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Linear & Affine Subspaces 
1.1 Linear Spaces & Subspaces 
We give a brief account of subspaces, linear span, linear independence and dependence, basis 

and dimension of linear spaces. 

1.1.1 Linear Spaces: Let 𝑉 be a non-empty set and 𝐹 be a field. Suppose that for every 𝜆 ∈ 𝐹 

and every 𝑣 ∈ 𝑉,  𝜆𝑣 ∈ 𝑉. Then 𝑉 is called a linear space or vector space over 𝐹 if  

(i) 𝑉 is an abelian group under addition. 

(ii) 𝜆(𝑢 + 𝑣) = 𝜆𝑢 + 𝜆𝑣 

(iii) (𝜆 + 𝜇)𝑢 = 𝜆𝑢 + 𝜇𝑢 

(iv) 𝜆(𝜇𝑢) = (𝜆𝜇)𝑢 

(v) 1. 𝑢 = 𝑢. 1 = 𝑢, 1 being the unity (multiplicative identity) of 𝐹 

∀ 𝜆, 𝜇 ∈ 𝐹;  𝑢, 𝑣 ∈ 𝑉. 

The elements of 𝐹 are called scalars and the elements of 𝑉 are called vectors. 

Examples of Linear Spaces:  

1. Let 𝐹 be an arbitrary field and 𝐹𝑛 be the set of all n-tuples of elements in 𝐹. Then 𝐹𝑛 is a 

vector space over 𝐹 under the following operations: 

(i) Vector Addition: 

 (𝜆1, 𝜆2, … , 𝜆𝑛) + (𝜇1, 𝜇2, … , 𝜇𝑛) = (𝜆1, +𝜇1, 𝜆2 + 𝜇2, … , 𝜆𝑛 + 𝜇𝑛) 

(ii) Scalar Multiplication: 

 𝜆(𝜆1, 𝜆2, … , 𝜆𝑛) = (𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑛) 

 In particular, 𝑅𝑛 over 𝑅 is a vector space called the 𝑛-dimensional Euclidean space.  

2. Let 𝑃(𝑡) denote the set of all polynomials of the form 

𝑝(𝑡) = 𝜆𝑜 + 𝜆1𝑡 + 𝜆2𝑡
2 + ⋯+ 𝜆𝑠𝑡

𝑠  ;     𝜆𝑖 ∈ 𝐹, 𝑠 ∈ 𝑁 

Then 𝑃(𝑡) is a vector space over 𝐹 using the following operations: 

(i) Vector Addition: 

Here 𝑝(𝑡) + 𝑞(𝑡) in 𝑃(𝑡) is the usual addition of polynomials. 

(ii) Scalar Multiplication: 

Here 𝜆𝑝(𝑡) in 𝑃(𝑡) is the usual operation of the product of a scalar 𝑎 and a 

polynomial 𝑝(𝑡). 

The zero polynomial 0 is the zero vector in 𝑃(𝑡). 

3. Let 𝑃𝑛(𝑡) denote the set of all polynomials 𝑝(𝑡) over a field 𝐹, where the degree of 𝑝(𝑡) 

is less than or equal to 𝑛 along with the zero polynomial. Then 𝑃𝑛(𝑡) is a vector space with 

respect to the usual operations of addition of polynomials and of multiplication of a 

polynomial by a scalar. The degree of the zero polynomial is undefined. 

4. The set 𝑀𝑛 of all 𝑛 × 𝑛 matrices with entries from a field 𝐹 is a linear space over 𝐹. 

5. Every field is a linear space over itself. 
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1.1.2 Linear Subspaces: Let 𝑉 be a linear space over 𝐹 and 𝑊 be a non-empty subset of 𝑉. 

Then 𝑊 is a subspace of 𝑉 if 𝑊 is itself a linear space over 𝐹 with respect to the operations of 

vector addition and scalar multiplication on 𝑉. 

Theorem: A non-empty subset 𝑊 of 𝑉 is a subspace of 𝑉 iff 𝑊 is closed under vector addition 

and scalar multiplication i.e., 

(i) 𝑤1, 𝑤2 ∈ 𝑊 implies 𝑤1 + 𝑤2 ∈ 𝑊 

(ii) 𝜆 ∈ 𝐹,𝑤 ∈ 𝑊 implies 𝜆𝑤 ∈ 𝑊 

Proof: Let 𝑊 be a subspace of 𝑉. Then 𝑊 is itself a linear space and hence closed under vector 

addition and scalar multiplication. 

Conversely, suppose that 𝑊 is closed under vector addition and scalar multiplication. We have to 

show that 𝑊 is a vector space. Let 𝑤1, 𝑤2 ∈ 𝑊. Since 𝑊 is closed under scalar multiplication, 

(−1)𝑤2 = −𝑤2 ∈ 𝑊. Since 𝑊 is closed under vector addition, 𝑤1 + (−𝑤2) = 𝑤1 − 𝑤2 ∈ 𝑊. 

Therefore, 𝑊 is a subgroup of 𝑉. Since 𝑉 is abelian, 𝑊 is also abelian. The remaining axioms of 

a vector space hold in 𝑊 because they hold in the larger set 𝑉. Hence 𝑊 is a linear space over 𝐹. 

Both properties (i) and (ii) may be combined into the following equivalent single statement:  

For every 𝑤1, 𝑤2 ∈ 𝑊; 𝜆, 𝜇 ∈ 𝐹, the linear combination 𝜆𝑤1 + 𝜇𝑤2 ∈ 𝑊. So, a linear subspace 

may be defined as: 

A subset 𝑊 of a vector space 𝑉 is called a subspace of 𝑉 if 𝜆𝑤1 + 𝜇𝑤2 ∈ 𝑊 for all 𝑤1, 𝑤2 ∈ 𝑊 

and all 𝜆, 𝜇 ∈ 𝐹. 

Any vector space 𝑉 automatically contains two subspaces: the set {0} consisting of the zero vector 

alone and the whole space 𝑉 itself. These are sometimes called the trivial subspaces of 𝑉.  

Example: Consider a system of homogeneous equations 𝑀𝑥 = 0 in 𝑛-unknowns, i.e., a system 

of the form 

𝛼11𝑥1 + 𝛼12𝑥2 + ⋯ + 𝛼1𝑛𝑥𝑛 = 0 

𝛼21𝑥1 + 𝛼22𝑥2 + ⋯+ 𝛼2𝑛𝑥𝑛 = 0 

……………………………… 

𝛼𝑚1𝑥1 + 𝛼𝑚2𝑥2 + ⋯+ 𝛼𝑚𝑛𝑥𝑛 = 0 

Let 𝑆 be the solution set of this system, then 𝑆 is a subspace of 𝑅𝑛 because linear combination of 

any two solutions is again a solution and hence belongs to 𝑆. 

1.1.3 Linear Combination of Vectors: Let 𝑉 be a linear space over a field 𝐹. A vector 𝑣 ∈ 𝑉 

is a linear combination of vectors 𝑣1, 𝑣2, … , 𝑣𝑚 ∈ 𝑉 if there exist scalars 𝜆1, 𝜆2, … , 𝜆𝑚 ∈ 𝐹 such 

that 𝑣 = 𝜆1𝑣 + 𝜆2𝑣2 + ⋯+ 𝜆𝑚𝑣𝑚. The coefficients 𝜆1, 𝜆2, … , 𝜆𝑚 are called weights. 

A linear combination is said to be trivial if each 𝜆𝑖 = 0, it is called non-trivial if at least one of 

𝜆𝑖 ≠ 0. A subspace may also be defined as: 

A subset 𝑊 of a vector space 𝑉 is called a subspace of 𝑉 if it is closed under linear combination. 
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Remarks: If  𝑣 ∈ 𝑉 is a linear combination of  𝑣1, 𝑣2, … , 𝑣𝑚 ∈ 𝑉, then the representation of 𝑣 in 

terms of 𝑣1, 𝑣2, … , 𝑣𝑚 may not be unique. That is, 𝑣 may be expressible as a linear combination 

of these vectors in more than one way. 

Examples:  

1. Every vector in 𝑅3 is a linear combination of the vectors  

𝑒1 = (1, 0, 0), 𝑒2 = (0, 1, 0), 𝑒3 = (0, 0, 1) 

For if 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝑅3, then  

𝑥 = 𝑥1𝑒1 + 𝑥2𝑒2 + 𝑥3𝑒3 

2. The vector 𝑣 = (2, 7, 8) ∈ 𝑅3 is not a linear combination of the vectors  

𝑣1 = (1, 2, 3), 𝑣2 = (1, 3, 5), 𝑣3 = (1, 5, 9) 

For if                                     

                                                    𝑣 = 𝜆1𝑣1 + 𝜆2𝑣2 + 𝜆3𝑣3 

or                                

                                         (2, 7, 8) = 𝜆1(1, 2, 3) + 𝜆2(1, 3, 5) + 𝜆3(1, 5, 9) 

Then                        

                                                      𝜆1 + 𝜆2 + 𝜆3 = 2 

2𝜆1 + 3𝜆2 + 5𝜆3 = 7 

3𝜆1 + 5𝜆2 + 9𝜆3 = 8 

In matrix form 

[
1 1 1 2
2 3 5 7
3 5 9 8

]~ [
1 1 1 2
0 1 3 3
0 2 6 2

]~ [
1 1 1 2
0 1 3 3
0 0 0 −4

] 

This system of equations is inconsistent and does not have a solution. Hence 𝑣 cannot be 

written as a linear combination of 𝑣1, 𝑣2, 𝑣3. 

3. The vector 𝑣 = (1,−1,−3) ∈ 𝑅3 is a linear combination of the vectors 

𝑣1 = (2, 1, 0),   𝑣2 = (1, 1, 1),   𝑣3 = (0, 1, 1) 

because  

𝑣 = (−1)𝑣1 + 3𝑣2 + (−3)𝑣3 

Note that 𝑣 can also be written as 

𝑣 = 2𝑣1 + (−3)𝑣2 + (0)𝑣3 

1.1.4 Linear Span: If 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑚} ⊂ 𝑉. Linear span of 𝑆, denoted by Span(𝑆), is the set 

of all linear combinations of elements of 𝑆. That is,  

Span(𝑆) = {∑ 𝜆𝑖𝑣𝑖| 𝑣𝑖 ∈ 𝑉, 𝜆𝑖 ∈ 𝐹}𝑚
𝑖=1  

Vectors 𝑣1, 𝑣2, … , 𝑣𝑚 are said to span 𝑉 or to form a spanning set of 𝑉 if every 𝑣 ∈ 𝑉 is a linear 

combination of the vectors 𝑣1, 𝑣2, … , 𝑣𝑚. That is, if there exist scalars 𝜆1, 𝜆2, … , 𝜆𝑚 ∈ 𝐹 such that 

𝑣 = 𝜆1𝑣1 + 𝜆2𝑣2 + ⋯+ 𝜆𝑚𝑣𝑚 . Spanning set for {0} is the empty set. 
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Remarks:  

(i) Suppose 𝑣1, 𝑣2, … , 𝑣𝑚 span 𝑉. Then for any vector 𝑤, the set 𝑤, 𝑣1, 𝑣2, … , 𝑣𝑚 also spans 𝑉. 

(ii) Suppose 𝑣1, 𝑣2, … , 𝑣𝑚 span 𝑉 and suppose 𝑣𝑘 is a linear combination of some of the other 𝑣’s. 

Then the 𝑣’s without 𝑣𝑘 also span 𝑉. 

(iii) Suppose 𝑣1, 𝑣2, … , 𝑣𝑚 span 𝑉 and suppose one of the 𝑣’s is the zero vector. Then the 𝑣’s 

without the zero vector also span 𝑉. 

Examples: 

1. The vectors 𝑤1 = (1, 1, 1), 𝑤2 = (1, 1, 0), 𝑤3 = (1, 0, 0) form a spanning set of 𝑅3.  

For 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝑅3, let  

𝑥 = 𝜆1𝑤1 + 𝜆2𝑤2 + 𝜆3𝑤3 

              = 𝜆1(1, 1, 1) + 𝜆2(1, 1, 0) + 𝜆3(1, 0, 0) 

Then                               

                                         (𝑥1, 𝑥2, 𝑥3) = (𝜆1 + 𝜆2 + 𝜆3, 𝜆1 + 𝜆2, 𝜆1) 

This implies that             

                            𝜆1 + 𝜆2 + 𝜆3 = 𝑥1,   𝜆1 + 𝜆2 = 𝑥2,   𝜆1 = 𝑥3 

or 

                                  𝜆1 = 𝑥3, 𝜆2 = 𝑥2 − 𝑥3, 𝜆3 = 𝑥1 − 𝑥2 

 Hence 

𝑥 = 𝑥3𝑤1 + (𝑥2 − 𝑥3)𝑤2 + (𝑥1 − 𝑥2)𝑤3 

2. The vectors 𝑒1, 𝑒2, 𝑒3 form a spanning set of 𝑅3. 

3. The vectors (1, 2, 3), (1, 3, 5), (1, 5, 9) does not form a spanning set of 𝑅3.  

Here, e.g., (2, 7, 8) ∈ 𝑅3 cannot be written as a linear combination of these vectors. 

1.1.5 Linear Independence: The vectors 𝑣1, 𝑣2, … , 𝑣𝑚 ∈ 𝑉 are said to be linearly independent 

over 𝐹 if  

𝜆1𝑣1 + 𝜆2𝑣2 + ⋯+ 𝜆𝑚𝑣𝑚 = 0 

implies each 𝜆𝑖 = 0,  𝜆𝑖 ∈ 𝐹, 𝑖 = 1, 2, … ,𝑚. Otherwise, they are said to be linearly dependent.  

In other words, the vectors 𝑣1, 𝑣2, … , 𝑣𝑚 ∈ 𝑉 are said to be linearly dependent over 𝐹 if  

𝜆1𝑣1 + 𝜆2𝑣2 + ⋯+ 𝜆𝑚𝑣𝑚 = 0 

and not all 𝜆𝑖 are zero, 𝜆𝑖 ∈ 𝐹, 𝑖 = 1, 2, … ,𝑚. 

A subset {𝑣1, 𝑣2, … , 𝑣𝑚} is said to be linearly independent or linearly dependent according as the 

vectors 𝑣1, 𝑣2, … , 𝑣𝑚 are linearly independent or linearly dependent. 
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Remarks: 

1. A nonzero vector 𝑣, by itself is linearly independent. This is because 𝑎𝑣 = 0 and 𝑣 ≠ 0 

imply 𝑎 = 0. 

2. The zero vector is linearly dependent. 

3. The empty set is defined to be linearly independent. 

Examples: 

1. The vectors 𝑒1 = (1, 0, 0), 𝑒2 = (0, 1, 0), 𝑒3 = (0, 0, 1) belonging to 𝑅3 are linearly 

independent over 𝑅. 

2. The vectors (3, 0, −3), (−1, 1, 2), (4, 2, −2), (2, 1, 1) belonging to 𝑅3 are linearly 

dependent over 𝑅. 

 3. Let 𝑉 = 𝑃3(𝑡), then the vectors 

𝑡3 − 3𝑡2 + 5𝑡 + 1, 𝑡3 − 𝑡2 + 8𝑡 + 2, 2𝑡3 − 4𝑡2 + 9𝑡 + 5 

 belonging to 𝑃3(𝑡) are linearly independent. 

 4. Let 𝑉 be the vector space of all functions defined on 𝑅 to 𝑅. Then the vectors 

2,   4 sin2 𝑡,   cos2 𝑡 

are linearly dependent in 𝑉. 

Exercises: 

 1. What conditions must 𝛼, 𝛽, 𝛾, 𝛿 satisfy so that the matrices 

  

[
1 2

−1 0
] , [

2 3
−2 1

] , [
𝛼 𝛽
𝛾 𝛿

] 

in 𝑀22 are linearly dependent? 

2. Determine whether the following vectors in 𝑅4 are linearly independent or linearly 

dependent: 

 (i) (1, 3, −1, 4), (3, 8, −5, 7), (2, 9, 4, 23) 

 (ii) (1, −2, 4, 1), (2, 1, 0, −3), (1, −6, 1, 4) 

3. Determine 𝑘 so that the vectors 

 

(1, −1, 𝑘 − 1), (2, 𝑘, −4), (0, 2 + 𝑘,−8) ∈ 𝑅3 

are linearly dependent. 

Theorem: Let 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑚} ⊂ 𝑉 and 𝑣 ∈ Span(𝑆), then 𝑣 is uniquely expressible as a 

linear combination of elements of 𝑆 iff 𝑆 is linearly independent. 



 

6 
 

Proof: Suppose 𝑆 is linearly independent. Since 𝑣 ∈ Span(𝑆), there exist 𝜆1, 𝜆2, … , 𝜆𝑚 ∈ 𝐹 such 

that 

𝑣 = 𝜆1𝑣1 + 𝜆2𝑣2 + ⋯+ 𝜆𝑚𝑣𝑚 

Suppose 𝑣 is also expressible as 

𝑣 = 𝜇1𝑣1 + 𝜇2𝑣2 + ⋯+ 𝜇𝑚𝑣𝑚 

for 𝜇1, 𝜇2, … 𝜇𝑚 ∈ 𝐹. 

Then the above two equations give 

(𝜆1 − 𝜇1)𝑣1 + (𝜆2 − 𝜇2)𝑣2 + ⋯+ (𝜆𝑚 − 𝜇𝑚)𝑣𝑚 = 0 

Since 𝑣1, 𝑣2, … , 𝑣𝑚 are linearly independent  

𝜆1 − 𝜇1 = 𝜆2 − 𝜇2 = ⋯ = 𝜆𝑚 − 𝜇𝑚 = 0 

or  

𝜆1 = 𝜇1, 𝜆2 = 𝜇2, … , 𝜆𝑚 = 𝜇𝑚 

i.e., 𝑣 is uniquely expressible as a linear combination of elements of 𝑆. 

Conversely, suppose that every 𝑣 ∈ Span(𝑆) has a unique representation as a linear combination 

of elements of 𝑆. Consider 

𝜆1𝑣1 + 𝜆2𝑣2 + ⋯+ 𝜆𝑚𝑣𝑚 = 0 

Since 0 ∈ Span(𝑆) and  

(0)𝑣1 + (0)𝑣2 + ⋯+ (0)𝑣𝑚 = 0 

the uniqueness of representation of 0 in terms of 𝑣1, 𝑣2, … , 𝑣𝑚 implies that  

𝜆1 = 𝜆2 = ⋯ = 𝜆𝑚 = 0 

That is, 𝑆 is linearly independent. 

1.1.6 Basis and Dimension: A set 𝐵 of linearly independent vectors spanning a vector space 

𝑉 is called a basis for 𝑉. The basis vectors of a linear space are non-zero. A vector space 𝑉 is said 

to be of finite dimension 𝑛 or 𝑛-dimensional, written dim𝑉 = 𝑛 if 𝑉 has a basis with 𝑛 elements. 

For example, the vectors 𝑒1, 𝑒2, 𝑒3 are linearly independent and span 𝑅3. So, the set {𝑒1, 𝑒2, 𝑒3} 

forms a basis of 𝑅3 and 𝑅3 is a 3-dimensional vector space.  

Basis for {0} is the empty set and it is a 0-dimensional vector space. 

Since a basis 𝐵 is linearly independent and spans 𝑉, every 𝑣 ∈ 𝑉 is uniquely expressible as a linear 

combination of elements of 𝐵. 

Remarks: The definitions and theorems discussed above for 𝑉 hold for subspaces of 𝑉 as well. 

Exercise: Find a basis and dimension of the subspace 𝑊 of 𝑅4 spanned by: 

    (i) (1, 4, −1, 3), (2, 1, −3,−1), (0, 2, 1, −5) 

     (ii) (1, −4,−2, 1), (1, −3,−1, 2), (3, −8,−2, 7) 
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1.2 Affine Subspaces 
Let 𝑉 be a linear space and 𝑊 be a subspace of 𝑉, then 𝑊 contains the origin (the zero vector). 

But its coset 𝑊 + 𝑣 = 𝐴(say) where 𝑣 ∉ 𝑊 does not pass through the origin and hence is not a 

subspace of 𝑉. In fact, 𝐴 is not closed under linear combination. Still, there are certain kinds of 

linear combinations of elements of 𝐴 that belong to 𝐴. More specifically, if 𝜆, 𝜇 ∈ 𝐹 and 𝑎, 𝑏 ∈ 𝐴 

then 𝜆𝑎 + 𝜇𝑏 ∈ 𝐴 with the condition that 𝜆 +  𝜇 = 1. In order to see this, note that the elements 

of 𝐴 are of the form 𝑤 + 𝑣 where 𝑤 ∈ 𝑊, 𝑣 ∈ 𝑉.  

Now, if 𝜆𝑎 + 𝜇𝑏 ∈ 𝐴, there is a 𝑤 ∈ 𝑊 such that  

𝜆𝑎 + 𝜇𝑏 = 𝑤 + 𝑣 

Also, there are 𝑤1, 𝑤2 ∈ 𝑊 such that 

𝑎 = 𝑤1 + 𝑣, 𝑏 = 𝑤2 + 𝑣 

So that 

𝜆(𝑤1 + 𝑣) + 𝜇(𝑤2 + 𝑣) = 𝑤 + 𝑣 

(𝜆𝑤1 + 𝜇𝑤2) + (𝜆 + 𝜇)𝑣 = 𝑤 + 𝑣 

Since 𝑣 ∉ 𝑊, we must have  

𝜆 + 𝜇 = 1 

Which is the required condition. 

If 𝑣 ∈ 𝑊, we have 𝑊 + 𝑣 = 𝑊. So that, 𝜆𝑎 + 𝜇𝑏 ∈ 𝑊 for all 𝑎, 𝑏 ∈ 𝑊 and 𝜆, 𝜇 ∈ 𝑅 and in 

particular, for 𝜆 + 𝜇 = 1. 

The above discussion motivates the following intrinsic definition of an affine subspace of a linear 

space 𝑉 over 𝐹. 

1.2.1 Definition: A subset 𝐴 of a linear space 𝑉 is called an affine subspace of 𝑉 if 𝜆𝑎 + 𝜇𝑏 ∈ 𝐴 

for all 𝑎, 𝑏 ∈ 𝐴 and all 𝜆, 𝜇 ∈ 𝐹 such that 𝜆 + 𝜇 = 1. 

Since, 𝜇 = 1 − 𝜆, the above definition may also be written as: 

A subset 𝐴 of a linear space 𝑉 is called an affine subspace of  𝑉 if 𝜆𝑎 + (1 − 𝜆)𝑏 ∈ 𝐴 for all 

𝑎, 𝑏 ∈ 𝐴 and all 𝜆 ∈ 𝐹. 

Elements of an affine space are called points instead of vectors. 

Example: Consider a system of non-homogeneous equations 𝑀𝑥 = 𝑐 in 𝑛-unknowns, i.e., a 

system of the form 

𝛼11𝑥1 + 𝛼12𝑥2 + ⋯+ 𝛼1𝑛𝑥𝑛 = 𝑐1 

𝛼21𝑥1 + 𝛼22𝑥2 + ⋯+ 𝛼2𝑛𝑥𝑛 = 𝑐2 

……………………………… 

𝛼𝑚1𝑥1 + 𝛼𝑚2𝑥2 + ⋯ + 𝛼𝑚𝑛𝑥𝑛 = 𝑐𝑚 
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Then the solution set 𝑆 of this system is an affine subspace. To see this, let 𝑥, 𝑥′ be any two 

solutions, i.e., 𝑥, 𝑥′ ∈ 𝑆 and 𝜆, 𝜇 ∈ 𝐹, then 

𝑀(𝜆𝑥 + 𝜇𝑥′) = 𝜆𝑀𝑥 + 𝜇𝑀𝑥′ = 𝜆𝑐 + 𝜇𝑐 = (𝜆 + 𝜇)𝑐 

So that 𝜆𝑥 + 𝜇𝑥′ is also a solution, i.e., 𝜆𝑥 + 𝜇𝑥′ ∈ 𝑆 iff 𝜆 + 𝜇 = 1. 

Theorem: A subset 𝐴 ⊂ 𝑉 is an affine subspace of 𝑉 if and only if 𝐴 is of the form 𝑊 + 𝑣 for 

some 𝑣 ∈ 𝑉 and a subspace 𝑊 ⊂ 𝑉. 

Proof: It has already been shown in the discussion above, that any subset 𝐴 of the form 𝑊 + 𝑣 is 

an affine subspace. Now suppose that 𝐴 is an affine subspace. For any 𝑎 ∈ 𝐴, consider the set  

𝑊 = 𝐴 − 𝑎 = {𝑥 − 𝑎: 𝑥 ∈ 𝐴} 

We show that 𝑊 is a linear subspace. Let 𝑥 − 𝑎, 𝑦 − 𝑎 ∈ 𝑊 then, 

(𝑥 − 𝑎) + (𝑦 − 𝑎) + 𝑎 = 𝑥 + 𝑦 − 𝑎 

is a linear combination of elements of 𝐴, the sum of coefficients being 1 + 1 − 1 = 1. So  

(𝑥 − 𝑎) + (𝑦 − 𝑎) + 𝑎 = 𝑥 + 𝑦 − 𝑎 ∈ 𝐴 

and hence 

(𝑥 − 𝑎) + (𝑦 − 𝑎) ∈ 𝑊 

i.e., 𝑊 is closed under vector addition. 

Now, let 𝜆 ∈ 𝑅 and 𝑥 − 𝑎 ∈ 𝑊 then 

𝜆(𝑥 − 𝑎) + 𝑎 = 𝜆𝑥 + (1 − 𝜆)𝑎 

Since 𝜆 + (1 − 𝜆) = 1, so 𝜆(𝑥 − 𝑎) + 𝑎 ∈ 𝐴 and hence 𝜆(𝑥 − 𝑎) ∈ 𝑊 i.e., 𝑊 is closed under 

scalar multiplication. Hence 𝑊 = 𝐴 − 𝑎 is a linear subspace and  𝐴 = 𝑊 + 𝑎. 

This theorem allows us to alternatively define an affine subspace as follows: 

A subset 𝐴 of  𝑉 is called an affine subspace of  𝑉 if 𝐴 = 𝑊 + 𝑣, where 𝑊 is a subspace of  𝑉 and 

𝑣 ∈ 𝑉. 

In fact, affine subspaces are translates of linear subspaces. 

Examples:  

1. Lines in 𝑅2 passing through the origin are affine as well as linear subspaces. However, the lines 

which do not pass through the origin are affine subspace but not linear subspaces. 
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2. Consider the 3-dimentional Euclidean space 𝑅3. The plane 𝑊 = {(𝑥, 𝑦, 0): 𝑥, 𝑦 ∈ 𝑅} contains 

two of the three coordinate axes and passes through the origin and is a subspace of 𝑅3. If we 

translate 𝑊 by any vector 𝑥 ∈ 𝑅3, we get a plane 𝐴 parallel to 𝑊 which may not pass through the 

origin. Such a plane is an affine subspace of 𝑅3. If 𝑥 ∈ 𝑊, the affine subspace 𝐴 coincides with 

𝑊 and is a linear subspace. Points, lines, planes and 𝑅3 itself are affine subspaces of 𝑅3. 

An affine subspace of 𝑅𝑛 is also called a flat in 𝑅𝑛. 

3. Let 𝑆′ be the solution set of a system of non-homogeneous equations 𝑀𝑥 = 𝑐 in 𝑛-unknowns 

and 𝑆 be the solution set of the associated homogeneous equations 𝑀𝑥 = 0. If 𝑥′ is a particular 

solution of 𝑀𝑥 = 𝑐, then  

𝑆′ = 𝑥′ + 𝑆 

Solutions of a non-homogeneous system of equations are obtained by translating solutions of the 

corresponding homogeneous system using a particular solution of the non-homogeneous system. 

So, 𝑆′ is an affine subspace of 𝑅𝑛 obtained by translating the linear subspace 𝑆 of 𝑅𝑛. 

Theorem: If 𝑎, 𝑏 ∈ 𝐴 and 𝐴 is an affine subspace, then 𝐴 − 𝑎 = 𝐴 − 𝑏. 

Proof: Since 𝐴 is an affine subspace and 𝑎, 𝑏 ∈ 𝐴, 𝑊1 = 𝐴 − 𝑎 and 𝑊2 = 𝐴 − 𝑏 are linear 

subspaces and 𝑊1 + 𝑎 = 𝐴 = 𝑊2 + 𝑏. We show that 𝑊1 = 𝑊2.  

For any 𝑥 ∈ 𝐴, 𝑥 − 𝑎 ∈ 𝑊1 and in particular,  

                                𝑏 − 𝑎 ∈ 𝑊1                           (∵ 𝑏 ∈ 𝐴) 

Since 𝑊1 is a linear subspace 

                                                        𝑊1 + 𝑏 − 𝑎 = 𝑊1 

This implies that 

                                                        𝑊1 + 𝑏 = 𝑊1 + 𝑎 

or           

                                                        𝑊1 + 𝑏 = 𝑊2 + 𝑏              (∵ 𝑊1 + 𝑎 = 𝐴 = 𝑊2 + 𝑏) 
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So, 

                                                        𝑊1 = 𝑊2 

i.e., 

                                                        𝐴 − 𝑎 = 𝐴 − 𝑏 

Theorem: An affine subspace 𝐴 is a linear subspace iff 0 ∈ 𝐴. In other words, a subset 𝐴 is a 

linear subspace iff 

(i) 0 ∈ 𝐴 

(ii) for any 𝑎, 𝑏 ∈ 𝐴 and 𝜆 ∈ 𝐹, 𝑎𝜆 + (1 − 𝜆)𝑏 ∈ 𝐴 

Proof: Suppose 𝐴 is an affine subspace and 0 ∈ 𝐴. For any 𝑎 ∈ 𝐴,  

𝜆𝑎 = 𝜆𝑎 + (1 − 𝜆)(0) ∈ 𝐴 

So that 𝐴 is closed under scalar multiplication. 

Also, for any 𝑎, 𝑏 ∈ 𝐴, we have  

1

𝜆
𝑎,

1

1 − 𝜆
𝑏 ∈ 𝐴 

because 𝐴 is closed under scalar multiplication. So, 

𝑎 + 𝑏 = 𝜆 (
1

𝜆
𝑎) + (1 − 𝜆) (

1

1 − 𝜆
𝑏) ∈ 𝐴 

Hence 𝐴 is a linear subspace. 

Conversely, suppose that 𝐴 is a linear subspace. Then 0 ∈ 𝐴 and 𝐴 is closed under all linear 

combinations and in particular, for any 𝑎, 𝑏 ∈ 𝐴 and 𝜆 ∈ 𝐹, 𝑎𝜆 + (1 − 𝜆)𝑏 ∈ 𝐴. 

With the above theorem, a linear subspace may also be defined as follows: 

A subset 𝑊 of a linear space 𝑉 is a subspace of  𝑉 if  

(i) 0 ∈ 𝑊 

(ii) for any 𝑢, 𝑣 ∈ 𝑊 and 𝜆 ∈ 𝐹, 𝑢𝜆 + (1 − 𝜆)𝑣 ∈ 𝑊 

We see that the difference between linear subspaces and affine subspaces is that linear subspaces 

necessarily contain the zero vector, whereas affine subspaces may not i.e., linear subspaces are 

special types of affine subspaces which contain the zero vector. 

Remarks:  

1. The empty set { } ⊂ 𝑉 is not a linear subspace because 0 ∉ { } but it is trivially an affine 

subspace of 𝑉.  

2. Any singleton {𝑣} ⊂ 𝑉 is an affine subspace of 𝑉.  

3. The only singleton which is a linear subspace of 𝑉 is {0}. 
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1.2.2 Affine Combination: Let 𝑉 be a linear space over a field 𝐹. A vector (or a point) 𝑣 ∈ 𝑉 

is an affine combination of  𝑣1, 𝑣2, … , 𝑣𝑚 ∈ 𝑉 if there exist scalars 𝜆1, 𝜆2, … , 𝜆𝑚 ∈ 𝐹 such that 

𝑣 = 𝜆1𝑣1 + 𝜆2𝑣2 + ⋯+ 𝜆𝑚𝑣𝑚 and 𝜆1 + 𝜆2 + ⋯+ 𝜆𝑚 = 1. 

If 𝐴 is an affine subspace of 𝑅𝑛, then the set of all affine combinations of two points 𝑎, 𝑏 ∈ 𝐴 is 

the line passing through 𝑎 and 𝑏. 

We may also define an affine subspace as follows: 

A subset 𝐴 of 𝑉 is called an affine subspace of 𝑉 if 𝐴 is closed under affine combination. 

Theorem: A point 𝑣 ∈ 𝑉 is an affine combination of 𝑣0, 𝑣1, … , 𝑣𝑚 ∈ 𝑉 iff 𝑣 − 𝑣0 is a linear 

combination of the translated points 𝑣1 − 𝑣𝑜 , 𝑣2 − 𝑣0, … , 𝑣𝑚 − 𝑣0. 

Proof: The following two equations  

𝑣 − 𝑣0 = 𝜆1(𝑣1 − 𝑣0) + 𝜆2(𝑣2 − 𝑣0) + ⋯+ 𝜆𝑚(𝑣𝑚 − 𝑣0) 

𝑣 = (1 − 𝜆1 − 𝜆2 − ⋯− 𝜆𝑚)𝑣0 + 𝜆1𝑣1 + 𝜆2𝑣2 + ⋯+ 𝜆𝑚𝑣𝑚 

are equivalent, where 𝜆1, 𝜆2, … , 𝜆𝑚 ∈ 𝑅.  

So, any 𝑣 ∈ 𝑅𝑛 is an affine combination of 𝑣0, 𝑣1, … , 𝑣𝑚 ∈ 𝑅𝑛 iff 𝑣 − 𝑣0 is a linear combination 

of the translated points 𝑣1 − 𝑣0, 𝑣2 − 𝑣0, … , 𝑣𝑚 − 𝑣0. 

Examples:  

1. For 𝑣 = (4, 1), 𝑣0 = (1, 2), 𝑣1 = (2, 5), 𝑣2 = (1, 3), 𝑣3 = (−2, 2) ∈ 𝑅2, we see if 𝑣 is 

expressible as an affine combination of 𝑣0, 𝑣1, 𝑣2, 𝑣3. For this, consider the linear combination 

𝜆1(𝑣1 − 𝑣0) + 𝜆2(𝑣2 − 𝑣0) + 𝜆3(𝑣3 − 𝑣0) = 𝑣 − 𝑣0 

This implies that 

𝜆1(1, 3) + 𝜆2(0, 1) + 𝜆3(−3, 0) = (3,−1) 

Which gives the following system of two equations in three unknowns 

𝜆1 − 3𝜆3 = 3 

3𝜆1 + 𝜆2 = −1 

and in matrix form 

[
1 0 −3 3
3 1 0 −1

]~ [
1 0 −3 3
0 1 9 −10

] 

Available at MathCity.org
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So, the above system of equations is consistent, and the general solution of this system of 

equations is 𝜆1 = 3𝜆3 + 3, 𝜆2 = −9𝜆3 − 10, with 𝜆3 free. Setting 𝜆3 = 0, we get 𝜆1 = 3 and 

𝜆2 = −10. So, 

3(𝑣1 − 𝑣0) − 10(𝑣2 − 𝑣0) + 0(𝑣3 − 𝑣0) = 𝑣 − 𝑣0 

Which gives 𝑣 as an affine combination of 𝑣0, 𝑣1, 𝑣2 and 𝑣3 i.e., 

𝑣 = 8𝑣0 + 3𝑣1 − 10𝑣2 + 0𝑣3 

Note that 𝑣 is not uniquely expressible as an affine combination of 𝑣0, 𝑣1, 𝑣2, 𝑣3 because, for 

example, if we take 𝜆3 = 1 we get, 

𝑣 = 13𝑣0 + 6𝑣1 − 19𝑣2 + 𝑣3 

However, if we write 𝑣 as an affine combination of basis vectors, then the representation is unique 

because basis vectors are linearly independent. In fact, there is no need to follow the above 

procedure. Instead, we write 𝑣 as a linear combination of the given basis vectors. Now this linear 

combination is an affine combination of the given basis vectors iff the weights sum to 1. The 

following example elaborates this. 

2. Consider the vectors 𝑣 = (1, 2, 2), 𝑣1 = (4, 0, 3), 𝑣2 = (0, 4, 2), 𝑣3 = (5, 2, 4) ∈ 𝑅3. We see if 

𝑣 is an affine combination of the other vectors.  

It may be easily verified that 𝑣1, 𝑣2, 𝑣3 form a basis for 𝑅3. So, we write 𝑣 as a linear combination 

of these vectors. Let, 

𝑣 = 𝜆1𝑣1 + 𝜆2𝑣2 + 𝜆3𝑣3 

or 

(1, 2, 2) = 𝜆1(4, 0, 3) + 𝜆2(0, 4, 2) + 𝜆3(5, 2, 4) 

Which gives 

[
4 0 5 1
0 4 2 2
3 2 4 2

]~ [

1 0 0 2/3
0 1 0 2/3
0 0 1 −1/3

] 

So that  

𝑣 =
2

3
𝑣1 +

2

3
𝑣2 −

1

3
𝑣3 

We see that the sum of the weights is not 1. So, 𝑣 is not expressible as an affine combination of 

𝑣1, 𝑣2, 𝑣3. 
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1.2.3 Convex Combination: A convex combination of 𝑣1, 𝑣2, … 𝑣𝑚 ∈ 𝑉 is a linear combination 

𝜆1𝑣1 + 𝜆2𝑣2 + ⋯+ 𝜆𝑚𝑣𝑚 such that 𝜆1 + 𝜆2 + ⋯+ 𝜆𝑚 = 1 and each 𝜆𝑖 ≥ 0. In other words, a 

convex combination of 𝑣1, 𝑣2, … 𝑣𝑚 is an affine combination with non-negative weights. 

Example: For 𝑣1, 𝑣2 ∈ 𝑅𝑛, the set of convex combinations of 𝑣1 and 𝑣2 is the line segment joining 

𝑣1 and 𝑣2. 

1.2.4 Dimension of an Affine Subspace: If 𝐴 is an affine subspace of 𝑉 and 𝑎 ∈ 𝐴 then the 

dimension of 𝐴 is the dimension of the linear subspace 𝐴 − 𝑎 of 𝑉. 

1.2.5 Affine Span: If  𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑚} ⊂ 𝑉. Affine span of 𝑆, denoted by Aff(𝑆), is the set 

of all affine combinations of elements of 𝑆. That is, 

Aff(𝑆) = {∑ 𝜆𝑖𝑣𝑖| 𝑣𝑖 ∈ 𝑉, ∑ 𝜆𝑖 = 1𝑚
𝑖=1 }𝑚

𝑖=1  

A subset 𝑆 is said to span an affine subspace 𝐴 or to form a spanning set of 𝐴 if every 𝑎 ∈ 𝐴 is an 

affine combination of the elements of 𝑆. That is, if there exist scalars 𝜆1, 𝜆2, … , 𝜆𝑚 ∈ 𝐹 such that 

𝑎 = 𝜆1𝑣1 + 𝜆2𝑣2 + ⋯+ 𝜆𝑚𝑣𝑚  and 𝜆1 + 𝜆2 + ⋯+ 𝜆𝑚 = 1 . 

1.2.6 Affine Independence: The vectors (or points) 𝑣0, 𝑣1, … , 𝑣𝑚 ∈ 𝑉 are said to be affine 

independent if 𝜆0𝑣0 + 𝜆1𝑣1 + ⋯+ 𝜆𝑚𝑣𝑚 = 0 with 𝜆0 + 𝜆1 + ⋯+ 𝜆𝑚 = 0  implies  

𝜆𝑜 = 𝜆1 = ⋯ = 𝜆𝑚 = 0 

Otherwise, they are said to be affine dependent.  

A subset {𝑣𝑜 , 𝑣1, … , 𝑣𝑚} is said to be affine independent or affine dependent according as the 

vectors  𝑣𝑜 , 𝑣1, … , 𝑣𝑚 are affine independent or affine dependent.  

Exercise: Show that a subset {𝑣𝑜 , 𝑣1, … , 𝑣𝑚} is affinely independent if and only if 

{ 𝑣1 − 𝑣𝑜 , 𝑣2 − 𝑣𝑜 , … , 𝑣𝑚 − 𝑣𝑜} is linearly independent subset. 

Solution: Note that the following two equations 

𝜆1(𝑣1 − 𝑣0) + 𝜆2(𝑣2 − 𝑣0) + ⋯+ 𝜆𝑚(𝑣𝑚 − 𝑣0) = 0 

−(𝜆1 + 𝜆2 + ⋯+ 𝜆𝑚)𝑣0 + 𝜆1𝑣1 + 𝜆2𝑣2 + ⋯+ 𝜆𝑚𝑣𝑚 = 0 

are equivalent. Now it is easy to see that {𝑣𝑜 , 𝑣1, … , 𝑣𝑚} is affinely independent if and only if 

{ 𝑣1 − 𝑣𝑜 , 𝑣2 − 𝑣𝑜 , … , 𝑣𝑚 − 𝑣𝑜} is linearly independent. 

Available at MathCity.org
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Remarks: As in case of linear spaces, an element 𝑎 ∈Aff(𝑆) is uniquely expressible as an affine 

combination of elements of 𝑆 iff 𝑆 is affine independent. 

1.2.7 Affine Basis: An affine independent subset 𝐵 which spans an affine subspace 𝐴 is called 

an affine basis of  𝐴. If 𝐵 has 𝑟 + 1 elements, then the dimension of 𝐴 is 𝑟. 

If {𝑒1, 𝑒2, … , 𝑒𝑟} is a basis of a linear subspace 𝑊, then an affine basis for 𝑊 is {0, 𝑒1, 𝑒2, … , 𝑒𝑟}. 

Since a basis 𝐵 is affine independent and spans 𝐴, every 𝑎 ∈ 𝐴 is uniquely expressible as an affine 

combination of elements of 𝐵. 

1.2.8 Barycentric or Affine Coordinates: If 𝐵 is an affine basis of the affine subspace 𝐴, then 

each point 𝑎 ∈ 𝐴 has a unique representation as an affine combination of the elements of 𝐵. The 

coefficients of this affine combination are called barycentric or affine coordinates of 𝑎. 

Let 𝑎 = 𝜆1𝑣1 + 𝜆2𝑣2 + ⋯+ 𝜆𝑚𝑣𝑚 , 𝜆1 + 𝜆2 + ⋯ + 𝜆𝑚 = 1, then these two equations are 

equivalent to the single equation 

[
𝑎
1
] = 𝜆1 [

𝑣1

1
] + 𝜆2 [

𝑣2

1
] + ⋯+ 𝜆𝑚 [

𝑣𝑚

1
] 

or 

[𝑎′] = 𝜆1[𝑣1
′ ] + 𝜆2[𝑣2

′ ] + ⋯+ 𝜆𝑚[𝑣𝑚
′ ] 

and row reduction of the augmented matrix [𝑣1 
′   𝑣2

′    …   𝑣𝑚
′     𝑎′] produces the barycentric 

coordinates of 𝑎. 

Example: If 𝑎 = (5, 3) ∈ Aff ({(1, 7), (3, 0), (9, 3)}) and (1, 7), (3, 0), (9, 3) are affine 

independent, we can find the barycentric coordinates of 𝑎. Consider the augmented matrix 

[
1 3 9 5
7 0 3 3
1 1 1 1

]~ [
1 1 1 1
1 3 9 5
7 0 3 3

]~

[
 
 
 
 
 1 0 0

1

4

0 1 0
1

3

0 0 1
5

12]
 
 
 
 
 

 

Thus, the barycentric coordinates of 𝑎 are 1/4, 1/3 and 5/12. 

 So, 

𝑎 =
1

4
(1, 7) +

1

3
(3, 0) +

5

12
(9, 3) 

1.2.9 Hyperplane in 𝑅𝑛: An affine subspace 𝐻 of 𝑅𝑛 whose dimension is 𝑛 − 1 is called a 

hyperplane in 𝑅𝑛. 

Hyperplanes in Euclidean spaces arise as the perpendicular bisectors of line segments. 
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Remarks: If 𝐻 is a linear hyperplane of 𝑅𝑛 then there is a non-zero 𝑥 ∈ 𝑅𝑛 such that 𝐻 = {𝑥}⊥ 

This is because the dimension of 𝐻 is 𝑛 − 1 and any orthonormal basis of 𝐻 can be extended by 

a vector 𝑥 ∈ 𝑅𝑛 to an orthonormal basis of 𝑅𝑛. 

Theorem: If 𝑎, 𝑏 ∈ 𝑅𝑛 with 𝑎 ≠ 𝑏, then 𝐵 = {𝑥| 𝑑(𝑥, 𝑎) = 𝑑(𝑥, 𝑏)} is a hyperplane in 𝑅𝑛. 

Proof: Since 

𝑑 (
𝑎 + 𝑏

2
, 𝑎) = 𝑑 (

𝑎 + 𝑏

2
, 𝑏) 

So, 
𝑎 + 𝑏

2
∈ 𝐵 

We show that 𝐻 = 𝐵 − (𝑎 + 𝑏)/2 is a linear subspace. Since 𝑑 is translation invariant and  

𝑑(𝑥, 𝑎) = 𝑑(𝑥, 𝑏), this implies that in 𝐻, 

𝑑 (𝑥 −
𝑎 + 𝑏

2
, 𝑎 −

𝑎 + 𝑏

2
) = 𝑑 (𝑥 −

𝑎 + 𝑏

2
, 𝑏 −

𝑎 + 𝑏

2
) 

This implies that 

𝑑 (𝑥 −
𝑎 + 𝑏

2
,
𝑎 − 𝑏

2
) = 𝑑 (𝑥 −

𝑎 + 𝑏

2
,−

𝑎 − 𝑏

2
) 

or  

𝑑 (𝑥 −
𝑎 + 𝑏

2
, 𝑐) = 𝑑 (𝑥 −

𝑎 + 𝑏

2
,−𝑐) 

where                                           

𝑐 =
𝑎 − 𝑏

2
 

Hence 

𝐻 = {𝑥 −
𝑎 + 𝑏

2
: 𝑑 (𝑥 −

𝑎 + 𝑏

2
, 𝑐) = 𝑑 (𝑥 −

𝑎 + 𝑏

2
,−𝑐)} = {𝑥|𝑑(𝑥, 𝑐) = 𝑑(𝑥,−𝑐)} 

Now, if 𝑐, 𝑒2, 𝑒3, … , 𝑒𝑛 is an orthogonal basis for 𝑅𝑛, then 𝑒2, 𝑒3, … , 𝑒𝑛 is a basis for 𝐻. 
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Inner Product and Euclidean Geometry 
 

2.1. Inner Product Spaces 

Inner product spaces are vector spaces with an inner product defined on them. We discuss inner 

product and norm induced by an inner product. 

2.1.1 Inner Product: Let 𝑉 be a vector space over the field 𝑅 of real numbers. A mapping 

denoted by <. , . > ∶ 𝑉 × 𝑉 → 𝑅 is said to be a real inner product or simply an inner product on 𝑉 

if it satisfies the following axioms: 

(i) < 𝑣, 𝑣 >  ≥ 0 and < 𝑣, 𝑣 > = 0 ⟺ 𝑣 = 0 (Positive definite property) 

(ii) < 𝑢, 𝑣 > = < 𝑣, 𝑢 > (Symmetric property) 

(iii) < 𝛼𝑢 + 𝛽𝑣, 𝑤 > = 𝛼 < 𝑢, 𝑤 >  +𝛽 < 𝑣,𝑤 > (Linear property) 

The vector space 𝑉 with an inner product is called an inner product space. 

2.1.2 Euclidean Inner Product: Let 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛) ∈ 𝑅𝑛. Then the 

product  

< 𝑥, 𝑦 > = 𝑥1𝑦1 + 𝑥2𝑦2 + ⋯+ 𝑥𝑛𝑦𝑛 

satisfies all the properties of inner product and is called the Euclidean inner product on 𝑅𝑛. This 

product is also called the scalar product. 

𝑅𝑛 with this inner product is called the 𝑛-dimensional Euclidean space. 

Exercises:  

1. Show that the Euclidean inner product defined above satisfies the axioms of an inner 

product. 

2. Let 𝑥 = (𝑥1, 𝑥2), 𝑦 = (𝑦1, 𝑦2) ∈ 𝑅2. Show that the following is an inner product on 𝑅2 

< 𝑥, 𝑦 > = 𝑥1𝑦1 − 𝑥1𝑦2 − 𝑥2𝑦1 + 3𝑥2𝑦2 

2.1.3 Norm of a Vector: Let 𝑉 be an inner product space and 𝑣 ∈ 𝑉. Then the norm or length 

of 𝑣 is a real number denoted by ‖𝑣‖ and is defined as  

‖𝑣‖ = √< 𝑣, 𝑣 > 

If ‖𝑣‖ = 1, then 𝑣 is called a unit vector or is said to be a normalized vector. Any nonzero vector 

𝑣 ∈ 𝑉 can be normalized by multiplying it by 1/‖𝑣‖. Thus 𝑣/‖𝑣‖ is a normalized vector. 

Available at MathCity.org
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Norm of any 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑅𝑛 with respect to the Euclidean inner product or scalar 

product is  

‖𝑥‖ = √< 𝑥, 𝑥 > = √𝑥1
2 + 𝑥2

2 + ⋯+ 𝑥𝑛
2 

This is the length or magnitude of 𝑥 in 𝑅𝑛.  

Example: If we consider the inner product < 𝑥, 𝑦 > = 𝑥1𝑦1 − 𝑥1𝑦2 − 𝑥2𝑦1 + 3𝑥2𝑦2 in 𝑅2 where  

𝑥 = (𝑥1, 𝑥2), 𝑦 = (𝑦1, 𝑦2), the norm of 𝑥 = (3, 4) with respect to this inner product is  

‖𝑥‖ = √< 𝑥, 𝑥 > =  9 − 24 + 48 = 33 

However, with respect to the Euclidean inner product the norm of the same vector 𝑥 is  

‖𝑥‖ = √9 + 16 = 5 

which represents the length or magnitude of 𝑥 in 𝑅2. 

Note: 𝑅𝑛 will always represent 𝑛-dimensional Euclidean space if no inner product is specified. 

Exercise: Normalize 𝑦 = (1, 2, 1) ∈ 𝑅3. 

2.1.4 Distance Between Two Points: In 𝑅𝑛 each vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) corresponds to a 

point 𝑃 and is called the position vector of 𝑃. The real numbers 𝑥1, 𝑥2, … , 𝑥𝑛 are called the 

coordinates of 𝑃.  

If  𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛) are the position vectors of 𝑃 and 𝑄 respectively 

then the distance between 𝑃 and 𝑄 denoted by 𝑃𝑄 or 𝑄𝑃 is the length of the line segment joining 

𝑃 and 𝑄 and is given by 

𝑃𝑄 = 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + ⋯+ (𝑥𝑛 − 𝑦𝑛)2 

2.1.4 Cauchy-Schwarz Inequality: Let 𝑢, 𝑣 be elements of an inner product space 𝑉 over 𝑅. 

Then 

|< 𝑢, 𝑣 > |≤ ‖𝑢‖ ‖𝑣‖ 

Proof: If 𝑣 = 0, then both sides are zero and the equality holds. Now let 𝑣 ≠ 0.  

Then, ∀ 𝑡 ∈ 𝑅, 

                                         0 ≤ ‖𝑢 − 𝑡𝑣‖2  

= < 𝑢 − 𝑡𝑣, 𝑢 − 𝑡𝑣 >  

= < 𝑢, 𝑢 > −𝑡 < 𝑢, 𝑣 > −𝑡 < 𝑣, 𝑢 > +𝑡2 < 𝑣, 𝑣 >  

= < 𝑢, 𝑢 > −2𝑡 < 𝑢, 𝑣 > +𝑡2 < 𝑣, 𝑣 > (∵< 𝑢, 𝑣 >=< 𝑣, 𝑢 >) 
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Let 𝑡 =< 𝑢, 𝑣 >/‖𝑣‖2. Then,  

0 ≤ ‖𝑢‖2 −
2 < 𝑢, 𝑣 >< 𝑢, 𝑣 >

‖𝑣‖2
+

| < 𝑢, 𝑣 > |2

‖𝑣‖4
   ( ∵ 𝑡2 = |𝑡|2 )   

= ‖𝑢‖2 −
| < 𝑢, 𝑣 > |2

‖𝑣‖2
                               

Multiplying both sides by ‖𝑣‖2 > 0, we have 

0 ≤ ‖𝑢‖2 ‖𝑣‖2 − | < 𝑢, 𝑣 > |2                        

That is, 

| < 𝑢, 𝑣 > |2 ≤ ‖𝑢‖2 ‖𝑣‖2               

Taking square root of both the sides, we get 

| < 𝑢, 𝑣 > | ≤ ‖𝑢‖ ‖𝑣‖                     

2.1.5 Angle Between Two Vectors: Let 𝑉 be an inner product space over 𝑅 and 𝑢, 𝑣 ∈ 𝑉. 

Then the angle 𝜃 between 𝑢 and 𝑣 is defined as 

cos 𝜃 =
< 𝑢, 𝑣 >

‖𝑢‖ ‖𝑣‖
,   0 ≤ 𝜃 ≤ 𝜋 

If < 𝑢, 𝑣 > = 0, we say that 𝑢 is orthogonal to 𝑣 and write as 𝑢 ⊥ 𝑣. The relation of being 

orthogonal is symmetric, for < 𝑢, 𝑣 > = 0 ⟺ < 𝑣, 𝑢 > = 0. Thus if 𝑢 ⊥ 𝑣, then 𝑣 ⊥ 𝑢.  

Two vectors 𝑢 and 𝑣 are said to be orthogonal if and only if < 𝑢, 𝑣 > = 0 or 𝜃 = 𝜋/2. 

Examples: 

1. Let 𝑥 = (1,−1, 2), 𝑦 = (−1, 1, 1) ∈ 𝑅3. Then < 𝑥, 𝑦 > =  −1 − 1 + 2 = 0.  

So, 𝑥 ⊥ 𝑦. Similarly, (1, −1, 1, −1), (−1, 2, 2, 1) ∈ 𝑅4 are orthogonal. 

2. A vector 𝑥 orthogonal to (1, 1, 2), (0, 1, 3) ∈ 𝑅3 is   

𝑥 = |
𝑒1 𝑒2 𝑒3

1 1 2
0 1 3

| 

= 𝑒1 − 3𝑒2 + 𝑒3 

= (1,−3, 1) 

and a unit vector in the direction of 𝑥 is 

𝑥

‖𝑥‖
= (

1

11
,−

3

11
,
1

11
) 



 

19 
 

Theorem: Let 𝑉 be an inner product space and 𝑢, 𝑣 ∈ 𝑉, 𝑘 ∈ 𝑅, then the norm in 𝑉 satisfies the 

following axioms: 

(i) ‖𝑣‖ ≥ 0 and ‖𝑣‖ = 0 if and only if 𝑣 = 0 

(ii) ‖𝑘𝑣‖ = |𝑘|‖𝑣‖ 

(iii) ‖𝑢 + 𝑣‖ ≤ ‖𝑢‖ + ‖𝑣‖  (The Triangle Inequality) 

Proof:  

(i) Since  

‖𝑣‖ = √< 𝑣, 𝑣 > and < 𝑣, 𝑣 >  ≥ 0, 

We have  

‖𝑣‖ ≥ 0. 

Also,  

‖𝑣‖ = 0 ⟺ 𝑣 = 0 

(ii) Here,  

‖𝑘𝑣‖2 =< 𝑘𝑣, 𝑘𝑣 >  

= 𝑘2 < 𝑣, 𝑣 >  

= |𝑘|2‖𝑣‖ 

Taking square root of both sides, we get 

‖𝑘𝑣‖ = |𝑘|‖𝑣‖ 

(iii) In this case  

‖𝑢 + 𝑣‖2 =< 𝑢 + 𝑣, 𝑢 + 𝑣 > 

=< 𝑢, 𝑢 > +< 𝑢, 𝑣 > +< 𝑣, 𝑢 > +< 𝑣, 𝑣 >  

= ‖𝑢‖2 + 2 < 𝑢, 𝑣 > +‖𝑣‖2 

≤ ‖𝑢‖2 + 2|< 𝑢, 𝑣 >| + ‖𝑣‖2 

≤ ‖𝑢‖2 + 2‖𝑢‖ ‖𝑣‖ + ‖𝑣‖2 

That is,  

  ‖𝑢 + 𝑣‖2 ≤ (‖𝑢‖ + ‖𝑣‖)2  

Taking square root of both sides, we have  

    ‖𝑢 + 𝑣‖ ≤ ‖𝑢‖ + ‖𝑣‖   
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Exercises: 

1. Let (2, −1, 2), (3, −1, 4), (2, 1, 1) ∈ 𝑅3. Find a unit vector orthogonal to (2, −1, 2) and 

(3, −1, 4) and a unit vector orthogonal to (2, −1, 2) and (2, 1, 1). 

2. If 𝑢 is orthogonal to 𝑣, show that every scalar multiple of 𝑢 is also orthogonal to 𝑣. 

3. Show that 0 is the only vector which is orthogonal to every vector. 

2.2. The Laws of Cosine and Sines  

We can prove the laws of cosine and sines using Cauchy-Schwarz inequality. 

2.2.1 The Law of Cosine: In any triangle 𝐴𝐵𝐶,  

(𝐵𝐶)2 = (𝐶𝐴)2 + (𝐴𝐵)2 − 2(𝐶𝐴)(𝐴𝐵) cos 𝛼 

(𝐶𝐴)2 = (𝐴𝐵)2 + (𝐵𝐶)2 − 2(𝐴𝐵)(𝐵𝐶) cos 𝛽 

(𝐴𝐵)2 = (𝐵𝐶)2 + (𝐶𝐴)2 − 2(𝐵𝐶)(𝐶𝐴) cos 𝛾 

where,  𝑚∠𝐶𝐴𝐵 = 𝛼,𝑚∠𝐴𝐵𝐶 = 𝛽,𝑚∠𝐵𝐶𝐴 = 𝛾. 

Proof: Let 𝑥, 𝑦, 𝑧 be the vectors along the sides of the triangle 𝐴𝐵𝐶 such that 𝑥 + 𝑦 = 𝑧 and 

‖𝑥‖ = 𝐵𝐶, ‖𝑦‖ = 𝐶𝐴, ‖𝑧‖ = 𝐴𝐵. 

Now, 

‖𝑥‖2 =< 𝑥, 𝑥 >  

= < 𝑧 − 𝑦, 𝑧 − 𝑦 >  

= ‖𝑧‖2 + ‖𝑦‖2 − 2 < 𝑧, 𝑦 > 

= ‖𝑧‖ + ‖𝑦‖2 − 2 ‖𝑧‖‖𝑦‖ cos 𝛼    (∵ < 𝑧, 𝑦 > = ‖𝑧‖ ‖𝑦‖ cos𝛼) 

i.e., 

(𝐵𝐶)2 = (𝐶𝐴)2 + (𝐴𝐵)2 − 2(𝐶𝐴)(𝐴𝐵) cos 𝛼  

Similarly,  

(𝐶𝐴)2 = (𝐴𝐵)2 + (𝐵𝐶)2 − 2(𝐴𝐵)(𝐵𝐶) cos 𝛽 

(𝐴𝐵)2 = (𝐵𝐶)2 + (𝐶𝐴)2 − 2(𝐵𝐶)(𝐶𝐴) cos 𝛾   

2.2.2 Pythagoras Theorem: If 𝐴𝐵𝐶 is a right-angled triangle with 𝑚∠𝐵𝐶𝐴 = 𝛾 = 𝜋/2, then  

(𝐴𝐵)2 = (𝐵𝐶)2 + (𝐶𝐴)2 

Proof: With 𝛾 = 𝜋/2 in the law of cosine (𝐴𝐵)2 = (𝐵𝐶)2 + (𝐶𝐴)2 − 2(𝐵𝐶)(𝐶𝐴) cos 𝛾, we get 

the result. 
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2.2.3 Parallelogram Law: For any two elements 𝑥, 𝑦 ∈ 𝑅𝑛,  

‖𝑥 + 𝑦‖2 + ‖𝑥 − 𝑦‖2 = 2‖𝑥‖2 + 2‖𝑦‖2 

Proof: Here, 

‖𝑥 + 𝑦‖2 =< 𝑥 + 𝑦, 𝑥 + 𝑦 >  

=< 𝑥, 𝑥 > +< 𝑥, 𝑦 > +< 𝑦, 𝑥 > +< 𝑦, 𝑦 >  

= ‖𝑥‖2 + 2 < 𝑥, 𝑦 > +‖𝑦‖2 

Similarly, 

‖𝑥 − 𝑦‖2 = ‖𝑥‖2 − 2 < 𝑥, 𝑦 > +‖𝑦‖2 

Adding these two equations we get the result. 

2.2.4 The Law of Sines: In any tringle 𝐴𝐵𝐶, 

𝐴𝐵

sin 𝛾
=

𝐵𝐶

sin 𝛼
=

𝐶𝐴

sin 𝛽
  

where,  𝑚∠𝐶𝐴𝐵 = 𝛼,𝑚∠𝐴𝐵𝐶 = 𝛽,𝑚∠𝐵𝐶𝐴 = 𝛾. 

Proof: Since none of the angles 𝛼, 𝛽, 𝛾 exceeds 𝜋, we can write 

sin 𝛼

sin 𝛽
=

√1 − cos2 𝛼

√1 − cos2 𝛽
 

= √
1 − (

(𝐵𝐶)2 − (𝐶𝐴)2 − (𝐴𝐵)2

2(𝐶𝐴)(𝐴𝐵)
)
2

1 − (
(𝐶𝐴)2 − (𝐴𝐵)2 − (𝐵𝐶)2

2(𝐴𝐵)(𝐵𝐶)
)
2 

=
𝐵𝐶

𝐶𝐴
 

This implies that 

𝐵𝐶

sin 𝛼
=

𝐶𝐴

sin 𝛽
 

Similarly,  

𝐴𝐵

sin 𝛾
=

𝐵𝐶

sin 𝛼
 

Hence,  

𝐴𝐵

sin 𝛾
=

𝐵𝐶

sin 𝛼
=

𝐶𝐴

sin 𝛽
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2.3 Euclidean Constructions  

A construction is, in some sense, a physical substantiation of the abstract. In Greek times, 

geometric constructions of figures and lengths were restricted to the use of only a straightedge 

and compass (or in Plato’s case, a compass only). No markings could be placed on the straightedge 

to be used to make measurements. 

Because of the prominent place Greek geometric constructions held in Euclid’s Elements, 

these constructions are also known as Euclidean constructions. 

2.3.1 The Euclidean Tools: Following are the first three postulates in Euclid’s Elements (an 

ancient mathematical treatise consisting of thirteen books) based on which all Euclidean 

constructions are made: 

(i) A straight line can be drawn from any point to any point. 

(ii) A finite straight line can be produced continuously in a straight line. 

(iii) A circle may be described with any center and distance(radius). 

These postulates restrict constructions to only those that can be made in a permissible way with 

straightedge and compass and these two instruments are called the Euclidean tools. 

The first two postulates tell us what we can do with the Euclidean straightedge; we are permitted 

to draw as much as may be desired of the straight line determined by any two given points. The 

third postulate tells us what we can do with the Euclidean compass; we are permitted to draw the 

circle of given center and having any straight line segment radiating from that center as a radius-

that is, we are permitted to draw the circle of given center and passing through a given point.  

Note that neither instrument is to be used for directly transferring distances. This means that the 

straightedge cannot be marked, and the compass must be regarded as having the characteristic that 

if either leg is lifted from the paper, the instrument immediately collapses. For this reason, a 

Euclidean compass is often referred to as the collapsing compass; it differs from the modern or 

fixed compass which has a fixable aperture and retains its opening and hence can be used as a 

divider for transferring distances and copying circles directly without any further steps. 

It may seem that the modern compass is more powerful than the collapsing compass. Curiously 

enough, such turns out not to be the case; any construction performable with the modern compass 

can also be carried out (in perhaps a longer way) by means of the collapsing compass. We prove 

this in the following theorem. 
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The Compass Equivalence Theorem: The collapsing and fixed compasses are equivalent.  

Proof: To prove the theorem, it suffices to show that any circle 𝐶(𝐵;  𝑟) can be congruently copied 

using only the straightedge and collapsing compass so that a given point 𝐴 serves as the centre of 

the copy. Consider the given circle and a point 𝐴 as shown.  

 

We need to construct a circle of radius 𝑟 centered at 𝐴, using only the straightedge and collapsing 

compass. First construct the circle 𝐶(𝐴; 𝐴𝐵) centered at 𝐴 with radius 𝐴𝐵 and the circle 𝐶(𝐵; 𝐵𝐴) 

centered at 𝐵 with radius 𝐵𝐴. These circles intersect in two points 𝐶 and 𝐷. The circles 𝐶(𝐵; 𝑟) 

and 𝐶(𝐴; 𝐴𝐵) intersect in a point 𝐸 and the circles 𝐶(𝐶; 𝐶𝐸) and 𝐶(𝐵; 𝐵𝐴) intersect in a point 𝑃. 

We claim that 𝐴𝑃 = 𝑟.  

Note that, by SSS  

Δ𝑃𝐶𝐵 ≡ Δ𝐸𝐶𝐴 

Thus,  

∠𝑃𝐶𝐵 ≡ ∠𝐸𝐶𝐴  

and  

𝑚∠𝑃𝐶𝐵 − 𝑚∠𝐴𝐶𝐵 = 𝑚∠𝐸𝐶𝐴 − 𝑚∠𝐴𝐶𝐵.  

Therefore,  

∠𝑃𝐶𝐴 ≡ ∠𝐸𝐶𝐵. 

Now, 

𝐶𝑃 = 𝐶𝐸 and 𝐴𝐶 = 𝐵𝐶  

Thus, by SAS  

Δ𝐴𝑃𝐶 ≡ Δ𝐵𝐸𝐶 

This implies that, 

𝐴𝑃 = 𝐵𝐸 = 𝑟. 

We have transferred the distance 𝑟 and now the circle with center 𝐴 and radius 𝐴𝑃 = 𝑟 is 

constructible. 
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Remark: There are constructions which cannot be made with the Euclidean tools alone. Three 

famous constructions of this sort are: 

1. The duplication of the cube, or the problem of constructing the edge of a cube having twice the 

volume of a given cube.  

2. The trisection of an angle, or the problem of dividing a given arbitrary angle into three equal 

parts.  

3. The quadrature of the circle, or the problem of constructing a square having an area equal to 

that of a given circle. 

Note: We shall always use the modern or fixed compass for Euclidean constructions. 

2.3.2 The Method of Loci: Before we discuss the method of loci to the solution of geometric 

constructions, it is of great value to know a considerable number of loci that are constructible 

straight lines and circles e.g., the locus of points at a given distance from a given point is the circle 

having the given point as center and the given distance as radius.  

Here are a few such loci. 

1. Angle Bisector: The locus of points equidistant from two given intersecting lines consists of the 

bisector of the angle formed by the two given lines. 

Construction: Let 𝑃 be the vertex of the given angle. 

 

 

With centre 𝑃, draw an arc cutting the arms of the angle at 𝑆 and 𝑇. 

With centres 𝑆 and 𝑇, draw arcs of the same radius meeting at 𝑄.  

Since triangles 𝑆𝑃𝑄 and 𝑇𝑃𝑄 are congruent by SSS, ∠𝑆𝑃𝑄 ≡ ∠𝑇𝑃𝑄. Then 𝑃𝑄 is the bisector of 

the given angle. 
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2. Perpendicular Bisector: The locus of points equidistant from two given points is the 

perpendicular bisector of the segment joining the given points.  

Construction: Given points 𝐴 and 𝐵. 

 

With centres 𝐴 and 𝐵, draw two arcs of the same radius meeting at 𝐶 and 𝐷.  

Let 𝑀 be the point where 𝐶𝐷 meets 𝐴𝐵. Note that, by SSS 

Δ𝐴𝐶𝐷 ≡ Δ𝐵𝐶𝐷 

So,  

∠𝐴𝐶𝐷 ≡ ∠𝐵𝐶𝐷 and ∠𝐴𝐶𝑀 ≡ ∠𝐵𝐶𝑀 

Now, by SAS 

Δ𝐴𝐶𝑀 ≡ Δ𝐵𝐶𝑀 

This implies that, 

𝐴𝑀 = 𝐵𝑀 

and  

𝑚∠𝐴𝑀𝐶 = 𝑚∠𝐵𝑀𝐶 = 𝜋/2 

which means that 𝐶𝑀 is the right bisector of 𝐴𝐵. 

Exercise: Construct a perpendicular to a line from a point not on the line. 

3. Parallel Lines: The locus of points at a given distance from a given line consists of the two lines 

parallel to the given line and at the given distance from it. 

Construction: Let 𝑙 be the given line. 

Draw a perpendicular 𝑘 on 𝑙 meeting at a point 𝐴 on 𝑙. 

With center 𝐴, draw an arc of radius 2𝑟 meeting 𝑘 at 𝐵 and 𝐶. 

Draw perpendicular bisectors 𝑚 and 𝑛 of 𝐴𝐵 and 𝐴𝐶 respectively. 

Then 𝑚 and 𝑛 are the required parallel lines. 

Available at MathCity.org



 

26 
 

Now we discuss the method of loci. The solution of a construction problem very often depends 

upon first finding some key point e.g., the problem of drawing a circle through three given points 

is essentially solved once the center of the circle is located. Similarly, the problem of drawing a 

circle of a given radius and tangent to two intersecting lines is essentially solved once the center 

of the circle has been found. The key point satisfies certain conditions, and each condition 

considered alone generally restricts the position of the key point to a certain locus. The key point 

is found at the intersections of certain loci. 

Thus, the most basic method used to solve geometric construction problems is to locate the key 

points by using the intersection of loci, which is usually referred to as the method of loci. We 

illustrate this method in the following. 

Examples:  

1. We construct the circle passing through three non-collinear points 𝐴, 𝐵, 𝐶. 

The sought center 𝑂 of the circle through 𝐴, 𝐵, 𝐶 must be equidistant from 𝐴, 𝐵 and from 𝐵, 𝐶. 

The first condition places 𝑂 on the perpendicular bisector of 𝐴𝐵, and the second condition places 

𝑂 on the perpendicular bisector of 𝐵𝐶. The point 𝑂 is thus found at the intersection, if it exists, of 

these two perpendicular bisectors. Since the three given points are not collinear, there is exactly 

one solution. 

 

So, we may write the solution as: 

Draw perpendicular bisectors 𝑙 and 𝑚 of 𝐴𝐵 and 𝐵𝐶 respectively. 

Let 𝑂 = 𝑙 ∩ 𝑚. 

With center 𝑂 and radius 𝑂𝐴, draw the circle 𝐶(𝑂; 𝑂𝐴). 

Note: If the three given points are collinear, there is no solution. 
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2. Given two intersecting lines 𝑙 and 𝑚 and a fixed radius 𝑟, we construct a circle of radius 𝑟 that 

is tangent to the two given lines. 

It is often useful to sketch the expected solution. We refer to this sketch as an analysis figure which 

include all possible solutions. The given lines 𝑙 and 𝑚 are intersecting at 𝑃. 

 

The analysis figure indicates that there are four solutions. The constructions of all four solutions 

are basically the same, so in this case it suffices to show how to construct one of the four circles.  

Since we are given the radius of the circle, it is enough to construct 𝑂, the center of the circle 𝐶. 

Since we only have the straightedge and compass, there are three ways to construct a point, 

namely, as the intersection of two lines, two circles, or a line and a circle. 

The centre 𝑂 of circle 𝐶 is equidistant from both 𝑙 and 𝑚 and therefore lies on the following 

constructible loci: 

(i) an angle bisector, 

(ii) a line parallel to 𝑙 at distance 𝑟 from 𝑙, 

(iii) a line parallel to 𝑚 at distance 𝑟 from 𝑚. 

and any two of these loci determine the point 𝑂. 

 

Having done the analysis, now we write up the solution: 

Construct line 𝑛 parallel to 𝑙 at distance 𝑟 from 𝑙. 

Construct line 𝑘 parallel to 𝑚 at distance 𝑟 from 𝑚. 

Let 𝑂 = 𝑛 ∩ 𝑘. 

With centre 𝑂 and radius 𝑟, draw the circle 𝐶(𝑂;  𝑟). 
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Classical Theorems in Affine Geometry 
 

3.1 Sensed Magnitudes 
One of the innovations of modern elementary geometry is the employment of signed magnitudes. 

It was the extension of the number system to include both positive and negative numbers that led 

to this forward step in geometry.  

We start a study of sensed magnitudes with some definitions and a notation. 

3.1.1 Positive and Negative Segments: 
Consider a line passing through the points 𝐴 and 𝐵. If we choose one direction along the line as 

the positive direction and the other direction as the negative direction, then a segment 𝐴𝐵 on the 

line is called positive or negative according as the direction from 𝐴 to 𝐵 is the positive or negative 

direction of the line. The symbol 𝐴𝐵̅̅ ̅̅  instead of 𝐴𝐵 is used to denote the signed distance from 𝐴 

to 𝐵. The segment 𝐴𝐵̅̅ ̅̅  is called a sensed or directed segment with 𝐴 as its initial point and 𝐵 as its 

terminal point. 

𝐴𝐵̅̅ ̅̅  and 𝐵𝐴̅̅ ̅̅  are equal in magnitude but opposite in direction i.e., 𝐴𝐵̅̅ ̅̅ = −𝐵𝐴̅̅ ̅̅  or  𝐴𝐵̅̅ ̅̅ + 𝐵𝐴̅̅ ̅̅ = 0. 

Note that for any point 𝐴,  we have 𝐴𝐴̅̅ ̅̅ = 0. 

3.1.2 Range of Points and Complete Range: 
A set of collinear points is said to constitute a range of points, and the straight line on which they 

lie is called the base of the range. 

A range which consists of all the points of its base is called a complete range. 

3.1.3 Basic Theorems: We are now in a position to establish a few basic theorems about sensed 

line segments. 

Theorem: If 𝐴,  𝐵,  𝐶 are any three collinear points, then  

𝐴𝐵̅̅ ̅̅ + 𝐵𝐶̅̅ ̅̅ + 𝐶𝐴̅̅ ̅̅ = 0. 

Proof: If the three points are distinct, three cases may arise. 

(i) The point 𝐶 lies between the points 𝐴 and 𝐵. Then 

𝐴𝐵̅̅ ̅̅ = 𝐴𝐶̅̅ ̅̅ + 𝐶𝐵̅̅ ̅̅  

or 

𝐴𝐵̅̅ ̅̅ − 𝐴𝐶̅̅ ̅̅ − 𝐶𝐵̅̅ ̅̅ = 0 

or 

𝐴𝐵̅̅ ̅̅ + 𝐵𝐶̅̅ ̅̅ + 𝐶𝐴̅̅ ̅̅ = 0 
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(ii) The point 𝐶 lies on the prolongation of 𝐴𝐵̅̅ ̅̅ . Then 

𝐴𝐵̅̅ ̅̅ + 𝐵𝐶̅̅ ̅̅ = 𝐴𝐶̅̅ ̅̅  

or 

𝐴𝐵̅̅ ̅̅ + 𝐵𝐶̅̅ ̅̅ − 𝐴𝐶̅̅ ̅̅ = 0 

or 

𝐴𝐵̅̅ ̅̅ + 𝐵𝐶̅̅ ̅̅ + 𝐶𝐴̅̅ ̅̅ = 0 

 

(iii) The point 𝐶 lies on the prolongation of 𝐵𝐴̅̅ ̅̅ . Then 

𝐶𝐴̅̅ ̅̅ + 𝐴𝐵̅̅ ̅̅ = 𝐶𝐵̅̅ ̅̅  

or 

𝐴𝐵̅̅ ̅̅ − 𝐶𝐵̅̅ ̅̅ + 𝐶𝐴̅̅ ̅̅ = 0 

or 

𝐴𝐵̅̅ ̅̅ + 𝐵𝐶̅̅ ̅̅ + 𝐶𝐴̅̅ ̅̅ = 0 

It is simple to get the same result when one or more points coincide. 

Corollary: Let 𝑂 be any point on the line of segment 𝐴𝐵. Then 𝐴𝐵̅̅ ̅̅ = 𝑂𝐵̅̅ ̅̅ − 𝑂𝐴̅̅ ̅̅ . 

Proof: Since 𝐴,  𝐵,  𝑂 are collinear, we have 𝐴𝐵̅̅ ̅̅ + 𝐵𝑂̅̅ ̅̅ + 𝑂𝐴̅̅ ̅̅ = 0. This implies that 

 𝐴𝐵̅̅ ̅̅ = −𝐵𝑂̅̅ ̅̅ − 𝑂𝐴̅̅ ̅̅ = 𝑂𝐵̅̅ ̅̅ − 𝑂𝐴̅̅ ̅̅ . 

Euler’s Theorem: If 𝐴,  𝐵,  𝐶,  𝐷 are any four collinear points, then 

𝐴𝐷̅̅ ̅̅ . 𝐵𝐶̅̅ ̅̅ + 𝐵𝐷̅̅ ̅̅ . 𝐶𝐴̅̅ ̅̅ + 𝐶𝐷̅̅ ̅̅ . 𝐴𝐵̅̅ ̅̅ = 0 

Proof:  

                 𝐴𝐷̅̅ ̅̅ . 𝐵𝐶̅̅ ̅̅ + 𝐵𝐷̅̅ ̅̅ . 𝐶𝐴̅̅ ̅̅ + 𝐶𝐷̅̅ ̅̅ . 𝐴𝐵̅̅ ̅̅  

  = 𝐴𝐷̅̅ ̅̅ (𝐷𝐶̅̅ ̅̅ − 𝐷𝐵̅̅ ̅̅ ) + 𝐵𝐷̅̅ ̅̅ (𝐷𝐴̅̅ ̅̅ − 𝐷𝐶̅̅ ̅̅ ) + 𝐶𝐷̅̅ ̅̅ (𝐷𝐵̅̅ ̅̅ − 𝐷𝐴̅̅ ̅̅ ) 

  = 𝐴𝐷̅̅ ̅̅ . 𝐷𝐶̅̅ ̅̅ − 𝐴𝐷̅̅ ̅̅ . 𝐷𝐵̅̅ ̅̅ + 𝐵𝐷̅̅ ̅̅ . 𝐷𝐴̅̅ ̅̅ − 𝐵𝐷̅̅ ̅̅ . 𝐷𝐶̅̅ ̅̅ + 𝐶𝐷̅̅ ̅̅ . 𝐷𝐵̅̅ ̅̅ − 𝐶𝐷̅̅ ̅̅ . 𝐷𝐴̅̅ ̅̅  

  = 𝐴𝐷̅̅ ̅̅ . 𝐷𝐶̅̅ ̅̅ − 𝐴𝐷̅̅ ̅̅ . 𝐷𝐵̅̅ ̅̅ + 𝐴𝐷̅̅ ̅̅ . 𝐷𝐵̅̅ ̅̅ − 𝐵𝐷̅̅ ̅̅ . 𝐷𝐶̅̅ ̅̅ + 𝐵𝐷̅̅ ̅̅ . 𝐷𝐶̅̅ ̅̅ − 𝐴𝐷̅̅ ̅̅ . 𝐷𝐶̅̅ ̅̅  

  = 0 

3.2 MENELAUS, CEVA AND DESARGUES THEOREMS 
The theorems of Menelaus and Ceva when stated in terms of sensed magnitudes, in contrast to 

their original versions, deal elegantly with many problems involving collinearity of points and 

concurrency of lines. We now study these remarkable theorems. 



 

30 
 

3.2.1 The ratio 𝑨𝑷̅̅ ̅̅ /𝑷𝑩̅̅ ̅̅ : If 𝐴, 𝐵, 𝑃 are distinct collinear points, we define the ratio in which 𝑃 

divides the segment 𝐴𝐵̅̅ ̅̅  to be the ratio 𝐴𝑃̅̅ ̅̅ /𝑃𝐵̅̅ ̅̅ .  

The value of this ratio is independent of any direction assigned to the line 𝐴𝐵. If 𝑃 lies between 

𝐴 and 𝐵, the division is said to be internal, otherwise the division is said to be external.  

Denoting 𝐴𝑃̅̅ ̅̅ /𝑃𝐵̅̅ ̅̅   by 𝑟, note that: 

(i) If 𝑃 lies on the prolongation of 𝐵𝐴̅̅ ̅̅ , then −1 < 𝑟 < 0. 

(ii) If P lies between 𝐴 and 𝐵, then 0 < 𝑟 < ∞. 

(iii) If 𝑃 lies on the prolongation of 𝐴𝐵̅̅ ̅̅ , then −∞ < 𝑟 < −1. 

(iv) If 𝑃 coincides with 𝐴 but not with 𝐵, then 𝑟 = 0. 

(v) If 𝑃 coincides with 𝐵 but not with 𝐴, then 𝑟 is undefined. We indicate this by writing 

𝑟 = ∞. 

3.2.2 Angles Associated with Parallel Lines: If a transversal cuts two parallel lines, we refer 

as follows to the angles formed: 

 

 

Vertically Opposite Angles 

(Congruent) 

∠𝑎 ≡ ∠𝑑 

∠𝑏 ≡ ∠𝑐 

∠𝑓 ≡ ∠g 

∠𝑒 ≡ ∠ℎ 

 

 

Corresponding Angles 

(Congruent) 

∠𝑎 ≡ ∠𝑒 

∠𝑏 ≡ ∠𝑓 

∠𝑐 ≡ ∠g 

∠𝑑 ≡ ∠ℎ 

Alternate Interior Angles 

(Congruent) 

∠𝑐 ≡ ∠𝑓 

∠𝑑 ≡ ∠𝑒 

Alternate Exterior Angles 

(Congruent) 

∠𝑎 ≡ ∠ℎ 

∠𝑏 ≡ ∠g 

Consecutive Angles 

(Supplementary) 

𝑚∠𝑐 + 𝑚∠𝑒 = 1800 

𝑚∠𝑑 + 𝑚∠𝑓 = 1800 
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3.2.3 Thales’ Theorem (Basic Proportionality Theorem): In a triangle 𝐴𝐵𝐶 if 𝐷 and 𝐸 lie on 

𝐴𝐵 and 𝐴𝐶 respectively in such a way that 𝐷𝐸 is parallel to 𝐵𝐶 then Δ𝐴𝐵𝐶~Δ𝐴𝐷𝐸 and 

𝐴𝐵

𝐴𝐷
=

𝐴𝐶

𝐴𝐸
=

𝐵𝐶

𝐷𝐸
 

Proof: It is easy to see that the congruency between the angles formed by the intersection of 

transversals and parallel lines is as follows 

 

   

  

∠𝐶𝐴𝐵 ≡ ∠𝐸𝐴𝐷, ∠𝐴𝐵𝐶 ≡ ∠𝐴𝐷𝐸, ∠𝐵𝐶𝐴 ≡ ∠𝐷𝐸𝐴 

So, the triangles 𝐴𝐵𝐶 and 𝐴𝐷𝐸 are similar. 

Now let 

𝑚∠𝐶𝐴𝐵 = 𝛼, 𝑚∠𝐴𝐵𝐶 = 𝛽, 𝑚∠𝐵𝐶𝐴 = 𝛾 

then  

𝑚∠𝐸𝐴𝐷 = 𝛼, 𝑚∠𝐴𝐷𝐸 = 𝛽, 𝑚∠𝐷𝐸𝐴 = 𝛾 

By the law of sines, 
𝐴𝐵

sin 𝛾
=

𝐵𝐶

sin 𝛼
=

𝐶𝐴

sin 𝛽
 

𝐴𝐷

sin 𝛾
=

𝐷𝐸

sin 𝛼
=

𝐸𝐴

sin 𝛽
 

Hence, 

𝐴𝐵

𝐴𝐷
=

𝐴𝐶

𝐴𝐸
=

𝐵𝐶

𝐷𝐸
  

3.2.4 Menelaus Point: A point lying on a side line of a triangle, but not coinciding with a vertex 

of the triangle, is called a menelaus point of the triangle for this side. 
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3.2.5 Menelaus’ Theorem: A necessary and sufficient condition for three Menelaus points 

𝐷, 𝐸, 𝐹 for the sides 𝐵𝐶, 𝐶𝐴, 𝐴𝐵 of an ordinary triangle 𝐴𝐵𝐶 to be collinear is that 

 

(𝐵𝐷̅̅ ̅̅ /𝐷𝐶̅̅ ̅̅ ) (𝐶𝐸̅̅ ̅̅ /𝐸𝐴̅̅ ̅̅ ) (𝐴𝐹̅̅ ̅̅ /𝐹𝐵̅̅ ̅̅ ) = −1 

 

Proof:  

 

Necessity: Suppose 𝐷, 𝐸, 𝐹 are collinear on a line 𝑙. Drop perpendiculars 𝑝, 𝑞, 𝑟 on 𝑙 from 𝐴, 𝐵, 𝐶 

respectively. Then, disregarding signs, 

𝐵𝐷/𝐷𝐶 = 𝑞/𝑟  (∵   Δ𝐵𝐼𝐷~Δ𝐶𝐺𝐷) 

𝐶𝐸/𝐸𝐴 = 𝑟/𝑝   (∵   Δ𝐶𝐺𝐸~Δ𝐴𝐻𝐸) 

𝐴𝐹/𝐹𝐵 = 𝑝/𝑞  (∵   Δ𝐴𝐻𝐹~Δ𝐵𝐼𝐹) 

It follows that 

(𝐵𝐷̅̅ ̅̅ /𝐷𝐶̅̅ ̅̅ ) (𝐶𝐸̅̅ ̅̅ /𝐸𝐴̅̅ ̅̅ ) (𝐴𝐹̅̅ ̅̅ /𝐹𝐵̅̅ ̅̅ ) = ±[(𝑞/𝑟)(𝑟/𝑝)(𝑝/𝑞)] = ±1 

Since however, 𝑙 must cut one or all three sides externally, we can have only the – sign. 

Sufficiency: Suppose  

(𝐵𝐷̅̅ ̅̅ /𝐷𝐶̅̅ ̅̅ ) (𝐶𝐸̅̅ ̅̅ /𝐸𝐴̅̅ ̅̅ ) (𝐴𝐹̅̅ ̅̅ /𝐹𝐵̅̅ ̅̅ ) = −1 

and let 𝐸𝐹 cut 𝐵𝐶 in 𝐷′ then 𝐷′ is a menelaus point. From the first half of the theorem, we have 

(𝐵𝐷′̅̅ ̅̅ ̅/𝐷′𝐶̅̅ ̅̅ ̅) (𝐶𝐸̅̅ ̅̅ /𝐸𝐴̅̅ ̅̅ ) (𝐴𝐹̅̅ ̅̅ /𝐹𝐵̅̅ ̅̅ ) = −1 

It follows that 𝐵𝐷̅̅ ̅̅ /𝐷𝐶̅̅ ̅̅ = 𝐵𝐷′̅̅ ̅̅ ̅/𝐷′𝐶̅̅ ̅̅ ̅, or that 𝐷 ≡ 𝐷′. That is, 𝐷, 𝐸, 𝐹 are collinear. 

3.2.6 Cevian Line: A line passing through a vertex of a triangle, but not coinciding with a side 

of the triangle, will be called a cevian line of the triangle for this vertex. 

A cevian line will be identified by the vertex to which it belongs and the point in which it cuts the 

opposite side. 
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3.2.7 Ceva’s Theorem: A necessary and sufficient condition for three cevian lines 𝐴𝐷, 𝐵𝐸, 𝐶𝐹 

of an ordinary triangle 𝐴𝐵𝐶 to be concurrent is that 

(𝐵𝐷̅̅ ̅̅ /𝐷𝐶̅̅ ̅̅ )(𝐶𝐸̅̅ ̅̅ /𝐸𝐴̅̅ ̅̅ )(𝐴𝐹̅̅ ̅̅ /𝐹𝐵̅̅ ̅̅ ) = +1 

Proof:  

 

Necessity: Suppose 𝐴𝐷, 𝐵𝐸, 𝐶𝐹 are concurrent in 𝑃. Without loss of generality we may assume 

that 𝑃 does not lie on the parallel through 𝐴 to 𝐵𝐶. Let 𝐵𝐸, 𝐶𝐹 intersect this parallel line in 𝑁 and 

𝑀. Then, disregarding signs, 

 

𝐵𝐷/𝐴𝑁 = 𝐷𝑃/𝑃𝐴  (∵   Δ𝐵𝑃𝐷~Δ𝑁𝑃𝐴) 

and 

𝐷𝑃/𝑃𝐴 = 𝐷𝐶/𝑀𝐴  (∵   Δ𝐷𝑃𝐶~Δ𝐴𝑃𝑀) 

This implies that  

𝐵𝐷/𝐴𝑁 = 𝐷𝐶/𝑀𝐴   

or 

𝐵𝐷/𝐷𝐶 = 𝐴𝑁/𝑀𝐴  

Moreover, 

𝐶𝐸/𝐸𝐴 = 𝐵𝐶/𝐴𝑁  (∵   Δ𝐶𝐵𝐸~Δ𝐴𝑁𝐸) 

and  

𝐴𝐹/𝐹𝐵 = 𝑀𝐴/𝐵𝐶  (∵   Δ𝐶𝐵𝐹~Δ𝑀𝐴𝐹)  

Whence 

         (𝐵𝐷̅̅ ̅̅ /𝐷𝐶̅̅ ̅̅ )(𝐶𝐸̅̅ ̅̅ /𝐸𝐴̅̅ ̅̅ )(𝐴𝐹̅̅ ̅̅ /𝐹𝐵̅̅ ̅̅ ) 

                  = (𝐴𝑁̅̅ ̅̅ /𝑀𝐴̅̅ ̅̅̅)(𝐵𝐶̅̅ ̅̅ /𝐴𝑁̅̅ ̅̅ )(𝑀𝐴̅̅ ̅̅̅/𝐵𝐶̅̅ ̅̅ ) = ±1 

That sign must be + follows from the fact that either none or two of the points 𝐷, 𝐸, 𝐹 divide their 

corresponding sides externally. 
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Sufficiency: Suppose 

(𝐵𝐷̅̅ ̅̅ /𝐷𝐶̅̅ ̅̅ )(𝐶𝐸̅̅ ̅̅ /𝐸𝐴̅̅ ̅̅ )(𝐴𝐹̅̅ ̅̅ /𝐹𝐵̅̅ ̅̅ ) = +1 

and let 𝐵𝐸, 𝐶𝐹 intersect in 𝑃 and draw 𝐴𝑃 to cut 𝐵𝐶 in 𝐷′. Then 𝐴𝐷′ is a cevian line. Hence, from 

the first half of the theorem, we have 

(𝐵𝐷′̅̅ ̅̅ ̅/𝐷′𝐶̅̅ ̅̅ ̅)(𝐶𝐸̅̅ ̅̅ /𝐸𝐴̅̅ ̅̅ )(𝐴𝐹̅̅ ̅̅ /𝐹𝐵̅̅ ̅̅ ) = +1 

It follows that 𝐵𝐷′̅̅ ̅̅ ̅/𝐷′𝐶̅̅ ̅̅ ̅ = 𝐵𝐷̅̅ ̅̅ /𝐷𝐶̅̅ ̅̅ , or that 𝐷 ≡ 𝐷′. That is, 𝐴𝐷, 𝐵𝐸, 𝐶𝐹 are concurrent. 

3.2.8 Copolar Triangles: Two triangles 𝐴𝐵𝐶 and 𝐴′𝐵′𝐶′ are said to be copolar (or perspective 

from a point) if 𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′ are concurrent. The point of concurrency is called the pole (or 

perspector). 

 

3.2.9 Coaxial Triangles: Two triangles 𝐴𝐵𝐶 and 𝐴′𝐵′𝐶′ are said to be coaxial (or perspective 

from a line) if the points of intersection of 𝐵𝐶 and 𝐵′𝐶′, 𝐶𝐴 and 𝐶′𝐴′, 𝐴𝐵 and 𝐴′𝐵′ are collinear. 

The line of collinearity is called the Desargues’ line (or perspectrix). 
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3.2.10 Desargues’ Theorem: Copolar triangles are coaxial, and conversely. 

Proof: Let the two triangles be 𝐴𝐵𝐶 and 𝐴′𝐵′𝐶′. 

 

Suppose 𝐴𝐴′, 𝐵𝐵′, 𝐶𝐶′ are concurrent in a point 𝑂. Let 𝑃, 𝑄, 𝑅 be the points of intersection of 𝐵𝐶 

and 𝐵′𝐶′, 𝐶𝐴 and 𝐶′𝐴′, 𝐴𝐵 and 𝐴′𝐵′. Considering the triangles 𝐵𝐶𝑂, 𝐶𝐴𝑂, 𝐴𝐵𝑂 in turn, with the 

respective transversals 𝐵′𝐶′𝑃, 𝐶′𝐴′𝑄, 𝐴′𝐵′𝑅, we find by Menelaus’ Theorem, 

(𝐵𝑃̅̅ ̅̅ /𝑃𝐶̅̅ ̅̅ )(𝐶𝐶′̅̅ ̅̅ ̅/𝐶′𝑂̅̅ ̅̅ ̅)(𝑂𝐵′̅̅ ̅̅ ̅/𝐵′𝐵̅̅ ̅̅ ̅) = −1 

(𝐶𝑄̅̅ ̅̅ /𝑄𝐴̅̅ ̅̅ )(𝐴𝐴′̅̅ ̅̅ ̅/𝐴′𝑂̅̅ ̅̅ ̅)(𝑂𝐶′̅̅ ̅̅ ̅/𝐶′𝐶̅̅ ̅̅ ̅) = −1 

(𝐴𝑅̅̅ ̅̅ /𝑅𝐵̅̅ ̅̅ )(𝐵𝐵′̅̅ ̅̅ ̅/𝐵′𝑂̅̅ ̅̅ ̅)(𝑂𝐴′̅̅ ̅̅ ̅/𝐴′𝐴̅̅ ̅̅ ̅) = −1 

Setting the product of the three left members of the above equations equal to the product of the 

three right members, we obtain 

(𝐵𝑃̅̅ ̅̅ /𝑃𝐶̅̅ ̅̅ )(𝐶𝑄̅̅ ̅̅ /𝑄𝐴̅̅ ̅̅ )(𝐴𝑅̅̅ ̅̅ /𝑅𝐵̅̅ ̅̅ ) = −1 

whence 𝑃, 𝑄, 𝑅 are collinear. Thus, copolar triangles are coaxial. 

Conversely, suppose 𝑃, 𝑄, 𝑅 are collinear and let 𝑂 be the point of intersection of 𝐴𝐴′ and 𝐵𝐵′. 

We show that 𝐶𝐶′ also passes through 𝑂. Now triangles 𝐴𝑄𝐴′ and 𝐵𝑃𝐵′ are copolar, and therefore 

coaxial (from the first half of the theorem). That is, 𝑂, 𝐶, 𝐶′ are collinear and hence 𝐶𝐶′ passes 

through 𝑂. Thus, coaxial triangles are copolar. 

Remarks: Desargues’ theorem can also be stated as:  

If two triangles are perspective from a point, they are perspective from a line. 
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Platonic Polyhedra 
4.1 Platonic Solids  

Geometers have studied the platonic solids for thousands of years. They are named for the ancient 

Greek philosopher Plato. These solids were studied by the Platonic school and played a role in 

their philosophy. 

4.1.1 Convex Set: A subset 𝑋 of 𝑅𝑛 is convex if for every pair of points 𝑥, 𝑦 ∈ 𝑋 the line 

segment joining them lies them entirely within 𝑋, i.e., for each 𝑡 ∈ [0, 1],  𝑡𝑥 + (1 − 𝑡)𝑦 ∈ 𝑋. 

That is, 𝑋 is closed under convex combination (non-negative affine combination). 

4.1.2 Convex Polyhedron: A subset of 𝑅𝑛 defined by a finite set of linear inequalities is convex 

and is called a convex polyhedron. So, a convex polyhedron is a figure composed of finitely many 

planar polygons. 

We shall study convex polyhedra in 𝑅3 with non-empty interiors i.e., convex solid polyhedra. A 

convex polyhedron 𝑋 in 𝑅3 is bounded by finitely many planes. The intersection of 𝑋 with any of 

these planes is a two-dimensional subset of 𝑋 and is called a face of 𝑋. The intersection of two 

faces is called an edge and the intersection of two edges is a vertex. A face is homeomorphic is a 

closed disk, an edge to a closed interval and a vertex is a point. 

4.1.3 Regular Polyhedron: A polyhedron is called regular if all its faces, edges and vertices 

are identical to each other. That is, there are the same number of edges at each vertex and that the 

angles between then are the same. 

4.1.4 Classification of Platonic Solids: A convex regular polyhedron is called a platonic solid. 

There are only five platonic solids. A platonic solid is described by the number of its faces. 

Solid Tetrahedron Cube Octahedron Dodecahedron Icosahedron 

Faces 4 Triangles 6 Squares 8 Triangles 12 Pentagons 20 Triangles 

Edges 6 12 12 30 30 

Vertices 4 8 6 20 12 

 

 

Shape 

 

 

 

 

 

 

 

 

 

 
Dual Tetrahedron Octahedron Cube Icosahedron Dodecahedron 

 

4.1.5 Euler’s Formula: If 𝑉, 𝐸 and 𝐹 respectively are the number of vertices, edges and faces 

of a convex polyhedron then 𝑉 − 𝐸 + 𝐹 = 2. 

It is easy to verify this formula for the platonic solids. 

Exercise: Construct models of these solids. 
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4.1.6 Duality: If one takes a platonic solid, joins the mid points of adjacent faces by a new edge 

and fills in the resulting solid, one obtains the dual solid which is again platonic. If this process is 

done twice, the original platonic solid is recovered (although smaller in size).  

The tetrahedron is self-dual, the cube and octahedron are dual, as are dodecahedron and 

icosahedron.  

 

Exercise: Show that a platonic solid and its dual have the same number of edges. 

Solution: By definition, corresponding to each face of a platonic solid there is a vertex of its dual. 

So, a platonic solid and its dual interchange the number of faces and vertices. Euler’s formula then 

implies that the number of edges must remain the same. 

As was known to the ancient Greeks these five are the only Platonic solids. 

Theorem: There are precisely five platonic solids. 

Proof: There are five known platonic solids. We prove that there are no more. Suppose that 𝑟 

faces meet at each vertex and that each face is a regular 𝑛-gon. It is clear that each of 𝑟 and 𝑛 is 

at least 3. The sum of the angles at a vertex is less than 2𝜋 and each angle is (𝑛 − 2)𝜋/𝑛, being 

the angle of a regular 𝑛-gon. Hence, we see that 

 

𝑟(𝑛 − 2)𝜋

𝑛
< 2𝜋 

or 

𝑟𝑛 − 2𝑟 − 2𝑛 < 0 

or 

𝑟𝑛 − 2𝑟 − 2𝑛 + 4 < 4 

This implies that  

(𝑟 − 2)(𝑛 − 2) < 4 

The only integral solutions of this inequality with 𝑟, 𝑛 ≥ 3 are 

(𝑟, 𝑛) = (3, 3), (3, 4), (3, 5), (4, 3), (5, 3) 

If one knows the shape of a face (that is 𝑛) and how many faces meet at a vertex (that is 𝑟) then 

there is only one possible solid with that particular (𝑟, 𝑛). So, corresponding to each solution (𝑟, 𝑛) 

there is exactly one platonic solid. Hence there are only five platonic solids. 
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