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INTRODUCTION  

Basic Concepts and Definitions, Superposition Principle, Exercises  

FIRST-ORDER QUASI-LINEAR EQUATIONS AND METHOD OF 
CHARACTERISTICS 
Classification of first-order equations, Construction of a First-Order Equation, 
Method of Characteristics and General Solutions, Canonical Forms of First-Order 
Linear Equations, Method of Separation of Variables, Exercises  

 
MATHEMATICAL MODELS  
Heat Equations and consequences, Wave Equations and consequences. 
 

CLASSIFICATION OF SECOND-ORDER LINEAR EQUATIONS 
Second-Order Equations in Two Independent Variables, Canonical Forms, 
Equations with Constant Coefficients, General Solutions, Summary and Further 
Simplification, Exercises  

 
FOURIER SERIES, FOURIER TRANSFORMATION AND INTEGRALS 
WITH APPLICATIONS 
Introduction, Fourier Transform, Properties of Fourier Transform , Convolution 
theorem, Fourier Sine and Fourier Cosine,  Exercises, Fourier Series and its 
complex form 
 

LAPLACE TRANSFORMS  
Properties of Laplace Transforms, Convolution Theorem of the Laplace 
Transform, Laplace Transforms of the Heaviside and Dirac Delta 
Functions,  Hankel Transforms,  Properties of Hankel Transforms and 
Applications, Few results about finite fourier transforms. 
Exercises 
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BASIC CONCEPTS AND DEFINITIONS 

 
DIFFERENCE EQUATION 
An equation involving differences (derivatives) is called difference 
equation. 
DIFFERENTIAL EQUATION 
An equation that relate a function to its derivative in such a way that 
the function itself can be determined. 
OR an equation containing the derivatives of one dependent variable 
with respect to one or more independent variables is said to be a 
differential equation. 
It has two types: 

i. Ordinary differential equation (ODE) 
ii. Partial differential equation (PDE) 

 
ORDINARY DIFFERENTIAL EQUATION 
A differential equation that contains only one independent variable is 
called ODE. 
EXAMPLES: 

                 ( )    ( )        
And in general      ( ) 
 
PARTIAL DIFFERENTIAL EQUATION 
A differential equation that contains, in addition to the dependent 
variable 
and the independent variables, one or more partial derivatives of the 
dependent 
variable is called a partial differential equation. 
 In general, it may be written in the form 

  (                               )      

involving several independent variables x,y, an unknown function „u’ 
of these variables, and the partial derivatives                      , of 

the function. Subscripts on dependent variables denote 
differentiations, e.g., 

   
  

  
          

  

  
. 
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SOLUTION OF PARTIAL DIFFERENTIAL EQUATION 
If a  functions     (   ) satisfy equation PDE 
  (                                 )     then it is called solutions of PDE. 

 
EXAMPLES: 
             

                             

(  )
   (  )

       

               are partial differential equations. In general     (   ) 

The functions u(x, y) = (x + y)3  and  u(x, y) = sin(x − y) , are solutions of the last 
equation of above and we can easily be verified. 
 
THE ORDER OF A PARTIAL DIFFERENTIAL EQUATION 
The order of a partial differential equation is the power of the highest ordered 
partial derivative appearing in the equation.  
For example uxx +2xuxy + uyy = ey is a second-order partial differential equation, 
 And uxxy + xuyy +8u = 7y is a third-order partial differential equation. 
THE DEGREE OF A PARTIAL DIFFERENTIAL EQUATION 
The degree  of PDE is the highest power of variable appear in PDE. 
For example ux +uy = u + xy  is of degree one. 
 And (uxx )

2  =  (1+uy )
1/2 is of degree two. 

 
LINEAR PARTIAL DIFFERENTIAL EQUATION 
A partial differential equation is said to be linear if it is linear in the 
unknown function (dependent variable) and all its derivatives with coefficients 
depending only on the independent variables. 
For example, the equation 
yuxx +2xyuyy + u = 1 is a second-order linear partial differential equation 
 
QUASI LINEAR PARTIAL DIFFERENTIAL EQUATION 
A partial differential equation is said to be quasi-linear if it is linear in 
the highest-ordered derivative of the unknown function.  

For example, the equation                   uxuxx + xuuy = siny 
is a second-order quasi-linear partial differential equation.  
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NON LINEAR PARTIAL DIFFERENTIAL EQUATION 
A partial differential equation is said to be nonlinear if the unknown function 
(dependent variable) and all its derivatives with coefficients depending only on 
the independent variables do not occur linearly. 
For example, the equation uxx +uuy  = 1 is  nonlinear partial differential 

equation 
 
HOMOGENEOUS PARTIAL DIFFERENTIAL EQUATION 
A partial differential equation is said to be homogeneous if it always possess the 
trivial solution i.e. u = 0. 
For example, the equation uxx +uyy = 0 is a Homogeneous partial differential 

equation 
 
NON HOMOGENEOUS PARTIAL DIFFERENTIAL EQUATION 
A partial differential equation is said to be nonhomogeneous if it does not 
possess the trivial solution. 
For example, the equation uxx +uyy = f(x,y) is a nonhomogeneous partial 

differential equation 
 
 
EXERCISES 
For each of the following, state whether the partial differential 
equation is linear, quasi-linear or nonlinear. If it is linear, state 
whether it is homogeneous or nonhomogeneous, and gives its order. 

(a) uxx + xuy = y,  (b) uux − 2xyuy = 0,    (c)   
  + uuy = 1,                                                  

(d) uxxxx +2uxxyy + uyyyy = 0,                   (e) uxx +2uxy + uyy = sinx,                          

(f) uxxx + uxyy +logu = 0,                        (g)    
    

   sinu = ey,                         

(h) ut + uux + uxxx = 0. 
ANS: Linear (a,d,e) Non – linear (c,f,g) Qausi – linear (b,h) 

 
INITIAL CONDITIONS: 
If all conditions are given at the same value of the independent variable, then 
they are called initial conditions . 
For example for a differential equation of order one                                            
 (   )    (   )      (   ) 
Then      (   ) with  ( )     then x = a is an initial condition. 
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INITIAL VALUE PROBLEM (IVP): 
A DE along with initial conditions defines an IVP. Or Cauchy Problem. 
For example, the partial differential equation (PDE) 

ut − uxx = 0, 0 < x < l, t > 0, 

with. u (x, 0) = sin x, 0≤ x ≤ l, t > 0,  is IVP 

 
 
BOUNDRY CONDITIONS: 
If the conditions are given at the end points of the intervals of definition (i.e. for 
different value of the independent variables) are at the boundary of the domain 
of definition then they are called boundary conditions.  
For example              with  ( )     ( )    is a BVP 
 
BOUNDRY VALUE PROBLEM (BVP): 
A DE along with boundary conditions defines an IVP. 
For example, the partial differential equation (PDE) 

ut − uxx = 0,   0 < x < l, t > 0, 

with  

B.C.   u (0, t) = 0, t ≥ 0, 

B.C.  u (l, t) = 0, t ≥ 0, 

 
PRINCIPLE OF SUPERPOSITION: 
According to this principle, if we know „n‟ solutions 
“               ” we can construct other as linear combination. 
 
Statement: 
if                 are solutions of a linear, homogeneous PDE then  
                      where               are constant is 
also a solution of the equation. 
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GENERAL SOLUTION: 
In the case of partial differential equations, the general solution 
depends on arbitrary functions rather than on arbitrary constants. To 
illustrate this, consider the equation 

uxy = 0. 

integrate this equation with respect to y, we obtain   ux (x, y) = f (x) . 

A second integration with respect to x yields    u (x, y) = g (x)+h (y) , 

where g (x) and h (y) are arbitrary functions. 

 
EXAMPLE: 

Suppose u is a function of three variables, x, y, and z. Then, for the 

Equation                       uyy = 2, 

one finds the general solution   u (x, y, z) = y2 + yf (x, z)+g (x, z) , 

where f and g are arbitrary functions of two variables x and z. 

 
REMARK: 
For linear homogeneous ordinary differential equations of order n, a linear 
combination of n linearly independent solutions is a solution. Unfortunately, 
this is not true, in general, in the case of partial differential equations. This is 
due to the fact that the solution space of every homogeneous linear partial 
differential equation is infinite dimensional. 
For example, the partial differential equation 
ux − uy = 0   can be transformed into the equation  2uη = 0 
by the transformation of variables   ξ = x + y,    η = x − y. 
The general solution is    u (x, y) = f (x + y) , where f (x + y) is an arbitrary 
function. 
 Thus, we see that each of the functions 
 (x + y)n ,  sin n (x + y) ,   cos n (x + y) ,  e n (x + y),  n= 1, 2, 3, . . . is a solution of 
equation ux − uy = 0   .  
 
WELL POSED PROBLEM: 
A mathematical problem is said to be well-posed if it satisfies the 
following requirements: 
1. Existence: There is at least one solution. 
2. Uniqueness: There is at most one solution. 
3. Continuity: The solution depends continuously on the data. 
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EXERCISES 
1. (a) Verify that the functions 

u (x, y) = x2 − y2    ,,   u (x, y) = ex sin y   ,,   u (x, y) = 2xy 

are the solutions of the equation   uxx + uyy = 0. 

(b) Verify that the function u (x, y) = Log(√     )  satisfies the 

equation   uxx + uyy = 0. 

2. Show that u = f (xy), where f is an arbitrary differentiable function 

Satisfies   xux − yuy = 0  and verify that the functions sin (xy), cos (xy), 

log (xy), exy, and (xy)3   are solutions. 

3. Show that u = f (x) g (y) where f and g are arbitrary twice 

differentiable functions satisfies    uuxy − uxuy = 0. 

4. Determine the general solution of the differential equation uyy +u= 0. 

5. Find the general solution of  uxx + ux = 0,  by setting ux = v. 

6. Find the general solution of   uxx − 4uxy +3uyy = 0, 

by assuming the solution to be in the form u (x, y) = f (λx + y), 

where λ is an unknown parameter. 

7. Find the general solution of   uxx − uyy = 0. 

8. (a) Show that the general solution of 
   

   
      

   
                                  

is u (x, t) = f (x − ct) + g (x + ct), where f and g are arbitrary twice 

differentiable functions. 

(b) Show that u (x, t) = f(x − ct) + g(x + ct) is solution of wave equation. 

(c) whether u(x,t) = f(x+ ct) - g(x-ct) is solution of wave equation or not. 

9. Verify that the function  u = φ(xy) + x (
 

 
)   is the general solution 

of the equation   x2uxx − y
2uyy = 0. 

10. If ux = vy and vx = −uy, show that both u and v satisfy the Laplace 

Equations ∇2u = 0 and ∇2v = 0. 

11. If u (x, y) is a homogeneous function of degree n, show that u 

satisfies the first-order equation  xux + yuy = nu. 

 
12. Verify that  

u (x, y, t) = Acos (kx) cos (ly) cos (nct)+B sin (kx) sin(ly) sin(nct) , 

where k2 + l2 = n2, is a solution of the equation utt = c2 (uxx + uyy) . 
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13. Show that  u (x, y; k) = e−ky sin (kx), x∈ R, y>0, is a solution of 

the equation ∇2u ≡ uxx + uyy = 0 for any real parameter k. Verify that 

u (x, y) =∫  ( )       (  )  
 

 
 is also a solution of the above 

equation. 

14. Show, by differentiation that  (   )  
 

√    
   . 

  

   
/; x∈ R, t>0, 

is a solution of the diffusion equation   ut = kuxx 

where k is a constant. 

15. (a)  Verify that u (x, y) = log(x2 + y2) satisfies the equation 

uxx + uyy = 0 for all (x, y)   (0,0). 

(b) Show that  u (x, y, z) = (x2 + y2 + z2)-1/2 is a solution of the Laplace 

equation  uxx + uyy + uzz = 0  except at the origin. 

(c) Show that  u(r) = arn satisfies the equation r2u′′ +2ru′ − n(n+1) u= 0. 

16. Show that un (r,θ) = rn cos (nθ) and un (r,θ) = rn sin (nθ), n= 

0,1,2,3, … 

are solutions of the Laplace equation  ∇2u ≡ urr + 
 

 
ur + 

 

  
    = 0 

17. Verify by differentiation that u (x, y) = cosx cosh y satisfies the 

Laplace equation  uxx + uyy = 0. 

18. Show that u (x, y) = f(2y + x2) + g(2y − x2)is a general solution of 

the equation uxx − 
 

 
ux − x

2uyy = 0. 

20. Show that u (x, y, t) = f (x + iky − iωt)+g (x − iky − iωt) 

is a general solution of the wave equation utt = c2 (uxx + uyy)  where f 

and g are arbitrary twice differentiable functions, and ω2 = c2(k2 – 1), 

k, ω, c are constants. 

21. Verify that u(x,y) = x3 + y2 + ex (cosxsin ycosh y− sinxcos ysinh y) 

is a classical solution of the Poisson equation uxx + uyy = (6x+2) . 

22. Show that u (x, y) = exp(- 
 

 
) f(ax − by) satisfies the equation 

bux + auy + u = 0. 

23. Show that utt − c
2uxx +2but = 0 has solutions of the form                             

u (x, t) = (Acos kx + B sin kx) V (t) , where c, b, A and B are 

constants. 
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FIRST-ORDER, QUASI-LINEAR EQUATIONS AND METHOD OF 
CHARACTERISTICS 

Many problems in mathematical, physical, and engineering sciences 
deal with the formulation and the solution of first-order partial 
differential equations. 
From a mathematical point of view, first-order equations have the 
advantage of providing a conceptual basis that can be utilized for 
second-,third-, and higher-order equations. This chapter is concerned 
with first-order, quasi-linear and linear partial differential equations 
and their solution by using the Lagrange method of 
characteristics and its generalizations. 
 
CLASSIFICATION OF FIRST-ORDER EQUATIONS 
The most general, first-order, partial differential equation in two 

independent  variables x and y is of the form 

F (x, y, u, ux,uy) = 0, (x, y) ∈ D ⊂ R2,  

Where  F is a given function of its arguments, and u = u (x, y) is an 

unknown function of the independent variables x and  y which lie in 

some given domain  D in R2 

Equation is often written in terms of standard notation  p = ux and           

q = uy so that takes the form   F (x, y, u, p, q) = 0. 

Similarly,  the most general, first-order, partial differential equation in 

three independent variables x, y, z can be written as 

F (x, y, z, u, ux,uy,uz) = 0.  

 
Equation is called a quasi-linear partial differential equation if it is 

linear in first-partial derivatives of the unknown function  u (x, y). 

So, the most general quasi-linear equation must be of the form 

a (x, y, u) ux + b (x, y, u) uy = c (x, y, u)   

where its coefficients a, b, and c are functions of x, y, and u. 

Examples of quasi linear equations are 

uux + ut  + n u2  = 0  

x (y2+u) ux + y (x2+u) uy = (x2 - y2) u,  
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A quasi linear Equation is called a semi linear partial differential 

equation if its coefficients a and b are independent of u, and hence, 

the semi linear equation can be expressed in the form 

a (x, y) ux + b (x, y) uy = c (x, y, u)  

Examples of semi linear equations are 

xux + yuy = u2 + x2,  

(x+1)2 ux +(y − 1)2 uy = (x + y) u2,  

ut + aux + u2 = 0   where a is a constant. 

 

Equation F (x, y, u, ux,uy) = 0  is said to be linear if F is linear in 

each of the variables 

u, ux, and uy, and the coefficients of these variables are functions only 

of the independent variables x and y. The most general, first-order, 

linear partial differential equation has the form 

a (x, y) ux + b (x, y) uy + c (x, y) u = d (x, y)  

Examples of linear equations are 

xux + yuy − nu = 0,  

nux +(x + y) uy − u = ex,  

yux + xuy = xy,  

(y − z) ux +(z − x) uy +(x − y) uz = 0. 

 
An equation which is not linear is often called a nonlinear equation. 
So, first-order equations are often classified as linear and nonlinear. 
 
 
CONSTRUCTION OF A FIRST-ORDER EQUATION  
 
METHOD I: BY ELIMINATING ARBITRARY CONSTANT. 

Let   f (x, y, z, a, b) = 0 ……….(i) 

where a and b are arbitrary parameters. And    (   ) 

We differentiate with respect to x and y to obtain 

fx + pfx = 0 ……….(ii) and   fy + q fy = 0 ……….(iii) 

where p = zx  and q = zy 

eliminating  a and b from (i), (ii) and (iii) we get  

F (x, y, z, p, q) = 0 
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Thus , an equation of the form  f (x, y, z, a, b) = 0 containing two 

arbitrary parameters is called a complete solution or a complete 

integral of equation F (x, y, z, p, q) = 0 

Its role is somewhat similar to that of a general solution for the case 
of an ordinary differential equation. 
 
EXAMPLE: 

Obtain PDE             where a,b are arbitrary constants. 
Solution: 

Given PDE             ……….(i) 

We differentiate with respect to x and y to obtain 

zx = p =             
   

   
……….(ii)  

and  zy = q =       ……….(iii) 

(   )   zy = q = (
   

   
)       q = (

   

 
)  

          which is linear PDE 

eliminating  a and b from (i), (ii) and (iii) we get  

F (x, y, z, p, q) = 0 

 
METHOD II: BY ELIMINATING ARBITRARY FUNCTION 
 
EXAMPLE: 

Obtain PDE       (     ) where F is arbitrary function. 
Solution: 

Given PDE       (     ) ……….(i) 

We differentiate with respect to x and y to obtain 

zx = p =     (     )       (     )  
   

  
……….(ii)  

and  zy = q =     (     )       (     )  
   

  
 ……….(iii) 

equating both  
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Example: Show that a family of spheres x2 + y2 +(z − c)2 = r2 

satisfies the first-order linear partial differential equation yp − xq = 0. 

Solution: 

Given PDE  x2 + y2 +(z − c)2 = r2 ……….(i) 

Differentiating the equation with respect to x and y gives 

x + p (z − c) = 0 ……….(ii) and y + q (z − c) = 0 ……….(iii) 

Eliminating the arbitrary constant c from these equations, we obtain 

the first-order, partial differential equation 

yp − xq = 0. 

 

Example: Show that the family of spheres (x − a)2 +(y − b)2 + z2 = r2  

satisfies the first-order, nonlinear, partial differential equation                  

z2 (p2 + q2 +1) = r2 

Solution: 

Given PDE  (x − a)2 +(y − b)2 + z2 = r2 ……….(i) 

Differentiating the equation with respect to x and y gives 

(x − a)+z p = 0……….(ii) and (y − b)+z q = 0……….(iii) 

Eliminating the two arbitrary constants a and b, we find the nonlinear 

partial differential equation  z2 (p2 + q2 +1) = r2 

 

Example: Show that All surfaces of revolution with the z-axis as the 

axis of symmetry satisfy the equation z = f(x2 + y2) where f is an 

arbitrary function. 
Solution: 

Given PDE  z = f(x2 + y2) ……….(i) 

Writing u = x2 + y2 and differentiating with respect to x and y, 

respectively, we obtain  p = 2xf′ (u), q = 2y f′ (u) . 

Eliminating the arbitrary function f (u) from these results, we find the 

Equation   yp − xq = 0. 
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METHOD III: FOR THE FORM     f (φ,  ) = 0 
Theorem: 

 If φ = φ (x, y, z) and       (x, y, z) are two given functions of x, 

y, and z and if f (φ,  ) = 0, where f is an arbitrary function of φ and 

 , then z = z (x, y) satisfies a first-order, partial differential equation 

 
 (   )

 (    ) 
  

 (   )

 (   ) 
 

 (   )

 (   ) 
   where   

 (   )

 (   ) 
 |

    

    
| 

 

Proof. We differentiate f (φ, ψ) = 0 with respect to x and y 
respectively to obtain the following equations: 

  

   
(
  

   
  

  

   
*  

  

   
(
  

   
  

  

   
*    

  

   
(
  

   
  

  

   
*  

  

   
(
  

   
  

  

   
*    

Nontrivial solutions for 
  

   
  and  

  

   
 can be found if the determinant of 

the coefficients of these equations vanishes, that is, 

|
            

            
|    

Expanding this determinant gives the first-order, quasi-linear 
equation 

 
 (   )

 (    ) 
  

 (   )

 (   ) 
 

 (   )

 (   ) 
   where   

 (   )

 (   ) 
 |

    

    
| 

 
METHOD OF CHARACTERISTICS AND GENERAL SOLUTIONS 
Theorem:  
The general solution of a first-order, quasi-linear partial differential 
equation 

a (x, y, u) ux + b (x, y, u) uy = c (x, y, u)  

is   f (φ,  ) = 0  where f is an arbitrary function of φ (x, y, u) and 

  (x, y, u), and φ = constant = c1 and ψ = constant = c2 are 

solution curves of the characteristic equations  
  

 
 

  

  
 

  

  
 

The solution curves defined by φ (x, y, u) = c1 and   (x, y, u) = c2 

are called the families of characteristic curves of equation  
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Example: Find the general solution of the first-order linear partial 

differential equation  xux + y uy = u 

Solution:  The characteristic curves of this equation are the solutions 

of the characteristic equations  
  

 
 

  

  
 

  

  
                                                 

This system of equations gives the integral surfaces 

φ = 
 

 
 = C1 and   = 

 

 
 = C2  where C1 and C2 are arbitrary constants.  

Thus, the general solution of  f(
 

 
, 

 

 
) = 0 

where f is an arbitrary function. This general solution can also be 

written as  u (x, y) = xg(
 

 
) where g is an arbitrary function. 

 
Example: Obtain the general solution of the linear Euler equation 

xux + y uy = nu 

Solution:  The characteristic curves of this equation are the solutions 

of the characteristic equations  
  

 
 

  

  
 

  

   
                                                 

This system of equations gives the integral surfaces 

φ = 
 

 
 = C1 and   = 

 

  
 = C2 where C1 and C2 are arbitrary constants.  

Thus, the general solution of  f(
 

 
,

 

  
) = 0 

where f is an arbitrary function. This general solution can also be 

written as  
 

  
  (

 

 
)  

or u (x, y) =   g(
 

 
) where g is an arbitrary function. 

This shows that the solution u (x, y) is a homogeneous function of x 

and y of degree n. 
 
Example: Find the general solution of the linear equation 

x2 ux + y2 uy = (x + y) u  ………….(i) 

Solution:  The characteristic curves of this equation are the solutions 

of the characteristic equations  
  

  
 

  

   
 

  

(     )  
        ………….(ii) 

From the first two of these equations, we find   x−1 − y−1 = C1                    

where C1 is an arbitrary constant. 

It follows from (ii) that   
     

     
 

 (    )

(     )  
  or 

 (    )

(    )
 

  

  
 

This gives  
(    )

 
 

 (    )

   
      ………….(iii) where C2 is a constant. 

Furthermore, (ii) and (iii) also give   
  

 
     where C3 is a constant. 
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Thus, the general solution of  f(
  

 
,
(    )

 
) = 0 

where f is an arbitrary function. This general solution can also be 

written as   u (x, y) =   g(
(    )

 
) where g is an arbitrary function. 

Or equivalently  u (x, y) =   h(
(    )

  
) where h is an arbitrary function. 

 
Example: Show that the general solution of the linear equation 

(y − z) ux +(z − x) uy +(x − y) uz = 0  ………….(i) 

is u (x, y, z) = f(x + y + z, x2 + y2 + z2) ………….(ii)                      

where f is an arbitrary function. 

Solution:  The characteristic curves of this equation are the solutions 

of the characteristic equations  
  

     
 

  

      
 

  

      
 

  

  
    ………….(iii)  

Or                                                                        
On integrating                    x

2 + y2 + z2 = C3       

where C1, C2 , C3 are arbitrary constant. 

Thus, the general solution can be written in terms of an arbitrary 

function f in the form u (x, y, z) = f(x + y + z, x2 + y2 + z2)  

 
NOTE: IVP or BVP  also called Cauchy data. 
 
Example: Find the solution of the equation 

u (x + y) ux + u (x − y) uy = x2 + y2  ………….(i) 

with the Cauchy data u = 0 on y = 2x. 

Solution:  The characteristic curves of this equation are the solutions 
of the characteristic equations  

  

  (     ) 
 

  

  (     )  
 

  

        
 

           

  
 

           

  
    ………….(ii)  

These give two integrals∫ 0   
 

 
  1    and∫ 0

 

 
(        )1    

u2 − x2 + y2 = C1 and 2xy − u2 = C2 ………….(iii) 

where C1 and C2 are constants. Hence, the general solution is 

f(x2 − y2 − u2, 2xy − u2) = 0 where f is an arbitrary function. 

Using the Cauchy data in (iii), we obtain 4C1 = 3C2. Therefore 

4(u2 - x2 + y2)= 3 (2xy − u2) 

Thus, the solution of equation (i) is given by  7u2 = 6xy +4 (x2 − y2) 
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Example: Obtain the solution of the linear equation 

ux − uy = 1 ………….(i)  with the Cauchy data u (x, 0) = x2. 

Solution:  The characteristic curves of this equation are the solutions 

of the characteristic equations  
  

  
 

  

   
 

  

  
    ………….(ii)  

Clearly, 

x + y = constant = C1 and u − x = constant = C2. 

Thus, the general solution is given by 

u − x = f (x + y)  ………….(iii) where f is an arbitrary function. 

We now use the Cauchy data to find f (x) = x2 − x, and hence, the 

solution is  u (x, y) = (x + y)2 − y 

 
Example: Obtain the solution of the equation 

(y − u) ux +(u − x) uy = x – y ………….(i)                                                      

with the condition u = 0 on xy = 1. 

Solution:  The characteristic curves of this equation are the solutions 

of the characteristic equations  
  

      
 

  

      
 

  

  –    
    ………….(ii)  

The parametric forms of these equations are 
  

   
  y − u,    

  

   
  u − x,    

  

   
  x − y. 

These lead to the following equations: 

x˙ + y˙ + u˙ = 0 and xx˙ + yy˙ + uu˙ = 0  ………….(iii) 

where the dot denotes the derivative with respect to t. 

Integrating (iii), we obtain 

x + y + u = const. = C1 and x2 + y2 + u2 = const. = C2. ………….(iv) 

These equations represent circles. 
Using the Cauchy data, we find that 

  
 = (x + y)2 = x2 + y2 +2xy = C2 +2. 

Thus, the integral surface is described by 

(x + y + u)2 = x2 + y2 + u2 +2. 

Hence, the solution is given by   u (x, y) = 
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Example:Solve the linear equation  yux + xuy = u   

with the Cauchy data  u (x, 0) = x3 and u (0, y) = y3  

Solution:  The characteristic curves of this equation are the solutions 

of the characteristic equations  
  

  
 

  

  
 

  

  
    or  

  

  
 

     

    
 

     

    
 

Solving these equations, we obtain 

u = 
  

    
 = C2 (x + y)  or   u = C2 (x + y), x2 − y2 = 

  

  
  = constant = C. 

So the characteristics are rectangular hyperbolas for C >0 or C <0. 

Thus, the general solution is given by 

f(
 

    
 , x2 − y2) = 0  or, equivalently,  u (x, y) = (x + y) g(x2 − y2) 

Using the Cauchy data, we find that g(x2) = x2, that is, g(x) = x. 
Consequently, the solution becomes                                                                        

u (x, y) = (x + y)(x2 − y2) on x2 − y2 = C>0. 

Similarly, u (x, y) = (x + y)( y2 − x2) on y2 − x2 = C>0. 

 
Example: Determine the integral surfaces of the equation 

x(y2 + u)ux – y(x2 + u)uy =(x
2 − y2 )u    

with the data   x + y = 0, u = 1 

 
Solution:  The characteristic equations are  

  

 (      )
 

  

   (      ) 
 

  

(       )   
    ………….(i)  

or  
    

(      )
 

    

  (      ) 
 

    

(      ) 
 

  

 
 

  

 
 

  

 

 
   

Consequently,     log (xyu) = logC1   or   xyu = C1 

From (i), we obtain 
   

  (      )
 

   

   (      ) 
 

   

(      )    
                                   

whence we find that   x2 + y2 − 2u = C2 

Using the given data, we obtain  C1 = −x2  and C2 = 2x2 − 2 

so that   C2 = −2 (C1 +1) . 

Thus the integral surface is given by   x2 + y2 − 2u = −2 − 2xyu 

Or    2xyu + x2 + y2 − 2u+2 = 0  
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Example: Obtain the solution of the equation 

xux + y uy = x exp (−u)   with the data   u = 0 on y = x2 

 
Solution:  The characteristic equations are  
  

 
 

  

  
 

  

      (  ) 
    ………….(i)    or  

 

 
      

We also obtain from (i) that dx = eudu which can be integrated to 

Find    eu = x + C2 

Thus, the general solution is given by f(eu − x, 
 

 
 )= 0 

or, equivalently,   eu = x + g (
 

 
)   

Applying the Cauchy data i.e. u = 0 on y = x2. we obtain g (x) = 1 − x 

Thus, the solution is given by 

eu = x + 1 − 
 

 
  or  u = log (x + 1 − 

 

 
 ) 

 
Example: Solve the initial-value problem 

ut + uux = x,   u (x, 0) = f (x)   where (a) f (x) = 1 and (b) f (x) = x 

 
Solution:  The characteristic equations are  
  

  
 

  

 
 

  

   
 

 (   )

    
      

Integration gives    t = log (x + u) − log C1 

Or    (u + x) e−t = C1.    Similarly, we get   u2 − x2 = C2 

For case (a) we obtain 

1 + x = C1 and 1 − x2 = C2, and hence C2 = 2C1 –   
  

Thus,  (u2 − x2) = 2(u + x) e−t − (u + x)2 e−2t 

Or   u − x = 2e−t  −  (u + x) e−2t 

A simple manipulation gives the solution 

u (x, t) = x tanh t + sech t  

 
Case (b) is left as an exercise. 
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EXERCISES 
 
1. (a) Show that the family of right circular cones whose axes coincide 

with the z-axis;    x2 + y2 = (z − c)2 tan2α    satisfies the first-order, PDE 

yp − xq = 0 

(b) Show that all the surfaces of revolution, z = f(x2 + y2)with the 

z-axis as the axis of symmetry, where f is an arbitrary function, 

satisfy the partial differential equation yp − xq = 0. 

(c) Show that the two-parameter family of curves u −ax−by −ab = 0 

satisfies the nonlinear equation   xp + yq + pq = u. 

 
2. Find the partial differential equation arising from each of the 
following  surfaces: 

(a) z = x + y + f (xy)   (b) z = f (x − y)   (c) z = xy + f(x2 + y2) 

 (d) 2z = (αx + y)2 + β 
 
3. Find the general solution of each of the following equations: 

(a) ux = 0,       (b) aux + buy = 0; a, b, are constant, 

(c) ux + y uy = 0    (d) (1 + x2) ux + uy = 0 

(e) 2xy ux +(x2 + y2) uy = 0   (f) yuy − xux = 1 

4. Find the general solution of the equation  ux +2xy2uy = 0. 

5. Find the solution of the following Cauchy problems: 

(a) 3ux +2uy = 0, with u (x, 0) = sin x 

(b) y ux + xuy = 0, with u (0, y) = exp(−y2) 

(c) xux + y uy = 2xy, with u = 2 on y = x2, 

(d) ux + xuy = 0, with u (0, y) = siny, 

(e) yux + xuy = xy, x ≥ 0, y ≥ 0, with u (0, y) = exp(−y2) for y > 0,  and 

u(x, 0) = exp(−x2)  for x > 0, 

6. Solve the equation  ux + xuy = y  with the Cauchy data 

(a) u (0, y) = y2,  (b) u (1, y) = 2y. 

7. Solve the Cauchy problem   (y + u) ux + y uy = (x − y) ,            

with u = 1+x on y = 1. 
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8. Show that the solution of the equation  yux − xuy = 0 

containing the curve x2 + y2 = a2, u = y, does not exist. 

9. Find the solution of the equation yux − 2xy uy = 2xu with the 

condition u (0, y) = y3. 

10. Solve the following Cauchy problems: 

(a) 3 ux +2uy = 0, u (x, 0) = f (x), 

(b) aux + buy = cu, u (x, 0) = f (x), where a, b, c are constants, 

(c) xux + y uy = cu, u (x, 0) = f (x), 

(d) uux + uy = 1, u (s, 0) = αs, x (s, 0) = s, y (s, 0) = 0. 

 
BOUNDRY CONDITIONS  

¶ The boundry conditions   ( )      ( )    and     ( )      ( )    are called 

Separated Boundry Conditions are Unmixed Boundry Conditions. 

¶ If the Separated Boundry conditions are of the form    ( )           ( )     

then they are called Drichlet  BCôs 

¶ If the Separated Boundry conditions are of the form      ( )             ( )      

then they are called Neumann BCôs 

¶ If the Separated Boundry conditions are of the form  ( )   ( )           

  ( )    ( ) then they are called Periodic BCôs 

OR : There must be one initial and two boundry conditions to solve a problem uniquely. 

Such conditions give initial temperature distribution.  

i. THE DRICHLET BCôs  or  BCôs OF 1
st
 KIND:  

Booundry conditions of the form  (   )    ( )   
and  (   )    ( )  ;     are called Drichlet boundry conditions. 

Physical Meaning: This condition tells that the temperature at the boundry 

of a body may be controlled in some way without being held constant. 

ii.  THE NEUMANN  BCôs  or  BCôs OF 2
nd

  KIND:  

Booundry conditions of the form   (   )   ( )  and   (   )   ( )  are called 

Neumann boundry conditions. Where   and   are functions of time. And in 

particular,   and   may be zero. If     then there is no flow at x = 0 

Physical Meaning: This condition tells that the rate of flow of heat is 

specified at one or more boundry. 

iii.  THE ROBBIN  BCôs  or  BCôs OF 3
rd

  KIND:  

Booundry conditions of the form    (   )      (   )             and 

   (   )      (   )             are called Robbin  boundry conditions. 

Physical Meaning: This condition tells about the proportionality between the 

rate of transfer of heat to the difference of temperature between the two bodies. i.e. 

both will be Proportional. 
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REMEMBER: 
ü An equation of the form   (         )      containing two arbitrary 

parameters is called a complete solution or a complete integral of equation 
  (         )      
Its role is somewhat similar to that of a general solution for the case of an 
ODE. 

ü Any relationship of the form  (   )    with    (     ) and    (     ) 
and provides a solution of first order PDE is called a general solution or 
general integral of this equation. 

ü The general solution of first order PDE depends on arbitrary function while 
The general solution of first order ODE depends on arbitrary constant. 

ü In practice only one solution satisfying prescribed conditions is required 
for a physical problem, such solution is called Particular Solution. 

ü For a function   (         )      if the envelope of two parameteric system 
 (         )      of surfaces exists, represents a solution of given 
equation  (         )      then the envelope is called Singular solution of 
such equation. 

ü A function is called smooth function if all of its derivatives exist and are 
continuous. 

ü A solution which is not everywhere differentiable is called a weak solution.  
ü Solutions of Qausi linear and non – linear PDE‟s may develop 

discontinuities as they move away from initial state. So their solutions are 
called weak solutions or shock waves. 

 
METHOD OF SEPARATION OF VARIABLES 
During the last two centuries several methods have been developed for solving 
partial differential equations. Among these, a technique known as the method of 
separation of variables is perhaps the oldest systematic method for solving 
partial differential equations. 
× Its essential feature is to transform the partial differential equations by a 

set of ordinary differential equations. 
× The required solution of the partial differential equations is then exposed 

as a product u (x, y) = X (x) Y (y)   0                                

or as a sum u (x, y) = X (x)+Y (y) 

where X (x) and Y (y) are functions of x and y, respectively. 

 
 
IMPORTANCE: Many significant problems in partial differential equations can be 
solved by the method of separation of variables. This method has been 
considerably refined and generalized over the last two centuries and is one of the 
classical techniques of applied mathematics, mathematical physics and 
engineering science. 
Usually, the first-order partial differential equation can be solved by separation of 
variables without the need for Fourier series. 
This method is used to convert PDE into ODE. 
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Example: Solve the initial-value problem 

ux +2uy = 0, u (0, y) = 4e−2y. ………..(i) 

Solution:   (i)   
 

  
  (   )   

 

  
  (   )     ………..(ii) 

let  u   u (x, y) = X (x) Y (y)   XY 

(ii)   
 

  
 (  )   

 

  
 (  )        X′ (x) Y(y) + 2 X(x) Y′ (y) = 0 

Dividing XY on both sides     
 ′   

  
     

   

  
     

   
 ′  

 
     

  

 
        

 ′  

  
   

  

 
   

 ′  

  
   

  

 
 

Since the L.H.S of this equation is a function of x only and the R.H.S 

is a function of y only 

 
 ′  

  
  

  

 
     

 ′  

  
   and  

  

 
   where   is separation constant. 

Consequently, gives two ordinary differential equations 

X′ (x) − 2λX (x) = 0  and   Y′ (y) +λY (y) = 0 

These equations have solutions given, respectively, by 

X (x) = Ae2λx      and        Y (y) = Be−λy 

where A and B are arbitrary integrating constants. 

Consequently, the general solution is given by 

u (x, y) = AB exp (2λx − λy) = C exp (2λx − λy)  

where C = AB is an arbitrary constant. 

Using the condition u(0,y) = 4e−2y  we find    4 e−2y = u (0, y) = Ce− y 

and hence, we deduce that C = 4 and λ = 2. Therefore, the final 

solution  is   u (x, y) = 4exp(4x − 2y)  

 

Example: Solve the equation y2  
  + x2  

  = (xyu)2 . ………..(i)              

with u(x,0) = 3 exp.
  

 
/ 

Solution:   (i)     0
 

  
  (   )1

 
   0

 

  
  (   )1

 
 (   )   ……..(ii) 

let  u   u (x, y) = X (x) Y (y)   XY 

(ii)       0
 

  
(  )1

 
   0

 

  
(  )1

 
     (  )                                     

      ,   -    ,   -      (  )  

Dividing     (  )  on both sides     
 

  
0
  

 
1
 

 
 

  
0
  

 
1
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0
  

 
1
 

   
 

  
0
  

 
1
 

    
 

  
0
  

 
1
 

   
 

  
0
  

 
1
 

     

Thus , we obtain 

 

  
0
  

 
1
 

     and    
 

  
0
  

 
1
 

      where    is separation constant. 

        
 

 

  

 
    and 

 

 

  

 
 √        

Solving these ODE‟s we find  

 ( )    
   

   and     ( )    
 

 
  √    

 
where A and B are arbitrary constant. Thus, the general solution is 

      (   )     ( )  ( )  4  
   

 5 (  
 

 
  √    

*    
   

 
 

 

 
  √    

  

where C = AB is an arbitrary constant. 

Using the condition u(x,0) = 3exp.
  

 
/ we determine  that C = 3 and             

λ= (1/2), and the solution becomes      (   )    
 

 
(     √ )

  

 
Example: Use the separation of variable   (   )     ( )   ( )            
Solve the equation   

  +   
  = 1 ………..(i) 

Solution:   (i)   0
 

  
  (   )1

 
 0

 

  
  (   )1

 
    ……..(ii) 

let  u   u (x, y) = f (x) + g (y)   f + g 

(ii)     0
 

  
( ( )   (  ))1

 
 0

 

  
( ( )   (  ))1

 
                                      

    ,  ( )-  ,  (  )-        ,  ( )-    ,  (  )-  
   ,  ( )-    ,  (  )-       
Thus , we obtain 

,  ( )-      and    ,  (  )-       where    is separation constant. 

          ( )     and   (  )  √        
Solving these ODE‟s we find  

 ( )        and     (  )   √      where A and B are arbitrary 

constant. Thus, the general solution is 

      (   )    ( )    ( )        √        

   (   )      √        
where C = A + B is an arbitrary constant. 
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Example: Use u (x, y) = f (x)+g (y) to solve the equation 

  
  + uy + x2 = 0 ………..(i) 

Solution:   (i)   0
 

  
  (   )1

 
 0

 

  
  (   )1        ……..(ii) 

let  u   u (x, y) = f (x) + g (y)   f + g 

(ii)     0
 

  
( ( )   (  ))1

 
 0

 

  
( ( )   (  ))1                                          

    ,  ( )-  ,  (  )-           ,  ( )-      ,  (  )- 
   ,  ( )-      ,  (  )-       
Thus , we obtain 
,  ( )-         and   ,  (  )-       where    is separation constant. 

          ( )  √       and   (  )         
Integrating above both we obtain 

        ( )  
 

 
  6     .

 

 
/  

 

 
√  

  

  7     and  (  )            

where A and B are arbitrary constant. Thus, the general solution is 

      (   )    ( )    ( )  
 

 
  6     .

 

 
/  

 

 
√  

  

  7            

  (   )  
 

 
  6     .

 

 
/  

 

 
√  

  

  7         

where C = A + B is an arbitrary constant. 

 
Example: Use         and     ( )     ( ) to solve the equation 

x2  
  + y2   

  = u2. ………..(i) 

Solution: 

In view of v = lnu,  vx = 
 

 
 ux  and vy = 

 

 
 uy, and hence, equation (i) 

becomes   x2  
  + y2   

  = 1. ………..(ii) 

 

  (ii)     0
 

  
  (   )1

 
   0

 

  
  (   )1     ……..(iii) 

let  v   v (x, y) = f (x) + g (y)   f + g 

(iii)       0
 

  
( ( )   (  ))1

 
   0

 

  
( ( )   (  ))1                                       

      ,  ( )-    ,  (  )-          ,  ( )-      ,  (  )- 
     ,  ( )-      ,  (  )-       
Thus , we obtain 

  ,  ( )-      and    ,  (  )-       where    is separation constant. 
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          ( )  
 

 
  and   (  )  

 

 
√        

Integrating above both      ( )          and  (  )  √             

where A and B are arbitrary constant. Thus, the general solution is 

      (   )    ( )    ( )         √            

  (   )       √                .    √    
  /  

Where             is an arbitrary constant. 

Now   (   )        .    √    
  / 

Therefore, the final solution is   

  (   )         √    
     where C is integrating constant. 

 
EXERCISES 
1. Apply the method of separation of variables  (   )   ( )  ( ) to 
solve the following equations: 

(a) ux + u = uy,   u (x,0) = 4e−3x    (b) uxuy = u2 

(c) ux +2uy = 0,   u (0,y) = 3e−2y    

(d) x2uxy +9y2u = 0, u (x,0) = exp(
 

 
) (e) yux − xuy = 0 

(f) ut = c2 (uxx + uyy)  (g) uxx + uyy = 0. 

 
2. Use a separable solution  (   )     ( )   ( )  to solve the 
following 
equations: 

(a)   
  +   

  = 1   (b)   
  +   

  = u   (c)   
  + uy + x

2 = 0                  

(d) x2  
  + y2   

  = 1   (e) yux + xuy = 0, u(0,y) = y2. 

3. Apply v = lnu and then v (x,y) = f (x)+g (y) to solve the following 

equations:  x2  
  + y2   

  = u2  

4. Apply √  = v and v (x, y) = f (x) +g (y) to solve the equation 

x4  
  + y2   

  = 4u. 

5. Using v = lnu and v = f (x) + g (y), show that the solution of the 

Cauchy problem 

y2  
  + x2  

  = (xyu)2   with u(x,0) = exp(  ) is  u(x,y) = exp (    
√ 

 
  ) 

6. Solve v ut = kuxx with  u(x,0) = x , u(0,t) =0 = u(L,t)  

7. Find De alembert‟s solution of ut =   uxx with  u(0,t) =0 = u(a,t) , 

u(x,0) =  ( ) , ut (x,0) =  ( ) 
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Find the solution of each of the following equations by the method of  
separation of variables: 

(a) ux − uy = 0,  u(0,y) = 2e3y (b) ux − uy = u,  u (x,0) = 4e−3x 

(c) aux + buy = 0, u (x,0) = αeβx  where a, b, α and β are constants. 

 
CANONICAL/STANDARD/NORMAL  FORMS OF FIRST-ORDER 
LINEAR EQUATIONS  
For the general first-order linear partial differential equation  

a (x, y) ux + b (x, y) uy + c (x, y) u = d (x, y)   
the canonical (or standard)  form is given as follows 

     (   )     (   )                where   (   )  
 

 
  and  (   )  

 

 
        

also    (   ) and    (   ) are continuously differentiable 
functions. Also A = a    +b    

DERIVATION: consider    (   )  where    (   ) and    (   ) 
Then  ux =  uξ  + uη    and uy =  uξ  + uη   put these in 1st order PDE 

We get A    + B uη + cu = d ………..(i) 

where  A = a    +b     and   B = a    +b    

now B = 0 if   is solution of a    +b    = 0 

now dividing (i) with A we get  

    (   )     (   )                where   (   )  
 

 
  and  (   )  

 

 
         

 

Example: Reduce the equation   ux − uy = u  to canonical form, and 

obtain the general solution. 

Solution: here a = 1, b = −1, c = −1 and d = 0.                                               

The characteristic equations are   
  

  
 

  

  
 

  

   
  

The characteristic curves are   = x + y = c1 and we choose η= y= c2 

where c1 and c2 are constants. Consequently, ux = uξ and uy = uξ + uη 

and hence, given equation becomes  - uη = u 

Integrating this equation gives    ln u( ,η) = -η+ ln f( )  

where f( ) is an arbitrary function of ξonly. 

Equivalently,        u ( ,η) = f( ) e-η 

In terms of the original variables x and y, the general solution of 

equation is    u (x, y) = f (x + y) e-y     where f is an arbitrary function. 
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Example: Reduce the following equation  yux + uy = x  to canonical 

form, and obtain the general solution. 

Solution: here a = y, b = 1, c = 0  and d = x.                                               

The characteristic equations are   
  

 
 

  

 
 

  

   
  

It follows from the first two equations that   (x, y) = x − 
  

 
= c1                

we choose η(x,y) = y= c2.  

Consequently, ux = uξ and uy = - yuξ + uη  

And hence, given equation reduces to     

uη =   + 
 

 
η2 

Integrating this equation gives the general solution 

u( ,η) =   η + 
 

 
η3 + f ( )   

where f is an arbitrary function. 

Thus, the general solution of  in terms of x and y is 

u (x, y) = xy − 
 

 
 y3 + f (x - 

  

 
) 

 
Reduce each of the following equations into canonical form and find 
the general solution: 

(a) ux + uy = u 

(b) ux + xuy = y 

(c) ux +2xyuy = x 

 (d) ux − yuy − u = 1 
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MATHEMATICAL MODELS 

 
Usually, in almost all physical phenomena (or physical processes), the dependent 

variable u = u (x, y, z, t) is a function of three space variables, x, y, z and time 

variable t. 

The three basic types of second-order partial differential equations are: 
 

(a) The wave equation    utt − c
2 (uxx + uyy + uzz) = 0                

 

(b) The heat equation    ut − k (uxx + uyy + uzz) = 0               

 

(c) The Laplace equation      uxx + uyy + uzz = 0        

 
In this section, we list a few more common linear partial differential equations 
of importance in applied mathematics, mathematical physics, and engineering 
science. Such a list naturally cannot ever be complete. Included  are only 
equations of most common interest: 

(d) The Poisson equation   ∇2u = f (x, y, z)  

 

(e) The Helmholtz equation (reduced wave equation)    ∇2u + λu = 0 

 

(f) The biharmonic equation   ∇4u = ∇2( ∇2u)  = 0 

 

(g) The biharmonic wave equation    utt + c2∇4u = 0 

 

(h) The telegraph equation     utt + aut + bu = c2uxx 
 
(i) The Schr  ̈dinger equations in quantum physics 

 

    0. 
  

  
/    (     )1   And   ∇2 Ψ + 

  

  
,   (     )-     

 

 (j) The Klein–Gordon equation     u + λ2u = 0 

Where       
 

  
  

   
  is the d‟Alembertian, and in all equations λ, a, b, c, m, E are 

constants and h = 2π   is the Planck constant. 

 
(k) For a compressible fluid flow, Euler‟s equations 

ut +(u .∇) u = −
 

 
∇  and  ρt + div(ρu) = 0     where u = (u,v,w) is the fluid velocity 

vector, ρ is the fluid density,  and p = p(ρ) is the pressure that relates p and ρ 
(the constitutive equation or equation of state). 
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ONE DIMENSIONAL WAVE EQUATION USING THE VIBRATING STRING 
 

An equation of the form utt = c2uxx  where c2 = 
 

 
 is called the one-dimensional wave 

equation.  Where u (x,t) is a function of displacement at position x in time ‘t’ and 

‘c’ denotes the velocity of wave equation. 
 
PROOF 
Let us consider a stretched string of length   fixed at the end points. The 
problem here is to determine the equation of motion which characterizes 

the position u (x,t) of the string at time t after an initial disturbance is given. 

 
In order to obtain a simple equation, we make the following assumptions: 
1. The string is flexible and elastic, that is the string cannot resist bending 
moment and thus the tension in the string is always in the direction of the tangent 
to the existing profile of the string. 
2. There is no elongation of a single segment of the string and hence, by Hooke‟s 
law, the tension is constant. 
3. The weight of the string is small compared with the tension in the string. 
4. The deflection is small compared with the length of the string. 
5. The slope of the displaced string at any point is small compared with unity. 
6. There is only pure transverse vibration. 

 
We consider a differential element of the string. Let T be the tension at the 

end points as shown in Figure. The forces acting on the element of the string in 

the vertical direction are    T sin β − T sin α 

By Newton‟s second law of motion, the resultant force is equal to the 
mass times the acceleration. Hence, 

T sin β − T sin α =    utt   ……………(i)          
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where ρ is the line density and δs is the smaller arc length of the string. 

Since the slope of the displaced string is small, we have     δs ≃ δx 

Since the angles α and β are small    sin α ≃ tan α, sin β ≃ tan β 

Thus, equation (i) becomes   tan β − tan α = 
 

 
δx utt   ……………(ii) 

But, from calculus we know that        and       are the slopes of the string 

at x and x + δx: 

tan α = ux (x,t)   and  tan β = ux (x + δx, t) at time t.  

Then Equation (ii) may thus be written as 
 

  
 [(ux)x+δx − (ux)x] = 

 

 
 utt 

 

  
 [ux (x + δx, t) − ux (x, t)] = 

 

 
 utt 

       
 

  
 [ux (x + δx, t) − ux (x, t)] = 

 

 
 utt   limit have no effect on R.H.S 

utt = c2uxx         ……………(iii) 

where c2 = 
 

 
. This is called the one-dimensional wave equation. 

If there is an external force f per unit length acting on the string. 

Equation (iii) assumes the form 

utt = c2uxx + F, F = 
 

 
  where f may be pressure, gravitation, resistance, and so on. 

 

TWO DIMENSIONAL WAVE EQUATION USING THE VIBRATING MEMBRANE              
(JUST STATEMENT) 
 

An equation of the form utt = c2( uxx + uyy )  where c2 = 
 

 
 is called the                             

two-dimensional wave equation.  Where u (x,t) is a function of displacement at 

position x in time ‘t’ and ‘c’ denotes the velocity of wave equation. 

 
PROOF 
The equation of the vibrating membrane occurs in a large number of problems 
in applied mathematics and mathematical physics. Before we derive the equation 
for the vibrating membrane we make certain simplifying assumptions as in the 
case of the vibrating string: 
1. The membrane is flexible and elastic, that is, the membrane cannot resist 
bending moment and the tension in the membrane is always in the direction of 
the tangent to the existing profile of the membrane. 
2. There is no elongation of a single segment of the membrane and hence, by 
Hooke‟s law, the tension is constant. 
3. The weight of the membrane is small compared with the tension in the 
membrane. 
4. The deflection is small compared with the minimal diameter of the membrane. 
5. The slope of the displayed membrane at any point is small compared with 
unity. 
6. There is only pure transverse vibration. 
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We consider a small element of the membrane. Since the deflection and slope are 

small, the area of the element is approximately equal to δxδy. If T is the tensile 

force per unit length, then the forces acting on the sides of the element are Tδx 

and Tδy, as shown in Figure  

The forces acting on the element of the membrane in the vertical direction are 

T δxsin β −T δxsin α +T δy sin δ −T δy sin γ. 

Since the slopes are small, sines of the angles are approximately equal to their 
tangents. Thus, the resultant force becomes 

T δx(tan β − tan α)+T δy (tan δ − tan γ) . 

By Newton‟s second law of motion, the resultant force is equal to the mass times 
the acceleration. Hence, 

Tδx(tan β− tan α)+Tδy (tan δ− tan γ) = ρδA utt   ……………(i) 

where ρ is the mass per unit area, δA ≃ δxδy is the area of this element, and 

utt is computed at some point in the region under consideration. But from 

calculus, we have 

tan α = uy (x1, y)  tan β = uy (x2, y + δy) 

tan γ = ux (x, y1)  tan δ = ux (x + δx, y2) 

where x1 and x2 are the values of x between x and x+δx, and y1 and y2 are 

the values of y between y and y + δy.  

Substituting these values in (i)  we obtain 

Tδx[uy (x2, y + δy) − uy (x1, y)] +Tδy [ux (x + δx, y2) − ux (x, y1)] = ρδxδy utt 

Division by ρδxδy yields 
 

 
0
  (       )   (    )

  
 

  (       )   (    )

  
1        ……………(ii) 

In the limit as δx approaches zero and δy approaches zero, we obtain 

utt = c2 (uxx + uyy)   ……………(iii) 

where c2 = T/ρ. This equation is called the two-dimensional wave equation. 

If there is an external force f per unit area acting on the membrane. Equation (iii) 

takes the form 

utt = c2 (uxx + uyy)+F      where F = f/ρ. 
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THREE DIMENSIONAL WAVE EQUATION USING THE VIBRATING MEMBRANE 

Equation of the form       
     where    √ 

 ⁄  is called transverse wave 

velocity. 

And  Equation of the form       
     where    √

    
 ⁄  is called longitudinal 

wave velocity. 
Both type of above equations are called Wave equations in three dimension. 
 
 
GENERAL FORM OF  WAVE EQUATION : In general, the wave equation may be 

written as     utt = c2∇2u  where the Laplace operator may be one, two, or three 

dimensional. 
The importance of the wave equation stems from the facts that this type of 

equation arises in many physical problems; for example, sound waves in space, 
electrical vibration in a conductor, torsional oscillation of a rod, shallow water 
waves, linearized supersonic flow in a gas, waves in an electric transmission line, 
waves in magnetohydrodynamics, and longitudinal vibrations of a bar. 
 
WAVE: A wave is a disturbance that carries energy from one place to another. 

For example, wave produced on the string. 
 
There are two types of waves. 
 
MECHANICAL WAVE: Waves which required any medium for their propogation. 
e.g.  (i) Sound waves  (ii) water waves. 
ELECTROMEGNATIC  WAVE: Waves which  do not required any medium for their 
propogation.   e.g.  (i) Radio waves  (ii) X -  Rays. 
 
Mechanical waves have two types 
 
TRANSVERSE WAVES: In the case of transverse waves, the motion of particles of 
the medium is perpendicular to the motion of waves. 
e.g.  Waves produced on water surface 
LONGITUDINAL  WAVES: In the case of longitudinal waves, the particles of the 
medium move back and forth along the direction of propogation of wave. 
e.g.  Waves produced in an elastic spring. 
 
 
UNIQUENESS THEOREM FOR  WAVE EQUATION (UoS Past Papers) 

According to this theorem: the solution to the wave equation           
satisfying the IC‟s  (   )   ( )         and   (   )   ( )         and the 
BC‟s  (   )   (   )    where  (   ) is twise continuously differentiable with 
respect to „x‟ and „t‟ is unique. 
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HEAT: 
Heat is a form of energy that transferred from hot body to the cold body, by 
means of thermal contact. It is denoted by „q‟ 
 
CONDUCTION OF HEAT:  
In this mode heat is transmitted through actual contact between particles 
(molecules) of the medium.  
 
CONVECTION OF HEAT:  
In this mode heat is transmitted through gases or liquids by actual motion of 
particles (molecules) of the medium.  
 
RADIATION OF HEAT:  
In this mode heat is transmitted through electromagnetic waves. Or by means of 
heat waves or thermal radiations. Medium is not essential for it. i.e. heat can take 
places in vaccume also. 
 
SPECIFIC HEAT OF SUBSTANCE (MATERIAL) :   
The quantity of heat required to raise the temperature of 1g of material by 1   and 
it is denoted by C and mathematically could be written as         
 
HEAT FLUX (THERMAL FLUX) :   
Is the rate of heat energy transfer through a given surface per unit surface area. 
Its unit is watt or Js-1 
 
THERMAL CONDUCTIVITY:   
The quantity of heat flowing per second across a plate (of the material) of unit 
area and unit thickness, when the temperature difference between opposite sides 
is 1   
It determines how good a conductor the material is . It is large for good 
conductors and small for bad conductors. 
 
SOME FACTORS ON WHICH RATE OF FLOW OF  HEAT DEPENDS 

¶ Area as   (   )    

¶ Length as    (   )  
 

 
 

¶ Change in temperature as     (   )     
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ONE DIMENSIONAL HEAT EQUATION  
 

An equation of the form 
   

    
 

 

  

  
  is called heat equation. Where U= U(x,t) is a 

temperature of a body at „x‟ position in time „t‟ and „K‟ is called diffusivity or 
thermal conductivity of the material. 
 
PROOF: 
 
    U = U(x,t) 
 
 

     ∆x 
  
 
 
                   x - axis 

     x   x+ ∆x 
 
Let us consider the flow of heat through a uniform rod of length     and cross 

sectional area     then  
Density of rod =                                         
We choose the x – axis along the length of the rod with origin at one end  of the 
rod. Then temperature at point „x‟ from origin at time „t‟ will be U = U(x,t) 
Let   flow of heat = q (x,t)                  
(quantity of heat entering per second through unit area perpendicular to the 
direction of flow) 

Also   Heat generation  =    and  heat stored per second = cm 
  

  
 = cρA∆x 

  

  
 

Now using law of conservation of heat energy 
(Quantity of heat which entered) + (heat generated inside the rod)  
=  (Quantity of heat which leave) + (quantity of heat stored) 

q (x,t) A+  A∆x = q (x + ∆x,t) A + cρA∆x 
  

  
 

dividing both sides by „A‟ we get  q (x,t) +  ∆x = q (x + ∆x,t)  + cρ∆x 
  

  
 

dividing both sides by ∆x we get   
 

  
 [q (x,t) - q (x + ∆x,t) ]  +   =  cρ 

  

  
 

Applying       -  
  

  
 +   =  cρ 

  

  
 

Now by using Fourier law of heat conductivity which is  q = - K∆u 

Then (i) becomes  -  
 

  
(     ) +   =  cρ 

  

  
  then we get   K 

   

    +   =  cρ 
  

  
 

For standard form we suppose      and cρ = 1 (i.e. no heat generation) 

Then  K 
   

    =  
  

  
 

Or  
   

    
 

 

  

  
 which is required heat equation in one dimension 

In general   ut = κ∇2u   or  ∇2u  = 
 

 
 ut  
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THE HEAT EQUATION (CONDUCTION OF HEAT IN SOLIDS) 

We consider a domain D∗ bounded by a closed surface B∗. Let u (x, y, z, t) be 

the temperature at a point (x, y, z) at time t. If the temperature is not constant, 

heat flows from places of higher temperature to places of lower temperature. 
Fourier‟s law states that “the rate of flow is proportional to the gradient of the 
temperature”. Thus the velocity of the heat flow in an isotropic body is 

            
where K is a constant, called the thermal conductivity of the body. 

Let D be an arbitrary domain bounded by a closed surface B in D∗. Then the 

amount of heat leaving D per unit time is  
 
     where vn = v.n is the component 

of v in the direction of the outer unit normal n of B. Thus, by Gauss‟ theorem 

(Divergence theorem) 

 
 
     =  

 
    (       )        = −K 

 
∇2u dxdydz 

But the amount of heat in D is given by   
 
σρu dxdydz 

where ρ is the density of the material of the body and σ is its specific heat. 

Assuming that integration and differentiation are interchangeable, the rate 

of decrease of heat in D is     
 
σρ

  

  
 dxdydz 

Since the rate of decrease of heat in D must be equal to the amount of heat 

leaving  D per unit time, we have 

 
 
σρut dxdydz = −K  

 
∇2u dxdydz 

or 

 
 
 [σρut − K∇

2u] dxdydz = 0  …………..(i) 

for an arbitrary D in D∗. We assume that the integrand is continuous. If we 

suppose that the integrand is not zero at a point (x0,y0,z0) in D, then, by 

continuity, the integrand is not zero in a small region surrounding the point 

(x0, y0, z0). Continuing in this fashion we extend the region encompassing 

D. Hence the integral must be nonzero. This contradicts (i). Thus, the integrand is 

zero everywhere, that is,    ut = κ∇2u   where         . This is known as the heat 

equation. 
 
This type of equation appears in a great variety of problems in mathematical 
physics, for example the concentration of diffusing material, the 
motion of a tidal wave in a long channel, transmission in electrical cables, 
and unsteady boundary layers in viscous fluid flows.  
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CLASSIFICATION OF SECOND-ORDER LINEAR EQUATIONS 

 
SECOND-ORDER EQUATIONS IN ONE INDEPENDENT VARIABLE 
The general linear second-order partial differential equation in one dependent 

variable u may be written as 

∑         

 
      ∑      

 
         ………..(i) 

in which we assume Aij = Aji and Aij , Bi, F, and G are real-valued functions defined 

in some region of the space (x1,x2, . . . ,xn) 

 
SECOND-ORDER EQUATIONS IN TWO INDEPENDENT VARIABLES 

Second-order equations in the dependent variable u and the independent 

variables x, y can be put in the form 

Auxx + Buxy + Cuyy + Dux + Euy + Fu = G  ………..(ii) 

where the coefficients are functions of „x‟ and „y‟ and do not vanish 

simultaneously. We shall assume that the function „u‟ and the coefficients are 

twice continuously differentiable in some domain in R2. 
 
CLASSIFICATION OF SECOND-ORDER LINEAR EQUATIONS 
The classification of partial differential equations is suggested by the 
classification of the quadratic equation of conic sections in analytic geometry. 

The equation     Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,  represents  

hyperbola if  B2 − 4AC is positive  i.e. B2 − 4AC > 0 

parabola  if  B2 − 4AC is zero i.e. B2 − 4AC = 0 

or ellipse if  B2 − 4AC is negative  i.e. B2 − 4AC < 0 

for example: 

(i) The heat equation 
 

 
       is parabolic. 

(ii) The wave equation 
 

  
        is hyperbolic. 

(iii) The potential (Laplace) equation               is elliptic. 

 
TRANSFORMATION OF  SECOND-ORDER EQUATIONS TO A CANONICAL FORM 
To transform equation 

Auxx + Buxy + Cuyy + Dux + Euy + Fu = G  ………..(ii) 

to a canonical form we make a change of independent variables. Let the new 

variables be      =   (x, y), η= η (x, y)   ………..(iii) 

Assuming that   and η are twice continuously differentiable and that the 

Jacobian    J =  |
    
    

| ………..(iv) 

is nonzero in the region under consideration, then x and y can be determined 

uniquely from the system (iii). Let x and y be twice continuously differentiable 

functions of   and η. Then we have 
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ux = uξ x + uηηx ,  uy = uξ y + uηηy 

uxx = uξξ  
 +2 uξη xηx + uηη  

  + uξ xx + uηηxx 

uxy = uξξ  xξy + uξη ( xηy +  yηx)+ uηη ηxηy + uξ xy + uηηxy 

uyy = uξξ  
 +2 uξη yηy + uηη  

  + uξ yy + uηηyy 

Substituting these values in equation Auxx + Buxy + Cuyy + Dux + Euy + Fu = G  

we obtain 

A∗uξξ + B∗uξη + C∗uηη + D∗uξ + E∗uη + F∗u = G∗  ………..(v) 

where 

A∗ = A  
 + B x y + C  

  

B∗ = 2A xηx + B ( xηy +  yηx)+2C yηy 

C∗ = A  
 + Bηxηy + C  

  

D∗ = A xx + B xy + C yy + D x + E y   ………..(vi) for all 

E∗ = Aηxx + Bηxy + Cηyy + Dηx + Eηy 

F∗ = F, G∗ = G 

The resulting equation (v) is in the same form as the original equation (ii) under 
the general transformation (iii). The nature of the equation remains invariant 
under such a transformation if the Jacobian does not vanish. This can be seen 
from the fact that the sign of the discriminant does not alter under the 

transformation, that is,    B∗2 − 4A∗C∗ = J2(B2 − 4AC) ………..(vii) 

Now The classification of equation (ii) depends on the coefficients A(x,y), 

B(x,y), and C(x,y) at a given point (x,y). We shall, therefore, rewrite equation (ii) as 

Auxx + Buxy + Cuyy = H (x, y, u, ux,uy)    ………..(viii) 

and equation (v) as 

A∗uξξ + B∗uξη+ C∗uηη = H∗ (ξ, η, u, uξ , uη)  ………..(ix) 

Now  suppose that none of A, B, C, is zero. Let   and η be new variables such 

that the coefficients A∗ and C∗ in equation (ix) vanish. Thus, from (vi), we have 

A∗ = A  
 + B x y + C  

  = 0  and    C∗ = A  
 + Bηxηy + C  

  = 0 

These two equations are of the same type and hence we may write them in the 

form    A  
  + B      + C  

 = 0  ………..(x) 

in which   stand for either of the functions   or η. Dividing through by   
  

equation (x) becomes 

A(
  

  
 *

 

 + B (
  

  
 * + C = 0  ………..(xi) 

Along the curve   = constant, we have                          

Thus   
  

  
  

  

  
 ………..(xii)   and therefore, equation (ii) may be written in the 

form A.
  

  
 /

 

 - B .
  

  
 / + C = 0  ………..(xiii) 
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the roots of which are 

  

  
 

.  √      /

  
  ………..(xiv)  and  

  

  
 

.  √      /

  
  ………..(xv) 

These equations, which are known as the characteristic equations, are ordinary 

differential equations for families of curves in the xy-plane along which                     

  = constant and   = constant.  
The integrals of equations (xiv) and (xv) are called the characteristic curves. 
Since the equations are first-order ordinary differential equations, the solutions 
may be written as 

φ1 (x, y) = c1, c1 = constant  and   φ2 (x, y) = c2, c2 = constant 
Hence the transformations 

  = φ1 (x, y), η= φ2 (x, y)  will transform equation (viii) to a canonical form. 
 
(A) CANONICAL TRANSFORMATION OF HYPERBOLIC TYPE 

If B2 − 4AC > 0, then integration of equations 

  

  
 

.  √      /

  
  and  

  

  
 

.  √      /

  
   

yield two real and distinct families of characteristics. 

Equation A∗uξξ + B∗uξη+ C∗uηη = H∗ ( , η, u, uξ , uη) reduces to   uξη = H1 

where H1 = H∗/B∗. It can be easily shown that B∗   0. This form is called the first 

canonical form of the hyperbolic equation. 

Now if new independent variables  α =   + η, β =   – η are introduced, then 

equation uξη = H1 is transformed into   uαα - uββ = H2 (α, β, u, uα , uβ)  

This form is called the second canonical form of the hyperbolic equation. 
 
(B) CANONICAL TRANSFORMATION OF  PARABOLIC TYPE 

If  B2 − 4AC = 0, and equations 
  

  
 

.  √      /

  
  and  

  

  
 

.  √      /

  
   

coincide. Thus, there exists one real family of characteristics, and we obtain only 

a single integral   = constant (or η = constant). 

Since B2 = 4AC and A∗ = 0, we find that  A∗ = A  
  +B x y + C  

 =(√  x + √   y)
2 = 0 

From this it follows that 

A∗ = 2A xηx + B( xηy +  yηx)+2C yηy = 2 (√  x + √   y) (√ ηx + √ ηy)=0 

for arbitrary values of η (x, y) which is functionally independent of   (x, y); 

for instance, if η = y, the Jacobian does not vanish in the domain of parabolicity 

Division of equation A∗uξξ + B∗uξη+ C∗uηη = H∗ (ξ, η, u, uξ , uη) by C∗ yields 

uηη = H3 ( , η, u, uξ , uη), C∗   0   This is called the canonical form of the 

parabolic equation. Equation A∗uξξ + B∗uξη+ C∗uηη = H∗ ( , η, u, uξ , uη) may 

also assume the form uξξ =   
  ( ,η, u, uξ , uη )  if we choose η = constant as 

the integral of equation 
  

  
 

.  √      /
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(C) CANONICAL TRANSFORMATION OF  ELLIPTIC TYPE 

For an equation of elliptic type, we have B2 − 4AC < 0. Consequently, the quadratic 

equation A.
  

  
 /

 

 - B .
  

  
 / + C = 0 has no real solutions, but it has two complex 

conjugate solutions which are continuous complex-valued functions of the real 

variables x and y. Thus, in this case, there are no real characteristic curves. 

However, if the coefficients A, B, and C are analytic functions of x and y, then one 

can consider equation A.
  

  
 /

 

 - B .
  

  
 / + C = 0 for complex x and y. A function of 

two real variables x and y is said to be analytic in a certain domain if in some 

neighborhood of every point (x0, y0) of this domain, the function can be 

represented as a Taylor series in the variables (x−x0) and (y − y0). 

Since   and η are complex, we introduce new real variables 

α = 
 

 
 (  + η), β= 

 

  
 (  − η)  ………..(i) 

so that       = α + iβ, η = α – iβ ………..(ii) 

First, we transform equations Auxx + Buxy + Cuyy = H (x, y, u, ux,uy)  We then have 

A∗∗ (α, β) u + B∗∗ (α, β) u + C∗∗ (α, β) u = H4 (α, β, u, uα , uβ)  ………..(iii) 

in which the coefficients assume the same form as the coefficients in equation 

A∗uξξ + B∗uξη+ C∗uηη = H∗ ( , η, u, uξ , uη)  With the use of   = α + iβ,           

η = α – iβ the equations A∗ = C∗ = 0 become 

(A  
 + Bαxαy+ C  

 )-(A   
 + Bβxβy+ C  

 )+i[2Aαxβx+ B(αxβy+αyβx)+2Cαyβy] =0 

 

(A  
 + Bαxαy+ C  

 )-(A   
 + Bβxβy+ C  

 )- i[2Aαxβx+ B(αxβy+αyβx)+2Cαyβy] =0 

or, (A∗∗ − C∗∗)+iB∗∗ = 0, (A∗∗ − C∗∗) − iB∗∗ = 0 

These equations are satisfied if and only if A∗∗ = C∗∗ and B∗∗ = 0 

Hence, equation (iii) transforms into the form   A∗∗u + A∗∗u = H4 (α, β, u, uα , uβ)  

Dividing through by A∗∗, we obtain 

uαα + uββ = H5 (α, β, u, uα , uβ)    where H5 = (H4/A∗∗).  

This is called the canonical form of the elliptic equation. 
 
NOTE: 

i. When given equation is Hyperbolic then roots will be real and distinct and 
there wil be two characteristic curves i.e.  (   )          (   )     

ii. When given equation is Parabolic then roots will be real and equal and 
there wil be only one characteristic curve i.e.  (   )     

iii. When given equation is Elliptic then roots will be real and Complex and 
there wil be no characteristic curves in reals so will need to make following 

approximations  i.e.   
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REMEBER: for    (   )  and    (   ) 
i. Canonical form of Hyperbolic equation is      (           ) 

ii. Canonical form of Parabolic equation is      (           )                           

or      (           ) but not both in same time. 

iii. Canonical form of Elliptic equation is          (           )   

where    
   

 
       

   

  
 

Example: Transform  the equation y2uxx − x
2uyy = 0 into canonical form. 

Solution:  Here A = y2, B= 0, C= −x2. Thus,  B2 − 4AC = 4x2y2 > 0. 

The equation is hyperbolic everywhere except on the coordinate axes x = 0 and            

y = 0. From the characteristic equations 
  

  
 

.  √      /

  
 

.  √        /

 (  )
 

(   )

 (  )
   

and  
  

  
 

.  √      /

  
 

.  √        /

 (  )
 

 (   )

 (  )
         we have    

  

  
 

 

 
 and 

  

  
  

 

 
 

After integration of these equations, we obtain 

           and             
To transform the given equation to canonical form, we consider 

           and            

 x = 2x , ηx = -2x ,  xx = 2 , ηxx = -2 ,  xy = 0 , ηxy = 0 

 y = 2y , ηy = 2y ,  yy = 2 , ηyy = 2 

A∗ = A  
 + B x y + C  

  = 0  (after putting values) 

B∗ = 2A xηx + B ( xηy +  yηx)+2C yηy = -16       (after putting values) 

C∗ = A  
 + Bηxηy + C  

  = 0   (after putting values) 

D∗ = A xx + B xy + C yy + D x + E y = 2(     )  (after putting values) 

E∗ = Aηxx + Bηxy + Cηyy + Dηx + Eηy = -2(     )  (after putting values) 

F∗ = F=0, G∗ = G=0 

Now  A∗uξξ + B∗uξη + C∗uηη + D∗uξ + E∗uη + F∗u = G∗ 

-16     uξη + 2(     )  uξ -2(     )uη = 0  ………(i) 

Now as            and            

Adding above    
   

 
 and subtracting above    

   

 
  then         

     

 
  

( )   -16 .
     

 
 /uξη + 2     uξ - 2  uη = 0   

-4 (      )uξη + 2     uξ - 2  uη = 0   

Thus, the given equation assumes the canonical form 

     
 

 (     )
    

 

 (     )
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Example: Transform  the equation x2uxx +2xy uxy + y2uyy = 0 into canonical form. 

Solution:   In this case, the discriminant is   B2 − 4AC = 4x2y2 − 4x2y2 = 0. 

The equation is therefore parabolic everywhere.  

And the characteristic equations is  
  

  
 

 

 
  

hence, the characteristics are 
 

 
   which is the equation of a family of straight 

lines. 

Consider the transformation     
 

 
        where η is chosen arbitrarily.  

The given equation is then reduced to the canonical form  y2 uηη = 0. 

Thus  uηη = 0  for   y   0 

Example: Transform  the equation uxx + x2uyy = 0 into canonical form. 

Solution: The equation is elliptic everywhere except on the coordinate axis x = 0 

because B2 − 4AC = −4x2 < 0, x  0 

The characteristic equations are 
  

  
     and  

  

  
     

Integration yields     2y −  x2 = c1, 2 y +  x2 = c2 

Thus, if we write     = 2y −  x2  η= 2 y +  x2 

hence,      
 

 
(     )          

 

  
 (     )        

we obtain the canonical form          
 

  
   

 
NOTE: It should be remarked here that a given partial differential equation may 
be of a different type in a different domain. Thus, for example, Tricomi‟s equation 

uxx + xuyy = 0  is elliptic for x > 0 and hyperbolic for x < 0, since B2 − 4AC = −4x 

 
EQUATIONS WITH CONSTANT COEFFICIENTS 
In this case of an equation with real constant coefficients, the equation is of 

a single type at all points in the domain. This is because the discriminant B2 − 4AC 

is a constant. 

From the characteristic equations  
  

  
 

.  √      /

  
 and  

  

  
 

.  √      /

  
    we can 

see that the characteristics 

  4
.  √      /

  
5     and    4

.  √      /

  
5     are two families of straight 

lines. Consequently, the characteristic coordinates take the form 

  = y − λ1 x and  η = y − λ2 x      Where  λ1,2 = 
.  √      /

  
 

 
The linear second-order partial differential equation with constant coefficients 

may be written in the general form as    Auxx + Buxy + Cuyy + Dux + Euy + Fu = G(x, y)  

In particular, the equation  Auxx + Buyy + Cuyy = 0  is called the Euler equation. 
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(A) HYPERBOLIC TYPE 

If B2 − 4AC > 0, the equation is of hyperbolic type, in which case the  

characteristics form two distinct families. 

Using   = y - −
.  √      /

  
 x and  η = y - −

.  √      /

  
 x        

equation Auxx + Buxy + Cuyy + Dux + Euy + Fu = G(x, y)  becomes 

     = D1   + E1   + F1u + G1(   )    where D1, E1, and F1 are constants.  

Here, since the coefficients are constants, the lower order terms are expressed 
explicitly. 

When A = 0, equation 
  

  
 

.  √      /

  
 does not hold.  

To remove this difficulty consider −B(
  

  
)+C (

  

  
)2 = 0 

which may again be rewritten as   
  

  
= 0 and  - B + C (

  

  
) = 0 

Integration gives x = c1, x= (
 

 
) y + c2 

where c1 and c2 are integration constants. Thus, the characteristic coordinates 

are 

ξ = x, η = x − (
 

 
) y  we may use η = By - Cx   

Under this transformation, equation Auxx + Buxy + Cuyy + Dux + Euy + Fu = G(x, y)  

reduces to the canonical form 

     =   
    +   

     +   
  u +   

  (   )  where   
 ,   

 , and   
  are constants. 

The canonical form of the Euler equation is       = 0 

Integrating this equation gives the general solution 

      ( )    ( ) = φ (y − λ1,x)+   (y − λ2,x)  

where φ and   are arbitrary functions, and λ1,2 = 
.  √      /

  
 

 
(B) PARABOLIC TYPE 

When B2 − 4AC = 0, the equation is of parabolic type, in which case only one real 

family of characteristics exists. From equation λ1,2 = 
.  √      /

  
, we find 

That λ1 = λ2 = (
 

  
) , so that the single family of characteristics is given by 

y = 
 

  
 x + c1 where c1 is an integration constant. Thus, we have 

        (
 

  
)               (arbitrary)  

where η is chosen arbitrarily such that the Jacobian of the transformation is not 

zero, and h and k are constants. 

With the proper choice of the constants h and k in the transformation equation 

Auxx + Buxy + Cuyy + Dux + Euy + Fu = G(x, y)  reduces to  

   = D2   + E2   + F2u + G2 (   )   where D2, E2, and F2 are constants. 
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If B = 0, we can see at once from the relation B2 − 4AC = 0 that C or A vanishes. 

The given equation is then already in the canonical form. Similarly, in the other 

cases when A or C vanishes, B vanishes. The given equation is then also in 

canonical form. 
The canonical form of the Euler equation is       = 0 

Integrating twice gives the general solution         ( )    ( )    where   and   

are given by         (
 

  
)              . Choosing h = 1, k = 0 and λ = 

 

  
 

for simplicity, the general solution of the Euler equation in the parabolic 
case is        (      )    (      )  
 
(C) ELLIPTIC TYPE 

When B2 − 4AC < 0, the equation is of elliptic type. In this case, the characteristics 

are complex conjugates i.e. λ1,2 = 
.  √      /

  
 . The characteristic equations yield 

y = λ1x + c1, y= λ2x + c2  (after integeration) 

where λ1 and λ2 are complex numbers. Accordingly, c1 and c2 are allowed 

to take on complex values. Thus, 
        (      )                                 (      )      
where λ1,2 =      in which a and b are real constants, and 

   
 

  
  and    

 

  
 √          

Introduce the new variables 

    
 

 
 (     )                           

 

  
 (     )         

Application of this transformation readily reduces equation  

Auxx + Buxy + Cuyy + Dux + Euy + Fu = G(x, y) to the canonical form 

uαα + uββ = D3uα + E3uβ + F3u + G3 (α, β)   where D3, E3, F3 are constants. 

We note that B2 − AC < 0, so neither A nor C is zero. In this elliptic case, the Euler 

equation gives the complex characteristics 
        (      )                                 (      )    which are 

    (      )            (      )         ̅  
Consequently, the Euler equation becomes         = 0 

with the general solution        ( )   ( ̅) 
The appearance of complex arguments in the general solution (above) is a 
general feature of elliptic equations. 
 

Example: Solve the equation  4 uxx +5uxy + uyy + ux + uy = 2.Also find its canonical 

form.  

Solution: Since A = 4, B = 5, C = 1, and B2 − 4AC = 9 > 0, the equation is 

hyperbolic. Thus, the characteristic equations take the form 

  

  
   , 

  

  
 

 

 
    

  

  
 

.  √      /

  
 

and hence, the characteristics are  y = x + c1, y= (
 

 
) + c2  (on integrating) 
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The linear transformation                    (
 

 
)    

Then                               

and     
 

 
                        

A∗ = A  
 + B x y + C  

  = 0  (after putting values) 

B∗ = 2A xηx + B ( xηy +  yηx)+2C yηy = - 
 

 
  (after putting values) 

C∗ = A  
 + Bηxηy + C  

  = 0   (after putting values) 

D∗ = A xx + B xy + C yy + D x + E y = 0  (after putting values) 

E∗ = Aηxx + Bηxy + Cηyy + Dηx + Eηy = 
 

 
  (after putting values) and F∗ =F=0, G∗ = G=2 

Now  A∗uξξ + B∗uξη + C∗uηη + D∗uξ + E∗uη + F∗u = G∗ 

uξη =  
 

 
 uη -  

 

 
   (after putting the values and solving) 

This is the first canonical form. 
The second canonical form may be obtained by the transformation 

                –     

in the form uαα -  uββ = 
 

 
 uα − 

 

 
 uβ − −

 

 
 

 

Example: Solve the equation  uxx − 4 uxy + 4uyy = ey. Also find its canonical form.  

Solution: Since A = 1, B = −4, C = 4, and B2 − 4AC = 0, the equation is parabolic.  

Thus, we have from equation         (
 

  
)               we have  

                 in which η is chosen arbitrarily. By means of this mapping 

the equation transforms into uηη = 
 

 
 eη 

 

Example: Solve the equation  uxx + uxy + uyy + ux = 0. Also find its canonical form.  

Solution: Since A = 1,B = 1, C = 1, and B2 − 4AC = −3 <0, the equation is elliptic. 

We have λ1,2 = 
.  √      /

  
 

 

 
  

√ 

 
 

and hence,             .
 

 
  

√ 

 
/    ,         .

 

 
  

√ 

 
/   

Introducing the new variables    
 

 
(     )        

 

 
 ,    

 

  
(     )   

√ 

 
  

the given equation is then transformed into canonical form uαα+  uββ = 
 

 
 uα+ 

 

√ 
 uβ 

Example: Consider the wave equation utt − c
2uxx = 0, c is constant. Find its 

canonical form.  

Solution: Since A = −c2, B = 0, C = 1, and B2 − 4AC = 4c2 > 0, the wave equation is 

hyperbolic everywhere. 

According to A.
  

  
 /

 

 - B .
  

  
 / + C = 0 the equation of characteristics is 

−c2 .
  

  
 /

 

 +1 = 0 or dx2 − c2dt2 = 0 
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Therefore,               = constant,           = constant. 

Thus, the characteristics are straight lines, which are shown in Figure. 

 
The characteristics form a natural set of coordinates for the hyperbolic equation. 

In terms of new coordinates   and η defined above, we obtain 

uxx = uξξ+2 uξη + uηη  and    utt = c2 (uξξ - 2 uξη + uηη)  

so that the wave equation becomes −4c2 uξη = 0. 

Since c  0, we have   uξη = 0 

Integrating with respect to  , we obtain    uη =  1 (η)  

where  1 is the arbitrary function of η. Integrating with respect to η, we obtain 

  (   )   ∫   ( )        ( )   
If we set  ( )   ∫   ( )    )  the general solution becomes 

  (   )      ( )    ( )  

which is, in terms of the original variables x and t 

  (   )     (      )    (      )  
provided φ and ψ are arbitrary but twice differentiable functions. 

 
Example: Find the characteristic equations and characteristics, and 

then reduce the equations uxx   (sech4x)uyy = 0 to the canonical forms. 

Solution: In equation A = 1, B = 0 and C = −sech4x. Hence,B2 − 4AC = 4 sech4x > 0. 

Hence, the equation is hyperbolic. 

The characteristic equations are  
  

  
 

.  √      /

  
    sech2x 

Integration gives                        
Hence,                                
Using these characteristic coordinates, the given equation can be transformed 

into the canonical form  uξη =  
     

[   (     ) ]
 (uξ - uη) 
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Example: Find the characteristic equations and characteristics, and 

then reduce the equations uxx   (sech4x)uyy = 0 to the canonical forms. 

Solution: In equation A = 1, B = 0 and C = sech4x. Hence, B2 − 4AC =    sech2x 

Integrating gives                         
Thus,                                                         

The new real variables α and β are    
 

 
(     )         

 

  
 (     )           

In terms of these new variables, equation can be transformed into the canonical 

form   uαα+  uββ =   
  

      uβ,         

 

Example: Consider the wave equation uxx + (2 cosecy) uxy +(cosec2y)uyy = 0.  
Find its canonical form.  

Solution: In this case, A = 1, B = 2 cosecy and C = cosec2y. Hence, B2 − 4AC = 0, 

And   
  

  
  

 

  
           

The characteristic curves are therefore given by                           

Using these variables, the canonical form of equation is uηη =(sin2 η cos η) uη  

 
GENERAL SOLUTIONS 
In general, it is not so simple to determine the general solution of a given 
equation. Sometimes further simplification of the canonical form of an equation 
may yield the general solution. If the canonical form of the equation 
is simple, then the general solution can be immediately ascertained. 
 

Example: Find the general solution of  x2uxx +2xy uxy + y2uyy = 0 

Solution:  using the transformation    
 

 
           this equation reduces to the 

canonical form        uηη = 0,    for y   0 

Integrating twice with respect to η, we obtain 

  (   )       ( )    ( )      where f ( ) and g ( ) are arbitrary functions. 

In terms of the independent variables x and y, we have 

  (   )       (
 

 
)    (

 

 
)  

 

Example: Determine the general solution of  4 uxx +5uxy + uyy + ux + uy = 2 

Solution: Since A = 4, B = 5, C = 1, and B2 − 4AC = 9 > 0, the equation is 

hyperbolic. Thus, the characteristic equations take the form 

  

  
   , 

  

  
 

 

 
    

  

  
 

.  √      /

  
 

and hence, the characteristics are  y = x + c1, y= (
 

 
) + c2  (on integrating) 

The linear transformation                    (
 

 
)    

Then                               

and     
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A∗ = A  
 + B x y + C  

  = 0  (after putting values) 

B∗ = 2A xηx + B ( xηy +  yηx)+2C yηy = - 
 

 
  (after putting values) 

C∗ = A  
 + Bηxηy + C  

  = 0   (after putting values) 

D∗ = A xx + B xy + C yy + D x + E y = 0  (after putting values) 

E∗ = Aηxx + Bηxy + Cηyy + Dηx + Eηy = 
 

 
  (after putting values) and F∗ =F=0, G∗ = G=2 

Now  A∗uξξ + B∗uξη + C∗uηη + D∗uξ + E∗uη + F∗u = G∗ 

uξη =  
 

 
 uη -  

 

 
   (after putting the values and solving) 

By means of the substitution v = uη  the preceding equation reduces to 

vξ =  
 

 
 v -  

 

 
   

Integrating with respect to  , we have      
 

 
 

 

 
  .

 

 
/  ( ) 

Integrating with respect to η, we obtain      (   )  
 

 
   

 

 
   ( )   .

 

 
/      ( )  

where f ( ) and g (η) are arbitrary functions.  

The general solution of the given equation becomes 

  (   )  
 

 
(   

 

 
)   

 

 
 (  –

 

 
)  

 

 
(   )      (     )   

 

Example: Obtain the general solution of 3uxx +10uxy +3uyy = 0. 

Solution: Since B2 −4AC = 64 > 0, the equation is hyperbolic. Thus, from equation 

  

  
 

.  √      /

  
 the characteristics are y = 3x + c1, y= 

 

 
 x + c2 

Using the transformations                            –
 

 
  

the given equation can be reduced to the form (
  

 
) uξη = 0                 

Hence, we obtain uξη = 0 
Integration yields    (   )      ( )    ( )  
In terms of the original variables, the general solution is 

  (   )      (      )   (   
 

 
)  

 
Example: Find the general solution of the following equations 

yuxx +3yuxy +3ux = 0, y  0 

Solution: In equation A = y, B = 3y, C = 0, D = 3, E = F = G = 0. 

Hence B2 − 4AC = 9y2 > 0 and the equation is hyperbolic for all points (x, y) with            

y   0. Consequently, the characteristic equations using 
  

  
 

.  √      /

  
  are 

  

  
 

     

  
       

Integrating gives  y = c1 and y = 3x + c2 

The characteristic curves are                      

In terms of these variables, the canonical form of equation is   uξη + uη = 0. 
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Writing v =  uη  and using the integrating factor gives 

v = uη =
 

 
  ( )   where C (η) is an arbitrary function.                                                  

Integrating again with respect to η gives                                                                   

  (   )   
 

 
∫  ( )       ( )   

 

 
   ( )    ( )  

where f and g are arbitrary functions. Finally, in terms of the original 

variables, the general solution is    (   )   
 

 
  (      )    ( )   

 
Example: Find the general solution of the following equations 

uxx +2uxy + uyy = 0 

Solution: Equation has coefficients A = 1, B = 2, C = 1, D = E = F = G = 0.                

Hence, B2 −4AC = 0, the equation is parabolic. The characteristic 

equation is 
  

  
   and the characteristics are   = y − x = c1 and η = y 

Using these variables, equation takes the canonical form  uηη = 0 

Integrating twice gives the general solution    (   )        ( )    ( ) 
where f and g are arbitrary functions. 

In terms of x and y, this solution becomes    (   )        (     )    (     )  
 
Example: Find the general solution of the following equations 

uxx +2uxy +5uyy + ux = 0 

Solution: The coefficients of equation are A = 1, B = 2, C = 5, E = 1, F = G = 0 and 

hence B2 − 4AC = −16 < 0, equation is elliptic.  

The characteristic equations are    
  

  
  (    )  

The characteristics are      (      )   + c1,    (    )   + c2 

and hence,          (      )           (      )   

and new real variables α and β are 

   
 

 
(     )                         

 

  
(     )        

The canonical form is given by      uαα+  uββ = 
 

 
 (uα- 2  uβ)  

It is not easy to find a general solution of given equation. 
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THINGS TO REMEMBER 

LAPLACE EQUATION IN CYLINDRICAL COORDINATES 
The laplace equation in cylindrical coordinates (     ) is wrriten as follows 

        
 

 
   

 

  
          

With most general solution   (     )    (  )(   
      

   )(               ) 
 
LAPLACE EQUATION IN SPHERICAL COORDINATES 
The laplace equation in spherical coordinates (     ) is wrriten as follows 

    
 

  
(  

  

  
*  

 

    

 

  
(    

  

  
*  

 

     

   

   
   

With most general solution   (     )  (   
     

 (   ))  (   (    )) 

 
DIFFUSION (HEAT)  EQUATION IN CYLINDRICAL COORDINATES 
The Heat equation in cylindrical coordinates (     ) is wrriten as follows 

 

 
       

 

 
   

 

  
        

With most general solution  

 (       )      .√      / (             )(          )(      ) 

 
DIFFUSION (HEAT)   EQUATION IN SPHERICAL COORDINATES 
The Heat equation in spherical coordinates (     ) is wrriten as follows 

 

 
       

 

 
   

 

      

 

  
(       )  

 

       
    

With most general solution  

 (       )  ∑     (  )
     

  
 

 

(  )       
 (    )           

 
WAVE  EQUATION IN CYLINDRICAL COORDINATES 
The Wave equation in cylindrical coordinates (     )  is wrriten as follows 
 

  
        

 

 
   

 

  
         

And for one dimension when     ( ) only. i.e. u depends only on „r‟ then  
 

  
        

 

 
    or 

 

  
    

 

 

 

  
. 

  

  
/          

With most general solution     √
  

  
0   

  
 

 
   , (  ⁄ )(    )-

√ 
    

 
 

 
   , (  ⁄ )(    )-

√ 
1 

WAVE  EQUATION IN SPHERICAL COORDINATES 
The Wave equation in spherical coordinates (     )  is wrriten as follows 
 

  
    

 

  
 

  
.    

  
/  

 

      

 

  
(       )  

 

       
     

 
And one dimension when     ( ) only. i.e. u depends only on „r‟ then  
 

  
    

 

  
 

  
.    

  
/           

With most general solution     0  
   , (  ⁄ )(    )-

 
   

   ,  (  ⁄ )(    )-

 
1 
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LAPLACE EQUATION IN CYLINDRICAL COORDINATES 

The laplace equation in cylindrical coordinates (     ) is wrriten as follows 

        
 

 
   

 

  
           

For solution consider     (     )   (   ) ( ) 

     
   

   
  

 

 

  

  
  

 

  
   

      
   

   
    

 .
   

   
 

 

 

  

  
 

 

  
   

   /
 

 
  

   

   
 

 
  (   )  where k is separation constant. 

 .
   

   
 

 

 

  

  
 

 

  
   

   /
 

 
      

 
   

   
 

 

 

  

  
 

 

  
   

   
      ……………(i) 

Or    
   

   
 

 
   

 
   

   
       

        √        √    if „k‟ is real and positive. 

      
√      

 √     if „k‟ is negative. 

             if „k‟ is equal to zero. 

For physical consideration, one would expect a solution which decay with 

increasing „z‟ and therefore the solution corresponding to negative „k‟ is 

acceptable. Therefore       then 

      
      

     

Also  ( )  
   

   
 

 

 

  

  
 

 

  
   

          

      
 

 
    

 

  
              choosing  (   )   ( ) ( ) 

 (               )
 

 
  

   

 
   (   )  

  
   

 
     also  (               )

 

 
   

For physical consideration, we expect the solution to be periodic in   which can 

be obtained when    will positive. Therefore the acceptable solution will be 

                   

           (       )      when       a Bessel‟s equation. 

      (  )     (  )  is general solution with   (  )   (  ) Bessel‟s functions 

Since    (  )              therefore   (  ) becomes unbounded at    . 

Continuity of the solution demands B = 0. 

Hence the most general and acceptable solution of        is as follows; 

 (     )    (  )(   
      

   )(               )  
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LAPLACE EQUATION IN SPHERICAL COORDINATES 
The laplace equation in spherical coordinates (     ) is wrriten as follows 

    
 

  
.    

  
/  

 

    

 

  
.    

  

  
/  

 

     

   

       

For solution consider     (     )   ( ) (   ) 

      
 

  
.    

  
/  

 

    

 

  
.    

  

  
/  

 

     

   

       

 
 

 
0
 

  
.    

  
/1  

 

 
0

  

    
2

 

  
.    

  

  
/  

 

     

   

   31      with   a separation constant 

 
 

 
0
 

  
.    

  
/1        …….(i)   And  

 

 
0

 

    
2

 

  
.    

  

  
/  

 

     

   

   
31    ……..(ii) 

Now ( )       

   
   

  

  
         ……….(iii) 

this is Euler equation. So using transformation      the auxiliary solution can 

be written as      (   )                  
   √    

 
  

Let     (   )    
    √.  

 

 
/
 

 
 

  

 
 .  

 

 
/       (   ) 

(   )       
     

 (   )  

Taking      (   )            (  )  
 

 
0

 

    
2

 

  
.    

  

  
/  

 

     

   

   31    (   )  

(  )  
 

  
.    

  

  
/  

 

     

   

     (   )         

choosing   (   )   ( ) ( ) and separating variables 

 
    

 
0
 

  
.    

  

  
/  (   )     1   

 

 

   

          with    a separation constant 

  
 

 

   

       ……(iv) also  
    

 
0
 

  
.    

  

  
/  (   )     1     ……(v) 

(  )  
   

                              with     

If     the solution will be independent of   which corresponds to the 

axisymmetric case. 

Now for axisymmetric case ( )  
    

 
0
 

  
.    

  

  
/  (   )     1    

 
 

  
.    

  

  
/  (   )         

Transforming the independent variable   to „x‟ and letting        

 
 

  
.    

  

  

  

  
/

  

  
  (   )        

 

  
((       )

  

  
*  (   )     

 
 

  
((    )

  

  
*  (   )    this is well known Legendre‟s equation. 

General solution of above is      (    )     (    ) 

Then  (   )    (   (    )) put     also     for axisymmetric case 

Thus     (     )  (   
     

 (   ))  (   (    )) 
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DIFFUSION (HEAT)  EQUATION IN CYLINDRICAL COORDINATES 
The Heat equation in cylindrical coordinates (     ) is wrriten as 
follows 
 

 
       

 

 
   

 

  
          ………(i) 

For solution consider     (       )   ( ) ( ) ( ) ( ) ………(ii) 

( )  
  

 
           

 

 
      

 

  
               

 
 

 

  

 
 

   

 
 

 

 

  

 
 

 

  

   

 
 

   

 
        

where     is a separation constant. 
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(  )  
   

 
 

 

 

  

 
 

 

  

   

 
     

   

 
       (say) 
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         ……(vi)    

( )                          

(  )  
   

 
 

 

 

  

 
 

 

  

   

 
          

      

 
  

  

 
 (     )    

   

 
     (say) 

  
   

 
    ……(vii)      and        

 
  

  

 
 (     )      ……(viii)     

(   )                             

(    )      
 

 
   0(     )  

  

  
1      this differential equation is 

called Bessel‟s equation of order „v‟ and its general solution is as 

follows; 

 ( )      .√      /      .√      /  

Where   ( )   ( ) are Bessel‟s functions 

  ( )      .√      /  for singular equation     

Thus general solution of equation (ii) will be 

 (       )      .√      / (             )(          )(      )  
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DIFFUSION (HEAT)   EQUATION IN SPHERICAL COORDINATES 
The Heat equation in spherical coordinates (     ) is wrriten as follows 
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For solution consider     (       )   ( ) ( ) ( ) ( ) ………(ii) 

( )  
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where     is a separation constant. 
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     ……..(iv)   
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(  )        0
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/    1   

 

 

   

   
      (say) 

  
 

 

   

   
     ……….…(v)     

and         0
   

 
 

 

 

  

 
 

 

       

 

  
.    

  

  
/    1      ……(vi)    

( )                 
       

      

(  )  
  

 
.    

 

 
  /       

  

    
 

 

     

 

  
.    

  

  
/   (   ) (say) 

     
 

 
   2   

 (   )

  
3     ……(vii)       

And   
 

     
(              )  

  

     
  (   )  

 (          )  2 (   )  
  

     
3    ……(viii)   

(   )  (  )    6    
 

 
   8   

(  
 

 
)
   

  
9 7     for   (  )     ( ) 

 (  )       6    
 

 
   8   

(  
 

 
)
   

  
9 7     this differential 

equation is called Bessel‟s equation of order „  
 

 
‟ and its general 

solution is as follows;      ( )    
  

 

 

(  )    
  

 

 

(  )  

   (  )    4  
  

 

 

(  )    
  

 

 

(  )5  
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Where       are Bessel‟s functions. 

Now introducing        

      
 

√    
   ( )   √      ( )  

    ( )  (    )   ( )     ( )  

(    )  (    )   ( )      ( )   2 (   )  
  

    
3      this is an 

associated Legendre‟s DE whose solution is as follows; 

  ( )      
 ( )      

 ( )   where   
    

  are associated 

Legendre‟s solutions of degree „n‟ and order „m‟ 

Then 

 (       )    

(  )    4  
  

 

 

(  )    
  

 

 

(  )5 (    
 ( )      

 ( ))(   
       

    )(      )  

In the general solution the functions   
 ( ) and (  )      

  
 

 

(  ) are 

excluded because these functions have poles at      and     

Thus general solution of equation (ii) will be 

 (       )  (  )    4  
  

 

 

(  )5 (    
 ( ))(   

       
    )(      )  

Or in general 

 (       )  ∑     (  )
     

  
 

 

(  )       
 (    )            
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ONE DIMENSIONAL WAVE  EQUATION IN CYLINDRICAL 
COORDINATES 
In cylindrical coordinates, the wave equation assumes the following 
form 
 

  
    

 

 

 

  
. 

  

  
/           …………….(i) 

To find solution consider    ( )     

 
  

  
   ( )       and          ( )     

( )  
 

  
(    ( )    )  

 

 

 

  
(   ( )    )  

    ( )  
  ( )

 
 

  

  
 ( )         which has the form of Bessel‟s equation 

and hence its solution can be written as follows; 

 ( )     .
  

 
/     .

  

 
/  

In complex form we can write this equation as 

 ( )    (  .
  

 
/     .

  

 
/*    (  .

  

 
/     .

  

 
/*  

It can be rewritten as  

 ( )      
 .

  

 
/      

 .
  

 
/    with   

    
  as hankel transform. 

Defined as follows; 

  
    .

  

 
/     .

  

 
/  and    

    .
  

 
/     .

  

 
/  

( )     ( )        
     

 .
  

 
/     

     
 .

  

 
/  

Using asymptotic expression as follows 

  
 ( )  √

 

  
 
 .  

 

 
/
  and     

 ( )  √
 

  
 
  .  

 

 
/
 

Then our required solution will be as follows; 

  √
  

  
0   

  
 

 
   , (  ⁄ )(    )-

√ 
    

 
 

 
   , (  ⁄ )(    )-

√ 
1  
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WAVE  EQUATION IN SPHERICAL COORDINATES 
The Wave equation inone dimension when     ( ) only. i.e. u 
depends only on „r‟ will be of the form 
 

  
    

 

  

 

  
.    

  
/            ………..(i) 

To find solution consider    ( )     

 
  

  
   ( )       and          ( )     

( )  
 

  
(    ( )    )  

 

  

 

  
(    ( )    )  

    ( )   
  ( )

 
 

  

  
 ( )         which has the form of Bessel‟s 

equation and hence its solution can be written as follows; 

 ( )  
 

√ 
  

 

.
  

 
/  

 

√ 
 
 

 

 

.
  

 
/  

But we know that  

  

 

.
  

 
/  √

 

  
      and    

 
 

 

 √
 

  
     

Then  

  √
  

  
0 

   (   ⁄ )

 
  

   (   ⁄ )

 
1  

And in complex form   ( )    
   , (   ⁄ )-

 
   

   ,  (   ⁄ )-

 
 

Hence tour required solution is as follows; 

  0  
   , (  ⁄ )(    )-

 
   

   ,  (  ⁄ )(    )-

 
1  
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EXERCISES 
1. Determine the region in which the given equation is hyperbolic, parabolic, 
or elliptic, and transform the equation in the respective region to canonical form. 

(a) xuxx + uyy = x2  (b) uxx + y2uyy = y 

(c) uxx + xyuyy = 0  (d) x2uxx − 2xyuxy + y2uyy = ex 

(e) uxx + uxy − xuyy = 0, (f) exuxx + eyuyy = u 

2. Obtain the general solution of the following equations: 

(i) x2uxx +2xyuxy + y2uyy + xyux + y2uy = 0,    (ii) rutt − c
2rurr − 2c

2ur = 0, c = constant 

(iii) 4ux +12uxy +9uyy − 9u = 9   (iv) uxx + uxy − 2uyy − 3ux − 6uy = 9(2x − y) 

(v) yux +3yuxy +3ux = 0, y   0.     (vi) uxx + uyy = 0      (vii) 4 uxx + uyy = 0,                          

(viii) uxx − 2 uxy + uyy = 0      (ix) 2uxx + uyy = 0           (x) uxx +4uxy +4uyy = 0 

(xi) 3 uxx +4uxy – 
 

 
 uyy = 0 

 
3. Find the characteristics and characteristic coordinates, and reduce the 
following equations to canonical form: 

(a) uxx +2uxy +3uyy +4ux +5uy + u = ex 

(b) 2uxx − 4uxy +2uyy +3u = 0 

(c) uxx +5uxy +4uyy +7uy = sinx  (d) uxx + uyy +2ux +8uy + u = 0 

(e) uxy +2uyy +9ux + uy = 2  (f) 6uxx − uxy + u = y2 

(g) uxy + ux + uy = 3x, (h) uyy − 9ux +7uy = cosy, 

(i) x2uxx − y
2uyy − ux = 1+2y2  (j) uxx + yuyy + ½ uy +4yux = 0 

(k) x2y2uxx +2xyuxy + uyy = 0  (l) uxx + yuyy = 0. 

4. Determine the general solutions of the following equations: 

(i) uxx – 1/c2 uyy = 0, c= constant (ii) uxx + uyy = 0 

(iii) uxxxx +2uxxyy + uyyyy = 0   (iv) uxx − 3uxy +2uyy = 0 

(v) uxx + uxy = 0, (vi) uxx +10uxy +9uyy = y 

 
5. Classify each of the following equations and reduce it to canonical form: 

(a) y uxx − xuyy = 0, x>0, y>0         (b) uxx +(sech4x)uyy = 0 

(c) y2uxx + x2uyy = 0         (d) uxx – (sech4x)uyy = 0   

(e) uxx +6uxy +9uyy +3yuy = 0      (f) y2uxx +2xyuxy +2x2uyy + xux = 0       

(g) uxx − (2 cos x) uxy +(1 + cos2 x) uyy + u = 0 

(h) uxx + (2 cosec y) uxy +(cosec2y) uyy = 0 

(i) uxx − 2 uxy + uyy +3ux − u+1 = 0 

(j) uxx − y
2uyy + ux − u + x2 = 0 

(k) uxx + yuyy − xuy + y = 0 
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FOURIER TRANSFORMATION AND INTEGRALS 
WITH APPLICATIONS 

 
FOURIER TRANSFORMATION 
If   (   ) is a continuous, piecewise smooth, and absolutely integrable function, 
then the Fourier transform of   (   ) with respect to     is denoted by 
  (   ) and is defined by 

  *  (   )+     (   )  
 

√  
∫      

 

  

  (   )    

where k is called the Fourier transform variable and     (    ) is called the 

kernel of the transform. 
Then, for all      , the INVERSE FOURIER TRANSFORM of   (   ) is defined by 

    *  (   )+     (   )  
 

√  
∫       

 

  

 (   )    

CONDITION FOR EXISTENCE OF FOURIER TRANSFORMATION 
Fourier Transforamtion and Inverse Fourier Transformation exist if 

(i) The function  ( ) or  ( ) is continuous or piecewise continuous over 
(    ) and bounded. 

(ii) The function  ( ) or  ( ) are absolutely integrable i.e.   

∫   ( )   
 

  
 or ∫   ( )   

 

  
  this condition is sufficient for 

existence of Fourier Transforamtion and Inverse Fourier 
Transformation. 

Example: Show that     2      3  
 

√  
 
( 

  

  
* 
            

Solution. We have, by definition 

  *  ( )+  
 

√  
∫       

  
  ( )   

 

√  
∫       

  
           

  *  ( )+  
 

√  
∫           

  
   

 

√  
∫  

  6.  
  

  
/
 
 

 

   

 
7  
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√  
∫    .  

  

  
/
 
  

  
    

Put  .  
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    √ .  
  

  
/    √          

  

√ 
 

   *  ( )+  
 
 

 
 

  
 

√  
∫    .  

  

  
/
 
  

  
   

 
 

 
 

  
 

√  
∫       

  
 
  

√ 
  

   *  ( )+  
 
 

 
 

  
 

√   
 √    ∫       

  
   √  

   *  ( )+    2      3  
 

√  
 
( 

  

  
* 
  

NOTE: sometime appears in the form   2       3 known as Guassian Function. 

Consider    ἱἳὀ Ἡὀ  

  Ἡ.●  
ἱἳὀ

╪
/  

  Ἡ<
.●  

ἱἳὀ

╪
/    

 .
ἱἳ

╪
/  .

ἱἳ

╪
/

=  

  ╪ .ὀ 
ἱἳ

╪
/  

ἳ

╪
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Example: Show that     {       }  √
 

 

 

(     )
            

Solution. We have, by definition 

  *  ( )+  
 

√  
∫       

  
  ( )   

 

√  
∫       

  
            

  *  ( )+  
 

√  
∫            

  
   

 

√  
∫  (    )   

  
   

 

√  
∫   (    )   

 
    

  *  ( )+  
 

√  
0

 

    
 

 

    
1  √

 

 

 

(     )
  

Example: Show that     { ,    -( )}  √
 

 
.
     

 
/         

where  ,    -( )   (     )  {
                       
                                          

   

Solution. Let us consider   ( )   ,    -( ) then We have, by definition 

  *  ( )+  
 

√  
∫       

  
  ( )    

  *  ( )+  
 

√  
[∫        

  
  ( )   ∫       

  
  ( )   ∫       

 
  ( )  ]  

  *  ( )+  
 

√  
[∫        

  
     ∫       

  
     ∫       

 
    ]  

  *  ( )+  
 

√  
∫       

  
   

 

 √  
.
            

  
/  √

 

 
.
     

 
/  

 
FIND FOURIER TRANSFORMS OF THE FOLLOWINGS; 

i.   ( )  {
            
            

     the gate function. Where „a‟ is positive constant. 

ii.  ( )  
 

   
 

iii.  ( )   ,    -( )  2
             
                

 

iv.  ( )  8
  

   

 
           

                     
 

v.  ( )  
 

(     )
 

vi.  ( )     (  ) 
vii.  ( )     (  ) 
 
 

KEEP IN MIND 
IN THIS BOOK (MYINT) THERE IS A SIGN DIFFERENCE FOR THE DEFINATION OF 

FOURIER AND INVERSE OF FOURIER. BUT IN SO MANY BOOKS SIGN IS 
DIFFERENT TO THIS BOOK. SO I PROCEED ACCORDING TO OTHER BOOKS. 

IF SOME QUESTION APPEAR WITH DIFFERENT SIGN (+VE OR –VE) STUDENTS 
JUST CHANGE THE SIGN OF EXPONENT IN DEFINATION. 
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PROPERTIES OF FOURIER TRANSFORMS 

 
LINEARITY PROPERTY: THE FOURIER TRANSFORMATION   IS LINEAR. 
Proof. 

Let   ( )    ( )    ( ) where a and b are constants. 

We have, by definition 

  *  ( )+  
 

√  
∫       

  
  ( )   

 

√  
∫       

  
,  ( )    ( )-    

  *  ( )+  
 

√  
∫       

  
 ( )   

 

√  
∫       

  
 ( )      * ( )+     * ( )+  

  *  ( )    ( )+     * ( )+     * ( )+   hence proved. 
 

LINEARITY PROPERTY: THE INVERSE FOURIER TRANSFORMATION     IS 
LINEAR. 
Proof. 

Let   ( )    ( )    ( ) where a and b are constants. 

We have, by definition 

    *  ( )+   
 

√  
∫        

  
 ( )   

 

√  
∫        

  
,  ( )    ( )-    

    *  ( )+   
 

√  
∫        

  
 ( )   

 

√  
∫        

  
 ( )    

    *  ( )    ( )+       * ( )+       * ( )+   hence proved. 
 
SHIFTING PROPERTY: Let   *  ( )+ be a Fourier transform of  ( )  Then 

  ,  (     )-        ( )       where c is a real constant. 

Proof. From the definition, we have, for c > 0, 

  ,  (     )-  
 

√  
∫       

  
  (     )    

Put                  also as      then       

  ,  (     )-  
 

√  
∫    (    ) 

 

  

  (  )    
 

√  
∫             

 

  

  (  )    

  ,  (     )-        
 

√  
∫        

  
  (  )           *  ( )+        ( )  

 
SCALING PROPERTY: If   is the Fourier transform of  , then 

  ,  (  )-    (
 

   
)   (

 

 
)     where c is a real nonzero constant. 

Proof. For       

  ,  (  )-    
 

√  
∫       

  
  (  )    

  ,  (  )-   
 

√  
∫  

  (
  

 
*  

  
  (  )

   

 
 

 

 
 

 

√  
∫  

  (
  

 
*  

  
  (  )    

 

 
  (

 

 
)  

Since       then either      or      

If      then   ,  (  )-  
 

  
  (

 

 
) 

If      then   ,  (  )-  
 

  
  (

 

 
) 

Hence   ,  (  )-    (
 

   
)   (

 

 
) 
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DIFFERENTIATION PROPERTY: Let   be continuous and piecewise smooth in 
(    ). Let  ( ) approach zero as          If   and  ′ are absolutely integrable, 
then    , ′ ( )-    (   )  ,  ( )-    (   )  ( ) 
Proof. 

  ,   ( )-    
 

√  
∫       

  
   ( )    

  ,  ( )-   
 

√  
0|       ( )|

  

 
 ∫      (  )

 

  
  ( )  1  

 

√  
[  (   ) ∫       

  
  ( )  ]  

  , ′ ( )-    (   )  ,  ( )-    (   )  ( )  

This result can be easily extended. If f and its first (n − 1) derivatives are 

continuous, and if its nth derivative is piecewise continuous, then 

  ,  ( )-    (   )   ,  ( )-    (   )    ( )                                         
provided   and its derivatives are absolutely integrable. In addition, we assume 

that   and its first (n − 1) derivatives tend to zero as |x| tends to infinity. 

 

CONJUGATION PROPERTY: Let   is real then    (  )    ( )̅̅ ̅̅ ̅̅ ̅ 
Proof. 

Since   is real therefore   ( )    ( )̅̅ ̅̅ ̅̅ ̅ then by defination 

  ( )    , ( )-    
 

√  
∫       

  
  ( )    

And   ( )̅̅ ̅̅ ̅̅ ̅    [  ( )̅̅ ̅̅ ̅̅ ̅]   
 

√  
∫        

  
  ( )̅̅ ̅̅ ̅̅ ̅   

 

√  
∫   (  )   

  
  ( )     (  ) 

Hence   (  )    ( )̅̅ ̅̅ ̅̅ ̅ 
 

ATTENUATION PROPERTY: For a function  ,     ,     ( )-     (    ) 
Proof. 

By definition    ( )    , ( )-    
 

√  
∫       

  
  ( )    

Then   ,     ( )-    
 

√  
∫       

  
     ( )   

 

√  
∫       

  
        ( )   

  ,     ( )-   
 

√  
∫   (    )   

  
  ( )    ……….(i) 

Also    (    )    , ( )-    
 

√  
∫   (    )   

  
  ( )    ……….(ii) 

Thus from (i) and (ii)   ,     ( )-     (    ) 
 

MODULATION PROPERTY(i):   ,       ( )-   
 

 
,  (   )    (   )- 

Proof. 

By definition    ,       ( )-      ,.
            

 
/   ( )-  

  ,       ( )-  
 

 
,   *       ( )+    *        ( )+-  

 

 
,  (   )    (   )-  

MODULATION PROPERTY (ii):   ,       ( )-   
 

  
,  (   )    (   )- 

Proof. 

By definition    ,       ( )-      ,.
            

  
/   ( )-  

  ,       ( )-  
 

  
,   *       ( )+    *        ( )+-  

 

  
,  (   )    (   )-  
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CONVOLUTION FUNCTION / FAULTUNG FUNCTION  

The function (     ) ( )    
 

√  
∫   (     )   ( )   
 

  
 

is called the convolution of the functions f and g over the interval (− , ) 

 
NOTE: The convolution satisfies the following properties: 
1.               (commutative) 
2.     (     )    (     )      (associative) 

3.    (       )      (     )    (     ) , (distributive) 

where a and b are constants. 

 
PROPERTY:               

PROOF:  since by definition (     ) ( )    
 

√  
∫   (     )   ( )   
 

  
 

Put                               and if      then      then 

(     )( )   
 

√  
∫   ( )  (     ) (   )
  

 
  

 

√  
∫   (     )  ( )   (  )
 

  
         

Hence                
 
PROVE THE FOLLOWING PROPERTIES OF THE FOURIER CONVOLUTION: 
( )   ( )     ( )      ( )     ( ) ( )     (     )    (     )      
( )     (       )      (     )    (     )                             
( )                  ( )           

( )     √           √         
 
CONVOLUTION / FAULTUNG THEOREM  
If  ( ) and  ( ) are the Fourier transforms of  ( ) and  ( ) respectively, then the 
Fourier transform of the convolution (     ) is the product   ( ) ( ). That is, 

  *  ( )     ( )+     ( ) ( )    
Or, equivalently,          *  ( ) ( )+      ( )      ( )  
Or   

    *  ( ) ( )+  
 

√  
∫        

  
  ( ) ( )   (     ) ( )    

 

√  
∫   (   )   ( )   
 

  
  

 
PROOF:  By definition, we have 

    *  ( ) ( )+  
 

√  
∫        

  
  ( ) ( )    

    *  ( ) ( )+  
 

√  
∫        

  
 ( ) 2 

 

√  
∫        

  
  (  )   3     

By changing the order of integration 

    *  ( ) ( )+  
 

√  
∫ 0

 

√  
∫     (    )  

  
 ( )  1

 

  
  (  )     

    *  ( ) ( )+   
 

√  
∫   (    )  (  )    

  
 

 

√  
∫   (   )  ( )   
 

  
 (   ) ( )   

Where we replace   with    

Hence     *  ( ) ( )+      ( )      ( ) 
Or    *  ( )     ( )+     ( ) ( ) 
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PARSEVAL‟S FORMULA  
 

According to this formula ∫   ( )  
 

  
   ∫   ( )  

 

  
   

 
PROOF: The convolution formula gives 
 

√  
∫        

  
  ( ) ( )    

 

√  
∫   ( )  (   )  
 

  
  

∫   ( )  (   )   
 

  
 ∫        

  
  ( ) ( )    

which is, by putting       

∫   ( )  (  )   
 

  
 ∫   ( ) ( )  

 

  
  

∫   ( )  (  )   
 

  
 ∫   ( ) ( )  

 

  
  

Putting   (  )      ( )̅̅ ̅̅ ̅̅ ̅  then   ( )     (  )̅̅ ̅̅ ̅̅ ̅̅ ̅    *  ( )+    {  (  )̅̅ ̅̅ ̅̅ ̅̅ ̅} 

  ( )    ( )̅̅ ̅̅ ̅̅ ̅   then above equation becomes     {  (  )̅̅ ̅̅ ̅̅ ̅̅ ̅}    ( )̅̅ ̅̅ ̅̅ ̅   for complex  . 

∫   ( )  ( )̅̅ ̅̅ ̅̅ ̅   
 

  
 ∫   ( )  ( )̅̅ ̅̅ ̅̅ ̅  

 

  
  where the bar denotes the complex conjugate. 

 ∫   ( )  
 

  
   ∫   ( )  

 

  
    

In terms of the notation of the norm, this is    ‖ ‖   ‖ ‖ 
 
 
JUST READ THE FOLLOWING AND KEEP IN MIND THE RESULTS 
DIREC DELTA FUNCTION 
The dirac delta function is defined as follows; 
 

 ( )          ( )  {
              
              

   

PROPERTIES: 

i. ∫  ( )  
 

  
   

ii. For any continuous function  ( );   ∫  ( ) ( )  
 

  
  ( ) 

iii.  ( )   (  ) 

iv.  (  )  
 

 
 ( )           

v. SHIFTING PROPERTY: For any continuous function  ( );                     

 ∫  ( ) (   )  
 

  
  ( ) 

vi. If  ( ) is continuous differentiable. Then ∫  ( )  ( )  
 

  
    ( ) 
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THE FOURIER TRANSFORMS OF STEP AND IMPULSE FUNCTIONS 
The Heaviside unit step function is defined by 

  (     )   2
              
              

   where a ≥ 0 

The Fourier transform of the Heaviside unit step function can be easily 
determined. We consider first 

  ,  (     )-    
 

√  
∫       

  
  (     )    

  ,  (     )-    
 

√  
∫       

  
  (     )   

 

√  
∫       

 
  (     )    

  ,  (     )-    
 

√  
∫       

  
     

 

√  
∫       

 
     

 

√  
∫       

 
    

This integral does not exist. However, we can prove the existence of this integral 
by defining a new function 

  (     )       2
              

                  
 

This is evidently the unit step function as      . Thus, we find the Fourier 
transform of the unit step function as 

  ,  (     )-             ,  (     )     -          
 

√  
∫       

  
  (     )          

  ,  (     )-           
 

√  
∫       

 
                

 

√  
∫   (   )   

 
    

  ,  (     )-   
 

√  
∫       

 
   

     

√    
     For a = 0    ,  (  )-   

 

√    
 

An impulse function is defined by 
 

  (  )   2
                                  
                              

   

where h is large and positive,      , and   is a small positive constant, This type 

of function appears in practical applications; for instance, a force of large 
magnitude may act over a very short period of time. 
 
The Fourier transform of the impulse function is 

  ,  (  ) -    
 

√  
∫       

  
  (  )    

  ,  (  ) -    
 

√  
∫           

  
  (  )   

 

√  
∫          

     
  (  )   

 

√  
∫       

    
  (  )    

  ,  (  ) -    
 

√  
∫           

     
    

 

√  
|
     

  
|
     

     

  
 

√  
 
 

  
(   (    )     (    ) )  

  ,  (  ) -    
 

√  
 
     

  
(            )  

   

√  
     .

            

    
/  

   

√  
     .

     

  
/  

 

Now if we choose the value of     (
 

  
) then the impulse defined by 

  ( )  ∫   (  )  
 

  
 ∫

 

  

    

     
      

which is a constant independent of  . In the limit as      , this particular 

function    (  ) with h = (1/2ε) satisfies            (  )                        

and           ( )    
Thus, we arrive at the result 

  (     )     ,     , and ∫   (     )  
 

  
   This is the Dirac delta function  
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We now define the Fourier transform of  ( ) as the limit of the transform of 

   (  ). We then consider 

  ,  (     )  -              ,   (  )  -          
     

√  
.
     

  
/  

     

√  
  

in which we note that, by L‟Hospital‟s rule,         .
     

  
/     

When a = 0, we obtain                ,  ( )  -   
 

√  
 

 
REMARK: 
ü   ,  ( )-    (   )   ,  ( )-    (   )    ( )                                        

ü If     *   +    *   +  
 

  
  *  (   )+  (   )   *  (   )+ when „x‟ varies not „t‟ 

ü When range of spatial variable is infinite then Fourier transform is used 
rather than the sine or cosine. 

 
EXAMPLE:Obtain the solution of the initial-value problem of heat conduction in 
an infinite rod 

ut = κuxx,                     

  (   )      ( )              with    (   )                 where u (x, t) 

represents the temperature distribution and is bounded, and κ is a constant of 

diffusivity. 
Solution:  
After taking The Fourier transform of given equation we get  

Ut + κk2 U = 0 and  U (k,0) = F (k)  

The solution of the transformed system is 

  (   )      ( )         
The inverse Fourier transformation gives the solution 

  (   )   
 

√  
∫          ( )        
 

  
 

 

√  
∫   ( )             
 

  
 ……(i) 

But if a > 0 and b is real or complex and we know that ∫             
 

  
 

√ 

√ 
 

  

  

If we use             

then  ∫              
 

  
 ∫             

 

  
 

√ 

√  
 

   

    

then If g (x) is the inverse transform of   ( )          and has the form 

  ( )      2       3  
 

√  
∫              
 

  
 

 

√  
 
√ 

√  
 

   

    
 

√   
 

   

     

Now using the Convolution theorem 

  (   )   
 

√  
∫   ( )  (   )   
 

  
 

 

√  
∫   ( ) 

 

√   
 

 (   ) 

       
 

  
  

  (   )  ∫   ( )  (     )    
 

  
  

Where  (     )   
 

√    
 

 (   ) 

    is called the Green‟s function (or the fundamental 

solution) of the diffusion equation. 
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ERROR FUNCTION: 

The error function is defined by             ( )   
 

√ 
∫     

    
 

 
 

This is a widely used and tabulated function. 
 
Example: Slowing-down of Neutrons Consider the following physical problem 

ut = uxx +   ( )   ( )  
  (   )      ( )  ;            (   )      

This is the problem of an infinite medium which slows neutrons, in which a 

source of neutrons is located. Here u (x, t) represents the number of neutrons 

per unit volume per unit time and  ( )  ( ) represents the source function. 
 
Solution: The Fourier transformation of equation yields 

Ut + k2U = 
 

√  
  ( )    ∫   ( ) ( )  

 

  
  ( )  or    * ( )+  

 

√  
 

The solution of this, after applying the condition  (   )  
 

√  
 is  (   )  

 

√  
       

Hence, the inverse Fourier transform gives the solution of the problem 

  (   )   
 

√  
∫             
 

  
 

 

√   
 

   

    

 
FOURIER COSINE TRANSFORMATION AND INVERSE  
Let   ( ) be defined for            and extended as an even function in 
(    ) satisfying the conditions of Fourier Integral formula. Then, at the points of 
continuity, the Fourier cosine transform of  ( ) and its inverse transform are 
defined by 
 

   *  ( )+      ( )  √
 

 
∫   ( )
 

 
         

   
  *   ( )+    ( )  √

 

 
∫    ( )
 

 
         

 
FOURIER SINE TRANSFORMATION AND INVERSE  
Let   ( ) be defined for            and extended as an odd function in 
(    ) satisfying the conditions of Fourier Integral formula. Then, at the points of 
continuity, the Fourier sine transform of  ( ) and its inverse transform are 
defined by 
 

   *  ( )+      ( )  √
 

 
∫   ( )
 

 
         

   
  *   ( )+    ( )  √

 

 
∫    ( )
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Example: Show that     * 
   +  √

 

 
.

 

     /           

Solution:  We have, by definition 

   *  ( )+      ( )  √
 

 
∫   ( )
 

 
         

   * 
   +  √

 

 
∫      

 
.
          

 
/   

 

 
 √

 

 
∫ [  (    )    (    ) ]
 

 
    

   * 
   +  

 

 
 √

 

 
0

 

    
 

 

    
1     

   * 
   +  √

 

 
.

 

     
/           

Example: Show that     * 
   +  √

 

 
.

 

     
/           

Solution:  We have, by definition 

   *  ( )+      ( )  √
 

 
∫   ( )
 

 
         

   * 
   +  √

 

 
∫      

 
.
          

  
/   

 

  
 √

 

 
∫ [  (    )    (    ) ]
 

 
    

   * 
   +  

 

  
 √

 

 
0

 

    
 

 

    
1     

   * 
   +  √

 

 
.

 

     /           

Example: Show that    
   2

 

 
    3  √

 

 
     .

 

 
/   

Solution:  To prove this we use the standard definite integral 

√
 

 
  

   {    }  √
 

 
∫      

 
         

 

       

Integrating both sides w.r.to „s‟ from „s‟ to „ ‟ 

∫
    

 

 

 
         ∫

   

     

 

 
 |     .

 

 
/|

 

 

 
 

 
      .

 

 
/  

Consequently  

  
   2

 

 
    3  √

 

 
∫

    

 

 

 
        √

 

 
     .

 

 
/    

 

Theorem :  Let f (x) and its first derivative vanish as x →  . If    ( ) is the Fourier 

cosine transform, then       *    ( )+         ( )  √
 

 
   ( ) 

PROOF: 
Consider   ( ) is real and            ( )    then  

   *    ( )+  √
 

 
∫     ( )
 

 
         

   *    ( )+  √
 

 
[         ( )  

  ∫    ( )
 

 
(       )  ]  
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   *    ( )+  √
 

 
[                 ( )                   ( )   ∫    ( )

 

 
       ]  

   *    ( )+  √
 

 
[     ( )   ∫    ( )

 

 
       ]  

   *    ( )+  6 √
 

 
   ( )   8√

 

 
        ( )  

  √
 

 
∫   ( )
 

 
(      )  97  

   *    ( )+  6 √
 

 
   ( )   8√

 

 
        ( )  

   √
 

 
∫   ( )
 

 
(     )  97  

   *    ( )+  6 √
 

 
   ( )   8√

 

 
(                ( )                  ( ) )      ( )97   

   *    ( )+         ( )  √
 

 
   ( )  

In a similar manner, the Fourier cosine transforms of higher-order 

derivatives of f (x) can be obtained. 

 

Theorem :  Let f (x) and its first derivative vanish as x →  . If    ( ) is the Fourier 

cosine transform, then       *    ( )+   √
 

 
   ( )       ( ) 

PROOF: 
Consider   ( ) is real and            ( )    then  

   *    ( )+  √
 

 
∫     ( )
 

 
         

   *    ( )+  √
 

 
[         ( )  

  ∫    ( )
 

 
(     )  ]  

   *    ( )+  √
 

 
[                 ( )                  ( )   ∫    ( )

 

 
       ]  

   *    ( )+  √
 

 
[     ∫    ( )

 

 
       ]  

   *    ( )+    6√
 

 
        ( )  

  √
 

 
∫   ( )
 

 
(       )  7  

   *    ( )+    <√
 

 
.   
     

        ( )     
     

        ( ) /   √
 

 
∫   ( )

 

 

(     )  = 

   *    ( )+    6√
 

 
(                ( )                  ( ) )      ( )7   

   *    ( )+   √
 

 
   ( )       ( )  

In a similar manner, the Fourier sine transforms of higher-order 
derivatives of   ( ) can be obtained. 
 
 
 
 



70 
 

PROF. MUHAMMAD USMAN HAMID (0323-6032785) 

REMARK:  

ü   ,  ( )-    (   )   ,  ( )-    (   )    ( )              ...... 

ü If     *   +    *   +  
 

  
  *  (   )+  (   )   *  (   )+ when óxô varies not ótô 

ü When range of spatial variable is infinite then Fourier transform is used rather than 

the sine or cosine. 

ü If boundry conditions are of the form  (   )         then use Sine transform, 

while conditions are of the form   (   )         then use Cosine transform, 

 

EXAMPLE: Solve the potential equation for the potential  (   ) in the semi 

infinite strip             that satisfies the following conditions; 

 (   )           (   )         (   )   ( )  

Solution: the potential equation is given as                           

Since the BCôs are in the form    (   )           therefor we use fourier 

cosine transform w.r.to óyô 

   *   +     {   }    
  

   
   * (   )+     {   }     

 
  

   
   (   )  6      (   )  √

 

 
  (   )7     

 
  

   
   (   )       (   )     

Then general solution will be     (   )     
      

    éééé.(i) 

Now using BCôs     (   )      *  (   )+      (   )    

( )    (   )       
     

          

Now   
 

  
   (   )      

       
    éééé.(ii) 

using BCôs     (   )   ( )    *  (   )+   ( )  
 

  
  (   )    ( ) 

(  )  
 

  
  (   )    ( )      

       
     

 
 

  
  (   )    ( )       

       
      since        

   ( )      ( 
       )      

  ( )

  (
        

 
*
  

  ( )

        
  

     
  ( )

        
    

  ( )

        
    since        

Then  ( )    (   )  
  ( )

        
    

  ( )

        
      

  (   )  
  ( )

       
.
        

 
/  

  ( )

       
        

   
  *  (   )+    

  2
  ( )

       
      3  

  (   )  √
 

 
∫

  ( )

       
      

 

 
        √

 

 
∫

           

       

 

 
  ( )    
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  (   )  √
 

 
∫

           

       

 

 
6√

 

 
∫   (  )
 

 
         7    

  (   )  
 

 
∫ ∫

                 

       

 

 

 

 
  (  )       

 

 

EXAMPLE: Solve the problem using Fourier Transformation method  

       with   (   )           (   )                    

 

Solution: BCôs suggest that  we should use fourier sine transform w.r.to óxô 

   *  +     *   +  
 

  
   * (   )+     *   +  

 
 

  
   (   )  √

 

 
  (   )       (   )  √

 

 
         (   )  

 
 

  
   (   )       (   )  √

 

 
       ééééé.(i) 

This is 1
st
 order, linear, non ï homogeneous ODE 

Therefore  I.F. =  ∫          

( )       

  
   (   )       (   ) 

    √
 

 
    

     

 ∫
 

  
         ∫√

 

 
    

        + Cosntant 

        √
 

 
   

    

  
     (   )  √

 

 

  

 
         ééééé.(ii) 

Now using ICôs    (   )      *  (   )+      (   )    

(  )    (   )    √
 

 

  

 
        √

 

 

  

 
  

Thus  (  )    (   )  √
 

 

  

 
 √

 

 

  

 
      √

 

 

  

 
(       ) 

   
  *  (   )+    

  8√
 

 

  

 
(       )9  

  (   )  √
 

 
∫ √

 

 

  

 
(       )

 

 
        

  

 

 

 
∫ (       )
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EXAMPLE: Solve the problem using Fourier Transformation method    

       with   (   )      (   )   ( )                

 

Solution:  BCôs suggest that  we should use fourier cosine transform w.r.to óxô 

   *  +     *   +  
 

  
   * (   )+     *   +  

 
 

  
   (   )  6      (   )  √

 

 
  (   )7        (   )     

 
 

  
   (   )       (   )     ééééé.(i) 

This is 1
st
 order, linear, homogeneous ODE 

Then general solution will be     (   )         éééé.(ii) 

Now using ICôs 

  (   )   ( )    *  (   )+    * ( )+    (   )    ( )  
Thus  ( )    (   )    ( )          ( ) 

( )    (   )    ( ) 
      

   
  *  (   )+    

  {  ( ) 
    }  

  (   )  √
 

 
∫   ( ) 

     

 
         

  (   )  √
 

 
∫ 6√

 

 
∫  (  )
 

 
         7       

 
         

  (   )  
 

 
∫ [∫  (  )

 

 
         ]      

 
         

 

Example::        Solve the problem using Fourier Transformation method  

                       

with  (   )       
   ( )   ( )                

 

Solution: since        therefore we should use fourier transform w.r.to óxô 

  *   +     *  +  

 (   )   * (   )+  
 

  
  * (   )+      (   )  

 

  
 (   )  

 
 

 

  

  
     ∫

  

 
    ∫               

  (   )           (   )       
   ééééé(i)  where      

Now using ICôs 

  (   )       
  *  (   )+   {     

}  

  (   )  
 

√  
∫           

  
 

  
 

 

√  
∫         
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  (   )  
 

√  
∫  

   .  
  

  
/
 
 

 

   

 
   

  
    

  (   )  
 
 
  

  
 

√  
∫  

  .  
  

  
/
 
  

  
    

Put  .  
  

  
/
 

    √ .  
  

  
/    √          

  

√ 
 

  (   )  
 
 
  

  
 

√  
∫  

  .  
  

  
/
 
  

  
   

 
 
  

  
 

√  
∫       

  
 
  

√ 
  

  (   )  
 
 
  

  
 

√   
 √    ∫       

  
   √  

  (   )  
 

√  
 
( 

  

  
* 
  ééééé(ii)     

( )   (   )        
 

√  
 
( 

  

  
* 
  

Thus    (   )  
 

√  
 
( 

  

  
* 
    

 
 

√  
 
   .  

 

  
/ 
 

    * (   )+     {
 

√  
 
   .  

 

  
/ 
}   

  (   )  
 

√  
 √

 

 
∫       

  
  

   .  
 

  
/ 
    

  (   )  
 

√   
∫    6 .  

 

  
/ 8   

   

.  
 

  
/
97

 

  
   ééééé(iii)    

Since     
   

.  
 

  
/
     ( )4

  

 .  
 

  
/
5  4

  

 .  
 

  
/
5

 

 4
  

 .  
 

  
/
5

 

 

   
   

.  
 

  
/
 4  

  

 .  
 

  
/
5

 

 
  

 .  
 

  
/
   

(   )   (   )  
 

√   
∫    [ .  

 

  
/ 4  

  

 .  
 

  
/
5

 

]  

 :
  

 .  
 
  

/
 ;

 

  
    

  (   )  
 

 (
  

 .  
 
  

/
 ,

√   
∫    [ .  

 

  
/4  

  

 .  
 

  
/
5

 

]
 

  
    éééé..(iv) 

Now put  .  
 

  
/ 4  

  

 .  
 

  
/
5

 

    √.  
 

  
/ 4  

  

 .  
 

  
/
5    

Consider    ἱἳὀ Ἡὀ  

  Ἡ.●  
ἱἳὀ

╪
/  

  Ἡ<
.●  

ἱἳὀ

╪
/    

 .
ἱἳ

╪
/  .

ἱἳ

╪
/

=  

  ╪ .ὀ 
ἱἳ

╪
/  

ἳ

╪
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 √.  
 

  
/         

 

√.  
 

  
/

    

(  )   (   )  
 

 (
  

 .  
 
  

/
 ,

√    √.  
 

  
/
∫       

  
   

 

 (
  

 .  
 
  

/
 ,

√    
 

√  
√     

 √   

  (   )  
 

√     
 
 (

   

     
*
  

 

Example:     Solve the problem using Fourier Transformation method  

  (   )       (   )                 

with   (   )   ( )    (   )     

Solution: since        therefore we should use fourier transform w.r.to óxô 

   *  +      *   +  

 
 

  
  * (   )+    (   )   * (   )+  

 

  
 (   )        (   )  

 
 

 

  

  
       ∫

  

 
      ∫                 

  (   )             (   )         
   ééééé(i)  where      

Now using ICôs 

   (   )   ( )        (   )     (   )   ( )  
  * (   )+   * ( )+      (   )   ( )  
( )   (   )         ( )  

Thus  ( )   (   )   ( )        

    * (   )+     { ( )      
}   

  (   )  
 

√  
∫       

  
  ( )           

  (   )  
 

√  
∫       

  
0

 

√  
∫       

  
 (  )   1            

  (   )  
 

  
∫ [∫     (    )        

 

  
]

 

  
 (  )    ééééé(iii)    

Now consider   ∫     (    )        
 

  
 

  ∫          
  

 

  
   put        and       

  ∫  
  .   

  

 
/
  

 

  
  

  ∫  
  .  

  

  
/
 

  
 

  

    
 

  
  

   
 

  

  ∫  
  .  

  

  
/
 

  
 

  
   ééé.(iv) 

 (▓ 
ἱ◊

♫
*  (

ἱ◊

♫
*  

 (▓ 
ἱ◊

♫
*  

◊

♫
 

Consider    ▓  
ἱἳ

♫
◊  

 ▓  ἳ.
ἱ◊

♫
/  .

ἱ◊

♫
/  

.
ἱ◊

♫
/   
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Put  .  
  

  
/
 

    √ .  
  

  
/    √          

  

√ 
 

(  )     
 

  

  ∫       

  
 
  

√ 
 

  

√ 
 
 

  

  ∫       

  
   

 

√ 
 
 

  

   √   

(   )   (   )  
 

  
∫

√ 

√ 
 
 

  

  
 

  
 (  )      

  (   )  
 

 √  √ 
∫

√ 

√   
 
 

(    )
 

 (   )
 

  
 (  )     

  (   )  
 

 √     
∫  

 
(    )

 

 (   )
 

  
 (  )     

Example: 

Solve the problem using Fourier Transformation method        
 

  
      

with  (   )   ( )   (   )     ( ) and                            

 

Solution: since        therefore we should use fourier transform w.r.to óxô 

  *     +  
 

  
   *   +  

 (   )   * (   )+  
 

  

  

   
  * (   )+       (   )  

  

   
 (   )  

 
  

   
           

  (   )                   ééééé(i) 

 
 

  
 (   )                         ééééé(ii) 

Now using ICôs     (   )   ( )   *  (   )+   * ( )+   (   )   ( )  
Then ( )   (   )               ( ) ééééé(iii) 

Also   (   )     ( )   *   (   )+   *   ( )+ 

 
 

  
 (   )   (   )   *  ( )+  

 

  
 (   )       ( )  

Then (  )  
 

  
 (   )                     ( )            

    ( )  (   )       
 

 
 ( ) ééééé(iv)  

Adding (iii) and (iv)     
 

 
0 ( )  

 

 
 ( ) 1 

Subtracting (iii) and (iv)    
 

 
0 ( )  

 

 
 ( ) 1 

Then (i) becomes 

  (   )  
 

 
0 ( )  

 

 
 ( ) 1       

 

 
0 ( )  

 

 
 ( ) 1         

  (   )   ( )  
            

 
   

 

 
 ( )  
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  (   )   ( )         
 

 
 ( )          

    * (   )+     * ( )        +     2
 

 
 ( )        3   

  (   )  
 

√  
0∫       

  
 ( )           ∫       

  

 

 
 ( )          1  

  (   )  
 

√  
∫       

  
 (   )      is our required solution. 

 

Example:    Solve the problem using Fourier Transformation method  

    
 

  
      with  (   )   ( )   (   )   ( ) and                 

 

Solution: since        therefore we should use fourier transform w.r.to óxô 

  *   +  
 

  
   *   +  

 (   )   * (   )+  
 

  
  

   
  * (   )+        (   )  

  

   
 (   )  

 
  

   
            (   )                     

  (   )    .
            

 
/    .

            

 
/  

  (   )  .
     

 
/       .

     

 
/         

  (   )                  ééééé(i) 

 
 

  
 (   )                      ééééé(ii) 

Now using ICôs     (   )   ( )   *  (   )+   * ( )+   (   )   ( )  
Then ( )   (   )               ( ) ééééé(iii) 

Also   (   )   ( )   *   (   )+   * ( )+  
 

  
 (   )   ( ) 

Then (  )  
 

  
 (   )                

  ( )     (   )      
 

   
 ( ) ééééé(iv)  

Adding (iii) and (iv)     
 

 
0 ( )  

 

   
 ( ) 1 

Subtracting (iii) and (iv)    
 

 
0 ( )  

 

   
 ( ) 1 

Then (i) becomes 

  (   )  
 

 
0 ( )  

 

   
 ( ) 1       

 

 
0 ( )  

 

   
 ( ) 1         

  (   )   ( ) 0
            

 
 1  

 

   
 ( ) 0

            

 
 1  

    * (   )+  
 

 
[   { ( )     }     { ( )      }]  

 

    
   { ( )(            )} .é.(A) 
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   { ( )     }  
 

√  
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 ( )        

 

√  
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   { ( )     }   (    )  

Similarly     { ( )      }   (    ) 
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∫       

  
 ( )   

∫  ( )  
    

    
 

 

√  
∫ ∫       

  
 ( )    

    

    
  

∫  ( )  
    

    
 

 

√  
∫ ∫       

    ( )  
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√  
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, (    )   (    )-  

 

  
∫  (  )   
    

    
  

 

THE DOUBLE FOURIER TRANSFORM AND ITS INVERSE  

Let  (     ) be a function defined over the whole plane i.e.            

then its fourier transform and inverse are defined as follows; 

 * (     )+   (     )  
 

(√  )
 ∫ ∫  (     ) 

 (         )
 

  

 

  
        

   * (     )+   (     )  
 

(√  )
 ∫ ∫  (     ) 

  (         )
 

  

 

  
        

 

n - DIMENSIONAL FOURIER TRANSFORM AND ITS INVERSE  

 * (∑   
 
   )+   (∑   

 
   )  

 

(√  )
 ∫  (∑   

 
   )  (∑     
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 ∑   

 
     

   * (∑   
 
   )+   (∑   
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(√  )
 ∫  (∑   
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EXAMPLE : Find the temperature distribution in a semi-infinite rod for the 
following cases with zero initial temperature distribution: 

(a) The heat supplied at the end x = 0 at the rate g (t); i.e.  ux(   )      ( ) 

(b) The end x = 0 is kept at a constant temperature T0. i.e.     (   )             

The problem here is to solve the heat conduction equation 

ut = κuxx,        ,  with    (   )           . 

Here we assume that u (x, t) and ux (x, t) vanish as      

 
 
EXAMPLE : Find the temperature distribution in a semi-infinite rod for the 
following cases with zero initial temperature distribution: 

The heat supplied at the end x = 0 at the rate g (t); i.e.  ux(   )      ( ) 
The problem here is to solve the heat conduction equation 

ut = κuxx,        ,  with    (   )           . 

Here we assume that u (x, t) and ux (x, t) vanish as      
SOLUTION:  
let   (   ) be the Fourier cosine transform of   (   )  Then the transformation of 
the heat conduction equation yields 
   *  +      *   +  

 

  
   *  (   )+   6      (   )  √

 

 
   (   )7  

 

  
   (   )   6      (   )  √

 

 
  ( )7  

 

  
   (   )        (   )   √

 

 
  ( )   ………….(i) 

This is linear differentiable and non – homogeneous equation so by using 

     ∫             

( )        

  
   (   )             (   )        √

 

 
  ( )    

∫
 

  
        (   )    √

 

 
∫       ( )      

   (   )   √
 

 
      ∫         (  )   

 

 
         ………….(ii) 

Now using   (   )        (   )        

(  )     (   )   √
 

 
      ∫        ( )  

 

 
  

   
  *   (   )+    (   )   √

 

 
∫ 6 √

 

 
      ∫        ( )  

 

 
7

 

 
         

  (   )   
 

 
∫   ( )  
 

 
∫      (   ) 

 
         

  (   )   √
 

 
∫

  ( )

√   
       (   )  

 

 
   

where ∫      (   ) 

 
        

 

 
√

 

 (   )
       (   ) 
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EXAMPLE : Find the temperature distribution in a semi-infinite rod for the 
following cases with zero initial temperature distribution: 

The end x = 0 is kept at a constant temperature T0. i.e.     (   )             

The problem here is to solve the heat conduction equation 

ut = κuxx,        ,  with    (   )            

Here we assume that u (x, t) and ux (x, t) vanish as     
SOLUTION:  
We apply the Fourier sine transform   (   ) of   (   ) to obtain the transformed 
equation 
   *  +      *   +  

 

  
   *  (   )+   6      (   )  √

 

 
  (   )7  

 

  
   (   )   6      (   )  √

 

 
   7  

 

  
   (   )        (   )  √

 

 
      ………….(i) 

This is linear differentiable and non – homogeneous equation so by using 

     ∫             

( )        

  
   (   )             (   )        √

 

 
       

∫
 

  
        (   )   √

 

 
∫                

        (   )  √
 

 
∫                √

 

 

     

 
       

   (   )  √
 

 

  

 
          ………….(ii) 

Now using   (   )        (   )       √
 

 

  

 
  

(  )     (   )  √
 

 

  

 
  √

 

 

  

 
           √

 

 

        

 
   

   
  *   (   )+    (   )   √

 

 
∫ 6   √

 

 

        

 
 7

 

 
         

  (   )  
   

 
∫

     

 
(        )

 

 
    

Now making the use of integral 

∫       
.
     

 
/

 

 
   

 

 
   .

 

  
/  

Then the solution will be 

  (   )  
   

 
0
 

 
 

 

 
   .

 

 √  
/1        .

 

 √  
/  

 
Where     ( )       ( ) is the complementary error function.Defiend as 
follows 

     ( )   
 

√ 
∫     
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Example :  Find the solution of the Dirichlet problem in the half-plane     

uxx + uyy = 0,                 with    (   )      ( )              

u and ux vanish as        and u is bounded as     
SOLUTION:  

Let   (   ) be the Fourier transform of   (   ) with respect to x.  

  *   +    {   }     

(   )   *  (   )+  
  

   
  *  (   )+     

Application of the Fourier transform with respect to x gives 

Uyy − k
2U = 0 

  (   )      ( ) and   (   )     as     
The solution of this transformed system is 

  (   )      ( )         
The inverse Fourier transform of   (   ) gives the solution in the form 

  (   )   
 

√  
∫ 0

 

√  
∫   ( )             

  
  1

 

  
         

  (   )   
 

  
∫   ( )  
 

  
∫   ( )    , (   )-       

  
    

It follows from the proof of the result   {       }  √
 

 

 

(     )
            

∫   ( )    , (   )-       

  
   

  

(   )      

Hence, the solution of the Dirichlet problem in the half-plane       is 

  (   )   
 

 
∫

  ( )  

(   )    

 

  
  

From this solution, we can readily deduce a solution of the Neumann problem in 
the half-plane        
 
Example:  Find the solution of Neumann‟s problem in the half-plane       

uxx + uyy = 0,                 with     uy (   )      ( )             

u is bounded as      uand ux vanish as       
SOLUTION:  

Let   v (x,y) = uy (x, y). Then   (   )   ∫  (   )  
 

 

and the Neumann problem becomes 
   

   
 

   

   
 

    

   
 

    

   
 

 

  
 (uxx + uyy) = 0 and   (   )    uy (   )      ( )  

This is the Dirichlet problem for   (   )  and its solution is given by 

  (   )   
 

 
∫

 ( )  

(   )    

 

  
  

Thus, we have 

  (   )  
 

 
∫  ∫

 ( )  

(   )    

 

 
  

 
 

 

  
∫  ( )  
 

  
∫

    

(   )    

 
  

  (   )   
 

  
∫  ( )   ,(   )    -  
 

  
  

where an arbitrary constant can be added to this solution. In other words, 
the solution of any Neumann‟s problem is uniquely determined up to an 
arbitrary constant. 
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EXERCISES 
1. Determine the solution of the initial-value problem 

utt = c2uxx,                 

  (   )      ( )  ut (   )      ( )             
 

2. Solve        ut = uxx,         

  (   )      ( )  (   )       
 

3. Solve utt = c2uxxxx = 0,                

  (   )      ( ) , ut (   )                 
 

4. Solve utt + c2uxxxx = 0,            

  (   )     , ut (   )          

u (0, t) = g (t), uxx (0, t) = 0, t>0. 
 

5. Solve ut = uxx + tu,                

  (   )      ( )  (   ) is bounded,             
 

6. Solve uxx + uyy = 0,                     

  (   )      ( )             and  ux (   )      ( )            

  (   )      uniformly in x as    and uniformly in y as     
 

7. Solve uxx + uyy = 0,                      

  (   )    ( )  (   )               and u (x, y) → 0 uniformly in y as       

 

8. Solve ut = uxx,         

  (   )           (   )      ( )       
u (x, t) is bounded for all x and t. 
 

9. Solve  uxx + uyy = 0,                 

  (   )      ( )  (   )            
  (   )        (   )      uniformly in y as     
 

10. Solve  uxx + uyy = 0,                 

11. Solve using Fourier Transformation  uxx = 
 

 
 ut Semi infinite rod with  (   )    

and       (   )   2
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FOURIER SERIES, FOURIER TRANSFORMATION AND INTEGRALS 
WITH APPLICATIONS 
Introduction, Piecewise Continuous Functions and Periodic Functions, Systems 
of Orthogonal Functions, Fourier Series, Convergence of Fourier Series, 
Examples and Applications of Fourier Series , Examples and Applications of 
Cosine and Sine Fourier 
Series,  Complex Fourier Series , Fourier Series on an Arbitrary Interval, The 
Riemann–Lebesgue Lemma and Point wise Convergence Theorem, Uniform 
Convergence, Differentiation, and Integration ,  Double Fourier Series, Fourier 
Integrals , Exercises  
The Fourier theory of trigonometric series is of great practical importance 
because certain types of discontinuous functions which cannot be expanded in 
power series can be expanded in Fourier series. More importantly, a wide class of 
problems in physics and engineering possesses periodic phenomena and, as a 
consequence, Fourier‟s trigonometric series become an indispensable tool in the 
analysis of these problems. 
 
PIECEWISE CONTINUOUS FUNCTIONS AND PERIODIC FUNCTIONS 

A single-valued function f is said to be piecewise continuous in an interval [a, b] 

if there exist finitely many points a = x1 < x2 < . . . < xn = b, such that   is 

continuous in the intervals xj < x < xj+1 and the one-sided limits  (xj+) and  (xj+1−) 

exist for all                      

A piecewise continuous function is shown in Figure. Functions such as 
 

 
 

and sin (
 

 
) fail to be piecewise continuous in the closed interval [0, 1] because 

the one-sided limit  (  ) does not exist in either case. 

 
If f is piecewise continuous in an interval [a, b], then it is necessarily 

bounded and integrable over that interval. Also, it follows immediately that the 
product of two piecewise continuous functions is piecewise continuous on a 
common interval. 

If   is piecewise continuous in an interval [a, b] and if, in addition, the first 

derivative  ′ is continuous in each of the intervals xj < x < xj+1  and the limits               

 ′ (xj+) and  ′ (xj−) exist, then   is said to be piecewise smooth; if, in addition, the 

second derivative  ′′ is continuous in each of the intervals xj < x < xj+1, and the 

limits  ′′ (xj+) and  ′′ (xj−) exist, then f is said to be piecewise very smooth. 
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PERIODIC FUNCTION: A piecewise continuous function  ( ) in an interval [a, b] 

is said to be periodic if there exists a real positive number   such that                    
  (     )      ( )  for all     is called the period of  , and the smallest value of 

  is termed the fundamental period. A sample graph of a periodic function is 
given in Figure  

 
If   is periodic with period p, then 

  (     )      ( )  
  (    )      (         )      (     )  
  (    )      (        )      (    )  
  (      )      (  (     )      )      (  (     )  )      ( )  
for any integer n. Hence, for all integral values of n   (      )      ( )  

It can be readily shown that if f1, f2, . . ., fk have the period p and ck are the 

constants, then f = c1f1 + c2f2 + . . . + ckfk has the period p. 

 
SYSTEMS OF ORTHOGONAL FUNCTIONS 

A sequence of functions {φn (x)} is said to be orthogonal with respect to the 

weight function  ( ) on the interval [a, b] if  ∫   ( )  ( ) ( )           
 

 
 

If m = n then we have ‖  ‖  √∫   
 ( ) ( )  

 

 
    

which is called the norm of the orthogonal system {φn (x)}. 

Example: The sequence of functions *     +              form an orthogonal 

system on the interval ,    -  because ∫                 
 

  
 2

               
               

  

In this example we notice that the weight function is equal to unity, and the value 

of the norm is √  
 
ORTHONORMAL SYSTEM OF FUNCTIONS  

An orthogonal system φ1, φ2, . . ., φn, where n may be finite or infinite, which 

satisfies the relations ∫   ( )  ( ) ( )   2
               
               

 

 
  is called an 

orthonormal system of functions on [a, b].  

It is evident that an orthonormal system can be obtained from an orthogonal 

system by dividing each function by its norm on [a, b]. 
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Example: The sequence of functions                                forms an 
orthogonal system on ,    - since 

∫                  2
               
               

 

  
  

∫                               
 

  
  

∫                  2
               
               

 

  
  

 
FOURIER SERIES 
A trigonometric series with any piecewise continuous periodic function   ( ) of 

period    and of the form 

   ( )  
  

 
 ∑ (                    )

 
      

is called the Fourier Series of a real valued function  ( ) where the symbol   

indicates an association of a0, ak, and bk to   in some unique manner.  

Where        
 

 
∫  ( )  
 

  
      

 

 
∫  ( )       
 

  
      

 

 
∫  ( )       
 

  
  

And are called Fourier Coefficiets. 
We may also write 

  ( )  
  

 
 ∑(                    )

 

   

 

 
COMPLEX FORM OF FOURIER SERIES 
Fourier Series expansion for in complex form is given as follows 

  ( )  ∑    
    

              ;         

 

Where        
 

  
∫  ( )       
 

  
 

 
Example:Find the Fourier series expansion for the function                                            

f(x) = x+ x2,        

Solultion: Here      
 

 
∫  ( )  
 

  
 

   

 
  

   
 

 
∫  ( )       
 

  
 

 

  
      

 

  
(  )                  

   
 

 
∫  ( )       
 

  
  

 

 
       

 

 
(  )                  

Therefore, the Fourier series expansion for   is 

  ( )  
  

 
 ∑ (                    )

 
     

  ( )  
  

 
 ∑ (

 

  
(  )          

 

 
(  )        ) 

     

  ( )  
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Example: Find the Fourier series expansion for the function 

  ( )  2
                       
                     

  

Solultion: Here 

   
 

 
∫  ( )  
 

  
 

 

 
0∫  ( )  

 

  
 ∫  ( )  

 

 
1   

 

 
  

   
 

 
∫  ( )       
 

  
 

 

 
0∫  ( )       

 

  
 ∫  ( )       

 

 
1  

   
 

   
(       )  

 

   
[(  )    ]                 

   
 

 
∫  ( )       
 

  
 

 

 
0∫  ( )       

 

  
 ∫  ( )       

 

 
1  

   
 

 
(        )  

 

 
[   (  ) ]                

Therefore, the Fourier series expansion for   is 

  ( )  
  

 
 ∑ (                    )

 
     

  ( )   
 

 
  ∑ 0

 

   
[(  )    ]        

 

 
[   (  ) ]       )1 

     

 
Example: Find the Fourier series expansion for the sawtooth wave function 
  ( )      in the interval              ( )      (     ) for              
Solultion: This is a periodic function with period    and represents a sawtooth 
wave function as shown in Figure and it is piecewise continuous. 

 
 
     for                

   
 

 
∫  ( )       
 

  
 

 

 
∫         
 

  
 

 

 
(  )     

Therefore, the Fourier series expansion for   is 

  ( )  
  

 
 ∑ (                    )

 
     

  ( )   ∑ (  )    
   

     

 
  .

    

 
 

     

 
 

     

 
 

     

 
    /  
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FOURIER INVERSION FORMULA  

The proper inversion formula is given as 

 ( )  
 

  
∫      

 

  

 ̂( )    

The formula nearly states that   is the fourier transform of  ̂                            

where  ̂    *  ( )+ 

PROOF: 

If   ( ) is defined in the interval (    ) then it can be represented by its 

complex fourier series as 

  ( )  ∑    
 
   

  
            Where        

 

  
∫  ( )   

  

   
 

  
 

Let   ̂( )  
 

  
∫  ( )       
 

  
 

Then for sufficiently regular function we clearly have   ̂( )   ̂( ) as      

Furthermore    ( )  
 

  
∑   ̂(  ) 

     
      éééé.(i)  where    

  

 
 

Let     
 

 
 denotes the distance between grid points i.e. *    (  )+    

  

defines a uniform partition of the real line. Therefore it is more convenient to 

rewrite (i) in the form  

  ( )  
 

  
[  ∑   ̂(  ) 

    

 

    

] 

We observe that this formula resembles the inversion formula. 

Of course if      then      

Hence  if      then [  ∑   ̂(  ) 
     

    ]  ∫       

  
 ̂( )    

Thus we obtained our required formula as follows 

 ( )  
 

  
∫      

 

  

 ̂( )    
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LAPLACE TRANSFORMATION WITH APPLICATIONS 

 
Because of their simplicity, Laplace transforms are frequently used to solve a 
wide class of partial differential equations. Like other transforms, Laplace 
transforms are used to determine particular solutions. In solving partial 
differential equations, the general solutions are difficult, if not impossible, to 
obtain. The transform technique sometimes offers a useful tool for finding 
particular solutions. The Laplace transform is closely related to the complex 
Fourier transform, so the Fourier integral formula can be used to define the 
Laplace transform and its inverse. 
 
LAPLACE TRANSFORMATION 
If  ( ) is defined for all values of    , then the Laplace transform of  ( ) is 

denoted by   ̅( ) or  * ( )+ and is defined by the integral 

 * ( )+    ̅( )  ∫      

 

 

 ( )      
   

∫     

 

 

 ( )   

If  ̅( ) is laplace transform of  ( ) then  ( ) is called the  INVERSE LAPLACE 

TRANSFORM of  ̅( ) i.e.           { ̅( )}    ( ) 
 

QUESTION:  Show that  * +  
 

 
 where „c‟ is constant. 

SOLUTION:  Since  * ( )+  ∫       

 
 ( )   

Then   * +  ∫       

 
     ∫       

 
    | 

    

 
|
 

 

 
 

 
 

 

QUESTION:  Show that  *    +  
 

   
 where „a‟ is constant. 

SOLUTION:  Since  * ( )+  ∫       

 
 ( )   

Then   *    +  ∫       

 
       ∫   (   )   

 
   | 

  (   )  

(   )
|
 

 

 
 

   
 

 

QUESTION:  Show that  *   +  
 

  
 where „a‟ is constant. 

SOLUTION:  Since  * ( )+  ∫       

 
 ( )   

Then   *   +  ∫       

 
      | 

        

 
|
 

 

 ∫
     

 
  

 

 
   | 

      

 
|
 

 

 
 

 
∫

     

 

 

 
   

 

  
 

In above                     as     
 

QUESTION:  Show that  *     +  
 

      where „a‟ is constant. 

SOLUTION:  Since  * ( )+  ∫       

 
 ( )   

Then   *     +  ∫       

 
        | 

           

 
|
 

 

 ∫
     

 
      

 

 
   

 *     +  
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|
 

 

 
 

 
∫

     

 

 

 
         

 

  
 

  

  
 *     +  
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QUESTION:  Show that  * +  
 

 
 where ócô is constant. 

SOLUTION:  Since  * ( )+  ∫       

 
 ( )   

Then   * +  ∫       

 
     ∫       

 
    | 

    

 
|
 

 

 
 

 
 

 

QUESTION:  Show that  *    +  
 

   
 where óaô is constant. 

SOLUTION:  Since  * ( )+  ∫       

 
 ( )   

Then   *    +  ∫       

 
       ∫   (   )   

 
   | 

  (   )  

(   )
|
 

 

 
 

   
 

 

QUESTION:  Show that  *   +  
  

    
 where ó   ô 

SOLUTION:  Since  * ( )+  ∫       

 
 ( )   

Then for n = 1; 

  * +  ∫       
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|
 

 

 ∫
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|
 

 

 
 

 
∫       

 
   

 

 
 

In above            as     

for n = 2; 

   *   +  ∫       
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 ∫
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∫       

 
   

 

  
     In this part                     as     

And in general  

 *   +  ∫       

 
      | 

        

 
|
 

 

 ∫
     

 
       

 
    

 *   +  | 
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 *   +  
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 * +  

  

  
 
 

 
  

Hence  *   +  
  

    
 where ó   ô 
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QUESTION:  Show that  *     +  
 

     
  

SOLUTION:  Since  * ( )+  ∫       

 
 ( )        

Then   *     +  ∫       

 
        

 ∫      

 
        

    

     
,             -  therefore 

 *     +  |
     

     
,              -|

 

 

 0  
   

     
(  )1  

 

     
  

 

QUESTION:  Show that  *     +  
 

     
  

SOLUTION:  Since  * ( )+  ∫       

 
 ( )        

Then   *     +  ∫       

 
        

 ∫      

 
        

    

     
,             -  therefore 

 *     +  |
     

     
,              -|

 

 

 0  
   

     
(  )1  

 

     
  

 

QUESTION:  Show that  *      +  
 

     
  

SOLUTION:  Since  * ( )+  ∫       

 
 ( )        

Then   *      +  ∫       

 
.
        

 
/   
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      ∫       

 
      ] 

 *      +  
 

 
[∫   (   )  
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QUESTION:  Show that  *      +  
 

     
  

SOLUTION:  Since  * ( )+  ∫       

 
 ( )        

Then  

 *      +  ∫       
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FUNCTION OF EXPONENTIAL ORDER: A function f (t) is said to be of 

exponential order as       if there exist real constants   and   such that 

   ( )           for            

 
THEOREM: Let   be piecewise continuous in the interval ,   - for every positive 
 , and let   be of exponential order, that is,   ( )      (    ) as       for some 
     . Then, the Laplace transform of   ( ) exists for        . 
 
Proof: Since   is piecewise continuous and of exponential order, we have 

  * ( )+  |∫       

 
 ( )  |  ∫       

 
  ( )    ∫       

 
         ∫   (   )   

 
    

  * ( )+  
 

   
  

Thus the Laplace transform of   ( ) exists for        . 
 

PROPERTIES OF LAPLACE TRANSFORMS 

 
LINEARITY PROPERTY: THE LAPLACE TRANSFORMATION   IS LINEAR. 

Proof.   Let   ( )    ( )    ( ) where a and b are constants. 

We have, by definition 

  *  ( )+  ∫       

 
 ( )   ∫       

 
,  ( )    ( )-    

  *  ( )+   ∫       

 
 ( )    ∫       

 
 ( )      * ( )+     * ( )+  

   *  ( )    ( )+     * ( )+     * ( )+   hence proved. 
 

SHIFTING PROPERTY: If  ̅( ) is the laplace transformation of  ( )  
Then       *     ( )+   ̅(   ) 
Proof. By definition, we have 

  *     ( )+  ∫       

 
     ( )   ∫   (   )   

 
 ( )    ̅(   )  

This result also known as 1st shifting theorem or 1st translation theorem.  
EXAMPLES: 

i. If  *   +  
 

  
 then  *      +  

 

(   ) 
 

ii. If  *     +  
 

      then  *         +  
 

(   )     

iii. If  *     +  
 

     
 then  *         +  

   

(   )    
 

iv. If  *   +  
  

     then  *       +  
  

(   )    

 

Question: Find    2
 

   
3 

Answer:  in this question we will use the first shifting theorem according to which 

 *     ( )+   ̅(   )       ( )         { ̅( )}     { ̅(   )} 

Thus    2
 

   
3          2

 

 
3                   2

 

   
3        
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Question: Find    2
     

    
3 

Answer:  in this question we will use the first shifting theorem according to which 

 *     ( )+   ̅(   )       ( )         { ̅( )}     { ̅(   )} 

Thus    2
     

    
3       2

 

    
3      2

 

    
3                 

 

Question: Find    2
   

(   )   
3 

Answer:  in this question we will use the first shifting theorem according to which 

 *     ( )+   ̅(   )       ( )         { ̅( )}     { ̅(   )} 

Thus    2
   

(   )   
3         2

 

    
3            

 

Question: Find    2
 

(   )   
3 

Answer:  in this question we will use the first shifting theorem according to which 

 *     ( )+   ̅(   )       ( )         { ̅( )}     { ̅(   )} 

Thus    2
 

(   )   
3          2

 

    
3             

 

SCALING PROPERTY: If  ̅( ) is the laplace transformation of ( ) , then 

  ,  (  )-  
 

 
  ̅ (

 

 
)     with c > 0  

Proof. By definition we have  

  * (  )+  ∫       

 
 (  )   

 

 
∫   .

 

 
/    

 
 (  )    

 

 
  ̅ (

 

 
)    putting       

 
This result also known as Rule of Scale.  
EXAMPLES: 

i. If  *    +  
 

    
 then  *     +  

 

      
 

 
0

   

(   )   
1 

ii. If  *   +  
 

   
 then  *    +  

 

   
 

 

 
6

 

.
 

 
  /

7 

 
DIFFERENTIATION PROPERTY: Let   be continuous and  ′ piecewise 

continuous, in           for all      . Let   also be of exponential order as 
    Then, the Laplace transform of  ′ ( ) exists and is given by 

 , ′ ( )-      , ( )-     ( )      ̅( )     ( ) 
 
Proof. If  ( ) is continuous and   ( ) is sectionally continuous on the interval ,   ) 
and both are of exponential order then 

  *  ( )+  ∫       

 
  ( )          ( )  

  (  )∫       

 
 ( )   ,   ( )-     * ( )+  

 , ′ ( )-      , ( )-     ( )      ̅( )     ( )  
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If  ′ and  ′′  satisfy the same conditions imposed on   and  ′ respectively, then, 
the Laplace transform of  ′′ ( ) can be obtained immediately by applying the 
preceding theorem; that is 

 ,   ( )-     , ( )-     ( )      ̅( )     ( )      ( ) 
 
Proof. If  ( )   ( ) are continuous and    ( ) is sectionally continuous on the 

interval ,   ) and all are of exponential order then 

  *   ( )+  ∫       

 
   ( )           ( )  

  (  )∫       

 
  ( )    

  *   ( )+  ,    ( )-     *  ( )+     ( )   [  ̅( )     ( )]  

 ,   ( )-     , ( )-     ( )      ̅( )     ( )      ( )  
 
Clearly, the Laplace transform of   ( ) can be obtained in a similar manner by 
successive application.The result may be written as 

 ,  ( )-     , ( )-       ( )           ( )      ( )  
 

INTEGRATION PROPERTY : If  ̅( )  is the Laplace transform of  ( )  then 

 6∫  ( )
 

 

  7  
 ̅( )

 
 

PROOF: 

Consider  ( )  ∫  ( )
 

 
     ( )   ( )   ,  ( )-   , ( )- 

   ̅( )    ( )   , ( )-  
   , ( )-      , ( )-  

  , ( )-   
 ̅( )

 
  

  0∫  ( )
 

 
  1  

 ̅( )

 
  

 
 
 

In solving problems by the Laplace transform method, the difficulty arises in 
finding inverse transforms. Although the inversion formula exists, its evaluation 
requires a knowledge of functions of complex variables. However, for some 
problems of mathematical physics, we need not use this inversion formula. We 
can avoid its use by expanding a given transform by the method of partial 
fractions in terms of simple fractions in the transform variables. With these 
simple functions, we refer to the table of Laplace transforms given in the end of 
the book and obtain the inverse transforms. Here, we should note that we use the 
assumption that there is essentially a one-to-one correspondence between 
functions and their Laplace transforms. 
This may be stated as follows: 
LERCH THEOREM: let   and   be piecewise continuous functions of exponential 

order. If there exists a constant s0, such that  , -   , - for all s > s0, then 

 ( )     ( ) for all     except possibly at the points of discontinuity. 
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In order to find a solution of linear partial differential equations, the following 
formulas and results are useful. 
If  , (   )-    ̅(   ) then 

 2
  

  
3     ̅(   )   (   )  

 2
   

   
3      ̅(   )    (   )    (   )   and so on. 

Similarly, it is easy to show that 

 2
  

  
3  

  ̅

  
    2

   

   
3  

   ̅

   
     ……………..,   2

   

   
3  

   ̅

   
 

The following results are useful for applications: 

 2    .
 

 √ 
/3  

 

 
 (  √ )                 

 {      (√  )}  
√ 

√ (   )
                 

 
Example: Consider the motion of a semi-infinite string with an external force   ( ) 
acting on it. One end is kept fixed while the other end is allowed to move freely in 
the vertical direction. If the string is initially at rest, the motion of the string is 
governed by 

utt = c2uxx     ( )                

u (x, 0) = 0, ut (x, 0) = 0  and  u (0, t) = 0, ux (x, t) → 0, as     

Solution: Let   (   ) be the Laplace transform of   (   )  Transforming the 
equation of motion and using the initial conditions, we obtain 

 ̅   .
  

  
/  ̅   

 ̅( )
  

⁄   

The solution of this ordinary differential equation is  (   )    
  

    
   

  
 ̅( )

  
⁄  

The transformed boundary conditions are given by 
  (   )     , and        ̅ (   )      

In view of the second condition, we have      . Now applying the first condition, 

we obtain   ̅ (   )    
 ̅( )

  
⁄       Hence      (   )   

 ̅( )
  

⁄ 0   
   

 1  

SPECIAL CASES: (a) When f(t) = f0, a constant, then     (   )     0
 

  
 

 

  
 

   

 1  

The inverse Laplace transform gives the solution 

  (   )   >

  

 
    .  

 

 
/
 

                 

  

 
,  -                                   

  

(b) When f (t) = cosωt, where ω is a constant, then 

 ̅( )  ∫             
 

     

 

 
  

Thus, we have      ̅ (   )  
 

 (     )
0   

   

 1 ………….(i) 

By the method of partial fractions, we write    
 

 (     )
 

 

  
0
 

 
 

 

     
1  
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Hence         {
 

 (     )
}  

 

  
,       -  

 

  0   
 .

  

 
/1  

If we denote    ( )       .
  

 
/  then the Laplace inverse of equation (i)  may be 

written in the form 

  (   )   >

 

  0  ( )    (  
 

 
) 1                

 

  
  ( )                                    

  

 
UNIT STEP  FUNCTION: A real valued function       is defined as  

  (   )   {
               
                

    When              ( )   2
               
                

 

 
CONVOLUTION FUNCTION / FAULTUNG FUNCTION OF LAPLACE 
TRANSFORMATION. 

The function (     ) ( )    ∫   (     )   ( )   
 

 
  is called the convolution of the 

functions   and  .regarding laplace transformation. 
 
USEFUL RESULT:  

 (     )( )  ∫       (     )  ( )  
 

 
  ∫   (   )  (     )   ( )   

 

 
   

 
CONVOLUTION / FAULTUNG THEOREM OF LAPLACE TRANSFORMATION 
 

If  ̅( ) and  ̅( )are the Laplace transforms of  ( ) and  ( ) respectively, then the 

Laplace transform of the convolution (    ) ( ) is the product  ̅( ) ̅( ) 
 
PROOF: By definition, we have 

 *    +   ∫      (    )   
 

 
  

 *    +   ∫  ∫       (     )   ( )   
 

 
   

 

 
  

 *    +   ∫  ∫      ( )  (     )   
 

 
   

 

 
   since               

 *    +   ∫      [∫   (   ) ( ) (     )   
 

 
]   

 

 
  

By reversing the order of integration, we have 

 *    +   ∫  [∫       (   ) (     )   
 

 
] ( )  

 

 
  

If we introduce the new variable     (     ) in the inner integral, we obtain 

 *    +   ∫   ( )   0∫    (    )  ( ) ( )   
 

  
1

 

 
  

 *    +   ∫   ( )   0∫    (    )  ( ) ( )   
 

  
 ∫    (    )  ( ) ( )   

 

 
1

 

 
  

 *    +  ∫  ( )   0∫    (    )   ( )   
 

  
 ∫    (    )    ( )   

 

 
1

 

 
  by step function 

 *    +  ∫  ( )   [∫    (    ) ( )   
 

 
]

 

 
  

 *    +   ∫      ( )   ∫       ( ) 
 

 
  

 

 
  

 *    +   ̅( ) ̅( )  
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THE CONVOLUTION SATISFIES THE FOLLOWING PROPERTIES: 
                (commutative). 
      (     )    (     )      (associative). 
      (       )      (     )    (     )  (distributive), 

where   and   are constants. 
 
Example: Find the temperature distribution in a semi-infinite radiating rod. The 

temperature is kept constant at x = 0, while the other end is kept at zero 

temperature. If the initial temperature distribution is zero, the problem is 
governed by 

ut = kuxx − hu,              , h= constant, 

  (   )        (   )    u0, t>0, u0 = constant, where   (   )             
Solution: Let   ̅(   ) be the Laplace transform of   (   ). Then the transformation 

with respect to   yields 

 ̅   .
   

 
/  ̅     ,     ̅(   )  

  

 
  ,           ̅(   )    

The solution of this equation is      (   )       √(   )        √(   )    

The boundary condition at infinity requires that A = 0. Applying the other 

boundary condition gives       (   )        
  

 
 

 

Hence, the solution takes the form           ̅(   )  .
  

 
/    √(   )    

We find (by using the Table of Laplace Transforms) that          .
  

 
/     

And          2   √(   )  3  
  

6    4
  

   
57

 √    
 

Thus, the inverse Laplace transform of   (   ) is     (   )      2
  

 
   √(   )  3  

By using the Integration Theorem    0∫  ( )
 

 
  1  

 ̅( )

 
   we have 

  (   )   ∫
    

6    4
  

   
57

 √      

 

 
    

Substituting the new variable    
 

 √  
  yields 

  (   )   
   

√ 
∫  

6    4
   

    57
 

 

 √  

   

For the case      , the solution   (   ) becomes 

  (   )  
   

√ 
∫     

 

 

 √  

   
   

√ 
∫     

 

 

   
   

√ 
∫     

 

 √  

 

   

  (   )          (
 

 √  
*        (

 

 √  
* 
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LAPLACE TRANSFORMS OF THE HEAVISIDE AND DIRAC DELTA FUNCTIONS 
The Heaviside unit step function is defined by 

  (     )   2
              
              

   where a ≥ 0 

 
Now, we will find its Laplace transform. 

 *  (     )+   ∫        (     )   
 

 
 ∫        (     )   

 

 
 ∫        (     )   

 

 
  

 *  (     )+   ∫        
 

 
 |

    

  
|
 

 

 
    

 
             

 

SECOND SHIFTING (TRANSLATION) THEOREM: If  ̅( ) and  ̅( ) are the Laplace 
transforms of  ( ) and  ( ) respectively, then 

( )  ,  (     )   (     )-          ̅( )          *  ( )+   
( )  *  (     )   ( )+         *  (     )+     
Proof:  (a) By definition 

 *  (     )   (     )+   ∫        (     )   (     )   
 

 
  

 *  (    )   (   )+   ∫        (    )  (     )   
 

 
 ∫        (     )  (     )   

 

 
  

 *  (     )   (     )+   ∫        (     )   
 

 
  

Introducing the new variable          , we obtain 

 *  (     )   (     )+   ∫   (    )    ( )   
 

 
     ∫        ( )   

 

 
  

 *  (     )   (     )+        *   (  )+       ̅( )  
 
To prove (b), we write 

 *  (    )  (  )+   ∫        (     )  (  )   
 

 
           

 *  (    )  (  )+   ∫        (     )  (  )   
 

 
 ∫        (     )  (  )   

 

 
    

 *  (    )  (  )+   ∫        (  )   
 

 
             

Now using   (          ) 

 *  (    )  (  )+   ∫    (      )   (     )   
 

 
     ∫        (     )   

 

 
  

 *  (     )   ( )+         *  (     )+  
 

Example:  Given that    ( )  2
                         
                     

 (    )  (    )  then find the 

Laplace transform of   ( ) 
Solution: We have 

 *   (  )+   *(    )  (    )+        *  +  .
 

  
/       

 

Example:  Find the inverse Laplace transform of  ̅( )  
      

  
 

Solution:     { ̅( )}     2
      

  
3     2

 

  
3     2

    

  
3    (    )  (    ) 

   { ̅( )}  {
                           
 (   )                  
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THEOREM:  Let    ( )  be a piecewise continuous function for     and of 
exponential order. If   ( ) is periodic with period T then show that 
 

 *   (  )+  
 

      
∫       (  )   

 

 

 

PROOF:  By definition, we have 

 *   (  )+   ∫         (  )   
 

 
  

 *   (  )+  ∫         (  )   
 

 
  ∫         (  )   

 

 
  

In the 2nd integral on the right put             

 *   (  )+  ∫         (  )   
 

 
  ∫    (    )    (    )   

 

 
  

 *   (  )+  ∫         (  )   
 

 
      ∫         (    )   

 

 
  

Since given functionis periodic with period T therefore   (    )    ( )  then 

 *   (  )+  ∫         (  )   
 

 
      ∫         (  )   

 

 
  

 *   (  )+  ∫         (  )   
 

 
       *   (  )+  

 *   (  )+  ∫         (  )   
 

 
       *   (  )+  

(      ) *   (  )+  ∫         (  )   
 

 
  

 *   (  )+  
 

      ∫        (  )   
 

 
  

As required the result.  

 

THEOREM:  If  *   (  )+   ( ) then  2 
  (  )

 
 3  ∫  ( )   

 

 
 

PROOF:  By definition, we have 

 *   (  )+   ( )   ∫         ( )   
 

 
  

∫  ( )   
 

 
 ∫ [∫         ( )   

 

 
]   

 

 
  integrating. 

∫  ( )   
 

 
 ∫   ( )

 

 
[∫        

 

 
]    changing the order of integration. 

∫  ( )   
 

 
 ∫   ( )

 

 
|
    

  
|
 

 

   ∫
  ( )

 

 

 
        2 

  (  )

 
 3  

Hence   2 
  (  )

 
 3  ∫  ( )   
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In order to find a solution of linear partial differential equations, the following formulas 

and results are useful. 

If  , (   )-    (   ) then 

 2
  

  
3     (   )   (   )  

 2
   

   
3      (   )    (   )    (   )  

    :  :  : 

    :  :  : 

 2
   

   
3      (   )       (   )              

(   )       
(   )  

Similarly, it is easy to show that 

 2
  

  
3  

 

  
  (   )   2

   

   3  
  

     (   )    ééééé..,   2
   

   3  
  

    (   ) 

 

EXAMPLE:  Use Laplace Transformation method to solve BVP 

  
   

    
  

  
                

  (   )      (   )               (   )            

Solution:  

Given  
   

    
  

  
  2

   

   3   2
  

  
3  

  

    (   )     (   )   (   ) 

 
  

    (   )     (   )  (       )  

 
  

    (   )     (   )             éééé(i) 

Which is non ï homogeneous 2
nd

 order DE with solution 

 (   )    (   )    (   )     éééé(ii) 

For Chractristic (auxiliary) solution 

( )  (    ) (   )                     √   

Then    (   )     
√      

 √   

For Particular  solution 

Consider   (   )  
        

    
 

    

    
    

    

    
 

  

    
 

     

(  )   
 

 

 
 

     

     
 

Then   (   )  
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(  )   (   )    (   )    (   )     
√      

 √   
 

 
 

     

    
    

  (   )     
√      

 √   
 

 
 

     

    
     éééé(iii) 

Now using BCôs 

  (   )     *  (   )+   *    +   (   )  
 

 
  

  (   )     *  (   )+   *    +   (   )  
 

 
  

(   )   (   )  
 

 
    

     
  

 

 
 

   ( )

    
       

 

 
 

 

 
         

(   )   (   )  
 

 
    

√ ( )     
 √ ( )  

 

 
 

    

    
    

√     
 √  

 

 
 

 

 
    

    
√     

 √        
√     

 √              

   [ 
 √   √ ]           [  √   √ ]     

                     

(   )   (   )  
 

 
 

     

    
            

    * (   )+     2
 

 
3     2

     

    
3     2

 

 
3          {

 

  (   )
}  

   (   )                 required solution. 

 

EXAMPLE:  

Use Laplace Transformation method to solve BVP       (   )        (   )         

  (   )     (   )      (   )    (  )           (   )     

Solution:  

Given      (   )        (   )   *   +     *   + 

     (   )    (   )    (   )      

    (   )  

     (   )  ( )  ( )      

   
 (   )      (   )      

   
 (   )  

 
  

    (   )  
  

    (   )     

This is Homogeneous DE of 2
nd

 order therefore 

 .   
  

  
/ (   )       

  

  
      

 

 
  

Then   (   )     
 

 
     

 
 

 
 
     éééé(i) 
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Now using BCôs 

  (   )   (  )   *  (   )+   * (  )+   (   )   (  )  

        (   )     *        (   )+            (   )     

( )   (   )   (  )     
 

 
( )     

 
 

 
( )         (  )  

( )          (   )       
   

0   
 

 
     

 
 

 
 1     

     
    

                     (  )           (  ) 

Thus ( )   (   )   (  )  
 

 
 
 

    * (   )+     2 (  )  
 

 
 3  

   (   )   .   
 

 
/  .   

 

 
/   where  .   

 

 
/  .   

 

 
/  {

             
 

 

 (  )         
 

 

 

EXAMPLE:   Use Laplace Transformation method to solve BVP 

    (   )        (   )      

  (   )     (   )      (   )               (   )     

Solution:  Given      (   )        (   )     *   +     *   +    * + 

     (   )    (   )    (   )      

    (   )  
 

 
  

     (   )  ( )  ( )      

    (   )  
 

 
        (   )      

    (   )  
 

 
  

 
  

    (   )  
  

    (   )  
 

   
   éééé(i) 

Which is non ï homogeneous 2
nd

 order DE with solution 

 (   )    (   )    (   )     éééé(ii) 

For Chractristic (auxiliary) solution   .   
  

  
/ (   )       

  

  
      

 

 
  

Then    (   )     
 

 
     

 
 

 
 
    

For Particular  solution Consider   (   )  
 

   

   
  

  

 
 

   
   

   
  

  

 
 

   

 
  

  

  
 

  
 

(  )   (   )    (   )    (   )     
 

 
     

 
 

 
  

 

  
    

  (   )     
 

 
     

 
 

 
  

 

  
     éééé(iii) 

Now using BCôs         (   )     *  (   )+     (   )     
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         (   )     *         (   )+          
 

  
  (   )     

(   )   (   )       
     

   
 

  
       

 

  
  

(   )        
 

  
  (   )       

   
0  

 

 
 

 

 
  

 

 
   

 
 

 
 1    

 

 
     

 

 
     

   
 

 
                 

 

 
                    

 

  
         

 

  
 

Thus (   )   (   )  
 

  
  

 

 
  

 

  
 

    * (   )+  
 

  
   2  

 

 
  

  

    3  
 

  
   2

  

    3  

   (   )  
 

 
 .   

 

 
/ .   

 

 
/
 

 
 

 
(  )   

   (   )  
 

 
  .   

 

 
/ .   

 

 
/
 

 (  )       where  .   
 

 
/ .   

 

 
/
 

 {
             

 

 

           
 

 

 

EXAMPLE:  Use Laplace Transformation method to solve BVP 

     (   )      (   )            

  (   )      (   )   (   )              (   )          

Solution:  Given      (   )      (   )   *   +   *   + 

 
  

    (   )      (   )    (   )    (   )  

 
  

    (   )      (   )                

 
  

    (   )      (   )                 éééé(i) 

Which is non ï homogeneous 2
nd

 order DE with solution 

 (   )    (   )    (   )     éééé(ii) 

For Chractristic (auxiliary) solution  

 (     ) (   )                   Then    (   )     
      

       

For Particular  solution 

  (   )  
(   )     

     
 (   )   

    

     
 (   )

     

(  )   
 (   )

     

     
  

  (   )  
(   )     

    
  

(  )   (   )    (   )    (   )     
      

    
(   )     

    
    

  (   )     
      

    
(   )     

    
     éééé(iii) 
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Now using BCôs     (   )     *  (   )+     (   )     

  (   )     *  (   )+     (   )     

(   )   (   )       
     

   
(   )    ( )

    
                 

(   )   (   )       
     

   
(   )    

    
    

     
        

     
      

   ( 
     )             (      )          

Thus (   )   (   )  
(   )     

    
 

    * (   )+          2
 

     
3  

     

 
   2

 

     
3  

   (   )             
     

 
           0      

     

 
1  

 

EXAMPLE:   

Use Laplace Transformation method to solve BVP 

     (   )      (   )            

  (   )      (   )  (   )          (   )         

Solution:  

Given      (   )      (   )   *   +   *   + 

 
  

    (   )      (   )    (   )    (   )  

 
  

    (   )      (   )         

 
  

    (   )      (   )         éééé(i) 

Which is non ï homogeneous 2
nd

 order DE with solution 

 (   )    (   )    (   )     éééé(ii) 

For Chractristic (auxiliary) solution    (     ) (   )                  

Then    (   )     
      

       

For Particular  solution 

  (   )  
     

     
    

    

     
 

     

(  )   
 

     

     
  

  (   )  
     

    
  

(  )   (   )    (   )    (   )     
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  (   )     
      

    
     

    
     éééé(iii) 

Now using BCôs     (   )     *  (   )+     (   )     

  (   )     *  (   )+     (   )     

(   )   (   )       
     

   
    ( )

    
                 

(   )   (   )       
     

   
    

    
  

    
     

        
     

      

   ( 
     )             (      )          

Thus 

(   )   (   )  
     

    
  

    * (   )+  
     

 
   2

 

     3  

   (   )  
     

 
       

 

EXAMPLE:  

A uniform bar of length     is fixed at one end. Let the force 

 (  )  {
              
           

   be suddenly applied at the end      , if the bar is initially at rest, find 

the longitudinal displacement  for     using Laplace Transformation the motion of bar is 

govern by the differential system                      and   is constant. 

 (   )   (   )    (   )          (   )  
  

 
   where   is constant. 

Solution:  

Given      (   )        (   )   *   +     *   + 

     (   )    (   )    (   )      

    (   )  

     (   )  ( )  ( )      

    (   )  

     (   )      

    (   )  

 
  

    (   )  
  

    (   )     

This is Homogeneous DE of 2
nd

 order therefore 

 .   
  

  / (   )       
  

        
 

 
  



104 
 

PROF. MUHAMMAD USMAN HAMID (0323-6032785) 

Then   (   )     
 

 
     

 
 

 
 
     éééé(i) 

Now using BCôs 

  (   )     *  (   )+     (   )     

  (   )  
  

 
  *  (   )+   2

  

 
3  

 

  
  (   )  

  

 
  

( )   (   )   (  )     
     

                   

Then   (   )     
 

 
     

 
 

 
 
   éééé(ii) 

 
 

  
 (   )    

 

 
 

 

 
    

 

 
  

 

 
 
  

Then using  
 

  
  (   )  

  

 
 we get 

 
 

  
 (   )  

  

 
   

 

 
 

 

 
    

 

 
  

 

 
     

  

 (
 

 
 
 
 
 
 

 

 
 
 
 
 
 
*
  

Hence  (  )   (   )  
  

 (
 

 
 
 
 
 
 

 

 
 
 
 
 
 
*
 . 

 

 
    

 

 
 /  

  

 

( 
 
 
 
  

 
 
 
 
*

 

 
( 

 
 
 
  

 
 
 
 
*
 

Taking Laplace inverse on both sides 

 (   )     {
  

 

( 
 
 
 
  

 
 
 
 
*

 

 
( 

 
 
 
  

 
 
 
 
*
}   

which is required longitudinal displacement for     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



105 
 

PROF. MUHAMMAD USMAN HAMID (0323-6032785) 

An impulse function is defined by 
 

  ( )   2
                                  
                              

   

where h is large and positive,      , and   is a small positive constant, This type 

of function appears in practical applications; for instance, a force of large 
magnitude may act over a very short period of time. 
 
The Laplace transform of the impulse function  ( ) is given by 

 ,  ( )-  ∫        (  )  
 

 
 ∫        (  )   

      

 
 ∫        (  )   

     

      
 ∫        (  )   

 

     
  

 ,  ( )-  ∫        (  )  
 

 
 ∫        

     

      
  |

    

  
|
     

     

 
     

 
(        )  

 ,  ( )-   
     

 
    (  )  

 
Example:(The Heat Conduction Equation in a Semi-Infinite Medium and Fractional 
Derivatives). Solve the one-dimensional diffusion equation 

ut = κuxx, x>0, t>0 

with the initial and boundary conditions 

  (   )         ,   (   )      ( )    ,   (   )                 

Solution: by using Laplace transforamation with respect to „t‟ we get 
   ̅

    
 

 
 ̅     

The general solution of this equation is 

 ̅(   )       (  √
 

 
*      ( √

 

 
*  

where A and B are integrating constants. For bounded solutions, B ≡ 0, and using 

  (   )      ( )  we obtain the solution 

 ̅(   )     ̅( )    (  √
 

 
*  

The Laplace inversion theorem gives the solution 

  (   )   
 

 √  
∫ (   )

 

 

      
4 

  

   
5
   

which, by setting     
 

 √  
 or      

  

 √ 
        

  (   )   
 

√ 
∫  4  

  

     
5

 

 

 √  

        

This is the formal solution of the heat conduction problem. 
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Example: (Diffusion Equation in a Finite Medium). Solve the diffusion equation 

ut = κuxx,                 

with the initial and boundary conditions 

  (   )                  (   )           , ux (   )          

where U is a constant. 

Solution: by using Laplace transforamation with respect to „t‟ we get 
   ̅

   
 

 

 
 ̅                 

 ̅(   )  
 

 
       .

  ̅

  
/
   

     

The general solution of this equation is 

 ̅(   )        ( √
 

 
*       ( √

 

 
*  

where A and B are integrating constants. and using  ̅(   )  
 

 
       .

  ̅

  
/
   

    we 

obtain the solution 

 ̅(   )   
 

 
 
    ((   )√

 

 
+

    4√ 
 

 
5

   

The inverse Laplace transform gives the solution 

  (   )       {
    ((   )√

 

 
+

     4√ 
 

 
5

}  

The inversion can be carried out by the Cauchy Residue Theorem to obtain the 
solution 

  (   )    [  
 

 
∑

(  ) 

(    )
   

 

   

4
(    )(   ) 

  
5     8 (    ) .

 

  
/
 

  9] 

By expanding the cosine term, this becomes 

  (   )    [  
 

 
∑

 

(    )
   

 

   

84
(    )

  
5  9     8 (    ) .

 

  
/
 

  9] 

This result can be obtained by solving the problem by the method of separation 
of variables. 
 
Example: (The Wave Equation for the Transverse Vibration of a Semi-Infinite 
String). Find the displacement of a semi-infinite string, which is initially at rest in 

its equilibrium position. At time t = 0, the end x = 0 is constrained to move so 

that the displacement is   (   )       ( ) for       where A is a constant. The 

problem is to solve the one-dimensional wave equation 

utt = c2uxx,                        

with the boundary and initial conditions 

  (   )       ( )               and    (   )                ,  

  (   )      
  

  
   at t = 0 for           
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Solution: Application of the Laplace transform of   (   ) with respect to t gives 
   ̅

    
  

  
 ̅          for 0 ≤ x <    

 ̅(   )    ̅( )               and  ̅(   )             
The solution of this differential equation system is 

 ̅ (   )      ̅ ( )    . 
  

 
/  

Inversion gives the solution 

  (   )      .  
  

 
/ .  

  

 
/  

In other words, the solution is 

  (   )   >
   .  

  

 
/                     

                                   
 

 
 

  

This solution represents a wave propagating at a velocity   with the 

characteristic        . 
 
THE GAUSSIAN INTEGRAL 

∫      

  
   √     or   ∫      

 
   

√ 

 
 

Solution:   consider    ∫      

  
    and   ∫      

  
    then multiplying both 

   ∫ ∫        

 

  

 

  

     

Now using polar coordinates     ∫ ∫      

  

  

 
          √  

 ∫     

 

  

   √   ∫     

 

 

   √  ∫     

 

 

   
√ 

 
 

 
FINITE FOURIER SINE TRANSFORMS 
Let   ( ) be a piecewise continuous in a finite interval, say (   ). Then finite 
Fourier Sine Transform denoted by   ( ) of the function   ( ) is defined by 

  ( )     *  ( )+  
 

 
∫   ( )
 

 
         k = 1,2,3,……… 

   
  *   ( )+    ( )  ∑   ( )     

 
     

 
FINITE FOURIER COSINE TRANSFORMS 
Let   ( ) be a piecewise continuous in a finite interval, say (   ). Then finite 

Fourier Sine Transform denoted by   ( ) of the function   ( ) is defined by 

  ( )     *  ( )+  
 

 
∫   ( )
 

 
         k =0,1,2,3,……… 

   
  *   ( )+    ( )  

  ( )

 
 ∑   ( )     
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Theorem :  Let   ( ) be continuous and    ( ) be peicewise continuous in ,   - if  
  ( ) is the finite Fourier Sine Transform of   ( ) then 

       *    ( )+  
  

 
[ ( )  (  )  ( )]        ( ) 

PROOF: 
By definition  

   *    ( )+  
 

 
∫    ( )
 

 
        

 

 
   ( )       

  
  

 
∫   ( )
 

 
         

   *    ( )+   
  

 
  ( )       

  
   

 
∫  ( )
 

 
         

   *    ( )+  
  

 
[ ( )  (  )  ( )]        ( )  

 
Theorem :  Let   ( ) be continuous and    ( ) be peicewise continuous in ,   - if  
  ( ) is the finite Fourier Cosine Transform of   ( ) then 

       *    ( )+  
 

 
[(  )   ( )    ( )]       ( ) 

PROOF: By Yourself. Same as previous. 
 
 
HANKEL TRANSFORMS 

 ̃  ( ) is called the Hankel transform of  ( ) and is defined formally by 

   *  ( )+     ̃  ( )   ∫    (  )

 

 

  ( )   

The inverse Hankel transform is defined by 

  
   * ̃  ( )+      ( )   ∫    (  )

 

 

 ̃  ( )   

 
Alternatively, the famous Hankel integral formula 

  ( )   ∫    (  )  
 

 
∫    (  ) ( )  
 

 
  

can be used to define the Hankel transform and its inverse 

In particular, the Hankel transforms of zero order (n = 0) and of order 

one (n = 1) are often useful for the solution of problems involving Laplace‟s 

equation in an axisymmetric cylindrical geometry. 
 
 
REMARK: For Bessel Functions 

i.   (  )  
 

 
∫    (      )  
 

 
 

ii.    (  )     (  )  also                 for   ( )      ( )      ; n>0 
 
 
 
 
 
 



109 
 

PROF. MUHAMMAD USMAN HAMID (0323-6032785) 

Example: Obtain the zero-order Hankel transforms of 

(a) r−1 exp (−ar) , (b) 
 ( )

 
    (c)  (     )  

where H (r) is the Heaviside unit step function. 

Solution:    
(a)  

   2
 

 
    3    ̃  ( )  ∫    (  )

 

 
  ( )   ∫   

 

 
      (  )

 

 
   

 

       

 (b)  

   2
 ( )

 
3    ̃  ( )  ∫    (  )

 

 
  ( )   ∫   

 ( )

 
  (  )

 

 
      

(c)  

   * (     )+    ̃  ( )  ∫    (  )
 

 
  ( )   ∫  (     )  (  )

 

 
    

   * (     )+    ̃  ( )  ∫    (  )
 

 
   

 

  ∫    ( )
  

 
   

 

  
    ( )  

   
 

 
  (  )  

 
Example:  Find the first-order Hankel transform of the following functions: 

(a) f(r) = e−ar, (b) f(r) = 
 

 
     

Solution:    
(a)  

   * 
   +    ̃ ( )  ∫    (  )

 

 
  ( )   ∫        (  )

 

 
   

 

(     )
     

(b)  

   2
 

 
    3    ̃ ( )  ∫    (  )

 

 
  ( )   ∫  

 

 
      (  )

 

 
    

   2
 

 
    3  ∫       (  )

 

 
   

 

 
[   (     )    ]  

 
Example: Find the nth-order Hankel transforms of 

(a) f (r) = rn   (     ) , (b) f (r) = rn       

Solution:    
(a)  

   * 
   (     ) +    ̃ ( )  ∫    (  )

 

 
  ( )   ∫       (  )

 

 
    

   * 
   (     ) +    ̃ ( )  

    

 
    (  )  

(b)  

   2 
       3    ̃ ( )  ∫    (  )

 

 
  ( )   ∫       (  ) 

     

 
    

   2 
       3    ̃ ( )  

  

(  )   
   . 

  

  
/   
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PROPERTIES OF HANKEL TRANSFORMS AND APPLICATIONS 

(i) THE HANKEL TRANSFORM OPERATOR, “Hn” IS A LINEAR INTEGRAL 

OPERATOR   for any constants a and b. 

i.e.     *  ( )    ( )+      * ( )+      * ( )+ 
Proof: by using definition 

   *  ( )    ( )+  ∫    (  )
 

 
*  ( )    ( )+    

   *  ( )    ( )+   ∫    (  )
 

 
 ( )    ∫    (  )

 

 
 ( )    

   *  ( )    ( )+      * ( )+      * ( )+  
 
(ii) THE HANKEL TRANSFORM SATISFIES THE PARSEVAL RELATION 

∫   ( )

 

 

 ( )   ∫   ̃( ) ̃ ( )

 

 

   

where  ̃( )       ̃ ( ) are Hankel transforms of  ( ) and  ( ) respectively. 
Proof: 

∫   ̃( ) ̃ ( )
 

 
   ∫   ̃( )  ∫    (  )

 

 
 ( )  

 

 
  

∫   ̃( ) ̃ ( )
 

 
   ∫   ( )  ∫    (  ) ̃( )  

 

 

 

 
  

∫   ̃( ) ̃ ( )
 

 
   ∫   ( )

 

 
 ( )    

 

 (iii) (SCALING PROPERTY). If    * ( )+   ̃ ( ) then    * (  )+  
 

   ̃ .
 

 
/       

Proof. We have, by definition, 

   * (  )+  ∫    (  ) (  )  
 

 
 

 

  ∫    .
 

 
 /  ( )  

 

 
        

   * (  )+  
 

   ̃ .
 

 
/        

 
These results are used very widely in solving partial differential equations in the 
axisymmetric cylindrical configurations. 
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Exercises 
1. Find the Laplace transform of each of the following functions: 

(a) tn, (b) cos ωt, (c) sinhkt, (d) cosh kt, (e) teat, (f) eat sin ωt, (g) eat cos ωt,       

(h) tsinh kt, (i) tcosh kt (j) √
 

 
  (k) √ ,  (l)  

     

 
 

 
2. Find the inverse transform of each of the following functions: 

(a) 
 

(     )(     )
  (b) 

 

(     )(     )
  (c) 

 

(   )(   )
  (d) 

 

 (   ) 
  (e) 

 

 (   )
 (f) 

     

(     )
  

 
3. Obtain the solution of the problem 

utt = c2uxx,              , 

  (   )    ( )  ut (   )       (   )        (   )      uniformly in t as     
 

4. Solve       utt = c2uxx,                  

u (x,0) = 0, ut (   )        (   )      ( )  (   )          . 
 

5. Solve  ut = κuxx,              , 

  (   )    f0,            u (0,t) = f1, u(x,t) → f0 uniformly in t as        . 

 

6. Solve   ut = κuxx,              , 

  (   )              (   )       (   )      uniformly in t as        . 
 

7. Solve  ut = κuxx,              , 

  (   )                  (   ) = t2, u(x, t) → 0 uniformly in t as         . 

 

8. Solve  ut = κuxx − hu,                          , 

u (x, 0) = f0, x > 0, u (0, t) = 0, ux (0, t) → 0 uniformly in t as x→ , t>0. 

 

9. Solve   ut = κuxx,              , 

  (   )                  (   ) = f0, u(x, t) → 0 uniformly in t as        . 

 

10. Solve   utt = c2uxx,              , 

u(x,0) = 0,ut (x,0) = f0,         (   )     ,ux (x,t) → 0 uniformly in t as   

        . 
 

11. Solve   utt = c2uxx,              , 

u (x,0) = f(x), ut (x, 0) = 0, 0 < x <  , 

u (0, t) = 0, ux (x, t) → 0 uniformly in t as x→ , t>0. 
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