluate ∫
 

          

(    )(    )
   

Solution: Since the four singularities  z =±2, ±3i of the integrand are exterior 

to the disk. So given function is non – analytic on these. Then by Cauchy 

Fundamental Theorem 

∫
 

          

(    )(    )
      

Example:   If C is a curve such that | |     then evaluate ∫
 

        

(   )(   )
   

Solution: Since the two singularities           of the integrand are exterior 

to the disk. So given function is non – analytic on these. Then by Cauchy 

Fundamental Theorem  ∫
 

        

(   )(   )
      

Exercise 37: (visit @ Youtube “learning with Usman Hamid”) 

1. show that if C is positively oriented simple closed contour, then the 

area of region enclosed by C can be written as 
 

  
∫
 
 ̅   

2. Evaluate  
 

  

  
   where C is the ellipse (   )  

 

 
(   )    

3. Show that ∫
 
 ( )     when the contour C is the unit circle 

| |    in either direction with the following functions; 

i.  ( )  
  

   
 

ii.  ( )       

iii.  ( )  
 

       
 

iv.  ( )        

v.  ( )       

vi.  ( )     (   ) 

y 

C 

O 2 x 
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Corollary: A function f that is analytic throughout a simply connected 

domain D must have an antiderivative everywhere in D. 

 

Corollary: Entire function always possesses antiderivatives. 

 

MULTIPLY CONNECTED DOMAINS 

A domain that is not simply connected is said to be multiply connected.  

OR A domain or region in which every closed curve cannot be shrunk to a 

point without passing out of the region. 

   

CONSEQUENCES OF CAUCY FUNDAMENTAL THEOREM 

 

Corollary: Let C1 and C2 denote positively oriented simple closed contours, 

where C1 is interior to C2 (Fig). If a function f is analytic in the closed region 

consisting of those contours and all points between them, then 

∫
  
 ( )   ∫

  
 ( )    

 

 

 

 

 

 

 

 

 

 

This corollary is known as the principle of deformation of paths since it tells 

us that if C1 is continuously deformed into C2, always passing through points at 

which f is analytic, then the value of the integral of f over C1 never 

changes. 

 

Corollary: Let C1 and C2 denote positively oriented simple closed contours. If 

a function f is analytic in the closed region consisting of those contours and 

all points between them, then ∫  ( )  
 

 
 will be independent of path from all 

these points. 

 

 

 

 

 

 

 

y 

C2 

C1 

O x 
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CAUCHY INTEGRAL FORMULA 

Let  f  be analytic everywhere inside and on a simple closed contour  C, 

taken in the positive sense. If z0 is any point interior to C, then 

 (  )  
 

   
∫
 

 ( )

    
    OR ∫

 

 ( )

    
       (  ) 

Proof: 

 

 

 

 

 

 

Let Cρ denote a positively oriented circle  |    |   , where ρ  is small 

enough that Cρ is interior to C  (see Fig).Since the  quotient  
 ( )

    
 is analytic 

between and on the  contours  Cρ and C but not on    , it follows from the 

principle of deformation of paths that 

∫
 

 ( )

    
   ∫

  

 ( )

    
    

∫
 

 ( )

    
   ∫

  

 ( )  (  )  (  )

    
   ∫

  

 ( )  (  )

    
   ∫

  

 (  )

    
    

∫
 

 ( )

    
   ∫

  

 ( )  (  )

    
    (  )∫  

 

    
    

∫
 

 ( )

    
       (  )         ……….(i) 

Now    ∫
  

 ( )  (  )

    
   |  |  |∫

  

 ( )  (  )

    
  |  ∫

  
|
 ( )  (  )

    
| |  | 

 |  |  | ( )   (  )| |
 

    
| ∫

  
|  |  

 

 
∫    
  

 
      

                 with |    |              

Now    ∫
  

 

    
   ∫

     

      
  

 
     

 ∫
 

 ( )

    
      (  )      

Hence              (  )  
 

   
∫
 

 ( )

    
    OR ∫

 

 ( )

    
       (  ) 

 

This formula tells us that if a function f is to be analytic within and on a 

simple closed contour C, then the values of f interior to C are completely 

determined by the values of f on C. It can be used to evaluate certain 

integrals along simple closed contours. 

 

 

 

 

y 

C C 

 
z0 

O x 
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Remark:   

If in the quotient 
 ( )

 ( )
 the polynomial  ( ) is linear of the form      and the 

contour contains the point      then we shall apply Cauchy Integral Formula 

and if  ( ) is not linear we shall split it into partial fraction to get linear 

factors. 

 

Example: Evaluate the integral ∫
 

    

 (    )
    where C be the positively 

oriented circle |z|= 1 about the origin.

Solution: 

Since for the function  ( )  
    

 (    )
 

    

(    )

 
 

 ( )

 
 point     lies inside the 

circle |z|= 1 and is  Singular points, also  ( ) is analytic inside and on C so by 

using Cauchy Integral Formula 

∫
 

 ( )

    
       (  )  

 ∫
 

    

 (    )
   ∫

 

    

(    )

   
       ( )  

   

 
  

 

Example: Evaluate the integral ∫
 

            

 
    where   | |    

Solution: 

Since for the function  ( )  
            

 
 

 ( )

 
  point     lies inside the 

circle |z|= 1 and is  Singular points so by using Cauchy Integral Formula 

∫
 

 ( )

    
       (  )  

 ∫
 

            

 
       ( )       

 

Example: Evaluate the integral ∫
 

        

 (    )
    where C  is a circle |z|= 2 

Solution: 

Since for the function  ( )  
        

 (    )
 points        lies inside the circle 

|z|= 2 and are  Singularities so by using Cauchy Integral Formula 

∫
 

 ( )

    
       (  )  …………(i) 

Now by using partial fraction 
        

 (    )
 

 

 
 

 

(   )
 

 

(   )
 

 

 
 

 

(   )
 

 

(   )
   after solving 

( )  ∫
 

        

 (    )
   ∫

 

 

 
   ∫

 

 

(   )
   ∫

 

 

(   )
    

 ∫
 

        

 (    )
    ,    ( )-   ,    (  )-   ,    ( )-        
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Exercise 38: (visit @ Youtube “learning with Usman Hamid”) 

1. Evaluate ∫
 

  

     where C is the part of the parabola        from 

 (   ) to  (    ) 

2. Evaluate ∫
 

  

       
 where C is the square having corners (   ), 

(    ), (     ), (    ) 

3. Let C denote the positively oriented boundary of the square whose 

sides lie along the lines x = ± 2 and y = ± 2. Evaluate each of these 

integrals: 

a) ∫
 

   

  .
  

 
/
   

b) ∫
 

    

 (    )
   

c) ∫
 

 

    
   

d) ∫
 

     

  
   

e) ∫
 

   .
 

 
/

(    ) 
             

 

4. Find the value of the integral of g(z) around the  circle  |   |    in 

the positive sense when; 

a)  ( )  
 

    
 

b)  ( )  
 

(    ) 
 

5. Let C be the circle |z|= 3, described in the positive sense. Show that if 

 ( )  ∫
 

       

   
    | |      

then g(2) = 8πi. What is the value of g(z) when |z| > 3?

6. Let C be any simple closed contour, described in the positive sense in 

the z  plane,  and write 

 ( )  ∫
 

     

(   ) 
   

Show that g(z) = 6πiz when z is inside C and that g(z) = 0 when z is outside. 

7. Show that if f is analytic within and on a simple closed contour C 

and z0 is not on C then 

∫
 

  ( )

    
   ∫

 

 ( )

(    ) 
    

 

8. Evaluate ∫
 
          where C is the graph of         

        

9. Evaluate   
 
    where C is the circle defined by                

with        

10. Evaluate  ∫
 
 ̅   where C is given  by            with        

11. Evaluate   
 

 

 
    C is the circle               with         
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AN EXTENSION OF THE CAUCHY INTEGRAL FORMULA 

OR DERIVATIVES OF AN ANALYTIC FUNCTION 

The Cauchy integral formula can be extended so as to provide an integral 

representation for derivatives of f at z0.  

THEOREM:  

Let  f  be an analytic everywhere inside and on a simple closed contour C, 

taken in the positive sense. If    is any point interior to C then  

  (  )  
  

   
∫
 

 ( )

(    )                         

Proof: 

Since  f  is analytic everywhere inside and on a simple closed contour C, 

taken in the positive sense. And     is any point interior to C then by using 

Cauchy Integral Formula 

 (  )  
 

   
∫
 

 ( )

    
    …………….(i) 

 (    )  
 

   
∫
 

 ( )

  (    )
    …………….(ii)         for        on C 

Since we know that    (  )        
 (    )  (  )

 
 

   (  )        
 

 
, (    )   (  )-  

   (  )        
 

 
0

 

   
∫
 

 ( )

  (    )
   

 

   
∫
 

 ( )

    
  1  using (i),(ii) 

   (  )        
 

    
∫
 
 ( )  0

 

  (    )
 

 

    
1  

   (  )        
 

   
∫
 

 ( )  

(    )(      )
  after solving 

   (  )  
 

   
∫
 

 ( )  

(    )(    )
   (  )  

 

   
∫
 

 ( )  

(    ) 
 …………….(iii) 

Let    (    )  
 

   
∫
 

 ( )  

(  (    ))
    …………….(iv) 

Since we know that     (  )        
  (    )   (  )

 
 

    (  )        
 

 
,  (    )    (  )-  

    (  )        
 

 
[

 

   
∫
 

 ( )  

(  (    ))
  

 

   
∫
 

 ( )  

(    ) 
]  using (iii),(iv) 

    (  )        
 

 

 

   
∫
 
 ( )  [

 

(  (    ))
  

 

(    ) 
]  

    (  )        
 

   
[∫

 

(  .   
 

 
/) ( )  

(  (    ))
 
(    ) 

]   after solving 

    (  )  
  

   
0∫

 

(    ) ( )  

(    ) (    ) 
1     (  )  

  

   
∫
 

 ( )

(    )       

Continuing in this manner we can get the required. i.e. 

   (  )  
  

   
∫
 

 ( )

(    )   
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Remark:  

We can compare this result with real variable theory that “ if the derivative of a 

function exists its further derivative may or may not exists” unlike complex 

variables theory that “ if a function is analytic at a point, all its other 

derivatives exist at that point”. 

 

Example:  

Evaluate the integral ∫
 

        

(   ) 
   where C encloses the point z = 1. 

Solution:   Given that  ( )                      

   ( )           ( )        ( )      

Now by using the formula    (  )  
  

   
∫
 

 ( )

(    )   
    

    ( )  
  

   
∫
 

        

(   )         ( )  
 

   
∫
 

        

(   )       

      ( )  ∫
 

        

(   )      ∫
 

        

(   ) 
         

 

Example:  

Evaluate the integral ∫
 

        

(   ) 
   where C encloses the point       . 

Solution: Given that  ( )                       

   ( )               ( )                ( )             

     (  )          (  )  

Now by using the formula    (  )  
  

   
∫
 

 ( )

(    )       

     (  )  
  

   
∫
 

        

(  (  ))
          (  )  

 

   
∫
 

        

(   ) 
    

 
 

 
     (  )  ∫

 

        

(   ) 
   ∫

 

        

(   ) 
   

 

 
 (        (  ))  

 

Exercise 39: (visit @ Youtube “learning with Usman Hamid”)  

1. If C is the positively oriented unit circle |z|= 1 then evaluate the 

integral ∫
 

   

     

2. Let z0 be any point interior to a positively oriented simple closed 

contour C. Then show that  ∫
 

  

    
      also ∫

 

  

(    )      
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SOME CONSEQUENCES OF THE EXTENSION 

We turn now to some important consequences of the extension of the Cauchy 

integral formula in the previous section. 

Theorem (just read): If a function  f is analytic at a given point, then its 

derivatives of all orders are analytic there too. 

Corollary (just read): If a function         is analytic at a given 

point, then its components     have continuous partial derivatives of all 

orders at that point. 

 

The proof of the next theorem,  due  to  E. Morera (1856–1909),  

depends  on the fact that the derivative of an analytic function is itself analytic. 

MORERA’s THEOREM  

(may be regarded as converse of Cauchy Fundamental Theorem)  

Let f be continuous on a domain D. If ∫
 
 ( )     for every closed 

contour C in D, then f is analytic throughout D. 

Proof: 

Let      be a fixed point and z be a variable point in D, also let C be a 

closed curve consisting of     and     then by using consequence of Cauchy 

Fundamental theorem ∫
  
 ( )   ∫

  
 ( )    

Let  ( )  ∫  ( )  
 

    
 ………(i) and  (   )  ∫  ( )  

   

    
 ………(ii) 

  (   )   ( )  ∫  ( )  
   

    
 ∫  ( )  

 

    
  

  (   )   ( )  ∫  ( )  
   

 
 ∫  ( )  

 

 
  

  (   )   ( )  ∫  ( )  
 

 
 ∫  ( )  

   

 
 ∫  ( )  

   

 
  

 
 

 
, (   )   ( )-  

 

 
∫  ( )  
   

 
  

 
 

 
, (   )   ( )-   ( )  

 

 
∫  ( )  
   

 
  ( )  

 
 

 
, (   )   ( )-   ( )  

 

 
∫  ( )  
   

 
 

 ( )

 
   

 
 

 
, (   )   ( )-   ( )  

 

 
∫  ( )  
   

 
 

 

 
∫  ( )  
   

 
    

Where we use the fact   ∫   
   

 
 ; the length of interval 

 
 

 
, (   )   ( )-   ( )  

 

 
0∫  ( )  

   

 
 ∫  ( )  

   

 
1  

 
 

 
, (   )   ( )-   ( )  

 

 
0∫ ( ( )   ( ))  

   

 
1  

 |
 (   )  ( )

 
  ( )|  |

 

 
0∫ ( ( )   ( ))  

   

 
1|  

 |
 (   )  ( )

 
  ( )|  

 

 
∫ | ( )   ( )||  |
   

 
 

 

 
      

 |
 (   )  ( )

 
  ( )|          

 (   )  ( )

 
  ( )  

   ( )   ( )    f is analytic throughout D 
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CAUCHY’s INEQUALITY  

Suppose that a function f is analytic inside and on a positively oriented 

circle C, centered at z0 and with radius R (Fig). If M denotes the maximum 

value of  | f (z)| on  C, then  |  (  )|  
   

   

OR  

Suppose that a function f is analytic on a closed contour   |    |   , 

and  ( ) is bounded i.e.  | ( )|    then  |  (  )|  
   

   

 

 

 

 

 

 

 

 

Proof: if  ( ) is analytic and   |    |    then by using the result  

  (  )  
  

   
∫
 

 ( )

(    )       

|  (  )|  |
  

   
∫
 

 ( )

(    )     |  
  

  | |
∫
 

| ( )||  |

|    |     

Since | |    , | ( )|    and    |    |    also 

∫
 
|  |      (                    )  therefore 

|  (  )|  
  

  

    

     
   

    

Thus |  (  )|  
   

   

Cauchy Inequality is called  an immediate  consequence  of the expression 

  (  )  
  

   
∫
 

 ( )

(    )                       

 

Remark: 

 As              (  )    

 Cauchy‟s inequality can be used to show that no entire function except a 

constant is bounded in the complex plane. 

 

ENTIRE FUNCTION: 

A function which is analytic everywhere in the complex plane is called Entire 

Function, for example: All polynomials and Transcendental Functions are 

entire functions.

y 

C 

R 
z 

z0 

O x 
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LIOUVILLE‟S THEOREM 

If a function f is entire and bounded in the complex plane, then f (z) is 

constant throughout the plane. 

Proof:  

Since  ( ) is analytic everywhere in the complex plane and it is bounded 

therefore by using Cauchy inequality 

|  (  )|  
   

    where    |    |    

Put n = 1 and      then |  ( )|  
 

 
 

If       ( )    means that   ( ) is constant. 

 

REMARK:  

Sometime this question appears in the form  

Prove liouville‟s theorem by using Cauchy integral formula. Also show that 

derivative of the function vanishes identically. 

In this situation, 1
st
 take Cauchy integral formula, take its absolute value and 

proceed. 

 

FUNDAMENTAL THEOREM OF ALGEBRA: 

Any polynomial P (z) = a0 + a1z + a2z
2
 + ··· + anz

n
 (an   0) of degree n (n ≥ 1) 

has at least one zero. 

That is, there exists at least one point z such that P (z) = 0. 

Proof: 

We shall use Liouville‟s Theorem in order to prove this theorem and we 

shall prove it by contradiction.  

Suppose that theorem is false so that P (z)   0 for any „z‟ then the function 

 ( )  
 

 ( )
 is analytic everywhere. 

  ( )  
 

 ( )
 

 

                  
  

  ( )  
 

  [
 

  
  

 
  

     
  

         
]     as      

Hence for every     there exists     such that | ( )|    for | |    

Also  ( ) is continuous in the bounded closed domain | |   , therefore there 

exists a number C such that | ( )|    for | |    

Let      (   ) then | ( )|  |
 

 ( )
|    for every „z‟ 

Hence by Liouville‟s Theorem  ( ) is constant. But  ( ) is not constant for       

n = 0,1,2,3,………. And an   0 

Therefore  ( ) must be zero for at least one value of „z‟. and the equation 

 ( )    must have at least one root. 
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Remark: 

Every polynomial P (z) = a0 + a1z + a2z
2
 + ···  + anz

n
 (an   0) of degree n             

(n ≥ 1) has exactly „n‟ roots. 

 

Corollary(just read):  

Suppose that a function f is continuous on a closed bounded region R and 

that it is analytic and not constant in the interior of R. Then the maximum 

value of |f (z)| in R, which is always reached, occurs somewhere on the 

boundary of R and never in the interior. 

 

Lemma:  

Suppose that | ( )|  | (  )| at each point z in some neighborhood 

|    |      in which f is analytic. Then f (z) has the constant value     

f (z0) throughout that neighborhood. 

This lemma can be used to prove the following theorem, which is  

known  as the maximum modulus principle. 
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MAXIMUM MODULUS PRINCIPLE 

If a function f is analytic and not constant in a given domain D, then |f (z)| 

has no maximum value in D. That is, there is no point z0 in the domain such 

that |f (z)| ≤ |f (z0)| for all points z in it. 

 

OR  If a function f is analytic within and on a simple closed curve then           

|f (z)|  attain its maximum value on the C (not inside) 

 

Proof:  

Since f is analytic therefore it is continuous on and within C, then f attain its 

maximum value on and within C. 

Now we have to show that |f (z)|  attain its maximum value on C (not inside) 

Suppose that f (z) is not constant. Then consider it attains its maximum value 

within C not on the boundary of C. 

i.e. | ( )|     when z = a within C   ………….(i) 

let    be another circle inside C centerd at „a‟ 

 

 
 

since f (z) is not constant and  it attains its maximum value at „a‟. 

therefore there must exists z = b inside    such that | ( )|    

let | ( )|       where     

also as | ( )| is continuous at z = b then for any     there exists     such 

that || ( )|  | ( )||  
 

 
  whenever |   |    

therefore  || ( )|  | ( )||  | ( )|  | ( )| 

| ( )|  | ( )|  
 

 
 | ( )|  | ( )|  

 

 
 | ( )|      

 

 
  

 | ( )|    
 

 
  ………….(ii) 

  ( )       ( )  attain its maximum value at „b‟ 

If     be another circle inside    centerd at „b‟ and | ( )|    at all „z‟ except 

„b‟. then draw another circle    with radius   |   |lying within    so that 

on this we have  | ( )|    
 

 
 

Now by Cauchy Integral Formula  ( )  
 

   
∫
  

 ( )
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Then put                              

Then   ( )  
 

   
∫

 (      )

           
  

 
 

 

  
∫  (      )  
  

 
 

  ( )  
 

  
∫  (      )  
 

 
 

 

  
∫  (      )  
  

 
  

 | ( )|  |
 

  
∫  (      )  
 

 
 

 

  
∫  (      )  
  

 
|  

 | ( )|  
 

  
∫ | (      )|  
 

 
 

 

  
∫ | (      )|  
  

 
  

 | ( )|  
 

  
∫ .  

 

 
/   

 

 
 

 

  
∫    
  

 
  

 | ( )|  
 

  
.  

 

 
/ | | 

  
 

  
 | | 

   
 

  
.  

 

 
/ ( )  

 

  
 (    )  

 | ( )|  
  

  
 

  

  
   

  

  
 | ( )|    

  

  
   ………….(iii) 

From (i) and (iii) 

  | ( )|    
  

  
   a contradiction. 

So If f is analytic within and on a simple closed curve then |f (z)|  attain its 

maximum value on the C (not inside) 

 

 

MINIMUM MODULUS PRINCIPLE 

If ‘m’ is the minimum value of | ( )| inside and on C then unless f  is 

constant | ( )|    for every point      inside C 

 

OR  If a function f is analytic within and on a closed curve and let 

 ( )    inside C then  ( ) must attain its minimum value (say) ‘m’ on C  

(not inside) 

 

Proof:  

Since f is analytic inside and on C and  ( )    therefore 
 

 ( )
 is analytic on 

and within C. then by maximum modulus principle 
 

| ( )|
 cannot attain its 

maximum value inside C and consequently | ( )| cannot attain its minimum 

value inside C. also  ( ) is continuous on and within C therefore | ( )| must 

attains its minimum value at some point on C (not inside) 

 

Exercise 40: Find the maximum modulus of  ( )        on the closed 

circular region defined by | |    
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POISSONS‟ INTEGRAL FORMULA 

Let  ( ) be analytic in the region | |    and let | |       be any point of 

this region. Then  

 (    )  
 

  
∫

(     )

         (   )    (    )
  

 
    

Where R is any number such that       

Proof:  

Let C denote the circle | |    such that | |        also | |       is 

any point of the region | |    where      . Hence by Cauchy Integral 

Formula we get 

 ( )  
 

   
∫
 

 ( )

   
    ………….(i) 

Let | |    ̅       
  

 ̅
 lies outside the C, so that the function 

 ( )

  
  

 ̅

 is 

analytic on and within C. therefore by Cauchy Fundamental Theorem 

 ( )  
 

   
∫
 

 ( )

   
      

 
 

   
∫
 

 ( )

  
  

 ̅

       ………….(ii) 

Subtracting (ii) from (ii)  ( )    
 

   
∫
 

 ( )

   
   

 

   
∫
 

 ( )

  
  

 ̅

   

 ( )  
 

   
∫
 
[

 

   
 

 

  
  

 ̅

]  ( )   
 

   
∫
 
[

  
  

 ̅

(   )(  
  

 ̅
)
]  ( )    

Now using         ̅                          

  ( )  
 

   
∫ [

      
  

     

(         )(     
  

     
)
]  (    )       

  

 
  

  ( )  
 

  
∫ [

     

     

(         )(
            

     
)
]  (    )      

  

 
  

  ( )  
 

  
∫ [

     

     

(         )    (
           

     
)
]  (    )      

  

 
  

  ( )  
 

  
∫ [

     

     (         )(
           

     
)
]  (    )  

  

 
   

  ( )  
 

  
∫ [

     

(         )(           )
]  (    )  

  

 
  

  ( )  
 

  
∫ [

     

     {(
  (   )    (   )

 
) }   

]  (    )  
  

 
  

  (    )  
 

  
∫

(     )

         (   )    (    )
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       CHAPTER  

5 
                               SERIES 

 

This chapter is devoted mainly to series representations of analytic functions. 

We present theorems that guarantee the existence of such representations, and 

we develop some facility in manipulating series. 

 

SEQUENCES 

A sequence zn is a function whose domain is the set of natural numbers and 

range is a subset of complex numbers. 

 

CONVERGENCE OF SEQUENCES 

An infinite sequence    z1, z2,..., zn,...   of complex 

numbers has a limit z if, for each positive number ε, there exists a positive 

integer n0 such that  |zn − z| < ε whenever n > n0. 

 

Geometrically, this means that for sufficiently large values of n, the points 

zn lie in any given ε neighborhood of z (Fig.). Since we can choose ε as small 

as we please, it follows that the points zn become arbitrarily close to  z  as  their  

subscripts  increase. Note that the value of n0 that is needed will, in general, 

depend  on  the value of ε. 

 

 

 

 

z1 

 

 

 

 

A sequence can have at most one limit. That is, a limit z is unique if it exists. 

When that limit exists, the sequence is said to converge  to z ; and we write  
   
   

     

If the sequence has no limit, it diverges. 

 

 

 

y 

z3 zn 

z 

z2 

O x 
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Theorem: (Criteria for Convergence)  

Suppose that zn = xn + iyn (n = 1, 2,.. .) and z = x + iy. Then  
           if and only if              and           
 
Proof: To prove this theorem, we first assume that conditions            

hold, there exist, for each positive number ε, positive integers n1 and n2 such 

that    |    |  
 

 
     whenever n > n1 

And    |    |  
 

 
  whenever n > n2 

Hence if n0 is the larger of the two integers n1 and n2, 

|    |  
 

 
  and  |    |  

 

 
 whenever n > n0 

Since |    |  |(      )  (    )|  |(    )   (    )| 

|    |  
 

 
 

 

 
    whenever n > n0 

            holds 
 
Conversely, if we start with condition            , we know that for each  

positive number ε, there exists a positive integer n0 such that 

|(xn + iyn) − (x + iy)| < ε whenever n > n0. 

But |xn − x |≤  |(xn − x) + i(yn − y)|= |(xn + iyn) − (x + iy)| 
And |yn − y |≤ |(xn − x) + i(yn − y)|= |(xn + iyn) − (x + iy)|; 
and this means that    |xn − x| < ε and  |yn − y| < ε    whenever n > n0 

that is, conditions             and            are satisfied. 

 

Example:  

Show that the sequence        
(  ) 

              Converges to    

Solution: 

      0    
(  ) 

  1        ,  -         0
(  ) 

  1             

Another way: 

|   (  )|  |    
(  ) 

  
 (  )|  | 

(  ) 

  
|  

 

  
    whenever   

 

√ 
 

Example:  

Show that the sequence    
    

     
 Converges to 

 

 
 

 

 
  

Solution: 

      0
    

     
1        [

 .
 

 
  /

 (    )
]        [

.
 

 
  /

(    )
]  

 

 
 

 

 
   

 

 

 

 

 

 



120 

 

                                                 

SERIES 

Sum of the terms of the sequence      z1 + z2 +· · · + zn +· · ·    is called 

series and it is represented as ∑   
 
      z1 + z2 +· · · + zn + ……  

CONVERGENCE OF SERIES 

An infinite series     ∑   
 
      z1 + z2 +· · · + zn +· · ·

of complex numbers converges to the sum S if the sequence 

   ∑   
 
      z1 + z2 +· · · + zN  (N = 1, 2,. . .) 

of partial sums converges to S; we then write ∑   
 
      

Note that since a sequence can have at most  one limit,  a series can 

have at most  one sum. When a series does not converge, we say that it 

diverges. 

 

Theorem:  Suppose that zn = xn + iyn (n = 1, 2,.. .) and S = X + iY.  

Then ∑   
 
      ∑   

 
             ∑   

 
      

This theorem tells us, of course, that one can write 

∑ (      )
 
    ∑   

 
     ∑   

 
     

This theorem can be  useful in  showing  that a  number  of  familiar properties  

of series in calculus carry over to series whose terms are complex numbers. To 

illustrate how this is done, we include here such properties and present them as 

corollaries. 

 

Convergent Test:  If a series of complex numbers converges, the nth term 

converges to zero as n tends to infinity. 

i.e. if ∑   
 
    converges then            (Converse not holds) 

Divergent Test: If            then ∑   
 
    diverges 

 

Absolutely Convergent Series:  The absolute convergence of a series of 

complex numbers implies the convergence of that series. 

i.e.         if   ∑ |  |
 
    converges then Serie ∑   

 
    is said to be absolutely 

convergent. 

 

Conditionally  Convergent Series :  

 If  ∑ |  |
 
    diverges but the Series ∑   

 
    Converges itself then it is said to 

be conditionally convergent. 

 

Remark:  

In real analysis |    |                  -       , 
But in complex analysis we cannot write as    -       , 
In complex analysis, when |    |    then there exists a disk or circle such 

that |    |    and in this circle |    |    is valid. 
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GEOMETRIC SERIES 

Any series of the form  ∑       
                  ……… is called 

Geometric Series. It is Convergent Series and its sum is  ∑       
    

 

   
 

 

OSCILLATORY SERIES 

Any series is said to be Oscillatory if neither the partial sum tends to finite and 

definite limit nor tends to    or    rather oscillate between two numbers. 

 

POWER SERIES 

Any series of the form 

∑   (    )
  

         (    )
    (    )

   ……… is called 

Power Series. 

 

DE – ALEMBERT OR RATIO TEST 

Suppose that ∑   
 
    is a complex series such that       |

    

  
|    then 

i. If     then series will be absolutely convergent. 

ii. If             then series will be divergent.

iii. If     then test fail.

 

ROOT TEST 

Suppose that ∑   
 
    is a complex series such that       |  |

      then 

i. If     then series will be absolutely convergent. 

ii. If     then series will be divergent.

iii. If     then test fail
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ABSOLUTE AND UNIFORM CONVERGENCE OF POWER SERIES 

This section and the three following it are devoted mainly to various properties 

of power series.  

We recall that a series of complex numbers converges absolutely if the series of 

absolute values of those numbers converges. The following theorem concerns 

the absolute convergence of power series. 

 

Theorem:    

If a power series ∑   (    )
  

         (    )
    (    )

  ….. 

converges when z = z1 (z1   z0), then it is absolutely convergent at each point z 

in the open disk |z − z0| < R1 where R1 = |z1 − z0| 
 

 

 

 

 

 

 

 

The theorem tells us that the set of all points inside some circle centered at z0      

is a region of convergence for the power series , provided it converges at some 

point other than z0. The greatest circle centered at z0 such that series converges     

at each point inside is called the circle of convergence of series.  The  series  

cannot converge at any point z2 outside that circle, according to the theorem ; 

for if it did, it would converge everywhere inside the circle centered at z0 and 

passing through z2. The first circle could not, then, be the circle of 

convergence. 

 

Theorem:   

If z1 is a point inside the circle of convergence |    |    of a power 

series ∑   (    )
  

    then that series must be uniformly convergent in the 

closed disk |z − z0|≤ R1, where R1 = |z1 − z0| 
 

 

 

 

 

 

 

 

 

 

y 

z 

z1 

z0 
R1 

O x 

y 

z 

z1 

z0 
R1 

R 
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CONTINUITY OF SUMS OF POWER SERIES 

A power series ∑   (    )
  

    represents a continuous function S(z) at each 

point inside its circle of convergence |z − z0|= R. 

 

INTEGRATION AND DIFFERENTIATION OF POWER SERIES 

Let C denote any contour interior to the circle of convergence of the power 

series ∑   (    )
  

   , and let g(z) be any function that is continuous on C. 

The series formed by multiplying each term of the power series by g(z) can be 

integrated term  by term over C; that is, 

∫
 
 ( ) ( )   ∑   ∫ 

 ( )(    )
  

       

 

Corollary:    

The sum S(z) of power series ∑   (    )
  

    is analytic at each point z 

interior to the circle of convergence of that series. 

 

Theorem:    

The power series ∑   (    )
  

    can be differentiated term by term. That is,   

at each point z interior to the circle of convergence of that series 

  ( )  ∑    (    )
    

     

 

REMARK: 

 Expansion of an analytic function in a power series is unique. 

 Every power series represents an analytic function inside its circle of 

convergence. 

 The sum function  ( ) of  the power series ∑    
  

     represents an 

anlytic function inside its circle of convergence. Further, every power 

series possesses derivatives of all order within its circle of convergence 

and these derivatives are obtained through term by term differentiation 

of the original series. 

 Differentiated power series has the same radius of convergences as the 

original power series. 

 Integrated power series has the same radius of convergences as the 

original power series. 

 

RADIUS OF CONVERGENCE AND DISC OR CIRCLE OF  

CONVERGENCE 

A circle centered at     having radius     for which the power series 

∑   (    )
  

     converges at every point within the circle |    |    then 

R is called Radius of convergence and Region or Domain of convergenc is 

defined as |    |    
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HOW TO FIND RADIUS OF CONVERGENCE? 

Suppose ∑   (    )
  

    is a power series. 

If        |
    

  
|     or        |  |

       then 

Radius of Convergence    
 

 
 

Example: If  ∑ .  
 

 
/
  

   
    then find circle of convergence. 

Solution: Since   ∑   (    )
  

    ∑ .  
 

 
/
  

(   )  
    

    .  
 

 
/
  

           

By Root test;        |  |
      

         |.  
 

 
/
  

|
   

       |.  
 

 
/
 

|     use        

Then Radius of convergence    
 

 
 

 

 
 

Circle of Convergence  is |    |    |   |  
 

 
 | |  

 

 
 

 

Example:  

If  ∑
(  ) 

 
(    )  

    then find disk and region of convergence. 

Solution: Since   ∑   (    )
  

    ∑
(  ) 

 
(    )  

    

    
(  ) 

 
            

By Ratio test;        |
    

  
|    

         |
(  )   

   
(  ) 

 

|   we may use        

      

Then Radius of convergence    
 

 
   

Circle of Convergence  is |    |    |    |    

Region (domain) of Convergence  is |    |    |    |    

 

Remark:  

The power series  ∑   (    )
  

    at       In the complex plane. 

 Either converges for all values of z 

 Or converges only for z = 0 

 Or converges for z in some region. 
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Example:  

Prove that if          |
  

    
| then the series ∑    

  
    has radius of 

convergence R. 

Solution: Suppose       
   then            

    

By Ratio test;        |
    

  
|    

         |
     

   

     
|        |

    

   
| | |  

 

 
| |  

For convergence     

   
 

 
| |    | |     hence proved. 

 

Example:  

Prove that the two series  

∑ 0
          

        
1
(   ) 

 
 
     and ∑ 0

          

        
1
(   ) 

 
 
                        

have same circle of convergence. 

Solution: Since   ∑   (    )
  

    ∑ 0
          

        
1
(  ) 

 
(   )  

    

    0
          

        
1
(  ) 

 
         0

      (    )(    )

        (    )
1
(  )   

   
   

By Ratio test;        |
    

  
|    

         |
0
      (    )(    )

        (    )
1
(  )   

   

0
          

        
1
(  ) 

 
 

|   we may use        

       

Then Radius of convergence     
 

  
   

Also Since   ∑   (    )
  

    ∑ 0
          

        
1
 

 
(   )  

    

    0
          

        
1
 

 
         0

      (    )(    )

        (    )
1

 

   
   

By Ratio test;        |
    

  
|    

         |
0
      (    )(    )

        (    )
1

 

   

0
          

        
1
 

 
 

|   we may use        

       

Then Radius of convergence     
 

  
   

        hence both series have same circle of convergence. 
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Exercise 41: (visit @ Youtube “learning with Usman Hamid”)  

1. If  ∑
  

  
 
    then find radius and disk of convergence. Where the series 

converges for all „z‟ 

2. If  ∑      
    then find radius and disk of convergence. Where the series 

converges only for all „z = 0‟ 

3. If  ∑    
    then find radius and disk of convergence. Where the series 

converges for „z‟ in some region in the complex plane. 

4. If  ∑ (   )    
    then find disk of convergence (if possible). 

5. If  ∑ (    )    
    then find disk of convergence. 

6. Prove that the series   
  

   
  

 (   ) (   )

     (   )
    ………. has unit radius of 

convergence. 

7. Calculate the radius of convergence of the series 

i. 
 

 
  

   

     
   

     

   
    ……… 

ii.    
   

  
 

   

  
 ………. 

   

  
 

iii. ∑
  

   
  

    

iv. ∑
    

     
    

v. ∑
  

     
 
    

vi. ∑    
  

       
   

  
   

(   )(    )

  
   ………. 

vii. ∑    
  

    ∑ (   )    
    

viii. ∑    
  

         
 (   )

  
   

 (   )(   )

  
    …….. 

ix. ∑    
  

      
  

  
 

  

  
 

  

  
  …….. 

x. ∑    
  

      
  

  
 

  

  
 

  

  
  …….. 

xi. ∑    
  

                   …….. 

8. Calculate the domain of convergence of the series 

i. ∑
        (    )

  
.
   

 
/
 

 
     

ii. ∑   .
    

   
/
 

 
    

9. Prove that the domain of convergence of the series ∑ .
    

   
/
 

 
    is 

given by |   |  √  

10. Prove that the series ∑
(  ) 

     
( )  

    converges everywhere on the circle of 

convergence except at        

11. Prove that the series   
  

 
 

  

 
 ….. converges in domain | |    except at 

       

12. Prove that the series ∑   .
 

 
/
 

 
    converges absolutely. 
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ABEL‟s THEOREM (M – TEST ):  

If a power series centered at    converges at       then the series absolutely 

converges for every „z‟ for which   |    |  |     | 
Proof: Consider a power series ∑   (    )

  
    is a convergent series at    

then         |  (     )
 |    by convergence test 

Implies that sequence of nth partial sum is bounded such that 

|  (     )
 |     

 |  ||(     )
 |    |  |  

 

|     | 
 |  ||    |

  
 |    |

 

|     | 
  

 |  (    )
 |   |

    

     
|
 

  

 ∑ |  (    )
 | 

     ∑ |
    

     
|
 

 
     ………..(i) 

Now  ∑ |
    

     
|
 

 
      |

    

     
|
 

 |
    

     
|
 

 ……….  is geometric series 

which is convergent under the condition  |
    

     
|      

therefore by comparison test 

( )  ∑ |  (    )
 | 

     is convergent series. 

 ∑   (    )
  

     is absolutely convergent series. 

 

CAUCHY‟s HADAMARD THEOREM  

For every series ∑    
  

    there exsists a number R such that       

called radius of convergence then the series converges absolutely for every 

| |    

Proof:  

For series ∑    
  

    there exsists a number   
 

 
 where         |  |

    

   
 

 
       |  |

      and   | |    then there exists a number 

  such that  | |       

     
 

 
 

 

 
 |  |

    
 

 
 |  |  

 

   |  || |
  

| | 

    

∑ |   
 | 

    ∑
| | 

  
 
     

Since  ∑
| | 

  
 
      

| | 

   
| | 

   ………… is geometric series which is 

convergent under the condition  | |    
| |

 
     

therefore by comparison test 

∑ |   
 | 

     is convergent series. 

 ∑    
  

     is absolutely convergent series for every | |    
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TAYLOR SERIES: 

Suppose a power series ∑   (    )
  

    represents a function within the 

circle of convergence |    |      then following series is known as 

Taylor series in complex analysis; 

 ( )  ∑
  (  )

  
(    )

 

 

   

 

SPECIAL CASE: When      then Taylor Series becomes Maclaurin Series 

i.e.  

 ( )  ∑
  ( )

  
( ) 

 

   

 

 

TAYLOR SERIES THEOREM 

Suppose that a function f is analytic throughout a disk |    |    , centered 

at z0 and with radius   (Fig.). Then f (z) has the power series representation 

 ( )  ∑
  (  )

  
(    )

  
     with     

  (  )

  
 

That is, series  ( )  ∑
  (  )

  
(    )

  
    converges to f (z) when z lies 

in the stated open disk. 

 

 

 

 

 

 

 

     

 

 

Proof: 

Let C be a circle |    |    centered at    having radius R. also condiser 

        be another point inside the circle C. also function is analytic in 

domain D. then by using Cauchy Integral Formula 

 (    )  
 

   
∫
 

 ( )

  (    )
    

 (    )  
 

   
∫
 

 ( )

(    )  
    

 (    )  
 

   
∫
 

 ( )

(    )0  
 

    
1
    

 (    )  
 

   
∫
 

 ( )

(    )
0  

 

    
1
  

    ……..(i) 

 

y 

   

R 

z0 

O x 

y 

   

z 
h R 

          x 

C 
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Consider 

0  
 

    
1
  

   
 

    
 

  

(    ) 
   

  

(    ) 
 

    

(    )     ……… 

0  
 

    
1
  

   
 

    
 

  

(    ) 
   

  

(    ) 
 

    

(    )   
0  

 

    
 

  

(    ) 
  1 ……… 

0  
 

    
1
  

   
 

    
 

  

(    ) 
   

  

(    ) 
 

    

(    )   0  
 

    
1
  

  

0  
 

    
1
  

   
 

    
 

  

(    ) 
   

  

(    ) 
 

    

(    )   
0
      

    
1
  

  

0  
 

    
1
  

   
 

    
 

  

(    ) 
   

  

(    ) 
 

    (    )

(    )   (      )
  

0  
 

    
1
  

   
 

    
 

  

(    ) 
   

  

(    ) 
 

    

(    ) (      )
  ..….(ii) 

( )   (    )  
 

   
∫
 

 ( )

(    )
0  

 

    
 

  

(    ) 
   

  

(    ) 
 

    

(    ) (      )
1     

  (    )  
 

   
∫
 

 ( )

(    )
   

 

   
∫
 

 ( )

(    ) 
   

  

   
∫
 

 ( )

(    ) 
     

  

   
∫
 

 ( )

(    )      
    

   
∫
 

 ( )

(    )   (      )
    

 (    )   (  )  
 

  
  (  )  

  

  
   (  )    

  

  
  (  )      ….(iii) 

Where     
    

   
∫
 

 ( )

(    )   (      )
   

Now we will prove      as     

 |  |  |
    

   
∫
 

 ( )

(    )   (      )
  |  

 |  |  
    

  | |
∫
 
|

 ( )

(      )
|

|  |

|    |   
 

    

  | |

 

    
∫
 
|  |  

 |  |  
    

  | |

 

    
(   )    .

 

 
/
 

  

 |  |    .
 

 
/
 

   as     

Then equation (iii) becomes 

 (    )   (  )  
 

  
  (  )  

  

  
   (  )    

  

  
  (  )  

 ( )  ∑
  (  )

  
(    )

  
     with         

 

 

 

 

 

 



130 

 

                                                 

Any function which is analytic at a point z0 must have a Taylor series about 

z0. For, if f is analytic at z0, it is analytic throughout some neighborhood 

|    |    of that point; and ε may serve as the value of R0 in the 

statement of Taylor‟s theorem. Also, if f is entire,   can be chosen 

arbitrarily large ; and the condition of validity becomes |    |   . The 

series then converges to f (z) at each point z in the finite plane. 

When it is known that f is analytic everywhere inside a circle centered at    

z0, convergence of its Taylor series about z0 to f (z) for each point z within 

that circle is ensured; no test for the convergence of the series is even 

required. In fact, according to Taylor‟s theorem, the series converges to            

f (z) within the circle about z0 whose radius is the distance from z0 to the 

nearest point z1 at which f  fails to  be analytic. 

 

Example

Expand  ( )     using Maclaurin series in the form of infinite series. 

Also find the region of convergence when      

Solution: 

Given  ( )      ( )    

  ( )       ( )     

   ( )        ( )     

Continuing in this manner   ( )       ( )    

Using Maclaurin series  ( )  ∑
  ( )

  
( )  

    

   ∑
  

  
 
        

  

  
 

  

  
  ……………. Required series. 

Now consider ∑    
  

    ∑
  

  
 
    

    
 

  
       

 

(   ) 
          

By Ratio test;        |
    

  
|    

         |

 

(   ) 
 

  

|   we may use        

   
 

 
    

Then Radius of convergence    
 

 
   

Region (domain) of Convergence  is |    |    | |    
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Exercise 42: (visit @ Youtube “learning with Usman Hamid”)

Expand  ( ) at      using Maclaurin series in the form of infinite series. 

i. 
 

   
 ∑    

               …………….(| |   ) 

ii.      ∑ (  ) 
     

(    ) 
 
      

  

  
 

  

  
  …………….(| |   ) 

iii.      ∑ (  ) 
   

(  ) 
 
      

  

  
 

  

  
  …………….(| |   ) 

iv.       ∑
     

(    ) 
 
      

  

  
 

  

  
  …………….(| |   ) 

v.       ∑
   

(  ) 
 
      

  

  
 

  

  
  …………….(| |   ) 

vi.      (  )  ∑
     

(  ) 
 
    (| |   ) 

vii. 
 

   
 ∑    

    

viii.         ix. 
    (  )

   

x. 
 

    
 (| |  √ ) 

xi. 
     

      (| |   ) 

xii. 
  

(   ) 
 ∑    

    

xiii. 
 

(   ) 
 ∑ (   )(   ) 

       (| |   ) 

 

xiv. 
     

   
  (| |   ) 

xv. 
  

 (    )
 (  | |   ) 

xvi.         (| |   ) 

xvii. 
  

   
  (| |   ) 

 

Example: Expand  ( )       using Taylor‟s series when    
 

 
 

Solution: Given  ( )        .
 

 
/  

 

√ 
 

  ( )         .
 

 
/  

 

√ 
  

   ( )           .
 

 
/   

 

√ 
  

    ( )            .
 

 
/   

 

√ 
  

Continuing in this ………………. 

Using Taylor‟s series   ( )  ∑
  (  )

  
(    )

  
    ∑

  .
 

 
/

  
.  

 

 
/
 

 
    

 ( )       
 

√ 
 

 

√ 
.  

 

 
/  

 

 √ 
.  

 

 
/
 

 ……………. Required series. 
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Exercise 43: (visit @ Youtube “learning with Usman Hamid”)

i. Expand  ( )     (    ) using Taylor‟s series when      and 

prove that it can be written as    (    )     ∑   (   )  
    

and calculate       

ii. Expand  ( )     (   ) using Taylor‟s series when      and 

find the region of convergence. 

iii. Expand  ( )  
 

   using Taylor‟s series when      

iv. Expand  ( )     ( ) using Taylor‟s series when         and 

find the radius of convergence. 

v. Expand  ( )  (   )         using Taylor‟s series when 

       
vi. Expand  ( )        using Taylor‟s series when       

vii. Expand  ( )       using Taylor‟s series when    
 

 
 

viii. Expand  ( )  
 

   
 using Taylor‟s series when      

ix. Obtain the Taylor‟s Series     ∑
(   ) 

  
 
    (|   |   ) 

x. Show that  
 

   
 

 
∑ (  ) (   ) .

   

 
/
 

 
    (|   |   ) 
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LAURENT SERIES 

If a function f fails to be analytic at a point z0, one cannot apply Taylor‟s 

theorem at that point. It is often possible, however, to find a series 

representation for f (z) involving both positive and negative powers of 

(    ).We now present the theory of such representations, and we begin 

with Laurent’s theorem. 

 

Theorem:  

Suppose that a function f is analytic throughout an annular domain   

r < |    | < R , centered at z0 , and let C denote any positively oriented 

simple closed contour around z0 and lying in that domain (Fig). Then, at 

each point in the domain, f (z) has the series representation 

 ( )  ∑   (    )
 

 

   

 ∑
  

(    ) 

 

   

 

Where    
 

   
∫
 

 ( )

(    )      and     
 

   
∫
 

 ( )

(    )       

For n = 0,1,2,3,……………. ∞ ∞ 
 

 

 

 

 

 

 

 

 

 

 

PROOF: 

Let    and    be two concentric circles forming the annular domain D such 

that  r < |    | < R  then suppose that         is a point in this annular 

domain D so  f  is analytic in this annular domain. So by using C. I. Formula 

 (    )  
 

   
∫
 

 ( )

  (    )
   

 

   
∫
  

 ( )

  (    )
   

 

   
∫
  

 ( )

  (    )
    

 (    )         ……………..(A) 

Now let    
 

   
∫
  

 ( )

(    )  
    

   
 

   
∫
  

 ( )

(    )0  
 

    
1
    

   
 

   
∫
  

 ( )

(    )
0  

 

    
1
  

      ……..(i) 

 

y 

z 

r 

z0 
R 

  

O x 
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Consider 

0  
 

    
1
  

   
 

    
 

  

(    ) 
   

  

(    ) 
 

    

(    )     ……… 

0  
 

    
1
  

   
 

    
 

  

(    ) 
   

  

(    ) 
 

    

(    )   
0  

 

    
 

  

(    ) 
  1 ……… 

0  
 

    
1
  

   
 

    
 

  

(    ) 
   

  

(    ) 
 

    

(    )   0  
 

    
1
  

  

0  
 

    
1
  

   
 

    
 

  

(    ) 
   

  

(    ) 
 

    

(    )   
0
      

    
1
  

  

0  
 

    
1
  

   
 

    
 

  

(    ) 
   

  

(    ) 
 

    (    )

(    )   (      )
  

0  
 

    
1
  

   
 

    
 

  

(    ) 
   

  

(    ) 
 

    

(    ) (      )
  ..….(ii) 

( )     
 

   
∫
 

 ( )

(    )
0  

 

    
 

  

(    ) 
   

  

(    ) 
 

    

(    ) (      )
1     

    
 

   
∫
  

 ( )

(    )
   

 

   
∫
  

 ( )

(    ) 
   

  

   
∫
  

 ( )

(    ) 
     

  

   
∫
  

 ( )

(    )      
    

   
∫
  

 ( )

(    )   (      )
    

    (  )  
 

  
  (  )  

  

  
   (  )    

  

  
  (  )      ………..(iii) 

Where     
    

   
∫
  

 ( )

(    )   (      )
   

Now we will prove      as     

 |  |  |
    

   
∫
  

 ( )

(    )   (      )
  |  

 |  |  
    

  | |
∫
  

|
 ( )

(      )
|

|  |

|    |    
    

  | |

 

    ∫  
|  |  

 |  |  
    

  | |

 

    
(   )    .

 

 
/
 

   |  |    .
 

 
/
 

   as     

Then equation (iii) becomes 

    (  )  
 

  
  (  )  

  

  
   (  )      

  

  
  (  )  

   ∑
  (  )

  
(    )

  
     with          

   ∑   (    )
  

     with     
  (  )

  

 

Now consider      
  

   
∫
  

 ( )

  (    )
   

 

   
∫
  

 ( )

      
    

   
 

   
∫
  

 ( )

 0   
    

 
1
    

   
 

   
∫
  

 ( )

 
0  

    

 
1
  

      ……..(iv) 
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Consider 

0  
    

 
1
  

   
    

 
 

(    )
 

     
(    )

 

   
(    )

   

      ……… 

0  
    

 
1
  

   
    

 
 

(    )
 

     
(    )

 

   
(    )

   

    0  
    

 
 

(    )
 

  
  1 ……… 

0  
    

 
1
  

   
    

 
 

(    )
 

     
(    )

 

   
(    )

   

    0  
    

 
1
  

  

0  
    

 
1
  

   
    

 
 

(    )
 

  
   

(    )
 

  
 

(    )
   

    
0
      

 
1
  

  

0  
    

 
1
  

   
    

 
 

(    )
 

  
   

(    )
 

  
 

(    )
   

  (      )
  …….….(v) 

(  )     
 

   
∫
  

 ( )

 
0  

    

 
 

(    )
 

  
   

(    )
 

  
 

(    )
   

  (      )
1     

      
 

    
∫
  
 ( )   

 

     ∫  
 ( )(    )

    
 

     ∫  
 ( )(    )

    

  
 

     ∫
  
 ( )(    )

    
 

       ∫  

 ( )(    )
   

(      )
    

      
 

 
0

 

   
∫
  

 ( )

(    )      1  
 

  0
 

   
∫
  

 ( )

(    )    1     
 

  0
 

   
∫
  

 ( )

(    )    1  

  
 

  0
 

   
∫
  

 ( )

(    )    1  
  

       ∫  

 ( )(    )
   

  (    )
    

   
 

 
   

 

     
 

       
 

         ………..(vi) 

Where     
  

       ∫  

 ( )(    )
   

  (    )
   

Now we will prove      as     

 |  |  |
  

       ∫  

 ( )(    )
   

  (    )
  |  

 |  |  
 

  | |    ∫  
|

 ( )

  (    )
| |    |

   |  |  
 

           ∫
  
|  |  

 |  |  
 

           (   )    .
 

 
/
 

  

 |  |    .
 

 
/
 

   as     

Then equation (vi) becomes 

   
 

 
   

 

  
   

 

  
     

 

  
    

   ∑
 

  
  

 
       ∑

  

(    ) 
 
     

Using both values in (A) we get the required 

 ( )  ∑   (    )
 

 

   

 ∑
  

(    ) 
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Remark: 

 Uniqueness property of Laurent‟s Theorem:  

suppose   ( )  ∑   (    )
  

      ; r |    |<  < R then the series 

is necessarily identical with the Laurent‟s Series for  ( ) 
 Uniqueness property of Taylor‟s Theorem:  

suppose   ( )  ∑   (    )
  

     ; r < |    | < R then the series is 

necessarily identical with the Taylor‟s Series for  ( ) 
 Suppose that  ( )  ∑    

  
     and  ( )  ∑    

  
     be two 

Laurent‟s Series expansions which converges in the same annulus then 

their Product  ( )  ( ) also converges and represents the Laurent‟s 

Series expansion. 

 If   replace by 
 

 
 in a given function  ( ) then  ( ) does not change. 

Then we have           

 Finding Laurent‟s Series  if condition appears in the form |    |     

then take constant as common and no need to take variable in most 

cases while if condition appears in the form |    |     then take 

variable as common necessarily from denominator. 

 

Example:  

Show that  ( )  
 

      ∑
    

    
 
     when   | |    

Solution:  

Given that  ( )  
 

      
 

  0  
 

 
1
 

 

  
0  

 

 
1
  

   

 ( )  
 

      
 

  
0  

 

 
 

  

   
  

    1  

 ( )  
 

      0
 

  
 

 

  
 
 

 
 

 

  
 
  

   
 

  
 
  

    1  

 ( )  
 

      
 

  
 

 

   
  

   
  

      

 ( )  
 

      
   

 
 

  

   
  

   
  

      

 ( )  
 

     
 

    

    
 

     

    
 

    

    
 

    

    
    

Thus  ( )  
 

      ∑
    

    
 
     when   | |    
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Exercise 44: (visit @ Youtube “learning with Usman Hamid”) 

1. For the function  ( )  
 

 (    )
 find the Laurent‟s series representation 

in the punctured disk    | |    

2. For the function  ( )  
 

 (   )
 find the Laurent‟s series representation 

in the punctured disk    |   |    

3. For the function  ( )  
  

(   )(   )
 find the Laurent‟s series 

representation in the regions    | |     

4. Find a representation for the function  ( )  
   

   
  when   | |      

5. Show that 
 

(   )(   )
   ∑

(   ) 

    
 

 

 (   )
 
     when   |   |    

6. For the function  ( )  
 

(   )(   )
 find the Laurent‟s series 

representation in the regions  | |    ,   | |    , | |     and 

  |   |    

7. For the function  ( )  
 

(   )(    )
 find the Laurent‟s series 

representation in the regions  | |    ,   | |    , | |    

8. For the function  ( )  
 

(    )(    )
 find the Laurent‟s series 

representation in the regions  | |    ,   | |  √  , | |  √  

9. For the function  ( )  
 

      
 find the Laurent‟s series representation 

in the region    | |    

10. Prove that the Laurent‟s Series expansion of  ( )  
 

   
 for region 

| |  | | is given by ∑
  

    
 
    

11. Show that Laurent‟s series is the power of z + 1 which represents the 

function  ( )  
    

 (       )
 in the region |   |    is    

 ( )  
 

 
∑ (           )(   ) (   ) 

    

12. Expand   ( )  
 

 (   )
 for the annular domain   |   | 

13. Expand   ( )  
    

 (   )
 for the domain   | |    
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Example:   

For the function  ( )  
   

   
 find the Laurent‟s series representation in the 

punctured disk    | |    

Solution:  

Given function  ( )  
   

   
 has the singular point z = 1 and analytic in the 

given domain and  The representation of  ( ) in the unbounded domain  

  | |    is a Laurent Series and the fact that  |
 

 
|    when „z‟ is a point in 

given domain then replacing „z‟ with „1/z‟ 

 ( )  
   

   
  

  
 

 

   
 

 

  .  
 

 
/

 

  
 

 

  .  
 

 
/∑

 

  
 
      

 ( )  .  
 

 
/∑

 

  
 
    ∑

 

  
 
    ∑

 

    
 
       since           

 ( )  ∑
 

  
 
    ∑

 

  
 
       ∑

 

  
 
     for „n – 1‟ in place of „n‟ 

 

Exercise 45: (visit @ Youtube “learning with Usman Hamid”) 

1. For the function  ( )  
 

 (    )
 find the Laurent‟s series 

representation in the region    | |    

2. For the function  ( )       .
 

  / find the Laurent‟s series 

representation in the domain    | |    

3. For the function  ( )  
  

(   )(   )
 find the Laurent‟s series 

representation in the region   | |    

4. For the function  ( )  
 

  (   )
 find the Laurent‟s series 

representation in the region    | |    

5. Find a representation for the function  ( )  
 

   
 

 

 
 

 

  
 

 

  in 

negative powers of „z‟ that is valid when    | |    

6. Show that  ( )       ∑
 

    
 
     when   | |    

7. Show that 
 

  
 ∑

(  ) (   )

(   ) 
 
     when   |   |    

8. Given series expansion      ∑ (  )        

(    ) 
 
    for | |    

then find the 1
st
 three non – negative terms of the Laurent‟s Series 

expansion of Cosecz about point z = 0. 

9. Expand   ( )      for the domain   | |    

 

 

 

 

Availabel on MathCity.org
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Example:  

Show that  ( )     .  
 

 
/ can be expand as a Laurent‟s Series 

 ( )     ∑   .   
 

  /
 
     where     

 

  
∫    (     )
  

 
        

Solution:  Given that  ( )     .  
 

 
/   and f  is non – analytic at z =  0 

Put   
 

 
 in given function then  ( )     .

 

 
  /     .  

 

 
/ 

 ( )   .
 

 
/         since         

then Laurent‟s Series will be expand as  

 ( )  ∑   (    )
  

      

 ( )  ∑    
  

      for      

 ( )        
      

      
      

   ………………… 

 ( )        
  

   

      
  

   

   ………………… 

 ( )     ∑    
  

    
   

      ∑    
  

    
  

              

 ( )     ∑   .   
 

  /
 
     

Now we will find     

Since we know that    
 

   
∫
 

 ( )

(    )      

    
 

   
∫
 

   .  
 

 
/

(   )         
 

   
∫
 

   .  
 

 
/

        ………(i) 

Put 

      
 

 
        

 

 
                                  

( )     
 

   
∫

   (     )

(   )   
(      )

  

 

 
 

  
∫    (     )       

  

 

 

    
 

  
∫    (     )(            )  
  

 
  

    
 

  
∫    (     )       
  

 
 

 

  
∫    (     )       
  

 
  

    
 

  
∫    (     )       
  

 
 

 

  
   ………(ii) 

To get required value of    we just show I = 0 

Let    ∫    (     )       
  

 
 

  ∫    ,    (    )-    (    )  
  

 
    ∫  ( )  

 

 
 ∫  (   )  

 

 
 

  ∫    ,    (    )-   (      )  
  

 
  

  ∫    (     )(      )  
  

 
  ∫    (     )       

  

 
     

             

(  )     
 

  
∫    (     )       
  

 
 which is our required. 
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Exercise 46: (visit @ Youtube “learning with Usman Hamid”) 

1. Show that  ( )      
 

  can be expand as a Laurent‟s Series             

 ( )     ∑    
  

  

  
 
     determine    and    

2. Show that  ( )    .  
 

 
/
 can be expand as a Laurent‟s Series  

 ( )  ∑    
  

    ∑
  

  
 
     for | |    where 

   
 

  
∫          

 
        

3. Show that  ( )     ( .  
 

 
/)  ∑    

  
       

where    
 

  
∫     (      )
  

 
              when     

4. Show that  ( )   
 

 
.  

 

 
/  ∑    

  
       

 where    ∫    (        )
  

 
   

5. Prove that the Laurent‟s Series of  ( )  
 

    
 about      is of the 

form  ( )  ∑
  

  
 
         

where          
 

 
    

 

 
          

   

  
 

while numbers    are called Bernolli Numbers. 

6. Find the Principle Part of the Laurent‟s Series of; 

i.  ( )  
    

    
 about        

ii.  ( )        about       (arbitrary) 
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C H A P T E R   

6 
RESIDUES AND POLES 

 
The Cauchy–Goursat theorem states that if a function is analytic at all points 

interior to and on a simple closed contour C, then the value of the integral      

of the function around that contour is zero. If, however, the function fails to be 

analytic at a finite number of points interior to C, there is, as we shall see in 

this chapter, a specific number, called a residue, which each of those points 

contributes to the value of the integral. We develop here the theory of residues; 

and, in next Chapter we shall illustrate their use in certain areas of applied 

mathematics. 

 

ISOLATED SINGULAR POINTS 

Recall that a point z0 is called a singular point of a function f  if f fails to 

be analytic at z0 but is analytic at some point in every neighborhood of z0. 

 A singular point z0 is said to be isolated if, there is a deleted 

neighborhood 0 < |z − z0| < ε of z0 throughout which f is analytic. 

 

Example: The function  ( )  
   

  (    )
 has the three isolated singular 

points z = 0 and z = ±3i. 

Example:  The function  ( )  
 

   .
 

 
/
    has the singular points z = 0 and z  

=  1/n (n  = 1, 2,.. .). Each singular point except z  = 0 is isolated. The 

singular point      is not isolated because every deleted ε neighborhood 

of the origin contains other singular points of the function.  

More precisely, when a positive number ε  is specified and m is any 

positive integer such that  m > 1/ε, the fact that 0 < 1/m < ε means that the 

point z = 1/m lies in the deleted ε neighborhood 0 < |z| < ε (Fig). 

 

 

 

 

 

 

 

y 



O 1/m x 
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Example:  

The origin     is a singular point of the principal branch                

Log z =    r + i    (r > 0, −π <   < π)    of the logarithmic function. It is not, 

however, an isolated singular point since every deleted ε neighborhood of it 

contains points on the negative real axis (see Fig) and the branch is not even 

defined there. Similar remarks can be made regarding any branch                        

log z =    r + iθ   (r > 0, α < θ < α + 2π)  of the logarithmic function. 

 

 

 

 

 

 

 

 

 

 

 

In this chapter, it will be important to keep in mind that if a function is analytic 

everywhere inside a simple closed contour C except for a  finite number of 

singular points z1, z2,...,  zn, those points must all be isolated and the deleted 

neighborhoods about them can be made small enough to lie entirely inside  C. 

To see that this is so, consider any one of the points zk. The radius ε of the 

needed deleted neighborhood can be any positive number that is smaller than 

the distances to the other singular points and   also smaller than the distance 

from zk to the closest point on C. 

Finally, we mention that it is sometimes convenient to consider the point      

at infinity as an isolated singular point. To be specific, if there is a positive 

number R1 such that f is analytic for R1 <  | |  <     , then f is said to 

have an isolated singular point at z0 =  . 

 

 

 

 

 

 

 

 

y 


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RESIDUES 

When z0 is an isolated singular point of a function f , there is a 

positive number R2 such that f is analytic at each point z for which                

0 < |    |< R2. Consequently,   f (z) has a Laurent series representation 

 ( )  ∑   (    )
  

    
  

    
 

  

(    ) 
   

  

(    ) 
    where the 

coefficients an and bn have certain integral representations.  

In particular, 

   
 

   
∫
 

 ( )

(    )        (n=1,2,3,………….) 

where C  is any positively oriented simple closed contour around z0 that 

lies in  the punctured disk 0 < |    | < R2 (Fig). When n=1, this 

expression for bn becomes 

   
 

   
∫
 
 ( )   ∫

 
 ( )          

The complex number b1, which is the coefficient of 
 

(    )
 in above 

expansion, is called the residue of f at the isolated singular point z0, and 

we shall often write             ( ) 

Then     ∫
 
 ( )              ( ) 

Sometimes we simply use B to denote the residue when the function f 

and the point z0 are clearly indicated. Last Equation provides a powerful 

method for evaluating certain integrals around simple closed contours. 

 

 

 

 

 

 

 

 

 

 

 

DEFINATION: If a function f  has an isolated singularity at a point 

      then f  has Laurent‟s expansion as follows; 

 ( )  ∑   (    )
  

    ∑
  

(    ) 
 
     then coefficient    of  

 

(    )
 is 

called Rasidue of a function  ( ) at      and it is denoted by  

   (    )  or            ( ) 

 

 

y 

C R2 

z0 

O x 
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Example:    Find the residue of   ( )  
 

(   ) (   )
 at z = 1. 

Solution:  Given   ( )  
 

(   ) (   )
 

 ( )  
 

(   ) (     )
 

 

(   ) (  (   ))
 

  

 (   ) .  
(   )

 
/
  

 ( )  
  

 (   ) 
.  

(   )

 
/
  

  

 ( )  
  

 (   ) 
.  

(   )

 
 

(   ) 

  
  /  

 ( )  
  

 (   ) 
 

  

 (   )
 

 

 
  

 ( )  
 

 

 

(   ) 
 

 
 

 

(   )
 

 

 
  

This is Laurent Series expansion in |
   

 
|    or   |   |    and by 

definition of residue      (   )   
 

 
 

 

Example:    Find the residue of   ( )  
 

     
 at z = 0. 

Solution:  Given   ( )  
 

     
 

 ( )  
 

  
  

  
 

  

  
  

 
 

 [  (
  

  
 

  

  
  )]

   

 ( )  
 

 
0  .

  

  
 

  

  
  /1

  

  

 ( )  
 

 
0  .

  

  
 

  

  
  /   1  

 ( )  
 

 
 

  

  
 

   

  
    

This is Laurent‟s Series expansion at z = 0 

Then by definition of residue     (   )    

 

 

Keep in mind: Pole is a finite order singularity. We will discuss it later. 
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THEOREM (Residue of a function at a pole of order „n‟) 

If  ( ) has a pole of order „n‟ at       then  

   (    )  
 

(   ) 
       

    

     
,(    )

  ( )-  

Proof: 

If  ( ) has a pole of order „n‟ at       then the Laurent‟s Series expansion 

will be as follows; 

 ( )  ∑   (    )
  

    ∑
  

(    ) 
 
     

 ( )    (    )
    (    )

    (    )
    

  

    
 

  

(    ) 
   

  

(    ) 
  

Multiplying both sides by (    )
  

(    )
  ( )    (    )

    (    )
      (    )

      
  (    )

      (    )
            ……………..(i) 

Now differentiating (i) w.r.to „z‟ (  –        ) 
 

  
,(    )

  ( )-     (    )
    (    )  (    )

   

   (    )  (    )
      (    )  (    )

    
(    )  (    )

              

  

   
,(    )

  ( )-   (    )  (    )
     (    )  (    )

    

  (    )(    )  (    )
    (    )(    )  (    )

    
(    )(    )  (    )

                
 

Continuing in this manner we get 
    

     
,(    )

  ( )-  , (    )       -  (    )
  (   )    

,(    )(   )       -  (    )
     

    

     
,(    )

  ( )-      (    )  (    )    

Applying    
    

 on both sides 

   
    

    

     
,(    )

  ( )-     
    

,    (    )  (    )   - 

   
    

    

     
,(    )

  ( )-    (    )    

   
    

    

     
,(    )

  ( )-  (    )    

 

(    ) 
       

    

     
,(    )

  ( )-        (    )  

Hence we get the result.    (    )  
 

(   ) 
       

    

     
,(    )

  ( )- 
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Remark: 

i. If function has a simple pole at      then  
   (    )     

    
,(    ) ( )- 

ii. For a quotient function  ( )  
 ( )

 ( )
 where „g‟ and „h‟ are analytic at 

     then      (    )  
 (  )

  (  )
 

iii. A function which has more than one poles is called Meromorphic 

function. 

 

Example:    Find the residue of   ( )  
 

     
 at all poles. 

Solution:  Given   ( )  
 

     
 

 

(    )(    )
  is a meromorphic function and 

has two poles of order 1 (simple poles) at       

Then by using Residue formula for Simple pole at      

   (    )         
,(    ) ( )-  

   (     )          0(    )
 

(    )(    )
1  

 

 
  

   (    )         0(    )
 

(    )(    )
1  

 

 
  

 

Example:    Find the residue of   ( )  
    

  (   )
 at     

Solution:  Given   ( )  
    

  (   )
  has a simple pole at     

Then by using Residue formula for Simple pole at      

   (    )         
,(    ) ( )-  

   (   )        ,(   ) ( )-  

   (   )        0(   )
    

  (   )
1  

    

  
  

   (   )  
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Example:     

Find the residue of   ( )  
  

  (    ) 
 at        

Solution:   

Given   ( )  
  

  (    ) 
  is a meromorphic function and has two poles at     

and      

    is a pole of order 2   

And 

     is a pole of order 4 

By using formula    (    )  
 

(   ) 
       

    

     
,(    )

  ( )- 

   (   )  
 

(   ) 
   
   

    

     
,(   )  ( )- 

   (   )  
 

  
   
   

 

  
[  

  

  (    ) 
]     

   

 

  
[

  

(    ) 
] 

   (   )        0
  (      )

(    ) 
1  

    

    after solving 

Also    (    )  
 

(   ) 
       

    

     
,(    )  ( )-  

   (    )  
 

  
   
    

  

   
[(    ) 

  

  (    ) 
] 

   (    )  
 

 
   
    

  

   
[
  

  
] 

   (    )  
(      ) (      ) 

      after solving 
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Exercise 47: (visit @ Youtube “learning with Usman Hamid”) 

1. Find the residue of   ( )        by finding its zeros. 

2. Find the residue of   ( )       by finding its zeros. 

3. Find the residue of the following functions   

i.  ( )  
 

    
 

ii.  ( )  
    

(   ) 
 

iii.  ( )  
   

     (
 

   
) 

iv.  ( )  
 

      
 

v.  ( )  
    

      

vi.  ( )       

vii.  ( )  
 

    
 

viii.  ( )  
     

(   ) 
 

ix.  ( )         (
 

 
) 

x.  ( )        

 
 

xi.  ( )  
    

   

xii.  ( )  
     

     
 

4. Find the residue of   ( )                   at origin. 

5. Find the sum of  residue of   ( )  
 

    
 at poles. 

6. Prove that residue at      of  ( )  
    

 (     ) 
 is 

    (    )

    

7. Find the residue of the following functions at z = 0  

i.  ( )  
 

     

ii.  ( )      (
 

 
) 

iii.  ( )  
      

 
 

iv.  ( )  
    

   

v.  ( )  
     

  (    )
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CAUCHY‟s RESIDUE THEOREM 

If, except for a finite number of singular points, a function f is analytic 

inside a simple closed contour C, those singular points must be isolated. 

The following theorem, which is known as Cauchy’s residue theorem, is a 

precise statement of the fact that if f is also analytic on C and if C is 

positively oriented, then the value of the integral of f around C is 2πi 

times the sum of the residues of f at the singular points inside C. 

 

Theorem. Let C be a simple closed contour, described in the positive sense.  

If a function f is analytic inside and on C except for a finite number of 

singular points zk (k = 1, 2,. . . ,  n) inside C (Fig), then 

∫
 
 ( )      ∑   (    )

 

   

 

 

 

 

 

 

 

 

 

 

 

Proof: 

Let           …………….,    are the circles with center           …….,    

and radius of each is „r‟ as „r‟ is so small that these circles do not overlap and 

lies inside C. 

Now  ∫
 
 ( )   ∫

  
 ( )   ∫

  
 ( )   ……… ∫

  
 ( )   …….(i) 

Suppose  ( ) has a pole (finite order singularity) of order „m‟ at      then 

the Laurent‟s Series expansion will be  

 ( )  ∑   (    )
  

    ∑
  

(    ) 
 
     

Let  ( )  , ( )  ∑   (    )
  

   -  
  

    
 

  

(    ) 
   

  

(    ) 
 

∫
  
 ( )   ∫

  
 ( )   ∫

  

  

    
   ∫

  

  

(    ) 
     ∫

  

  

(    ) 
    

By using the following two results; 

∫
  
 ( )      and ∫

  

 

(    ) 
   {

                
                    

 

 

 

y 

Cn 

C1 

z1 
C2 

zn 

z2 

C 

O x 
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Then  ∫
  
 ( )       (   )    ( )      ( )  

∫
  
 ( )     (   )  

∫
  
 ( )         (    )  

Similarly ∫
  
 ( )         (    ) 

And continuing in this manner we get  ∫
  

 ( )         (    ) 

Using all values in (i) 

∫
 
 ( )         (    )        (    )  ………       (    ) 

∫
 
 ( )      ,   (    )     (    )       (    )-  

∫
 
 ( )      ∑    (    )

 
     required result. 

 

 

Example:    Evaluate the integral ∫
 

 

(   )(   ) 
   with   | |    

Solution:  Given   ( )  
 

(   )(   ) 
  is a meromorphic function and has two 

poles at     and      

    is simple pole   And      is a pole of order 4 

For simple poles using    (    )         
,(    ) ( )- 

   (   )        0(   )
 

(   )(   ) 
1  

 

 
  

By using formula    (    )  
 

(   ) 
       

    

     
,(    )

  ( )- 

   (    )  
 

(   ) 
   
    

    

     
,(   )  ( )- 

   (    )  
 

  
   
    

 

  
[(   ) 

 

(   )(   ) 
]     

    

 

  
[

 

(   )
] 

   (    )         0
  

(   ) 
1   

 

 
  after solving 

Now ∫
 

 

(   )(   ) 
      ∑    (    )

 
    

∫
 

 

(   )(   ) 
      ,   (   )     (    )-     

∫
 

 

(   )(   ) 
      



151 

 

                                                 

Example:    Evaluate the integral ∫
 

      

(   )(   )(   )
   with   | |    

Solution:  Given   ( )  
      

(   )(   )(   )
  has three poles at    ,     and 

     of order 1 (Simple poles) 

For simple poles using    (    )         
,(    ) ( )- 

   (   )        0(   )
      

(   )(   )(   )
1        0

      

(   )(   )
1   

 

  
  

   (   )        0(   )
      

(   )(   )(   )
1        0

      

(   )(   )
1  

  

  
  

   (    )         0(   )
      

(   )(   )(   )
1         0

      

(   )(   )
1  

  

  
  

Now ∫
 

      

(   )(   )(   )
      ∑    (    )

 
     

∫
 

      

(   )(   )(   )
      ,   (   )     (   )     (    )-     

∫
 

      

(   )(   )(   )
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RESIDUE AT INFINITY 

Suppose that a function f is analytic throughout the finite plane except for 

a finite number of singular points interior to a positively oriented simple 

closed contour C. Next, let R1 denote a positive number which is large 

enough that C lies inside the circle | |   R1 (see Fig.). The function f is 

evidently analytic throughout the domain R1 < | | <   and is said to be an 

isolated singular point of f .  

Now let C0 denote a  circle  | |  R0, oriented in the clockwise direction, 

where R0 > R1. The residue of f at infinity is defined by means of the 

equation 

∫
  
 ( )             ( )            0

 

   .
 

 
/1  

 

 

 

 

 

 

 

 

 

 

 

 

We may use theorem as follows to use the Cauchy‟s Residue theorem since 

it involves only one residue. 

 

Theorem.  

If a function f is analytic everywhere in the finite plane except for a finite 

number of singular points interior to a positively oriented simple closed 

contour C, then 

∫
 
 ( )            0

 

   .
 

 
/1  

 

Remark: 

If want to check the behavior of function at infinity then 

i. Make substitution   
 

 
 

ii. Investigate the behavior of new function at     actually that is 

    

 

 

 

y 

C0 

C 

O R1 R0 x 

Availabel on MathCity.org
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Exercise 48: (visit @ Youtube “learning with Usman Hamid”) 

1. Evaluate the integral ∫
 

   

(     ) 
   where C is closed contour encloses 

the point       

2. Evaluate the integral ∫
 

(    )   

     where C is a unit circle. 

3. Evaluate the integral ∫
 

   

      
   where C is a unit circle i.e.| |    

4. Evaluate the integral ∫
 

 

  (   ) 
   with   |   |  

 

 
 

5. Evaluate the integral ∫
 

    

 (    )(   ) 
   with   | |    

6. Evaluate the integral ∫
 

 

   
   with   | |    and deduce that 

∫
       

       
    

 

 
 

7. Evaluate the integral ∫
 

     

(    )(   ) 
   with   | |    

8. Evaluate the integral ∫
 

     

(    )(   ) 
   with   |   |  √  

9. Evaluate the integral ∫
 

  

(   ) 
   with   | |    

10. Evaluate the integral ∫
 

 

(    )
   with C is a circle          

11. Evaluate the integral ∫
 

 

(   )(   )
   with   |   |  

 

 
 

12. Evaluate the integral ∫
 

 

  (   ) 
   where    and C is a simple 

closed curve surrounding the origin and 

(i) „a‟ is inside C  (ii) „a‟ is outside C

13. Evaluate the integral  
 

 

(   ) (   )
   where  

i. C is the rectangle defined by         and          

ii. C is the circle | |    
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Exercise 49: (visit @ Youtube “learning with Usman Hamid”) 

1. Evaluate the integral ∫
 

    

     where C is a unit circle i.e.| |    

2. Evaluate the integral ∫
 
    .

 

  /   with   | |    

3. Evaluate the integral ∫
 

 

 (   ) 
   with   |   |    

4. Evaluate the integral ∫
 

    

 (   )
   with   | |    

5. Evaluate the integral  ∫
 
 ( )   with   | |    in the positive sense. 

i.  ( )  
   

   

ii.  ( )  
   

(   ) 
 

iii.  ( )     
 

  

iv. 
   

     
 

6. Evaluate the integral  ∫
 
 ( )   with   | |    in the positive sense. 

i.  ( )  
  

(   ) 
 

ii.  ( )  
 

     

iii.  ( )  
 

 
 

7. Evaluate the integral ∫
 

  (    )

(   )(     )
   with   | |    

8. Evaluate the integral  
 

    

    
   where C is the circle |   |    

 

ZERO OF A FUNCTION:  

A number      is called zero of a function  ( ) if (  )    . further we can 

say that an analytic function  ( ) has a zero of order „n‟ at point      if 

 (  )      (  )       (  )             (  )    but   (  )    

Remark: 

i. A function  ( ) is analytic in some disk |    |    has a zero of 

order „n‟ at      iff  ( ) can be written as  ( )  (    )
  ( ) 

where  ( ) is analytic at    and  (  )     

ii. A zero of order one is called simple zero. 

iii. A zero of order „n‟ is called a zero of multiplicity „n‟ 

 

Example: 

i. For ( )       ;       we have  (  )    but   (  )    then 

       is a simple zero of given function. 

ii. For ( )  (   )  ;       
we have  (  )      (  )       (  )    but     (  )    then 

      is a zero of order 3 or zero of multiplicity 3. 
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SINGULARITY:  

If a complex valued function  ( ) failed to be analytic  at point      then 

this point is said to be singular point or singularity. 

Example: 

i. Function  ( )  
  

   
  is non – analytic at       so       is a 

singularity of  ( ) 

ii. Function  ( )  
    

 
  is non – analytic at       so       is a 

singularity of  ( ) 

iii. Function  ( )   
 

     is non – analytic at       so       is a 

singularity of  ( ) 
 

 

 

 

 

TYPES OF SINGULARITES 

 

 

 
 

 

 

 

 

 

SINGULARITIES 

ISOLATED 
SINGULARITIES 

REMOVEALE 
SINGULARITIES 

POLES 
ESSENTIAL 

SINGULARITIES 

NON ISOLATED 
SINGULARITIES 
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ISOLATED SINGULARITIES: 

A point      is said to be an isolated singularity of a function  ( ) if   ( ) 
is analytic at each point in the neighborhood of      except at      

Example: 

i. Function  ( )  
  

   
  is non – analytic at       so       is an 

isolated singularity of  ( ) 

ii. Function  ( )  
 

     
  is non – analytic at     

 

 
               

so    
 

 
   is an isolated singularity of  ( ) 

 

NON – ISOLATED SINGULARITIES: 

A point      is said to be a non – isolated singularity of a function  ( ) if in 

the neighborhood of      there exists other points where  ( ) is not 

analytic. 

Example:  

i. Function  ( )        is non – analytic at       so       is a     

non – isolated singularity of  ( ) there exist also other points where the 

function will be non – analytic. 

ii. Function  ( )  
 

     
  is non – analytic at       so       is a     

non – isolated singularity of  ( ) there exist also other points where the 

function will be non – analytic. 

 

 

REMOVEABLE (ARTIFICIAL) SINGULARITIES: 

A point      is said to be a removable singularity of a function  ( ) if the 

principle part of Laurent‟s Series expansion contains no term. 

i.e.  for Laurent‟s Series  ( )  ∑   (    )
  

    ∑
  

(    ) 
 
    

we have the form as follows; 

 ( )  ∑   (    )
 

 

   

 

Example:  

i. Function  ( )  
    

 
  has removable singularity at        

Since  ( )  
    

 
 

 

 
0  

  

  
 

  

  
 

  

  
  1    

  

  
 

  

  
 

  

  
   

contains no Principle Part. 

ii. Function  ( )  
      

  
  has removeable singularaity at        

Since  ( )  
      

  
 

 

  
 

  

  
 

  

  
   contains no Principle Part. 
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Riemann’s Theorem:  

Suppose that a function f (z) is bounded analytic in some deleted 

neighborhood   |    |    of    . if f (z) is not analytic at    

then it has a removable singularity there. 

 

Proof:  

Suppose that ( ) is not analytic at    then the point    must be an 

isolated singularity of  ( ). And  ( ) is represented as follows; 

 ( )  ∑   (    )
 

 

   

 ∑
  

(    ) 

 

   

 

Throughout the deleted neighbourhood   |    |   . If C denotes a 

positively oriented circle |    |    where     then we may 

write    
 

   
∫
 

 ( )

(    )        (n=1,2,3,………….) 

 |  |  |
 

   
∫
 

 ( )

(    )    
  | 

 |  |  |
 

   
| ∫

 
| ( )| |

  

(    )    
| 

 |  |  
 

  | |
∫
 
| ( )|

|  |

|    |     
 

  | |

 

     ∫ 
|  |   | ( )|    

 |  |  
 

  | |

 

     
(   )      |  |       (n=1,2,3,………….) 

Since the coefficients    are constants and since   can be choosen 

orbitrarily small, we may conclude that        (         ) in 

Laurent‟s Series (given above). 

This tells us that    is a removable singularity of  ( ) and proved the theorem. 
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POLE 

A point      is called pole of order „n‟ of a function  ( ) if the principle 

part of Laurent‟s Series expansion contains finite numbers of terms. 

i.e.  For Laurent‟s Series  ( )  ∑   (    )
  

    ∑
  

(    ) 
 
    

we have the form as follows; 

 ( )  ∑   (    )
 

 

   

 ∑
  

(    ) 

 

   

 

Example:  

i. Function  ( )  
    

  
  has a pole of order „3‟ at        

Since  ( )  
    

 
 

 

  0  
  

  
 

  

  
 

  

  
  1  

 

   
 

   
 

 

  
 

  

  
   

contains finite terms. 

ii. Function  ( )  
 

   
  has a pole of order „1‟ at        

 

ESSENTIAL SINGULARITIES: 

A point      is called pole of order „n‟ of a function  ( ) if the principle 

part of Laurent‟s Series expansion contains infinite numbers of  terms. 

i.e.  for Laurent‟s Series  ( )  ∑   (    )
  

    ∑
  

(    ) 
 
    

we have the form as follows; 

 ( )  ∑   (    )
 

 

   

 ∑
  

(    ) 

 

   

 

Example:  

i. Function  ( )     .
 

 
/  

 

 
 

 

    
 

 

    
    has an essential 

singularity at        

ii. Function  ( )         
 

 
 

 

    
 

 

    
    has an essential 

singularity at        

 

Remark:  

i. A function  ( ) is analytic in a domain   |    |    has a pole of 

order „n‟ at      iff  ( ) can be written as  ( )  
 ( )

(    ) 
 where 

 ( ) is analytic at    and  (  )    

ii. If the functions     are analytic at      have a zero of order „n‟ at 

     and  (  )    then the function  ( )  
 ( )

 ( )
 has a pole of order 

„n‟ at      

 

 

 



159 

 

                                                 

Remark: 

If want to check the behavior of function at infinity then 

i. Make substitution   
 

 
 

ii. Investigate the behavior of new function at     actually that is 

    

 

Example: 

Find the nature of singularity of the function  ( )      at     

Solution: 

Given  that  ( )      

Make substitution   
 

 
   .

 

 
/         then     is singularity. 

Let   ( )         
 

 
 

.
 

 
/
 

  
 

.
 

 
/
 

  
   

  ( )         
 

 
 

 

   
 

 

   
   

  ( ) has an essential singularity at     

  ( ) has an essential singularity at     

 

Example: 

Find the nature of singularity of the function  ( )    (   ) at     

Solution: 

Given  that  ( )    (   ) 

Make substitution   
 

 
   .

 

 
/  

 

  .
 

 
  /   then     is 

singularity. 

Let   ( )  
 

  .
 

 
  /  

 

  .
   

 
/  

   

   

  ( )  
   

(   ) 
 

 ( )

(   ) 
(   ) 

  ( ) has a pole of order 3 at     

  ( ) has a pole of order 3 at     
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Exercise 50: (visit @ Youtube “learning with Usman Hamid”) 

1. Discuss the nature of singularity of the given functions 

i.  ( )  
  

(   ) 
 

ii.  ( )  
      

  
 

iii.  ( )   
 

   

iv.  ( )       

v.  ( )  
 

    
 

vi.  ( )  
       

  
 

vii.  ( )        

viii.  ( )  
 

  (   )
 

ix.  ( )  
      

   
 

x.  ( )     .
 

   
/      

 

2. Find the zeros and discuss the nature of singularity of 

  ( )  
   

  
   .

 

   
/ 

 

3. Let  ( )   
 

  show that there are infinite number of zero‟s in every 

neighbourhood of z = 0 which satisfy  
 

     

 

4. Determine Poles and order of each Pole of given functions; 

i.  ( )       

ii.  ( )  
    

     
 

iii.  ( )  
 

      
 

5. Find the zero‟s and poles with their orders and essential singularity of  

 ( )  
 

(    ) 
   .

 

 
/ 

 

6. In each case, write the principle part of the function at its isolated 

singular point and determine whether that point is a removable singular 

point, an essential singular point or a pole. 
 

i.  ( )  
  

(   ) 
 

ii.  ( )  
      

  
 

iii.  ( )   
 

   

iv.  ( )     .
 

   
/      

v.  ( )       
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INTERESTING FACT 

A function f is said to be meromorphic in a domain D if it is 

analytic throughout D except for poles. Suppose now that f is 

meromorphic in the domain interior to  a positively oriented simple closed 

contour C and that it is analytic and nonzero on C. The image    of C  

under the transformation w = f (z) is a closed contour, not necessarily 

simple, in the w plane (Fig.). As a point z traverses C in the positive 

direction, its images w traverses   in a particular direction that determines 

the orientation of  . Note that since f has no zeros on C, the contour   

does not pass through the origin in the w plane. 

 

 

 

 

 

 

 

 

 

 

 

Let w0 and w  be points on  , where w0 is fixed and φ0 is a value of arg w0.    

Then let arg w vary continuously, starting with the value φ0, as the point w  

begins at the point w0 and traverses   once in the direction of orientation 

assigned to it by the mapping w = f (z). When w returns to the point w0, 

where it started, arg w assumes a particular value of arg w0, which we 

denote by φ1. Thus the change in arg w as w describes T once in its 

direction of orientation is φ1   φ0. This change  is, of course, independent 

of the point w0 chosen to determine it. Since w = f (z), the number φ1   φ0 

is, in fact, the change in argument of f (z) as z describes C once in the 

positive direction, starting with a point z0; and we write  

  arg f (z) = φ1 − φ0. 

The value of   arg f (z) is evidently an integral multiple of 2π, and the 

integer 
 

  
  arg f (z)   represents the number of times the point w winds 

around the origin in the w plane.  For that reason, this integer is sometimes 

called the winding number of     with respect to the origin w = 0. It is positive 

if   winds around the origin in the counterclockwise direction and negative if it 

winds clockwise around that point. The winding number is always zero when   

does not enclose the origin. 

 

 

y 
z 

z0 

x 

C 

v 

w 

w0 

u 
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The winding number can be determined from the number of zeros and poles 

of f interior to C. The number of poles is necessarily finite. Likewise, with 

the understanding that f (z) is not identically equal to zero everywhere else 

inside C, it is easily shown that the zeros of f are finite in number and are 

all of finite order.  

Suppose now that f has N zeros and P poles in the domain interior to C. 

We agree that f has m0 zeros at a point z0 if it has a zero of order m0 there; 

and if f has a pole of order mp at z0, that pole is to be counted mp times.  

 

The following theorem, which is known as the argument principle, 

states that the winding number is simply the difference N − P . 

 

ARGUMENT PRINCIPLE THEOREM.  

Let C denote a positively oriented simple closed contour, if f (z) is 

meromorphic function inside C and has no zero’s on C then 

 

   
∫
 

  ( )

 ( )
       

Where N is number of zero’s and P is number of poles inside C. 

Proof: 

Construct the following figure; 

 
Consider                    are the zeros of  ( ) then   ∑   

 
               

(  be the order of   ) and                    are the poles of  ( ) then 

  ∑   
 
      (  be the order of   ) where each zero and pol enclosed by circle 

            and             respectively. Where   is the radius of 

each circle with centre, zero‟s and poles.  

We have to prove  
 

   
∫
 

  ( )

 ( )
   ∑   

 
    ∑   

 
    

In this case we have a multiply connected region where C contain many circles 

inside. So by using consequence of Cauchy Fundamental Theorem; 
 

   
∫
 

  ( )

 ( )
   ∑

 

   
∫
  

  ( )

 ( )
   

    ∑
 

   
∫
  

  ( )

 ( )
   

     ……..(i) 

Since      is the zero of order    of  ( )  
then we can write a function  ( )  (    )

   ( ) 
     ( )     (    )

       ( )  
     ( )       (    )      ( )  
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  ( )

 ( )
 

  

    
 

  ( )

 ( )
  

 ∫
  

  ( )

 ( )
   ∫

  

  

    
   ∫

  

  ( )

 ( )
    

 ∫
  

  ( )

 ( )
   ∫

  

  

    
       ∫

  

  ( )

 ( )
     

 

Now consider                                

 ∫
  

  ( )

 ( )
   ∫

  

  

    
          ∫

  

  ( )

 ( )
      ∫  

          

 
 

   
∫
  

  ( )

 ( )
      ∫  

       

 ∑
 

   
∫
  

  ( )

 ( )
   

    ∑   
 
     …………….(A) 

 

Also Since      are the poles of order    of  ( )  

then we can write a function  ( )  
 ( )

(    )
  

 

     ( )      ( )     (    )
    

     ( )      ( )       (    )  

 
  ( )

 ( )
 

  ( )

 ( )
 

  

    
  

 ∫
  

  ( )

 ( )
   ∫

  

  ( )

 ( )
   ∫

  

  

    
    

 ∫
  

  ( )

 ( )
    ∫

  

  

    
       ∫

  

  ( )

 ( )
     

Now consider                                

 ∫
  

  ( )

 ( )
    ∫

  

  

              ∫
  

  ( )

 ( )
       ∫  

           

 
 

   
∫
  

  ( )

 ( )
       ∫  

        

 ∑
 

   
∫
  

  ( )

 ( )
   

     ∑   
 
     …………….(B) 

 

Using (A) and (B) in (i) we get 

 

   
∫
 

  ( )

 ( )
   ∑  

 

   

 ∑  

 

   

 

Or 
 

   
∫
 

  ( )

 ( )
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ROUCHÉ‟S THEOREM 

Rouché’s theorem is a consequence of the argument principle. It can be useful 

in locating regions of the complex plane in which a given analytic function has 

zeros. 

 

Theorem:  

Let C denote a simple closed contour, and suppose that two  functions f (z) 

and g(z) are analytic inside and on C also | ( )|  | ( )| on C. 

then  ( )   ( ) and  ( ) have the same number of zeros inside C. 

 

The orientation of C in the statement of the theorem is evidently 

immaterial. Thus, in the proof here, we may assume that the orientation is 

positive. 

Proof:  

Let  ( )  
 ( )

 ( )
  ( )   ( )  ( )       

If    and    are the number of zeros inside C of     and   respectively, 

then by using Argument Principle Theorem (using the fact that 

function has no poles inside C) 

      
 

   
∫
 

     

   
   

 

   
∫
 

  

 
    

      
 

   
∫
 
0
     

   
 

  

 
1     

      
 

   
∫
 
0
          

    
 

  

 
1                      

      
 

   
∫
 
0
  (   )    

 (   )
 

  

 
1     

      
 

   
∫
 
0
  

 
 

  

(   )
 

  

 
1    

 

   
∫
 
0

  

(   )
1     

      
 

   
∫
 
  ,   -      

      
 

   
∫
 
  ,           -   

      
 

   
∫
 
  [∑(  ) 

 

   

  ]    

        

      hence proved 

 

Where we used the fact | ( )|  | ( )|  
| ( )|

| ( )|
   | |    on C 

then ∑ (  )  
      is a uniform convergent series being Geometric.  

Then ∑ (  )  
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C H A P T ER   

7 
APPLICATIONS OF RESIDUES 

CONTOUR INTEGRATION 

 
We turn now to some important applications of the theory of residues, which 

was developed in Chap. 6. The applications include evaluation of certain types 

of definite and improper integrals occurring in real analysis and applied 

mathematics. 

 

TYPE – I: 

If we have an integral of the form ∫  (         )
  

 
   where F is a rational 

function of      and      then we can solve it using following procedure. 

 

 Put                 
  

  
             

  

  
  

 Put      
     

  
  and       

     

 
 

 Rewrite the integral in the form ∫  ( )
  

 
   ∫

 
 ( )   where C is 

positively oriented unit circle | |    

 Calculate the poles of  ( ). Say at          ……… select those poles 

which lie in the unit circle | |   . Then find the residues at the 

selected poles   (    )   (    ) etc. 

 Using Cauchy Residue Formula make the form as follows; 

∫  (         )

  

 

   ∫
 
 ( )      ∑  
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Example: Prove that  ∫
  

       

  

 
 

  

√     
 where       

Solution: 

 Put                 
  

  
             

  

  
  

      
     

 
 

 Rewrite the integral in the form ∫
  

       

  

 
 ∫

 

  

  

   (
     

 
)
 where C 

is positively oriented unit circle | |    

 ∫
  

       

  
   

 
∫ 

  

         
  

 
∫  ( )    with  ( )  

 

         
 

 To Calculate the poles of  ( ) 
Firstly we will find the roots of           that will be as follows; 

   √     

 
  we may write these as   

   √     

 
   

   √     

 
 

Since       | |         as | |    

Here      is the only simple pole which lie inside the C i.e. | |    

    (   )        ,(   ) ( )-        0(   )
 

         
1  

    (   )        0(   )
 

 (   )(   )
1        0

 

 (   )
1   

 (   )
  

    (   )   

  
√    

 

 

  

 √    
 
  

 Using Cauchy Residue Formula make the form as follows; 

 ∫
  

       

  
   

 
∫  ( )    

 
        (   )   

 
      

 √    
 
  

 ∫
  

       

  
    

√    
 
  

 

Likewise:  we can Prove that  ∫
  

       

  

 
 

  

√     
 where       

 

Example: Prove that  ∫
  

(       ) 

  

 
 

   

(     )   
  

Solution: 

Since we know that ∫
  

       

  

 
 

  

√     
 

 ∫    
(       ) 

  
    

 
    

(    
 
)

 
 

     taking derivative w.r.to „a‟ 

 ∫
  

(       ) 

  

 

 
   

.    
 
/
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Example: Prove that  ∫
  

(      ) 

 

 
 

  

(    )   
         

Solution:  Since we know that ∫
  

(       ) 

  

 
 

   

(     )   
  

 ∫
  

(       ) 

  
   ∫

  
(       ) 

 
     

(    
 
)
     

 ∫
  

(       ) 

 
    

(    
 
)
    ∫

  
(      ) 

 
    

.    /
      using     

Example: Prove that  ∫
  

       

  

 
 

 

 
  

Solution: Since we know that ∫
  

       

  

 
 

  

√     
  

 ∫
  

       

  
    

√ 
 
   

 
  

 
 ∫

  

       

  
   

 
   using         

 

Example: Prove that  ∫
  

       

  

 
 

  

√    
 where        

Solution: 

 Put                 
  

  
             

  

  
  

      
     

  
 

 Rewrite the integral in the form ∫
  

       

  

 
 ∫

 

  

  

   (
     

  
)
 where C is 

positively oriented unit circle | |    

 ∫
  

       

  
   

 
∫ 

  

   .
  
 
/   

  

 
∫  ( )    with  ( )  

 

   .
  

 
/   

 

 To Calculate the poles of  ( ) 

Firstly we will find the roots of    .
  

 
/     that will be as follows; 

(
   √    

 
)   we may write these as   (

   √    

 
)     (

   √    

 
)   

Since | |    as | |    

Here      is the only simple pole which lie inside the C i.e. | |    

    (   )        ,(   ) ( )-        [(   )
 

   .
  
 
/   

]  

    (   )        0(   )
 

(   )(   )
1        0

 
(   )

1   
(   )

  

    (   )   

  
√    

 

  
 
 
 √    

  

 Using Cauchy Residue Formula make the form as follows; 

 ∫
  

       

  
   

 
∫  ( )    

 
        (   )   

 
      

 
 
 √    

 
  

 ∫
  

       

  
    

√    
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Exercise 51: (visit @ Youtube “learning with Usman Hamid”) 

1. Prove that  ∫
    

           

 

 
 

   

      where            | |    

2. Prove that  ∫
  

       

  

 
 

  

 
 

3. Prove that  ∫
  

       

 

  
 √   

4. Prove that  ∫
        

        

  

 
 

  

 
 

5. Prove that  ∫
  

       

  

 
 

  

√    
 where        

6. Prove that  ∫         
 

 
 

(  ) 

   (  ) 
   where           

7. Prove that  ∫
         

       

 

 
   

8. Prove that  ∫
   

        

 

 
 

 

√    
   where     

9. Evaluate by means of contour integration ∫
       

           

 

 
 where      

10. Prove that  ∫
       

       

  

 
 

 

 
 

11. Prove that  ∫
        

            

  

 
 

 (      )

   
 where       

12. Evaluate the integral   ∫
(       )      

       
  

  

 
 

13. Prove that  ∫         (       )
  

 
   

  

  
 

14. Prove that  ∫         (    )    
  

 
     

15. Prove that  ∫
  

(        ) 

  

 
 

 (    )

    (   )   
 

16. Prove that  ∫         
  

 
 

        (    )

          
    where           

17. Prove that  ∫
       

       

  

 
 

 

  
 

18. Prove that  ∫
  

      

  

 
 

  

√ 
 

19. Prove that  ∫
  

       

  

 
 

  

√    
 where          

20. Prove that  ∫
       

        

  

 
 

 

  
 

21. Prove that  ∫
  

(      ) 

  

 
 

  

 √ 
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TYPE – II: 

If we have an integral of the form ∫  ( )
 

 
    or ∫  ( )

 

  
   then we can 

solve it using following procedure. 

 

 Replace „x‟ by „z‟ in the integrand and test whether   ( )    as 

| |    

 Find the poles of  ( ), locate those poles which lie in the upper half 

plane. Find the residue at the located poles. 

 Use formula ∫  ( )
 

  
      ∑   or  ∫  ( )

 

 
     ∑    

where ∑   denotes sum of residues at poles lying in the upper half 

plane. 

 

Remark: 

 No poles lies on the real axis. 

 Let  ( )  
 ( )

 ( )
 where  ( ) and  ( ) are polynomials such that  

 ( )    has no real roots. And the degree of  ( ) is at least 2 less 

than that of  ( ) so that   ( )    as | |    

 

 

Example: Prove that  ∫
  

(    ) 

 

  
 

  

 
  

Solution:  

 Replace „x‟ by „z‟ in the integrand and test whether   ( )    as 

| |    

Given  ( )  
 

(    ) 
  ( )  

 

(    ) 
   ( )   

 

(    ) 
 

Clearly   ( )    as | |    

 Find the poles of  ( ), locate those poles which lie in the upper half 

plane.  

The poles of  ( ) are at      of order 3. The only pole which lies in 

the upper half plane is     of order 3. 

 Find the residue at the located poles. i.e.     of order 3 

   (   )  
 

  
      

  

   
0(   ) 

 

(   ) (   ) 
1  

   (   )  
 

 
      

  

   
0

 

(   ) 
1  

 

   
  

 Use formula ∫  ( )
 

  
      ∑   

 ∫
  

.    /
 

 
        

   
   

 
  as required. 
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Example: Prove that  ∫
  

     

 

 
 

 

 √      where a > 0 

Solution:  

 Replace „x‟ by „z‟ in the integrand and test whether   ( )    as 

| |    

Given  ( )  
  

       ( )  
 

        ( )   .
 

     / 

Clearly   ( )    as | |    

 Find the poles of  ( ), locate those poles which lie in the upper half 

plane.  

The poles of  ( ) are the roots of          

               (    )       
(    )  

   ; n = 0,1,2,3 

The poles are at   
  

    
   

    
   

    
   

 . The only pole which lies in the 

upper half plane are   
  

    
   

  

 Find the residue at the located poles 

Let     denote any one of these poles. Such that in         we have  

       

   (   )        0(   )
 

     1    
 

 
       

   (   )        0
 

   1  
 

    
 

    
 

                

                ∑    
 

   
, -   

 

   
[ 

  

   
   

 ]  

                ∑    
 

   [
 
  
   

 
  
 

  
]      

                ∑    
  

      
 

 
  

  

   

 

√ 
  

 

 √     

 Use formula ∫  ( )
 

 
     ∑   

 ∫
  

     

 
       

 √   
  

 √   
  as required. 

 

 

 

 

 

 

 

 

 

 

 

 



171 

 

                                                 

Exercise 52: (visit @ Youtube “learning with Usman Hamid”) 

1. Evaluate the following integrals. 

i. ∫
  

    

 

 
 

 

 
   

ii. ∫
  

(    ) 

 

 
 

 

 
   

iii. ∫
  

    

 

 
 

 √ 

 
 

 

 √ 
   

iv. ∫
    

    

 

 
 

 

 
   

v. ∫
    

(    )(    )

 

 
 

 

 
   

vi. ∫
    

(    )(    ) 

 

 
 

 

   
   

vii. ∫
  

       

 

  
  

 

 
 

viii. ∫
  

(    )(       )

 

  
  

 

 
 

 

2. Prove that  ∫
    

(     ) 

 

  
 

 

    . Provided that   ( ) is positive. What is 

the value of this integral if  ( ) is negative? 

 

3. Evaluate the following integrals. 

i. ∫
    

         

 

 
 

 

  
 

ii. ∫
    

(     ) 

 

 
 

 √  

   
 

iii. ∫
   

(    )(       )

 

 
  

 

 
 

iv. ∫
  

(     ) 

 

  
 

 

           

v. ∫
    

(     )(     ) 

 

  
 

 (    )

    (   ) 
 

vi. ∫
 

(    )(    )

 

  
   

vii. ∫
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TYPE – III: 

If we have an integral of the form ∫
 ( )

 ( )
     

 

  
   or ∫

 ( )

 ( )
     

 

  
   or 

∫
 ( )

 ( )
     

 

 
   or ∫

 ( )

 ( )
      

 

 
   where then we can solve it using 

following procedure. 

 Replace „x‟ by „z‟ in the integrand  ( )  
 ( )

 ( )
 and       or       

by      

 Find the poles of  ( )    , locate those poles which lie in the upper 

half plane. Find the residue at the located poles. 

 Then by Cauchy Residue theorem use the following formulae 

∫  ( )     
 

  
     (   ∑ )  

∫  ( )     
 

  
     (   ∑ )  

∫  ( )     
 

 
     (  ∑ )  

∫  ( )     
 

 
     (  ∑ )  

 

 

Remark: 

  ( ) and  ( ) are polynomials such that   ( )    has no real roots. 

And the degree of  ( ) exceeds the degree of  ( ) 
 Jordan‟s Inequality: 

 
  

 
         where     

 

 
 

Or ∫         

 
   

 

 
          

Or ∫        
 

 
 

   
 

  
          

 

 Jordan‟s Lemma:  

if  ( ) is complex valued function such that  ( )    as     and 

 ( )is the meromorphic in the upper half plane then  

      ∫
 
 ( )          

where C denotes the semi-circle | |      ( )    

 

Or if a function  ( ) is analytic at all points in the upper half plane 

that are exterior to the semi circle | |     . and if    denotes a semi 

circle        (     ) where      then for all points z on    

there will be a positive constant    such that  

| ( )|      and            
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Example: Evaluate  ∫
       

     

 

 
   and deduce the value of ∫

        

     

 

 
 where 

„a‟ and „m‟ are constants. 

Solution:  

 The given integral ∫
       

     

 

 
  becomes ∫

 

      

      

 The poles of  ( )     
    

      are the zeros of         

             . The only pole which lies in the upper half plane is 

     of order 1. 

   (    )         0(    )
    

     
1  

    

   
  

 Then by Cauchy Residue theorem use the following formulae 

∫  ( )     
 

 
     (  ∑ )  

∫
       

     

 

 
   .   

    

   
/  

 

  
      

Diff. w.r.to „m‟ we get ∫
          

     

 

 
 

 

  
    (  )  

∫
        

     

 

 
 

 

 
      

 

Example: Prove that   ∫
      

(     )(     )

 

  
 

 

     .
   

 
 

   

 
/          

Solution:  

 The given integral ∫
      

(     )(     )

 

  
  becomes ∫

 

     

(     )(     )
 

 The poles of  ( )     
     

(     )(     )
 are               

The only pole which lies in the upper half plane are         of order 1. 

   (    )         0(    )
     

(     )(     )
1  

   (    )         0(    )
     

(    )(    )(     )
1  

   (    )         0
     

(    )(     )
1  

   

   (     )
  

   (    )         0(    )
     

(     )(     )
1  

   (    )         0(    )
     

(    )(    )(     )
1  

   (    )         0
     

(    )(     )
1  

   

   (     )
  

 Then by Cauchy Residue theorem use the following formulae 

∫  ( )     
 

  
     (   ∑ )  

∫
      

(     )(     )

 

  
   0    .

   

   (     )
 

   

   (     )
/1  

 

     
.
   

 
 

   

 
/  
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Example: Prove that   ∫
        

    

 

  
     √   

Solution:  

 The given integral ∫
        

    

 

  
  becomes ∫

 

       

    
 

 The poles of  ( )     
     

    
 are    √   

The only pole which lies in the upper half plane is   √   of order 1. 

   (  √  )       √  0(  √  )
     

    
1  

   (  √  )       √  [(  √  )
     

(  √  )(  √  )
]  

   (  √  )       √  [
     

(  √  )
]  

√     √  

(√   √  )
 

√     √  

 √  
 

 

 
   √   

 Then by Cauchy Residue theorem use the following formulae 

∫  ( )     
 

  
     (   ∑ )  

∫
        

    

 

  
   0    

 

 
   √ 1  

∫
        

    

 

  
   [     √ ]      √   

Or ∫
        

    

 

 
 

 

 
   √  
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Exercise 53: (visit @ Youtube “learning with Usman Hamid”) 

1. Evaluate the following integrals. 

i. ∫
     

    

 

 
   

 

 
           

ii. ∫
       

(     ) 

 

 
   

 

   
(    )                

iii. ∫
        

    

 

  
 

 

 
                

iv. ∫
         

    

 

  
                  

v. ∫
      

       

 

  
  

 

 
      

vi. ∫
       

       

 

  
 

 

 
(         )  

vii. ∫
        

(    )(    )

 

  
        

viii. ∫
         

(    )(    )

 

 
      

ix. ∫
(   )      

       

 

  
 

 

 
(         )  

x. ∫
      

(   )    

 

  
             

 

2. Evaluate the following integrals. 

i. ∫
           

     

 

  
   

ii. ∫
     

       

 

 
          

iii. ∫
      

       

 

 
          

iv. ∫
     

     

 

 
   

v. ∫
     

    

 

 
   

vi. ∫
       

(    )(    )

 

 
      

vii. ∫
       

(    ) 

 

 
   

viii. ∫
       

(     ) 

 

 
         

ix. ∫
      

       

 

  
         

x. ∫
        

(     )(     )

 

 
      

xi. Prove by contour integration  ∫
   (    )

(    )

 

 
       

xii. ∫
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JORDAN‟S INEQUALITY: (1
st
 method) 

According to this inequality    
  

 
         where     

 

 
 

Proof:  

We know that     
 

 
 then      decreases steadily and consequently the 

mean ordinate of the graph of         over the range       also 

decreases steadily. But this mean ordinate is  

 

 
∫    

 

 

   
    

 
 

From above when      
 

 
   implies 

 

 
 

    

 
   

 
  

 
         as required. 

 

 

JORDAN‟S INEQUALITY: (2
nd

 method) 

According to this inequality  

∫         

 
   

 

 
            Or      ∫        

 

 
 

   
 

  
          

 

Proof:   Consider the following figure; 

 

We first note from the graph of the functions        and   
  

 
   

that  
  

 
      when      

 

 
 

Consequently             
   

  when      
 

 
  where     

 ∫        
 
 
 

   ∫      
 

 
 
 

    

  
 (     )          

 ∫        

 
 

 

   
 
  

          

This is another form of inequality  ∫         

 
   

 

 
          , since the 

graph of        is symmetric with respect to the vertical line   
 

 
 on the 

interval       
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JORDAN‟S LEMMA:(1
st
 method) 

If  ( ) is complex valued function such that  ( )    as     and  ( ) is 

the meromorphic in the upper half plane then  

      ∫
 
 ( )          

where C denotes the semi-circle | |      ( )    

 

Proof:   Consider  ( ) has no singularities on C for sufficiently large values of 

R. Since         ( )    we have for a given   

Therefore  | ( )|    when | |                    

Now let C denote any semi-circle with radius R. let        then we get 

∫
 
 ( )       ∫  (    )       

     

 

 

   

∫
 
 ( )       ∫                  (    )     

 

 

   

|∫
 
 ( )      |  |∫                  (    )     

 

 

  | 

|∫
 
 ( )      |  ∫|        ||        || (    )|

 

 

| || ||   |   

|∫
 
 ( )      |  ∫         

 

 

        ∫         

 
 

 

   

|∫
 
 ( )      |     ∫         

 
 

 

   

Using Jordan inequality  
  

 
         where     

 

 
 

 |∫  ( )      |     ∫        

 
 

 

      |
       

    
 

|

 

 
 

  
  
 

(      ) 

 |∫  ( )      |    

 
(      )    

 
  as     

 ∫  
    ( )      as      as required. 
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JORDAN‟S LEMMA: (2
nd

 method) 

If a function  ( ) is analytic at all points in the upper half plane that are 

exterior to the semi circle | |     . and if    denotes a semi circle                         

       (     ) where      then for all points z on    there will be a 

positive constant    such that  

| ( )|      and            

 

Proof:   Consider the following figure; 

 
if  ( ) is analytic at all points in the upper half plane that are exterior to the 

semi circle | |     . and if    denotes a semi circle                                               

       (     ) where      the we write 

∫
  

 ( )       ∫  (    )       
      

 
    

Since  | (    )|      and  |       
|           

Also using Jordan inequality  
  

 
         where     

 

 
 

 |∫  
 ( )      |     ∫          

       

 
   

 ∫  
    ( )      as       as required. 
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MISCELLANEOUS PROBLEMS 

 

EXAMPLE: Under the transformation (   )    . Prove that if „w‟ 

describes a unit circle then „z‟ describes a parabola. 

Solution:     Consider (   )          
(   ) 

  ………..(i) 

( )        

(     )
                     

 
(     )

 

 
⁄   

 
     

(            ) 

 
  

 
(          )  

 
                                     

 
  

 
(          )  

Comparing real and imaginary parts 

 
 

 
                        

 
            

 
    ………..(ii) 

  
 

 
                    

 
            

 
   ………..(iii) 

Squaring and adding (ii) and (iii) 

 
 

  (   
        )   

 
(      ) (           )  

 
 

   
 

 
(      )      

(      ) 
  

    

      
   This is the equation of parabola in z – plane. 

 

EXAMPLE: Prove that       
 

 
   ∑

 

       
 
    

Solution:     Consider  ( )       
 

 
 

          

     
 

       ( )        
          

     
   .

 

 
/        

                

          
    .

 

 
/  

       ( )        
           

               
 

 

 
    

Since  ( )   , therefore there is no singularity at z = 0, and the poles of 

 ( ) are at                     

   (    )         0(    )
          

     
1 .

 

 
/   

   (    )         0(    ) 
                

          
   

          

     
1  

   (    )         0
          

          
1  

  (  ) 

  (  ) 
    

Now using formula   ( )   ( )  ∑   
 
    0

 

    
 

 

  
1 

 ( )    ∑   
     0

 

    
 

 

  
1  ∑ 0

 

    
 

 

  
 

 

    
 

 

  
1 

     

 ( )    ∑
 

       
 
         

 

 
   ∑

 

       
 
     

      
 
 
   ∑
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