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BASIC CONCEPTS AND DEFINITIONS

DIFFERENCE EQUATION
An equation involving differences (derivatives) is called difference
equation.
DIFFERENTIAL EQUATION
An equation that relate a function to its derivative in such a way that
the function itself can be determined.
OR an equation containing the derivatives of one dependent variable
with respect to one or more independent variables is said to be a
differential equation.
It has two types:

i. Ordinary differential equation (ODE)

ii.  Partial differential equation (PDE)

ORDINARY DIFFERENTIAL EQUATION

A differential equation that contains only one independent variable is
called ODE.

EXAMPLES:

yetxy =x* y'(x)-y'(x)+6y=0

And in general y = f(x)

PARTIAL DIFFERENTIAL EQUATION
A differential equation that contains, in addition to the dependent
variable
and the independent variables, one or more partial derivatives of the
dependent
variable is called a partial differential equation.
In general, it may be written in the form

f (x,y,...,u,ux,uy,...,uxx,uxy,...) =0
involving several independent variables x,y, an unknown function ‘v’
of these variables, and the partial derivatives u,, uy,..., Uyy, Uyy, . .., Of
the function. Subscripts on dependent variables denote
differentiations, e.g.,

du

_ % ond u. =
Uy =5, and uy = .

dax
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SOLUTION OF PARTIAL DIFFERENTIAL EQUATION
If a functions u = u (x,y) satisfy equation PDE
f(xy,.  uu,uy,. ., Uy, U,,...) =0 then it is called solutions of PDE.

EXAMPLES:

Ulyy + Uy =Y

uu,, +2yu,, +3xu,, = 4sinx,

(u)? +(uy)? = 1,

Uy, — Uy, = 0, are partial differential equations. In general u = u (x,y)
The functions u(x, y) = (x +y)* and u(x, y) = sin(x - y) , are solutions of the last
equation of above and we can easily be verified.

THE ORDER OF A PARTIAL DIFFERENTIAL EQUATION

The order of a partial differential equation is the power of the highest ordered
partial derivative appearing in the equation.

For example u,, +2xu,, + u,, = €' is a second-order partial differential equation,
And u,,, + xuy, +8u = 7y is a third-order partial differential equation.

THE DEGREE OF A PARTIAL DIFFERENTIAL EQUATION

The degree of PDE is the highest power of variable appear in PDE.

For example u, +u, = u + xy is of degree one.

And (uy )? = (1+u, )1/2 is of degree two.

LINEAR PARTIAL DIFFERENTIAL EQUATION

A partial differential equation is said to be linear if it is linear in the

unknown function (dependent variable) and all its derivatives with coefficients
depending only on the independent variables.

For example, the equation

yu, +2xyu,, + u = 1 is a second-order linear partial differential equation

QUASI LINEAR PARTIAL DIFFERENTIAL EQUATION

A partial differential equation is said to be quasi-linear if it is linear in
the highest-ordered derivative of the unknown function.

For example, the equation UyUy + Xuuy = Siny

is a second-order quasi-linear partial differential equation.
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NON LINEAR PARTIAL DIFFERENTIAL EQUATION

A partial differential equation is said to be nonlinear if the unknown function
(dependent variable) and all its derivatives with coefficients depending only on
the independent variables do not occur linearly.

For example, the equation u,, +uu, =1is nonlinear partial differential
equation

HOMOGENEOUS PARTIAL DIFFERENTIAL EQUATION

A partial differential equation is said to be homogeneous if it always possess the
trivial solutioni.e. u=0.

For example, the equation u,, +u,, = 0is a Homogeneous partial differential
equation

NON HOMOGENEOUS PARTIAL DIFFERENTIAL EQUATION

A partial differential equation is said to be nonhomogeneous if it does not
possess the trivial solution.

For example, the equation u,, +u,, = f(x,y) is a nonhomogeneous partial
differential equation

EXERCISES

For each of the following, state whether the partial differential
equation is linear, quasi-linear or nonlinear. If it is linear, state
whether it is homogeneous or nonhomogeneous, and gives its order.
(@) u + xuy =y, (b) u, =2xyu, =0, (C) uz + uy =1,

(d) txxx +2Uxyy + Uyyyy = 0, (€) u +2uy + 1,y = sinx,

(f) texx + Uy +logu =0, (9) u2, + u + sinu = ¢,

(h) @ + uuy + vy = 0.
ANS: Linear (a,d,e) Non - linear (c,f,g) Qausi - linear (b,h)

INITIAL CONDITIONS:

If all conditions are given at the same value of the independent variable, then
they are called initial conditions .

For example for a differential equation of order one

alx,yu, =fx,y) = u, = glx,y)
Then u, = g(x,y) with u(a) = u, then x = a is an initial condition.
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INITIAL VALUE PROBLEM (IVP):
A DE along with initial conditions defines an IVP. Or Cauchy Problem.
For example, the partial differential equation (PDE)

u—-u,=00<x<1,t>0,
with.u (x, 0)=sinx,0sx <1,t > 0, isIVP

BOUNDRY CONDITIONS:

If the conditions are given at the end points of the intervals of definition (i.e. for
different value of the independent variables) are at the boundary of the domain
of definition then they are called boundary conditions.

For example u’’ + 2u’ + 3u = 0 with u(0) = 0,u(2) = 1isa BVP

BOUNDRY VALUE PROBLEM (BVP):
A DE along with boundary conditions defines an IVP.
For example, the partial differential equation (PDE)

Uy — Uy, =0, 0<x<1lt>0,
with

B.C. u (0, t)=0,t 20,
B.C. u((l, t)=0,t =20,

PRINCIPLE OF SUPERPOSITION:
According to this principle, if we know ‘n’ solutions

“uq, uy,us, ........u,” we can construct other as linear combination.
Statement:

if uq,uy,us, ........u, are solutions of a linear, homogeneous PDE then
W = cquq + couy + -+ ... +c,u, Where ¢q, ¢y, ... ..., C, @re constant is

also a solution of the equation.
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GENERAL SOLUTION:

In the case of partial differential equations, the general solution
depends on arbitrary functions rather than on arbitrary constants. To
illustrate this, consider the equation

uy, = 0.

integrate this equation with respect to y, we obtain u, (x, y)=f (x).
A second integration with respect to x yields u (x, y) =g (x)+h (y),
where g (x) and h (y) are arbitrary functions.

EXAMPLE:
Suppose u is afunction of three variables, x, y, and z. Then, for the
Equation Uy = 2,

one finds the general solution u (x, v, z)=y° +vyf (x, z)+g (x, z),
where £ and g are arbitrary functions of two variables x and z.

REMARK:

For linear homogeneous ordinary differential equations of order n, a linear
combination of n linearly independent solutions is a solution. Unfortunately,
this is not true, in general, in the case of partial differential equations. This is
due to the fact that the solution space of every homogeneous linear partial
differential equation is infinite dimensional.

For example, the partial differential equation

u,—-u, =0 can be transformed into the equation 2u,=0

by the transformation of variables §=x+y, n=x-y.

The general solutionis u(x,y)=f(x+y), where f (x +y) is an arbitrary
function.

Thus, we see that each of the functions

(x+y)", sinn(x+y), cosn(x+y), e"**¥ n=1,2,3,...isa solution of
equationu,-u,=0 .

WELL POSED PROBLEM:

A mathematical problem is said to be well-posed if it satisfies the
following requirements:

1. Existence: There is at least one solution.

2. Uniqueness: There is at most one solution.

3. Continuity: The solution depends continuously on the data.
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EXERCISES
1. (a) Verify that the functions

u(x yvy)=x-y* ,, u(x, y)=e'siny ,, u(x, y)=2xy

are the solutions of the equation u + uyy =0.

(b) Verify that the function u (x, y)=Log(yx? + y?) satisfies the
equation u.y + uyy = 0.

2. Show that u = f (xy), where f is an arbitrary differentiable function
Satisfies xu, —yu, =0 and verify that the functions sin (xy), cos (xy),
log (xy), €¥, and (xy)® are solutions.

3. Show thatu =f (x) g (y) where f and g are arbitrary twice
differentiable functions satisfies uu,, — usu, = 0.

4. Determine the general solution of the differential equation uy, +u= 0.
5. Find the general solution of uy, +u, =0, by setting u, =v.

6. Find the general solution of u,y — 4u,, +3u,y =0,

by assuming the solution to be in the formu (x, y)=f (Ax +Yy),
where A is an unknown parameter.

7. Find the general solution of uy, —uy,, =0.
_ 2%
ax?
isu (x, t)=f (x —ct)+g (x +ct), wheref and g are arbitrary twice
differentiable functions.
(b) Show that u (x, t)=f(x —ct)+ g(x +ct)is solution of wave equation.

2
8. (a) Show that the general solution of ZTZ

(c) whether u(x, t) = f(x+ ct) - g(x-ct) is solution of wave equation or not.
9. Verify that the function u = ¢ (xy) +X1[)(§) is the general solution

of the equation x“u,, = y°u,y = 0.
10. If uy = vy and v, = =uy, show that both u and v satisfy the Laplace
Equations V?u =0 and V?v = 0.

11.Ifu (x, y)is ahomogeneous function of degree n, show that u
satisfies the first-order equation xuy + yu, = nu.

12. Verify that

u (x, y, t)=Acos (kx) cos (ly) cos (nct)+B sin (kx) sin(ly) sin(nct),
where k* + 1° = n?, is a solution of the equation uy = ¢ (u + uyy)
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13. Show that u (x, y; k) =e™ sin (kx), xe€ R, y>0, is a solution of

the equation V2u = uy, + uy, = 0 for any real parameter k. Verify that

u (x, y) =f0°° c(k)e **Sin(kx)dk is also a solution of the above
equation.

exp( ﬁ), xe R, t>0,

14. Show, by differentiation that u(x,y) = —

1
varkt
Is a solution of the diffusion equation u; = kuyy

where k is a constant.

15. (a) Verify thatu (x, y)=log(x* + y°) satisfies the equation

uy +uyy =0 forall (x, y)=#(0,0).

(b) Show that u (x, y, z)=(x*+y*+2z?)" jisasolution of the Laplace
equation uy +u,y +u,, =0 except at the origin.

(c) Show that u(r) = ar" satisfies the equation r?u” +2ru’ - n(n+1) u= 0.
16. Show thatu, (r, 6)=r"cos(nf)andu" (r, 6)=1r"sin (n6), n=
0,123,

are solutions of the Laplace equation Veu =u, + %ur + rlzuee =0

17. Verify by differentiation that u (x, y) =cosx cosh y satisfies the
Laplace equation uyy +uy, = 0.

18. Show that u (x, y)=f(2y +x°) +g(2y - x%is a general solution of
. 1

the equation . = ~uy - x°uyy = 0.

20. Show thatu (x, y, t)=f (x +iky —iwt)+g (x —iky —iwt)

is a general solution of the wave equation uy = ¢® (uy + uy,) Where £

and g are arbitrary twice differentiable functions, and »?® = c¢*(k* - 1),
k, o, c are constants.

21. Verify that u(x, y) = x° + y* + €* (cosxsin ycosh y- sinxcos ysinh y)
is a classical solution of the Poisson equation uy, + uy,y = (6x+2) .

22. Show that u (x, v) = exp(- %) f(ax — by) satisfies the equation
bu, +auy +u =0.

23. Show that uy = c’u,, +2bu, = 0 has solutions of the form

u (x, t)=(Acoskx +B sinkx)V (t), wherec,b,A and B are
constants.
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FIRST-ORDER, QUASI-LINEAR EQUATIONS AND METHOD OF
CHARACTERISTICS

Many problems in mathematical, physical, and engineering sciences
deal with the formulation and the solution of first-order partial
differential equations.

From a mathematical point of view, first-order equations have the
advantage of providing a conceptual basis that can be utilized for
second-,third-, and higher-order equations. This chapter is concerned
with first-order, quasi-linear and linear partial differential equations
and their solution by using the Lagrange method of

characteristics and its generalizations.

CLASSIFICATION OF FIRST-ORDER EQUATIONS
The most general, first-order, partial differential equation in two
independent variables x and y is of the form

F(x vy, u u,u)=0, (x, yyeD < R?,

Where F is a given function of its arguments, and u =u (x, y)is an
unknown function of the independent variables x and y which liein
some given domain D in R?

Equation is often written in terms of standard notation p =uy,and

q =uy so that takes the form F (x, y, u, p, q)=0.

Similarly, the most general, first-order, partial differential equation in
three independent variables x, y, z can be written as

F (x, v, z, u, uyuy,u,)=0.

Equation is called a quasi-linear partial differential equation if it is
linear in first-partial derivatives of the unknown function u (x, y).
So, the most general quasi-linear equation must be of the form
a(x v, yue+b (x, v, yyuy=c (x, y, v

where its coefficients a, b, and ¢ are functions of x, y, and u.
Examples of quasi linear equations are

uy +u, +nu® =0

X (y+U) iy +y (£+U) uy = (£ -y u,
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A quasi linear Equation is called a semi linear partial differential
equation if its coefficients a and b are independent of u, and hence,
the semi linear equation can be expressed in the form

a(x, y)uc+b (x, yY)uy=c (x, v, u)

Examples of semi linear equations are

Xuy +yuy = u2 + x2,

(x+1)° u +(y = 1)%uy = (x +y) v,

u +au,+u>=0 where a is a constant.

Equation F (x, y, u, uyu,) =0 is said to belinear if F is linear in
each of the variables

u, uy, and uy, and the coefficients of these variables are functions only
of the independent variables x and y. The most general, first-order,
linear partial differential equation has the form

a (x, YJux+b (x, Y)uy+e (x, y)u =d (x, y)

Examples of linear equations are

Xuy + yuy —nu =0,

nuy +(x +y)u,—u =¢€’,

yuyx + Xuy = Xy,

(y =z)u,+(z =x)uy +(x =y)u, =0,

An equation which is not linear is often called a nonlinear equation.
So, first-order equations are often classified as linear and nonlinear.

CONSTRUCTION OF A FIRST-ORDER EQUATION

METHOD I: BY ELIMINATING ARBITRARY CONSTANT.
Let £ (x, v, z, a b)=0.......... (i)

where a and b are arbitrary parameters. And z = @(x,y)
We differentiate with respect to x and y to obtain

fy +pf =0 veeenn. (ii) and f,+q £y, =0 couernne. (iii)
wherep =z, and q =z,

eliminating a and b from (i), (ii) and (iii) we get

F(x v, z, p, Q=0
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Thus , an equation of the form f (x, y, z, a, b)=0 containing two
arbitrary parameters is called a complete solution or a complete
integral of equationF (x, v, z, p, q) =0

Its role is somewhat similar to that of a general solution for the case
of an ordinary differential equation.

EXAMPLE:

Obtain PDE z = x + ax?y* + b where a,b are arbitrary constants.
Solution:

Given PDE z = x + ax?y?> + b .......... (i)
We differentiate with respect to x and y to obtain
zX:p:1+2axy2:>2a=% .......... (ii)
xy
and z,=q =2ax®y .......... (iii)

(iii) > z,=q = (’;—;Zl)xzy >q = (’”T‘I)x

= px — qy = x Which is linear PDE

eliminating a and b from (i), (ii) and (iii) we get
F(& v, z p q=0

METHOD II: BY ELIMINATING ARBITRARY FUNCTION

EXAMPLE:

Obtain PDE z = xy + F(x* + y?) where F is arbitrary function.
Solution:

Given PDE z = xy + F(x? + y?) .......... (i)

We differentiate with respect to x and y to obtain

zy=p =y + F'(x* + y?).2x :>F’(x2+y2)=% .......... (ii)

and z,=q =x+F' (x* +y%).2y :>F’(x2+y2)=? .......... (iii)

y
p—x _p7Y
2y 2x

= py — qx = y* — x*

equating both =
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Example: Show that a family of spheres x* + y*> +(z = ¢)* = r*

satisfies the first-order linear partial differential equation yp —xq =0.
Solution:

Given PDE x°+y*+(z —c¢)* = 1% uerrerunn. (i)
Differentiating the equation with respect to x and y gives
X +p (z —¢)=0.......... (ii) andy +q (z —¢)=0........... (iii)

Eliminating the arbitrary constant ¢ from these equations, we obtain
the first-order, partial differential equation

yp —xq =0.

Example: Show that the family of spheres (x — a)® +(y — b)?* + z* = r?
satisfies the first-order, nonlinear, partial differential equation
Z2 (p2 + q2 +1) = I_2

Solution:

Given PDE (x —a)’+(y —=b)?+z°=1%.......... (i)
Differentiating the equation with respect to x and y gives
(x —a)+z p =O0.......... (ii) and (y —=b)+z q =0.......... (iii)

Eliminating the two arbitrary constants a and b, we find the nonlinear
partial differential equation z® (p? + ¢° +1) = r°

Example: Show that All surfaces of revolution with the z-axis as the
axis of symmetry satisfy the equation z = f(x* + y*) where f is an
arbitrary function.

Solution:

Given PDE z = f(x* + ¥%) vuuvreeee. (i)

Writing u = x° + y* and differentiating with respect to x and v,
respectively, we obtain p =2xf" (u), q =2y ' (u).

Eliminating the arbitrary function £ (u) from these results, we find the
Equation yp —xq =0.
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METHOD lll: FOR THEFORM f (¢, ¥)=0

Theorem:

If ¢ =¢ (x, v, z)andyp = P (x, y, z)aretwo given functions of x,
y,and z andiff (¢, ¥)=0,where f is an arbitrary function of ¢ and
P, thenz =z (x, y)satisfies afirst-order, partial differential equation

aQY) , _a@P) _ (@) oy _ |Px Py
Pocve T UoGn ~ oy " Sy s ¢y|

Proof. We differentiate f (¢, ¢)=0withrespecttox andy
respectively to obtain the following equations:

af /0 d d d
(<p+ <p) (¢+p IP):O

d@ \0x 61/) dz

af /0 d d d
(<p+q<p>+ (¢+q¢) 0

dp \dy 0z oy \dy 0z

Nontrivial solutions for % and ﬁ can be found if the determinant of

the coefficients of these equations vanishes, that is,
¢ +po, Y,+pY,| 0

Py +qQ; Py, +pYP,|
Expanding this determinant gives the first-order, quasi-linear
equation

(e ¥) +q oey) _ (@) where Ie¥) _
a(yz) 9(zx) a(xy) a(xy)

¢ @
v |

L2

METHOD OF CHARACTERISTICS AND GENERAL SOLUTIONS
Theorem:

The general solution of a first-order, quasi-linear partial differential
equation

a(x y, yuy+b (x, v, wyuy=c (x, y, u)

is f (¢, P)=0 wheref is an arbitrary function of ¢ (x, y, u)and
Y (x, vy, u),and ¢ =constant =c;and ¢ =constant =c, are

solution curves of the characteristic equations dT: = % = dc—"
The solution curves defined by ¢ (x, v, uy=ciandy (x, y, u)=c»
are called the families of characteristic curves of equation
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Example: Find the general solution of the first-order linear partial

differential equation xu,+y u,=u

Solution: The characteristic curves of this equation are the solutions
x _dy d_u

of the characteristic equations d; =5 =%

This system of equations gives the integral surfaces
¢ =2 =C,andyp =2 =C, where C; and C, are arbitrary constants.

X X
Thus, the general solution of f(f, %) =0
where f is an arbitrary function. This general solution can also be
writtenas u (x, y) = xg(%) where g is an arbitrary function.

Example: Obtain the general solution of the linear Euler equation

Xuy +y uy =nu

Solution: The characteristic curves of this equation are the solutions
dx _dy d_u

of the characteristic equations —=—=
X y nu

This system of equations gives the integral surfaces

) :i =Ciand ¢y = xln =C, where C; and C, are arbitrary constants.
Thus, the general solution of f(%, xln) =0

where f is an arbitrary function. This general solution can also be
written as xln = g(f)

oru (x, y)= x"g(%) where g is an arbitrary function.

This shows that the solution u (x, y)is a homogeneous function of x
and y of degree n.

Example: Find the general solution of the linear equation

xzux+y2uy:(x +Y)U  ceerieeenn. (i)

Solution: The characteristic curves of this equation are the solutions
.. . dx dy du ..

of the characteristic equations - =—==———  ....coeeee. (ii)

x2 y?2 o x+yu
From the first two of these equations, we find x*'-y*=C,;
where C; is an arbitrary constant.

.. dx—-dy _ d(x—y) dix-y) _ du
It follows from (ii) t:at 22 xivm —n —u
This gives &2 =259 _ o ... (iii) where C,is a constant.

du
Furthermore, (ii) and (iii) also give X; = c3 Where C3 is a constant.
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Thus, the general solution of ‘f(Xy (- Y)) =0

where f is an arbitrary functlon ThIS general solution can also be
writtenas u (x, y) = xyg( ) where g is an arbitrary function.

Or equivalently u (x, y) = xyh( ) where h is an arbitrary function.

Example: Show that the general solution of the linear equation

vy —z)u+z —x)uy +(X =) U; =0 cerrenrenneee (i)

isu(x, v, z)=f(x +y +2z, X2 +y°+2%) reerernnnnn. (ii)

where f is an arbitrary function.

Solution: The characteristic curves of this equation are the solutions
.. . dx dy dz du ..

of the characteristic equations = = = — e (iii)

y—z Z—X X-y 0
Or du=0,dx+dy+dz=0, xdx+ydy +zdz=0
Onintegrating u=c¢;, x+y+z=c,, x> +y° +2°=C;
where C,, C,,C; are arbitrary constant.
Thus, the general solution can be written in terms of an arbitrary
function fintheformu (x, v, z)=f(x +y +z, x*+y°+2%

NOTE: IVP or BVP also called Cauchy data.

Example: Find the solution of the equation
U +Y) W +HU (X =)W= X+ rereereennss (i)
with the Cauchy datau =0ony =2x.

Solution: The characteristic curves of this equation are the solutions

of the characteristic equations
dx _ dy _du __ ydxtxdy-udu _ xdx-ydy-udu (ii)

u(x+y) ux-y) xZ+y2 0 0
These give two integrals [ d [xy —%uz] =0andfd E(x2 o uz)] =0

w-x*+y°=Ciand 2xy =¥ =Cy ceverernnnne, (iii)

where C; and C, are constants. Hence, the general solution is
f(x*-y*-u? 2xy —u®) =0 where f is an arbitrary function.
Using the Cauchy data in (iii), we obtain 4C; = 3C,. Therefore
4(*- x*+y?)=3 (2xy - v’

Thus, the solution of equation (i) is given by 7u® = 6xy +4 (x* - y%)
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Example: Obtain the solution of the linear equation

U= Uy =1 eeereeeeee (i) with the Cauchy datau (x, 0)=x%

Solution: The characteristic curves of this equation are the solutions
.. . dx dy du ..

of the characteristic equations —==—"="7 ............. (ii)

Clearly,

x +y =constant =C; and u = x = constant = C,.

Thus, the general solution is given by

U=X=Ff X +Y) cveerrrnrnnn. (iii) where f is an arbitrary function.
We now use the Cauchy data to find £ (x) = x* — x, and hence, the

solutionis u (x, y)=(x +y)’-y

Example: Obtain the solution of the equation

(Y —w)u  +(U = X) Uy =X = F ceuerrnnnnn (i)

with the conditionu =0 on xy = 1.

Solution: The characteristic curves of this equation are the solutions

of the characteristic equations —2 = -2 =% .. (ii)
y—u u-—-x X-y

The parametric forms of these equations are

oy Woyog By

dt dt dt

These lead to the following equations:

x+y +u =0andxx +yy +uu =0 ..occiininnn. (iii)

where the dot denotes the derivative with respect to t.

Integrating (iii), we obtain

x +y +u =const. =C,and x>+ y> + 1> = const. =Co. vevvrrenrnnn. (iv)
These equations represent circles.

Using the Cauchy data, we find that

Ciz (x + y)2 = x°+ y? +2xy =C, +2.

Thus, the integral surface is described by

(x +y +u)’ =x*+y° +u® +2.

Hence, the solution is given by u (x, y) ==X

x+y
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Example:Solve the linear equation yuy + xu, = u
with the Cauchy data u (x, 0)=x*andu (0, y)=y°
Solution: The characteristic curves of this equation are the solutions

ioti i d d d d dx—d dx+d
of the characteristic equations ==2== or Z£=2"2_22%
y X u u y-x y+x
Solving these equations, we obtain
u= qu =C(x +y) or u=C(x +y) XZ—YZ=E—1 = constant = C.
- 2

So the characteristics are rectangular hyperbolas for C >0 or C <O.
Thus, the general solution is given by

f(xry , X’—y°) =0 or,equivalently, u (x, y)=(x +y)g&x*-y°

Using the Cauchy data, we find that g(x®) =x% thatis, g(x) = x.
Consequently, the solution becomes

u (x, v)=(x +y)x*-y) onx’-y’=C>0.

Similarly, u (x, y)=(x +y)(y*-x% ony’-x*=C>0.

Example: Determine the integral surfaces of the equation
x(y+wu-yE+wu, =x*-y* )u
with thedata x +y =0, u =1

Solution: The characteristic equations are

dx _ dy _ du (1)

X(yz + u) - _ y(xz + u) - (xz _ yz)u -------------

dx dy du

dx/x dy/y dufu Ty tw

or = = =
(y2+u) - (x%2 +u) (x2 —y2) 0

Consequently, log (xyu) =logC; or xyu =C;
xdx _ ydy _ udu

From (i), we obtain oW Rt Py
whence we find that x*+ y*=2u =C,

Using the given data, we obtain C; = -x* and C, = 2x* - 2
sothat C,=-2(C, +1).

Thus the integral surface is given by x*+y?-2u = -2 - 2xyu

Or 2xyu +x°+y>=2u+2=0
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Example: Obtain the solution of the equation

XU +y U, = x exp (-u) withthedata u =0ony =x°

Solution: The characteristic equations are
bW i) or Y=¢,

X y x exp (—u) X

We also obtain from (i) that dx =e"du which can be integrated to
Find e'=x +C,

Thus, the general solution is given by f(e" - x, % )=0

or, equivalently, e'=x +g (i)

Applying the Cauchy datai.e.u =0ony =x° weobtaing (x)=1-x
Thus, the solution is given by

e'=x +1-% or u-=log(x +1-2)

X

Example: Solve the initial-value problem
utuy=%x, u(x, 0)=f (x) where(@f (x)=21and (b) f (x) =x

Solution: The characteristic equations are
dt _dx _ du _ d(x+uw)
1 u x  x+u

Integration gives t =log (x +u)-log C,

Or (u +x)e'=C,. Similarly, we get uv>-x*=C,
For case (a) we obtain

1+x =C,and 1-x*=C,, and hence C,=2C, - C}
Thus, (W -x°) =2@u +x) e’ = (u +x)° e

Or u-x=2" - (u +x)e™”

A simple manipulation gives the solution
u (x, t)=x tanht +secht

Case (b) is left as an exercise.
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EXERCISES

1. (a) Show that the family of right circular cones whose axes coincide
with the z-axis; x°+y°=(z —c)*tan’a satisfies the first-order, PDE
yp —=xq =0

(b) Show that all the surfaces of revolution, z = f (x* + y?) with the
z-axis as the axis of symmetry, where f is an arbitrary function,
satisfy the partial differential equation yp — xq =0.

(c) Show that the two-parameter family of curves u —ax-by —ab =0
satisfies the nonlinear equation xp +yq +pq =u.

2. Find the partial differential equation arising from each of the
following surfaces:

@z=x+y +f (xy) (b)z =f (x —-y) (c)z =xy +f(x2+y2)
(d)2z = (ax +y)*+ B

3. Find the general solution of each of the following equations:
(@) u, =0, (b) auy + bu, = 0; a, b, are constant,

(C)uc+y uy=0 (d) (1+x)u+u,=0

() 2xy u +(x* +v)uy, =0 (f)yu, —xu, =1

4. Find the general solution of the equation uy +2xy°u, = 0.

5. Find the solution of the following Cauchy problems:

(@) 3uy +2u, = 0, withu (x, 0)=sinx

(b) y ux + xu, =0, with u (0, y)=exp(-y?)

(c) xuy +y u,=2xy,withu =2ony = X2,

(d) ux + xuy, = 0, with u (0, y) = siny,

(e) yu, + xu, = xy, x 20,y 20, withu (0, y)=exp(-y®) fory > 0, and
u(x, 0)=exp(-x°) forx > 0,

6. Solve the equation uy + xu, =y with the Cauchy data

@u (0, )=y, ()u (1, y)=2y.

7. Solve the Cauchy problem (y +u)us+y u =(x -vy),

withu =1+x ony =1.
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8. Show that the solution of the equation yu, = xu, =0
containing the curve x* + y* = a®, u =y, does not exist.

9. Find the solution of the equation yuy — 2xy u, = 2xu with the
condition u (0, y)=y".

10. Solve the following Cauchy problems:

(@ 3u,+2uy,=0,u (x, 0) =1 (x),

(b) aus + buy =cu,u (x, 0)=f (x), where a, b, ¢ are constants,
(c)xuc+y uy=cu,u (x, 0)=1 (x),

(d)uuc+u,=1,u (s, 0)= as,x (s, 0)=s,y (s, 0)=0.

BOUNDRY CONDITIONS
e The boundry conditions au(a) + a’'u’(a) = 0 and pu(b) + B'u’'(b) = 0 are called
Separated Boundry Conditions are Unmixed Boundry Conditions.
e If the Separated Boundry conditions are of the form wu(a) =c¢; and u(b) = c,
then they are called Drichlet BC’s
e If the Separated Boundry conditions are of the form u'(a) = ¢’; and u'(b) = ¢,
then they are called Neumann BC’s
e If the Separated Boundry conditions are of the form u(a) = u(b) and
u'(a) = u'(b) then they are called Periodic BC’s
OR: There must be one initial and two boundry conditions to solve a problem uniquely.
Such conditions give initial temperature distribution.
i.  THE DRICHLET BC’s or BC’s OF 1° KIND:
Booundry conditions of the form u(0, t) = uy(t)
and u(l,t) = uq(t) ;t > 0 are called Drichlet boundry conditions.
Physical Meaning: This condition tells that the temperature at the boundry
of a body may be controlled in some way without being held constant.
ii. THE NEUMANN BC’s or BC’s OF 2" KIND:
Booundry conditions of the form u,(0,t) = y(t) and u,(l,t) = 8(t) are called
Neumann boundry conditions. Where y and & are functions of time. And in
particular, y and & may be zero. If y = 0 then there is no flow at x =0
Physical Meaning: This condition tells that the rate of flow of heat is
specified at one or more boundry.
iii. THE ROBBIN BC’s or BC’s OF 3" KIND:
Booundry conditions of the form oc; u(0,t) +x, u,(0,t) = constant and
Biu(l,t) + Bou,(l, t) = constant are called Robbin boundry conditions.
Physical Meaning: This condition tells about the proportionality between the
rate of transfer of heat to the difference of temperature between the two bodies. i.e.
both will be Proportional.
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REMEMBER:

» An equation of the form f (x,y,z,a,b) = 0 containing two arbitrary
parameters is called a complete solution or a complete integral of equation
f(x,y.zp,q) =0
Its role is somewhat similar to that of a general solution for the case of an
ODE.

» Any relationship of the form f(¢,y) = 0 with ¢ = @(x,y,2) and Y = Y(x,y,2)
and provides a solution of first order PDE is called a general solution or
general integral of this equation.

» The general solution of first order PDE depends on arbitrary function while
The general solution of first order ODE depends on arbitrary constant.

» In practice only one solution satisfying prescribed conditions is required
for a physical problem, such solution is called Particular Solution.

» For afunction F(x,y,z,p,q) = 0if the envelope of two parameteric system
f(x,y,z,a,b) = 0 of surfaces exists, represents a solution of given
equation F(x,y,z,p,q) = 0then the envelope is called Singular solution of
such equation.

» A function is called smooth function if all of its derivatives exist and are
continuous.

» A solution which is not everywhere differentiable is called a weak solution.

» Solutions of Qausi linear and non — linear PDE’s may develop
discontinuities as they move away from initial state. So their solutions are
called weak solutions or shock waves.

METHOD OF SEPARATION OF VARIABLES
During the last two centuries several methods have been developed for solving
partial differential equations. Among these, a technique known as the method of
separation of variables is perhaps the oldest systematic method for solving
partial differential equations.
% Its essential feature is to transform the partial differential equations by a
set of ordinary differential equations.
% The required solution of the partial differential equations is then exposed
as aproductu (x, y)=X x)Y (y) #0
orasasumu (x, y)=X (x)+Y (y)
where X (x) and Y (y) are functions of x and y, respectively.

IMPORTANCE: Many significant problems in partial differential equations can be
solved by the method of separation of variables. This method has been
considerably refined and generalized over the last two centuries and is one of the
classical techniques of applied mathematics, mathematical physics and
engineering science.

Usually, the first-order partial differential equation can be solved by separation of
variables without the need for Fourier series.

This method is used to convert PDE into ODE.
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Example: Solve the initial-value problem

u +2u, =0, u (0, y)=4e?. ... . (1)

Solution: ()= :—xu(x,y)+2:—yu(x,y) =0 .reeennn. . (ii)

let u=u (x, v)=X (x)Y (y) = XY

(ii) = ;—x (XY) + 2% XY)=0 = X &) Y{F) +2Xx) Y (y)=0

Dividing XY on both sides = XY 2% — 9
! 7 ! XY V4 XYI
= X—+2Y—:0 X =L XY
X Y 2X Y 2X Y
Since the L.H.S of this equation is a function of x only and the R.H.S
Is a function of y only
X = Y o35 X ) and -L =2 wherelis separation constant.
2X Y 2X Y

Consequently, gives two ordinary differential equations
Xx)-2A2X (x)=0 and Y (y)+4AY (y)=0

These equations have solutions given, respectively, by

X (x) = Ae*** and Y (y) =Be *’

where A and B are arbitrary integrating constants.

Consequently, the general solution is given by

u((x, vy)=ABexp(2Ax - Ay)=Cexp(2A1x — 1y)

where C = AB is an arbitrary constant.

Using the condition u(0, y) = 4e=® we find 4e* =u (0, y)=Ce "’
and hence, we deduce thatC =4 and A = 2. Therefore, the final

solution is u (x, y) =4exp(4x - 2y)

Example: Solve the e;*quation yuZ + x°uk = (xyu)”. oo . (1)
. _ x
with u(x,0)=3 exp(z)

: : 2@ Z S0 2 2 . .
Solution: (i)= y [au(x,y)] +x [@u(x,y)] = (xyw)* ....... . (i)
let u=u (x, v)=X )Y (v) = XY
(ii) = 2 [i (XY)]2 + x2 [i (XY)]2 = x2y2(XY)?

y ox ady o y
= yAX'Y]? + x%[XY']? = x%y%(XY)?
Dividing x2y%(XY)? on both sid L 50 W 1
ividing x*y“(XY)“ on both sides = x_Z[Y] +y—2[7] =
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Thus , we obtain
112

112
iz[x_] =22 and 1—%[Y—] = A2 where 2% is separation constant.
x2 L X y-LY

> W _jandf-ovi—az
x X yY
Solving these ODE’s we find

Ax?

1
X(x) =Aez and Y(y) = Bex V17 ¥
where A and B are arbitrary constant. Thus, the general solution is

Ax% 1 2 1
u=ulxy =XXY(Qy) = <AeT) (Bezyzm) _ cey e

where C = AB is an arbitrary constant.

-3 -

2
Using the condition u(x, 0) = 3exp(xz) we determine that C =3 and

1
A= (1/2), and the solution becomes  u (x,y) = 3ea* *7*V3)

Example: Use the separation of variable u (x,y) = f (x) + g(y)

Solve the equation us +uj; =1 .......... . (1)
Solution: (i)= [iu (x,y)]2 + [iu (x,y)]2 =1 ....... . (ii)
ax ay
let u=u (x, v)=f x)+g (y)=f+g
2 2
(ii)= 52 (00 +8(0)] + |55 (fe0 +8(w)] =1

= [F@P+gWP=1>  [f®]*=1-[g(N]?

=> [f®*=1-[g'(y]* =4

Thus , we obtain

[f'(x)]? =2% and 1-[g'(y)]* = 2> where A? is separation constant.
= f/(x)=2 and g'(y) =v1— 22

Solving these ODE’s we find

f(x)=4x+A4 and g(y) =yV1— 22+ Bwhere A and B are arbitrary
constant. Thus, the general solution is
u=uxy)=fx)+g(@y)=Ax+A+yv1—-22+B

ux,y =Ax+yv1—242+C

where C =A +B is an arbitrary constant.
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Example: Useu (x, y)=f (x)+g (y) to solve the equation
U +uy +x°=0 e, . (i)

Solution: (i)= [iu(x y)]2+[iu(x y)]+x2 =0 ....... . (11)
ox ’ dy ’
let u=u (x, v)=f x)+g (y)=f+g
2
(ii)= [% (F(x) + g( y))] + [:—y (f(x) + g( y))] +x2=0

= [f®P+[gNI+x>=0 = [f®*+x*=—-[g'(y)]

= [f®]*+x*=-[g'(y)] =4

Thus , we obtain

[f'(x)]? + x2 = 2% and —[g'(y)] = 4> where A% is separation constant.

= f(x)=vaz—2x2 and g'(y) = —2?

Integrating above both we obtain

> f&) =;22|sin"1(5) +5 /1—§]+A and g(y) = —22y + B

where A and B are arbitrary constant. Thus, the general solution is

u = u(xy)—f(x)+g(y)——)L2 Sin‘1(§)+§ /1—;—2]+A—/12y+3

u (x,y) =%/12 [Sin‘1 (;—c) +;—c /1—;—2] —A2y+C

where C = A +B is an arbitrary constant.

Example Use v = Inu and v = f (x) + g (y) to solve the equation
uz +y° us = S A . (1)
Solutlon
1

. 1 . .
In view of v =Inu, vy =-u, and v, = —uy, and hence, equation (i)

becomes x*v%+y” v2 =1. ......... . (i1)
(ii)= x? [%v (x, y)]2 + y? [aa—yv (x, y)] =1 ....... . (iii)
let v=v (x, y)=f x)+g (y)=f+g
2
(iii)= x| (f00 +8(v)]| +97 |5 (f0 +8()| = 1

= 2 @P+yg(ni=1 = 2[f®*=1-y*[g'(y)]

= X’[f®P?=1-y*[g'(y)] =47

Thus , we obtain

x%[f'(x)]* = 4% and 1-[g'(y)] = 2> where A% is separation constant.
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> fe=andg(y)=V1-2

Integrating above both = f(x) =Alnx+ A and g(y) =Vv1—-2A%2lny+ B
where A and B are arbitrary constant. Thus, the general solution is

v=vxy)=fx+g Q) Ellnx+A+\/1——)@lny+B
v(x,y) = Alnx + V1 — 2%2lny +1InC = In (x’l.y 1"12.6)
Where InC = A + B is an arbitrary constant.

Now v (x,y) = lnu = In (x’l.y 1-42, C)

Therefore, the final solution is

u(x,y) =e’= x’l.y\/l‘—’lz.c where C is integrating constant.

EXERCISES
1. Apply the method of separation of variables u(x,y) = f(x) g(y) to
solve the following equations:

(@u,+u =uy, u (x,0)=4e> (b) uyuy = u?
(€) u +2uy =0, u (0,y) =3e™?
(d) Xy +9y°u = 0,u (x,0)=exp()  (€) yu, ~xu, =0

(F) u = ¢ (uxy + uyy) (9) Uxx + uyy = 0.

2. Use a separable solution u(x,y) = f(x) + g(y) to solve the

following

equations:

(@u2+ ut =1 (b) uZ + uj =u (c) ui + u,+x*=0
(d) quyzc +y° uy = (e) yux +xuy =0, u(0,y)= vy

3. Apply v =Inu and thenv (x,y) =f (x)+g (y) to solve the following
equations: x“u? +y” u? =u’

4. Applyvu=v andv (x, yv)=f (x) +g (v) to solve the equation
x'uZ +y° u =4u

5.Usingv =Inu andv =f (x) +g (y), show that the solution of the

Cauchy problem

yuZ + x’u? = (xyu)®> with u(x, 0) = exp(x?) is u(x,y) = exp (x? + i?yz)
6. Solve v u; = kuy,, with u(x, 0) =x, u(0, t) =0 = u(L, t)

7. Find De alembert’s solution of u, = c?u,, with u(0, t) =0 = u(a, t),
u(x, 0) = f(x) , u (x, 0) = g(x)
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Find the solution of each of the following equations by the method of
separation of variables:

(@) u-u, =0, u(0,y)=2e¥ () ux=uy =u, u (x,0)=4e>

(c) au, + buy =0, u (x,0) = ae?* wherea,b, « and B are constants.

CANONICAL/STANDARD/NORMAL FORMS OF FIRST-ORDER
LINEAR EQUATIONS
For the general first-order linear partial differential equation

a (x, YJux+b (x, y)uy+ec (x, y)u =d (x, y)
the canonical (or standard) form is given as follows
ug+ec (Emu = BEN) where o (§,1) == and B(&1) =

also & = &(x,y) and n = n(x,y) are continuously differentiable
functions. Also A=a ¢, +b &,

DERIVATION: consider u =u(§¢,n) where é =¢&(x,y) andnp =n(x,y)
Then uc= u &+ u,7n, and uy= u &+ u,n, putthesein 1% order PDE
WegetAugs+Bu, +cu =d .......... . (1)
where A=aé,+b§, and B=an,+bn,
now B =0if nis solution ofan, +tbn, =0
now dividing (i) with A we get

d

us+x (§mu = BEn) where o (§1) =7 and B(§,n) =7

Example: Reduce the equation u,—-u,=u to canonical form, and
obtain the general solution.

Solution: herea =1,b ==1,¢c ==-1andd =0.
The characteristic equations are d—lx = f—i = i—u

The characteristic curves are § =x +y =c; and we choose n=y=c,
where c; and c, are constants. Consequently, uy =u, anduy=u, +u,
and hence, given equation becomes -u, =u

Integrating this equation gives Inu(¢, n)=-n+In £(¢)

where f(§) is an arbitrary function of & only.

Equivalently, u@n)=£fe’

In terms of the original variables x and y, the general solution of
equationis u (x, y)=f (x +y)e” where f is an arbitrary function.
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Example: Reduce the following equation yuy +u, = x to canonical
form, and obtain the general solution.
Solution: herea =y,b =1,¢c =0 and d =x.

dx Q __du

The characteristic equations are T -1 %

It follows from the first two equations that ¢ (x, y)=x - y?z= C1
we choose 7 (x,y) = y=c».

Consequently, u,=u, and uy=-yu, +u,

And hence, given equation reduces to

u, =¢§ +%n ’

Integrating this equation gives the general solution

uE n)=& n +zn+f (@)

where f is an arbitrary function.

Thus, the general solution of interms of x and y is

1 2
u (x, y)=xy —§y3+f (x - y?)

Reduce each of the following equations into canonical form and find
the general solution:

@u+u =u

(b) uy + XUy =Yy

(C) ux +2xyuy = x

d)u=yuy—u =1
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MATHEMATICAL MODELS

Usually, in almost all physical phenomena (or physical processes), the dependent
variableu =u (x, y, z, t)is afunction of three space variables, x, y, z and time
variable t.

The three basic types of second-order partial differential equations are:

(a) The wave equation uy = ¢ (Uxx + Uy + Uzz) =0 = Uy — 2V2u =0

(b) The heat equation u =k (uxx +uyy +uz;) =0 = u, —kViu=0

(c) The Laplace equation  uyx +uyy +u;; =0 >Vu=0

In this section, we list a few more common linear partial differential equations
of importance in applied mathematics, mathematical physics, and engineering

science. Such a list naturally cannot ever be complete. Included are only
equations of most common interest:

(d) The Poisson equation Vi =f (x, y, z)

(e) The Helmholtz equation (reduced wave equation) V2 + Au =0
(f) The biharmonic equation V*u = V?(V?u) =0

(g) The biharmonic wave equation ug + ¢?V*u =0

(h) The telegraph equation  ug + au; + bu = c?u,y

(i) The Schr odinger equations in quantum physics

2m

iy = [(— thzn) V2 +V(x,y, z)] Y And V2T + = [E-V(x,y,z)[p =0

(i) The Klein-Gordon equation [Hu + A% =0

2
Where [=V? - 612:? is the d’Alembertian, and in all equations 1, a,b,c, m E are

constants and h =2« fis the Planck constant.

(k) For a compressible fluid flow, Euler’s equations
ug+(u.Vyu= —%Vp and p¢+div(pu)=0 whereu =(u,v,w)is the fluid velocity

vector, p is the fluid density, and p =p(p) is the pressure that relates p and p
(the constitutive equation or equation of state).
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ONE DIMENSIONAL WAVE EQUATION USING THE VIBRATING STRING

. T. . .
An equation of the form w; = c’uy, Where & == is called the one-dimensional wave
p

equation. Where u (x, t) is a function of displacement at position x in time ‘t’ and
‘c’ denotes the velocity of wave equation.

PROOF

Let us consider a stretched string of length 1 fixed at the end points. The
problem here is to determine the equation of motion which characterizes

the position u (x, t) of the string at time t after an initial disturbance is given.

In order to obtain a simple equation, we make the following assumptions:

1. The string is flexible and elastic, that is the string cannot resist bending
moment and thus the tension in the string is always in the direction of the tangent
to the existing profile of the string.

2. There is no elongation of a single segment of the string and hence, by Hooke’s
law, the tension is constant.

3. The weight of the string is small compared with the tension in the string.

4. The deflection is small compared with the length of the string.

5. The slope of the displaced string at any point is small compared with unity.

6. There is only pure transverse vibration.

I 4

O

x
We consider a differential element of the string. Let T be the tension at the
end points as shown in Figure. The forces acting on the element of the string in

the vertical direction are Tsin B =T sin «

By Newton’s second law of motion, the resultant force is equal to the
mass times the acceleration. Hence,

Tsin B -TsSIiNn & =p&sStuy wcvvvvernnrnnns (i) s p=m/ds
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where p is theline density and 0 s is the smaller arc length of the string.
Since the slope of the displaced string is small, we have 0s = 0x

Since the angles @ and B aresmall sin & =tan «, sin B8 =tan

Thus, equation (i) becomes tan B =tan @ =£6 XUt eoeeeeeeenen. (ii)

But, from calculus we know that tan a and tan 8 are the slopes of the string
atx and x + 6 x:

tan o =ux(x,t) and tan B =ux(x + 6%, t)attimet.

Then Equation (ii) may thus be written as

1

5x [(Ux)x+ax = (ux)x] = I;) Uyt

1

o (x + 8% t)-uw(x t)]=fu

limé‘x_)os—lx [uy (x + 8%, t)—u(x, t)]= g Uyt ~limit have no effect on R.H.S
Ut = CoUxy  eeeeeeeeeeees (iii)

where ¢? = 1—7;. This is called the one-dimensional wave equation.

If there is an external force f per unit length acting on the string.

Equation (iii) assumes the form

uy = c’u +F, F :£ where f may be pressure, gravitation, resistance, and so on.

TWO DIMENSIONAL WAVE EQUATION USING THE VIBRATING MEMBRANE
(JUST STATEMENT)

An equation of the form w, = ¢*( u + 4,y ) Where ¢ = /Zr is called the

two-dimensional wave equation. Where u (x, t) is a function of displacement at
position x in time ‘t’ and ‘c’ denotes the velocity of wave equation.

PROOF

The equation of the vibrating membrane occurs in a large number of problems
in applied mathematics and mathematical physics. Before we derive the equation
for the vibrating membrane we make certain simplifying assumptions as in the
case of the vibrating string:

1. The membrane is flexible and elastic, that is, the membrane cannot resist
bending moment and the tension in the membrane is always in the direction of
the tangent to the existing profile of the membrane.

2. There is no elongation of a single segment of the membrane and hence, by
Hooke’s law, the tension is constant.

3. The weight of the membrane is small compared with the tension in the
membrane.

4. The deflection is small compared with the minimal diameter of the membrane.
5. The slope of the displayed membrane at any point is small compared with
unity.

6. There is only pure transverse vibration.
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Ty

We consider a small element of the membrane. Since the deflection and slope are
small, the area of the element is approximately equalto 6 xdy. If T is the tensile
force per unit length, then the forces acting on the sides of the element are T 6 x
and T § y, as shown in Figure

The forces acting on the element of the membrane in the vertical direction are

T dxsin B =T dxsin o +T 6y sin 6 =T 6y sin y.

Since the slopes are small, sines of the angles are approximately equal to their
tangents. Thus, the resultant force becomes

T dx(tan B —tan a)+T 6y (tan 6 —tan vy).

By Newton’s second law of motion, the resultant force is equal to the mass times
the acceleration. Hence,

Todx(tan B—tan a)+Toy (tan 6d—tan y)= p 0 A Ux  coreveriennrens (i)

where p is the mass per unitarea, § A = § xd y is the area of this element, and
Uy IS computed at some point in the region under consideration. But from
calculus, we have

tan o =uy (x1, ) tan B =uy(x2, y + 0Y)

tan y =ux (x, y1) tan 0 =ux(x + 6%, y2)

where x; and x, are the values of x between x and x+ § x, and y; and y, are

the values of y betweeny andy + dy.

Substituting these values in (i) we obtain

Tox[uy(x2, v +0y)—uy (X, V)] Ty [ux(x + 0%, v2)—ux (X, y1)] = p 0X0y Uy
Division by p 6 x0y yields

T [uy(x2,y+8y)-uy(x1,y) | up(x+8x,y2)—ux(xy1)] _ i

p[ 5 + o ] = Upp eeeereereenanas (i)

In the limit as § x approaches zero and 6y approaches zero, we obtain
utt = 02 (UXX + Uyy) ............... (iii)

where ¢c? =T/ p . This equation is called the two-dimensional wave equation.

If there is an external force f per unit area acting on the membrane. Equation (iii)
takes the form

Uy = ¢ Uy + uyy)+F whereF =f/p.
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THREE DIMENSIONAL WAVE EQUATION USING THE VIBRATING MEMBRANE

Equation of the form u, = c2VZu where ¢y = u/p is called transverse wave
velocity.

And Equation of the form uy = ¢fV?u where ¢y = A+ Zu/

p is called longitudinal
wave velocity.
Both type of above equations are called Wave equations in three dimension.

GENERAL FORM OF WAVE EQUATION : In general, the wave equation may be
written as  ug = c?V?u where the Laplace operator may be one, two, or three

dimensional.

The importance of the wave equation stems from the facts that this type of
equation arises in many physical problems; for example, sound waves in space,
electrical vibration in a conductor, torsional oscillation of a rod, shallow water
waves, linearized supersonic flow in a gas, waves in an electric transmission line,
waves in magnetohydrodynamics, and longitudinal vibrations of a bar.

WAVE: A wave is a disturbance that carries energy from one place to another.
For example, wave produced on the string.

There are two types of waves.

MECHANICAL WAVE: Waves which required any medium for their propogation.

e.g. (i) Sound waves (ii) water waves.
ELECTROMEGNATIC WAVE: Waves which do not required any medium for their
propogation. e.g. (i) Radio waves (i) X - Rays.

Mechanical waves have two types

TRANSVERSE WAVES: In the case of transverse waves, the motion of particles of
the medium is perpendicular to the motion of waves.

e.g. Waves produced on water surface

LONGITUDINAL WAVES: In the case of longitudinal waves, the particles of the
medium move back and forth along the direction of propogation of wave.

e.g. Waves produced in an elastic spring.

UNIQUENESS THEOREM FOR WAVE EQUATION (UoS Past Papers)

According to this theorem: the solution to the wave equation uy = c?uyy
satisfying the IC’s u(x,0) = f(x) ;0 <x <L and u,(x,0) = g(x) ;0 <x <L and the
BC’s u(0,t) = u(L,t) = 0 where u(x, t) is twise continuously differentiable with
respect to ‘x’ and ‘t’ is unique.
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HEAT:
Heat is a form of energy that transferred from hot body to the cold body, by
means of thermal contact. It is denoted by ‘g’

CONDUCTION OF HEAT:
In this mode heat is transmitted through actual contact between particles
(molecules) of the medium.

CONVECTION OF HEAT:
In this mode heat is transmitted through gases or liquids by actual motion of
particles (molecules) of the medium.

RADIATION OF HEAT:

In this mode heat is transmitted through electromagnetic waves. Or by means of
heat waves or thermal radiations. Medium is not essential for it. i.e. heat can take
places in vaccume also.

SPECIFIC HEAT OF SUBSTANCE (MATERIAL) :
The quantity of heat required to raise the temperature of 1g of material by 1€° and
it is denoted by C and mathematically could be written as Aq = CmAu

HEAT FLUX (THERMAL FLUX) :
Is the rate of heat energy transfer through a given surface per unit surface area.
Its unit is watt or Js™

THERMAL CONDUCTIVITY:

The quantity of heat flowing per second across a plate (of the material) of unit
area and unit thickness, when the temperature difference between opposite sides
is 1c°

It determines how good a conductor the material is . It is large for good
conductors and small for bad conductors.

SOME FACTORS ON WHICH RATE OF FLOW OF HEAT DEPENDS
e Areaas q(x,t) x A

e Lengthas q(x,t) oc%
e Changeintemperature as q(x,t) < Au

PROF. MUHAMMAD USMAN HAMID (0323-6032785)



ONE DIMENSIONAL HEAT EQUATION

2
An equation of the form ZT’Z‘ = %Z—’t‘ is called heat equation. Where U= U(x,t) is a

temperature of a body at ‘x’ position in time ‘t’ and ‘K’ is called diffusivity or
thermal conductivity of the material.

PROOF:

li: U(x,t)

AX

> X - axis

X X+ AX

Let us consider the flow of heat through a uniform rod of length ‘I’ and cross
sectional area ‘A’ then

Density of rod = p = mass/volume = m/AAxi.em = p AAx

We choose the x — axis along the length of the rod with origin at one end of the
rod. Then temperature at point ‘x’ from origin at time ‘t’ will be U = U(x,t)

Let flow of heat = q (X,t)

(quantity of heat entering per second through unit area perpendicular to the
direction of flow)

Also Heat generation =y and heat stored per second =cm ';—': =cC p AAX 3—;‘

Now using law of conservation of heat energy
(Quantity of heat which entered) + (heat generated inside the rod)
= (Quantity of heat which leave) + (quantity of heat stored)

g (x,t) A+ yYAAX =g (X + AX,t) A + C p AAX ';—':

dividing both sides by ‘A’ we get g (x,t) + yYAx =q (X + AX,t) +C p AX ‘;—’:
dividing both sides by Ax we get i [q(Xt)-g(x+Ax,t)] +y=cp %
Applying Ax - 0 -Z—Z+y:sz—l:

Now by using Fourier law of heat conductivity which is q = - KAu

35

) d ] 9> ]
Then (i) becomes - —(-Kdu) +y=cop a—l: then we get Ka—x'z‘+y: Co a—':
For standard form we supposey =0 andcp =1 (i.e. no heat generation)

?u _ ou

Then Kﬁ_ E

Pu  10u . . . ) ) . )
Or Z T xar which is required heat equation in one dimension
In general u = kVu or Vau =£ U
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THE HEAT EQUATION (CONDUCTION OF HEAT IN SOLIDS)
We consider a domain D* bounded by a closed surface B*. Letu (x, y, z, t)be

the temperature at a point (x, y, z)attime t. If the temperature is not constant,
heat flows from places of higher temperature to places of lower temperature.
Fourier’s law states that “the rate of flow is proportional to the gradient of the
temperature”. Thus the velocity of the heat flow in an isotropic body is

v = —Kgradu
where K is a constant, called the thermal conductivity of the body.

Let D be an arbitrary domain bounded by a closed surface B in D*. Then the

amount of heat leaving D per unit time is [f ,v,ds where v, = v.n is the component

of v in the direction of the outer unit normal n of B. Thus, by Gauss’ theorem
(Divergence theorem)

Jf gvnds = [[f jdiv (—-Kgradu) dxdydz = —K[[[ V?u dxdydz
But the amount of heat in D is given by [ff, ¢ pu dxdydz

where p is the density of the material of the body and ¢ is its specific heat.
Assuming that integration and differentiation are interchangeable, the rate

of decrease of heatinD is [ff, o pZ—lt’ dxdydz
Since the rate of decrease of heat in D must be equal to the amount of heat
leaving D per unit time, we have

ff p0 PUt dxdydz =-K fffDVzu dxdydz

or
JIf, [o pu—KV?ul dxdydz =0 ....ceeeee. (i)

for an arbitrary D in D*. We assume that the integrand is continuous. If we

suppose that the integrand is not zero at a point (xo, Yo, Zo) in D, then, by
continuity, the integrand is not zero in a small region surrounding the point

(x0, Yo, o). Continuing in this fashion we extend the region encompassing

D. Hence the integral must be nonzero. This contradicts (i). Thus, the integrand is

zero everywhere, thatis, u = kV?u where k = K/ap. This is known as the heat
eguation.

This type of equation appears in a great variety of problems in mathematical
physics, for example the concentration of diffusing material, the

motion of a tidal wave in along channel, transmission in electrical cables,
and unsteady boundary layers in viscous fluid flows.
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CLASSIFICATION OF SECOND-ORDER LINEAR EQUATIONS

SECOND-ORDER EQUATIONS IN ONE INDEPENDENT VARIABLE
The general linear second-order partial differential equation in one dependent
variable u may be written as

Z?j:l Aijuxix]. + Z?:l Biuxi +Fu=6G  .......... . (|)
in which we assume A;; = Aj and A, B, F, and G are real-valued functions defined
in some region of the space (x3,x2, . . . ,Xp)

SECOND-ORDER EQUATIONS IN TWO INDEPENDENT VARIABLES
Second-order equations in the dependent variable u and the independent
variables x, y can be put in the form

Auyy + Buyy + Cuyy + Duy + Euy+Fu =G ...l . (i)

where the coefficients are functions of ‘x’ and ‘y’ and do not vanish
simultaneously. We shall assume that the function ‘v’ and the coefficients are
twice continuously differentiable in some domain in R?.

CLASSIFICATION OF SECOND-ORDER LINEAR EQUATIONS

The classification of partial differential equations is suggested by the
classification of the quadratic equation of conic sections in analytic geometry.
The equation Ax®+Bxy +Cy’*+Dx +Ey +F =0, represents

hyperbola if B? - 4AC is positive i.e.B>—4AC > 0
parabola if B> —4AC is zero  i.e.B?=4AC = 0

or ellipse if B? - 4AC is negative i.e.B?—4AC < 0
for example:

(1) The heat equation %ut = u,, IS parabolic.
(i)  The wave equation clzutt = u,, IS hyperbolic.
(iii) The potential (Laplace) equation V?u = u,, + u,, = 0 is elliptic.

TRANSFORMATION OF SECOND-ORDER EQUATIONS TO A CANONICAL FORM
To transform equation

Auyy + Buyy + Cuyy + Duy + Euy +Fu =G .......... . (i)

to a canonical form we make a change of independent variables. Let the new
variablesbe & =& (x, v), n=n (X V) = ceeeeenn . (ii1)

Assuming that & and n are twice continuously differentiable and that the

& € :
. Ilyy| .......... . (iv)

is nonzero in the region under consideration, then x and y can be determined
uniquely from the system (iii). Let x and y be twice continuously differentiable
functions of § and n. Then we have

Jacobian J =
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U SUgéxtu, nx Uy =udy+tu,ny

uxx:uggfg%'*'z u,, é&xnxtu, nnf:"'ugfxx"'un 7 xx

Uy =Uge §xEytue, (Sxny+§ym)t u,, nxny+udy+u, nyy

Uyy = U, §5+2 U §yny+u, My +udyy+u, nyy

Substituting these values in equation Auyy + Buyy + Cuyy + Du, + Euy + Fu =G
we obtain

Au,, +Bu,, +Cu,
where

, ¥Du, +EBu, +Fu =67 ... . (V)

A = AE2+ BE&, + Cf§
B =2A&nyx+B (§xny+ & nx)+t2CEny
*:A]]JZC+Bany+CT|§,

D*:Afxx+B€Xy+cfyy+Dfx+EEy llllllllll .(Vi) fOr all
E*:ATIXX+B77xy+CT7yy+D77x+E77y
F*=F, =G

The resulting equation (v) is in the same form as the original equation (ii) under
the general transformation (iii). The nature of the equation remains invariant
under such a transformation if the Jacobian does not vanish. This can be seen
from the fact that the sign of the discriminant does not alter under the
transformation, that is, B*? — 4A*C* = J?(B® - 4AC) .......... . (vii)

Now The classification of equation (ii) depends on the coefficients A(x, y),

B(x, y), and C(x, y) at a given point (x, y). We shall, therefore, rewrite equation (ii) as

Auyy +Buyy + Cuyy =H (x, ¥, u, uy,uy) e . (viii)
and equation (v) as
A*uEE +B*uET)+C*unn :H*(E’ T)) u’ us ’ u'ﬂ) ---------- .(IX)

Now suppose that none of A, B, C, is zero. Let § and n be new variables such
that the coefficients A* and C* in equation (ix) vanish. Thus, from (vi), we have
A=A+ Bégy +C§5 =0 and C=Ani+Bnyny+Cn;=0

These two equations are of the same type and hence we may write them in the
form ATZ+B 3,0, +C=0  .......... . (X)

in which ¢ stand for either of the functions & or 5. Dividing through by (f,
equation (x) becomes

&\ ¢
A(—") +B(—">+C:0 .......... . (xi)

¢y ¢y
Along the curve { =constant, we have d{ = {,dx + {,dy = 0.
Thus % = —g—" .......... . (xii) and therefore, equation (ii) may be written in the

y
dy 2 dy _

form A(E) -B (E)J’C =0 e . (xiii)

PROF. MUHAMMAD USMAN HAMID (0323-6032785)




39

the roots of which are
o —(8+m) .......... . (xiv) and D —(B_ BAA) . (xXv)

dx 2A dx 2A

These equations, which are known as the characteristic equations, are ordinary
differential equations for families of curves in the xy-plane along which

¢ =constant and n = constant.

The integrals of equations (xiv) and (xv) are called the characteristic curves.
Since the equations are first-order ordinary differential equations, the solutions
may be written as

¢1(x, y)=cy, ci1=constant and d2 (X, y)=cp c=constant

Hence the transformations

E=0¢01(x V), n=¢2(x, y) will transform equation (viii) to a canonical form.

(A) CANONICAL TRANSFORMATION OF HYPERBOLIC TYPE
If B2 = 4AC > 0, then integration of equations

dy _ (B+/B?-44c) dy _ (B—VB?-44c)
-  ad s

dx x
yield two real and distinct families of characteristics.
Equation Au. . +Bu,,+Cu,, =H (¢, =7, u, u,, u,)reducesto u.,=H

where H; = H*/B*. It can be easily shown that B* # 0. This form is called the first
canonical form of the hyperbolic equation.

Now if new independent variables a« =§ + n, B =& — n areintroduced, then
equation u,, =H;is transformed into u,, - ug;, =Ho (e, B, u, u,, uy)

This form is called the second canonical form of the hyperbolic equation.

(B) CANONICAL TRANSFORMATION OF PARABOLIC TYPE

2 _ : dy _ (B+/B?-44c) dy _ (B—V/B?-44c)
If B°=4AC =0, and equations —= = ~—————= and TFrG

coincide. Thus, there exists one real family of characteristics, and we obtain only
a single integral ¢ = constant (or n = constant).

Since B* = 4AC and A* = 0, we find that A*=AQ% +B&é&, + C(3= (VA& +VC &)%=0
From this it follows that

A*:2Afx7)x+B(Exny+fy7)x)+chy7)y:2 (\/fo-l-\/f fy) (\/Zﬂx'l'\/fﬂy):o

for arbitrary values of n (x, y)which is functionally independent of & (x, v);

for instance, if n =y, the Jacobian does not vanish in the domain of parabolicity

Division of equation A*u, , +Bu, +Cu, K =H (&, n, u, u, , u,)byC yields

u,, =Hz(, =0, u u,, u,)), C=0 Thisis called the canonical form of the

parabolic equation. Equation A*u, , +Bu, ,+Cu,, =H(§, 0, u, u, , u,) may
also assume theformu,, =H3(§, n, u, u, , u,) ifwechoose n =constant as

(B+\/ B2 —4Ac)

. . ﬂ _
the integral of equation o= >
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(C) CANONICAL TRANSFORMATION OF ELLIPTIC TYPE
For an equation of elliptic type, we have B? = 4AC < 0. Consequently, the quadratic

. dy\* o (dy _ , .
equation A(dx) B (dx) +C =0 has no real solutions, but it has two complex

conjugate solutions which are continuous complex-valued functions of the real
variables x and y. Thus, in this case, there are no real characteristic curves.
However, if the coefficients A, B, and C are analytic functions of x and y, then one

2
can consider equation A(%) -B (%) +C =0 for complex x and y. A function of

two real variables x and y is said to be analytic in a certain domain if in some
neighborhood of every point (xo, yo) of this domain, the function can be

represented as a Taylor series in the variables (x—xg) and (y — yo).
Since & and n are complex, we introduce new real variables

1 1 .
@« =2@ +n) B=5( ~ 1) cueeennn. (i)
sothat & =a +if3, n =a —if .uueun.. . (i)
First, we transform equations Auyy + Buyy + Cuyy =H (x, y, u, usuy) We then have
A*(a, B)u+B*(a, B)u+C*(a, B)u=Hi(a, B, u, u,, ;) .cueeee . (iii)

in which the coefficients assume the same form as the coefficients in equation
Au,, +Bu,, +Cu, =B (¢ =7, u, u, , u,) Withtheuseofé = o +1iB,

n = a —1ipB theequations A*=C*=0become

(Aai+Bayayt Cal)—(A B5+BB B y+ CP3) +i[2Aax Bxt B(ax Byt ayB)+2CayB,] =0

(Aai+Bayay+ Cal)—(A B3+ BB By+ CP3)-i[2Aax Byt B(axBytayBx)t2CayBy] =0
or, (A*-C*)+iB~=0, (A*-C*)-iB*=0

These equations are satisfied if and only if A*=C*and B*=0

Hence, equation (iii) transforms into the form A*u+A*u=Hs (e, B, u, u,, uy)
Dividing through by A*, we obtain

u + uﬁB :HS(O’,, B, u, ua ) uﬁ) Where H5:(H4/A**).

[e 0%

This is called the canonical form of the elliptic equation.

NOTE:
i.  When given equation is Hyperbolic then roots will be real and distinct and
there wil be two characteristic curves i.e. é(x,y) = C,and n(x,y) = C,
ii.  When given equation is Parabolic then roots will be real and equal and
there wil be only one characteristic curvei.e. é(x,y) = C4
iii. ~ When given equation is Elliptic then roots will be real and Complex and
there wil be no characteristic curves in reals so will need to make following

approximations i.e. «= “T" and B = fz_—l"
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REMEBER: for § =&(x,y) and n =n(x,y)
i.  Canonical form of Hyperbolic equation is uz, = f(u,f,n,uf,un)

ii. Canonical form of Parabolic equation is ug = f(u, &0, ug, u,)
or Uy, = f(u,&n,ug uy) but not both in same time.
iii.  Canonical form of Elliptic equation is ux« + ugg = f(u, , B, u, up)

where o= &T" and B = t—l"

Example: Transform the equation y’ux — x°uyy = 0 into canonical form.

Solution: Here A =y% B=0, C=-x° Thus, B*-4AC =4x%°> 0.
The equation is hyperbolic everywhere except on the coordinate axes x =0 and

(B+VB2-44C)  (0+/07+4y2x2) _ @yn

y = 0. From the characteristic equations % = =

24 2(y%) - 207)

dy  (B-VB*-44c)  (0-J02+4y2xZ)  _(zyy) dy «x dy x

and £ = = = we have —==>-and == -=
dx 24 2(y%) 2(0%) dx y dx y

After integration of these equations, we obtain

y:—x*=C; and y*+x%=2¢C,

To transform the given equation to canonical form, we consider
E=y?—x* and n=y?+x?

Ex=2X, nx=-2X,&x=2, nxx=-2 Exy 0, 77xy—0

$y=2y, ny=2y,§y=2, ny=2

A* = A&+ BE&, + CE% = 0 (after putting values)

B =2A&nx +B (§&xny + & nx)+2CE ny = -16 x*y? (after putting values)
C'=Ani+Bnyny+Cni=0 (after putting values)

D* = A&y + B&y, + C&yy + D&« + E&y = 2(y? — x2) (after putting values)
E*=Anxx+Bnxy+Cny +Dnyx+Eny=-2(y*+ x2) (after putting values)
F*=F=0, ¢*=G=0

Now Atu,. +Bwu,, +Cu,, +Du, +Eu, +Fu =G

-16 x*y?u, , +2(y%> —x%) u; -2(y* +xH)u, =0 ......... (i)
Now as £ = y*> —x? and n=y?*+x?
E_n g -n*

Adding above y? and subtracting above x? = E_T" then x2y% =

(z)=>-16( - )u$n+2§ u,-27Mu, =0

-4 (& —n*)u,, +2& u,-2nu, =0
Thus, the given equation assumes the canonical form
s

_ n
T 2(822) Ug — 2(52 )

4

Ug
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Example: Transform the equation x’ux +2xy uyy + y°uyy = 0 into canonical form.
Solution: In this case, the discriminantis B — 4AC = 4x%y* - 4x%y? = 0.
The equation is therefore parabolic everywhere.

dy _ y

And the characteristic equations is T

hence, the characteristics are % = ¢ which is the equation of a family of straight
lines.
Consider the transformation § =§,n = y,where n is chosen arbitrarily.

The given equation is then reduced to the canonical form y* u,, =0.

Thus u,, =0 for y #0

Example: Transform the equation u + x“uyy = 0 into canonical form.

Solution: The equation is elliptic everywhere except on the coordinate axis x =0

because B?-4AC =-4x>< 0, x# 0

The characteristic equations are
dy . dy _ .
il 2 and 1= Tix

Integration yields 2y — ix? = cl,, 2y + ix? = Co

Thus, if we write & =2y - ix? n=2y + ix?
hence, a =2(§ + 1) = 2y, =5 (§ — n) = —x?
we obtain the canonical form  u.. + ugg = —ﬁuﬂ

NOTE: It should be remarked here that a given partial differential equation may
be of a different type in a different domain. Thus, for example, Tricomi’s equation

uyx + xuyy = 0 is elliptic for x > 0 and hyperbolic for x < 0, since B2 — 4AC = -4x

EQUATIONS WITH CONSTANT COEFFICIENTS
In this case of an equation with real constant coefficients, the equation is of

a single type at all points in the domain. This is because the discriminant B? - 4AC
is a constant.

dy _ (B+/BZ-44c) dy _ (B-VB?-a4c)

From the characteristic equations —=-——and —=~—— = we can
o dx 24 dx 24
see that the characteristics

NI —VB2- . .
y= (W)Aﬁ" Ciand y= (W)x + C, are two families of straight

lines. Consequently, the characteristic coordinates take the form
(B+VB2-44c)

§=y—-Aixand n =y - A,x Where 1,= 2A

The linear second-order partial differential equation with constant coefficients
may be written in the general form as  Auyy + Buyy + Cuyy + Duy + Euy + Fu = G(x, )
In particular, the equation Auyy + Buyy + Cuyy =0 is called the Euler equation.

PROF. MUHAMMAD USMAN HAMID (0323-6032785)



43

(A) HYPERBOLIC TYPE
If B = 4AC > 0, the equation is of hyperbolic type, in which case the

characteristics form two distinct families.

) (B+ 32—4Ac) (B— BZ—4AC)

Using § R Ay E— and 7 =y T T X

equation Auyy + Buyy + Cuyy + Duy + Euy + Fu =G(x, y) becomes

Uz = Diug + Equy + Fiu +Gy(§,m) where Dy, Eq, and Fy are constants.

Here, since the coefficients are constants, the lower order terms are expressed

explicitly.
(B+v/B2-44c)
2A
To remove this difficulty consider —B(Z—;)+C (f;—;)2 =0

When A =0, equation % = does not hold.

which may again be rewritten as Z—;: 0 and -B +C (Z—;) =0

Integration gives x =cj, x= (%) y +c¢o

where c; and c; are integration constants. Thus, the characteristic coordinates
are

& =x, n =x —(%)y we may use n =By - Cx

Under this transformation, equation Auyy + Buyy + Cuyy + Duy + Euy + Fu =G(x, y)
reduces to the canonical form

Uz = Djug+ Eju, + F1u +G7 (§,n) where D, E7, and F; are constants.

The canonical form of the Euler equation is ug, =0

Integrating this equation gives the general solution

u=¢@@+YPmM=9¢ (- A1)+ (y — 12,%)

where ¢ and y are arbitrary functions,and 1., =

(Bi BZ—4Ac)
24

(B) PARABOLIC TYPE
When B?- 4AC =0, the equation is of parabolic type, in which case only one real

(B+VB2-44c)
B 2A
That A,=21,= (ﬁ) , So that the single family of characteristics is given by

family of characteristics exists. From equation A1, = , we find

y = % x +c1 where c; is an integration constant. Thus, we have

§=y- (G)xn = hy + kx (arbitrary)

where n is chosen arbitrarily such that the Jacobian of the transformation is not
zero, and h and k are constants.

With the proper choice of the constants h and k in the transformation equation
Auyx + Buyy + Cuyy + Duy + Euy + Fu =G(x, y) reduces to

u, = Doug + Eou, + Fou + G2 (§,m) where Dy, Ez, and F; are constants.
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If B = 0, we can see at once from the relation B>~ 4AC =0 that C or A vanishes.
The given equation is then already in the canonical form. Similarly, in the other
cases when A or C vanishes, B vanishes. The given equation is then also in

canonical form.
The canonical form of the Euler equation is ug, =0

Integrating twice gives the general solution u = ¢ (§) +nyY(§) where § and n
aregivenby § =y — (%) x,m = hy + kx. Choosingh =1,k =0and 4 =%
for simplicity, the general solution of the Euler equation in the parabolic
caseis u = @ (y — Ax) + yyP(y — Ax)

(C) ELLIPTIC TYPE
When B?- 4AC < 0, the equation is of elliptic type. In this case, the characteristics

(Bi\/BZ—zlAC)

2 . The characteristic equations yield

y = A1x +c1, y= A2x +c, (after integeration)

where A ;and A, are complex numbers. Accordingly, c¢; and c, are allowed
to take on complex values. Thus,

=y — (a+ib)x, n=y-(a—ib)x

where 11, =a+ib in which a and b are real constants, and

a=2 andb =L Vvaac — B2

are complex conjugatesi.e. 11, =

2A 2A
Introduce the new variables

1 1
a=;E+m=y- ax B=5@—-m=-bx

Application of this transformation readily reduces equation
Auyy + Buyy + Cuyy + Duy + Euy + Fu =G(x, y)to the canonical form
Ug,o TUgs =Dsu, +Esu, +Fsu +G3 (e, B) where D3, Es, Fs are constants.

We note that B = AC < 0, so neither A nor C is zero. In this elliptic case, the Euler
equation gives the complex characteristics

=y — (a+ ib)x, n =y — (a — ib) x which are

§=(y—ax) — ibx,ny = (y — ax) +ibx = &

Consequently, the Euler equation becomes ug =0

with the general solution u=¢@+yP®

The appearance of complex arguments in the general solution (above) is a
general feature of elliptic equations.

Example: Solve the equation 4 uyy +5uyy + uyy + ux + uy = 2. Also find its canonical
form.

Solution: SinceA =4,B =5,C =1, and B> = 4AC =9 > 0, the equation is
hyperbolic. Thus, the characteristic equations take the form

dy _ dy _ 1 dy _ (Bi BZ—4AC)

dx 77 dx 4 Tdx 24 N
and hence, the characteristics are y =x tcq, y= (Z) + ¢, (onintegrating)
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The linear transformation E=y—-—axn=y— (i)

Then &, =-1,§,,=0,§,,=0,§,=1,¢,, =0

and 7, = _%:nxx = 0,7 = 0,1, =17, =0

A" = A&+ BE,&, + C&2 = 0 (after putting values)

Bt = 2887« +B (& ny + & n,)+2C§,ny = -~ (after putting values)
C=Ani+Bnyny+Cni=0 (after putting values)

D = A&y« + B&yy + C&yy + D& + E§y = 0 (after putting values)
E*=Anu+Bnyxy+Cny+Dnyx+Eny= % (after putting values) and F* =F=0, G*=G=2
Now Atu,. +Bwu,, +Cu,, +Du, +Eu, +Fu =G

1

Ug, = 3U, - g (after putting the values and solving)

This is the first canonical form.
The second canonical form may be obtained by the transformation

a=§¢+nB=%§5-1

, _1 8
inthe form u,, - uz; =zu

3 B 9

(07

Example: Solve the equation uy — 4 uy, + 4u,y = €’. Also find its canonical form.
Solution: Since A =1,B =-4,C =4, and B? - 4AC = 0, the equation is parabolic.
Thus, we have from equation § = y — (%) x,m1 = hy + kx we have

§ =y +2x,m =y inwhich n ischosen arbitrarily. By means of this mapping

. . 1
the equation transforms into v, , =7 e’

Example: Solve the equation uyx + uxy +uyy +ux = 0. Also find its canonical form.
Solution: Since A =18 =1,C =1, and B? - 4AC =-3<0, the equation is elliptic.
(B+VB2-24c) 1 | .3

Wehave }Ll'ZZT_Eil?

and hence, ¢ =y —(%+i‘/2—§)x =y _G_i‘/z_g)x

Introducing the new variables a =%(§’ +n) =y - %x, B :%(f —n) = —?x
2

the given equation is then transformed into canonical form u, ,+ ug, =§ua+ 7 Us
Example: Consider the wave equation uy — c’uy =0, c is constant. Find its
canonical form.

Solution: Since A =-c? B =0,C =1, and B - 4AC = 4c?> 0, the wave equation is
hyperbolic everywhere.

; dy \? dy _ . .
According to A(E) -B (E) + C =0 the equation of characteristics is

_.2 (4t 2 _ 2 _ 24,2 _
c(;) +1=0 or dx“=c°dt =0
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Therefore, x + ¢t = § =constant, x — ¢t = p =constant.
Thus, the characteristics are straight lines, which are shown in Figure.
.

g5 /
2

Ay
&
L

The characteristics form a natural set of coordinates for the hyperbolic equation.
In terms of new coordinates § and n defined above, we obtain

Uxx =Ug +2 u,, +u,, and utt:cz(uEE-Z u,, +u,,)

so that the wave equation becomes —4c® u,, = 0.

Since c# 0, we have u,, =0

Integrating with respect to &, we obtain u, =¥ (n)

where ¥, is the arbitrary function of 7. Integrating with respect to n, we obtain
u@m =[Pi(mdn + @ ¥

If we set () = [ Y1 (M) dn) the general solution becomes

u@n = ¢ +ym

which is, in terms of the original variables x and t
uxt)=pex +ct)+yp (x — ct)
provided ¢ and ¢ are arbitrary but twice differentiable functions.

Example: Find the characteristic equations and characteristics, and
then reduce the equations u,x — (sech*x) uy, = 0 to the canonical forms.

Solution: In equation A =1,B =0 and C = -sech’x. Hence B? — 4AC =4 sech®x > 0.

Hence, the equation is hyperbolic.

.y . dy  (BV/BZ-24c)
The characteristic equations are v

Integration gives y + tanhx = constant
Hence, =y + tanhx,n =y — tanhx
Using these characteristic coordinates, the given equation can be transformed

into the canonical form u,, = ] (ug —u,)

= + sech®k
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Example: Find the characteristic equations and characteristics, and
then reduce the equations uy + (sech*x)uyy = 0 to the canonical forms.

Solution: In equation A =1,B =0 and C = sech®z. Hence, B? = 4AC = +i sech’x
Integrating gives y + itanhx = constant

Thus, § =y +itanhx n=y-—itanhx

The new real variables « and B are a =%(€ +n) =y =% (§ —n) = tanhx
In terms of these new variables, equation can be transformed into the canonical
form Uyt Ugy = 13_1;;2 ug, Bl <1

Example: Consider the wave equation uyy + (2 COSecy) uyy +(cosec?y) uyy = 0.

Find its canonical form.

Solution: In this case, A =1,B =2 cosecy and C = cosec?y. Hence, B>- 4AC =0,
And % =% = cosecy

The characteristic curves are therefore givenby & = x+cosyandn =y
Using these variables, the canonical form of equationis u, , =(sin® n cos 1) u,

GENERAL SOLUTIONS

In general, it is not so simple to determine the general solution of a given
equation. Sometimes further simplification of the canonical form of an equation
may yield the general solution. If the canonical form of the equation

is simple, then the general solution can be immediately ascertained.

N

Uyy T2XY Uyy + yzuyy =0
, m = ythis equation reduces to the

Example: Find the general solution of x
Solution: using the transformation & =
canonical form u,, =0, fory #0

Integrating twice with respect to n, we obtain

ul&n) =nf & +g& wheref (§) and g (§) are arbitrary functions.
In terms of the independent variables x and y, we have

u@xy) =yfO+ 9>

=R I<

Example: Determine the general solution of 4 uy, +5uyy + uyy + ux + uy = 2
Solution: SinceA =4,B =5,C =1, and B> = 4AC =9 > 0, the equation is
hyperbolic. Thus, the characteristic equations take the form

dy _ dy _ 1 dy _ (Bi BZ—4AC)

dx 77 dx 4 Tdx 24 N

and hence, the characteristics are y =x +cq, y= (Z) + ¢, (onintegrating)
The linear transformation E=y-xn=y-(

Then &, = -1,§,,=0,§,,=0,§,=1,§,, =0

1
and n, = _Zlnxx = Olnxy = O»Uy = 1rnyy =0
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A" = A&+ BE,&, + C&2 = 0 (after putting values)
*= 2080« +B (§xny + & n)+2CE 1, = - 2 (after putting values)
C=Ani+Bnyny+Cni=0 (after putting values)
D = A&y« + B&yy + C&yy + D& + E§y =0 (after putting values)
E*=Anw+Bnxy+Cny +Dny+Eny= % (after putting values) and F* =F=0, G*=G=2

Now Atu,. +Bwu,, +Cu,, +Du, +Eu, +Fu =G

u,, = %un - g (after putting the values and solving)

By means of the substitution v =u, the preceding equation reduces to
1 8

VE = EV - 6

3
Integrating with respect to §, we have v = g +% e(i) F(n)

g
Integrating with respect to n,we obtain u (§,n) = gn +% gm e(i) + f(©

where £ (§) and g (n ) are arbitrary functions.
The general solution of the given equation becomes

u@y) =20 - +1g0-He P + f(y - ®

Example: Obtain the general solution of 3uyy +10uyy +3uyy = 0.

Solution: Since B —4AC =64 > 0, the equation is hyperbolic. Thus, from equation
dy  (B+VBZ-4c)

.. 1
=~ the characteristics are y =3x +c¢1, y==X +¢o
dx 2A 3

Using the transformations E=y—-3x,p = y—%x

the given equation can be reduced to the form (%) u., =0

Hence, we obtain u,, K =0

Integration yields u (§,n) = f (&) +g (M
In terms of the original variables, the general solution is

u@xy) = f@ - 30+90 -3

Example: Find the general solution of the following equations
Yuyyx +3yuxy +3ux =0, y# 0
Solution: In equation A =y,B =3y,C =0,D =3,E =F =G =0.

Hence B? — 4AC = 9y*> 0 and the equation is hyperbolic for all points (x, y) with

. : _ay _ (B+/BZ-44c)
y # 0. Consequently, the characteristic equations using o R
ﬂ __3y+3y _

dx 2y 3,0

Integrating gives y =c;andy =3x +c;

The characteristic curves are ¢ = yandn =y — 3x

In terms of these variables, the canonical form of equationis § u,, +u, =0.

are
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Writing v = u, and using the integrating factor gives

vV =u, :§C (m) whereC (n)is an arbitrary function.

Integrating again with respectto n gives

u@m =;fCmdn+g@ = fM+g @

where f and g are arbitrary functions. Finally, in terms of the original
variables, the general solution is u (x,y) = if y—-3x)+g )

Example: Find the general solution of the following equations

Uyxx +2Uyy +Uyy =0

Solution: Equation has coefficients A =1,B =2,C =1,D =E =F =G =0.
Hence, B =4AC = 0, the equation is parabolic. The characteristic
equation is % =1 and the characteristicsare § =y —x =c;and n =y
Using these variables, equation takes the canonical form u,, =0
Integrating twice gives the general solution u(§,n) = nf (&) +g (§)

where f and g are arbitrary functions.
In terms of x and vy, this solution becomes u(x,y) = yf(y —x)+g(Qy — x)

Example: Find the general solution of the following equations
Uyy +2Uyy +5uyy +uy =0
Solution: The coefficients of equationareA =1,B =2,C =5,E =1,F =G =0 and

hence B? - 4AC = -16 < 0, equation is elliptic.

The characteristic equations are % = (1+ 2i)
The characteristicsare y = (1 — 2i)x +c;, y= (1+2i)x+cy
andhence, { =y -1 -2Dx,p =y -1+ 2)x

and new real variables o and B are

1 1
a=;+m=y-x B=5E—-—m=2x
The canonical form is given by  u, .+ u;, :i(ua- 2 ug)

It is not easy to find a general solution of given equation.
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THINGS TO REMEMBER

LAPLACE EQUATION IN CYLINDRICAL COORDINATES

The laplace equation in cylindrical coordinates (r, 0, z) is wrriten as follows

) 1 1
\ uzurr+;ur+ﬁugg+u22=0

With most general solution u(r,8,z) = J,(Ar)(cie** + c,e7*?)(c3Cosnb + ¢,Sinn6)

LAPLACE EQUATION IN SPHERICAL COORDINATES

The laplace equation in spherical coordinates (r, 8, @) is wrriten as follows
0 (rz 6u) 1 4 (S nea_u) 1 az_u

ar\" ar) " sineae\"" SinZB dp?

Viu=— =0

a0
With most general solution u(r,8, @) = (c;7™ + c,7~ V) c3(AP,(Cos0))

DIFFUSION (HEAT) EQUATION IN CYLINDRICAL COORDINATES

The Heat equation in cylindrical coordinates (r, 0, z) is wrriten as follows
1
Eut = Uy + ;ur + ﬁugg + u,,

With most general solution

u(r,0,z,t) = ¢4/, (\//12 + uzr) (cCosvO + DsinvO)(Aet” + Be #7)(e*°Kt)

DIFFUSION (HEAT) EQUATION IN SPHERICAL COORDINATES

The Heat equation in spherical coordinates (r, 0, ¢) is wrriten as follows

1 2
Eut Uy +—

With most general solution
- : _ 22
U(T, 0, Z, t) = Z/l,m,nAAmn(/lr) 1/2]n+%(/1r) Pw(cose)eilmqo A°Kt

i
—(8in6.uy) +

vt Zsin0 90 125in20 "e¢

WAVE EQUATION IN CYLINDRICAL COORDINATES
The Wave equation in cylindrical coordinates (r,0,z) is wrriten as follows

1 1 1
c_zutt = Uy + ;ur + ﬁuee T Uy,

And for one dimension when u = u(r) only. i.e. u depends only on ‘r’ then

1 1 1 149 ou

Z Wi = Ut U, OF = Ui _rar( ) ;7>0

With most general solution [c e i3 &P ’(“’/c)(r”t)] els SXPliw/Or- Ct)]]
9 ww €16 Vr

WAVE EQUATION IN SPHERICAL COORDINATES
The Wave equation in spherical coordinates (r,0,9) is wrriten as follows

Sy = (r2 6_u) +—— 2 (Sin@.up) + ——

u
c2 12 or ar r2Sin6 00 2SmZ(J P9

And one dimension when u = u(r) only. i.e. u depends only on ‘r’ then
1 190 2 0u
Uy == (r —) ;7>0

c2 12 or ar

With most general solution u= [c1

+C2

r r

expli(w/c)(r+ct)] exp[—i(w/c)(r—ct)]]
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LAPLACE EQUATION IN CYLINDRICAL COORDINATES
The laplace equation in cylindrical coordinates (r, 0, z) is wrriten as follows

1 1
Viu=u, + “Uy + 5 Ugg + U, = 0

For solution consider u(r,0,z) = F(r,0)Z(z)

2 2 2
2y, = 9F 10F 10°F a°z _
= Vu = 6r2Z+r6rZ+r2t')Bzz+FdzZ =0
a’F  10F | 1 3’F\1 d’Z 1 . .
= (ﬁ o r_ZW)F === k(say) where k is separation constant.
L (e 22, 1001y
a2 rar r2002)F
a’F 19F 1 3*F :
9z ;E-I_r_zﬁ_kF_O ............... (l)
d’Z 1
= ——=
Or dz2 Z
d*z
= — =
i kZ=0
= Z = c;CosVkz + c,Sinvkz  if ‘K’ is real and positive.
=>Z= cle\mz + cze‘\/EZ if ‘k’ is negative.
=>Z=c1z+c; if ‘k’ is equal to zero.

For physical consideration, one would expect a solution which decay with
increasing ‘2’ and therefore the solution corresponding to negative ‘k’ is
acceptable. Therefore k = —2% then

= Z = c,e* + ce™

2 2
Also (i):‘;Tf+1a—F+ia—F+/12F=0

ror | rZae?
= f'H+-f'H+—fH' +12fH =0 choosing  F(r,8) = f(r)H(6)
= (r*f" +rf + Azrzf)% = —H?” = k'(say)

> -2 =k also =@ +rf A=k

For physical consideration, we expect the solution to be periodic in 8 which can
be obtained when k' will positive. Therefore the acceptable solution will be

H = c3CosnB + ¢,Sinnb

>rif'+rf + A2r2 —n?)f =0 when k' = n? a Bessel’s equation.

= f = A],(Ar) + BY, (Ar) is general solution with J,,(4r),Y,(Ar) Bessel’s functions
Since Y, (Ar) - «; as r — 0 therefore Y, (Ar) becomes unbounded at r = 0.
Continuity of the solution demands B = 0.

Hence the most general and acceptable solution of V?u = 0 is as follows;
u(r,0,z) = J,(ar)(c1e*” + c,e7*?)(c3Cosn0 + c,Sinnd)
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LAPLACE EQUATION IN SPHERICAL COORDINATES

The laplace equation in spherical coordinates (1,0, ) is wrriten as follows
d ( 20u 1 0%u

V u= ar (T ;) t Sine Sin6 00 (Slne ) slnzeﬁ =0
For solution consider u(r,0,¢) = R(r)F(B, Q)

2 d ( 2R R 9 R 9°*F
= Veu = F—(r —) Si 0 — =
ar or + Sin6 30 SanB a2

=1 [i (r2 d—R)] = 1[ L {— (Sine —) + Lﬁ}] = —u with g a separation constant

R Lar dr F Lsino (90 Sin20 dp?
1[d ( 2dR\] _ 1 R _ .
= E[E (r E)] =—U e (i) And == [S no{ (S inf — ) Slnzea(pz}] =3 /R (i)
, zdz_R d_R _
Now (i) = r 2 tT2r—+uR=0 ... (iii)
this is Euler equation. So using transformation r = e* the auxiliary solution can
—1+./1-4pu

bewrittenas =2 AA-1)+2A+pu=A*+A+u=0= A= 5

142 ()
Let p = —oc (cx +1>=>A=L(°‘+2)=‘?1J_r(o<+§)=m=oc,—(oc +1)

2
(iii) = R = c,r* + cpr~ &1
. . . OF R 0°%F
Taklng H=— (OC +1) (ll) [S ne{ (Slneg) +mw}] = —X (OC +1)
1
(ii) > — (SmB ) nzea >

choosmg F(0,p) = H(B)®(¢) and separating variables

. (x +1)FSin6 =0

sind[d (. ,dH _1d%e o :
= H [dg (5”19 10 )+°< (e +1)HSln0] o,z = V> With v* aseparation constant
_ld P 2 . Sin6 d . dH . .2
== d(p =v° ... (iv) also= |78 (Sme do) +oc (o +1)HSm0] =v° ... (V)

(iv) = d—(p2+ V’® = 0= ® = c3CosvQ + c,Sinvp withv # 0

If v =0 the solution will be independent of ¢ which corresponds to the

axisymmetric case.

Sin@
H

Now for axisymmetric case (v) = [% (Sine Z—Z) +oc (o< +1)HSin0] =0
d (c: pdH ,

= E(Sme E) +x (<« +1)HSinB =0

Transforming the independent variable 8 to ‘x’ and letting x = Cos@

(S BZHZ;) +o (x +1)HSind = 0 = — ((1 Cos?0) X )+oc (x+1)H=0

=— ((1 —x%) E) +o (o< +1)H = 0 this is well known Legendre’s equation.

General solution of above is H = AP,,(Cos0) + BQ,(Cos0)
Then F(0,¢) = c3(AP,(Cos@)) put B =0 also ¢ = 0 for axisymmetric case

Thus  u(r,0,¢) = (c17™ + c,r~ V) c3(AP,(Cos0))
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DIFFUSION (HEAT) EQUATION IN CYLINDRICAL COORDINATES
The Heat equation in cylindrical coordinates (1,0, z) is wrriten as
follows
1 1 1 .
ZUt = U T U+ S Ugg T Uz e (i)
For solution consider u(r,0,z,t) = R(r)H(0)Z(z)T(t) ......... (i)
(i) = =RHZ = R"HZT + - R'HZT +  RH"ZT + RHZ'T

171 R 1R/ 1 Hrr Zn

ir _ Ry 1R 1 HrW  Zr 42
kT R iR TEE T A

where —A? is a separation constant.

1T 2 i Ru (AR LH0 Zn gy
= T = A% ...... (i) and >ttt = Y I (iv)

(i) > T' + 22KT = 0 = T = e ¥kt

(iv) > 4+ T+ 5+ 22 =-Z"=—py? (say)

>-Zl=—p? ... (v) and = +-T+ A2 =—p? ... (vi)
v) = 272" - uZZ—O:>Z—Ae"Z+Be“Z
(vl)=>R—+1R—+—"—+/12+u ~0

= r2 —+r +(Az+u2)r —7=v2 (say)

:-%:vz ...... (vii) and =12+ r=+ (A2 + p?)r? = v? ......(vii])

(vii) = H' + v*H = 0 = H = cCosv0O + Dsinve

2
(viii) = R" + %R’ + [(AZ + u?) — :—2] R = 0 this differential equation is
called Bessel’s equation of order ‘v’ and its general solution is as
follows;

R(r) =c4J, (w/lz +u r) + ¢, Y (,/AZ +u r)

Where J,(r),Y,(r) are Bessel’s functions

= R(r) = ¢4/, (w/lz + uzr) for singular equation r =0

Thus general solution of equation (ii) will be
u(r,0,z,t) = cqJ, (w/lz + uzr) (cCosvO + DsinvO)(Aet? + Be %) (e"‘z’“)
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DIFFUSION (HEAT) EQUATION IN SPHERICAL COORDINATES
The Heat equation |n spherlcal coordlnates (r,0, @) is wrriten as follows

1 2 .
U = Uy + U+ rZS — 2 (SinB.uy) + 2szguq,,q,, ......... (i)
For solution consider wu(r,0,z,t) = R(r)H(0)®(p)T(t) ......... (i)
(i) = =RHZ = R"HZT + - R'HZT + - RH"ZT + RHZ'T

1T R 2R/ 1 1d(_, _dH 1 do 9
kKT R + + R N Zsmenae (Sm E) or2sine do? 4
where —AZ IS a separation constant.

17" 2
= T A5 ... (i)

R/ 2Rr 1 1d dH 1 de .9 .

and = PRy (SmG de) torsnle de? A% ... (iv)

(iii) = T’ +22KT = 0 = T = e ¥kt

2R’ 1 2] _ t1d*e o
(lv)=>r5m0[ + R+Hr23m0d0(5m9 )+/1]— L =m (say)

2
=>—1d—q)=m2 ............. (v)
@ de?

2R’
and =>rSm9[ T EFga>

2] _ .2 :
=T e (Sme ) + 1 ] =m- ...... (vi)

(1)) =o' + [l, dP=0> = Clelm‘l’ + ¢, e ime
2
(‘Ul) > — (R’r + - R’) + A%2r2 = m~ 1 d (S o ) - nmt D) (say)

Sin6 HSin6 do

=>R”+;R’+{/12 "("“)}R 0 ... (vii)

2
= (H' + CotoH) + {n(n + 1) - SZZB}H =0 ......(viii)
1172
w4ty g {/12 )
r

r2

(vii) = (Ar)~1/2

}w] =0 for R = (Ar)"Y2¥(r)

1172
=@ 2+ 0> [‘P” +29 4 {,12 .

r2

}q’] = 0 this differential

equation is called Bessel’s equation of order ‘n + %’ and its general
solution is as follows;  W(r) = AJ ,1(4r) + BY  1(4r)
2 2

= R = (Ar)"1/2 <A]n+1(lr) + BYn+1(Ar)>

PROF. MUHAMMAD USMAN HAMID (0323-6032785)
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Where J,,, Y, are Bessel’s functions.
Now introducing u = Cos@

_ H I} - _ a2y’
=>Cot0—\/1__HZ=>H(0)— J1—u*H' (n)

= H"(6) = (1-p)H" () — pH' (1)

2
(wid) = (1 - pH" (1) = 20H' (W) + {n(n+ 1) - 7
associated Legendre’s DE whose solution is as follows;
= H(0) = A'P7(u) + B'QM(u) where PT, Q™ are associated
Legendre’s solutions of degree ‘n’ and order ‘m’

Then
u(r,0,z,t) =

(Ar)~1/2 <A]n+1(lr) + BYn+1(/1r)> (AP (w) + B'Q(w))(c,€™? + cze“'m‘/’)(e‘ﬂ’“)

}H =0 thisis an

In the general solution the functions Q7'(x) and (ar)~"'/?BY_ 1(4Ar) are

excluded because these functions have polesatu=+1andr =0
Thus general solution of equation (ii) will be

u(r,6,z,t) = (Ar)~*/? <A],,+1(M‘)> (4P (1)) (c1e™® + cyemime) (e~ HKY)

Or in general
u(r,0,z,t) =Y mn A/lmn(/lr)_l/zln#(/lr) P™(Cos@)etimo—2’Kt
2
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ONE DIMENSIONAL WAVE EQUATION IN CYLINDRICAL
COORDINATES

In cylindrical coordinates, the wave equation assumes the following
form

1 10 du .
C—zutt—;;(r;) ,7'>0 (I)
To find solution consider u = F(r)e'®t
= Z—’: = F'(r)e'“t and u,, = —w?F(r)e'®t
(i) = 12 (—w?F(r)e't) = %% (rF'(r)e'et)
2
= F'(r) + 2 (r) + ‘:—ZF(r) =0 which has the form of Bessel’s equation

and hence |ts solution can be written as follows;

F(r) = 4]y (%) + BY, (%)

In complex form we can write this equation as

F(r)—C1(]o( )+ Yo( )>+C2(]0( )_iyo(%»

It can be rewritten as

F(r) = C1Ho( ) + czHZ( ) with H}, H3 as hankel transform.
Defined as follows;

HY = Jo () + i, (%) and HE = Jo (%) - iv, ()

(i) >u=F@e“t=c e""tHO( ) + c,e'tH? ( - )

Using asymptotic expression as follows

Hj(x) = \/%ei(x'%) and H3(x) = \/ge“’(x‘g)

Then our required solution will be as follows;

_ |2c —iz expli(w/c)(r+ct)] i expli(w/c)(r—ct)]
= /m [cle 1 7 + cyes 7
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WAVE EQUATION IN SPHERICAL COORDINATES
The Wave equation inone dimension when u = u(r) only. i.e. u
depends only on ‘r’ will be of the form

1, _ 10 (20u) :
Z U = 75 (r ar) ;r>0 ............(I)
To find solution consider u = F(r)e'!
= Z—’: = F'(r)e't and u,, = —w?F(r)e'®t
. 1 2 oty 10 1 2 ;
(i) = C—z(—w F(r)e'*!) = ﬁﬁ(r F'(r)e'*?)
Fr(r)

2
=>F'(r)+2 —+ ‘:—ZF(r) =0 which has the form of Bessel’s
equation and hence its solution can be written as follows;
A wr B wr
Fo) =50 (%) + 72 (%)
But we know that

wr 2 .. _ |2
]%(T)—\/;Smx and ]_%—\/;Cosx

Then

u= E [A Sin(wr/c) +B Cos(wr/c)]
\’ Tw r r

And in complex form F(r) = ¢ —ex”[i(:’r/c)] + ¢, —exp[_iiwr/c)]

Hence tour required solution is as follows;
expli(w/c)(r+ct)] exp[—i(w/c)(r—ct)]

u=[cl , +C2 K

PROF. MUHAMMAD USMAN HAMID (0323-6032785)
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EXERCISES

1. Determine the region in which the given equation is hyperbolic, parabolic,

or elliptic, and transform the equation in the respective region to canonical form.
(2) Xuyx + uyy = x° (b) uxx + YUy =y

(C) uxx + xyuyy =0 (d) x°uyx = 2Xyuyy + y2uyy = €

(€) uxx + uyy = xuyy = 0, (f) “ugx + e’uyy =u

2. Obtain the general solution of the following equations:

() XUy +2Xyuyy + quyy + xyuy + yzuy =0, (i) rug-— c’ruy, — 2¢%u, = 0, ¢ = constant
(iii) 4uy +12uyy +9uyy = 9u =9 (iV) uyx + uyy — 2uyy = 3uy = 6uy = 9(2x —y)

(V) yuy +3yuyy +3ux =0,y #0. (Vi) uxx +uyy =0 (Vii) 4 uyx +uyy =0,

(Viii) uxx =2 uxy +uyy =0 (iX) 2uxx+uyy =0 (X) uxx +4uyy +4uy, =0

3. Find the characteristics and characteristic coordinates, and reduce the
following equations to canonical form:
(@) uxx +2uyy +3uyy +4uy +5uy +u = e*

(C) uxx +5uyy +4uyy +7uy = Sinx (d) uxx + uyy +2uy +8uy +u =0
(€) uxy +2uyy +9uy +uy =2 (f) Buxx —uyy +u = 2

(g) uxy + ux +uy = 3x, (h) uyy = 9ux +7uy = cosy,

(1) XUyy = yzuyy - uy = 1+2y2 () uxx + yuyy + Y2 uy +4yu, =0
(K) X°y?Uxx +2XyUyy + Uy = 0 (1) uxx + yuyy = 0.

4. Determine the general solutions of the following equations:

(i) uxx— 1/c® uyy = 0, c= constant (i) uxx + uyy =0

(V) uxx + uxy = 0, (Vi) uxx +10uyy +9uyy =y

5. Classify each of the following equations and reduce it to canonical form:

(@) ¥ uxx — xuyy =0, x>0, y>0 (b) uxx +(sech*x)uy, =0
(€) uxx +6uyy +9uyy +3yuy, =0 ()] V2 Uyy +2XYUyxy +2)(2uyy +xu,=0

(9) uxx = (2 COS x) Uxy +(1 + COS® X) uyy+u =0
(h) uxx + (2 cosec y) uyy +(cosec?y) uyy =0

(i) uxx = 2 uxy + uyy +3ux —u+l =0
(j)uxx—yzuyy+ux—u +x°=0

(K) uxx + yuyy = xuy +y =0
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FOURIER TRANSFORMATION AND INTEGRALS

WITH APPLICATIONS

FOURIER TRANSFORMATION

If u (x,t) is a continuous, piecewise smooth, and absolutely integrable function,
then the Fourier transform of u (x, t) with respect to x € R is denoted by

U (k,t) and is defined by

F{u(x,t)} = U (kt) = e™ u (x,t) dx

7 )

where k is called the Fourier transform variable and exp (—ikx) is called the

kernel of the transform.

Then, for all x € R, the INVERSE FOURIER TRANSFORM of U (k,t) is defined by

F LUk t)} = ulxt) = e ™ U(k, t) dk

\/1 j
ZTt_
CONDITION FOR EXISTENCE OF FOURIER TRANSFORMATION
Fourier Transforamtion and Inverse Fourier Transformation exist if

() The function f(x) or F(k) is continuous or piecewise continuous over

(—o0,0) and bounded.

(i)  The function f(x) or F(k) are absolutely integrablei.e.
[Z If@)ldx or [ |F(k)|dk
existence of Fourler Transforamtion and Inverse Fourier
Transformation.

2 1 (—ﬁ)
Example: Show that ?{e‘a" } =€ 4o ;a>0
Solution. We have, by definition
FU 0} ==, e f (dx = = [ el* e~ dx
2 1 o —a[(x_&)z‘*izz]
Fif (0} == f R e o N A
e"ia oa(x &)2

F{f x)} == f 20/ dx

ik 2 _dp
Puta(x—z) =P :»\/—(x—z—) P=>\/_dx— P=>dx—\/—a

_e4a ik \? _e4u —p2 dP
> F{f )} = rf ") =7 ot Y

dP = n

=>T{f(x)}—e4a Y N

V2ma

P ) = e} = Ll

this condition is sufficient for

Consider ikx — ax?
ikx

=-a (x2 - '—)
a

A%

N2 2
ik k
=—-al|lx——) +—
[( Za) 4q2

NOTE: sometime appears in the form F {Ne‘a"z } known as Guassian Function.
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Example: Show that F{e™aX} = \/%(az;:kZ) ;a>0
Solution. We have, by definition
Ff () = %—f‘” o f (r)dx = o= [ el emal ax
lkx—alxl _ 1 0 (a+1k)x . —(a—ik)x
FU @} =7 f_ dx = \/ﬁf— dx + f dx

1 2 a
T{f )} :ﬁ[a+lk+m = \/:(a2+k2)
Example: Show that F {X|_gq(x)} = f

S mak

X|<aor —a<x<a
where X|_gq(x) = H(a—|x]) = { i x| > a

Solution. Let us consider f (x) = X|_44(x) then We have, by definition
Fif (0} = %f e f (R)dx

F{f (00} = r[f e f ()dx + [ ™ f ()dx + [, e™* f (x)dx]

F{f (x)}= \/_[f e 0dx + [° e 1dx+ [~ e 0dx]

F {f (x)} — \/?Tf—a elkx dy = k\/zz_n( elka ;i—lka) | E(Sl‘r’l:lk)

T

FIND FOURIER TRANSFORMS OF THE FOLLOWINGS;

) = {1 , Ii: ; Z the gate function. Where ‘a’ is positive constant.
i f =
1, —a<x<a
ii.  f(x) = Xi-aa] (x) = { 0 , otherwise
x|
. _ <
. f(x)={1 — x| < a
0, x| > a
1
v. f(x)= (x2+a?)
vi.  f(x) = Sin(x?)
vii.  f(x) = Cos(x?)
KEEP IN MIND ./

§ IN THIS BOOK (MYINT) THERE IS A SIGN DIFFERENCE FOR THE DEFINATION OF
FOURIER AND INVERSE OF FOURIER. BUT IN SO MANY BOOKS SIGN IS M
- DIFFERENT TO THIS BOOK. SO | PROCEED ACCORDING TO OTHER BOOKS.
- |IF SOME QUESTION APPEAR WITH DIFFERENT SIGN (+VE OR -VE) STUDENTS
B JUST CHANGE THE SIGN OF EXPONENT IN DEFINATION. B

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
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PROPERTIES OF FOURIER TRANSFORMS

LINEARITY PROPERTY: THE FOURIER TRANSFORMATION F IS LINEAR.
Proof.

Let u (x) = af (x) + bg(x) where a and b are constants.

We have, by definition

Flu@) ==/, e u@dx = rf el [af (x) + bg(x)]dx

Flu (0} = 5= /7, e fdx + 2= [T ™ g(x)dx = aF (f()} + bF {g(x))
Flaf(x) + bg(x)} =aF {f(x)} + bF {g(x)} hence proved.

LINEARITY PROPERTY: THE INVERSE FOURIER TRANSFORMATION F1|S
LINEAR.
Proof.

Let U (k) = aF(k) + bG(k) where a and b are constants.
We have, by definition

FLU (k)} = %_n [2 e & y(k)dk = J%_ﬂ [ e [aF (k) + bG(k)]dK
FLU ()} = =[5 e ™ Fllydk+—== [ e ™ G(k)dk

F-1{aF(k) + bG(k)} = aF 1 {F(k)} +bF1{G(k)} hence proved.

SHIFTING PROPERTY: Let F {f (x)} be a Fourier transform of f(x). Then
Ff (x — )] = e* F(k) where ¢ is areal constant.
Proof. From the definition, we have, for ¢ > 0,

Fif(x —0o]= rf_m e™ f (x — o)dx
Putx — c=x"=dx =dx’ alsoasx—>+oothenx —>+oo

FIf(x - O] == j (' 40) f (x)dx’ = —== f o glke £ (x')dx’
FIf(x - o) = ek, mf e f (X)dx’ = e F {f (1)) = e F(k)

SCALING PROPERTY: If F is the Fourier transform of f, then
Flf (cx)] = (%) F (%) where ¢ is areal nonzero constant.

Proof. Forc # 0
Ff (cx)] = =, e f (cx)dx

! , 0 ikx_l , ,
FIf @] = =17 e p @ 21 L= M) pnar 1
Sincec # 0theneitherc< 0orc> 0

If ¢> 0then F [f (cx)] =—F ()

If ¢ < 0then F [f (cx)] = = F (9

Hence F [f (cx)] = (=) F (%) c

1
c

|
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DIFFERENTIATION PROPERTY: Let f be continuous and piecewise smooth in
(—= ). Let f(x) approach zero as |x| —» « If fand f’are absolutely integrable,

then F[f'(x)] = (=ik)F [f (x)] = (—ik)F (k)

Proof.

FIf (%) = mf_w el ' (x)dx

FIF @] = o=|le™f @7, - [7, e (ik) f ()dx| = 2=[0 + (=ik) [ e’ f (x)dx]
Flf'®] = (ikF [f (x)] = (—ik)F (k)
This result can be easily extended. If f and its first (n — 1) derivatives are
continuous, and if its nth derivative is piecewise continuous, then

FIf'(x)] = (—ik)"F[f (¥)] = (—ik)" F (k) n=012,..

provided f and its derivatives are absolutely integrable. In addition, we assume
that f and its first (n — 1) derivatives tend to zero as |x| tends to infinity.

CONJUGATION PROPERTY: Let f is real then F (—k) = F (k)
Proof.
Since f is real therefore f (x) = f (x) then by defination

F (k) = F [f(x)] mf_oo e f (x)dx
ANd F(K) = F [f )] = o= e ™ F ()dx = == [, ei% f (x)dx = F (—k)
Hence F (=k) = F (k)

ATTENUATION PROPERTY: For a function , F[e™f (x)] =F (k — ai)
Proof.

By definition F (k) = [f(x) mf_oo el f (x)dx
Then F [e®f (x)] F [ e eaxf (x)dx = \/%_“ [ ek em*axf (x)dx

F [e™f (x)] m [ elkabx £ (x)dx .......... (i)
Also F (k- ai) = F[f(x)] = \/%_n [2 elk=abx £ (x)dx .......... (i)
Thus from (i) and (ii) F [e**f (x)] = F (k — ai)

MODULATION PROPERTY(i): F [Cosaxf (x)] =
Proof.

By definition  [Cosaxf (0)] = F [(“s) f ()]

F [Cosaxf (x)] = ;[ F (€ f (1)} + F {e” f ()}] =5 [F (k + @) + F (k — )]
MODULATION PROPERTY (ii): F [Sinaxf (x)] = -[F (k+ a) — F (k — )]
Proof. _ _

By definition F [Sinaxf (x)] = F [(———) f (x)]

F [Cosaxf (x)] = 5[ F {e™* f (x)} — F {7 f (0)}] = ;;[F (k+ @) = F (k— )]

N | =

[F(k+a)+F (k—a)
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CONVOLUTION FUNCTION / FAULTUNG FUNCTION
. 1 0o
The function (f « @) () = =/ f(x — H g (D d§
is called the convolution of the functions f and g over the interval (—eo, =)

NOTE: The convolution satisfies the following properties:
1.f x g = g * f (commutative)

2.f (g » h) = (f » g) » h (associative)

3. * (ag + bh) = a(f » g)+b (f * h), (distributive)
where a and b are constants.

PROPERTY: fxg =g * f
PROOF: since by definition (f * g) (x) = %f_"jof(x — &) g (¥ déE

Putx — §=x >dé =—-dxalsoé=x—x and if § > oo then «— +o then

Fr 9@ =7=["f(Qg@x-)(-de) = =] g(x—)f (x) (dx)=g * f
Hence fxg =g * f

PROVE THE FOLLOWING PROPERTIES OF THE FOURIER CONVOLUTION:

@fxX)+gx) =g *fx),MB)f*(@=*h = (=g)*h
(o)f * (ag + bh) = a(f » g) +b (f * h),where a and b are constants

@f*0=0xf=0(f*1=f
Nf*2mé=f=V2né=+f

CONVOLUTION / FAULTUNG THEOREM
If F(k) and G(k) are the Fourier transforms of f(x) and g(x) respectively, then the
Fourier transform of the convolution (f * g) is the product F (k)G(k). That is,

F{f (x)» g(x)}= F(k)G(k)
Or, equivalently,  F1{F (k)G(k)} = f(x) * g (x)
Or

FHF (0G0} = 7= [, e ™™ F (l)6()dk = (f * g) () = 7=/ f (x—§) g () d§

PROOF: By definition, we have

FHF ()G} = 7= [, e F (k)G (k) dk

FHF (0G0} = 7= e ™ F() { = [ e g (x)dx'} dk
By changing the order of integration

FHF (0G0} = 7= [ [ == [, e ™) F(k)dk| g (x)dx

FHF (06U} = = f (x—x)g (x)dx' == [ f (x— &) g(&) d§ = (f * 9) (%)
Where we replace § with x’

Hence F~1 {F ()G(k)} = f (x) * g (%)

or  F{f(x)+g@}=FKGK)

PROF. MUHAMMAD USMAN HAMID (0323-6032785)



64

PARSEVAL’S FORMULA
According to this formula f_oooolf(x)l2 dx = ffoooIF(k)Ide

PROOF: The convolution formula gives

T e F (06 U0k = 5o [ f (§)g (x - dg

I fF@®gx—-§ds=[ e ™ F(k)G(k)dk

which is, by putting x = 0

15, F ©g (=& d§ = [ F (k)G(k)dk

20 f (0g (—x) dx = [ F (l)6(k)dk

Putting g (-x) = f(x) then g (x) = f (-x) = F {g (®)} = F {f (-2}

= G(k) = F (k) then above equation becomes - F{f (—x)} = F (k) for complex f.
IZ f(f @) dx=["_F (k)F (k)dk where the bar denotes the complex conjugate.
= [T If@01P dx = [ |F(K)|* dk

In terms of the notation of the norm, thisis ||f|| = ||F]|

JUST READ THE FOLLOWING AND KEEP IN MIND THE RESULTS
DIREC DELTA FUNCTION
The dirac delta function is defined as follows;

o ifx=0

6(x) =lim.,6.(x) = {0 ifx+0

PROPERTIES:

i [ sdx=1

ii.  For any continuous function f(x); [ f(x)8(x)dx = £(0)

iii.  6(x)=6(—x)

iv. é(ax) = ‘—118(x) ;a>0

v.  SHIFTING PROPERTY: For any continuous function f(x);

[7 F@)8(x — a)dx = f(a)

vi. If 8(x) is continuous differentiable. Then [~ f(x)&'(x)dx = —f'(0)
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THE FOURIER TRANSFORMS OF STEP AND IMPULSE FUNCTIONS
The Heaviside unit step function is defined by

_ (0 x<a
Hx - a) = {1 X> a
The Fourier transform of the Heaviside unit step function can be easily
determined. We consider first

wherea 20

F[H(x - a)] = \/%ffoooeikx H (x — a)dx
1 i 1 0o
F[H(x — a)] = ﬁffwe“‘x H((x — a)dx+\/7_“fa e™ H (x — a)dx
1 a : 1 © 1 oo
FH(x — a)] = ﬁf_melkx'OdX‘F\/T—nfa e‘k".ldx=\/7_ﬂfa el™ dx

This integral does not exist. However, we can prove the existence of this integral
by defining a new function
_ 0 x<a
_ ax _
H(x — a)e {e‘“x x> a
This is evidently the unit step function as a = 0. Thus, we find the Fourier
transform of the unit step function as

F[H(x — a)] =lim,_oF[H(x — a)e ™] = lima_)ox/%_nfjooo e™ H (x — a)e ™ dx

F[H(x — a)] = lim“*O\/%—nfaoo elkX g—ax qx = lima_)ox/%_nfaoo eilk-ox gy

1 0 ika 1
FIH(x - a)] ==/, e dx=7=— Fora=0=F[Hx)] =5

An impulse function is defined by

p(x)z{h a—&g<x<a-+se

0 x<a-—€orx=a-+ ¢

where h is large and positive, a > 0, and &£ is a small positive constant, This type
of function appears in practical applications; for instance, a force of large
magnitude may act over a very short period of time.

The Fourier transform of the impulse function is

1 o i
Flp()] = 5=/ " p(x)dx
Flp(x)] = =/ el p (x)dx+ =" Tel* p (x)dx + =], €™ p (x)dx

F 1 atey ikx gy — h |elkx a—s_ h 1/ ik(a+e) ik(a-¢€)

P ()] = Gl ke dx= T = (Y —elen9)
_ b e ike _ -ike) — 2hE ika (MM  2he ey (Sinke

T[p(x)]_\/z—' ik (e € = am® ( 2ike )_\/ﬁe (ks)

Now if we choose the value of h = (2—18) then the impulse defined by
ate 1l

I1(e) = ffooop (x)dx = fa_sz—sdx =1

which is a constant independent of &. In the limit as € — 0, this particular
function p, (x) withh =(1/2 ¢ ) satisfies lim, ,op: (x) =0 ;x# 0

and lim, oI (g) =1

Thus, we arrive at the result

6(x —a) =0, x# a, and f_""ma(x — a)dx =1 This is the Dirac delta function
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We now define the Fourier transform of §(x) as the limit of the transform of
p: (x). We then consider

. . elka /Sinke ika
T[S(x - a) ] = llmSﬁOT[ps(x) ] :llmsqﬂm( : ) :ﬁ
in which we note that, by L’Hospital’s rule, lim, _ , (S'Z:s) =1
When a =0, we obtain Fld(x) | L

= Vzn
REMARK:
> Frx)] = (ik)"F[f (x)] = (—ik)" F (k) n=012,..

> If Flu}=7Fu,} == F{u(xt)} = (—ik) F {u (x,t)} when X’ varies not ‘t
» When range of spatial variable is infinite then Fourier transform is used
rather than the sine or cosine.

EXAMPLE:Obtain the solution of the initial-value problem of heat conduction in
an infinite rod

U= KUy, — 0 < X < oo t>0

ux0) = f(x),—» < x < owith u(x,t) - 0,as|x| > » whereu (x, t)
represents the temperature distribution and is bounded, and «k is a constant of
diffusivity.

Solution:

After taking The Fourier transform of given equation we get

U+ kk?U =0 and U (k,0)=F (k)

The solution of the transformed system is

U (kt) = F (k) e ¥xt

The inverse Fourier transformation gives the solution

1 © —i _ 2 1 © — K2 ret—i .
u(x,t) = ﬁf_m e X F (ke ¥ *tdk = ﬁf_mF (k) e Fxt-ikxgp ... (i) 2
0 b~
Butif a>0and b is real or complex and we know that [~ e **a=2bkg = £Zea

If weusea=k«t,2b=i
2
X

then [ e kwt-ikxgy — f fa-2blegl = X g

then If g (x) is the inverse transform of G (k) = e **rt and has the form
2 2

_ g1 [ Kkt o IPxt—ikx _Lﬂ —_ 1 =
g(x)_j? {e } \/ﬁf— dk—m Kt4 _\/Z_Kte4t

Now using the Convolution theorem

u@t) = =7 fOgx-Ddi==[" @)= - dg
u(t)=[" f&.6(x—§&0) dE

-(x-9?

1
Where G(x — &,t) = NrroT
solution) of the diffusion equation.
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e «« |s called the Green’s function (or the fundamental
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ERROR FUNCTION:
The error function is defined by erf(x) = %f:e‘nz dn
This is a widely used and tabulated function.

Example: Slowing-down of Neutrons Consider the following physical problem
U = Uy + 6 (x) 6 (t)

ux,0) =6 ;limy_,u(xt) =0

This is the problem of an infinite medium which slows neutrons, in which a
source of neutrons is located. Here u (x, t)represents the number of neutrons
per unit volume per unit time and §(x) 8(t) represents the source function.

Solution: The Fourier transformation of equation yields
1 [e) 1
U, +kU = 7= ® ~ o F@)8(x)dx = f(0) or F{6(x)} = NpT
The solution of this, after applying the condition U(k,0) = \/%_ﬂ isU(k,t) =

Hence, the inverse Fourier transform gives the solution of the problem

—x2

1 _th
-—e
V2

_ 1 > Kt-ikx gy — 1
u (x,t) —mf_ooe dk = —e

FOURIER COSINE TRANSFORMATION AND INVERSE

Let f (x) be defined for 0 < x < o and extended as an even function in

(—= ) satisfying the conditions of Fourier Integral formula. Then, at the points of
continuity, the Fourier cosine transform of f(x) and its inverse transform are
defined by

Fcl{f @)}= F. (k)= ﬁfomf (x) Coskxdx
F AR (0) = £ (9 = |2 [ o () Coskudk

FOURIER SINE TRANSFORMATION AND INVERSE

Let f (x) be defined for 0 < x < « and extended as an odd function in

(—= ) satisfying the conditions of Fourier Integral formula. Then, at the points of
continuity, the Fourier sine transform of f(x) and its inverse transform are
defined by

Fs{f 0} = Fs (k) = \/% Jy f (x) Sinkxdx
FL (P, 00) = £ () = [2 [ F, 00 Simkak
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a

Example: Show that F.{e"*} = \/Z(

w \a?+k2

) ;a>0
Solution: We have, by definition

2 ro0
Folf () = Fe () = [2f7f (o) Coskoxdx
fo) ikx ,—ikx . A i
TC {e—ax} — \/%fo e ax (e +2e )dx — i\/%fo [e—(a—lk)x + e—(a+lk)x] dx
—axy 1 [2] 1 1
Fele™=3. \/; [a—ik + a+ik] dx

Fele ™} = \/%(aZZkz) ;a>0
Example: Show that F{e"*} = \/%(

Solution: We have, by definition

2 oo .
Fo A )= Fy (0 = [2 [ (0 Simkxd
fo%) ikx_ ,—ikx 5 3 .
Ts {e—ax} — \EJ‘O e~ 9x (e Z‘i? )dx — %\/%fo [e—(a—lk)x i e—(a+lk)x] dx
—axy _ 1 (2] 1 1
Fsle™} = 2i'\/; [a—ik a+ik] dx

Fsfe™™} = E(L) ;a>0

m \a?+k2

k
aZ+k2

) ;a>0

. -1 (1 —skl _ 2 -1(x
Example: Show that F {;e $ }—\/;tan (;)

Solution: To prove this we use the standard definite integral
T -1 _ 2 poo . X
\E?S {e=sk} = \Efo e~k Sinkxdk = 5—
Integrating both sides w.r.to ‘s’ from ‘s’ to ‘o’

e sk . (o xds a(x\|® = _1(x
Sk -2 a1 (] 3 a9

Consequently
00 e—Sk
7 et = \/%fo “—Sinkxdk = \Et‘m_l (%)

Theorem : Let f (x) and its first derivative vanish as x - ». If F. (k) is the Fourier

cosine transform, then F.{f" (x)} = —k*F, (k) — \/%f’ (0)

PROOF:
Consider f (x) is real and lim, _, .|f (x)| = 0 then

Folf @) = (151" (o) Coskd
Folf” ) = [lICosksf (IF - [ f' () (~kSinkx)d
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Fe{f" (0)} = ﬁ [lim, _, .|Coskxf’ (x)| — limy_, o|Coskxf' (x)| + k [, f' (x) Sinkxdx]
Fc{f' 0} = ﬁ [0—F (0) + k[, f (x)Sinkxdx]

F{f' (0} = [— \E f0)+k { \E |Sinkxf (x)|§ — \/% Jy f @ (kCoskx)dx}l

Fif' (0} = [— \E f0)+k { \E |Sinkxf (x)|7 — k \/% Jg f @ (Coskx)dx}l

Felf' (0} = [— \/%f’ (0) +k {\/,% (lim, _, .|Sinkxf (x)| — lim, _, o|Sinkxf (x)]) — kF. (k)}]
Folf" () = —KF. ()~ [f (0

In a similar manner, the Fourier cosine transforms of higher-order
derivatives of f (x) can be obtained.

Theorem : Let f (x) and its first derivative vanish as x - ». If F¢ (k) is the Fourier

cosine transform, then F, {f" (x)} = \/%kf (0) — kK*F (k)

PROOF:
Consider f (x) is real and lim, _, ,|f (x)| = 0 then

F {f' (0} = \E Iy f" () Sinkxdx

7.0 oy = [EIsinkes’ (01§ ~ ;7 () (kCosx)d]
Fo {f" (1)} = ﬁ [tim, _,|Sinkxf' (x)| — lim,_, o|Sinkxf'(x)| — k f,” f' (x) Coskxdx]
FAf" (%)} = ﬁ [0-0— k[ f (x)Coskxdx]

Fs {f" ()} =~k [\E |Coskxf (x)|g’ — \/%fo“’f (x) (—kSinkx)dx

F A" ()} =—k [\E (}l{iB}OICoskxf ()| - )Ei_I)I})|COSkxf (x)I) + k\/gj f (x) (Sinkx)dx‘
0

F A" 0} =—-k l\/’% (limy , ,|Coskxf (x)| — lim, _, o|Coskxf (x)|) + kF (k)l
F A ()= [2Kf (0 - K2F, (10

In a similar manner, the Fourier sine transforms of higher-order
derivatives of f (x) can be obtained.
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REMARK:
> Flf"(x)] = (mik)"F[f (x)] = (—ik)"F (k) n= 0,1,2,........
> If Flu,}=F{u,} = %T {fu(x,t)} = (—ik) F {u (x,t)} when ‘x’ varies not ‘t’
» When range of spatial variable is infinite then Fourier transform is used rather than
the sine or cosine.
> If boundry conditions are of the form u(0,t) = value then use Sine transform,
while conditions are of the form u, (0, t) = value then use Cosine transform,

EXAMPLE: Solve the potential equation for the potential u(x, y) in the semi
infinite strip 0 < x < ¢; y > 0 that satisfies the following conditions;

u(0,y) =0; uy,(x,0)=0; ulcy = f()

Solution: the potential equation is given as w,, +u,, =0 ; 0<x<c¢c;y >0
Since the BC’s are in the form u,(x,0) = constant therefor we use fourier
cosine transform w.r.to ‘y’

dZ
Fel{up + Feluy,}=0= —Fcluxy}+Fc {u,y} =0
d? 2
= @UC (x, k) + [—kZUC (x, k) - \/:—tuy(x, O)] =0

2
= U (2, k) — KU (x,k) = 0

Then general solution will be U,(x, k) = c,e** + c,e7** ............. )
Now using BC’s u (0,y) =0=>F A{u(0,y)}=0=>U.(0,k) =0

(i) =>U.(0,k)=0=ce’+c’=>¢c; =—c,

Now %UC (x, k) = c ke** — c,ke™* ............. (i)

using BC’s u,(c,y) = f(y) = Felu, (e, )} =f(y) = % U.(c k) = F, (k)
(iD) > LU (¢, k) = Fo(k) = cykek® — coke ™

= %Uc(c, k) = F.(k) = —c ke¥® — c,ke7*¢ since ¢; = —c;

_ F (k) F (k)
= Fc(k) = _czk(ekc +e kc) = €2 = — 2k<ekf+e‘kc) -~ 2kCoshkc
2
= C =—Fc—(k):>c :Fc—(k) since ¢4 = —c¢
2 2kCoshkc 1 FZ(kk(,)‘oshkc F.() 1 2
Then (l) = UC(x' k) - ZkCCoshkc ekx B 2kCCoshkc e_kx
. Fc(k) ekx_e—kx _ c(k)
Ue(x k) = kCoshkc( 2 ) (llcc()] shkc Sinhkx
> F. YU (x, k)}=F ! {m&nhkx}
_ Z o F.(k) . o SinhkxCoskx
= u(x,y) = ﬁ Jo o -—Sinhkx Coskxdk = f Jo o Fe(K)dk
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oo SinhkxCosk 2 (o0 / / !
= u(x, y)—f fo ",‘(C;h‘,’;"[\ﬁf f () Cosky'dy’| dk
oo SinhkxCoskxCosky' / ’
su(xy) == [ [ T e (y)dy dk

EXAMPLE: Solve the problem using Fourier Transformation method
U; = U,, With u(0,t) =uy; ulx,0)=0;x>0,t>0,u;>0

Solution: BC’s suggest that we should use fourier sine transform w.r.to ‘x’
0
Fof{u =Fs{uyy} = ETS {u(x, t)} = F {u,,}

=2 U, (k,t) = \/%ku(o, £) — K2U, (k t) = \/%kuo — K2U, (k,t)

N %Us (k,t) + kK2U, (k,t) = \/%kuo ................ (i)
This is 1% order, linear, non — homogeneous ODE
Therefore I.F. = e/ kdt = gk®t

(i) = ekt 2 ~U, (k,t) + k2U, (k, t)ek"t = \/:Erkuoekzt
= [ d "ZtUsdt = f\/;kuoekztdt + Cosntant

K%t
= e"ztUs = \/%kuoek—z +c=> Uk, t) = \/%u—k" +ce ™t e (i)
Now using IC’s u(x,0) = 0= F{u(x,0)} =0=>U,(k,0) =0

(ii) =2 Uy(k,0) = 0 = %ﬂ_,_ceo Y= |2%

Thus (ii) = Us(k,t) = \F‘:’ \/:Et%e—kzt _ %%(1 B

= u(x,t) = \/%fﬂm %% (1— e t) Sinkxdk = zf (1— e ) Sinkxdk
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EXAMPLE: Solve the problem using Fourier Transformation method
U; = U, Withu, (0,t) =0, u(x,0) = f(x); 0<x <o ,t>0

Solution: BC’s suggest that we should use fourier cosine transform w.r.to ‘x’
d
:PC {ut} = TC {uxx} = ETC {u(x:y)} = TC {uxx}

= %UC (k,t) = [—kZUc (k,t) — \/%ux(o, t)| = —Kk*U, (k,t) -0
= %UC (kt) + K2U, (K,t) =0 v (i)

This is 1% order, linear, homogeneous ODE

Then general solution will be U, (k,t) = Ae "t ............ (i)

Now using IC’s

u(x,0) = f(x) = Flu (x,0)} = FAf(x)} = U (k,0) = F (k)
Thus (i) = U.(k,0) = F.(k) = Ae® = A = F (k)

(i) = U.(k,t) = F (k)e

= Fe HU(k 0)} = Fe {F (ke )

= u(x,t) = \/%fooo Fc(k)e"‘zt Coskxdk

=> u(x,t) = \/%fﬂm [\/% fooo f(x") Coskx'dx'| e **t Coskxdk
= u(x,t) = %fooo[fooo f(x" Coskx’dx’]e‘kzt Coskxdk

Example:: Solve the problem using Fourier Transformation method
Uy =U;; 0<x <00, =0
with u(x,0) = e 9%’ ulx),u'(x) >0 as x > too

Solution: since x —» +oo therefore we should use fourier transform w.r.to ‘x’
F {uxx} =F {ut}
= (—ik)%F {u(x, )} = %T fu(x, t)} = —k2U(k, t) = %U(k, t)

1dv _ 4,2 au _ 42 — L2
=>-—=—k :>qu_ k fdt=>l1:U— k*t+ A
s Ukt =e ¥ s UMkt =ce™ ... (i) where e = ¢

Now using IC’s
u(x,0) = e~ = F{u (x,0)} = .‘F{e“”‘z}

= U(k,0) = ikx g=ax® gy — ihx—ax® g

1 0o 1 oo
Tz - Tz
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ik\2 k2
= U(k,0) ==, o2 vz | gy
N 2
= U(k,0) = (i/% f_oooo e_a(x_ﬁ) dx
Puta(x—%)2 = P2 ﬁﬁ(x—ﬁ) = P = VJadx = dP :dxz%

_Z_Z o2 K2
e 4a

o et gy =

\/m\/ﬁ o f_ooooe_Pz dP:\/E

e 4a

V2n

[

= U(k,0) = =

k2

. _ 0 1 i

(i) > U(k,0) = ce :c:_x/z_ae( 4)
k

Thus = U(k,t) = \/%_ae(_@ e = L sl G

Bl

= FUU(k )} = F1 {%_a e"‘z(”i)}

. 1
= u(x,t) = \/%\/%f_‘x’oo e—ikx e_kz(HE) dk

~(t+) {kz —(t’f—i)}] dk

1 ']
= u(x,t) = \/ﬁf—oo Exp

2 2
. 2 ikx _ 2 _ ix ix _ ix
RNC v oy T () (i) - (i)
k% — _thx = <k — L) + L
(t+72) 2t50)) (o)

2 -
(iii) = u(x, t) = \/;_nf_oooo Exp |- (t + i) <k — z(ti-fi)> ] e <4(t+4a
_<4(ti)2> \2
= u(x, t) =%f_mmExp —(t+i) <k—2(:i>> dk ....

ix

2
2] =m2
2(t+ﬁ)> ™=

Now put (t + ﬁ) <k -
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Consider ikx — ax?

=-a (Jr2

(= -
a
i

ikx)
a

Zikx)




dm

N /(t+$)dk=dm=>dk=@
( (:1)2>

— —-m —
(117) = u(x t) Vaar. [ t+ m v4anrv4at+1
1
= u(x,t) = N (4 t+1>
Example: Solve the problem using Fourier Transformation method

u,(x,t) = u,, (x,t); —c0o<x<o0 ,t>0
with u,(x,0) = f(x); |u(x,0)| <

74

Solution: since x » +oo therefore we should use fourier transform w.r.to ‘x’

T{ut} =oc? :F{uxx}

= %? {fu(x,t)} =<? (—ik)*F {u(x, t)} = iU(k t)
—x? k2 [dt = InU = —«? k*t + A

1du
U dt
=>U(k,t) =e™™

Now using IC’s

_—oc2k2=>fdu

A o g (k t) = cem K

u,(x,0) = f(x) and |u(x,0)| < o0 = u(x,0) = f(x)

= F{u(x,0)} = F{f(x)} = U(k,0) = F(k)
(i) > U(k,0) = ce® = ¢ = F(k)

Thus (i) = U(k,t) = F(k)e =kt

= FHUk )} = FYF(k)e =¥}

S u(xt) = — [© e~ F(k)e K

=, ‘dk

= u(x, t) = \/%f_woo e ikx [\/% f_‘x’oo eikx’ f(xl)dxl] e %
S e, 6) = 17 [[7 etk tgi] £ () dx’

Now consider I = [~ e—ik(x—x")—o2k2t g

1=["e" (+%) g
1u uz
1= (2 e P5) o it
u2 iu 2
1=e [ ) g (iv)

ZkZ

tdk
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= —«? K*U(k,t)

(i) where e/

=cC

Consider k2 + %u

=K+ Zk(;—';) + (;—';)2 -
N 2
G5)
.2 .2
= (k+35) ~(35)

2

=(k+;_;)2+;_ﬁ2
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PutB(k+;) _PZ:\/_(k+‘“) P:fdk:dp:dk:j—%

u uz
(iv)y=>I=e %[ ‘Pz.j—% —e f =\/%e_ﬁ.\/ﬁ
(iii) = u(x, t) = —f oo\/f ﬁf(x’)dx’
(=x)’

= VI TG £(xVdx!

= u(x,t) = ZJ_\/_fw\/_e f(x"dx
(=2’
su(xt) =——[* e %) f(x)dx'
2y mc2t, "

Example:

Solve the problem using Fourier Transformation method u,,,, = —Uu
with u(x,0) = f(x); u,(x,0) = ag'(x) and g, u, Uy, Uyy, Uy > 0 @S X > +0

Solution: since x —» +oo therefore we should use fourier transform w.r.to ‘x’
1
F {uxxxx} = 22 F {utt}
2
= (—ik)*F (u(x, t)} = lzd—z F {u(x, )} = a?k*U(k,t) = - U(k,t)
a o oA
= 12 U—a“k*U=0

= U(k,t) = Ae™’t + Be~ak*t ... @)

= %U(k, t) = Aak?e™’t — Bak?e=%*t .............. (i)

Now using IC’s u(x,0) = f(x) = F{u (x,0)} = F{f(x)} = U(k,0) = F(k)
Then (i) > U(k,0) = Ae®* + Be® > A+ B = F(k) c.ccuvuueun.... (i)

Also u,(x,0) = ag'(x) = F{u, (x,0)} = F{ag'(x)}

= 2 U(k,0) = a(-ik)'F {g'(x)} = < U(k,0) = —iakG(k)

Then (ii) = %U(k, 0) = Aak?e® — Bak?e® = —iakG(k) = Aak? — Bak?
= —iG(k)=(A—Bk=>A-B = —ia(k) ............... (iv)

Adding (iii) and (iv) A=2|Fl) -6 |

Subtracting (iii) and (iv) B =|Fk) +G(k) |

Then (i) becomes

= U(k,t) = 5 [F(k) — £ G(K) ] ak’t 4 1 [F(k) +1 G(k) | et
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= U(k,t) = F(k)Coshalk*t — iG(k)Sinhakzt
= F-YU(k,t)} = F-1{F(k)Coshak*t} — F1 {; G(k)Sinhakzt}

> ulx,t) = v% [ [ e F(k)Coshak?tdk — [ e~*~ G(k)Sinhak? tdk]
= u(x,t) = \/%f_oooo e y(k, t)dk is our required solution.

Example: Solve the problem using Fourier Transformation method
Uy, = Clzutt with u(x, 0) = p(x); u,(x,0) = g(x) andu,u, > 0 as x > t+o

Solution: since x » +oo therefore we should use fourier transform w.r.to ‘x’
1
F {uxx} == T {utt}
2
= (— lk)ZT {fu(x,t)} = ——T fu(x,t)} > —c*k*U(k,t) = 7ol U(k,t)

Zdtz
= ﬁU + c?k*U = 0= U(k, t) = c,Cosxkt + c,Sinckt

ickt, ,—ickt ickt__ ,—ickt
= U(k,t) = ¢4 (%) + ¢, (L)

2
= Uk, t) = (C1JZF_C1) eickt 4 (012_01) e—ickt
= U(k,t) = Ae’*t + Be~ikt . ......... )
= %U(k, t) = Aiceikt — Bice ikt ... (i)
Now using IC’s u(x,0) = p(x) = F{u (x,0)} = F{p(x)} > U(k,0) = P(k)
Then (i) = U(k,0) = Ae® + Be® > A+ B = P(K) u.............. (iii)

Also u.(x,0) = q(x) => Flu, (x,0)} = F{q(x)} = %U(k, 0) = Q(k)
Then (ii) = %U(k, 0) = Aicke® — Bicke®

= Q(k) = ick(A—B)k=>A—B =$Q(k) ............... (iv)

Adding (iii) and (iv) A= %[P(k) +$Q(k)]

Subtracting (iii) and (iv) B= %[P(k) -—Qk) ]

Then (i) becomes

> Uk,t) = 3 |P(k) + —Qk) | ekt + 2| P(k) — = Q(k) | e~ickt

= U(k,t) = P(k) [M] Q(k)[ elickt g lckt]
ﬁ F- 1{U(k t)} =
[ 1{P(k)elet} +F l{p(k)e—lckt}] I{Q(k)(ewkt ickt)} ..... (A)
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T—I{P(k)el:ckt} — \/%f_oooo e ikx P(k)eicktdk — \/%f_oo e ix—ck P(k)dk
FYP(k)e'*} = P(x — ct)

Similarly ~ F-1{P(k)e~ickt} = P(x + ct)

And consider q(x) = FHQk)} = \/%ffooo e *kx Q(k)dk

[ a@dx = = [ [7) "k Qi dkdx

/ x+ct

[ atodx = = [7 [T e ™ dx'QUodk = = [ |- x_CtQ(k)dk
[25 q(dx = mf ; lk[ gmik(x+et) _ gmik(x=c] Q (k) dk

[Ze qxydx = v— [, < [emikG=eO) — emik+0] Q(k)dk

2 a0 dx = EF f e-thx[gickt _ gmickt] €1 g

- [ qydx = - F etk — —‘C"t)@dk}

(A) = u(x,t) = [P(x+ ct) + P(x — ct)] + - f"*“ (x"dx'

THE DOUBLE FOURIER TRANSFORM AND ITS INVERSE
Let f(x4,x,) be a function defined over the whole plane i.e. —0 < x4, x, <
then its fourier transform and inverse are defined as follows;

F{f(x1,x2)} = F(ky, k) = (F)z f_ f_ f(x1, xp)etrx1tkax) gy, dx,

FYF(ky, k2)} = f(x1,%2) = (\/_)zf f F(ky, ky)e~axitkex2) qp. dik,

n - DIMENSIONAL FOURIER TRANSFORM AND ITS INVERSE
1
P20} = F1 kD = o S pace f Dia )€ P40 d B2 x,

1{F(Z L1k} = fQREx) =

(\/ﬁ)n fa” space (Zi:1 ki)e_l(zl‘l kixi) g Z?:l k;
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EXAMPLE : Find the temperature distribution in a semi-infinite rod for the
following cases with zero initial temperature distribution:

(&) The heat supplied at the end x =0 at the rate g (t); i.e. ux(0,t) = g (¢t)

(b) The end x =0 is kept at a constant temperature Tp. i.e. u (0,t) = Ty, t = 0
The problem here is to solve the heat conduction equation

U= KUyx, X>0,t>0, with u(x,0) = 0,x > 0.

Here we assume thatu (x, t)and uy (x, t)vanishas x - «

EXAMPLE : Find the temperature distribution in a semi-infinite rod for the
following cases with zero initial temperature distribution:

The heat supplied at the end x =0 at the rate g (t); i.e. ux(0,t) = g (t)

The problem here is to solve the heat conduction equation

U= KUy, Xx>0,t>0, with u(x,0) = 0,x > 0.

Here we assume that u (x, t)and uy (x, t)vanish as x - «

SOLUTION:

let U (k,t) be the Fourier cosine transform of u (x,t). Then the transformation of
the heat conduction equation yields

Fe{ugd = wFe {uy,}

P u@D}=x [—kzvc (k,t) - ﬁux (o, t>]

20, k) =x [—kzuc (k,t) - ﬁg @®

2 U, (k) + kKU, (k,t) = —ﬁg () K ceereereens (1)

This is linear differentiable and non — homogeneous equation so by using
[ F = el ¥kdt — oxk*t

(i) = ¥’ t U, (k t) + e¥txk2U, (k,t) = —e""zt\/%g (GRS

f%e""zt U. (k t)dt = —\/;f e""ztg (Hdt + ¢

U.(kt) = —ﬁ e Kkt f(: ek’ g (£)dt' + ce Kt ............ (ii)
Now usingu (x,0) = 0=>U.(k,0)=0=>c=0

(i) = U, (k,t) = — \/%e-wkzt [, &7 g (v)dr

1 {U. (kD) =u(xt) = \/%fooo I—\/% e‘“"ztf; 7 g (v)dt| Coskxdk
u(xt) = —Eftg (r)drfoo e k(=D Coskxdk
u(xt) = \f [fe@ (r) o /4(t=0) gp

Wheref e ¥kt coskxdk = = Le—xz/%(t—r)
k(t—1)
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EXAMPLE : Find the temperature distribution in a semi-infinite rod for the
following cases with zero initial temperature distribution:

The end x =0is kept at a constant temperature Tp.i.e. u (0,t) = Ty, t = 0
The problem here is to solve the heat conduction equation

U= KUyx, X>0,t>0, with u(x,0) = 0,x >0

Here we assume thatu (x, t)and ux (x, t)vanishas x —» «

SOLUTION:

We apply the Fourier sine transform U (k, t) of u (x, t) to obtain the transformed
equation

Ts {ut} = K:Fs {uxx}

S F, {u (x,0)} = |-k, (k,t) + \/%ku(o, t)l

U, (kt) = K[—kzus (k,t) + \EkTOl

2 U (k,t) + kKU (k,t) = \ETO KK coveeeenenn. (1)

This is linear differentiable and non — homogeneous equation so by using
I.F = el xk?dt — gxk?t

(i) = e"kzt%Us (k,t) + e*“txk2U, (k,t) = e*¥’t, \ETO kk

f%e"kzt U, (k, t)dt = \/%f e’ 1T kiedt + ¢

Kk2
ety (k,t) = \Ef e**tT kiedt + ¢ = \/% Tok +c
U, (k,t) = \/%%K+Ce_"k2t ............. (ii)
Now using u (x,0) = 0= U, (k,0)=0=>c=— %Tf

(i) = U, (kt)—\/ET0 \/E 0 ekt .\/El e_KktK
11y, (kt)}_u(xt)—ff l \F“K lSmkxdk

2 o Sink. -
u (X, t) _ %fo lT;{ x (1 _ Kth) dk
Now making the use of integral
o _ Sinkx 14 x
Jy e () dle = Serf (37)

Then the solution will be
ZTO T

ulxt = T[E__erf(zv_)] Toerfc (2\/_)

Where erfc(x) = 1 — erf(x) is the complementary error function.Defiend as
follows

erfc(x) = \/%fxoo e dn
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Example : Find the solution of the Dirichlet problem in the half-planey > 0
U tUy =0, —2 < x < 0y>0 with u(x,0) = f(x),—-o< x <

u and uxvanish as |x] > » andu is bounded as y -» «»

SOLUTION:

Let U (k,y) be the Fourier transform of u (x,y) with respect to x.

Flun}+Flu,}=0

, 9%
(U’ F fu (x M} + 5 F (u(x,)} =0
Application of the Fourier transform with respect to x gives
Uy -k =0
U 0) = F(k)and U (k,y) »0asy—-> o
The solution of this transformed system is
U (k,y) = F (k) e k¥
The inverse Fourier transform of U (k,y) gives the solution in the form

1 o] 1 (o _ . .
u@y) == [0 f (§) e el dg|e-xdk
u(xy) =5- [ f(§dE [ f (§) e MiG=dI-Iky gk
- 2 a

It follows from the proof of the result F {e=2* } = \Em ;a>0

[2 f (&) eHli=2)] ~lkly g = —2

-x0)?2+y?
Hence, the solution of the Dirichlet problem in the half-planey > 0is
f(dg
u@y) = ooy

From this solution, we can readily deduce a solution of the Neumann problem in

the half-plane y > 0.

Example: Find the solution of Neumann’s problem in the half-planey > 0

Uy tUyy =0, —o < x < gy >0 with Uy (x,0) = g(x),—o< x <
u is bounded as y = », uand uy vanish as |x| - «
SOLUTION:

Let v (x,7)=uy(x, y). Thenu(xy) = [*v(x,n)dn

and the Neumann problem becomes
v  d*v _ 9*u, d*u
T —F ayy (uxx +Uy) =0 and v (x,0) =uy (x,0) = g (x)

This is the Dirichlet problem for v (x,y), and its solution is given by

_Y g(s‘)df

Thus, we have

1 o g(§dé 2nd
u@y) =2 n)y Eamdn =5 [, 9k [ o

u(xy) =5 g(®logl(§ — x)? + y*|d¢

where an arbitrary constant can be added to this solution. In other words,
the solution of any Neumann’s problem is uniquely determined up to an
arbitrary constant.
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EXERCISES

1. Determine the solution of the initial-value problem
U = CoUyy, —0 < X < mt >0,

ux0) =fx), ux0) =gx),—-o< x <

2. SO|Ve U.t = uXX’ X > O,t > 0
u((x,0) = f(x),u(0,t) =0

3. SO|Ve U.tt:cZuXXXXZO, —o < X < ‘”,t> 0
ux0) =fx, w0 =0,—-o< x < @

4. SO|Ve Utt + CquXXX = 0, X > O,t > 0,
ux0) =0, uy(x,0) =0,x>0
u (0, t)=g (t), uxx (0, t)=0, t>0.

5. Solve U=Uxx ttuy, — o< X < t>0
u((x,0) = f(x),u(x,t)is bounded, —o < x < =

ux0) = f(x),0 < x< o and u((0,y) =g (»),0 <y < =
u(x,y) = Ouniformlyin x as x - «and uniformlyiny as x - «

7. Solve Ux tUy =0, — o< x < 00 <y<a
u(x,0)=fx),u(x,a)=0,—» < x < oand u (x, y)-»>O0uniformlyiny as |x| - «»

8. Solve U = Uy, X>0,t>0
u((x,0) = 0,x>0,u(0,t) = f(t),t>0,
u (x, t)is bounded for all x and t.

9. Solve Uy tuy=0, x >00<y<1
u((x,0) = f(x),ux,1) = 0,x>0,
u(0,y) = 0,u(x,y) » Ouniformlyiny as x -» =

10. Solve Uy +tuy=0, x >00<y<1
11. Solve using Fourier Transformation uyy = i u; Semi infinite rod with u(0,t) =0

T 0<x<T
and u(x,0) = {0 elswhere
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FOURIER SERIES, FOURIER TRANSFORMATION AND INTEGRALS

WITH APPLICATIONS

Introduction, Piecewise Continuous Functions and Periodic Functions, Systems
of Orthogonal Functions, Fourier Series, Convergence of Fourier Series,
Examples and Applications of Fourier Series , Examples and Applications of
Cosine and Sine Fourier

Series, Complex Fourier Series , Fourier Series on an Arbitrary Interval, The
Riemann-Lebesgue Lemma and Point wise Convergence Theorem, Uniform
Convergence, Differentiation, and Integration , Double Fourier Series, Fourier
Integrals , Exercises

The Fourier theory of trigonometric series is of great practical importance
because certain types of discontinuous functions which cannot be expanded in
power series can be expanded in Fourier series. More importantly, a wide class of
problems in physics and engineering possesses periodic phenomena and, as a
consequence, Fourier’s trigonometric series become an indispensable tool in the
analysis of these problems.

PIECEWISE CONTINUOUS FUNCTIONS AND PERIODIC FUNCTIONS
A single-valued function f is said to be piecewise continuous in an interval [a, b]
if there exist finitely many pointsa =x;< x,< . . . < x,=b,such that f is
continuous in the intervals x; < x < xjx1and the one-sided limits f(x;+) and f(xj+1—)
existforallj = 1,2,3,...,n — 1.

A piecewise continuous function is shown in Figure. Functions such as %

and sin (i) fail to be piecewise continuous in the closed interval [0, 1] because

the one-sided limit f(0*) does not exist in either case.
S

7

1
1
|
T

x
1

|
i/
If f is piecewise continuous in an interval [a, b], then itis necessarily
bounded and integrable over that interval. Also, it follows immediately that the
product of two piecewise continuous functions is piecewise continuous on a
common interval.
If f is piecewise continuous in an interval [a, b] and if, in addition, the first

derivative f’is continuous in each of the intervals x; < x < xj:1 and the limits
f’(x+) and f’(x—) exist, then f is said to be piecewise smooth; if, in addition, the
second derivative f”is continuous in each of the intervals x; < x < xj:1, and the
limits f”(x;+) and f”(x;—) exist, then f is said to be piecewise very smooth.
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PERIODIC FUNCTION: A piecewise continuous function f(x) in an interval [a, b]
is said to be periodic if there exists a real positive number p such that

f(x +p) = f(x) forall x,p is called the period of f, and the smallest value of
pis termed the fundamental period. A sample graph of a periodic function is
given in Figure

//-\\/ N~
|[e———]

=

)

If £ is periodic with period p, then

f(x+p)=fX

fx+2p) =fx+p+p)=fx+p)

f(x+3p) = f(x+2p + p) = f(x+2p)

fx+np) =fx+(n-1p+p) =fx+(n-1p) = f(x)

for any integer n. Hence, for all integral values of n f (x + np) = f (x)

It can be readily shown that if f1, f2,. . ., fx have the period p and ci are the
constants, then f =cif; +cofo+. . . + ckfy has the period p.

SYSTEMS OF ORTHOGONAL FUNCTIONS
A sequence of functions {¢ , (x)} is said to be orthogonal with respect to the

weight function g(x) on the interval [a, b] if f: PP, (x)g(x)dx =0 ;m=+n

If m = n then we have [|l@,|| = \/f: 0,2(x)q(x)dx

which is called the norm of the orthogonal system { ¢  (x)}.

Example: The sequence of functions {sinmx},m = 1,2,... form an orthogonal

0 TMmFn

T ;m=n

In this example we notice that the weight function is equal to unity, and the value
of the norm is V@

system on the interval [—-m, ], because ffnsinmx sinnxdx = {

ORTHONORMAL SYSTEM OF FUNCTIONS
An orthogonal system ¢ 1, ¢2,. . ., ¢, Wheren may be finite or infinite, which
0 MmFn

is called an
1 rm=n

satisfies the relations f: Pm(X) @, (x)g(x)dx = {

orthonormal system of functions on [a, b].
It is evident that an orthonormal system can be obtained from an orthogonal
system by dividing each function by its norm on [a, b].
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Example: The sequence of functions 1, cos x, sinx,..., cos nx, sin nx forms an
orthogonal system on [—m, ] since

T . . 0 iMF*EN
[ sinmx sin nx dx =

- T ,ym=n

Y3 .
f_n sinmx cosnxd = 0,forallm,n

14 0 M FEN
[~ cosmx cos nxdx =

- [ 4 m=n

FOURIER SERIES

A trigonometric series with any piecewise continuous periodic function f (x) of
period 2 and of the form

f(x)~ % + X r=1(ay cos kx + by, sin kx)

is called the Fourier Series of a real valued function f(x) where the symbol ~

indicates an association of ag, ax, and by to f in some unique manner.

Where ag = iffnf(x)dx , Ay = %f_”nf(x)Coskxdx , by = %ffnf(x)Sinkxdx
And are called Fourier Coefficiets.
We may also write

a o0
f(x) = 70+ E(ak cos kx + by, sin kx)
k=1

COMPLEX FORM OF FOURIER SERIES
Fourier Series expansion for in complex form is given as follows
f(x) =Y __.crett* L <x<m

Where ¢ = %Tff”f(x)e‘”‘xdx

Example:Find the Fourier series expansion for the function
fx)=x+x%, —-m<x<m

. 1 m 2m?
Solultion: Here ag =— [__f(x)dx = =~

1 4 4
a; = ;f_”nf(x)Coskxdx = 17 Coskm = ﬁ(—l)k i k=1,2,3,....
b, = % /" f(x)Sinkxdx = —%Coskn = —%(—1)" s k=123, ...
Therefore, the Fourier series expansion for f is
f(x) = % + Y =1(ay cos kx + by, sin kx)

f () =+ Tieals (¥ cos kx — 2 (~1D* sinkx)

2
f (x) ="?— 4 cos x + 2sinx + cos2x — sin2x —....
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Example: Find the Fourier series expansion for the function
M <x<O0

-1
f(x)_{x 0<XxX<T
Solultion: Here

1

ap = %f:,f(x)dx == [f_onf(x)dx + f:f(x)dx] — _g

b4
1

a, = %fﬂf(x)Coskxdx == [f_onf(x)Coskxdx + f:f(x)Coskxdx]

1 1]
a, = m(coskn— 1) = E[(—l)k - 1] ; k = 1;2' 3! """
b, = %f_”nf(x)Sinkxdx = %[f_onf(x)Sinkxdx + f:f(x)Sinkxdx]
by =1 (1—2Coskm) = [1-2(-1)*]; k=1,2,3,.....
Therefore, the Fourier series expansion for f is
f(x) = % + XY r=1(ay cos kx + by, sin kx)
f)=-2+%,4 ﬁ [(-1F — 1] cos kx + % [1—2(—1)¥] sin kx)]

Example: Find the Fourier series expansion for the sawtooth wave function
f(x) = x intheinterval - < x < w,f (x) = f(x+2km)fork = 1,2,...
Solultion: This is a periodic function with period 2 and represents a sawtooth
wave function as shown in Figure and it is piecewise continuous.

e 4

a,=0for k =0,1,2,...

1 i _1m ; _ 2/ 4\k+1
by =~ [" f(x)Sinkxdx = —[" xSinkxdx =7 (-1)
Therefore, the Fourier series expansion for f is
f(x) = % + Y =1(ay cos kx + by, sin kx)

® i i in2 i in4.
f () = 2y (v ke _ (St _ sinzy  sindy_ singx )
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FOURIER INVERSION FORMULA

The proper inversion formula is given as
f0) = 5= [ e Fow) aw
21t

The formula nearly states that f is the fourier transform of f

where f = F {f (x)}

PROOF:

If f(x) is defined in the interval (=1, 1) then it can be represented by its

complex fourier series as

knx

f) =X _cet  Where ¢, = le _llf(y)e“'?dy

Let fuw) =~ [ fe ™ dy

Then for sufficiently regular function we clearly have f;(w) —» f(w) as 1 — oo
Furthermore f (x) = %Z,";_w fiwp)eWes ... (i) where w;, = an

Let Aw,, = %denotes the distance between grid points i.e. {w; = k(Aw)};—_

defines a uniform partition of the real line. Therefore it is more convenient to

rewrite (i) in the form

1 oL .
f @ =5[Aw > fz(wk)ekax]

k=—c
We observe that this formula resembles the inversion formula.

Of course if I - oo then Aw - 0

Hence if 1 — oo then [Aw X5 _,, fi(wy)e™ ] - [

(00]

e f(w) dw

Thus we obtained our required formula as follows

1 [
FO) =5 [ e Fow) dw
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LAPLACE TRANSFORMATION WITH APPLICATIONS

Because of their simplicity, Laplace transforms are frequently used to solve a
wide class of partial differential equations. Like other transforms, Laplace
transforms are used to determine particular solutions. In solving partial
differential equations, the general solutions are difficult, if not impossible, to
obtain. The transform technique sometimes offers a useful tool for finding
particular solutions. The Laplace transform is closely related to the complex
Fourier transform, so the Fourier integral formula can be used to define the
Laplace transform and its inverse.

LAPLACE TRANSFORMATION
If f£(¢t) is defined for all values of t > 0, then the Laplace transform of f(t) is

denoted by f(s) or L{f(t)} and is defined by the integral
1) h

LUF©) = F&) = | e fde = lim [ e fode
If £(s) is laplace transform of f(t)(;hen f(t) is called t(f)le INVERSE LAPLACE

TRANSFORM of f(s)i.e.  L71{f(s)}= F(©)

QUESTION: Show that L{c} = fwhere ‘c’ is constant.
SOLUTION: Since L{f(D)} = [;" e~ f()dt
e—St o

Then £L{c} = fooo e st cdt = cfooo estdt=c |— .

0 s
QUESTION: Show that £{e?'} = ﬁ where ‘@’ is constant.
SOLUTION: Since L{f(D)} = [;" e~ f(®)dt

Then L{e*'} = ["e st etdt=["e Dt dt = |—

e—(s—a)t ©

(s—a) 0 s—a

QUESTION: Show that £{t?} = s%where ‘a’ is constant.
SOLUTION: Since L{f(D)} = [;" e~ f(dt

29 _ (® st g2 gy — |7 L poet — |-
Then L{t}—foestdt—| 0+f0 stht—|

In above t?2e st test 50 ast > o

e—st

te=St|®
S

2 r00
0 +;f°

2
dt:s_3

s N

QUESTION: Show that L{Sinwt} = % where ‘@’ is constant.

w2
SOLUTION: Since L{f(8)} = [, et f(t)dt
Then L{Sinwt} = [~ e ' Sinwtdt = |—M "4 [ weoswt dt
0 s 0 0 s
, _w| Coswte™'|” w rcweSt . ~w w? . w
L{Slnwt} =3 |— p 0 - ;fo R wSinwtdt = Zz S—2£{Smwt} = Zaw?
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QUESTION: Show that L{c} = Ewhere ‘¢’ is constant.
SOLUTION: Since L{f(£)} = [, e~ f()dt

— o0
e st c

Then L{c} = fooo e St cdt = cfooo e stdt=c |_ =S

S

QUESTION: Show that L{e?'} = ﬁ where ‘a’ is constant.
SOLUTION: Since L{f(£)} = [, e~ f()dt

—(s—a)t ©
aty — (¥ ,—st ,at _ [ ,—(s—a)t —|_é€ —
Then L{e*'}= [ e edt=[ e dt_| ol =
QUESTION: Show that £{t"} = —- where ‘n > 0’
SOLUTION: Since L{f(1)} = [, e™* f(t)dt
Then for n = 1;

o g . _te—st ©o o0 e St 2 _te—st ©o 1 &3
Lty =, e tdt_| - +J, - dt_| l, +sf0
In above te™* - 0 ast - o
forn=2;

29 (® gt 42 _ _tze—st°° ooﬁ _ _tze—st
L{it?}= [, et dt—| - 0+f0 - 2tdt_| -

2 fo0 2 .
=J, e*tdt=3 Inthispart t?e™,te™" > 0 ast > oo

And in general

Lie"} = et ehde = |-

(ee)

we st o n-1
. + [, —nt"hdt

tn e—St

)
(00]

L{t") = |_ th e—st 0 N §f0°° e-St -1 4t = EL{tn—l} —
SR .....%.%L{t“}

L{tn} _ (n—1)(n—1)(151;1) ........... 321 L{l} _ :l_r'll

Hence L{t"} = s:+!1 where ‘n > 0’
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QUESTION: Show that £{Sinat} =
SOLUTION: Since L{f()} = [ e~ f(t)dt
Then L{Sinat} = foo e‘St Sinatdt

« [, e Sinbtdt = = b2 [aSinbt — bCosbt] therefore
. e st . ® e a
L{Sinat} = Z—aZ [—sSinat — aCosat]|0 = [0 — m(—a)] =53
QUESTION: Show that £{Cosat} = SZ%
. . % _st
SOLUTION: Since £{f()} = [,” e~ f(t)dt
Then L{Cosat} = foo e‘St Cosatdt
f e® Cosbhtdt = — 5z [aCosbt + bSinbt] therefore
—St | | 4 s
T2 [—sCosat + aSinat | [O — 2+ : (—s)] =5

QUESTION: Show that L{Sinhat} = 5~

SOLUTION: Since L{f(1)} = [, e™* f(t)dt

Then L{Sinhat} = fooo e st ( at) dt = [f0°° eSt edtdt — f0°° e~st et d]
L{Sinhat} = %[ [ e~ qg — fo e~(s+t gy

et _e~

e—(s—a)t e—(s+a)t £ a

L{Sinhat} = %

—@—@-_ (s+a) 0-_SLﬂZ

QUESTION: Show that L{Coshat} = Z_az

SOLUTION: Since L{f(t)} = fo e st f(t)dt
Then

L{Coshat} = [" e~ ( — at) dt =3 [f et e®dt + [ et e dt]
LiSinhat} =2 [[" e~ o dt + [ e+t dy

e—(s—a)t e—(s+a)t © s

s2—q2

L{Sinhat} =~

—(s—a) (s+a) 1o
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FUNCTION OF EXPONENTIAL ORDER: A function f (t) is said to be of
exponential order as t — «if there exist real constants M and a such that
If (&) < Me® for0 <t < =

THEOREM: Let f be piecewise continuous in the interval [0, T] for every positive
T, and let f be of exponential order, that is, f (t) = 0 (e®*)ast —» »for some
a > 0. Then, the Laplace transform of f (t) exists for Res > a.

Proof: Since f is piecewise continuous and of exponential order, we have
1LY = |f, et fOdt]| < [ e ™t [f@®)]dt < [ e Me*dt =M [ e "t dt

UG

Thus the Laplace transform of f (t) exists for Res > a.

PROPERTIES OF LAPLACE TRANSFORMS

LINEARITY PROPERTY: THE LAPLACE TRANSFORMATION L IS LINEAR.
Proof. Letu (t) = af(t) + bg(t) where a and b are constants.

We have, by definition

L{u@®}= [ et f(oydt = [ e [af(e) + bg(t)]dt

L{u@}=af, et f(O)dt+b [ e g(t)dt = aL{f(£)}+ bL{g(t)}

L {af(t)+bg(t)} =aL{f()} +bL{g(t)} hence proved.

SHIFTING PROPERTY: If f(s) is the laplace transformation of f(t)
Then L{ief(t)} = f(s—a)
Proof. By definition, we have
Li{etf(O}= [ et e f(Ddt = [ e D f(t)dt = f(s — a)
This result also known as 1°' shifting theorem or 1° translation theorem.
EXAMPLES:
2

; 27 _ 2 2 5t
i IfL{t -} = = then L{t*e'} = e
i. If L{Sinwt} = ﬁ then L{e* Sinwt} =

w2 (s—a)2+w?
ii.  If L{Coswt} = —— then L{e™ Coswt} = —2
iv. IfL{t"} =

w

s2+w? (s—a)2+w?
at 4gn _ n!
then L{e*'t"} = Gt

n!
sn+1

Question: Find £1 {i}

s+4
Answer: in this question we will use the first shifting theorem according to which

Lt f(}=f(s—a) = e f(t) = e L7Yf(s)} = L7Hf(s — o)}
Thus £71 {%} =e 1 {%} —e M 1= =1 {i} =

s+ s+4
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Question: Find £71 {%}

Answer: in this question we will use the first shifting theorem according to which
L f®)=f(s—a)= e f(t) = e L7 {f(s)} = LHf(s — @)}
Thus £ {2220 = —2071 (o 3071 {2 = —2C0s2t + 3Sin2t

s2+4 s2+4 s244

Question: Find £71 {(s_s4_)2+4}

Answer: in this question we will use the first shifting theorem according to which
L f(O)} =f(s—a) = e f(t) = e L7f(s)} = LHf (s — @)}

Thus £71 {(S_S;):H} = et 1 {ﬁ} = e*t Cos4t

Question: Find £™1 {ﬁ}

Answer: in this question we will use the first shifting theorem according to which
L f(B)} = f(s — a) > e f(t) = e Lf(s)} = L7f (s — @)}

-1 _ 2.3t p,-1( 3 | _ o,3tcy
Thus £ {2} = 3¢ £71 {2} = 3%t sin3t
SCALING PROPERTY: If f(s) is the laplace transformation of (t) , then
LIf(eD]==FO) withc >0
Proof. By definition we have

L{f(ct)} = [ e f(ct)dt = %fo‘” e @Y fenar = % f& puttingct =t

This result also known as Rule of Scale.
EXAMPLES:

i. If L{Cost} = # then L{Coswt} =

s 1 s/w ]

sZiw? _ w (s/w)2+1

i, If L{et) = = then £{e™) :Lzll( 1

s—a a 2_1)

DIFFERENTIATION PROPERTY: Let f be continuous and f’piecewise
continuous,in0 <t < Tforall T > 0. Let f also be of exponential order as
t - o Then, the Laplace transform of f’(t) exists and is given by

LIf/(®)] = sLIf(O] — f(0) = sf(s) —f(0)

Proof. If f(t) is continuous and f'(t) is sectionally continuous on the interval [0, »)
and both are of exponential order then

LD =[] e f(Odt = e fOIF = (=5) [} e f@©dt = [0 - (0] + 5L {F()}
LIF(O] = sLIf©] — £ (0) = sf(s) —f (0)
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If f’and f” satisfy the same conditions imposed on f and f ‘respectively, then,
the Laplace transform of f”(t) can be obtained immediately by applying the
preceding theorem; that is

LIf"®] = sLIf®] - f'(0) = s*f(s) — sf(0) — f'(0)

Proof. If f(t), f'(t) are continuous and f''(t) is sectionally continuous on the
interval [0, ») and all are of exponential order then

L' O} =[] et f'()dt = e f D) — (—s) f, e f'(D)dt
L= [0~ f(O] +sL )} = —f(0) + s[sf(s) —f (0)]
LIf'®] = sLIF®] - f'(0) = s2f(s) — sf(0) — f (0)

Clearly, the Laplace transform of f*(t) can be obtained in a similar manner by
successive application.The result may be written as

L[f"(t)] = s"L[f(t)] — Sn_lf(()) — — an—Z(O) _ fn_l(o)

INTEGRATION PROPERTY : If f(s) is the Laplace transform of f(t), then
: "
£U f(t)dtl =@
0 S
PROOF:

Consider g(7) = fotf(r) dt = g'(r) = f(t) = L[g'(v)] = L[f(t)]

= sg(s) —g(0) = LIf(1)]
= sL[g(v)] — 0 = L[f(D)]

> L[g(p)] =12
:L[f f(r)dr ] f(s)

In solving problems by the Laplace transform method, the difficulty arises in
finding inverse transforms. Although the inversion formula exists, its evaluation
requires a knowledge of functions of complex variables. However, for some
problems of mathematical physics, we need not use this inversion formula. We
can avoid its use by expanding a given transform by the method of partial
fractions in terms of simple fractions in the transform variables. With these
simple functions, we refer to the table of Laplace transforms given in the end of
the book and obtain the inverse transforms. Here, we should note that we use the
assumption that there is essentially a one-to-one correspondence between
functions and their Laplace transforms.

This may be stated as follows:

LERCH THEOREM: let f and g be piecewise continuous functions of exponential
order. If there exists a constant sq, such that L[f] = L[g] for all s > so, then

f(t) = g(t) for all t > 0 except possibly at the points of discontinuity.
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In order to find a solution of linear partial differential equations, the following
formulas and results are useful.

If Llu(x,t)] = u(x,s) then
L {Z—'Z} =su(x,s)—u(x,0)

L{az—u} = s? u(x,s) — su(x,0) —u,(x,0) and so on.

at2
Similarly, it is easy to show that

u ou %u %u mu mu
L{a}—a,ﬁ{ﬁ}—ﬁ, ................. y L{ﬁ}—ﬁ
The following results are useful for applications:
L{erfc (zi\/?)} = %e(‘“ﬁ) ;a=>0

at — Va .
Lieverf(Vat)} = =— ;a>0

Example: Consider the motion of a semi-infinite string with an external force f (t)
acting on it. One end is kept fixed while the other end is allowed to move freely in
the vertical direction. If the string is initially at rest, the motion of the string is
governed by

U =cuy +f(£),0 < x < 0t>0

u((x, 00=0, uy(x, 0)=0 and u (0, t)=0, ux(x, t)»0, asx - o

Solution: Let u (x,s) be the Laplace transform of u (x,t). Transforming the
equation of motion and using the initial conditions, we obtain

e B

The solution of this ordinary differential equation isu (x,s) = Ae< + Be© + f(s)/sz

The transformed boundary conditions are given by
u(0,s) = 0, and lim,_, u, (x,8) = 0
In view of the second condition, we have A = 0. Now applying the first condition,

we obtain u (0,s) =B +]_U(S)/S2 =0 Hence u(xs) = f(s)/sz [1 — e_Tsx]

SPECIAL CASES: (a) When f(t) = fo, a constant, then u(x,s) = f [513 - le_Tsx]
The inverse Laplace transform gives the solution
2

f—"[tz—(t—f)] ; t=x/c
u(x,t) =42 ¢

%0 [t%] ; t<x/c
(b) When £ (t) =coswt, where o is aconstant, then
f(s) = fooo e StCoswtdt = —

s2+w?
_ 1 Sx .
Thus, we have u(x,s) —m[l—e c ] ............. (I)
By the method of partial fractions, we write m = % E — ﬁ]
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1
s(s2+w?2)

} = % [1— Coswt] = % [Sin2 (%t)]

Hence 1:‘1{

If we denote @ (t) = Sin? (Wf) then the Laplace inverse of equation (i) may be
written in the form

{%[up(t)—tp(t—’;‘)] ; t=x/c
u((x,t) = 2
Zy @ L t<x/c

UNIT STEP FUNCTION: A real valued function H: R — R is defined as

He-9={g 7424 wmeng=0 . mw={; ¢ 20

CONVOLUTION FUNCTION / FAULTUNG FUNCTION OF LAPLACE
TRANSFORMATION.

The function (f * g) (t) = fotf (t — & g (&) dé is called the convolution of the
functions f and g.regarding laplace transformation.

USEFUL RESULT:
F+9®=[left - Hg@di= [THE-Of(t - &) g (&) dE

CONVOLUTION / FAULTUNG THEOREM OF LAPLACE TRANSFORMATION

If f(s) and g(s)are the Laplace transforms of f(t) and g(t) respectively, then the
Laplace transform of the convolution (f * g) (t) is the product f(s)g(s)

PROOF: By definition, we have

Lifx g} = [ et (f+ g)dt

Lifx gt = [ [Je st (t — &) g (§) dE dt

Lif« gy = [ [, et f(©)g (t — &) d§ dt sincef g =g~f
Lif« gy= [ est[[;HEt—OfF@Og(t — § dE] dt

By reversing the order of integration, we have

Lif« gy= [, [J, e StH (t— gt — &) de|f(H)dE

If we introduce the new variablen = (¢t — &) in the inner integral, we obtain

Lif+ gy = [} F (&) dg [, e EH () g(n) dn|

L(f + gy = J F @ dg[[° e EDH (g () dn + [ e EPH () g (p) d

Lif + g} = J; F(§) dg [ e €0, g(xp) dn + [, e=*(5+1.1. g(xy) dy| by step function
Lif = gy =[] f&) dE[[;" e+ g(n) dn]

Lif = g} = [, e f()dE [ e™"g () dn

L{f = g} = f(9)g(s)
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THE CONVOLUTION SATISFIES THE FOLLOWING PROPERTIES:
1.f x g = g * f (commutative).
2.f (g * h) = (f * g) » h (associative).

3.f x (ag + Bh) = a(f * g)+ B (f = h) (distributive),
where a¢ and f are constants.

Example: Find the temperature distribution in a semi-infinite radiating rod. The
temperature is kept constant at x =0, while the other end is kept at zero
temperature. If the initial temperature distribution is zero, the problem is
governed by

u = kuyy —hu, 0 < x < ot >0, h=constant,

u((x,0) = 0,u(0,t) =ug, t>0, yp=constant, where u(x,t) - 0,asx - «
Solution: Let u (x,s) be the Laplace transform of u (x, t). Then the transformation
with respect to t yields

Uy — (s;h)u 0 , u(0,s)= % ,  limy, & (x,5) =0

The solution of this equation is u (x,s) = AeXEth/k | Be=x/(s+th)/k
The boundary condition at infinity requires that A = 0. Applying the other
boundary condition gives u (0,s) = B = =

N

Hence, the solution takes the form it (x,s) = (%) e W (sth)/k
We find (by using the Table of Laplace Transforms) that L1 (%) = U,

2
And 1 {e—xW} - M

2/ mkt3
Thus, the inverse Laplace transform of u (x,s) is u (x,t) = £71 {?e‘xv(”h)/"}

By using the Integration Theorem L[f f(z )dr] % we have

tuoxe[ o= <4-lf‘r>]
u (x,t) = IOWdT
Substituting the new variable n = L yields

(i)
u(x,t) = \/_J Hn?)| dp
2vkt
For the case h = 0, the solution u (x, t) becomes
X
2uy (2Vke 2
u(xt)— f e dn—— ‘"Zdn—— md
v ) N Vi Jg v Jy

u(x,t) = ug [1 —erf (2\/_)] ugerfc (2\7“)
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LAPLACE TRANSFORMS OF THE HEAVISIDE AND DIRAC DELTA FUNCTIONS

The Heaviside unit step function is defined by

H(t—a)z{(l) tt:: wherea 20

Now, we will find its Laplace transform.
LHE-a}=["eH{t —a)ydt=[e*H({t —a)dt+[ e H( — a)dt

LHE - )= [Cestdi=]"] ="

e

; §>0

-s g s

SECOND SHIFTING (TRANSLATION) THEOREM: If f(s) and g(s) are the Laplace
transforms of f(t) and g(t) respectively, then

(@LH (- a)f(t — a)] = e f(s) = e™™ L{f (1)}

(b)LH( —a)g ()} = e L{g(t + a)}
Proof: (a) By definition

LHE-a)f(t-a}=[e*H({E—a)f(— a)dt

LH({t —a)f(t—a)} = foae‘StH (t —a)f (t — a)dt+ faooe‘StH (t — a)f (t — a)dt
LHGE-a)f(t—-a}=["esf - adt

Introducing the new variable § = t — a, we obtain

LHE-a)f (- a}= [ eI f(@di=e["e ™ f(5)ds

LH({t - a)f(t — a)}= e “L{f(t)}=e*f(s)

To prove (b), we write

LH(t —a)gt)} = [ e H(t — a)g(t)dt

LH@E -a)gt)}= [jestH({t — a)gt)dt+ [ e H(t — a)g(t)dt
LH(t —a)g(t)}= [, e g(t)dt

Now using (t —a = 1)

LH@E -a)gt)}= [ e gla+ Ddr=e"["e gla+ D dr
LH(@ —a)g ()} = e“L{g(t + a)}

t< 2

Example: Given that f (t) = {:)_ 2 £>2

Laplace transform of f (t)
Solution: We have

LUF (0} = L{(t ~DH (t —2)} = L1} = (5)e™

= (t —2)H (t — 2) then find the

1+e72%s
2
Solution: £7Y{f(s)} =1 {1+:2_25} =1 {Slz} + L1 {%225} = ts+ (t —2)H (t —2)

~1(% t ;0<5t<2
L l{f(s)}z{za—n > 2

Example: Find the inverse Laplace transform of f(s) =
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THEOREM: Let f (t) be a piecewise continuous function for t > 0 and of
exponential order. If f (¢) is periodic with period T then show that

T

fe‘“f(t)dt

0

LEf @)} =

1-—esT

PROOF: By definition, we have
Lf@)}= [, e f(t)dt

LUF(E)} = fy et f(t)de+ e f(t)dt
In the 2" integral on the right put t = u + T = dt = du

LUF ()} = [y e f@)dt+ [ et f u+T)du

LFA)}=f et f(t)dt+eT [Ze* f(u+T)du

Since given functionis periodic with period T therefore f (u+T) = f (u) then
LF()}=[ e f(t)dt+e™T ["e ™ f(u)du

LUf (6} = [, e f(t)dt+e™T L{f ()}

LUf (6} = [y e f(t)dt+e T L{f (t))

(1 —e™TL{f ()} = [, e f(t)dt

Lf ()} ==, e f (t) dt

As required the result.

THEOREM: If L{ f ()} = F(s) then £{LE} = [ F(s) ds

PROOF: By definition, we have

LUF )} =F(s)= [, e f(t)dt

[ F(s)ds=["[[ et f () dt]ds integrating.

[ F(s)yds= [ f@®]|f etds]dt  changing the order of integration.
[T F(s)ds = [T f (©) e_—tt|:° dt = ["MBestar = £{ L)

Hence £ {21 = [*F(s) ds

t
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In order to find a solution of linear partial differential equations, the following formulas
and results are useful.
If Llu(x,t)] = U(x,s) then

E{Z—Z} =sU(x,s) —u(x,0)

L{?:T';} = s% U(x,s) — su(x,0) — u,(x,0)

L{‘ZIT:} =s"U(x,s) —s" u(x,0) — - .......—su,_,(x,0) —u, . (x,0)
Similarly, it is easy to show that

du a %u a? u n
L{a}—a U(X,S), L{ﬁ}—ﬁU(x,s), ................. s L{m}—ﬁU(x,S)

EXAMPLE: Use Laplace Transformation method to solve BVP

?u
ox2

u0,t)=1, u1,t)=1 ;t>0 ,u(x,0) =1+ Sinnx

)
=6—1:;0<x<a; 0<t< o

Solution:

. %u _ du %u u 9%
Given oz 12{@} = L{E} = @U(x,s) =sU(x,s) —u(x,0)

2
= %U(x,S) =sU(x,s) — (1+ Sinnx)

::—;U(x,s)—sU(x,s)z —1—Sintx  .eeeeennn. @)
Which is non — homogeneous 2" order DE with solution

Ulx,s) =Uq(x,s) +Up(x,s)  coeerennen. (ii)

For Chractristic (auxiliary) solution

(@) > D*—-s)U(x,s) =—1—Sinnx=>D?>—-s=0=>D=++/s
Then U.(x,s) = cieVs* + ¢ e Vsx

For Particular solution

Consider U, (x, s) = -1-Sinmx _ —e%* im ef™ -1 Sinmx _ 1  Sinmx
pv=/ ™ p2_g T p2_g gDZ—s T 02-s  (im)2-s s -m2-s
1 Sinmtx
ThenU,(x,s) = -
p( ! ) s + m2+s
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() > Ux,s) =Uc(x,s) + Up(x,s) = cle*/gx + cze‘*/;x + % + SEZ
=>U(x,s) = cle‘/gx + cze“/gx + % + S;lf: ............ (iii)
Now using BC’s
u(0,t) =1 L{u(0,0)} = L{1 =1t} > U(0,s) =
u(Lt) =1 Lu1}=L1=t)>ULs) ="
1 1, Sin(0) 11
(i) =2U0)= =ce’+e’+_ + S —=ca+ta+t.=:20=—0
(iii) > U1, s) = % = c;eV"W 4 cye™VsW % + % = cieVs + c eV + % —% =0
= cle\/E + cze‘\/E =0= —cze\/; + cze‘\/; =0 L= —Cy

s cle —el|=0>c,=0, [eV —e¥¥] %0

2¢c=0=>¢;=0 L0 =—0Cy

Sinntx

(iii) = U(x, s) = % + nCi=cy=0

n2+s

> LU=+ o T = 5+ Simth‘l{ ! }

n2+s s—(-m2)

> u(xt) =1+ Sinwxe ™t required solution.

EXAMPLE:

Use Laplace Transformation method to solve BVP uy, (x,t) = a?u,, (x,t);t > 0,x > 0
u(x0)=u;(x,0)=0, u(0,t) = f(t) ,lim,_,u(xt)=0

Solution:

Given uy (x,t) = a?u,, (x,t) = L{u,} = a?L{u,,}
2
= s2 U(x,s) — su(x,0) —u,(x,0) = a? :?U(x, s)
2 2
= s2U(x,s) —(0)—(0) = aZ%U(x,s) = s2U(x,s) = aZ%U(x,s)
92 s2

= SUxs) - Uxs)=0
This is Homogeneous DE of 2" order therefore

SZ 52 s
= (D?-5)U(xs)=0=>D? -5 =0>D=1+2

Then U(x,s) = cied” + c,e”a* ..., @)
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Now using BC’s

u(0,t) = f(t) = L{u(0,0)} = L{f()} > U(0,s) = F(s)
lim,,,u(xt)=0= L{lim,,,u(x,t)} =0=lim,_,U (x,5) =0
(i)=>U(0,s) =F(s) = cleg(o) + cze_g(o) =c;+c, =F(s)

() =1lim,,, U (x,s) =0 = lim [cleix + cze_zx] =c,e” + ce”®
=>¢; =0 then c, =F(s) ~cy+cy =F(s)

Thus (i) = U(x,s) = F( s)e_zs_zx

= LU(x,9)} = £ {F( s)e—ix}

a

=>u(x"f)=H(t—§)f(t—£) whereH(t—E)f(t—f)= “

EXAMPLE: Use Laplace Transformation method to solve BVP

U(x, t) = d’u,, (X, t) — g

u(x,0)=u;(x,0)=0, u(0,t) =0 ,lim,_, u, (x,t) =0

Solution: Given uy, (x,t) = a?u,, (x,t) — g = L{u,} = a®?L{u,,} — gL{1}

2
= s2 U(x,s) — su(x,0) —u,(x,0) = azaa?U(x, s) —%
2 ~(0) — (0) = o222 _9 2 — 29 _9
=>s“Ulx,s)—(0)—-0)=«a axZU(x,s) . =S Ulx,s)=a axZU(x,s) -

a? s? _ 9 .
:QU(x,s)—ﬁ U(x,s) = e, )
Which is non — homogeneous 2" order DE with solution
Ulx,s) =U.(x,s) +Uy(x,s)  .eeeennnis (i)

2 2
For Chractristic (auxiliary) solution = (D2 — %) U(x,s) =0 = D? — % =0=>D= ii

s s
Then U.(x,s) = ciea” + c,e "

] ] ) 9 9 0x 9
For Particular solution Consider U, (x,s) = <5, = = <% = _ &
2_5- 2_5" = s
o2 o2
S S
(i) 2 U(x,s) = U.(x,5) + Up(x,5) = c1ea” + c,ea" — :;3
Sy Sy g
=>U(x,s) =c,ed +ce a — T e (iii)

Now using BC’s u (0,t) =0= L{u(0,t)}=0=>U(0,s) =0
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lim, o, 1y (x,£) = 0 = L{lim, o, u, (x,6)} = 0 = lim,_,., U (x,5) = 0

(iii) = U(0,s) = 0 = c,e° + c,e7° —s% =c +Cp = ;13

oo

. a . s £ s _s s s _
(iii) = lim,_, —U (x,s) = 0 = lim [cl—eax —=cye ax] =c,-e* +cy-e
ax X—00 a a a a

s . S
:>c1;e°°=0:>c1=0 smce;e“’io, then czz;% -'-c1+c2=;l3

=>u(x,t)=§[H(t—§)(t—§)2—(t2)] whereH(t—g)(t—fY:

a

EXAMPLE: Use Laplace Transformation method to solve BVP
U (,0) =uy;; (X, 1);E>0,0<x<1
u0,t)=0=u(1,t), u(x,0) =Sinnx ,u, (x,0) = —Sinnx

Solution: Given u,, (x,t) = uy (x,t) = L{u,,} = L{ug}

2

= % U(x,s) = s U(x,s) — su(x,0) — u,(x,0)
2

= %U(x,s) = 52 U(x,s) — sSinmx + Sinnx

= :—:2 U(x,s) — s> U(x,s) = —sSinnx + Sinmx ............ @

Which is non — homogeneous 2" order DE with solution

Ulx,s) =U.(x,s) +Uy(x,s)  .eeeennnis (i)

For Chractristic (auxiliary) solution

= (D?>-s>)U(x,s) =0=>D*—-s2=0=>D =+s Then U.(x,s) = c,e5* + c,e™5*
For Particular solution

s)Sinmx Sinmx

(1_ . imx
Uy(x,s) = iz (1- s)lngeZ—_s2 =(1-

) Sinmx
(im)%2-s

=(1-y5)

_n12_s

__ (s—1)Sinmx

Up(x' S) - nl4+s

(ii) = U('x’ S) = UC(xJ S) + Up(x; S) = Clesx + Cze_sx + —(S—;l.ii:ﬂx
(s—-1)Sinmx

> U(x,s) =cie5* + c,e™5*
(J) 1 + 2 + 7T2+S
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Now using BC’s u (0,t) =0= L{u (0,t)}=0=>U(0,5s) =0

u(1,t)=0=>L{u(1,)}=0=>U1,s)=0
(s—1)Sinm(0)
nl+s

_ s—1)Sinn _ —
(iii) > U(1,s) =0 = c,€° + c,e”° 4+ ”Z)H >cief+ce*=0>cef—ce =0

(iii) > U(0,5) = 0 = c1€° + c,e™ " + S+ =02c=—c

>c(ef—e*)=0=>c;=0as(eS—e ) #0=>¢,=0

(s—1)Sinmx
nl+s

Thus (iii) = U(x,s) =

= L YU(x,s)} = SinnxL‘l{ > } — Sinnxﬁ‘l{ = }

s24+m2 7.4 s24+m2

= u (x,t) = SinmtxCosmt — Sin%s intt = Sinnx [C ostt — Sin”x]
EXAMPLE:

Use Laplace Transformation method to solve BVP

U (X, 8) =uy (x,t);t>0,0<x<1

u0,t)=0=u(1,t), ux,0) =0 ,u; (x,0) = Sinnx

Solution:

Given u,, (x,t) = uy (x,t) = L{u,,} = L{u,}

2

= % U(x,s) = s? U(x,s) — su(x,0) — u,(x,0)
2

= %U(X,S) =s?U(x,s) — Sinnx

= :—; U(x,s) —s2U(x,s) = Sinmwx ............ (i)

Which is non — homogeneous 2" order DE with solution

Ulx,s) =Uq(x,s) +Up(x,s)  coeerennen. (ii)

For Chractristic (auxiliary) solution = (D? —s>)U(x,s) =0=>D*—-s*=0=>D = +s
Then U.(x,s) = c1e** + c,e™5*

For Particular solution

U (x S) __ Sinmx _ im elmx __ Sinmx _ Sinmx
pS) =g T MG g = (im)2-s  -m?-s
Sinmx
Up(x' s) = n2+s
.. _ Si
(i) > U(x,s) =Uc(x,s) + Up(x,s) = c1e* + c,e™* +%
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— X —sx  Sinmx
=>U(x,s) = c,e5* + c,e 5 + —rs eeeeeeeeees (iii)

Now using BC’s u (0,t) =0= L{u (0,t)} =0=>U(0,s) =0
u(1,t)=0=>L{u(1,)}=0=>U(1,s)=0

Sinm(0)

(i) =>U0,5)=0=cie’+e’+—— —=c1+c;=0=>¢=—¢
_ Sinm
(lii) =2 U1,s) =0 =c€e° + ce™ 5 + s

=>cef+ce’=0=>ce —cie =0
>c(ef—e*)=0=>c;=0as(eS—e ) #0=>¢,=0

Thus

Sinmx

(iii) > U(x,s) =

nl+s

= L HU(x,5)} = Si';"x L1 {L}

s2+m2

Sinntx

=>u(xt) = Sinmt

™

EXAMPLE:
A uniform bar of length ‘I’ is fixed at one end. Let the force

f(t) = {(} tt:: be suddenly applied at the end = [, if the bar is initially at rest, find
0

the longitudinal displacement for t > 0 using Laplace Transformation the motion of bar is
govern by the differential system u;, = a?u,,;t > 0,0 < x < 1 and a is constant.

u(x,0) =u(0,t) =u,(x,0) =0, u,(lt)= %" where E is constant.

Solution:

Given uy (x,t) = a?u,, (x,t) = L{u,} = a®>L{u,,}

= s? U(x,s) — su(x,0) —u,(x,0) = a? %U(x, s)

= s2U(x,s) - (0) — (0) = a? 2, U(x,s)

2 _ 20%
=>s‘Ulx,s)=«a asz(x,s)

a2 52
= -SUxs)—=Ulxs)=0

This is Homogeneous DE of 2™ order therefore
2 2
> (p*-5)u(xs)=0=D2 -5 =

a2

0=>D=+2
a
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Then U(x,s) = cied* + cze™a*  eeeennes @)
Now using BC’s

u(0,t)=0=L{u(0,)}=0=>U(0,s)=0
F

_fo _ fo a __Fy

w0t =L a0y =c{l)=s2vas) =2
(@) =>U,s) =F(s)=cie’+ce %"=>c;+c;=0=>¢; = —¢4
Then U(x,s) = c,ea” —cie”d" ............ (i)

a _ s gx s —ix
=>aU(x,s) =ci-ed tco-e
Then using Sy (I,s) = o e get

ax ’ E

9 _Fo_.'s %x S —ix — Fg

=>£U(x,s) =L =Ci_ed tci-ed S = E(ie%"+-e ax)

Hence (ii) = U(x,s) =

Taking Laplace inverse on both sides

w(rt) = -1 {ﬂ (e%sx_e_%x>

E s

YN
$ea+ea)
a

which is required longitudinal displacement for t > 0
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An impulse function is defined by

p(t):{h a—&g<t<a-+e

0 t<a-—¢gort>a+e¢

where h is large and positive, a > 0, and & is a small positive constant, This type
of function appears in practical applications; for instance, a force of large
magnitude may act over a very short period of time.

The Laplace transform of the impulse function p(t) Is given by
Lp (O] = f; e p(e)de = [§~ e p(e)dt+ [[7 e p(e)dt+ [} e p(t)dt

[p (O] = J; e p(t)dt = [7* " he~tdt=h e R
Llp (®)] = ZTSlnh(ss)

e—st

a—&

Example:(The Heat Conduction Equation in a Semi-Infinite Medium and Fractional
Derivatives). Solve the one-dimensional diffusion equation

Ui = KUy, x20, t>0

with the initial and boundary conditions

ux0) =0x>0 u0,t) = f(),t>0, u(x,t) > 0,asx > 0t>0

Solution: by using Laplace transforamation with respect to ‘t’ we get

d%u s_

oz o 2=0

The general solution of this equation is

u(x,s) = Aexp (—xﬁ) + Bexp (xﬁ)

where A and B are integrating constants. For bounded solutions, B =0, and using
u (0,s) = f (s), we obtain the solution

u(x,s) = f(s) exp <—xﬁ)

The Laplace inversion theorem gives the solution
t

u(xt) = L f flt—1) r-3/2e<_4x_"2‘>dr

which, by setting 4 = \/_ ordi = _ﬁ t3/2dz
2 [ X2\ 2
u (x,t) =\/—E ff<t_4xlz>e di

This is the formal solution of the heat conduction problem.
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Example: (Diffusion Equation in a Finite Medium). Solve the diffusion equation
W= KUy, 0 < x<at>0

with the initial and boundary conditions

u(x0) =00<x<au(0t) =Ut>0, u(at) =01t>0

where U is a constant.

Solution: by using Laplace transforamation with respect to ‘t’ we get

d%u _

—-2u=0 ;0<x<a
dx K v di

— u

u0,s) =7, (E)m =0

The general solution of this equation is

u(x,s) = ACosh (xﬁ) + BSinh (xﬁ)
du

where A and B are integrating constants. and using u(0,s) = g (E) =0 we
xX=a

obtain the solution

, oo )
e[

The inverse Laplace transform gives the solution
Cosh((a—x)ﬁ)
sCosh(E)

The inversion can be carried out by the Cauchy Residue Theorem to obtain the
solution

Ao o 2n-1)(a-x)m N
ulxt) =U 1+ (Zn 1)C s< o Xexpi—(2n—-1) (ﬂ) Kt
By expandlng the cosme term, this becomes

u(xt) =U|1+ nz (2 — 1) {<(2an1 1)> x} X exp {—(Zn —1)? (la)z Kt}]

This result can be obtalned by solving the problem by the method of separation
of variables.

u(x,s) = ;

u(x,t) =UL™?

Example: (The Wave Equation for the Transverse Vibration of a Semi-Infinite
String). Find the displacement of a semi-infinite string, which is initially at rest in
its equilibrium position. Attime t =0, the end x =0 is constrained to move so
that the displacement is u (0,t) = Af (t) fort > 0where A is a constant. The
problem is to solve the one-dimensional wave equation

utt:cquX,OSx<w ;>0

with the boundary and initial conditions

u(xt) = Af(t)atx = 0,t> 0 and u(x,t) > 0asx - «ot=> 0,
du

u(xt) = O=E att =0for0 < x < »

PROF. MUHAMMAD USMAN HAMID (0323-6032785)



Solution: Application of the Laplace transform of u (x, t) with respect to t gives

255 2

%—j—ﬂ:_o ; for0sx < w
u(x,s) =Af(s), at x=0 and u(x,s) > 0asx - «x
The solution of this differential equation system is
u(x,s) = Af (s) exp (— ?)
Inversion gives the solution

XS XS
u@t) = Af (t-2)H (t-2)
In other words, the solution is

XS
Af (t — ?) t>x
t<

This solution represents a wave propagating at a velocity ¢ with the
characteristic x = ct.

u(xt) =

THE GAUSSIAN INTEGRAL
Vr

(e} 2 0 _,2
oe¥dx=vm or [ e*dx==

Solution: consider I= [ e™* dx and I = [ e dy then multiplying both

I f fe‘xz‘yz dxdy

— 00 —O00

Now using polar coordinates I? = [;" [~ e rdrd0 =m = I = V=

Vr

= fe_xzdx=\/E:>2fe_xzdx=\/ﬁz>fe_x2dx=7
i 0

0

FINITE FOURIER SINE TRANSFORMS

Let f (x) be a piecewise continuous in a finite interval, say (0, ). Then finite
Fourier Sine Transform denoted by F¢(k) of the function f (x) is defined by
Fy(k) = F {f 0} = = [ f (x) Sinkxdx k=1,23 e

F 1 {Fs (k)} = f (x) = Yy Fs(k)Sinkx

FINITE FOURIER COSINE TRANSFORMS
Let f (x) be a piecewise continuous in a finite interval, say (0, ). Then finite
Fourier Sine Transform denoted by F.(k) of the function f (x) is defined by

Fe(k) = Fo{f (0} = = f;' f () Coskxdx k =0,1,2,3, eece....

FAAF ()} = f (x) =22 + 052, F (k) Coskx

PROF. MUHAMMAD USMAN HAMID (0323-6032785)
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Theorem : Let f'(x) be continuous and f"'(x) be peicewise continuous in [0, «r] if
F¢(k) is the finite Fourier Sine Transform of f (x) then

Fo{f" (0} = 2 [£(0) — (- f(m)] — k?F (k)
PROOF:
By definition

Fc{f' (0} = %f:f”(x) Sinkxdx = %If’(x)SinkxI})r - %f:f’(x) Coskxdx
Felf" @) = - |f () coskalf — 2 [ f(x) Sinkxdx
Fo(f" (0} =2 [£(0) — (- f(m)] — k?F; (k)

Theorem : Let f'(x) be continuous and f"'(x) be peicewise continuous in [0, ir] if
F.(k) is the finite Fourier Cosine Transform of f (x) then

FeAf" 0} = Z[(-D () - (0] — k2Fc(k)
PROOF: By Yourself. Same as previous.

HANKEL TRANSFORMS
fn (1) is called the Hankel transform of f(r) and is defined formally by

Holf OO} = Fu (0) = [ 1JaCir) £ ()
0
The inverse Hankel transform is defined by

0]

H (Fo (1)) = f (1) = j K (k7) Fr (1)l

0

Alternatively, the famous Hankel integral formula

f @) = [y KlnGer)dk [” pJ(kp)f (p)dp

can be used to define the Hankel transform and its inverse

In particular, the Hankel transforms of zero order (n = 0) and of order

one (n =1) are often useful for the solution of problems involving Laplace’s
equation in an axisymmetric cylindrical geometry.

REMARK: For Bessel Functions
i.  Jo(kr) = %f; Cos(krSin0)do
i, J'o(rr) = =] (kr) also Jpiq = Ju—1 — 2], for Jo(0) =1,J,(0) =0 ; n>0
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Example: Obtain the zero-order Hankel transforms of
@ rtexp (-ar), 022 (c)H(a - 1)

where H (r) is the Heavriside unit step function.

Solution:

(@) ]

3o (e} = Fo (1) = [} 1)uCer) f (dr = [} 7.2y (er) dr =
(b)

o {@} = fo (k) = fooor]n(lcr)f (rdr = fooo T.
(c)

Ho{H(a — 1)} = fo () = [ 1],(r) f )dr = [ H(a — 1)]o(ker) dr

Ho{H(a — 1} = fo () = [{]oGer) dr == [ pJo(p) dp = |pJ1 () 18" = 2] (ar)

K

)

T

Jo(kr)dr =1

Example: Find the first-order Hankel transform of the following functions:
(@) f(r) = e, (b) f(r) =5 e~
Solution:
(@)
Hle™} = J () = [y rJ1(er) f (Ndr = [ re” ] (xr) dr =
(b)
#y (Lemort = F (o) = [ 0]y (er) f dr = [ 2 ey (er) dr
4 {% e“”} = fooo e ], (kr)dr = %[1 — a(k? + a?)71/2]

K

(n72+a2)3/Z

Example: Find the nth-order Hankel transforms of
@f @=r"H@-1), O f )=t"e "
Solution:
(a)
Hy (r"H (@ = 1)} = F () = [ 1Ju(er) f (Pdr = [, (er) dr
Ho r"H (@ — 1)} = F (1) = S J s (ar)
(b)
#, fre @ L = F () = [ r)u(er) £ ()dr = [ 7, (kr)e™ " dr

K

Hn {rne_urz } = J (o) = (Za):l“l exp (_ g)
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PROPERTIES OF HANKEL TRANSFORMS AND APPLICATIONS
(i) THE HANKEL TRANSFORM OPERATOR, “H,” IS A LINEAR INTEGRAL
OPERATOR for any constants a and b.

i.e. Hy{af(r) +bg(r)} = adt, {f(r)} + bH, {g(r)}
Proof: by using definition

Hy{af () + bg(r)} = [, t]n(kr) {af () + bg(r)}dr
H,{af(r) + bg()} = a [ r],(kr) f@)dr + b [ 1], (k1) g(r)dr
}[n {af(r) + bg(r)} = Cl.']‘fn {f(r)} + bg{n {g(r)}

(i) THE HANKEL TRANSFORM SATISFIES THE PARSEVAL RELATION

[ rrw amar = [ ka0 G ak

0 0

where f(x) and § (k) are Hankel transforms of f(r) and g(r) respectively.
Proof:

Iy kf(0)F (1) dk = [ kf () dk [, 1], (k) g(r)dr
Jo kGG (1) dke = ["rg(r)dr [ k], (er)f () dk
Jy kf(0)F () dke = [ rf(r) g(r)dr

(iii) (SCALING PROPERTY). If #£,, {f(r)} = f(x) then 3¢, {f(ar)} == F. (%) ;2> 0
Proof. We have, by definition,

3, (flar)} = [ 1l Ger)f(ar)dr = 5 [ s)u (Ss) f(s)ds  war=s

H, (fa)}==Fu(5) sa>0

These results are used very widely in solving partial differential equations in the
axisymmetric cylindrical configurations.
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Exercises

1. Find the Laplace transform of each of the following functions:
(@) t", (b) cos wt, (c) sinhkt, (d) cosh kt, (e) te™, (f) e*sin wt, (g) e cos wt,
(h) tsinh kt, (i) tcosh kt (j)ﬁ K) VE, () S“:f“

2. Find the inverse transform of each of the following functions:
1 SZ_aZ

s 1 1 1
(a) (s2+a2)(s2+b2) (b) (s2+a2)(s2+b2) ) (s—a)(s—b) (d) s(s+a)? (e) s(s+a) () (52+a2)2

3. Obtain the solution of the problem
U= U, 0 < x < ot >0,
u((x,0)= f(x), uy (x,0) = 0,u(0,t) = 0,u(x,t) —» 0Ouniformlyint asx - «

4.S0lve  ug=ciy, 0 < x <Lt >0,
u (x,0)=0, w(x0) = 0,u(0,t) = f@&),ul,t) = 0,t> 0.

5.S0lve ut= kuyy, 0 < x < ot >0,
u(x0) =fy, 0 < x < o u (0,t)="Ff;, ux,t) > founiformlyint asx - ot > 0.

6.S0lve w1= kuyy, 0 < x < ot>0,
u((x,0) = x,x >0, u(0,t) = 0,u(x,t) - x uniformlyint asx - «t > 0.

7.50lve 1= kuy, 0 < x < »t>0,
u(x0) =00 < x < qu(0,t)=t% ux, t)-Ouniformlyint asx— ot> 0.

8.Solve ut= kuyx—huy, 0 < x < ot >0,h = constant,
u(x, 0)=fg, x>0, u (0, t)=0, ux (0, t) > O0uniformlyint as x-w, t>0.

9.50lve ui=kuyy, 0 < x < ot>0,
u(x,0) =00 < x < qu(0,t) =1y ux, t)->O0uniformlyint asx - «t>0.

10. Solve utt:czuxx, 0 <x< ot>0,
u(x,0)=0,u (x,0)=fp, 0 <x<aoqu(0,t) = 0,ux(x,t) > O0uniformlyint as
x> at>0.

11. Solve ux=c’uxx, 0 < x < at >0,
u (x,0)=1£f(x), u(x, 0)=0, 0< x < =,
u (0, t)=0, ux(x, t)>0uniformlyint as x—w, t>0.
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