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INTRODUCTION 

 

NUMERICAL ANALYSIS 

Numerical Analysis is the branch of mathematics that provides tools and methods for solving 

mathematical problems in numerical form. 

In numerical analysis we are mainly interested in implementation and analysis of numerical 

algorithms for finding an approximate solution to a mathematical problem. 

NUMERICAL ALGORITHM 

A complete set of procedures which gives an approximate solution to a mathematical 

problem. 

CRITERIA FOR A GOOD METHOD 

1) Number of computations i.e. Addition, Subtraction, Multiplication and Division. 

2) Applicable to a class of problems. 

3) Speed of convergence. 

4) Error management. 

5) Stability. 

 STABLE ALGORITHM 

Algorithm for which the cumulative effect of errors is limited, so that a useful result is 

generated is called stable algorithm. Otherwise Unstable.  

NUMERICAL STABILITY 

Numerical stability is about how a numerical scheme propogate error. 

NUMERICAL ITERATION METHOD 

A mathematical procedure that generates a sequence of improving approximate solution for 

a class of problems i.e. the process of finding successive approximations. 

 

 



 

 

ALGORITHM OF ITERATION METHOD 

A specific way of implementation of an iteration method, including to termination criteria is 

called algorithm of an iteration method. 

In the problem of finding the solution of an equation, an iteration method uses as 

initial guess to generate successive approximation to the solution. 

CONVERGENCE CRITERIA FOR A NUMERICAL COMPUTATION 

If the method leads to the value close to the exact solution, then we say that the method is 

convergent otherwise the method is divergent.i.e.ἴἱἵ▪O ●▪ ► 

ROUNDING 

For ●ꜗ╡; f(x) is an element ƻŦ άCέ ƴŜŀǊŜǎǘ ǘƻ άȄέ and the transformation xO f(x) is called 

Rounding (to nearest). 

Why we use numerical iterative methods for solving equations? 

As analytic solutions are often either too tiresome or simply do not exist, we need to find an 

approximate method of solution. This is where numerical analysis comes into picture. 

LOCAL CONVERGENCE 

An iterative method is called locally convergent to a root, if the method converges to root for 

initial guesses sufficiently close to root. 

RATE OF CONVERGENCE OF AN ITERATIVE METHOD 

Suppose that the sequence (xk) converges to άǊέ ǘƘŜƴ ǘƘŜ ǎŜǉǳŜƴŎŜ όȄk) is said to converge to 

άǊέ ǿƛǘƘ ƻǊŘŜǊ ƻŦ ŎƻƴǾŜǊƎŜƴŎŜ άŀέ ƛŦ ǘƘŜǊŜ ŜȄƛǎǘ ŀ ǇƻǎƛǘƛǾŜ Ŏƻƴǎǘŀƴǘ άǇέ ǎǳŎƘ ǘƘŀt 

ἴἱἵ▓O
ȿ●▓ ►ȿ

ȿ●▓ ►ȿ
╪  ἴἱἵ▓O

▓ꜗ

▓ꜗ
♪  ▬ 

Thus if ╪ , the convergence is linear. If ╪ , the convergence is quadratic and so 

ƻƴΦ²ƘŜǊŜ ǘƘŜ ƴǳƳōŜǊ άaέ ƛǎ ŎŀƭƭŜŘ ŎƻƴǾŜǊƎŜƴŎŜ ŦŀŎǘƻǊΦ 

REMARK 

ü Rate of convergence for fixed point iteration method is linear. 

ü Rate of convergence for Newton Raphson method is quadratic. 

ü Rate of convergence for Secant method is Super linear. 



 

 

ORDER OF CONVERGENCE OF THE SEQUENCE 

Let (x0, x1,x2,.......)be a sequence that converƎŜǎ ǘƻ ŀ ƴǳƳōŜǊ άŀέ and set  ʑ n=a - xn 

If ǘƘŜǊŜ ŜȄƛǎǘ ŀ ƴǳƳōŜǊ άƪέ ŀƴŘ ŀ ǇƻǎƛǘƛǾŜ Ŏƻƴǎǘŀƴǘ άŎέ ǎǳŎƘ ǘƘŀǘ      ἴἱἵ▪O
ȿꜗ▪ ȿ

ȿꜗ▪ȿ▓
  ╬       

Then άƪέ ƛǎ ŎŀƭƭŜŘ ƻǊŘŜǊ ƻŦ ŎƻƴǾŜǊƎŜƴŎŜ ƻŦ ǘƘŜ ǎŜǉǳŜƴŎŜ ŀƴŘ άŎέ ǘƘŜ ŀǎȅƳǇǘƻǘƛŎ ŜǊǊƻǊ 

constant. 

 

CONSISTENT METHOD 

Let  ● ╪ꜗȟ╫ , ◐╡ꜗ▀  and  the function   ấΥώŀΣōϐҎwd×R+O Rd   may be thought of as the 

approximate increment per unit step, Or the approximate difference quotient and it defines 

the method and consider T(x,y:h)  ƛǎ ǘǊǳƴŎŀǘƛƻƴ ŜǊǊƻǊ ǘƘŜƴ ǘƘŜ ƳŜǘƘƻŘ άấέ is called consistent 

if  T(x,y:h)O 0  as  hO 0  uniformly for (x,y) ꜗ [a,b]×Rd 

PRECISION 

Precision mean how close are the measurements obtained from successive iterations. 

ACCURACY 

Accuracy means how close are our approximations from exact value. 

DEGREE OF ACCURACY OF A QUADRATURE FORMULA 

Lǘ ƛǎ ǘƘŜ ƭŀǊƎŜǎǘ ǇƻǎƛǘƛǾŜ ƛƴǘŜƎŜǊ άƴέ such that ǘƘŜ ŦƻǊƳǳƭŀ ƛǎ ŜȄŀŎǘ ŦƻǊ άȄk έ for each 

(ƪҐлΣмΣнΣΧΧƴ). i.e.   Polynomial integrated exactly by method. 

 

CONDITION OF A NUMERICAL PROBLEM 

A problem is well conditioned if small change in the input information causes small change in 

the output. Otherwise it is ill conditioned.  

 

STEP SIZE, STEP COUNT, INTERVAL GAP 

The common difference between the points i.e. h = 
╫ ╪

▪
 = t i+1 - t i  is called ▼◄▄▬▼░◑▄. 



 

 

ERROR ANALYSIS 

 

ERROR 

Error is a term used to denote the amount by which an approximation fails to equal the exact 

solution.          ╔►►▫►╔●╪╬◄ ▼▫■◊◄░▫▪═▬▬►▫●░□╪◄░▫▪ 

SOURCE OF ERRORS 

Numerically computed solutions are subject to certain errors. Mainly there are three types of 

errors 

1. Inherent errors 2. Truncation errors 3. Round Off errors 

INHERENT (EXPERIMENTAL) ERRORS 

Errors arise due to assumptions made in the mathematical modeling of problems. Also arise 

when the data is obtained from certain physical measurements of the parameters of the 

problem i.e. errors arising from measurements. 

TRUNCATION ERRORS  

Errors arise when approximations are used to estimate some quantity. 

These errors corresponding to the facts that a finite (infinite) sequence of computational 

steps necessary to produce an ŜȄŀŎǘ ǊŜǎǳƭǘ ƛǎ άǘǊǳƴŎŀǘŜŘέ ǇǊŜƳŀǘǳǊŜƭȅ ŀŦǘŜǊ ŀ ŎŜǊǘŀƛƴ ƴǳƳōŜǊ 

of steps. 

How Truncation error can be removed? 

Use exact solution. 

Error can be reduced by applying the same approximation to a larger number of smaller 

intervals or by switching to a better approximation.  

ROUND OFF ERRORS 

Errors arising from the process of rounding off during computations. 

These are also called Ȱ╬▐▫▬▬░▪▌ȱ i.e. discarding all decimals from some decimals on. 



 

 

RELATIVE ERRORS 

LŦ άņέ ƛǎ ŀƴ ŀǇǇǊƻȄƛƳŀǘŜ ǾŀƭǳŜ ƻŦ ŀ ǉǳŀƴǘƛǘȅ ǿƘƻǎŜ ŜȄŀŎǘ ǾŀƭǳŜ ƛǎ άŀέ ǘƘŜƴ ǊŜƭŀǘƛǾŜ ŜǊǊƻǊ ( ►ꜗ) of 

άņέ is defined by             | ►ꜗ| = 
ȿ▄►►▫►ȿ

ȿ◄►◊▄ ○╪■◊▄ȿ
 
ȿꜗȿ

ȿ╪ȿ
 

EXAMPLE 

Consider   ЍҐмΦпмпнмоΧΧΦ   ǳǇǘƻ ŦƻǳǊ ŘŜŎƛƳŀƭ ǇƭŀŎŜǎ then   Ѝ =1.4142+ errors   

|error|=|1.4142 -1.41421|=0.00001   taking   1.4142 as true or exact value. 

 Hence  ꜗ ► = 
Ȣ

Ȣ
 

REMARK 

I. ►ꜗҒ 
ꜗ

à
    if |  ꜗ |  ƛǎ ƳǳŎƘ ƭŜǎǎ ǘƘŀƴ μņμ 

II. We may also introduce the quantity ά ♬= a-ņ = - ꜗέ  ŀƴŘ ŎŀƭƭŜŘ ƛǘ ǘƘŜ άŎƻǊǊŜŎǘƛƻƴέ 

III. ╣►◊▄ ○╪■◊▄  ═▬▬►▫●░□╪◄▄ ○╪■◊▄  ╒▫►►▄╬◄░▫▪ 

 

ABSOLUTE ERROR 

LŦ άņέ ƛǎ ŀƴ ŀǇǇǊƻȄƛƳŀǘŜ ǾŀƭǳŜ of a quantity whose exact ǾŀƭǳŜ ƛǎ άŀέ then the difference 

 ά ꜗ Ґņ-ŀέ ƛǎ ŎŀƭƭŜŘ ŀōǎƻƭǳǘŜ ŜǊǊƻǊ ƻŦ άŀέ. 

ü ņ Ґŀ Ҍ  ꜗ

EXAMPLE           

LŦ ņ = 10.52 is an approximation to a = 10.5 then the error is ꜗ  = 0.02 

ERROR BOUND 

It is a number άέ̡ ŦƻǊ άņέ ǎǳŎƘ ǘƘŀǘ μņ-aμҖ̡ ƛΦŜΦ |  ꜗ | Җ ̡

PROBABLE ERROR 

This is an error estimate such that the actual error will exceed the estimate with probability 

one ς half. 

In other words, the actual error is as likely to be greater than the estimate as less. Since this 

depends upon the error distribution, it is not an easy target and a rough substitute is often 

used  Ѝ▪ ꜗ  with άꜗέ the maximum possible error. 



 

 

INPUT ERROR 

Error arises when the given values (y0 =f(x0), y1, y2,..........yn) are inexact as experimental or 

computed values usually are. 

LOCAL ERROR 

This is the error after first step. 

 ꜗi+1 = x(t0+h)-x1 

The Local Error is the error introduced during one operation of the iterative process. 

GLOBAL ERROR 

This is the error at n-step. 

 ꜗn= x(tn) - xn 

The Global Error is the accumulation error over many iterations. 

Note that the Global Error is not simply the sum of the Local Errors due to the non-linear 

nature of many problems although often it is assumed to be so, because of the difficulties in 

measuring the global error. 

 

LOCAL TRUNCATION ERROR  

It is the ratio of local error by step size. 

         LTE = 
╛╞╒═╛ ╔╡╡╞╡

╢╣╔╟ ╢╘╩╔
 

 

REMARK :         Floating point numbers are not equally spaced. 

  



 

 

SOLUTION OF NON-LINEAR EQUATIONS 

 

ROOTS (SOLUTION) OF AN EQUATION OR ZEROES OF A FUNCTION 

¢ƘƻǎŜ ǾŀƭǳŜǎ ƻŦ άȄέ ŦƻǊ ǿƘƛŎƘ Ŧόx) = 0 is satisfied are called root of an equation. Thus άŀέ ƛǎ 

root of f(x) = 0 iff f(a) = 0 

DEFLATION:         It is a technique to compute the other roots of f(x) = 0 

ZERO OF MULTIPLICITY  

! ǎƻƭǳǘƛƻƴ άǇέ ƻŦ ŦόȄύ Ґ л ƛǎ ŀ ȊŜǊƻ ƻŦ ƳǳƭǘƛǇƭƛŎƛǘȅ άƳέ ƻŦ άŦέ ƛŦ ŦƻǊ άx ґ Ǉέ we can write               

f(x) = (x-p)m q(x)  ǿƘŜǊŜ  άἴἱἵ▓O ▬▲● έ 

ALGEBRAIC EQUATION 

The equation f(X) = 0 is called an algebraic equation ƛŦ ƛǘ ƛǎ ǇǳǊŜƭȅ ŀ ǇƻƭȅƴƻƳƛŀƭ ƛƴ άȄέ.           

e.g.  x3+5x2-6x+3 = 0  

TRANSCENDENTAL EQUATION 

The equation f(x) = 0 is called transcendental equation if it contains Trigonometric, Inverse 

trigonometric, Exponential, Hyperbolic or Logarithmic functions.e.g. 

i. M = e-esinx ii. ax2+ log(x-3) +exsinx = 0 

 

PROPERTIES OF ALGEBRAIC EQUATIONS 

1. Every algebraic equation of degree άƴέ Ƙŀǎ άƴέ ŀƴŘ ƻƴƭȅ άƴέ roots.e.g. 

x2 - 1=0 has distinct roots i.e. 1, -1 

x2+2x+1 = 0 has repeated roots i.e. -1, -1 

x2+1 = 0 has complex roots i.e. +͜ , -  ͜

2. Complex roots occur in pair. i.eΦ όŀҌō͜ύ ŀƴŘ όŀ-ō͜ύ are roots of f(x)=0 

3. If x = a is a root f(x)=0, ŀ ǇƻƭȅƴƻƳƛŀƭ ƻŦ ŘŜƎǊŜŜ άƴέ then (x-a) is factor of f(x)=0 on 

dividing f(x) by (x-a) we obtain polynomial of degree (n-1).   



 

 

DISCARTS RULES OF SIGNS 

The number of positive roots of an algebraic equation f(x)=0 with the real coefficient cannot 

exceed the number of changes in sign of the coefficient in f(x)=0.  

e.g.   x3-3x2+4x-5=0 changes its sign 3-time, so it has 3 roots. 

           Similarly, the number of negative roots of f(x)=0 cannot exceed the number of changes 

in sign of the coefficient of f(-x) =0 

 e.g.   -x3-3x2-4x-5=0 does not changes its sign, so it has no negative roots. 

REMARK 

There are two types of methods to find the roots of Algebraic and Transcendental equations. 

(i)   DIRECT METHODS     (ii)     INDIRECT (ITERATIVE) METHODS 

 

DIRECT METHODS  

1. Direct methods give the exact value of the roots in a finite number of steps. 

2. These methods determine all the roots at the same time assuming no round off errors. 

3. In the category of direct methods; Elimination Methods are advantageous because 

they can be applied when the system is large. 

INDIRECT (ITERATIVE) METHODS 

1. These are based on the concept of successive approximations. The general procedure 

is to start with one or more approximation to the root and obtain a sequence of 

iterates άȄέ ǿƘƛŎƘ ƛƴ ǘƘŜ ƭƛƳƛǘ ŎƻƴǾŜǊƎŜǎ ǘƻ ǘƘŜ ŀŎǘǳŀƭ or true solution to the root. 

2. Indirect Methods determine one or two roots at a time. 

3. Rounding error have less effect 

4. These are self-correcting methods. 

5. Easier to program and can be implemented on the computer. 

 

REMEMBER:         Indirect Methods are further divided into two categories 

I. BRACKETING METHODS II. OPEN METHODS  

 



 

 

BRACKETING METHODS 

These methods require the limits between which the root lies. e.g. Bisection method, False 

position method. 

OPEN METHODS 

These methods require the initial estimation of the solution. e.g. Newton Raphson method. 

ADVANTAGES AND DISADVANTAGES OF BRACKETING METHODS 

Bracket methods always converge. 

The main disadvantage is, if it is not possible to bracket the root, the method cannot 

applicable. 

GEOMETRICAL ILLUSTRATION OF BRACKET FUNCTIONS 

In these methods we choose two points άȄnέ ŀƴŘ άȄn-1έ ǎǳŎƘ ǘƘŀǘ ŦόȄn) and f(xn-1) are of 

opposite signs. 

Intermediate value property suggests ǘƘŀǘ ǘƘŜ ƎǊŀǇƘ ƻŦ άȅҐŦόȄύέ ŎǊƻǎǎŜǎ ǘƘŜ Ȅ-axis between 

these two pointsΣ ǘƘŜǊŜŦƻǊŜ ŀ Ǌƻƻǘ όǎŀȅύ άȄҐȄrέ ƭƛŜǎ ōŜǘǿŜŜƴ ǘƘŜǎŜ ǘǿƻ ǇƻƛƴǘǎΦ 

REMARK 

Always set your calculator at radian mod while solving Transcendental or Trigonometric 

equations. 

 

How to get first approximation?  

We can find the approximate value ƻŦ ǘƘŜ Ǌƻƻǘ ƻŦ ŦόȄύҐл ōȅ άDǊŀǇƘƛŎŀƭ ƳŜǘƘƻŘέ ƻǊ ōȅ 

ά!ƴŀƭȅǘƛŎŀƭ ƳŜǘƘƻŘέΦ 

 

INTERMEDIATE VALUE THEOREM 

{ǳǇǇƻǎŜ άŦέ ƛǎ Ŏƻƴǘƛƴuous on [a, bϐ ŀƴŘ Ŧόŀύґ Ŧόōύ ǘƘŜƴ given a number άẪέ ǘƘŀǘ ƭƛŜǎ ōŜǘǿŜŜƴ 

f(a) and f(b) ǘƘŜƴ ǘƘŜǊŜ ŜȄƛǎǘ ŀ Ǉƻƛƴǘ άŎέ ǎǳŎƘ ǘƘŀǘ ŀғc<b with █╬  

 



 

 

BISECTION METHOD 

Bisection method is one of the ōǊŀŎƪŜǘƛƴƎ ƳŜǘƘƻŘǎΦ Lǘ ƛǎ ōŀǎŜŘ ƻƴ ǘƘŜ άIntermediate value 

ǘƘŜƻǊŜƳέ 

The idea behind the method is that if f(x) ɴ  C [a, b] and f(a).f(b)<0 then there exist a root         

άc ɴ  όŀΣōύέ such that άf(ŎύҐлέ 

This method also known as BOLZANO METHOD (or) BINARY SECTON METHOD. 

 

ALGORITHM 

For a given continuous function f(x) 

1. Find a ,b such that f(a).f(b)<0 (ǘƘƛǎ ƳŜŀƴǎ ǘƘŜǊŜ ƛǎ ŀ Ǌƻƻǘ άǊ ɴ  όŀΣōύέ ǎǳŎƘ ǘƘŀǘ Ŧ(r)=0 

2. Let c = 
╪ ╫

   (mid-point) 

3. If f(c)=0; done (lucky!) 

4. Else; check if █╬Ȣ█╪  or █╬Ȣ█╫  

5. Pick that interval [a, c] or [c, b] and repeat the procedure until stop criteria satisfied.  

STOP CRITERIA 

1. Interval small enough. 

2. |f(c n)| almost zero 

3. Maximum number of iteration reached 

4. Any combination of previous ones 

  



 

 

CONVERGENCE CRITERIA 

No. of iterations needed in the bisection method to achieve certain accuracy 

Consider the interval [a0 ,b0] ,, c0 = 
╪ ╫

   and let r ɴ  (a0,b0)  be a root then the error is                

0ɴ = |r-c0| Җ 
╫ ╪

 

Denote the further intervals as [an,bn] ŦƻǊ ƛǘŜǊŀǘƛƻƴ ƴǳƳōŜǊ άƴέ ǘƘŜƴ 

nɴ=|r -cnμҖ 
╫▪ ╪▪ Җ 

╫ ╪
▪

 = 
ᶰ
▪

 

LŦ ǘƘŜ ŜǊǊƻǊ ǘƻƭŜǊŀƴŎŜ ƛǎ άέɴ we   ǊŜǉǳƛǊŜ άnɴҖɴέ then 
╫ ╪
▪ Җ ɴ  

After taking logarithm     log (b0-a0) ς ƴƭƻƎн Җ log (2 )ɴ 

  
 ■▫▌ ╫ ╪  ɀ ■▫▌ɴ  

■▫▌
 Җ ƴ   

 ■▫▌ ╫ ╪ ɀ ■▫▌ɴ 

■▫▌
 Җ ƴ   (which is required) 

MERITS OF BISECTION METHOD 

1. The iteration using bisection method always produces a root, since the method 

brackets the root between two values. 

2. As iterations are conducted, the length of the interval gets halved. So one can 

guarantee the convergence in case of the solution of the equation. 

3. Bisection method is simple to program in a computer. 

DEMERITS OF BISECTION METHOD 

1. The convergence of bisection method is slow as it is simply based on halving the 

interval. 

2. Cannot be applied over an interval where there is discontinuity. 

3. Cannot be applied over an interval where the function takes always value of the same 

sign. 

4. Method fails to determine complex roots (give only real roots) 

5. LŦ ƻƴŜ ƻŦ ǘƘŜ ƛƴƛǘƛŀƭ ƎǳŜǎǎŜǎ άŀ0έ ƻǊ άb0έ ƛǎ closer to the exact solution, it will take larger 

number of iterations to reach the root. 

 

 

 



 

 

EXAMPLE 

Solve   x3-9x+1 for roots between x=2 and x=4  

SOLUTION 

X 2 4 

f(x) -9 29 

 

Since f (2). f (4) <0   therefore root lies between 2 and 4 

(1)      xr =  = 3   so  f(3) = 1 (+ve) 

(2)    For interval [2,3] ;   xr =   = 2.5 

f (2.5) = -5.875 (-ve)    

(3) For interval [2.5,3];  xr = (2.5+3)/2 = 2.75 

f (2.75) = -2.9534 (-ve) 

(4) For interval [2.75,3];  xr = (2.75+3)/2 = 2.875 

f (2.875) = -1.1113 (-ve)   

(5) For interval [2.875,3];   xr = (2.875+3)/2 = 2.9375 

f (2.9375) = -0.0901 (-ve)     

(6) For interval [2.9375,3];   xr = (2.9375+3)/2 = 2.9688 

f (2.9688) = +0.4471 (+ve)     

(7) For interval [2.9375,2.9688];  xr = (2.9375+2.9688)/2 = 2.9532 

f (2.9532) = +0.1772 (+ve)     

(8) For interval [2.9375,2.9532];  xr = (2.9375+2.9532)/2 = 2.9453 

f (2.9453) = 0.1772 

Hence root is 2. 9453 because roots are repeated.   

 

 

 

 

 

 

 



 

 

EXAMPLE 

Use bisection method to find out the roots of the function describing to drag coefficient of 

parachutist given by 

f(c) = 
Ȣ

╬
 [1-exp(-0.146843c)]-40    ²ƘŜǊŜ άŎҐмнέ ǘƻ άŎҐмсέ ǇŜǊŦƻǊƳ ŀǘ ƭŜŀǎǘ ǘǿƻ ƛǘŜǊŀǘƛƻƴǎ. 

SOLUTION 

Given that       f(c) = 
Ȣ

╬
 [1-exp(-0.146843c)]-40 

X 12 13 14 15 

f(x) 6.670 3.7286 1.5687 -0.4261 

 

Since f (14). f (15) <0 therefore root lie between 14 and 15 

Xr =  = 14.5       So   f(14.5) = 0.5537 

Again f (14.5). f (15) <0 therefore root lie between 14.5 and 15 

xr = 
Ȣ

 = 14.75       So   f(14.75) = 0.0608          These are the required iterations  

 

EXAMPLE 

Explain why the equation eϺx = x has a solution on the interval [0,1]. Use bisection to find the 

root to 4 decimal places. Can you prove that there are no other roots? 

SOLUTION 

If f(x) = eϺx Ϻ x, then f(0) = 1, f(1) = 1ȾÅ Ϻ 1 < 0, and hence a root is guaranteed by the 

Intermediate Value Theorem. Using Bisection, the value of the root is               x? = .5671.           

Since f0(x) = ϺeϺx Ϻ 1 < 0 for all x, the function is strictly decreasing, and so its graph can only 

cross the x axis at a single point, which is the root. 

  



 

 

FALSE POSITION METHOD 

This method also known as REGULA FALSI METHOD,, CHORD METHOD ,, LINEAR 

INTERPOLATION and method is one of the bracketing methods and based on intermediate 

value theorem. 

This method is different from bisection method. 

Like the bisection method we are not taking the mid-point of the given interval to determine 

the next interval and converge faster than bisection method.  

ALGORITHM 

Given a function f(x) continuous on an interval [a0,b0] and satisfying f(a0).f(b0)<0 for all                  

n = 0,1,2,оΧΧΧΧΦΦ    then Use following formula to next root 

●►= ●█  
●█ ●░

█●█ █●░
 f(xf)    We can also use xr = xn+1  ,,, xf = xn  ,,, xi = xn-1 

STOPING CRITERIA  

1. Interval small enough. 

2. |f(c n)| almost zero 

3. Maximum number of iteration reached 

4. Same answer. 

5. Any combination of previous ones 

 

 

 

 

 

 

 

 

 



 

 

EXAMPLE 

Using Regula Falsi method Solve   x3-9x+1   for roots between x=2 and x=4  

SOLUTION 

 

X 2 4 

f(x) -9 29 

 

Since f(2).f(4)<0   therefore root lies between 2 and 4 

Using formula 

●►= xf - 
●█ ●░

█●█ █●░
 f(xf) 

For interval [2,4]      we have    xr   29 Ȣ     

Which implies █ Ȣ Ȣ  (-ve) 

Similarly, other terms are given below 

Interval xr F(xr) 

[2.4737,4] 2.7399 -3.0905 

[2.7399,4] 2.8613 -1.326 

[2.8613,4] 2.9111 -0.5298 

[2.9111,4] 2.9306 -0.2062 

[2.9306,4] 2.9382 -0.0783 

[2.9382,4] 2.9412 -0.0275 

[2.9412,4] 2.9422 -0.0105 

[2.9422,4] 2.9426 -0.0037 

[2.9426,4] 2.9439 0.0183 

[2.9426,2.9439] 2.9428 -0.0003 

[2.9426,2.9439] 2.9428 -0.0003 

  



 

 

EXAMPLE 

Using Regula Falsi method ǘƻ ŦƛƴŘ Ǌƻƻǘ ƻŦ Ŝǉǳŀǘƛƻƴ ά■▫▌●╬▫▼●έ ǳǇǘƻ four decimal 

places, after 3 successive approximations. 

SOLUTION 

 

X 0 1 2 

F(X) -Њ -0.5403 1.1093 

 

Since f(1).f(2)<0   therefore root lies between 1 and 2 

Using formula 

Xr= xf - 
●█ ●░

█●█ █●░
 f(xf) 

For interval [1,2]      we have    xr=2- 
Ȣ Ȣ

 1.1093=1.3275    

Which implies f(2.4737)=0.0424(+ve) 

Similarly, other terms are given below 

Interval xr F(xr) 

[1,1.3275] 1.3037 0.0013 

[1,1.3037] 1.3030 0.0001 

 

Hence the root is 1.3030 

KEEP IN MIND 

Á Calculate this equation in Radian mod 

Á If you havŜ άƭƻƎέ ǘƘŜƴ ǳǎŜ άƴŀǘǳǊŀƭ ƭƻƎέΦ LŦ ȅƻǳ ƘŀǾŜ ά■▫▌έ ǘƘŜƴ ǳǎŜ άǎƛƳǇƭŜ 

ƭƻƎέΦ 

 

 

 

 



 

 

GENERAL FORMULA FOR REGULA FALSI USING LINE EQUATION 

Equation of line is 

◐ █●▪
● ●▪

█●▪ █●▪
●▪ ●▪

 

Put (x,0) i.e. y=0 

█●▪
● ●▪

█●▪ █●▪
●▪ ●▪

 

█●▪
█●▪ █●▪

● ●▪
●▪ ●▪

 

●▪ ●▪█●▪
█●▪ █●▪

● ●▪ 

● ●▪
●▪ ●▪█●▪
█●▪ █●▪

 

Hence first approximation to the root of f(x) =0 is given by 

●▪ ●▪
●▪ ●▪ █●▪
█●▪ █●▪

 

We observe that f(xn-1), f(xn+1)  are of opposite sign so, we can apply the above procedure to 

successive approximations. 

 

 

 

 

 

 

 

 

 



 

 

SECANT METHOD 

The secant method is a simple variant of the method of false position which it is no longer 

required ǘƘŀǘ ǘƘŜ ŦǳƴŎǘƛƻƴ άŦέ Ƙŀǎ ƻǇǇƻǎƛǘŜ ǎƛƎƴǎ ŀǘ the end points of each interval generated, 

not even the initial interval. 

In other words, one starts with two arbitrary initial approximations  ● ● and continues 

with 

●▪ ●▪
●▪ ●▪ █●▪

█●▪ █●▪
          ; n=мΣнΣоΣпΧΧΧΧΦ 

This method also known as QUASI NEW¢hbΩ{ a9¢Ih5. 

ADVANTAGES 

1. No computations of derivatives 

2. One f(x) computation each step 

3. Also rapid convergence than Falsi method 

Example 1 Use Secant method to find the root of the function f(x) = cosx + 2sinx + x 2 

ÔÏ υ ÄÅÃÉÍÁÌ ÐÌÁÃÅÓȢ $ÏÎȭÔ ÆÏÒÇÅÔ ÔÏ ÁÄÊÕÓÔ ÙÏÕÒ ÃÁÌÃÕÌÁÔÏÒ ÆÏÒ ȰÒÁÄÉÁÎÓȱȢ 

Solution :    A closed form solution for x does n ot exist so we must use a numerical technique. The 

Secant method is given using the iterative equation:  

  , (1)  

We will use x 0 = 0 and x1 Ѐ ϺπȢρ ÁÓ ÏÕÒ ÉÎÉÔÉÁÌ ÁÐÐÒÏØÉÍÁÔÉÏÎÓ ÁÎÄ ÓÕÂÓÔÉÔÕÔÉÎÇ ÉÎ ɉρɊȟ ×Å ÈÁÖÅ 

 
Ϻ0.51369. The continued iterations can be computed as shown in Table 1 which shows a stop at 

iteration no. 5 since the error is x 5Ϻx4 < 10Ϻ5 resulting in a root of x  zЀ ϺπȢφυωςφ 

Table 1: Iterations for Example -1 

Iteration no.  xÎϺρ xn xn+1 using (1)  f(x n+1) xn+1 Ϻ Øn 

1 x0 = 0 x1 Ѐ ϺπȢρ -0.51369  0.15203  -0.41369  

2 -0.1 -0.51369  -0.60996  0.04605  -0.09627  

3 -0.51369  -0.60996  -0.65179  6.60859 × 10Ϻ3 -0.04183  

4 -0.60996  -0.65179  -0.65880  4.08003 × 10Ϻ4 -0.00701  

5 -0.65179  -0.65880  -0.65926  5.28942 × 10Ϻ6 -0.00046  



 

 

Example-2: Use Secant method to find the root of the function f(x) = x 3 Ϻ 4 to 5 decimal 

places. 

Solution    Since the Secant method is given using the iterative equation in (1).  Starting with 

an initial value x 0 = 1 and x1 = 1.5, using (1) we can compute

 63158. The continued iterations can be 

computed as shown in Table 2 which shows a stop at iteration no. 5 since the error is                

x5 Ϻ x4 < 10Ϻ5 resulting in a root of x  z= 1.58740,  

Table 2: Iterations for Example -2 

Iteration no.  xÎϺρ xn xn+1 using (1)  f(x n+1) xn+1 Ϻ Øn 

1 x0 = 1 x1 = 1.5 1.63158  0.34335  0.13158  

2 1.5 1.63158  1.58493  -0.01865  -0.04665  

3 1.63158  1.58493  1.58733  -0.00054  0.0024  

4 1.58493  1.58733  1.58740 Ϻ7.95238 × 10Ϻ6 0.00007  

5 1.58733  1.58740  1.58740  Ϻ7.95238 × 10Ϻ6 Ѓ ρπϺυ 

 

Example-3: Use Secant method to find the root of the function f(x) = 3x + SÉÎØ Ϻ Åx 

to 5 decimal places. Use x0 = 0 and x1 = 1. 

Solution  

Using (1) we can compute  

The continued i terations can be computed as shown in Table 3 which shows a stop at 

iteration no. 6 since the error is x 6Ϻx5 < 10Ϻ5 resulting in a root of x  z= 0.36042  

Table 3: Iterations for Example -3 

Iteration 

no. 

xÎϺρ xn xn+1 using (1)  f(x n+1) xn+1 Ϻ xn 

1 x0 = 0 x1 = 1 0.47099  0.26516  -0.52901  

2 1 0.47099  0.30751  -0.13482  -0.16348  

3 0.47099  0.30751  0.36261  5.47043 × 10Ϻ3 0.0551  

4 0.30751  0.36261  0.36046  9.58108 × 100Ϻ5 -0.00215  

5 0.36261  0.36046  0.36042  Ϻ4.26049 × 10Ϻ6 -0.00004  

6 0.36046  0.36042  0.36042  Ϻ4.26049 ×  10Ϻ6 Ѓ ρπϺυ 



 

 

Example-τȡ 3ÏÌÖÅ ÔÈÅ ÅÑÕÁÔÉÏÎ ÅØÐɉϺØɊ Ѐ σÌÏÇɉØɊ ÔÏ υ ÄÅÃÉÍÁÌ ÐÌÁÃÅÓ ÕÓÉÎÇ ÓÅÃÁÎÔ 

method, assuming initial guess x 0 = 1 and x1 = 2.  

Solution  

,ÅÔ ÆɉØɊ Ѐ ÅØÐɉϺØɊ Ϻ σÌÏÇɉØɊȟ ÔÏ ÓÏÌÖÅ ÔÈÅ ÇÉÖÅÎȟ ÉÔ ÉÓ ÎÏ× ÅÑÕÉÖÁÌÅÎÔ ÔÏ ÆÉÎÄ ÔÈÅ 

root of f(x). Usin g (1) we can compute  

x2 Ѐ ς Ϻ 32394. The continued iterations can  

be computed as shown in Table 4 which shows a stop at iteration no. 5 since the 

error is x 5 Ϻ x4 < 10Ϻ5 resulting in a root of x  z= 1.24682,  

 

Table 4: Iterations for Example -4 

Iteration 

no. 

xÎϺρ xn xn+1 using (1)  f(x n+1) xn+1 Ϻ xn 

1 x0 = 1 x1 = 2 1.32394  -0.09952  -0.67606  

2 2 1.32394  1.22325  0.03173  -0.10069  

3 1.32394  1.22325  1.24759  Ϻ1.01955 × 10Ϻ3 0.02434  

4 1.22325  1.24759  1.24683  Ϻ7.27178 × 10Ϻ6 -0.00076  

5 1.24759  1.24683  1.24682  6.05199 × 10Ϻ6 Ѓ ρπϺυ 

 

FIXED POINT 

¢ƘŜ ǊŜŀƭ ƴǳƳōŜǊ άȄέ ƛǎ ŀ ŦƛȄŜŘ Ǉƻƛƴǘ ƻŦ ǘƘŜ ŦǳƴŎǘƛƻƴ άŦέ ƛŦ ŦόȄύ ҐȄ 

The number x=0.7390851332   is an approximate fixed point of f(x) = cosx 

REMARK  

Fixed point are roughly divided into three classes 

ASYMPTOTICALLY STABLE: with the property that all nearby solutions converge to it. 

STABLE:    All nearby solutions stay nearby. 

UNSTABLE:  Almost all of whose nearby solutions diverge away from the fixed point 

 



 

 

FIXED POINT ITERATION METHOD

ALGORITHM    

1. Consider f(x) =0 and transform it to the form x= ⱴ (x) 

2. Choose an arbitrary x0  

3. Do the iterations xk+1=ⱴ ●▓     ; ƪҐлΣмΣнΣоΧΧΧΦ 

 

STOPING CRITERIA 

[Ŝǘ άέꜗ be the tolerance value 

1. |●▓ ●▓ |  Җ ꜗ 

2. |●▓ █●▓μ Җ  ꜗ

3. Maximum number of iterations reached. 

4. Any combination of above. 

CONVERGENCE CRITERIA 

[Ŝǘ άȄέ be exact root such that r=f(x) out iteration is  xn+1 = f(xn)  

Define the error      ꜗ  n = xn-r     Then   

▪ꜗ  ●▪ ► █●▪ ► █●▪ █►  █ɘ ●▪ ► 

(Where § ɴ  (●▪ȟ►) ; since  f is continuous) 

 ꜗ ▪  █ɘ ▪ꜗ  ▪ꜗ ȿ █ɘȿȿꜗ▪ȿ 

OBSERVATIONS 

If   |█ɘ|< 1, error decreases, the iteration converges (linear convergence)  

If   |█ɘ|  1, error increases, the iteration diverges. 

 

REMEMBER:  If   |ⱴ ●|< 1 in questions then take that point as initial guess. 

 

 



 

 

EXAMPLE 

Find the root of equation ● ╬▫▼● correct to three decimal points using fixed point 

iteration method. 

SOLUTION 

Given that   █● ● ╬▫▼●  

X 0 1 2 

F(X) -4 -1.5403 1.4161 

 

 wƻƻǘ ƭƛŜǎ ōŜǘǿŜŜƴ άмέ ŀƴŘ άнέ 

Now  ● ╬▫▼● ᵼ●
╬▫▼●

ⱴ● 

ᵼⱴ ● (-sinx) ᵼ ȿⱴ ●ȿ ȿ(-sinx)| 

Now    ●▪ ⱴ●▪  ᵼ●▪ ╬▫●●▪  

IŜǊŜ ǿŜ ǿƛƭƭ ǘŀƪŜ άȄ0έ as mid-point. So  

X0 = Ȣ 

X1= ╬▫▼● Ȣ  F(x1) = 0.0354 

X2= ╬▫▼●  = 1.5177 F(x2) = -0.0177 

X3 = 1.5265 F(x3) = 0.0087 

x4 = 1.5221 F(x4) = -0.0045 

X5 = 1.5243 F(x5) = 0.0021 

X6 = 1.5232 F(x6) = -0.0012 

X7 = 1.5238 F(x7) = 0.0006 

X8 = 1.5235 F(x8) = -0.0003 

X9 =1.5236 F(x9) = 0.0000 

 

Hence the real root is 1.5236 

 

 

 

If by putting 1 we get 

|• ὼ|< 1 then take it as 

άȄ0έ ƛŦ ƴƻǘ ǘƘŜƴ ŎƘŜŎƪ ŦƻǊ н 

rather take their mid-

point  



 

 

EXAMPLE 

Find the root of equation  ▄● ●  correct to four decimal points using fixed point 

iteration method. 

SOLUTION 

Given that  

█● ▄● ●  

 

X 0 1 

F(X) 1 -9.6321 

 

 wƻƻǘ ƭƛŜǎ ōŜǘǿŜŜƴ άлέ ŀƴŘ άмέ 

Now  ▄● ● ᵼ●
▄●

ⱴ● 

ᵼⱴ ●
▄●
  

Now since ȿⱴ ȿ Ȣ is less than άмέ therefore x0 = 0 

Now    ●▪ ⱴ●▪  ᵼ●▪
▄●▪

 

 

X1 
▄● ▄

 = 0.1000 F(x1) = -0.0952 

X2= Ȣ  F(x2) = 0.0085 

X3 = 0.0913 F(x3) = -0.0003 

x4 = 0.0913 F(x4) = -0.0003 

 

Hence the real root is 0.0913 

  



 

 

NEWTON RAPHSON METHOD 

╝╪◄◊►▄ ╪▪▀ ╝╪◄◊►▄ȭ▼ ■╪◌▼ ■╪◐ ▐░▀ ░▪ ▪░▌▐◄ȡ 

╖▫▀ ▼╪░▀ȟ╛▄◄ ╝▄◌◄▫▪ ╫▄Ȧ ═▪▀ ╪■■ ◌╪▼ ■░▌▐◄Ȣ 

═■▄●╪▪▀▄► ╟▫▬▄ȟ  

 

The Newton Raphson method is a powerful technique for solving equations numerically. It is 

based on the idea of linear approximation. Usually converges much faster than the linearly 

convergent methods. 

ALGORITHM 

The steps of Newton Raphson method to find the root of an equation άŦόȄύ Ґлέ ŀǊŜ 

Evaluate █ȭ● 

Use an initial guess (value on which f(x) and █ᴂᴂ● becomes (+ve) ƻŦ ǘƘŜ Ǌƻƻǘǎ άȄnέ ǘƻ 

estimate the new value of the root άȄn+1έ ŀǎ  

●▪ ●▪
█●▪
█●▪

 ȣȣȣȣ◄▐░▼ ○╪■◊▄ ░▼ ▓▪▫◌▪ ╪▼ ╝▄◌◄▫▪▼ ░◄▄►╪◄░▫▪ 

STOPING CRITERIA 

1. Find the absolute relative approximate error as   ȿꜗθ ȿ ȿ
●▪ ●▪

●▪
ȿ  

2. Compare the absolute error with the pre-ǎǇŜŎƛŦƛŜŘ ǊŜƭŀǘƛǾŜ ŜǊǊƻǊ ǘƻƭŜǊŀƴŎŜ ά ꜗsέ. 

3. If |  ꜗ a| > ꜗ  s then go to next approximation. Else stop the algorithm. 

4. Maximum number of iterations reached. 

5. Repeated answer. 

CONVERGENCE CRITERIA 

Newton method will generate a sequence of numbers (xn) ; n  0, that converges to the zero  

άx*έ ƻŦ άŦέ ƛŦ 

¶ άŦέ is continuous. 

¶ άx*έ is a ǎƛƳǇƭŜ ȊŜǊƻ ƻŦ άŦέΦ 

¶ άȄ0έ ƛǎ Ŏƭƻse enough to άȄ*έ



When the Generalized Newton Raphson method for solving equations is helpful? 

To find the Ǌƻƻǘ ƻŦ άŦόȄύҐлέ ǿƛǘƘ ƳǳƭǘƛǇƭƛŎƛǘȅ άǇέ the Generalized Newton formula is required. 

 

What is the importance of Secant method over Newton Raphson method?  

Newton Raphson method requires the evaluation of derivatives of the function and this is not 

always possible, particularly in the case of functions arising in practical problems. 

In such situations Secant method helps to solve the equation with an approximation to the 

derivatives. 

 

Why Newton Raphson method is called Method of Tangent? 

In this method we draw tangent line to the pointέ P0(x0,f(x0))έΦ ¢ƘŜ όȄΣлύ where this tangent 

line meets x-axis is 1st approximation to the root.  

Similarly, we obtained other approximations by tangent line. So, method also called Tangent 

method. 

 

Difference between Newton Raphson method and Secant method. 

Secant method needs two approximations x0,x1  to start, whereas Newton Raphson method 

just needs one approximation i.e. x0 

 Newton Raphson method converges faster than Secant method. 

 

 Newton Raphson method is an Open method, how? 

Newton Raphson method is an open method because initial guess of the root that is needed 

to get the iterative method started is a single point. While other open methods use two initial 

guesses of the root but they do not have to bracket the root. 

 

 

 



 

 

INFLECTION POINT 

For a ŦǳƴŎǘƛƻƴ άŦόȄύέ ǘƘŜ Ǉƻƛƴǘ ǿƘŜǊŜ ǘƘŜ ŎƻƴŎŀǾƛǘȅ changes from up-to-down 

 or down-to-up is called its Inflection point. 

e.g. f(x) = (x-1)3 changes concavity at x=1,, Hence (1,0) is an Inflection point. 

Dw!².!/Y{ hC b9²¢hbΩ{ w!tI{hb a9¢Ih5 

¶ Method diverges at inflection point. 

¶ For f(x)=0 Newton Raphson method reduce. So one must be avoid division by zero. 

Rather method not converges. 

¶ Root jumping is another drawback. 

¶ Results obtained from Newton Raphson method may oscillate about the Local 

Maximum or Minimum without converging on a root but converging on the Local 

Maximum or minimum.                                                                                                   

Eventually, it may lead to division by a number close to zero and may diverge. 

¶ The requirement of finding the value of the derivatives of  f(x) at each approximation 

is either extremely difficult (if not possible) or time consuming. 

 

  



 

 

FORMULA DARIVATION FOR NR-METHOD 

DƛǾŜƴ ŀƴ Ŝǉǳŀǘƛƻƴ άŦόȄύ Ґ лέ ǎǳǇǇƻǎŜ άȄ0έ ƛǎ ŀƴ ŀǇǇǊƻȄƛƳŀǘŜ Ǌƻƻǘ ƻŦ άŦόȄύ Ґ лέ  

Let ● ● ▐ȣȣȣȣȣȣ                 ▼░▪╬▄  ● ● ▐ 

²ƘŜǊŜ άƘέ ƛǎ ǘƘŜ ǎƳŀƭƭ; exact root of f(x)=0 

Then █● █● ▐              ▼░▪╬▄  ● ● ▐ 

By Taylor theorem 

 █● ▐ █● ▐█●
▐

Ȧ
█ͼ● ȣȣȣȣȣȣȢ  

{ƛƴŎŜ άƘέ ƛǎ ǎƳŀƭƭ ǘƘŜǊŜŦƻǊŜ ƴŜƎƭŜŎǘƛƴƎ ƘƛƎƘŜǊ ǘŜǊƳǎ ǿŜ ƎŜǘ  

█● ▐ █● ▐█●  

▐
█●

█ᴂ●
 

● ●
█●

█ᴂ●
 

Similarly    ● ●
█●

█ ●
 

                   ● ●
█●

█ ●
 

                    ể      ể        ể 

                    ể      ể        ể   

                 ●▪ ●▪
█●▪

█ ●▪
 

This is required bŜǿǘƻƴΩǎ wŀǇƘǎƻƴ CƻǊƳǳƭŀΦ 

  



 

 

EXAMPLE 

!ǇǇƭȅ bŜǿǘƻƴΩǎ wŀǇƘǎƻƴ ƳŜǘƘƻŘ ŦƻǊ ╬▫▼●●▄● ╪◄ ●  correct to three decimal places. 

SOLUTION 

█● ╬▫▼●●▄● 

█● ▼░▪●▄● ●▄● 

Using formula         ●▪ ●▪
█●▪

█ ●▪
 

  at ●   

  ● ●
█●

█ ●
Ȣ    ╪█◄▄► ▼▫■○░▪▌ 

█● Ȣ   Ƞ  █● Ȣ  

Similarly 

n ●▪ █●▪  █ᴂ●▪  

2 0.531 -0.041 -3.110 

3 0.518 -0.001 -3.043 

4 0.518 -0.001 -3.043 

IŜƴŎŜ Ǌƻƻǘ ƛǎ άлΦрмуέ 

REMARK 

1. If two are more roots are nearly equal, then method is not fastly convergent. 

2. If root is very near to maximum or minimum value of the function at the point, NR-

method fails. 

 

 

  



 

 

EXAMPLE 

!ǇǇƭȅ bŜǿǘƻƴΩǎ wŀǇƘǎƻƴ ƳŜǘƘƻŘ ŦƻǊ ●■▫▌● Ȣ  correct to two decimal places. 

SOLUTION 

█● ●■▫▌● Ȣ   

█● ■▫▌● ●
●
■▫▌▄ 

█● ■▫▌● ■▫▌▄ 

█● ■▫▌● Ȣ           ▼░▪╬▄ ▄ Ȣ  

█ͼ●
●
■▫▌▄

Ȣ

●
 

For interval 

X 0 1 2 3 4 5 6 7 

f(x) -4.77 -4.77 -4.17 -3.34 -2.36 -1.28 -0.10 1.15 

 

Root lies between 6 and 7 and let x0 =7  

Using formula         ●▪ ●▪
█●▪

█ ●▪
 

Thus 

  ● ●
█●

█ ●
Ȣ    ╪█◄▄► ▼▫■○░▪▌ 

█● Ȣ   Ƞ  █● Ȣ  

Similarly 

n ●▪ █●▪  █ᴂ●▪  

2 6.08 0.00 0.00 

IŜƴŎŜ Ǌƻƻǘ ƛǎ ά6.08έ 

 

 

 



 

 

GEOMETRICAL INTERPRETATION (GRAPHICS) OF NEWTON RAPHSON FORMULA 

Suppose the graph of function άȅҐŦόȄύέ ŎǊƻǎǎŜǎ Ȅ-axis at ͼθ ͼ then ͼ● ᶿͼ is the root of 

equationͼ█● ͼ. 

CONDITION 

/ƘƻƻǎŜ άȄ0έ ǎǳŎƘ ǘƘŀǘ ͼ█●ͼ and Æͼ● have same sign. If ͼ●ȟ█● ͼ is a point then slope 

of tangent at  ͼ●ȟ█● □
▀◐

▀●
ȿ●ȟ█●  █ᴂ● ͼ  

Now equation of tangent is  

◐ ◐ □ ● ●  

◐ █● █ᴂ● ● ●          ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦ όƛ) 

Since ●ȟ█● ◐      as we take x1 as exact root 

(i)                 █● █ᴂ● ● ●  

                           
█●

█ ●
● ● 

                              ● ●
█●

█ ●
 

Which is first approximation to the root  ͼθ ͼ Φ LŦ άP1έ is a point on the curve corresponding 

ǘƻ άȄ1έ ǘƘŜƴ ǘŀƴƎŜƴǘ ŀǘ άt1έ cuts x-axis at P1(x2, 0) which is still closer to άθέ ǘƘŀƴ άȄ1έΦ 

TƘŜǊŜŦƻǊŜ άȄ2έ ƛǎ ŀ н
nd  approximation to the root. 

Continuing this process, we arrivŜ ŀǘ ǘƘŜ Ǌƻƻǘ άέθ. 

  



 

 

CONDITION FOR CONVERGENCE OF NR-METHOD 

Since by Newton Raphson method 

●▪ ●▪
█●▪
█●▪

           ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȢ  

And by General Iterative formula  

●▪ ⱴ●▪                     ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣ  

Comparing (1) and (2) 

ⱴ●▪    ●▪
█●▪

█ ●▪
                   

ⱴ●    ●
█●

█●
                 ▼░□▬■◐  

Since by iterative method condition for convergence is 

ȿⱴ ●ȿ                 ȣȣȣȣȣȣȣȣȣ  

So  

ⱴ ●
█●█● █●█ͼ●

█ᴂ●
 

ⱴ ●
█ᴂ●

█ᴂ●

█●█ͼ●

█ᴂ●
 

ⱴ ●
█●█ͼ●

█ ●
    Using in (3) we get 

       
█●█ͼ●

█ ●
         ȿ█●█ͼ●ȿ █●  

Which is required condition for convergence of Newton Raphson method, provided that 

ƛƴƛǘƛŀƭ ŀǇǇǊƻȄƛƳŀǘƛƻƴ άȄ0έ is choose sufficiently close to the root and █●ȟ█ȭ●ȟ█ȱ● are 

continuous and bounded in any small interval containing the root. 

 

 

 



 

 

 

NEWTON RAPHSON METHOD IS QUADRATICALLY CONVERGENT 

(OR) 

NEWTON RAPHSON METHOD HAS SECOND ORDER CONVERGENCE 

(OR) 

ERROR FOR NEWTON RAPHSON METHOD 

Let ͼθ ͼ be the root of f(x) =0 and 

●▪ ᶿ ▪ɴ 

●▪ ᶿ ▪ɴ  
          ȣȣȣȣȣȣȣȣȢȢ  

If we can prove that   ɴ ▪ ▓ ▪ɴ
▬
    ǿƘŜǊŜ άƪέ ƛǎ Ŏƻƴǎǘŀƴǘ ǘƘŜƴ άǇέ is called order of 

convergence of iterative method then we are done. 

Since by Newton Raphson formula we have  

●▪ ●▪
█●▪

█ ●▪
           Then using (1) in it 

ᶿ ▪ɴ ᶿ ▪ɴ

█ᶿ ▪ɴ

█ᶿ ▪ɴ
  

      ɴ▪ ▪ɴ

█ᶿ ▪ɴ

█ᶿ ▪ɴ
            

Since by Taylor expansion we have 

      ɴ▪ ▪ɴ

█ᶿ ▪ɴ█ᶿ
▪ɴ

Ȧ█ͼθ

█ᶿ ▪ɴ█ͼθ
▪ɴ

Ȧ█ ᶿ
            

Since ͼθ ͼ is root of f(x) therefore  ͼ█ᶿ ͼ 

      ɴ▪ ▪ɴ

▪ɴ█ᶿ
▪ɴ

Ȧ█ͼθ

█ᶿ ▪ɴ█ͼθ
▪ɴ

Ȧ█ ᶿ
            



 

 

▪ɴ

▪ɴ █ᶿ ▪ɴ█ͼθ
▪ɴ

Ȧ█ ᶿ ▪ɴ█ᶿ
▪ɴ

Ȧ█ͼθ

█ ᶿ ▪ɴ█ͼθ
▪ɴ

Ȧ█ ᶿ
            

▪ɴ

▪ɴ█ͼθ ▪ɴ

Ȧ█ ᶿ

█ᶿ ▪ɴ█ͼθ
▪ɴ

Ȧ█ ᶿ
            

After neglecting higher terms 

▪ɴ

▪ɴ█ͼθ

█ᶿ ▪ɴ█ͼθ
            

▪ɴ
▪ɴ█ͼθ

█ᶿ ▪ɴ█ͼθ
█ᴂθ

     

▪ɴ  
▪ɴ█ͼθ

█ᶿ
 

▪ɴ█ͼθ

█ᴂθ
 

▪ɴ  
▪ɴ█ͼθ

█ᶿ
▪ɴ█ͼθ

█ᶿ
▪▄▌■▄╬◄▄▀  

▪ɴ  
▪ɴ█ͼθ

█ᶿ
▪ɴ█ͼᶿ

█ ᶿ
 

▪ɴ  
▪ɴ█ͼθ

█ᶿ
▓ ▪ɴ         ◌▐▄►▄  ▓

█ͼθ

█ᶿ
 

It shows that Newton Raphson method has second order convergence  

Or 

 Converges quadratically. 

 

 

 

  



 

 

 

 

 

 



 

 

NEWTON RAPHSON EXTENDED FORMULA 

(CHEBYSHEVES FORMULA OF 3RD ORDER) 

Consider f(x) =0. Expand f(x) by Taylor ǎŜǊƛŜǎ ƛƴ ǘƘŜ ƴŜƛƎƘōƻǊƘƻƻŘ ƻŦ άȄ0έΦ ²Ŝ ƻōǘŀƛƴ ŀŦǘŜǊ 

retaining the first term only. 

█● █● ● ●  █● ▪▄▌■▄╬◄▄▀█● ● ●  █●  

● ●
█●

█●
      ● ●

█●

█ᴂ●
 

This the first approximation to the root therefore  

● ●
█●

█●
   ȣȣȣȣȣȣȣȣȣȢȢ  

Again expanding f(x) by Taylor Series and retaining the second order term only 

█● █● ● ●  █●
● ●

Ȧ
█ͼ●  

█● █● ● ●  █●
● ●

Ȧ
█ͼ●          Ḉ█● █●  

█● ● ●  █●
● ●

Ȧ
█ͼ●     ȣȣȣȣȣȣȣȢȢ      

Using eq. (1) in (2) we get 

█● ● ●  █●
█●

█ᴂ●
 █ͼ●        

█● ● ●  █●
█●

█●
 █ͼ●   

 ● █●  ● █● █●
█●

█ᴂ●
 █ͼ●       

 ● ●
█●

█ ●

█●

█ ●
 █ͼ●       

This is Newton Raphson Extended formulaΦ !ƭǎƻ ƪƴƻǿƴ ŀǎ άChebysheves formula of third 

ƻǊŘŜǊέ 



 

 

NEWTON SCHEME OF ITERATION FOR FINDING THE SQUARE ROOT OF POSITION NUMBER 

¢ƘŜ ǎǉǳŀǊŜ Ǌƻƻǘ ƻŦ άbέ can be carried out as a root of the equation 

 Ø Ѝ.   ● ╝  ● ╝  

Here    █● ● ╝      Ƞ              █●▪ ●▪ ╝ 

            █● ●             Ƞ              █●▪ ●▪ 

Using Newton Raphson formula         ●▪ ●▪
█●▪

█ ●▪
 

 ●▪ ●▪
●▪ ╝

●▪
 

 ●▪ ●▪
╝

●▪
     This is required formula. 

 

QUESTION 

Evaluate Ѝρς  by Newton Raphson formula. 

SOLUTION 

Let          ØЍρς   ●  ●  

Here   █● ●   Ƞ    █● ●    Ƞ        █ ●          

X 0 1 2 3 4 

F(x) -12 -11 -8 -3 4 

Root lies between 3 and 4 and x0 =4 

Now using formula        ●▪ ●▪
╝

●▪
 ●▪ ●▪ ●▪

 ȣȣȣȣȣȣȣȢȢ  

For n=0                             ● ●
●

  ● =3.5 

For n=2                            ● ●
●

● Ȣ
Ȣ

Ȣ  

Similarly                 ● Ȣ      ╪▪▀      ● Ȣ                                                            

Hence                        Ѝρς Ȣ                        



 

 

NEWTON SCHEME OF ITERATION FOR FINDING THE άpthέ ROOT OF POSITION NUMBER άbέ 

Consider ● ╝▬       ●▬ ╝  ●▬ ╝  

Here           █● ●▬ ╝            Ƞ      █●▪  ●▪
▬
╝ 

                   █● ▬●▬              Ƞ     █●▪ ▬●▪
▬

 

Since by Newton Raphson formula 

 ●▪ ●▪
█●▪

█ ●▪
     ᵼ ●▪ ●▪

●▪
▬
╝

▬●▪
▬        ᵼ ●▪

▬●▪
▬ ▬●▪

▬
●▪
▬
╝  

  ●▪
▬●▪
▬ ▬ ●▪

▬
╝    ᵼ●▪ ▬

▬ ●▪
▬
╝

●▪
▬      Required formula for pth root. 

QUESTION 

Obtain the cube root of 12 using Newton Raphson iteration. 

SOLUTION 

Consider ●        ●   ●  

Here           █● ●     and     █● ●             Ƞ     █ ● ● 

For interval 

X 0 1 2 3 

F(x) -12 -11 -4 15 

Root lies between 2 and 3 and x0=3 

Since by Newton Raphson formula for pth root. 

           ●▪ ▬

▬ ●▪
▬
╝

●▪
▬     ᵼ●▪

●▪

●▪

●▪

●▪
 

Put n=0                   ●
●

●
Ȣ  

Similarly  

  ● Ȣ   ȟ● Ȣ   ȟ● Ȣ     ● Ȣ  

Hence      Ѝ Ȣ  



 

 

DARIVATION OF NEWTON RAPHSON METHOD FROM TAYLOR SERIES 

Newton Raphson method can also be derived from Taylor series. 

CƻǊ ǘƘŜ ƎŜƴŜǊŀƭ ŦǳƴŎǘƛƻƴ άŦόȄύέ ¢ŀȅƭƻǊ series is  

█●▪ █●▪ █●▪ ●▪
█ͼ●▪
Ȧ
●▪ ●▪ ỄȣȣȣȣȣȢ 

As an approximation, taking only the first two terms of the R.H.S. 

█●▪ █●▪ █●▪ ●▪   

And we are seeking a point where f(x) =0 

That is If we assume f (xn+1) =0 

    █●▪ █●▪ ●▪ ●▪  

This gives 

●▪ ●▪
█●▪
█ᴂ●▪

 

This is the formula for Newton Raphson Method. 

 

 

  



 

 

THE SOLUTION OF LINEAR SYSTEM OF EQUATIONS 

! ǎȅǎǘŜƳ ƻŦ άƳέ ƭƛƴŜŀǊ Ŝǉǳŀǘƛƻƴǎ ƛƴ άƴέ unknowns   ά●ȟ●ȟ●ȟȣȣȣȢȢȟ●▪έ is a set of the 

equations of the form   

╪ ● ╪ ● ╪ ●    ȣȣȣȣȣȣ╪ ▪●▪ ╫ 

╪ ● ╪ ● ╪ ●    ȣȣȣȣȣȣ╪ ▪●▪ ╫ 

                         ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧ. 

                         ΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΦ 

╪□ ● ╪□ ● ╪□ ●    ȣȣȣȣȣȣ╪□▪●▪ ╫□ 

Where the coefficients ά╪░▓έ ŀƴŘ ά╫░έ are given numbers. 

The system is said to be homogeneous if all ǘƘŜ ά╫░έ are zero. Otherwise it is said to be      

non-homogeneous. 

SOLUTION OF LINEAR SYSTEM EQUATIONS  

A solution of system is a set of nǳƳōŜǊǎ ά●ȟ●ȟ●ȟȣȣȣȢȢȟ●▪έ ǿƘƛŎƘ ǎŀǘƛǎŦȅ ŀƭƭ ǘƘŜ άƳέ 

equations. 

PIVOTING:  Changing the order of equations is called pivoting. 

We are interested in following types of Pivoting 

1. PARTIAL PIVOTING 2. TOTAL PIVOTING 

 

PARTIAL PIVOTING 

In partial pivoting we interchange rows where pivotal element is zero. 

                       In Partial Pivoting if the pivotal ŎƻŜŦŦƛŎƛŜƴǘ ά╪░░έ happens to be zero or near to 

zero, the ith column elements are searched for the numerically largest element. Let the jth  row 

(j>i) contains this element, then we interchangŜ ǘƘŜ άƛthέ equation ǿƛǘƘ ǘƘŜ άjthέ equation and 

proceed for elimination. This process is continued whenever pivotal coefficients become zero 

during elimination. 

 



 

 

TOTAL PIVOTING 

In Full (complete, total) pivoting we interchange rows as well as column. 

                        In Total Pivoting we look for an absolutely largest coefficient in the entire 

system and start the elimination with the corresponding variable, using this coefficient as the 

pivotal coefficient (may change row and column). Similarly, in the further steps. It is more 

complicated than Partial Pivoting. Partial Pivoting is preferred for hand calculation. 

 

Why is Pivoting important? 

Because Pivoting made the difference between non-sense and a perfect result. 

 

   PIVOTAL COEFFICIENT 

For elimination methods (DǳŀǎǎΩǎ 9ƭƛƳƛƴŀǘƛƻƴΣ DǳŀǎǎΩǎ WƻǊŘŀƴ) the coefficient of the first 

unknown in the first equation is called Pivotal Coefficient.      

BACK SUBSTITUTION 

The analogous algorithm ŦƻǊ ǳǇǇŜǊ ǘǊƛŀƴƎǳƭŀǊ ǎȅǎǘŜƳ ά!ȄҐōέ ƻŦ ǘhe form 

╪         ╪ ȣȣȣȢȢ╪ ▪

            ╪ ȣȣȣȢȢ╪ ▪

ể             ể                          ể
                  ỄỄ      ╪▪▪ 

●
●
ể
●▪

╫
╫
ể
╫▪

     Is called Back Substitution. 

¢ƘŜ ǎƻƭǳǘƛƻƴ άȄiέ is computed by        ●░
╫░В ╪░▒●▒

▪
▒░

╪░░
              Ƞ░ ȟȟȟȣȣȣ▪ 

FORWARD SUBSTITUTION 

The analogous algorithm for lower ǘǊƛŀƴƎǳƭŀǊ ǎȅǎǘŜƳ άLȄҐōέ ƻŦ ǘƘŜ ŦƻǊƳ 

■                           ȣȣȢ
■                 ■ ȣȣȣȢȢ
ể                      ể                   ể
 ■▪                 ■▪ ỄỄ      ■▪▪ 

●
●
ể
●▪

╫
╫
ể
╫▪

    Is called Forward Substitution. 

¢ƘŜ ǎƻƭǳǘƛƻƴ άȄiέ is computed by      ●░
╫░В ■░▒●▒

░
▒

■░░
              Ƞ░ ȟȟȟȣȣȣ▪ 



 

 

THINGS TO REMEMBER 

Let the system ═╧ ║ is given  

¶ If ║  then system is called non homogenous system of linear equation. 

¶ If ║  then ═╧  then system is called homogenous system of linear equation. 

¶ If the system ═╧ ║ has solution then this system is called consistent. 

¶ If the system ═╧ ║ has no solution then this system is called inconsistent. 

 

RANK OF A MATRIX 

¢ƘŜ Ǌŀƴƪ ƻŦ ŀ ƳŀǘǊƛȄ Ψ!Ω ƛǎ Ŝǉǳŀƭ ǘƻ ǘƘŜ ƴǳƳōŜǊ ƻŦ ƴƻƴ ς zero rows in its echelon form or the 

order of  ╘► in the conical form of A. 

 

KEEP IN MIND 

¶ TYPE I: when number of equations is equal to the number of variables and the system 

═╧ ║ is non ς ƘƻƳƻƎŜƴŜƻǳǎ ǘƘŜƴ ǳƴƛǉǳŜ ǎƻƭǳǘƛƻƴ ƻŦ ǘƘŜ ǎȅǎǘŜƳ ŜȄƛǎǘǎ ƛŦ ƳŀǘǊƛȄ Ψ!Ω 

is non- singular after applying row operation. 

¶ TYPE II: when number of equations is not equal (may be equal) to the number of 

variables and the system ═╧ ║ is non ς homogeneous then system has a solution if 

►╪▪▓ ═ ►╪▪▓═╫ 

¶ ¢¸t9 LLLΥ ŀ ǎȅǎǘŜƳ ƻŦ ΨƳΩ ƘƻƳƻƎŜƴŜƻǳǎ ƭƛƴŜŀǊ Ŝǉǳŀǘƛƻƴǎ ═╧  ƛƴ ΨƴΩ unknown has a 

non- trivial solution if ►╪▪▓ ═ ▪ ǿƘŜǊŜ ΨƴΩ ƛǎ ƴǳƳōŜǊ ƻŦ ŎƻƭǳƳƴǎ ƻŦ !Φ 

¶ TYPE IV: if ►╪▪▓ ═ ►╪▪▓═╫ ▪◊□╫▄► ▫█ ◊▪▓▪▫◌▪   then infinite solution exists 

¶ TYPE V: if ►╪▪▓ ═ ►╪▪▓═╫     then no  solution exists 

 

 

  



 

 

GUASS ELIMINATION METHOD 

 

ALGORITHM 

¶ In the first stage, the given system of equations is reduced to an equivalent upper 

triangular form using elementary transformation. 

¶ In the second stage, the upper triangular system is solved using back substitution 

procedure by which we obtain the solution in the order ͼ●▪ȟ●▪ ȟȣȣȣȣ●ȟ●ͼ 

REMARK 

DǳŀǎǎΩǎ Elimination method fails if any one of the Pivotal coefficient become zero. In such a 

situation, we rewrite the equation in a different order to avoid zero Pivotal coefficients.  

 

QUESTION      Solve the following system of equations using Elimination Method. 

● ◐ ◑  

● ◐ ◑  

● ◐ ◑  

SOLUTION         We can solve it by elimination of variables by making coefficients same. 

● ◐ ◑     ȣȣȣȣȣȣȣȣȣ ░ 

● ◐ ◑  ȣȣȣȣȣȣȣȣȣȢ░░ 

● ◐ ◑    ȢȢȣȣȣȣȣȣȣȣȢȢ░░░ 

Multiply (i) by 2 and subtracted by (ii)           ◐ ◑    ȣȣȣȣȣȣȣȣȣȣȣȣȣ ░○ 

Adding (i) and (iii)          ◐ ◑   ȣȣȣȣȣȣȣȣȣȣȣȣȣȢ○ 

Now eliminating άȅέ    Multiply (iv) by 3 then subtract from (v)                   ◑  

¦ǎƛƴƎ άȊέ ƛƴ όƛǾύ ǿŜ ƎŜǘ       ◐        and ¦ǎƛƴƎ άȅέΣ άȊέ in (i) we get                   ●  

Hence solution is                              ● ȟ◐ ȟ◑  



 

 

QUESTION 

Solve the following system of equations by GuassΩǎ 9ƭƛƳƛƴŀǘƛƻƴ ƳŜǘƘƻŘ ǿƛǘƘ ǇŀǊǘƛŀƭ ǇƛǾƻǘƛƴƎΦ 

● ◐ ◑  

● ◐ ◑  

● ◐ ◑  

SOLUTION 

          
          
          

●
◐
◑

 

   
          
          
          

●
◐
◑

        ͯ╡                  
         

          
          

●
◐
◑

               ͯ ╡  

   

              

         

              

●
◐
◑

    ͯ╡ ╡     

ụ
Ụ
Ụ
Ụ
ợ              

         

         Ứ
ủ
ủ
ủ
Ủ●
◐
◑

              ͯ╡ ╡  

2nd row cannot be used as pivot row as a22 =0, So interchanging the 2nd and 3rd row we get 

ụ
Ụ
Ụ
Ụ
Ụ
ợ              

        

         Ứ
ủ
ủ
ủ
ủ
Ủ
●
◐
◑

                 ͯ╡  

 

Using back substitution  

◑      ◑  

◐ ◑         ◐             Ḉ◑  

● ◐ ◑         ●           Ḉ ◐     ȟ   ◑  



 

 

QUESTION 

Solve the following system of equations uǎƛƴƎ DǳŀǎǎΩǎ 9ƭƛƳƛƴŀǘƛƻƴ aŜǘƘƻŘ ǿƛǘƘ ǇŀǊǘƛŀƭ 

pivoting. 

● ● ● ●  

● ● ● ●  

● ● ● ●  

● ● ● ●  

SOLUTION 

               
               
               
                

●
●
●
●

 

 

                 
               
               
                   

●
●
●
●

    ͯ╡     

      Ⱦ      Ⱦ     
                         
                         
                            

 

●
●
●
●

      ͯ ╡  

 

      Ⱦ      Ⱦ     
                            
                          
                           

 

●
●
●
●

Ȣ

      ͯ╡  

                                 

ụ
Ụ
Ụ
Ụ
Ụ
ợ                               

                            

                          

                       Ứ
ủ
ủ
ủ
ủ
Ủ

 

●
●
●
●

Ȣ

Ȣ
Ȣ

           ͯ╡ ╡  and  ͯ╡ ╡         

           Ⱦ      Ⱦ       
                     Ⱦ         

              Ⱦ    Ⱦ            
            Ⱦ      Ⱦ         

 

●
●
●
●

Ȣ

Ȣ
Ȣ

                   ͯ ╡  



 

 

             

ụ
Ụ
Ụ
ợ                         

                          ϵ         
                         Ȣ     Ȣ    
                       Ȣ     Ȣ     Ứ

ủ
ủ
Ủ

   

●
●
●
●

Ȣ

Ȣ
Ȣ

             ͯ╡ ╡ ╪▪▀ ͯ╡ ╡  

        

             Ⱦ       Ⱦ        
                         Ⱦ         

                                   Ȣ   
                                   Ȣ   

   

●
●
●
●

Ȣ

Ȣ
Ȣ

             ͯ
╡

Ȣ
 ╪▪▀ ͯ╡ Ȣ ╡  

 

         Ȣ ● Ȣ           

● Ȣ  

● Ȣ ● Ȣ             

 ● Ȣ       Ḉ● Ȣ  

● ● ●   

  ● Ȣ              Ḉ● Ȣ     ȟ    ● Ȣ   

● ● ● Ȣ  

  ● Ȣ             Ḉ● Ȣ    ȟ    ● Ȣ   

Hence required solutions are 

● Ȣ     ȟ● Ȣ    ȟ    ● Ȣ   ,  ● Ȣ  

 

  



 

 

GUASS JORDAN ELIMINATION METHOD 

The method is based on the idea of reducing the given system of equations  ͼ═● ╫ͼ to a 

diagonal system of equations  ͼ╘● ╫ͼ where ͼ╘ͼ is the identity matrix, using row operation. 

It is the verification of DŀǳǎǎΩǎ Elimination Method. 

ALGORITHM 

1) Make the elements below the first pivot in the augmented matrix as zeros, using the 

elementary row transformation. 

2) Secondly make the elements below and above the pivot as zeros using elementary 

row transformation. 

3) Lastly divide each row by its pivot so that the final matrix is of the form 

               ▀
               ▀
               ▀

 

 

Then it is easy to get the solution of the system as   ● ▀ȟ● ▀ȟ● ▀  

Partial Pivoting can also be used in the solution. We may alǎƻ ƳŀƪŜ ǘƘŜ ǇƛǾƻǘ ŀǎ άмέ ōŜŦƻǊŜ 

performing the elimination. 

ADVANTAGE/DISADVANTAGE 

¢ƘŜ DǳŀǎǎΩǎ WƻǊŘŀƴ ƳŜǘƘƻŘ ƭooks very elegant as the solution is obtained directly. However, 

it is computationally more expensive than GuassΩǎ Elimination. Hence we do not normally use 

this method for the solution of the system of equations. 

The most important application of this method is to find inverse of a non-singular matrix. 

What is Gauss Jordan variation? 

In this method Zeroes are generated both below and above each pivot, by further 

subtractions. The final matrix is thus diagonal rather than triangular and back substitution is 

eliminated. The idea is attractive but it involves more computing than the original algorithm, 

so it is little used. 

 

 



 

 

QUESTION 

Solve the system of equations using Elimination method 

● ◐ ◑  

● ◐ ◑  

● ◐ ◑  

ANSWER 

                                     ể  

                                                    ể        ╡ ╡ ╪▪▀ ╡ ╡ 

                                                  
Ⱦ
  ể 

Ⱦ
       ╡ ╪▪▀ Ⱦ ╡  

                                                  
Ⱦ
  ể 

Ⱦ
        ╡ ╡  

                                                    ể                    Ⱦ ╡  

                                                    ể        ╡ ╡ ╪▪▀ ╡ ╡ 

                                                    ể        ╡ ╡  

Hence solutions are      ● ȟ◐ ȟ◑  

 

 

 



 

 

MATRIX INVERTION 

A ͼ▪ ▪ͼ matrix ͼ╜ͼ is said to be non-singular (or Invertible) if a ͼ▪ ▪ͼ matrix ͼ╜ ͼ exists 

with ͼ╜--ρͼ  ͼ╜ ╜ͼ ╘ then matrix ͼ╜ ͼ is called the inverse ofͼ╜ͼ. A matrix 

without an inverse is called Singular (or Non-invertible) 

MATRIX INVERSION THROUGH GUASS ELIMINATION 

1. Place an identity matrix, whose order is same as given matrix. 

2. Convert matrix in upper triangular form. 

3. Take largest value as Pivot. 

4. Using back substitution get the result. 

 

NOTE:  In order to increase the accuracy of the result, it is essential to employ Partial 

Pivoting. In the first column use absolutely largest coefficient as the pivotal coefficient (for 

this we have to interchange rows if necessary). Similarly, for the second column and vice 

versa. 

MATRIX INVERSION THROUGH GUASS JORDAN ELIMINATION 

1. Place an identity matrix, whose order is same as given matrix. 

2. Convert matrix in upper triangular form. 

3. No need to take largest value as Pivot. 

4. Using back substitution get the result. 

 

QUESTION : Find inverse using Guass Elimination Method          ═  

ANSWER 

ể   ể      ╡ ể    ╡  



 

 

ụ
Ụ
Ụ
Ụ
ợ

ể

Ứ
ủ
ủ
ủ
Ủ

  ╡ ╡

ụ
Ụ
Ụ
Ụ
Ụ
ợ

ể

Ứ
ủ
ủ
ủ
ủ
Ủ

     ╡ ╡  

                                                     

ụ
Ụ
Ụ
Ụ
ợ

ể

Ứ
ủ
ủ
ủ
Ủ

   ╡

ụ
Ụ
Ụ
Ụ
ợ

ể

Ứ
ủ
ủ
ủ
Ủ

      ╡  

                                   

ụ
Ụ
Ụ
Ụ
ợ

ể

Ứ
ủ
ủ
ủ
Ủ

    ╡ ╡

ụ
Ụ
Ụ
Ụ
ợ

ể

Ứ
ủ
ủ
ủ
Ủ

             ╡  

    

ụ
Ụ
Ụ
Ụ
ợ

ể

Ứ
ủ
ủ
ủ
Ủ

    ╡ ╡ ╪▪▀ ╡ ╡   

                                  

ụ
Ụ
Ụ
Ụ
ợ

ể

Ứ
ủ
ủ
ủ
Ủ

      ╡ ╡  

Hence 

                              ═

ụ
Ụ
Ụ
Ụ
ợ

Ứ
ủ
ủ
ủ
Ủ

 

  



 

 

QUESTION 

Find inverse using GuassΩǎ Jordan Elimination Method      ═  

ANSWER 

                                                     ể  

ể        ╡ ╡ ╪▪▀ ╡ ╡  

                                                    ể        ╡ 

                                                    ể        ╡ ╡  

                                                    ể       ╡  

                                                    

ụ
Ụ
Ụ
Ụ
ợ

ể

Ứ
ủ
ủ
ủ
Ủ

      ╡ ╡ ╪▪▀ ╡ ╡  

                                                    

ụ
Ụ
Ụ
Ụ
ợ

ể

Ứ
ủ
ủ
ủ
Ủ

             ╡ ╡  

Hence   

                                      ═

ụ
Ụ
Ụ
Ụ
ợ

Ứ
ủ
ủ
ủ
Ủ

 

 



 

 

QUESTION: Find ═   if ═  

SOLUTION: we first find the co-factor of the elements of A 

a11= = 3 

a12= = 1 

a13=    -2 

a21= = -2 

a22=  = -1 

a23=   

a31=    

a32=  

a33=   

Thus ═░▒

╪ ╪ ╪
╪ ╪ ╪
╪ ╪ ╪

 

╪▀▒══░▒               ╪▪▀       ȿ═ȿ  

So   ═
ȿ═ȿ
   ╪▀▒═    after putting the values. 

 

 

 

 

 

 



 

 

HESSENBERG MATRIX:     Matrix in which either the upper or lower triangle is zero except 

for the elements adjacent to the main diagonal. 

If the upper triangle has the zeroes, the matrix is the Lower Heisenberg and vice versa. 

SPARSE:         A coefficient matrix is said to be sparse if many of the matrix entries are 

known to be zero. 

ORTHOGONAL MATRIX: A ͼ▪ ▪ͼ matrix άaέ ƛǎ ŎŀƭƭŜŘ ƻǊǘƘƻƎƻƴŀl if   

 ╜╜◄ ╘  ░Ȣ▄Ȣ  ═◄ ═  

PERMUTATION MATRIX 

A ͼ▪ ▪ͼ matrix ╟ ╟░▒ is a permutation matrix obtained by rearranging the rows of the 

identity ƳŀǘǊƛȄ ά╘▪έΦ ¢Ƙƛǎ ƎƛǾŜǎ ŀ matrix with precisely one non-zero entry in each row and in 

each column and each non-zero ŜƴǘǊȅ ƛǎ άмέ 

For example          ╟  

CONVERGENT MATRIX 

We call a ͼ▪ ▪ͼ ƳŀǘǊƛȄ άaέ ŎƻƴǾŜǊƎŜƴǘ ƛŦ  ἴἱἵ▓O ╜▓░▒  for each i, j=0Σ мΣ н Χƴ 

Consider ╜       ╜▓
▓

▓
▓

▓
   

Then ἴἱἵ▓O
▓    and   ἴἱἵ▓O

▓
▓   ╜ is convergent. 

 

LOWER TRIANGULATION MATRIX 

A matrix having only zeros above the diagonal is called Lower Triangular matrix. 

(OR)  

A  ͼ▪ ▪ͼ ƳŀǘǊƛȄ ά[έ ƛǎ ƭƻǿŜǊ ǘǊƛŀƴƎǳƭŀǊ ƛŦ ƛǘǎ ŜƴǘǊƛŜǎ ǎŀǘƛǎŦȅ  ■░▒   █▫► ░ ▒ 

i.e.        

■
■ ■
■ ■ ■

 



 

 

UPPER TRIANGULATION MATRIX 

A matrix having only zeros below the diagonal is called Upper Triangular matrix. 

(OR)  

A  ͼ▪ ▪ͼ ƳŀǘǊƛȄ άUέ ƛǎ upper triangular if its entries satisfy  ◊░▒   █▫► ░ ▒ 

i.e.        

◊ ◊ ◊
◊ ◊

◊
 

 

CROUTS REDUCTION METHOD 

In linear Algebra this method factorizes a matrix as the product of a Lower Triangular matrix 

and an Upper Triangular matrix. 

Method also named as CƘƻƭŜǎƪȅΩǎ ǊŜŘǳŎǘƛƻƴ ƳŜǘƘƻŘΣ triangulation method,     

or   LU-decomposition (Factorization) 

ALGORITHM 

For a given system of equations В ●░
▪ □ Ƞ□ᶰ╩ 

1. /ƻƴǎǘǊǳŎǘ ǘƘŜ ƳŀǘǊƛȄ ά!έ 

2. ¦ǎŜ ά!Ґ[¦έ όwithout pivoting) ŀƴŘ άt!Ґ[¦έ όǿƛǘƘ ǇƛǾƻǘƛƴƎύ ǿƘŜǊŜ άtέ ƛǎ ǘƘŜ ǇƛǾƻǘƛƴƎ 

ƳŀǘǊƛȄ ŀƴŘ ŦƛƴŘ ά◊░▒ȟ■░▒έ 

3. ¦ǎŜ ŦƻǊƳǳƭŀ ά!·Ґ.έ ǿƘŜǊŜ ά·έ ƛǎ ǘƘŜ ƳŀǘǊƛȄ ƻŦ ǾŀǊƛŀōƭŜǎ ŀƴŘ ά.έ is the matrix of 

solution of equations. 

4. wŜǇƭŀŎŜ ά!·Ґ.έ ōȅ ά[¦·Ґ.έ ŀƴŘ ǘƘŜƴ Ǉǳǘ ά¦·Ґ½έ ƛΦŜΦ ά[½Ґ.έ 

5. CƛƴŘ ǘƘŜ ǾŀƭǳŜǎ ƻŦ ά╩░▼έ ǘƘŜƴ ǳǎŜ ά½Ґ¦·έ ŦƛƴŘ ά╧░▼έ Τ ƛҐмΣ нΣ оΣ ΧΧΦƴ 

 

ADVANTAGE/LIMITATION (FAILURE) 

1. /ƘƻƭŜǎƪȅΩǎ ƳŜǘƘƻŘ ǿƛŘŜƭȅ ǳǎŜŘ in Numerical Solution of Partial Differential Equation. 

2. Popular for Computer Programming. 

3. This method fails if  ╪░░  in that case the system is Singular. 

  



 

 

QUESTION 

Solve the following system of equations using /ǊƻǳǘΩǎ wŜŘǳŎǘƛƻƴ aŜǘƘƻŘ 

● ● ●  

● ● ●  

● ● ●  

 

ANSWER 

Let                                          ═  

{ǘŜǇ LΧΦ  

═ ╛╤ 

■
■ ■
■ ■ ■

◊ ◊
◊  

After multiplication on R.H.S 

 

■ ■◊ ■◊
■ ■◊ ■ ■◊ ■◊
■ ■◊ ■ ■◊ ■◊ ■

 

■ ȟ ■ ȟ       ■    

■◊      ◊   ◊ Ⱦ  

■◊      ◊   ◊ Ⱦ  

■◊ ■     Ⱦ ■   ■ Ⱦ 

■◊ ■     Ⱦ ■   ■ Ⱦ 

■◊ ■◊     ◊  ◊ Ⱦ  

One of the 

diagonals of L or U 

must be 1 



 

 

■◊ ■◊ ■     ■     ■ Ⱦ  

{ǘŜǇ LLΧΦ         Put                  ═ ╧ ║          ╛╤ ╧ ║ 

        Put [U] [X] = [Z]                             ╛╩ ║ 

■
■ ■
■ ■ ■

◑
◑
◑

 

  

 Ⱦ
Ⱦ Ⱦ

◑
◑
◑

 

◑  ◑ Ⱦ ◑ ◑   ◑ ◑ Ⱦ    

◑ ◑ ◑           ◑    ◑ Ⱦ  

 

{ǘŜǇ LLLΧΦ       Since                                           [U][X] = [Z] 

◊ ◊
◊

●
●
●

◑
◑
◑

 

Ⱦ Ⱦ
Ⱦ

●
●
●

Ⱦ
Ⱦ
Ⱦ

 

● Ⱦ  

● ●  ●           ● Ⱦ     

 ● ● ●   ●            

 ● Ⱦ  

Hence required solutions are 

● Ⱦ ,           ● Ⱦ ȟ            ● Ⱦ  

  



 

 

DIAGONALLY DOMINANT SYSTEM 

Consider a square matrix ͼ═ ╪░▒ͼ then system is said to be Diagonally Dominant if              

ȿ╪░░ȿ В ╪░▒
▪
▒ ȟ▒░            Ƞ░ ȟȟȟȣȣȣȣȢȢ▪ 

If we remove equality sign, ǘƘŜƴ ά!έ ƛǎ ŎŀƭƭŜŘ ǎǘǊƛŎǘƭȅ ŘƛŀƎƻƴŀƭƭȅ ŘƻƳƛƴŀƴǘ ŀƴŘ Ψ!Ω Ƙŀǎ ǘƘŜ 

following properties 

¶ Ψ!Ω ƛǎ ǊŜƎǳƭŀǊΣ ƛƴǾŜǊǘƛōƭŜΣ ƛǘǎ ƛƴǾŜǊǎŜ ŜȄƛǎǘ ŀƴŘ !Ȅ = b has a unique solution. 

¶ Ax = b can be solved by Gaussian Elimination without Pivoting. 

For example        ═    ╪▪▀    ║  

Then non- ǎȅƳƳŜǘǊƛŎ ƳŀǘǊƛȄ Ψ!Ω ƛǎ ǎǘǊƛŎǘƭȅ ŘƛŀƎƻƴŀƭƭȅ ŘƻƳƛƴŀƴǘ ōŜŎŀǳǎŜ  

ȿȿ ȿȿ ȿȿ    Ƞ       ȿȿ ȿȿ ȿ ȿ        Ƞ         ȿ ȿ ȿȿ ȿȿ ȿȿ     

.ǳǘ Ψ.Ω ŀƴŘ Ψ═◄Ω are not strictly diagonally dominant   (Check!) 

NORM:    A norm measures the size of a matrix. 

Let ͼ●ᶰ╡▪  ▫►   ●ɴ ╡▪ ▪ ͼ  ◄▐▄▪  ᴁ●ᴁ  ▼╪◄░▼█░▄▼ 

¶ ᴁ●ᴁ    ¶  Iff x =0 then  ᴁ●ᴁ  

¶ ᴁ╪●ᴁ ȿ╪ȿ ᴁ●ᴁ    Where ΨŀΩ ƛǎ ŎƻƴǎǘŀƴǘΦ 

¶ ᴁ● ◐ᴁ ᴁ●ᴁ ᴁ◐ᴁ   i.e. Triangular inequality 

INFINITY NORM    ᴁ╧ᴁ  

  The infinity (maximum) norm ƻŦ ŀ ƳŀǘǊƛȄ Ψ·Ω ƛǎ 

ᴁ╧ᴁ □╪●░□◊□ ▫█ ╪╫▼▫■◊◄ ○╪■◊▄▼ ▫█ ╬▫□▬▫▪▄▪◄▼ ▫█ͼ╧ͼ ἵἩὀ░▪ȿ●░ȿ  

Consider╧  

ᴁ╧ᴁ □╪●░□◊□ ▫█ ╪╫▼▫■◊◄▄ ►▫◌ ▼◊□ □╪●  

 

 



 

 

EUCLIDEAN NORM    ᴁ╧ᴁ 

The Euclidean norm for the matrix Ψ·Ω ƛǎ  

 ᴁ╧ᴁ В ●░
▪
░  

We name it Euclidean norm because it represents the usual notation of distance from the 

origin in case x is in ╡ ╡ȟ╡ ▫► ╡   

Consider 

╧  

ᴁ╧ᴁ Ⱦ  

USEFUL DEFINATIONS 

[Ŝǘ ά●╪έ be an approximate solution of the linear system άAx =bέ then 

The residual is the vector ► ╫ ═●╪ 

The backward error is the norm of residual ᴁ► ╫ ═●╪ᴁ  

The forward error is ᴁ● ●╪ᴁ  

The relative backward error is 
ᴁ►ᴁ

ᴁ╫ᴁ
 

The relative forward error is 
ᴁ● ●╪ᴁ

ᴁ●ᴁ
 

And error magnification factor is equals to 
╡▄■╪◄░○▄ █▫►◌╪►▀ ▄►►▫► 

╡▄■╪◄░○▄ ╫╪╬▓◌╪►▀ ▄►►▫►
 

CONDITION NUMBER 

CƻǊ ŀ ǎǉǳŀǊŜ ƳŀǘǊƛȄ Ψ!Ω ŎƻƴŘƛǘƛƻƴ ƴǳƳōŜǊ ƛǎ ǘƘŜ maximum possible error magnification factor 

for solving Ax=b 

Or        The condition number of the ͼ▪ ▪ͼ matrix is defined as 

╬▫▪▀ ═ ᴁ═ᴁȢ═  

Remember:   Identity matrix has the lowest condition number. 

Take square of each 

element, add &then 

square root 



 

 

ILL CONDITION LINEAR SYSTEM 

In practical application small change in the coefficient of the system of equations sometime 

gives the large change in the solutions of system. This type of system is called ill-condition 

linear system otherwise it is well-condition.  

PROCEDURE (TEST, MEASURE OF CONDITION NUMBER) 

× Find determinant. If system is ill condition, then determinant will be very small. 

× Find condition number. 

× If condition number is very large then system of condition is ill-condition rather it is 

well-condition. Also determinant will be small. 

EXAMPLE:   Consider   ═
Ȣ

ȿ═ȿ Ȣ  ╪▪▀ ᴁ═ᴁ Ȣ  

═
╪▀▒═

ȿ═ȿ Ȣ
Ȣ Ȣ

 

╪▪▀  ═ Ȣ Ȣ  

Now condition number = ᴁ═ᴁȢ═ = 500.93 (very large) 

Since condition Number is very large therefore system will be ill-condition. 

Ill Conditioning Example  

Here is a simple example of ill conditioning. Suppose that Ax = b is supposed to be  

      2x+6y= 8         and             2x+6.00001y = 8.00001  

The actual solution is x = 1, y = 1. Suppose further that due to representation error, 

the system on the machine is changed slightly to  

2x+6y= 8   and             2x +5.99999y = 8.00002  

The soluti ÏÎ ÔÏ ÔÈÉÓ ÓÙÓÔÅÍ ÉÓ Ø Ѐ ρπȟ Ù Ѐ Ϻςȟ ÓÏ ÙÏÕ ÔÈÉÎË ÔÈÅ ÁÎÓ×ÅÒ ÉÓ ɉρπȟϺςɊȢ 7ÈÅÎ 

you check the answer by plugging these values into the actual system, you get  

ςɉρπɊ Ϲ φɉϺςɊЀ8   and    ςɉρπɊ Ϲ υȢωωωωωɉϺςɊ=7.99998  

This seems to be acceptable, but of course (1πȟϺςɊ ÉÓ ÖÅÒÙ ÆÁÒ ÆÒÏÍ ÔÈÅ ÁÃÔÕÁÌ ÓÏÌÕÔÉÏÎ 

(1,1). This indicates that the system is badly ill conditioned.  

Here are some things to consider if you have an ill conditioned system:  



 

 

Ɇ To identify if the matrix is ill conditioned, you can try 2 things. First, co mpute cond(A). 

This is relatively expensive and sometimes hard to interpret because the value may be 

ÉÎ ÁÎ ÉÎÔÅÒÍÅÄÉÁÔÅ ÒÁÎÇÅȢ 3ÅÃÏÎÄȟ ÙÏÕ ÃÁÎ ÉÎÔÒÏÄÕÃÅ ÄÅÌÉÂÅÒÁÔÅ ȰÒÅÐÒÅÓÅÎÔÁÔÉÏÎ ÅÒÒÏÒÓȱ 

by slightly perturbing one or more elements in A. Call the new matri x A0, and solve A0x0 

Ѐ ÂȢ )Æ Ø Ђ Ø0, then there is probably no ill conditioning. The danger here is that you 

might be unlucky, and chose the wrong element to perturb. But if you try this several 

times with different elements and all the solutions are about the same, then you h ave 

confidence that the matrix is well conditioned.  

EXAMPLE 

If the system really is ill conditioned, there is no simple fix. Consider using Singular Value 

Decomposition (SVD  Ill-Conditioned Matrices 

Consider systems           x + y = 2    THEN       x + 1.001y = 2 x + 1.001y = 2.001         

The system on the left has solution x = 2, y = 0 while the one on the right has solution      

x = 1,   y = 1. The coefficient matrix is called ill -conditioned because a small change in 

the constant coefficients results i n a large change in the solution. A condition number, 

defined in more advanced courses, is used to measure the degree of ill -conditioning of a 

ÍÁÔÒÉØ ɉЂ τππτ ÆÏÒ ÔÈÅ ÁÂÏÖÅɊȢ 

In the presence of rounding errors, ill -conditioned systems are inherently difficu lt to 

handle. When solving systems where round -off errors occur, one must avoid ill -conditioned 

systems whenever possible; this means that the usual row reduction algorithm must be 

modified.                                                             Consider the system:         .001x + y = 1    AND   x + y = 2 

7Å ÓÅÅ ÔÈÁÔ ÔÈÅ ÓÏÌÕÔÉÏÎ ÉÓ Ø Ѐ ρπππȾωωω Ђ ρȟ Ù Ѐ ωωψȾωωω Ђ ρ ×ÈÉÃÈ ÄÏÅÓ ÎÏÔ ÃÈÁÎÇÅ ÍÕÃÈ ÉÆ 

ÔÈÅ ÃÏÅÆÆÉÃÉÅÎÔÓ ÁÒÅ ÁÌÔÅÒÅÄ ÓÌÉÇÈÔÌÙ ɉÃÏÎÄÉÔÉÏÎ ÎÕÍÂÅÒ Ђ τɊȢ 

The usual row reduction algorithm, however, gives an ill -conditioned system. Adding a 

multiple of the first to the second row gives the system on the left below, then dividing by 

Ϻωωω ÁÎÄ ÒÏÕÎÄÉÎÇ ÔÏ σ ÐÌÁÃÅÓ ÏÎ ωωψȾωωω Ѐ Ȣωωψωω Ђ ρȢππ ÇÉÖÅÓ ÔÈÅ ÓÙÓÔÅÍ ÏÎ ÔÈÅ ÒÉÇÈÔȡ 

   

 .001x + y = 1 .001x + y = 1 

 ϺωωωÙ Ѐ Ϻωωψ y = 1.00 

The solution for the last system is x = 0,y = 1 which is wildly inaccurate (and the condition 

ÎÕÍÂÅÒ ÉÓ Ђ ςππςɊȢ 

This problem can be avoided using partial pivoting. Instead of pivoting on the first          

non-zero element, pivot on the largest pivot (in absolute value) among those availabl e in the 

column.  

In the example above, pivot on the x, which will require a permute first:  

 x + y = 2 x + y = 2 x + y = 2 

 .001x + y = 1 .999y = .998 y = 1.00                                                      

where the third system is the one obtained a fter rounding. The solution is a fairly 

accurate   x = 1.00,y = 1.00 (and the condition number is 4).  



 

 

W!/h.LΩ{ a9¢Ih5 

Method also known as iterative method, simultaneous displacement method. We want to 

ǎƻƭǾŜ Ψ!Ȅ Ґ ōΩ ǿƘŜǊŜ ͼ═ᶰ╡▪ ▪ͼ ŀƴŘ ΨƴΩ ƛǎ ǾŜǊȅ ƭŀǊƎŜΣ Ψ!Ω ƛǎ {ǇŀǊǎŜ όǿƛǘƘ ŀ ƭŀǊƎŜ ǇŜǊŎŜƴǘ ƻŦ 

zero entries) ŀǎ ǿŜƭƭ ŀǎ Ψ!Ω ƛǎ ǎǘǊǳŎǘǳǊŜŘ όƛΦŜΦ ǘƘŜ ǇǊƻŘǳŎǘ Ψ!ȄΩ can be computed efficiently). For 

this purpose, ǿŜ Ŏŀƴ Ŝŀǎƛƭȅ ǳǎŜ WŀŎƻōȅΩǎΦ 

ALGORITHM 

We want to solve Ax=b writ es it out  

 

╪ ● ╪ ● ỄȣȣȢȢ╪ ▪●▪ ╫
╪ ● ╪ ● ỄȣȣȢȢ╪ ▪●▪ ╫
ể                     ể       ỄȣȣȢ          ể

╪▪● ╪▪● ỄȣȣȢȢ╪▪▪●▪ ╫▪

 

Rewrite it in another way 

 

ừ
Ử
Ừ

Ử
ứ ●

╪
╫ ╪ ● ╪ ● Ễȣȣȣ ╪ ▪●▪

●
╪
╫ ╪ ● ╪ ● Ễȣȣȣ ╪ ▪●▪

ể                     ể           ȣȣȣȢ                   ể

●▪ ╪▪▪
╫▪ ╪▪● ╪▪● Ễȣȣȣ ╪▪▪ ●▪

 

Or in compact form 

 ●░ ╪░░
╫░ В ╪░▒●▒

▪
▒ ȟ▒░   ░ ȟȟȣȣȣȢȢ▪ 

¢Ƙƛǎ ƎƛǾŜǎ ǘƘŜ WŀŎƻōȅΩǎ ƛǘŜǊŀǘƛƻƴΦ 

Choose a start point (initial guess) i.e. ● ȟȟ  

Apply   ╧▓ ║╧▓ ╒  where  ╒░▒
╫░

╪░▒
  and B can be defined as 

   ║░▒

╪░▒

╪░░
                     ░ ▒

                             ░ ▒
 

STOP CRITERIA 

╧▓ close enough to ╧▓  for example ╧▓ ╧▓  ꜗfor certain vector norms. 

Residual ►▓ ═●▓ ╫ is small for example ►▓  ꜗ



 

 

CONVERGENC CRITERIA 

Sufficient condition for the convergence of WŀŎƻōƛΩǎ ƛǎ  

ᴁ╧ᴁ      ▫►       ȿ╪░░ȿ ╪░▒

▪

▒ ȟ▒░

            ░ ȟȟȣȣȣȣȢȢ▪ 

 

Jacobi method also called method of simultaneous displacement why? 

Because no element of  ●░
▓   is in this iteration until every element is computed. 

 

KEEP IN MIND 

¶ Jacobi method is valid only when all άŀƛΩǎέ ŀǊŜ ƴƻƴ-zeroes. (OR) the elements can 

rearrange for measuring the system according to condition. It is only possible if [A] is 

ƛƴǾŜǊǘƛōƭŜ ƛΦŜΦ ƛƴǾŜǊǎŜ ƻŦ Ψ!Ω exist. 

¶ For fast convergence system should be diagonally dominant. 

¶ Must make two vectors for the computation ά╧▓έ ŀƴŘ ά╧▓ έ  

¶ System (method) is important for parallel computing. 

 

QUESTION:   Find the solution of the system of equation using Jacobi iterative method for 

the first five iterations. 

● ◐ ◑    ȣȣȣȣȣȣȣȣȢȢ░ 

● ◐ ◑    ȣȣȣȣȣȣȣȣȢȢ░░ 

● ◐ ◑    ȣȣȢȢȣȣȣȣȣȣȣȢ░░░ 

ANSWER                            

░             ● ◐ ◑ 

░░             ◐ ● ◑            

░░░            ◑ ◐ ● 



 

 

Taking initial guess as (0, 0, 0) and using formula   ╧▓ ║╧▓ ╒   

Put k = 0 for first iteration 

● Ȣ  

◐  

   ◑ Ȣ  

               ● ȟ ◐ ȟ ◑ Ȣ ȟ      ȟ Ȣ  

Put k = 1 for second iteration 

● Ȣ Ȣ  

◐ Ȣ Ȣ Ȣ  

   ◑ Ȣ Ȣ  

               ● ȟ ◐ ȟ ◑ Ȣ ȟ      Ȣ ȟ Ȣ  

Put k = 2 for third iteration 

● Ȣ Ȣ Ȣ  

◐ Ȣ Ȣ Ȣ  

   ◑ Ȣ Ȣ Ȣ  

               ● ȟ ◐ ȟ ◑ Ȣ ȟ      Ȣ ȟ Ȣ  

Put k = 3 for fourth iteration 

● Ȣ Ȣ Ȣ  

◐ Ȣ Ȣ Ȣ  



 

 

   ◑ Ȣ Ȣ Ȣ  

               ● ȟ ◐ ȟ ◑ Ȣ ȟ Ȣ ȟ Ȣ  

Put k = 4 for fifth iteration 

● Ȣ Ȣ Ȣ  

◐ Ȣ Ȣ Ȣ  

   ◑ Ȣ Ȣ Ȣ  

               ● ȟ   ◐ ȟ ◑ Ȣ ȟ Ȣ ȟ Ȣ  

 

GUASS SEIDEL ITERATION METHOD 

GuassΩǎ Seidel method is an improvement oŦ WŀŎƻōƛΩǎ ƳŜǘƘƻŘΦ This is also known as method 

of successive displacement. 

ALGORITHM 

Lƴ ǘƘƛǎ ƳŜǘƘƻŘ ǿŜ Ŏŀƴ ƎŜǘ ǘƘŜ ǾŀƭǳŜ ƻŦ ά●έŦǊƻƳ ŦƛǊǎǘ Ŝǉǳŀǘƛƻƴ ŀƴŘ ǿŜ ƎŜǘ ǘƘŜ ǾŀƭǳŜ ƻŦ ά●έ 

by using ά●έ ƛƴ ǎŜŎƻƴŘ Ŝǉǳŀǘƛƻƴ ŀƴŘ ǿŜ ƎŜǘ ά●έ ōȅ ǳǎƛƴƎ ά●έ ŀƴŘ ά●έ in third equation 

and so on. 

ABOUT THE ALGORITHM 

¶ Need only one vector for both ͼ●▓ͼ and ͼ●▓ ͼ save memory space. 

¶ Not good for parallel computing. 

¶ Converge a bit faster than WŀŎƻōƛΩǎΦ 

 

 

 

 



 

 

How Jacobi method is accelerated to get Guass Seidel method for solving system of Linear 

Equations. 

In Jacobi method the (r+1)th approximation to the system В ╪░▒●▒ ╫░
▪
▒ ȟ▒░  is given by 

●░
► ╫░

╪░░
В

╪░▒

╪░░
●▒
►  Ƞ▪

▒ ȟ▒░ ►ȟ▒ ȟȟȟȣȣȣȣȣ▪  from which we can observe that no 

element of ●░
►  replaces ●░

► entirely for next cycle of computations. However, this is done in 

Guass Seidel method. Hence called method of Successive displacement. 

QUESTION:  Find the solutions of the following system of equations using Guass Seidel 

method and perform the first five iterations. 

● ● ●  

● ● ●  

● ● ●  

● ● ●  

ANSWER 

● Ȣ Ȣ ● Ȣ ● 

● Ȣ Ȣ ● Ȣ ● 

● Ȣ Ȣ ● Ȣ ● 

● Ȣ Ȣ ● Ȣ ● 

  For first iteration using ȟȟȟ  we get 

  

● Ȣ Ȣ Ȣ Ȣ 

● Ȣ Ȣ Ȣ Ȣ 

● Ȣ Ȣ Ȣ Ȣ  

● Ȣ Ȣ Ȣ Ȣ  

For second iteration using ȢȟȢȟȢ ȟȢ  we get 



 

 

  

● Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ 

● Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ 

● Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ  

● Ȣ Ȣ Ȣ Ȣ Ȣ Ȣ  

For third iteration using ȟȟȟ  we get 

  

● Ȣ Ȣ Ȣ Ȣ 

● Ȣ Ȣ Ȣ Ȣ 

● Ȣ Ȣ Ȣ Ȣ  

● Ȣ Ȣ Ȣ Ȣ  

 For fourth iteration using ȟȟȟ  we get 

  

● Ȣ Ȣ Ȣ Ȣ 

● Ȣ Ȣ Ȣ Ȣ 

● Ȣ Ȣ Ȣ Ȣ  

● Ȣ Ȣ Ȣ Ȣ  

 For fifth iteration using ȟȟȟ  we get 

  

● Ȣ Ȣ Ȣ Ȣ 

● Ȣ Ȣ Ȣ Ȣ 

● Ȣ Ȣ Ȣ Ȣ  

● Ȣ Ȣ Ȣ Ȣ  

 



 

 

EIGENVALUE , EIGNVECTOR 

{ǳǇǇƻǎŜ Ψ!Ω ƛǎ ŀ ǎǉǳŀǊŜ ƳŀǘǊƛȄΦ ¢ƘŜ ƴǳƳōŜǊ Ψⱦᴂ ƛǎ ŎŀƭƭŜŘ ŀƴ 9ƛƎƴǾŀƭǳŜ ƻŦ Ψ!Ω ƛŦ ǘƘŜǊŜ ŜȄƛǎǘ ŀ 

non-ȊŜǊƻ ǾŜŎǘƻǊ ΨȄΩ ǎǳŎƘ ǘƘŀǘ 

        ═● ⱦ●    ▫►    ═ ⱦ╘●  

 And corresponding non-ȊŜǊƻ ǎƻƭǳǘƛƻƴ ǾŜŎǘƻǊ ΨȄΩ ƛǎ ŎŀƭƭŜŘ ŀƴ 9ƛƎŜƴǾŜŎǘƻǊΦ 

Largest Eigenvalue is known as Dominant Eigenvalue. 

CHARACTERISTIC POLYNOMIAL 

The polynomial defined by  ͼ╟ⱦ ἬἭἼ═ ⱦ╘ͼ  is called characteristics polynomial. 

SPECTRUM OF MATRIX 

SŜǘ ƻŦ ŀƭƭ ŜƛƎƴǾŀƭǳŜǎ ƻŦ Ψ!Ω  ƛǎ ŎŀƭƭŜŘ ǎǇŜŎǘǊǳƳ ƻŦ Ψ!ΩΦ   

SPECTRAL RADIUS 

¢ƘŜ {ǇŜŎǘǊŀƭ ǊŀŘƛǳǎ tό!ύ ƻŦ ŀ ƳŀǘǊƛȄ Ψ!Ω ƛǎ ŘŜŦƛƴŜŘ ōȅ  

                        ╟═ □╪●ȿⱦȿ             ²ƘŜǊŜ Ψⱦᴂ ƛǎ ŀƴ 9ƛƎƴǾŀƭǳŜ Ŧ Ψ!ΩΦ 

SPECTRAL NORM 

Let ͼⱦ░ͼ be the largest Eigenvalue of  ══ᶻ or  ═ᶻ═ where ═ᶻ  is the conjugate ǘǊŀƴǎǇƻǎŜ ƻŦ ά═έ 

then the spectral norm of the matrix ά═έ ƛǎ ŘŜŦƛƴŜŘ ŀǎ  

Ɑ═ ⱦ░ 

DETERMINANT OF A MATRIX 

¢ƘŜ ŘŜǘŜǊƳƛƴŀƴǘ ƻŦ ά▪ ▪έ ƳŀǘǊƛȄ ƛǎ the product of its Eigenvalues. 

TRACE OF A MATRIX 

The sum of diagonal elements ƻŦ ά▪ ▪έ ƳŀǘǊƛȄ ƛǎ ŎŀƭƭŜŘ ǘƘŜ ¢ǊŀŎŜ ƻŦ ƳŀǘǊƛȄ ά!έ 

This is also defined as the sum of Eigenvaluse of a matrix is Trace of it 

 

 

Write characteristic equation of 

  



 

 

THE POWER METHOD 

The power method is an iterative technique used to determine the dominant eigenvalue of a 

matrix. i.e the eigenvalue with the largest magnitude. 

Method also called RELEIGH POWER METHOD 

 

ALGORITHIM 

I. Choose initial vector such that largest element is unity. 

II. This normalized vector V(0)  ƛŀ ǇǊŜƳǳƭǘƛǇƭƛŜŘ ōȅ ΨƴȄƴΩ ƳŀǘǊƛȄ ═Ȣ 

III. The resultant vector is again normalized. 

IV. Continues this process untill required accuracy is obtained. 

At this point result looks like     ╤▓ ═ ╥▓ ▲▓ ╥
▓ 

IŜǊŜ Ψ▲▓ Ω ƛǎ ǘƘŜ ŘŜǎƛǊŜŘ ƭŀǊƎŜǎǘ 9ƛƎŜƴ ǾŀƭǳŜ ŀƴŘ Ψ○▓Ω is the corresponding EigenVector. 
 

CONVERGENCE 

Power method Converges linearly , meaning that during convergence, the error decreases by 

a constant factor on each iteration step. 

Question 

How to find smallest Eigen value using power method? 

Answer 

Consider 

═╧ ⱦ╧ 

═ ═╧ ⱦ═ ╧ 

╧  ⱦ═ ╧ 

                                                      ═Ǭ ╧  
ⱦ
╧      ╡▄▲◊░►▄▀ 

 

 



 

 

Example 

Find the Eigen value of largest modulus and the associated eigenvector of the matrix by 

power method 

═   

Solution: 

Let initial vector ╥   as ȟȟ ╣  

You can take any other instead of ȟȟ  ǿƘƛŎƘ Ŏƻƴǎƛǎǘ άлέ ŀƴŘ άмέ ƭƛƪŜ ȟȟ  and 

ȟȟ  

(1). Using Formula     ╤▓ ═ ╥▓     for K=1  

 

  ╤ ═ ╥  
Ⱦ
Ⱦ  

Ȣ
Ȣ ▲ ╥  

(2). Using Formula     ╤▓ ═ ╥▓     for K=2  

 ╤ ═╥   
Ȣ
Ȣ

Ȣ
Ȣ
Ȣ

Ȣ
Ȣ
Ȣ ▲ ╥  

    

(3). Using Formula     ╤▓ ═ ╥▓     for K=3  

  ╤ = ═╥   
Ȣ
Ȣ

Ȣ
Ȣ
Ȣ

Ȣ  
Ȣ
Ȣ ▲ ╥  

    

(4). Using Formula     ╤▓ ═ ╥▓     for K=4  

 ╤ = ═╥    
Ȣ
Ȣ

Ȣ
Ȣ
Ȣ

Ȣ
Ȣ
Ȣ ▲ ╥  

 



 

 

 (5). Using Formula     ╤▓ ═ ╥▓     for K=5  

 ╤ = ═╥   
Ȣ
Ȣ

Ȣ
Ȣ
Ȣ

Ȣ  
Ȣ
Ȣ ▲ ╥  

 (6). Using Formula     ╤▓ ═ ╥▓     for K=6  

  ╤ = ═╥
Ȣ
Ȣ

Ȣ
Ȣ
Ȣ

Ȣ
Ȣ
Ȣ ▲ ╥  

 (7). Using Formula     ╤▓ ═ ╥▓     for K=7  

 ╤ = ═╥   
Ȣ
Ȣ =

Ȣ
Ȣ
Ȣ

= 11.834  
Ȣ
Ȣ ▲ ╥  

So largest Eigen value is  Ἱ Ȣ  and corresponding Eigenvector is  

V=
Ȣ
Ȣ   accurate to 3 decimals. 

 

QUESTION:      Find the smallest Eigen value of the matrix by power method. 

A =   

SOLUTION 

Put  ═ ║         ═ = 
╪▀▒ ═

ȿ═ȿ
    ȣȣȣȣȣȣȣȣ  

a11= = +23 

a12= = -26 

a13=    -12 

a21= = 21 

a22=  = -7 

a23=   

a31=    

a32=  

a33=   



╪▀▒═            

╪▪▀       ȿ═ȿ  

                             ║ ═  = 

Ụ
Ụ
Ụ
ợ

ủ
ủ
ủ
Ủ

 

Now Taking Initial vector as ╥ ȟȟ ╣ 

╤ =║╥   

ụ
Ụ
Ụ
Ụ
ợ

Ứ
ủ
ủ
ủ
Ủ

  
Ȣ
Ȣ
Ȣ

Ȣ  
Ȣ
Ȣ  ▲╥  

      ╤ = ║╥
Ȣ Ȣ Ȣ
Ȣ Ȣ Ȣ
Ȣ Ȣ Ȣ

 
Ȣ
Ȣ

Ȣ
Ȣ
Ȣ

Ȣ
Ȣ

Ȣ
▲╥  

 ╤ = ║╥  
Ȣ Ȣ Ȣ
Ȣ Ȣ Ȣ
Ȣ Ȣ Ȣ

 
Ȣ

Ȣ
 
Ȣ
Ȣ
Ȣ

Ȣ  Ȣ
Ȣ

▲╥  

 

╤ = ║╥  
Ȣ Ȣ Ȣ
Ȣ Ȣ Ȣ
Ȣ Ȣ Ȣ

 Ȣ
Ȣ

Ȣ
Ȣ
Ȣ

Ȣ  Ȣ
Ȣ

 ▲╥  

 

╤ = ║╥  
Ȣ Ȣ Ȣ
Ȣ Ȣ Ȣ
Ȣ Ȣ Ȣ

Ȣ
Ȣ

Ȣ
Ȣ
Ȣ

Ȣ  Ȣ
Ȣ

▲╥   

 

╤ = ║╥  
Ȣ Ȣ Ȣ
Ȣ Ȣ Ȣ
Ȣ Ȣ Ȣ

Ȣ
Ȣ

Ȣ
Ȣ
Ȣ

Ȣ
Ȣ
Ȣ ▲ ╥  

 

╤ =║╥  
Ȣ Ȣ Ȣ
Ȣ Ȣ Ȣ
Ȣ Ȣ Ȣ

Ȣ
Ȣ

Ȣ
Ȣ
Ȣ

Ȣ  
Ȣ

Ȣ
▲ ╥   

Similarly check next repeated answer gives us Eigenvalue. 

  



 

 

DIFFERENCE OPERATORS 

DIFFERENCE EQUATION 

Equation involving differences is called Difference Equation. 

Solution of differential equation will be sequence of  ὁἳ values for which the equation is true 

ŦƻǊ ǎƻƳŜ ǎŜǘ ƻŦ ŎƻƴǎŜŎǳǘƛǾŜ ƛƴǘŜƎŜǊ ΨƪΩΦ 

Order of differential equation is the difference between ǘƘŜ ƭŀǊƎŜǎǘ ŀƴŘ ǎƳŀƭƭŜǎǘ ŀǊƎǳƳŜƴǘ ΨƪΩ 

appearing in it. 

DIFFERENCE OF A POLYNOMIAL 

¢ƘŜ άƴǘƘέ ŘƛŦŦŜǊŜƴŎŜ ƻŦ ŀ ǇƻƭȅƴƻƳƛŀƭ ƻŦ ŘŜƎǊŜŜ ΨƴΩ ƛǎ ŎƻƴǎǘŀƴǘΣ ǿƘŜƴ the values of the 

independent variable are given at equal intervals.     

FINITE DIFFERENCES. 

Let we have a following linear D. Equation 

 ◐ͼ● ▬●◐ ▲●◐ ►●     Ƞ╪ ● ╫ 

Subject to the boundary conditions          ◐╪  θ       ╪▪▀        ◐╫  ♫ 

Then the finite difference method consists of replacing every derivative in above Equation by 

finite difference approximations such as the central divided difference approximations  

 ◐ ●░ ▐
◐●░ ◐●░  

  ◐ ●░ ▐
◐●░ ◐●░ ◐●░  

Shooting Method is a finite difference method. 

FINITE DIFFERENCES OF DIFFERENT ORDERS 

Supposing the argument equally spaced so that  ●▓ ●▓ ▐  the difference of the ᴂ◐▓ᴂ 

values are denoted as  

 Ў◐▓ ◐▓ ◐▓    And are called First differences. 

Second differences are as follows  

 Ў◐▓ ЎЎ◐▓ Ў◐▓ Ў◐▓ ◐▓ ◐▓ ◐▓ 

In General:          Ў▪◐▓ Ў▪  ◐▓ Ў▪  ◐▓  And are called nth differences 



 

 

DIFFERENCE TABLE 

The standard format for displaying finite differences is called difference table. 

DIFFERENCE FORMULAS 

Difference formulas for elementary functions somewhat parallel those of calculus. Example 

include the following 

The differences of a constant function are zero. In symbol ͼЎ╬ ͼ  ǿƘŜǊŜ ΨŎΩ ŘŜƴƻǘŜǎ ŀ 

constant. 

For a constant time another function we have   Ў╬◊▓ ╬Ў◊▓ 

The difference of a sum of two functions is the sum of their differences 

 Ў◊▓ ○▓ Ў◊▓ Ў○▓ 

¢ƘŜ ΨƭƛƴŜŀǊƛǘȅ ǇǊƻǇŜǊǘȅΩ generalizes the two previous results.  

 Ў╬◊▓ ╬○▓ ╬Ў◊▓ ╬Ў○▓ 

Where ╬and ╬ are constants. 

PROVE THAT      Ў╬◐▓ ╬Ў◐▓ 

This is analogous to a result of calculus 

 Ў╬◐▓ ╬◐▓ ╬◐▓ ╬◐▓ ◐▓ ╬Ў◐▓ 

 

FOR A CONSTANT FUNCTION ALL DIFFERENCES ARE ZERO, PROVE! 

Let ᶅ ▓    Ƞ╬ ◐ ǘƘŜƴ ŦƻǊ ŀƭƭ ΨƪΩ 

 Ў◐▓ ◐▓ ◐▓ ╬ ╬    Where ◐▓ ╬ is a constant function. 

REMEMBER 

The fundamental idea behind finite difference methods is the replace derivatives in the 

differential equation by discrete approximations, and evaluate on a grid to develop a system 

of equations.  

 



 

 

COLLOCATION  

Like the finite difference methods, the idea behind the collocation is to reduce the boundary 

value problem to a set of solvable algebraic equations. 

 However, instead of discretizing the differential equation by replacing derivative with finite 

differences, the solution is given a functional from whose parameters are fit by the method.     

CRITERION OF APPROXIMATION 

Some methods are as follows 

i. collocation  ii. Osculation  iii. Least square 

 

FORWARD DIFFERENCE OPERATOR      Ψ  

We define forward difference operator as       Ў◐░ ◐░ ◐░        ░ ȟȟȣ▪                

Where y=f(x)               ╞╡                  Ўὁὀ ὁὀἰ ὁὀ 

 

For first order 

DƛǾŜƴ ŦǳƴŎǘƛƻƴ ȅҐŦόȄύ ŀƴŘ ŀ ǾŀƭǳŜ ƻŦ ŀǊƎǳƳŜƴǘ ΨȄΩ ŀǎ   x=a, a+hΧΧ ŀ+nh   etc. 

²ƘŜǊŜ ΨƘΩ ƛǎ ǘƘŜ ǎǘŜǇ ǎƛȊŜ όƛƴŎǊŜƳŜƴǘύ ŦƛǊǎǘ ƻǊŘŜǊ CƻǊǿŀǊŘ 5ifference Operator is 

 

Ў█╪ █╪ ▐ █╪         ╞╡      Ў◐░ ◐░ ◐░    ᶅ░ ȟȟȣ▪  

 

For Second Order 

Let      Ў◐ ЎЎ◐ Ў◐ ◐ Ў◐ Ў◐= ◐ ◐ ◐ ◐  

◐ ◐ ◐ 

For Third Order 

 Ў◐ ЎЎ◐ Ў◐ ◐ ◐ Ў◐ Ў◐ Ў◐ 

◐ ◐ ◐ ◐ ◐ ◐ ◐ ◐ ◐ ◐ 

 

ЎὁȟЎὁȟЎὁ ἩἺἭ ἫἩἴἴἭἬ ἴἭἩἬἱἶἯ ἬἱἮἮἭἺἭἶἫἭἻ 

 

In General:     Ў▪◐ ◐▪ ╒▪ ◐▪ ╒▪ ◐▪ Ễ ▪◐▪ 

 

Remark ╒►▪
ἶȦ

ἺȦἶ ἺȦ
    ╪▪▀         ╒▪ ╒▪

▪       ╪▪▀        ╒▪ ╒▪
▪ ▪ 

 



 

 

CONSTRUCTION OF FORWARD DIFFERENCE TABLE (Also called Diagonal difference table) 

 

         X         Y Ў◐ Ў◐ Ў◐ Ў◐ 
● ◐     

                Ў◐
◐ ◐ 

   

● ◐                Ў◐   
                Ў◐

◐ ◐ 
               Ў◐  

● ◐                Ў◐                Ў◐ 
                Ў◐

◐ ◐ 
               Ў◐  

● ◐                Ў◐   
                Ў◐

◐ ◐ 
   

● ◐     
 

QUESTION:   /ƻƴǎǘǊǳŎǘ ŦƻǊǿŀǊŘ ŘƛŦŦŜǊŜƴŎŜ ¢ŀōƭŜ ŦƻǊ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ǾŀƭǳŜ ƻŦ ΨXΩ ŀƴŘ Ψ¸Ω 

X 0.1 0.3 0.5 0.7 0.9 1.1 1.3 
Y 0.003 0.067  0.148 0.248 0.370 0.518 0.697 

SOLUTION 

X y Ў◐ Ў ◐ Ўὁ Ўὁ Ўὁ Ўὁ 

0.1 0.003       

  O 0.064      

0.3 0.067  O 0.017     

  O 0.081  O 0.002    

0.5 0.148  O 0.019  O 0.001   

  O 0.100  O 0.003  O      0  

0.7 0.248  O 0.022  O 0.001  O     0 

  O 0.122  O 0.004  O      0  

0.9 0.370  O 0.026  O 0.001   

  O 0.148  O 0.005    

1.1 0.518  O 0.031     

  O 0.179      

1.3 0.697       

 



 

 

QUESTION 

Express Ў◐ and Ў◐ in terms of the value of function y. 

SOLUTION 

╘            Ў◐=Ў◐-Ў◐= (◐-◐) - (◐-◐) =◐-2◐+◐ 

 

╘╘            Ў◐=Ў◐-Ў◐ 

=Ў◐-Ў◐-(Ў◐-Ў◐) 

                                =Ў◐- Ў◐-(Ў◐-Ў◐) -(Ў◐-Ў◐)+(Ў◐-Ў◐) 

                                  =◐-4◐+ ◐-4◐+◐ 

 

QUESTION 

Compute the missing values of ◐▪ and Ў◐▪ in the following table.  

 

◐▪  ◐ ◐ ◐ ◐=6 ◐ ◐ ◐ 

Ў◐▪ Ў◐ Ў◐ Ў◐=5 Ў◐ Ў◐ Ў◐  

Ў◐▪ Ў◐=1 Ў◐=4 Ў◐=13 Ў◐=18 Ў◐=24   

 

 SOLUTION 

Ў◐=1      Ў◐ Ў◐          ȣȣȣȣȣȣȣȣȣȢ  

Ў◐=4        Ў◐ Ў◐           ȣȣȣȣȣȣȣȣȣȢ  

Ў◐=13     Ў◐ Ў◐       ȣȣȣȣȣȣȣȣȣȢ  

 Ў◐=18     Ў◐ Ў◐       ȣȣȣȣȣȣȣȣȣȢ  

  Ў◐=24     Ў◐ Ў◐        ȣȣȣȣȣȣȣȣȣȢ  

 

    Ў◐ Ў◐=4 and Ў◐= 5       5 Ў◐=4   Ў◐  

(1)       Ў◐ Ў◐  Ў◐=1  Ў◐=0 

 (3)       Ў◐  Ў◐     And    Ў◐     Ў◐  Ў◐=18 

(4)    Ў◐ Ў◐  Ў◐ Ў◐  

(5)  Ў◐  Ў◐  Ў◐ Ў◐  



 

 

Now since we know that 

Ў◐ ◐ ◐       ȣȣȣȣȣȣȣȣȢ  

Ў◐ ◐ ◐    ȣȣȣȣȣȣȣȣȢ  

Ў◐ ◐ ◐      ȣȣȣȣȣȣȣȣȢ  

Ў◐ ◐ ◐       ȣȣȣȣȣȣȣȣȢ  

Ў◐ ◐ ◐      ȣȣȣȣȣȣȣȣȢ  

Ў◐ ◐ ◐       ȣȣȣȣȣȣȣȣȢ  

Since By table   ◐   and   Ў◐  

 5 = 6 ◐ ◐  

 Ў◐ ◐ ◐ ◐ ◐  

 Ў ◐  ◐  ◐ ◐  ◐  

 Ў◐  ◐ ◐ ◐  ◐  

 Ў◐ ◐ ◐  ◐   ◐  

Ў◐ ◐ ◐ ◐        ◐  

 

QUESTION  

{Ƙƻǿ ǘƘŀǘ ǘƘŜ ǾŀƭǳŜ ƻŦ ΨȅnΩ Ŏŀƴ ōŜ ŜȄǇǊŜǎǎŜŘ ƛƴ ǘŜǊƳǎ ƻŦ ǘƘŜ ƭŜŀŘƛƴƎ ǾŀƭǳŜΩ◐ ΨŀƴŘ ǘhe 

Binomial leading differences   Ў◐ȟЎ◐.....Ў▪ ◐ 

 SOLUTION 

 ȣȣȣȣȣȢȢ

Ў◐ ◐ ◐   ╞╡   ◐ ◐ Ў◐
 Ў◐ ◐ ◐   ╞╡   ◐ ◐ Ў◐
Ў◐ ◐ ◐   ╞╡   ◐ ◐ Ў◐     

  ╪▪▀ ▼▫ ▫▪ȣȣȣȣȣ

 

 

Similarly             

                         

 ȣȣȣȣȣȢȢ
Ў◐ ЎЎ◐ Ў◐ Ў◐  ╞╡     Ў◐ Ў◐ Ў◐ 

Ў◐ ЎЎ◐ Ў◐ Ў◐  ╞╡     Ў◐ Ў◐ Ў◐
  ╪▪▀ ▼▫ ▫▪ȣȣȣȣȣ

 

 

Similarly 

 ȣȣȣȣȣȢȢ
Ў◐ Ў◐ Ў◐  ╞╡     ЎЎ◐ Ў◐ Ў◐

Ў◐ Ў◐ Ў◐  ╞╡     Ў◐ Ў◐ Ў◐
  ╪▪▀ ▼▫ ▫▪ȣȣȣȣȣ

 



 

 

Also from (2) and (3)   we can write Ў◐  as   

Ў◐ Ў◐ Ў◐ Ў◐ Ў◐ Ў◐ Ў◐ Ў◐ȣȣȣȣ  

From (1) and (4) we can write   ◐   as 

◐ ◐ Ў◐ ◐ Ў◐ Ў◐ Ў◐  

◐ Ў◐ Ў◐ Ў◐ Ў◐ Ў◐  

◐ Ў◐ Ў◐ Ў◐ Ў ◐ 

Similarly, we can symbolically write 

◐ Ў◐ȟ◐ Ў ◐ȟ◐ Ў ◐ In general ◐▪ Ў▪ ◐ 

Hence                ◐▪  ◐  ╬ 
▪ Ў◐  ╬▪ Ў ◐   ╬▪

▪ Ў▪ ◐  ░▫
▪  ╒░

▪ Ў░◐ 

 

BACKWARD DIFFERENCE OPERATOR ͼͼ 

We Define Backward Difference Operator as 

  ὁἶ = ◐▪  ◐▪     ᶅ  ▪ ȟȟȣȣ░    (OR)  █● █● █● ▐ 

(OR)                ◐● ◐●  ◐● ▐  

 

BACKWARD DIFFERENCE TABLE 

 ἦ               ἧ              ὁ                           ◐                ◐    

 ●             ◐  

                          ◐ ◐ ◐  

 ●             ◐                                         ◐ 

                         ◐  ◐  ◐                           ◐ 

 ●             ◐                                       ◐  

                        ◐  ◐  ◐ 

 ●             ◐ 



 

 

QUESTION 

Show that any value oŦ ΨȅΩ Ŏŀƴ ōŜ ŜȄǇǊŜǎǎŜŘ ƛƴ ǘŜǊƳǎ of ᴂ◐▪ᴂ and its backward differences. 

SOLUTION 

Since  ◐▪  ◐▪  ◐▪       And      ◐▪ ◐▪  ◐▪    ȣȣȣȣȣȣ(1) 

Also    ◐▪ ◐▪  ◐▪    ȣȣȣȣȣȣ(2) 

Thus        ◐▪  = ◐▪  ◐▪                (Rearranging Above) 

 

(1)  ◐▪  ◐▪  ◐▪ Ў◐▪ ◐▪  ◐▪  ◐▪  ◐▪ 

                         ◐▪         = ◐▪ ◐▪  Ў◐▪ ◐▪ 

 Similarly We Can Show That            ◐▪  ◐▪ ◐▪
 ◐▪  ◐▪ 

 Symbolically above results can be written as 

 ◐▪ ◐▪ ȟ◐▪  ◐▪ȣȣȣ 

In General                  ◐▪ ►  ► 

i.e.       ◐▪ ►  ◐▪  ╒►  ◐▪ ╒ ► ◐▪  ȣȣ  ► ►◐▪ 

 

SHIFT OPERATOR ά9έ 

Shift Operator defined as for      y=f(x) 

╔▪ ◐░ ◐░▪       ᶅ ░ ȟȟȣȣȟ▪ ȟȟȟȣȣ  

 OR             ╔▪█● █● ▪▐          OR                    ╔▪◐● ◐● ▪▐ 

ͼ♯έ /9b¢w![ 5LCC9w9b¢ ht9w!¢hw 

Central Different Operator for y=f(x) defined as  

♯◐░ ◐
░

◐
░
                       ᶅ ░ ȟȟȣȢ▪ 

(OR)    ♯ █● █●
▐

█●
▐
         (OR)               ♯◐● ◐

●
▐ ◐

●
▐ 



 

 

TABLE 

                               

           

  !±9w!D9 ht9w!¢hw    άⱧͼ 

For y=f(x) Differential Operator defined as  

Ⱨ◐░ ◐
░
   ◐

░
          ᶅ ░ ȟȟȣȣȣ▪       

(OR)        Ⱨ █● █●
ἰ
 █●

ἰ
           (OR)       Ⱨ◐● ◐

●
▐ ◐

●
▐  

 

5LCC9w9b¢L![ ht9w!¢hw ά5έ 

For y=f(x) Differential Operator defined as   ╓▪█●
▀▪

▀●▪
  █●     ᶅ ▪       

 SOME USEFUL RELATIONS  

CǊƻƳ ǘƘŜ 5ŜŦƛƴƛǘƛƻƴ ƻŦ άЎͼ ŀƴŘ ά9έ ǿŜ ƘŀǾŜ  

Ў◐● ◐● ▐ ◐● ╔◐● ◐● ╔ ◐●            Ў ╔   

Now by definitions of  and ╔  we have  

◐● ◐● ◐● ▐ ◐● ╔ ◐● ╔ ◐●           ╔
╔

╔
 

The definition of OperŀǘƻǊǎ Ψ♯ΩŀƴŘ Ψ9Ω ƎƛǾŜǎ  

♯◐●=◐● ▐ ◐●
▐
╔◐● ╔ ◐● ╔ ╔ ◐●       ♯ ╔ ╔     

           X           Y ♯╨ ♯╨                   ♯╨ 
●  ◐    

                      ♯◐ ◐ ◐   

          ●              ◐                       ♯◐  
                      ♯◐                        ♯◐ 

●            ◐                         ♯◐  
                      ♯◐   

● ◐    



 

 

The definition ƻŦ ΨⱧ ŀƴŘ Ψ9Ω ¸ƛŜƭŘǎ  

Ⱨ◐●   ◐● ▐
  
◐
●
▐

 

╔ ╔ ◐●             Ⱨ ╔ ╔   

Now     Relation between Ψ5Ω ŀƴŘ Ψ9Ω ƛǎ ŀǎ Ŧƻƭƭƻǿǎ  

Since     ╔◐●  ◐● ▐  █ ●  ▐ 

Using Taylor series expansion, we have  

╔◐●  █● ▐ █ ●  
▐

Ȧ
 █ͼ ● ỄȣȣȣȣȢȢ        

╔◐● █●  ▐ ╓ █●  
▐

Ȧ
 ╓ █● ỄȣȢ 

 ╔◐●     
▐╓

Ȧ
  
▐╓

Ȧ
 ỄȣȣȣȣȢȢ  █● 

╔ ◐●    ▄
▐╓ ◐●                     Ḉ ▄

◑  ◑
◑

Ȧ
  
◑

Ȧ
Ễȣȣȣ 

Taking Ψ[ƻƎΩ on both sides we get             ╛▫▌ ╔  ▐╓                                                                       
Hence, all the operators are expressed in terms of ΨEΩ 

 ╟╡╞╥╔ ╣╗═╣     ╔♩  Ў ♯╔ 

╔♩ ╔  ╔            Ḉ ♩  ╔  

 ╔  ╔╔   ╔       Ў 

═▪▀     ♯╔    ╔    ╔   ╔      ḉ ♯  ╔   ╔  

             ╔   Ў 

 

 ╟╡╞╥╔ ╣╗═╣     ♯  ▼░▪ ▐ 
▐╓

 

╢░▪╬▄      ♯  ╔    ╔                     ḉ ■▫▌ ╔  ▐╓   ╔  ▄▐╓ 

                       
╔    ╔

      
▄
▐╓

    ▄
▐╓

  ╢░▪ ▐
▐╓

 



 

 

 ╟╡╞╥╔ ╣╗═╣    Ⱨ   ╬▫▼ ▐ 
▐╓

 

 ╢░▪╬▄     Ⱨ   ╔       ╔      ▄
▐╓

    ▄
▐╓

╬▫▼▐  
▐╓

 

 

╢▐▫◌ ◄▐╪◄   ♯ȟⱧȟ╔ȟЎȟ♩   ╒▫□□◊◄▄ 

♯╔█●  ♯ █● ▐ █● ▐ ▐ █● ▐ ▐ █● ▐ █● 

╔♯█● ╔█● ▐ █● ▐ ╔ █● ▐ ╔█● ▐                 

                         █● ▐ ▐ █● ▐ ● █● ▐ █● 

                ♯╔█● ╔♯█●         ╒▫□□◊◄▄  

 ╝▫◌     

    Ў♩◐● Ў◐● ◐● ▐ Ў◐● Ў◐● ▐ 

  ◐● ▐ ◐● ◐● ▐ ▐ ◐● ▐  ◐● ▐ ◐● ◐● ◐● ▐ 

   ◐● ▐ ◐● ◐● ▐ 

 ═▪▀        ♩Ў◐● ♩◐●▐ ◐● ♩◐● ▐ ♩◐● ◐● ▐ ◐● ▐ ▐ ◐● ◐● ▐  

  ◐● ▐ ◐● ◐● ◐● ▐  ◐● ▐ ◐● ◐● ▐  Ў♩◐● ♩Ў◐●  ╒▫□□◊◄▄  

▐╓ ■▫▌ Ў ■▫▌ ♩ ▼░▪▐ Ⱨ♯ 

 ╢░▪╬▄    ▐╓ ■▫▌╔ ■▫▌ Ў         ḉ╔ Ў 

  ■▫▌╔ ■▫▌ ♩  

 ═■▼▫          Ⱨ♯ ╔ ╔ ╔ ╔  ╔ ╔  

 ▄▐╓ ▄▐╓                   ḉ╔ ▄▐╓  ȟ╔ ▄▐╓ 

  Ⱨ♯ ▼░▪▐▐╓      ᵼ ▐╓  ▼░▪▐ Ⱨ♯    

 

 



 

 

╟╡╞╥╔ ╣╗═╣     ♯Ⱨ
♯

 

 ╢░▪╬▄   Ⱨ♯ ╔ ╔ ╔ ╔  ╔ ╔                 

  Ⱨ♯  ╔ ╔             ḉ╢▲◊▲►░▪▌ ╫▫◄▐ ▼░▀▄▼ 

  Ⱨ♯ ╔ ╔  

Ⱨ♯ ╔ ╔         ḉ═▀▀░▪▌ ȬȬ ▫▪ ╫▫◄▐ ▼░▀▄▼     

 Ⱨ♯
╔ ╔

  
╔ ╔ ╔ ╔

 

 Ⱨ♯
╔ ╔

ȣȣȣȣȣȣȣȣ ░ 

 ═■▼▫     ♯ ╔ ╔    

 ♯ ╔  ╔   ḉ╢▲◊╪►░▪▌ ║▫◄▐ ▼░▀▄▼Ȣ  

  
♯

╔  ╔   ḉ▀▄○░▀░▪▌  ▫▪ ║▫◄▐ ▼░▀▄▼ 

 ♯ ╔ ╔
ḉ═▀▀░▪▌  ▫▪ ║▫◄▐ ▼░▀▄▼  

 ♯ ╔ ╔
   ╔ ╔   ȣȣȣȣȣȣȣȣ ░░ 

  ╒▫□╫░▪░▪▌ ░ ╪▪▀ ░░ ◌▄ ▌▄◄ ◄▐▄ ►▄▼◊■◄Ȣ  

 

  ╟╡╞╥╔ ╣╗═╣              ╔ Ⱨ  
♯
  

 ▼░▪╬▄        Ⱨ
♯ ╔ ╔

╔ ╔ ╔ ╔ ╔ ╔ ╔  ╔    

 

 



 

 

 ╟╡╞╥╔ ╣╗═╣               Ў
♯

♯Ȣ   
♯  

  ▼░▪╬▄ ♯ ╔ ╔          ♯ ╔ ╔   ḉ╢▲◊╪►░▪▌ 

   
♯

 ╔ ╔   ḉ▀▄○░▀░▪▌ ╫◐  ȣȣȣȣȣȢȢ░ 

 ═■▼▫  
♯

 ╔ ╔       
♯

 ╔ ╔    Ḉ╪▀▀░▪▌ ▫▪▄ ▫▪  ▼░▀▄ 

 ♯ ╔ ╔
                 ḉ◄╪▓░▪▌ ▼▲◊►▄ ἺἷἷἼ ἷἶ ἪἷἼἰ ἻἱἬἭἻ 

 ♯ ╔Ⱦ ╔ Ⱦ

        
♯

╔ ╔  

 ╝▫◌             ♯Ȣ    
♯

♯
╔ ╔

 
╔ ╔  ╔ ╔

 
╔ ╔

ȣȣȣȣȣȢἱἱ 

  ═▀▀░▪▌ ░ ╪▪▀ ░░ ◌▄ ▌▄◄  

     
♯
♯Ȣ    

♯ ╔ ╔  ╔ ╔
 
╔ ╔ ╔ ╔

 
╔

 
╔  

 ╔ Ў   █▫►◌╪►▀ ▀░██▄►▄▪╬▄ ▫▬▄►╪◄▫► 

 

╟╡╞╥╔ ╣╗═╣        
Ⱨ

♯
     

       
Ⱨ

♯

♯ ╔ ╔

ụ
Ụ
Ụ
ợ ╔ ╔

Ứ
ủ
ủ
Ủ

╔ ╔
ȢⱧ  

 



 

 

 ╟╡╞╥╔ ╣╗═╣      Ⱨ♯
Ў╔ Ў

 

 Ⱨ♯ ╔ ╔ ╔ ╔  ╔ ╔  

 ╝▫◌ ▼░▪╬▄   Ў ╔     ◄▐▄►▄█▫►▄ ╔ Ў  

 Ⱨ♯ Ў ╔
Ў

╔
Ў ╔

╔
 
Ў Ў

╔
 

 Ў╔ Ў
            ḉ╔ Ў   

 

╟╡╞╥╔ ╣╗═╣         ⱧⱭ
Ў ♩

 

 ⱧⱭ ╔ ╔ ╔ ╔ ╔ ╔  

 ╢░▪╬▄ Ў ╔   ╪▪▀  ♩ ╔
╔

╔
    

 ◄▐▄►▄█▫►▄        ⱧⱭ Ў ♩
Ў ♩

 

 

╢▐▫◌ ◄▐╪◄ ▫▬▄►╪◄▫►▼ ȰⱧȱ  ╪▪▀  Ȱ╔ȱ  ╬▫□□◊◄▄ 

 ╕►▫□ ◄▐▄ ▀▄█░▪░◄░▫▪ ▫█ ȰⱧȱ  ╪▪▀  Ȱ╔ȱ  

 Ⱨ╔◐ Ⱨ◐ ◐ ◐  

 ╦▐░■▄      ╔Ⱨ◐ Ⱨ◐ ╔ ◐ ◐ ◐ ◐ Ⱨ╔ ╔Ⱨ 

   ȰⱧȱ  ╪▪▀  Ȱ╔ȱ  ╬▫□□◊◄▄ 

 

 

 

 

 

 



 

 

INTERPOLATION  

For a given table of values●▓ȟ◐▓  ᶅ  ╚ ȟȟȟȣȣ▪Ȣ   the process of estimating the values 

ƻŦ άȅҐŦόȄύέ ŦƻǊ ŀƴȅ ƛƴǘŜǊƳŜŘƛŀǘŜ ǾŀƭǳŜǎ ƻŦ άȄ Ґ ƎόȄύέ ƛǎ ŎŀƭƭŜŘ άƛƴǘŜǊǇƻƭŀǘƛƻƴέ.   

If g(x) is a Polynomial, ¢ƘŜƴ ǘƘŜ ǇǊƻŎŜǎǎ ƛǎ ŎŀƭƭŜŘ άtƻƭȅƴƻƳƛŀƭέ LƴǘŜǊǇƻƭŀǘƛƻƴΦ 

ERROR OF APPROXIMATION 

The deviation of g(x) from f(x) i.e. | f(x) ς g (x)|  is called Error of Approximation.  

EXTRAPOLATION 

The method of computing the values of ΨȅΩ ŦƻǊ ŀ ƎƛǾŜƴ ǾŀƭǳŜ ƻŦ ΨȄΩ ƭying outside the table of 

ǾŀƭǳŜǎ ƻŦ ΨȄΩ ƛǎ ŎŀƭƭŜŘ 9ȄǘǊŀǇƻƭŀǘƛƻƴΦ 

REMARK 

A function is said to interpolate a set of data points if it passes through those points. 

INVERSE INTERPOLATION  
Suppose █ ꜗ╒ ╪ȟ╫ȟ  █ȭ●  ▫ on [a, b] and █ has non- ȊŜǊƻ ΨǇΩ ƛƴ ώŀΣ ōϐ  

 Let Ȱ●ȟ● ȣȣȣȢ●▪ȱ ōŜ ΨƴҌмΩ distinct numbers in [a, b] with █ ●▓   ◐▓ for each   

▓  ȟȟ ȣȢ▪. 

 ¢ƻ ŀǇǇǊƻȄƛƳŀǘŜ ΨǇΩ ŎƻƴǎǘǊǳŎǘ ǘƘŜ ƛƴǘŜǊǇƻƭŀǘƛƴƎ ǇƻƭȅƴƻƳƛŀƭ ƻŦ ŘŜƎǊŜŜ ΨƴΩ ƻƴ ǘƘŜ ƴƻŘŜǎ               

άȅ0, y1...........ynέ   for Ȱ█  ȱ 

Since άyk=f (xk)έ and f (p) =0, it follows that █  (yk) = Xk and p = █  (0). 

 

ά¦ǎƛƴƎ ƛǘŜǊŀǘŜŘ ƛƴǘŜǊǇƻƭŀǘƛƻƴ ǘƻ ŀǇǇǊƻȄƛƳŀǘŜ █  is called iterated Inverse interpolationέ 

 

LINEAR INTERPOLATION FORMULA 

 █● ▬ ● █ ▬█ █ █ ▬Ў█ 

Where ● ● ▬▐    ▬
● ●

▐
             ╟  

QUADRATIC INTERPOLATION FORMULA 

 █● ▬ ● █ ▬Ў█
╟╟

Ў█ 

Where ● ● ▬▐    ▬
● ●

▐
               ╟          

 

 



 

 

ERRORS IN POLYNOMIAL INTERPOLATION 
Given a function f(x) and ╪ ● ╫ȟ a set of distinct points ●░ ░ ȟȟȣȣȢ▪ and  xi  [a, b]  

Let  ╟▪●  be a polynomial of ŘŜƎǊŜŜ Җ n that interpolates f(x) at ●░ 

    i.e.           ╟▪●░ █●░    Ƞ  ░ ȟȟȟȣȣȣȢȢ▪   

Then Error define as ͼɴ ●  █● ɀ ╟▪●ͼ     

 

REMARK 
Sometime when a function is given as a data of some experiments in the form of tabular 

values corresponding to the values ƻŦ ƛƴŘŜǇŜƴŘŜƴǘ ǾŀǊƛŀōƭŜ Ψ·Ω ǘƘŜƴ 

1. 9ƛǘƘŜǊ ǿŜ ƛƴǘŜǊǇƻƭŀǘŜ ǘƘŜ Řŀǘŀ ŀƴŘ ƻōǘŀƛƴ ǘƘŜ ŦǳƴŎǘƛƻƴ άŦόȄύέ ŀǎ ŀ ǇƻƭȅƴƻƳƛŀƭ ƛƴ ΨȄΩ ŀƴŘ 

then differentiate according to the usual calculus formulas. 

2. Or we use Numerical Differentiation which is easier to perform in case of Tabular form 

of the data. 

 

DISADVANTAGES OF POLYNOMIAL INTERPOLATION 
¶ n-time differentiable 

¶ big error in certain intervals 

(especially near the ends) 

¶ No convergence result 

¶ IŜŀǾȅ ǘƻ ŎƻƳǇǳǘŜ ŦƻǊ ƭŀǊƎŜ άƴέ 

 

EXISTENCE AND UNIQUENESS THEOREM FOR POLYNOMIAL INTERPOLATION 
 

Given ●░ ȟ◐░░
▪   with XƛΩǎ  distinct there exists one and only one Polynomial ╟▪●  of degree 

▪ such that ╟▪●░ ◐░   Ƞ░ ȟȟȣȣȣȢȢ▪  

PROOF 
Existence Ok from construction.  

For Uniqueness: 

Assume we have two polynomials P(x), q(x) of degree  n both interpolate the data i.e. 

▬●░ ◐░ ▲●░   Ƞ░ ȟȟȣȣȣȢȢ▪  
Now let ▌●  ╟● ▲● which will be a polynomial of degree  n 

Furthermore, we have          ▌●░ ▬●░ ▲●░  ◐░ ◐░     Ƞ ░ ȟȟȟȣȣȣȢȢ▪ 

{ƻ ƎόȄύ Ƙŀǎ ΨƴҌмΩ ½ŜǊƻǎΦ ²Ŝ Ƴǳǎǘ have g(x)ḳ 0. Therefor   p(x)ḳ g(x). 

 

REMEMBER:   ¦ǎƛƴƎ bŜǿǘƻƴΩǎ CƻǊǿŀǊŘ difference interpolation formula we find the n-degree 

polynomial ᴂ╟▪ᴂ which approximate the function █● in such a way that ᴂ╟▪ᴂ and Ȭ █ ȭ agrees 

ŀǘ ΨƴҌмΩ Ŝǉǳŀƭƭȅ {ǇŀŎŜŘ Ψ·Ω ±ŀƭǳŜǎΦ {ƻ ǘƘŀǘ 

 ╟▪● █ȟ╟▪● Ễȣȣȣȣȣȟ╟▪●▪ █▪ 

Where     █ █● ȟ█ █● ȣȣȣȣȢỄ█▪ █●▪      !ǊŜ ǘƘŜ ǾŀƭǳŜǎ ƻŦ Ψ f Ω ƛƴ ǘŀōƭŜΦ 



 

 

NEWTON FORWARD DIFFERENCE INTERPOLATION FORMULA  

bŜǿǘƻƴΩǎ Forward Difference Interpolation formula is  

 █● ╟▪● 

 █● ╟Ў█●
╟╟

Ȧ
Ў█● Ễ

╟╟ Ễ╟ ▪

▪Ȧ
Ў▪█●  

Where ● ● ▬▐ȟ       ╟
● ●

▐
  ═▪▀ ▬ ▪ 

 

DERIVATION: 

 Let      ◐ █●ȟ           ● █●    ═▪▀     ●▪ ● ▪▐     ● ● ▬▐ 

 █● █● ▬▐ ╔▬█● Ў▬█●               Ḉ╔ Ў 

 ╟Ў
╟╟

Ȧ
Ễ

╟╟ Ễ╟ ▪

▪Ȧ
█●  

 █● █● ╟Ў█● Ễ
╟╟ Ễ╟ ▪

▪Ȧ
█●  

CONDITION FOR THIS METHOD 

¶ ±ŀƭǳŜǎ ƻŦ ΨȄΩ Ƴǳǎǘ ƘŀǾŜ Ŝǉǳŀƭ ŘƛǎǘŀƴŎŜ ƛΦŜΦ equally spaced. 

¶ Value on which we find the function check either it is near to start or end. 

¶ If near to start, then use forward method. 

¶ If near to end, then use backward method. 

 

 

 

 

 

 

 

 

 



 

 

QUESTION                       

Evaluate █  given the following table of values 

X : 10 20 30 40 50 

f(x)  : 46 66 81 93 101 
 

 SOLUTION 

IŜǊŜ ΨмрΩ ƴŜŀǊŜǎǘ ǘƻ ǎǘŀǊǘƛƴƎ Ǉƻƛƴǘ ǿŜ ǳǎŜ bŜǿǘƻǿƴΩǎ Forward Difference Interpolation. 

X Y DY D2Y D3Y D4Y 

10 46     

  20    

20 66  -5   

  15  2  

30 81  -3  -3 

  12  -1  

40 93  -4   

  8    

50 101     
 

 █● ◐ ╟Ў◐
╟╟

Ȧ
Ў◐

╟╟ ╟

Ȧ
Ў◐

╟╟ ▬ ▬

Ȧ
Ў◐ 

          Ḉ● ● ▬▐ ╟ ╟ Ȣ 

 █ Ȣ
Ȣ Ȣ

Ȧ

Ȣ Ȣ Ȣ

Ȧ
 

Ȣ Ȣ Ȣ Ȣ

Ȧ
 

 █ Ȣ  

NEWThb{Ω{ .!/Y²!w5 5LCC9w9b/9 Lb¢9wPOLATION FORMULA 

bŜǿǘƻƴΩǎ .ŀŎƪǿŀǊŘ 5ƛŦŦŜǊŜƴŎŜ LƴǘŜǊǇƻƭŀǘƛƻƴ ŦƻǊƳǳƭŀ ƛǎ  

 ◐● █● ╟▪ ● 

█●▪ ╟ █●▪
╟╟

Ȧ
█●▪ ỄỄ

╟╟ ╟ ỄỄ╟ ▪

▪Ȧ
▪█●▪   

 ╦▐▄►▄ ● ●▪ ▬▐ȟ   ▬
● ●▪

▐
Ƞ  ▪ ╟  



 

 

DERIVATION:      Let ◐ █●ȟ●▪ █●▪ ╪▪▀ ● ●▪ ╟▐         Then    

  █●▪ ╟▐ ╔╟█●▪ ╔ ╟█●▪     ╟█●▪                 Ḉ╔           

ἣἻἱἶἯ ἪἱἶἷἵἱἩἴ ἭὀἸἩἶἻἱἷἶ   █● ╟
╟╟

Ȧ

╟╟ ╟

Ȧ
Ễ  █●▪  

 █● █●▪ ╟ █●▪
╟╟

Ȧ
█●▪ ỄỄ 

 This is required bŜǿǘƻƴΩǎ DǊŜƎƻǊȅ Backward Difference Interpolation formula. 

QUESTION:     For the following table of values estimate f(7.5) 

X 1 2 3 4 5 6 7 8 

f(x)  1 8 27 64 125 216 343 512 

SOLUTION      

Since ΨтΦрΩ ƛǎ nearest to End of table, So We use bŜǿǘƻƴΩǎ .ŀŎƪǿŀǊŘ Interpolation. 

X Y ÐY Ð
2Y Ð

3Y Ð
4Y 

1 1     
  7    
2 8  12   
  19  6  
3 27  18  0 
  37  6  
4 64  24  0 
  61  6  
5 125  30  0 
  91  6  
6 216  36  0 
  127  6  
7 243  42   
  169    
8 512     
 

Since ╟
● ●▪

▐
╟

Ȣ
 ╟ Ȣ         

 Now          ◐ ◐▪ ╟ ◐▪
╟╟

Ȧ
◐▪

╟╟ ╟

Ȧ
◐▪ 

 ◐ Ȣ
Ȣ Ȣ

Ȧ

Ȣ Ȣ Ȣ

Ȧ
 

 ◐ Ȣ Ȣ Ȣ █● Ȣ  



 

 

               

[!Dw!bD9Ω{ Lb¢9wth[!¢Lhb Chwa¦[! 

For points ●ȟ●ȣȣȣȣȢ●▪  define the cardinal Function 

■ȟ■ȣȣȣȣȢ■▪ᶰ╟
▪ (polynomial of n-degree) 

■░●▒ ▫ 
    ░▒
░▒
                 ἱ ἷȟȟȟȣȢȢἶ         

The Lagrange form of interpolation Polynomial is     ▬▪●= В ■░
▪
░ ●◐░ 

 

DERIVATION OF FORMULA 

Let y=f (x) be a function which takes the values   ◐ȟ◐ȟ◐ȣȣȣ◐▪  so we will obtain an 

 n-degree polynomial              █● = ╪0 ●▪ + ╪●▪ ҌΧΧΧΧΦΦҌ╪n  

Now      ░ȣȣȣȣȢ

ừ
Ử
Ừ

Ử
ứ
◐ █● ╪ ● ● ● ● ỄỄ ● ●▪

╪ ● ● ● ● ỄỄ ● ●▪
╪ ● ● ● ● ● ● ỄỄ ● ●▪

ể
ể

╪▪● ● ● ● ỄỄ ● ●▪

 

Now we find the constants    ╪ȟ╪ȟỄỄ╪▪ 

Put x= ● in   (i) 

 ░     

ừ
Ử
Ừ

Ử
ứ
◐ █● ╪ ● ● ● ● ỄỄ ● ●▪

╪ ● ● ● ● ỄỄ ● ●▪
╪ ● ● ● ● ● ● ỄỄ ● ●▪

ể
ể

╪▪● ● ● ● ỄỄ ● ●▪

 

         ◐▫ ╪▫●▫ ● ●▫ ● ỄỄ ●▫ ●▪  

             ╪ ◐ ● ● ● ● ỄỄ ● ●  

Now     Put x=● ░▪ 

 ◐ █● ╪ ● ●▫ ● ● ỄỄ ● ●▪  

         ╪ ◐ ●▪ ● ●▪ ● ỄỄ ●▪ ●▪  



 

 

Similarly 

 ╪▪ ◐▪ ●▪ ● ●▪ ● ỄỄ ●▪ ●▪  

Putting all the values in (i)   we get 

◐ █●  ◐
● ● ● ● ȣȢȢȢȢ● ●▪

● ● ● ● ȣȣȢ● ●▪
 + ◐

● ● ● ● ȣȢȢȢȢ● ●▪

● ● ● ● ȣȣȢ● ●▪
 ҌΧΧΧΧΧ 

ȣȣȣȣȢ ◐▪
● ● ● ● ȣȢȢȢȢ●●▪

●▪ ● ●▪ ● ȣȣȢ●▪ ●▪
 

 ◐ █● ■◐ ■◐ ■◐ ỄỄ ■▪◐▪ В ■▓◐▓
▪
▓  

Where         ■▓●
● ● ● ● ȣȣȣ● ●▓ ● ●▓ ȣȣȢȢ● ●▪

●▓ ● ●▓ ● ȣȣȣ●▓ ●▓ ● ●▓ ȣȣȢȢ●▓ ●▪
 

ALTERNATIVELY DEFINE 

 Ⱬ● ● ● ● ● ȣȣ ● ●▪  

Then     Ⱬ ● ● ● ● ● ȣȢȢ● ●▪  

 ● ● ● ● ● ● ȣȢȢ● ●▪ ȣȣȣȣȣȣȢȢ 

 ● ● ● ● ● ● ȣȢȢ● ●▪  

 Ⱬ ●▓ ●▓ ● ●▓ ● ȣȣ ●▓ ●▓ ●▓ ●▓ ȣȣ ●▓ ●▪  

 ■▓●
● ●▓

● ●▓
Ȣ

● ● ● ● ȣȣȣ● ●▓ ● ●▓ ȣȣȢȢ● ●▪

●▓ ● ●▓ ● ȣȣȣ●▓ ●▓ ● ●▓ ȣȣȢȢ●▓ ●▪
 

Then                   ■▓●
Ⱬ●

● ●▓Ⱬ ●
 

CONVERGENCE CRITERIA  

Assume a triangular array of interpolation nodes ●░ ●░
▪  ŜȄŀŎǘƭȅ Ψ▪ Ω ŘƛǎǘƛƴŎǘ ƴƻŘŜǎ ŦƻǊ 

ά▪ ȟȟȣȣȢȢȢ░ȱ  

 ●  

 ●     ●        

 ●     ●      ●              

 ●▪    ● 
▪     ●▪ȣȣȣ●▪

▪         



 

 

Further assume that all nodes ●░
▪

  are contained in finite interval ╪ȟ╫  then for each ΨƴΩ ǿŜ 

define  

╟▪● ╟▪█Ƞ   ●
▪ȟ●▪ȟȟȟȟȟȟȟ●▪

▪ ȟ     ● ╪ꜗȟ╫    

Then we ǎŀȅ ƳŜǘƘƻŘ άŎƻƴǾŜǊƎŜǎέ ƛŦ ╟▪ ●ᴼ█●  ╪▼  ▪ᴼЊ  uniformly for ●ᶰ╪ȟ╫  

(OR) 

[ŀƎǊŀƴƎŜΩǎ ƛƴǘŜǊǇƻƭŀǘƛƻƴ ŎƻƴǾŜǊƎŜǎ ǳƴƛŦƻǊƳƭȅ ƻƴ [a, b] for on arbitrary triangular ret if nodes 

oŦ ΨŦΩ ƛǎ ŀƴŀƭȅǘƛŎ ƛƴ ǘƘŜ ŎƛǊŎǳƭŀǊ Řƛǎƪ Ψ╒► Ω ŎŜƴǘŜǊŜd at  
╪ ╫

  ŀƴŘ ƘŀǾƛƴƎ ǊŀŘƛǳǎ ΨǊΩ ǎǳŦŦƛŎƛŜƴǘƭȅ 

large. So that  ► ╫ ╪  holds. 

                                                      ╒►  

 

 

 

 

 

PROVE THAT       ᷿ █●▀●
╫

╪

╫ ╪
 █╪ █╫  

PROOF:        Using LagrangeΩǎ formula for ▪            █● В  ■▓▓ ●█●▓       ▓ ȟ 

 █● ■●█● ■●█●  

Integrating over ╪ȟ╫ when ●▫ ╪ ȟ  ● ╫ 

█●

╫

╪

▀●  ■▫●█●

╫

╪

▀● ■

╫

╪

●█● ▀● 

 ᷿ █●
╫

╪
▀● █● ᷿ ■●▀●

●

●
█● ᷿ ■●▀●

●

●
 

Now            ■●
● ●

● ●
           ■●

● ●

● ●
 

 ᷿ █●
╫

╪
▀●  █● ᷿

● ●

● ●

●

●
▀● █● ᷿

● ●

● ●

●

●
▀● 

      r                                     

                       x                          

   



 

 

Let    ● ● ▬▐ ᵼ▀● ▐▀▬    ╪▼    ●ᴼ●     ◄▐▄▪    ▬ᴼ     ╪■▼▫   ●ᴼ● ◄▐▄▪   ▬ᴼ  

 ᷿ █●
╫

╪
▀● ᷿

● ▬▐●

╪ ╫
▐▀▬Ȣ█● █● ᷿

● ▬▐●

╫ ╪
▐▀▬ 

᷿█●
╫

╪
▀● ᷿

╪ ▬▐╫

╪ ╫
▐▀▬Ȣ█● █● ᷿

● ▬▐●

╫ ╪
▐▀▬ 

   █● █● ᷿
╪ ╫ ▬▐

▐
▐▀▬█● ᷿

▬▐Ȣ▐▀▬

▐
                 Ḉ● ╪     ● ╫ 

█● █●
▐ ▬▐

▀▬ █●  ▬▐ ▀▬ ▐█● ▬ ▀▬ █● ▐ ▬ ▀▬ 

  █● ▐█●
▬

ȿ▬ȿ ▐█●
▬

 

█● ▐█● ▐█●
▐
█● ▐█●

▐
█●  

 █●
▐
█●   

▐
█●

▐
█● █●

╫ ╪
█╪ █╫  

Since ▐
╫ ╪

▪
╫ ╪  █▫► ▪    ● ╪    ╪▪▀  ● ╫ 

Hence the result  

 

PROS AND CONS OF [!Dw!bD9Ω{ th[¸bhaL![  

¶ Elegant formula  

¶ Slow to compute, each ■░● is different  

¶ Not flexible; if one change a point xj , or add an additional point xn+1 one must                 

re-compute all ■░▼  

 

 

INVERSE LAGRANGIAN INTERPOLATION  

Interchanging ΨȄΩ ŀƴŘ ΨȅΩ ƛƴ [ŀƎǊŀƴƎŜΩǎ interpolation formula we obtain the inverse given by  

 ● ■▪◐ В
■▓◐

■▓◐▓
 ●▓

▪
░  

 

 



 

 

QUESTION 

Find ƭŀƴƎǊŀƎŜΩǎ Interpolation polynomial fitting The points ◐ ȟ  

 ◐  ȟ◐ ȟ◐ ȟ      Hence find ◐ ȩ 

X:      ●=1           ●=3          ●=4        ●=6 

Y:        -3                  0               30          132 

ANSWER 

Since            ◐●   ■▫◐▫ + ■◐ + ■◐ + ■◐ 

◐●
● ● ● ● ● ●

● ● ● ● ● ●
◐▫+

● ●▫ ● ● ● ●

● ●▫ ● ● ● ●
◐+

● ●▫ ● ● ● ●

● ● ● ● ● ●
◐+  

● ●▫ ● ● ● ●

● ● ● ● ● ●
◐ 

By putting values, we get 

◐● 
● ● ● ● ● ● ● ● ●

 
● ● ●

 

 ◐● ● ● ●  

Put   ●  to get   ◐   

 ◐     Y (5) =75 

DIVIDED DIFFRENCE 

Assume that for a given value of ●ȟ◐ ●ȟ◐ ȣȢ●▪ȟ◐▪   

 ◐● ◐● ◐ ᴼ◐ ╪◄ ● 

Then the first order divided Difference is defined as  

◐●ȟ●
◐ ◐

● ●▫
   ȟ◐●ȟ●

◐ ◐

● ●
╪    

The 2nd Order Difference is     ◐●ȟ●ȟ●
◐●ȟ● ◐●▫ȟ●

●ȟ●
╪  

Similarly        ◐●ȟ●ȟ●ȣȢȢȣ●▪
◐●ȟ●ȟ●ȣȣ●▪ ◐●▫ȟ●ȣȣ●▪

●▪ ●▫
╪▪ 



 

 

DIVIDED DIFFERENCE IS SYMMETRIC 

 ◐●▫ȟ●
◐ ◐

● ●

◐▫ ◐

● ●
◐●ȟ●  

J Also Newton Divided Difference is Symmetric 

 

b9²¢hbΩ{ 5LVIDED DIFFRENCE INTERPOLATION FORMULA 

If ●ȟ●ȣȢ●▪ ŀǊŜ ŀǊōƛǘǊŀǊƛƭȅ {ǇŀŎŜŘ όǳƴŜǉǳŀƭ ǎǇŀŎŜŘύ ¢ƘŜƴ ǘƘŜ ǇƻƭȅƴƻƳƛŀƭ ƻŦ ŘŜƎǊŜŜ ΨƴΩ 

through (●▫ȟ█) ●ȟ█ ȣȣȢ●▪ȟ█▪) where █▒ █●▒ ƛǎ ƎƛǾŜƴ ōȅ ǘƘŜ ƴŜǿǘƻƴΩǎ 5ŜǾƛŘŜŘ 

difference Interpolation formula (Also known ŀǎ bŜǿǘƻƴΩǎ General Interpolation formula) 

given by. 

 █● █ ● ● █●▫ȟ● ● ● ● ● █●▫ȟ●ȟ● ỄȣȣȣȣȢ 

 ȣ ● ● ● ● ȣ ● ●▪ █●▫ȟ●ȣȢ●▪  

DERIVATION OF FORMULA 

Let             ◐ █● ╪ ╪ ● ● ╪ ● ● ● ● ỄȣȣȣȢȢȣ 

ΧΧΧΧΧΦΦ ȣȢ╪▪● ● ● ● ● ● ȣ ● ●▪                   ȣȣȣȣȢȢ░ 

╟◊◄ ● ● ᵼ◐ █● ╪ ╪ ● ● ȣ  ᵼ╪ ◐ ◐●▫ 

Put ● ●       ◐ █● ╪ ╪ ● ● ȣ                   

 ╪
◐ ╪

● ●
◐●ȟ●  

◐ ◐▫

● ●
  

◐● ◐●

● ●
           Ḉ╪ ◐         

Put ● ●          ◐ █● ╪ ╪ ● ● ╪ ● ● ● ● ȣ  

 ◐ ╪ ╪ ● ● ╪ ● ● ● ●  

 ◐ ◐
◐ ◐

● ●
● ● ╪ ● ● ● ●       Ḉ ÕÓÉÎÇ above values  

 ᵼ╪
◐ ◐ ●  ● ◐●ȟ   ●

● ● ● ●

◐  ◐  ◐  ◐   ● ● ◐● ȟ ●

●  ● ●  ●
 

 ╪
◐ ◐

◐  ◐

● ●
● ● ● ● ◐●ȟ●

● ● ● ●

◐ ◐ ◐●  ȟ   ● ● ● ● ● ◐●ȟ●

● ● ● ●
 

 ╪
◐ ◐ ◐● ȟ   ● ● ● ● ●

● ● ● ●

◐ ◐ ◐● ȟ   ● ● ●

● ● ● ●
 



 

 

 ╪

◐ ◐

● ●

◐●  ȟ   ● ● ●

● ●

● ●

◐●ȟ●
◐● ȟ   ●

● ●
● ●

● ●

◐● ● ◐● ȟ ●

● ●
◐●ȟ●ȟ●  

Similarly   ╪ ◐●ȟ●ȟ●ȟ● ȣȣȣȣȣȣ╪▪ ◐●ȟ●ȟ●ȣ╪▪  

    ░  ◐ ◐● ● ● ◐●ȟ● ȢȢ ● ● ● ● ȢȢ● ●▪ ◐●▫ȟ●ȢȢ●▪  

TABLE      

           X            Y st Order 2nd Order 3nd Order 

● ◐    

                O ◐●▫ȟ●    

● ◐                        O ◐●▫ȟ●ȟ●   

                O ◐●ȟ●                         O ◐●▫ȟ●ȟ●ȟ●  

● ◐                O ◐●ȟ●ȟ●   

                O ◐●ȟ●    

● ◐ ể ể ể 
ể ể ể ể ể 
ể ể ể ể ể 
ể ể ể ể ể 
●▪ ◐▪ ể ể ể 

 

EXAMPLE: 

            X            Y ╨●▫ȟ●  ╨●▫ȟ●ȟ●  ╨●▫ȟ●ȟ●ȟ●  

     

  
 

  

   
 

 

            10  
 

   
 

 

     

     

 

A RELATIONSHIP BETWEEN nth DIVIDED DIFFERENCE AND THE nth  DARIVATIVE 

{ǳǇǇƻǎŜ άŦέ ƛǎ ƴ-time continuously differentiable and  ●ȟ●ȣ●▪ are (n + 1) distinct numbers 

in [a, b] then there exist a number  ͼɘͼ in (a, b) such that      █●ȟ●ȣ●▪
█▪ɘ

▪Ȧ
 



 

 

THEOREM  

ƴǘƘ ŘƛŦŦŜǊŜƴŎŜǎ ƻŦ ŀ ǇƻƭȅƴƻƳƛŀƭ ƻŦ ŘŜƎǊŜŜ ΨƴΩ ŀǊŜ ŎƻƴǎǘŀƴǘΦ 

PROOF       [Ŝǘ ǳǎ ŎƻƴǎƛŘŜǊ ŀ ǇƻƭȅƴƻƳƛŀƭ ƻŦ ŘŜƎǊŜŜ ΨƴΩ ƛƴ ǘƘŜ ŦƻǊƳ 

 ◐● ╪▫●
▪ ╪●▪ Ễ ╪▪ ● ╪▪ 

Then   ◐● ▐ ╪ ● ▐▪ ╪ ● ▐▪ Ễ ╪▪ ● ▪ ╪▪ 

We now examine the difference of polynomial    Ў◐● ◐● ▐ ◐● 

 Ў◐● ╪ ● ▐▪ ●▪ ╪ ● ▐▪ ●▪ Ễȣȣ ╪▪ ● ▐ ● 

Binomial expansion yields  

 Ў◐● ╪ ●▪ ▪╒ ●▪  ▐ ▪╒ ●▪  ▐ Ễ ▐▪ ●▪  

 ╪ ●▪ ▪ ╒ ●▪  ▐ ▪ ╒ ●
▪  ▐ Ễ ▐▪ ●▪ Ễ ╪▪  ▐ 

 Ў◐● ╪▪▐●▪ ╪ ╒▐ ╪ ╒▐▪▪ ●▪ ỄȣȣȣȢȢ╪▪  ▐ 

Therefore      Ў◐● ╪▪▐●▪ ╫●▪ ╬●▪ Ễ ▓● ■ 

Where ╫ȟ╬ȟ▓ȟ■ ŀǊŜ Ŏƻƴǎǘŀƴǘǎ ƛƴǾƻƭǾƛƴƎ ΨƘΩ ōǳǘ ƴƻǘ ΨȄΩ 

¢Ƙǳǎ ǘƘŜ ŦƛǊǎǘ ŘƛŦŦŜǊŜƴŎŜ ƻŦ ŀ ǇƻƭȅƴƻƳƛŀƭ ƻŦ ŘŜƎǊŜŜ ΨƴΩ ƛǎ ŀƴƻǘƘŜǊ ǇƻƭȅƴƻƳƛŀƭ ƻŦ ŘŜƎǊŜŜ▪  

Similarly        Ў◐● ЎЎ◐● Ў◐● ▐ Ў◐● 

 ╪ ▪▐● ▐▪ ●▪ ╫ ● ▐▪  ●▪ Ễ.ȣȢ▓ ● ▐ ● 

 Ў◐● ╪ ▪▪ ▐●▪ ╫ ●▪ ╒ ●▪ Ễ ▲  

Therefore   Ў◐● is a polynomial of degree ▪  ƛƴ ΨȄΩ 

Similarly, we can find the higher order differences and every time we observe that the degree 

of polynomial is reduced by one. 

After differencing n-time we get 

 Ў▪◐● ╪ ▪ ▪ ȣ ▐▪ ╪ ▪Ȧ▐▪  ╬▫▪▼◄╪▪◄Ȣ 

¢Ƙƛǎ Ŏƻƴǎǘŀƴǘ ƛǎ ƛƴŘŜǇŜƴŘŜƴǘ ƻŦ ΨȄΩ ǎƛƴŎŜ Ў▪◐● is constant   , Ў▪  ◐●   

Hence The  ▪ ◄▐  ŀƴŘ ƘƛƎƘŜǊ ƻǊŘŜǊ ŘƛŦŦŜǊŜƴŎŜǎ ƻŦ ŀ ǇƻƭȅƴƻƳƛŀƭ ƻŦ ŘŜƎǊŜŜ ΨƴΩ ŀǊŜ ȊŜǊƻΦ 



 

 

b9²¢LhbΩ{ 5LVIDED DIFERENCE FORMULA WITH ERROR TERM  

 ὁὀ ◐ ● ● ◐●ȟ●      ȣȣȣȣȢȢ░ 

 ὁ●ȟ● ◐●▫ȟ● ● ● ◐●ȟ●▫ȟ●      ȣȣȣȣȢȢ░░ 

 ◐●ȟ●▫ȟ● ◐●▫ȟ●ȟ● ● ● ◐●ȟ●▫ȟ●ȟ●      ȣȣȣȣȢȢ░░░ 

◐●ȟ●▫ȟ●ȟ● ◐●ȟ●▫ȟ●ȟ●ȟ● ● ● ◐●ȟ●▫ȟ●ȟ●ȟ● ȣȣȣȣȢȢ░○ 

                        

                       ể                                                             ể 

                       ể                                                             ể 

 ◐●ȟ●▫ȟ●ȣ●▪ ◐●ȟ●ȣ●▪ ●ȟ●▪◐●ȟ●▫ȟ●ȣ●▪     ȣȣȣȣȢȢ▪ 

Multiplying (ii) by ● ●  (iii) ● ●   ● ● ȣȣ ▪ By ● ● ● ● ȣȣ ●▪    

 !ƴŘ ŀŘŘƛƴƎ ŀƭƭ 9ǉǳŀǘƛƻƴΩǎ 

 ◐● ◐ ● ● ◐●ȟ● ● ● ● ● ◐●ȟ●  

 Ễȣȣȣȣ ● ● ● ● ȣ ● ●▪◐●ȟ●ȟ●ȣ●▪  

Also last term will be ɴ ● 

 

[LaL¢!¢Lhb{ hC b9²¢hbΩ{ Lb¢9wth[!¢LhbΦ 

This formula used only ǿƘŜƴ ǘƘŜ ǾŀƭǳŜǎ ƻŦ ƛƴŘŜǇŜƴŘŜƴǘ ǾŀǊƛŀōƭŜ ΨȄΩ ŀǊŜ Ŝǉǳŀƭƭȅ ǎǇŀŎŜŘΦ !ƭǎƻ 

ǘƘŜ ŘƛŦŦŜǊŜƴŎŜǎ ƻŦ ΨȅΩ Ƴǳǎǘ ǳƭǘƛƳŀǘŜƭȅ ōŜŎƻƳŜ ǎƳŀƭƭΦ Lǘǎ ŀŎŎǳǊŀŎȅ ǎŀƳŜ ŀǎ [ŀƎǊŀƴƎŜΩǎ CƻǊƳǳƭŀ 

but has the advantage of being computationally economical in the sense that it involves less 

numbers of Arithmetic Operations. 

 

 

 

 

 



 

 

ERROR TERM IN INTERPOLATION 

As we know that 

 ◐● ◐ ● ● ◐●ȟ● ỄȣȣȢȢȣ ● ● ● ● ȢȢ● ●▪  ◐●ȟ●ȣ●▪  

Approximated by polynomial ╟▪● of degree ΨƴΩ ǘƘe error term is  

 ɴ ● ◐● ╟▪●       ȣȣȣȣȣȣȣȣȢȢ░  

 ɴ ● ● ● ● ● ȣȣȣȣȢȢ● ●▪ ◐●ȟ●ȟ●ȣ●▪  

Let          ɴ ● Ⱬ ● ◐●ȟ●ȟ●ȣ●▪ ▓ Ⱬ ●     ȣȣȣȣȣȣȣȣȣȣȢȢ░░ 

And         ╕● ◐● ╟▪● ▓ Ⱬ● 

╕● Vanish for   ●ȟ●ȣ●▪     Choose arbitrarily ● from them. 

Consider an interval Ȭ╘ȭ which span the points    ● ȟ●ȟ●ȣ●▪.  Total number of points  

▪  Then ╕● vanish ▪  time by RƻƭƭΩǎ theorem  

╕ ● Vanish ▪  time, ╕ ●  vanish n-time. Hence ╕▪ ● vanish 1-time choose 

arbitrarily ● ɘ 

 ᵼ╕▪ ɘ ◐▪ ɘ ╟▪
▪ ɘ ▓

▀▪

▀●▪
Ⱬɘ 

 ᵼ ◐▪ ɘ ▓Ⱬ▪ ɘ     Ḉ◐▪ ɘ    ╪▪▀   ╟▪ ɘ    

 ᵼ◐▪ ɘ ▓Ⱬ▪ ɘ    ᵼ▓
◐▪ ɘ

Ⱬ▪ ɘ
 

 ░█          Ⱬ▪ ● ▪ Ȧ    ᵼ▓
◐▪ ɘ

▪ Ȧ
        ᵼ▓ ◐●ȟ●ȣ●▪  

 ░░ᵼ             ɴ ●
◐▪ ɘ 

▪ Ȧ
 Ⱬ● 

 

 

 

 

 



 

 

b9²¢hbΩ{ 5LVIDED DIFFERENCE AND LAGRANGEΩ{ Lb¢9wth[!¢Lhb Chwa¦[! 

ARE IDENTICAL, PROVE! 

Consider y = f(x) is given at the sample points   ●ȟ●ȟ● 

{ƛƴŎŜ ōȅ bŜǿǘƻƴΩǎ ŘƛǾƛŘŜŘ ŘƛŦŦŜǊŜƴŎŜ interpolation for  ●ȟ●ȟ● is given as  

 ◐ ◐ ● ● ◐●ȟ● ● ● ● ● ◐●ȟ●ȟ●  

 ◐ ◐ ● ●
◐ ◐

● ●
● ● ● ●

◐●ȟ● ◐●ȟ●

● ●
 

 ◐ ◐ ● ●
◐ ◐

● ●

● ● ● ●

● ●

◐ ◐

● ●

◐ ◐

● ●
 

 ◐ ◐ ● ●
◐ ◐

● ●

● ● ● ●

● ●

◐

● ●
◐

 

● ● ● ●

◐

● ●
 

 ◐ ◐ ● ●
◐ ◐

● ●

● ● ● ●

● ●

◐

● ●
◐

● ●  ● ●

● ● ● ●

◐

● ●
 

 ◐ ◐ ● ●
◐ ◐

● ●

● ● ● ●

● ●

◐

● ●
◐

● ●

● ● ● ●

◐

● ●
 

 ◐ ◐ ● ●
◐ ◐

● ●

◐ ● ● ● ●

● ● ● ●

◐ ● ● ● ● ● ●

● ● ● ● ● ●

◐ ● ● ● ●

● ● ● ●
 

 ◐ ◐ ● ●
◐ ◐

● ●

◐ ● ● ● ●

● ● ● ●

◐ ● ● ● ●

● ● ● ●

◐ ● ● ● ●

● ● ● ●
   

 ◐ ◐
● ●

● ●

● ● ● ●

● ● ● ●
◐

● ●

● ●

● ● ● ●

● ● ● ●
◐

● ● ● ●

● ● ● ●
 

 

◐ ◐
● ● ● ● ● ● ● ● ● ●

● ● ● ●
◐

● ● ● ● ● ● ● ●

● ● ● ●
◐

● ● ● ●

● ● ● ●
 

 ◐ ◐
● ● ● ●

● ● ● ●
◐

● ● ● ●

● ● ● ●
◐

● ● ● ●

● ● ● ●
 

This ƛǎ [ŀƎǊŀƴƎŜΩǎ ŦƻǊƳ of interpolation polynomial. 

IŜƴŎŜ ōƻǘƘ 5ƛǾƛŘŜŘ 5ƛŦŦŜǊŜƴŎŜ ŀƴŘ [ŀƎǊŀƴƎŜΩǎ ŀǊŜ ƛŘŜƴǘƛŎŀƭΦ 

  



 

 

SPLINE 

! ŦǳƴŎǘƛƻƴ ΨSΩ ƛǎ ŎŀƭƭŜŘ ŀ ǎǇƭƛƴŜ ƻŦ ŘŜƎǊŜŜ ΨƪΩ ƛŦ ƛǘ ǎŀǘƛǎŦƛŜŘ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ŎƻƴŘƛǘƛƻƴǎΦ 

(i) S is defined in the interval ╪ȟ╫ 

(ii) ╢► is continuous on ╪ȟ╫     ; ► ▓  

(iii) S is polynomial of degree ■▄▼▼ ◄▐╪▪ ▄▲◊╪■▼ ◄▫ ᴂ▓ᴂ on each subinterval 

●░ȟ●░  Ƞ░ ȟȟȣȟ▪  

 

CUBIC SPLINE INTERPOLATION  

A function  ╢● denoted by ╢▒● over the interval ●▒ȟ●▒  Ƞ▒ ȟȟȟȣȟ▪  

Is called a cubic spline interpolant if following conditions hold. 

¶ ╢▒●▒ █▒               Ƞ▒ ȟȟȟȣȣȣȢȢ▪ 

¶ ╢▒ ●▒ █▒                Ƞ▒ ȟȟȟȣȣȣȢȢ▪  

¶ ╢▒ ●▒ █▒               Ƞ▒ ȟȟȟȣȣȣȢȢ▪  

¶ ╢▒ ●▒ █▒               Ƞ▒ ȟȟȟȣȣȣȢȢ▪  

©  A sǇƭƛƴŜ ƻŦ ŘŜƎǊŜŜ άоέ ƛǎ ŎǳōƛŎ ǎǇƭƛƴŜΦ 

 

NATURAL SPLINE 

A cubic spline satisfying these two additional conditions  

 ╢ ●         ╪▪▀         ╢▪ ●▪  

 

 

 

 

 

 



 

 

HERMIT INTERPOLATION 

In Hermit interpolation we use the expansion involving not only the function values but also 

its first derivative. 

Hermit Interpolation formula is given as follows 

 ╟● В ╛░●░ ● ●░
▪
░ ╛░●░ ◐░ ● ●░ ╛░●░ ◐░ 

EXAMPLE 

Estimate the value of ◐ Ȣ  using hermit interpolation formula from the following data 

X Y ╨ 

1.00 1.00000 0.5000 

1.10 1.04881 0.47673 

 

Solution: 

At first we compute      ■▫●
● ●

● ●

Ȣ Ȣ

Ȣ Ȣ
Ȣ 

                                         ■●
● ● Ȣ Ȣ Ȣ

 

And                                  ■  ●
● ●

● ●

Ȣ Ȣ

Ȣ Ȣ
Ȣ 

                                        ■●
● ● Ȣ Ȣ Ȣ

 

Now putting the values in Hermit Formula 

 ╟● В ╛░●░ ● ●░
▪
░ ╛░●░ ◐░ ● ●░ ╛░●░ ◐░ 

We find 

 

◐ Ȣ

Ȣ
Ȣ Ȣ Ȣ

Ȣ
Ȣ Ȣ Ȣ Ȣ                                               

◐ Ȣ Ȣ                       ►▄▲◊░►▄▀  ╪▪▼◌▄► 



 

 

NUMARICAL DIFFERENTIATION 

The problem of numerical differentiation is the determination of approximate values the 

derivatives of a function Ȭ█ȭ at a given point. 

DIFFERENTIATION USING DIFFERENCE OPERATORS 

We assume that the function ◐ █● ƛǎ ƎƛǾŜƴ ŦƻǊ ǘƘŜ Ŝǉǳŀƭƭȅ ǎǇŀŎŜŘ ΨȄΩ ǾŀƭǳŜǎ ●▪ ● ▪▐ 

for ▪ ȟȟȟȣȣȣȢȢ to find the darivatives of such a tabular function, we proceed as 

follows; 

USING FORWARD DIFFERENCE OPERATOR ᴂЎᴂ 

Since ▐╓ ἴἷἯ╔ ἴἷἯ Ў        Ḉ╔ Ў 

ᵼ╓
▐
ἴἷἯ Ў          Where D is differential operator.  

 ᵼ╓
▐
Ў

Ў Ў Ў
Ễ      ȢȢȣȣȣȣȣȢ░   ◊▼░▪▌ ╜╪╬■╪◊►░▪ ▼▄►░▄▼ 

Therefore  

 ╓ █●
▐
Ў

Ў Ў Ў
Ễ █● █●     

 ╓ █● █●
▐
Ў█●

Ў
█●

Ў
█●

Ў
█● ỄȣȣȣȣȢ 

 ╓◐ ◐
▐
Ў◐

Ў
◐

Ў
◐

Ў
◐ȣȣȣȢȢ 

Similarly, for second derivative 

 ░           ╓
▐
Ў

Ў Ў Ў Ў
ȣȣȣȢȢ  

                      ╓
▐
Ў Ў Ў Ў ỄȣȣȢȢ      After solving 

                       ╓◐
▐
Ў◐ Ў◐ Ў◐ Ў◐ ỄȣȣȢȢ ◐    

 

 

 



 

 

USING BACKWARD DIFFERENCE OPERATOR   άέ 

Since ▐╓ ἴἷἯ╔ ἴἷἯ╔  ■▫▌ ╔ ἴἷἯ   

Since     ■▫▌ Ễȣȣȣȣȣ  therefore 

 ᵼ╓
▐

Ễ      ȢȢȣȣȣȣȣȢ░  

Now         ╓ █●▪ ▐
Ễ  █●▪ █●▪    

 ╓ █●▪ █●▪ ▐
█●▪ █●▪ █●▪ █●▪ Ễ  

 ╓◐▪ ◐▪ ▐
◐▪ ◐▪ ◐▪ ◐▪ Ễ  

Similarly, for second derivative squaring (i) we get 

 ░           ╓
▐

Ễȣȣȣȣ      

                       ╓◐▪ ◐▪ ▐
◐▪ ◐▪ ◐▪ ◐▪ ỄȣȣȢȣ                             

TO COMPUTE DARIVATIVE OF A TABULAR FUNCTION AT POINT NOT FOUND IN THE TABLE 

Since 

◐●▪ ▬▐

█●▪ ╟ █●▪
╟╟

Ȧ
█●▪ ỄỄ

╟╟ ╟ ỄỄ╟ ▪

▪Ȧ
▪█●▪    ȣȣȣȣ ░  

 ╦▐▄►▄     ● ●▪ ▬▐          ▬
● ●▪

▐
Ƞ  ▪ ╟ ȣȣȣȣȣȣȣȣȣ ░░ 

 ░          ◐ █● █●▪ ╟ █●▪
╟╟

Ȧ
█●▪ ỄȣȣȣȣȣȣȣȣȢȣ░░░     

Differentiate with respect to ΨȄΩ ŀƴŘ ǳǎƛƴƎ όƛύ ϧ όƛƛύ 

 ◐
▀◐

▀●

▀◐

▀▬
Ȣ
▀▬

▀●

▀

▀▬
█●▪ ╟ █●▪

╟╟

Ȧ
█●▪ Ễȣȣȣ

▀

▀●

● ●▪

▐
 

 ◐
▀

▀▬
█●▪

╟
█●▪ Ễȣȣȣ

▐
 

  



 

 

◐
▐
█●▪

╟
█●▪

Ἔ ╟
█●▪

     
Ἔ Ἔ ╟

█●▪ ȣȣȣȣȢȢ 

                                                                                                           

ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȢȢ░○ 

Differentiate  ◐  with respect to ΨȄΩ 

 ◐
▀◐

▀●

▀◐

▀▬
Ȣ
▀▬

▀● ▐
█●▪ ╟ █●▪

Ἔ ╟
█●▪ ȣȣȣȣȢȢ  

                                                                                                                                               ȣȣȣȣȣȣ ○ 

Equation ░○& ○ are NŜǿǘƻƴΩǎ ōŀŎkward interpolation formulae which can be used to 

compute 1st and 2nd derivatives of a tabular function near the end of table similarly 

Expression of NŜǿǘƻƴΩǎ ŦƻǊǿŀǊŘ ƛƴǘŜǊǇƻƭŀǘƛƻƴ ŦƻǊƳǳƭŀŜ Ŏŀƴ ōŜ ŘŜǊƛǾŜŘ ǘƻ ŎƻƳǇǳǘŜ ǘƘŜ 1st, 2nd 

and higher order derivatives near the beginning of table of values. 

 

 DIFFERENTIATION USING CENTRAL DIFFERENCE OPERATOR  Ɑ 

Since            Ɑ ╔ ╔  

Since ▐╓  ■▫▌ ╔ ╪▪▀  ╔  ▄   therefore        Ɑ ▄
▐╓

▄ 
▐╓

 

Also as ▼░▪▐Ᵽ
▄Ᵽ ▄Ᵽ

  therefore   Ɑ Ἳἱἶ 
▐╓

 

 ᵼ
Ɑ
▼░▪▐ 

▐╓
      ᵼ▼░▪▐ 

Ɑ
 
▐╓
  ᵼ╓

▐
  ▼░▪▐ 

Ɑ
 

Since by Maclaurin series   

 ▼░▪▐● ●
● Ȣ 

Ȣ
 
●
 
ȢȢ 

ȢȢ
 
●
ỄΧΧΧΦΦ 

 ᵼ╓
▐

Ɑ
Ɑ

Ȣ 

Ȣ
 
Ɑ

 
ȢȢ 

ȢȢ
 
Ɑ

Ễ  

   ╓
▐
Ɑ

Ɑ Ɑ
ȣȣȣȣȣȢȢ        ȣȣȣȣȣȣȣȣȣȣȣȣȣȢ░ 



 

 

Similarly, for second derivatives squaring (i) and simplifying 

 ╓
▐
Ɑ

Ɑ Ɑ
ỄȣȣȣȣȢȢ 

╓◐ ◐
▐
Ɑ◐

Ɑ◐ Ɑ◐
ỄȣȣȣȣȢȢȣȣȣȣȣȣȣȣȣȣ ░░ 

For calculating first and second derivative at an inter tabular form (point) we use (i) and (ii) 

while 1st derivative can be computed by another convergent form for ╓░ which can derived as 

follows 

Since             ╓
▐
Ɑ

Ɑ Ɑ
ȣȣȣȣȣȢȢ 

Multiplying R.H.S by 
Ⱨ

♯
    which is unity and noting the binomial expansion 

        
♯

Ⱦ
Ɑ Ɑ Ɑ

ȣȣȣȣȣȣȣȢȣȣȢȢ  

We get 

 ╓
Ⱨ

▐

Ɑ Ɑ
ȣȣȣȣȣȣȣȢȣȣȢȢⱭ

Ɑ Ɑ
ȣȣȣȣȣȢȢ 

╓
Ⱨ

▐
Ɑ
Ɑ Ɑ

ȣȣȣȣȣȢȢ 

Therefore       ╓ ╓◐
Ⱨ

▐
Ɑ◐

Ɑ
◐

Ɑ
◐ȣȣȣȣȣȢȢȣȣȣȣȣȢ░░░ 

Equation (ii) and (iii) are called STERLING FORMULAE for computing the derivative of a 

tabular function.     Equation (iii) can also be written as  

  ╓ ╓◐
Ⱨ

▐
Ɑ◐

Ȧ
Ɑ◐

Ȧ
Ɑ◐

Ȧ
Ɑ◐ ỄȣȣȣȣȢȢ 

STERLING FORMULA 

{ǘŜǊƭƛƴƎΩǎ ŦƻǊƳǳƭŀ ƛǎ  

 ◐ ◐
▬

Ȧ

Ў◐ Ў◐ ▬

Ȧ
Ў◐

▬▬

Ȧ

Ў◐ Ў◐ ▬ ▬

Ȧ
Ў◐ ỄȣȣȢ 

Where      ▬
● ●

▐
 

 



 

 

TWO AND THREE POINT FORMULAE 

Since              ◐░
Ў

▐
◐░

◐░ ◐░

▐

◐●░▐ ◐●░

▐
 ȣȣȣȣȣȣȣ ░ 

Similarly        ◐░ ▐
◐░

◐░◐░

▐

◐●░ ◐●░▐

▐
 ȣȣȣȣȣȣȣ ░░ 

Adding (i) and (ii) we get  

 ◐░
◐●░▐ ◐●░▐

▐
      ◐░ ▐

◐●░ ▐ ◐●░ ▐ ȣȣȣȣȣȢ░░░  

Subtracting (i) and (iii) we get two point formulae for the first derivative 

Similarly, we know that  

 ◐░
Ў

▐
◐░

◐░ ◐░ ◐░

▐ ▐
◐●░ ▐ ◐●░ ▐ ◐●░ ȣȣȣȣȢ░○ 

And         ◐ͼ░ ▐
 ◐░

◐░ ◐░ ◐

▐
 

 ◐ͼ░ ▐
◐●░ ◐●░ ▐ ◐●░ ▐    ȣȣȣȣȣȣȣȣȣȣȣ ○ 

Similarly 

 ◐ͼ░
Ɑ

▐
◐░

Ɑ◐
░

Ɑ◐
░

▐

◐░ ◐░◐░

▐
 

 ◐ͼ░
◐●░▐ ◐●░ ◐●░▐

▐
           ȣȣȣȣȣȣȣȣȣȣȣȣȢ○░ 

By subtracting (iv) and (vi) we get three point formulae for computing the 2nd derivative.  

 

 

 

 

 

 

 



 

 

NUMERICAL INTEGRATION 

The process of producing a numerical value for the defining integral ᷿█●▀●
╫

╪
  is called 

Numerical Integration. Integration is the process of measuring the Area under a function 

plotted on a graph. Numerical Integration is the study of how the numerical value of an 

integral can be found.  

Also called Numerical Quadrature if    ᷿ █●▀●
╫

╪
 В ╬░█●░

▪
░  which refers to finding a 

square whose area is the same as the area under the curve. 

A GENERAL FORMULA FOR SOLVING NUMERICAL INTEGRATION 

 This formula is also called a general quadrature formula.  

Suppose f(x) is given for ŜǉǳƛŘƛǎǘŀƴǘ ǾŀƭǳŜ ƻŦ ΨȄΩ ǎŀȅ  a=x0, x0+h,x0ҌнƘ Χ. x0+nh = b 

[Ŝǘ ǘƘŜ ǊŀƴƎŜ ƻŦ ƛƴǘŜƎǊŀǘƛƻƴ όŀΣōύ  ƛǎ ŘƛǾƛŘŜŘ ƛƴǘƻ ΨƴΩ Ŝǉǳŀƭ ǇŀǊǘǎ ŜŀŎƘ ƻŦ ǿƛŘǘƘ ΨƘΩ ǎƻ ǘƘŀǘ       

άō-ŀҐƴƘέΦ 

By using fundamental theorem of numerical analysis It has been proved the general 

quadrature formula which is as follows 

 ╘ ▐▪█●
▪
Ў█●

▪ ▪ Ў█●

Ȧ

▪
▪ ▪

Ў█●

Ȧ

▪ ▪
▪ ▪

Ў█●

Ȧ

ỄȣȣȣȣȣȢȢ◊▬ ◄▫ ▪ ◄▄►□▼ 

Bu putting n into different values various formulae is used to solve numerical integration. 

That are ¢ǊŀǇŜȊƻƛŘŀƭ wǳƭŜΣ {ƛƳǇǎƻƴΩǎ мκоΣ {ƛƳǇǎƻƴΩǎ оκуΣ .ƻƻƭŜΩǎΣ ²ŜŘŘƭŜΩǎ ŜǘŎΦ 

IMPORTANCE:        Numerical integration is useful when  

¶ Function cannot be integrated analytically. 

¶ Function is defined by a table of values. 

¶ Function can be integrated analytically but resulting expression is so complicated. 

COMPOSITE (MODIFIED) NUMERICAL INTEGRATION 

¢ǊŀǇŜȊƻƛŘŀƭ ŀƴŘ {ƛƳǇǎƻƴΩǎ ǊǳƭŜǎ ŀǊŜ ƭƛƳƛǘŜŘ ǘƻ ƻǇŜǊŀǘƛƴƎ ƻƴ ŀ ǎƛngle interval. Of course, since 

definite integrals are additive over subinterval, we can evaluate an integral by dividing the 

interval up into several subintervals, applying the rule separately on each one and then 

totaling up. This strategy is called Composite Numerical Integration.     



 

 

TRAPEZOIDAL RULE 

Rule is based on approximating  █●  by a piecewise linear polynomial that interpolates  

█●  at the nodes ͼ●ȟ●ȟȣȣȢȢȢ●▪ͼ 

Trapezoidal Rule defined as follows  

᷿ █●▀●
●

●

▐
◐ ◐

▐
◐ ╪      And this is called Elementary Trapezoidal Rule. 

Composite form of Trapezoidal Rule is ᷿ █●▀●
●

●

▐
◐ ◐ ◐ ỄȣȢ◐▪ ◐▪  

DARIVATION (1st METHOD) 

Consider a curve  ◐  █● bounded by  ● ╪  and  ● ╫  we have to find ᷿ █●▀●
╫

╪
  i.e. 

Area under the curve  ◐  █● then for one Trapezium under the area i.e.  n = 1 

                       

f(x0)

f(x2)

Y

O Xa= x0 b= x2x1

h h

᷿█●▀●
╫

╪
═►▄╪ ▫█ ╣►╪▬▄◑░◊□

▼◊□ ▫█ ▬╪►╪■■▄■ ▼░▀▄▼
▬▄►▬▄▪▀░╬◊■╪► 

 ᷿ █●▀●
╫

╪
 
█● █●

▐
▐
█● █●  

For two trapeziums i. e. n = 2 

 ᷿ █●▀●
╫

╪

▐
█● █●

▐
█● █●

▐
█● █● █●  

For n = 3      ᷿ █●▀●
╫

╪

▐
█● █●

▐
█● █●

▐
█● █●  

 ᷿ █●▀●
╫

╪

▐
█● █● █●   █●  

F(x0) F(x1) 

Y 

O X a=x 0 B=x1 



 

 

In general for n ς trapezium the points will be ͼ●ȟ●ȟȣȣȢȢȢ●▪ͼ and function will be 

ͼ◐ȟ◐ȟȣȣȢȢȢ◐▪ͼ 

█●▀●
╫

╪

▐
█● █● █● Ễȣȣȣ █●▪   █●▪  

█●▀●
╫

╪

▐
◐ ◐ ◐ Ễȣȣȣ ◐▪ ◐▪  

Trapezium rule is valid for n (number of trapezium) is even or odd. 

The accuracy will be increase if number of trapezium will be increased OR step size will be 

decreased mean number of step size will be increased. 

DARIVATION (2nd METHOD) 

Define y = f(x) in an interval ╪ȟ╫ ●ȟ●▪  then  

█●▀●
●

●

█●▀●
●

●

█●▀●
●

●

ỄȣȣȣȣȢȢ █●▀●
●▪

●▪

 

█●▀●
●

●

▐
◐ ◐

▐
◐ ◐ ỄȣȣȣȢȢ

▐
◐▪ ◐▪ ▪ɴ 

Where   ɴ ▪
▐
◐ ╪ ◐ ╪ Ễȣȣȣȣ ◐ ╪▪  is global error. 

 ▪ɴ
▐
▪◐ ╪  

Therefore  ᷿ █●▀●
╫

╪

▐
◐ ◐ ◐ Ễȣȣȣ ◐▪ ◐▪      Where   ╪ ● ╪▪▀ ╫ ●▪ 

REMEMBER:    The maximum incurred in approximate value obtained by Trapezoidal Rule is 

nearly equal to  
╫ ╪ ╜

▪
  where  ╜ □╪●ȿ█ ●ȿ    ▫▪  ╪ȟ╫ 

 

EXAMPLE:    Evaluate ╘ ᷿
●
Ἤὀ   using Trapezoidal Rule when  ▐  ϴ  

SOLUTION 

X 0 1/4 1/2 3/4 1 

F(x) 1 0.9412 0.8000 0.6400 0.5000 

Since by Trapezoidal Rule     ᷿
●
Ἤὀ

▐
◐ ◐ ◐ ◐ ◐ Ȣ  



 

 

{Lat{hbΩ{  RULE 

Rule is based on approximating f(x) by a Quadratic Polynomial that interpolate f(x) at 

●░ ȟ●░ ╪▪▀ ●░   

{ƛƳǇǎƻƴΩǎ wǳƭŜ ƛǎ Řefined as for simple case    ᷿ █●▀●
●

●

▐
◐ ◐ ◐

▐
◐░○ɘ 

While in composite form it is defined as  

 ᷿ █●▀●
● ╝

●

▐
◐ ◐ ◐ ỄȣȣȢȢ◐ ╝ ◐ ◐ Ễȣȣ ◐ ╝ ◐╝  

Global error foǊ {ƛƳǇǎƻƴΩǎ wǳƭŜ ƛǎ ŘŜŦƛƴŜŘ ŀǎ       ɴ
● ╝●▐◐░○ɘ ╞▐  

REMARK 

In Simpson Rule number of trapezium must of Even and number of points must of Odd. 

DERIVATION OF {Lat{hbΩ{  RULE (1st method)  

Consider a curve bounded by x = a and x Ґ ō ŀƴŘ ƭŜǘ ΨŎΩ ƛǎ ǘƘŜ ƳƛŘ-point between ╪ and ╫ such 

that ╪  ╫  we have to find ᷿ █●▀●
╫

╪
 i.e. Area under the curve. 

Y

X0
A B C

ba c

f(a)
f(c )

f(b)

 

Consider   ╧ ╒ ╨ȣȣȣȣȢȢ░     ▀● ▀◐ 

Now ╬ ╞║ ╞═ ═║ ╬ ╪ ▐ ╪ ╬ ▐ 

 ╫ ╞╒ ╞║ ║╒ ╫ ╬ ▐  

  ░ ▬◊◄ ● ╪ ◄▐▄▪ ╪  ╬  ◐ ╬ ▐ ╬ ◐ ▐ ◐ 

 ▬◊◄ ● ╫ ◄▐▄▪ ╬ ▐ ╬ ◐ ▐ ◐ 



 

 

Now      ᷿ █●▀●
╫

╪
 ᷿ █╬ ◐▀◐

▐

▐
   where y is small change 

Using Taylor Series Formula    █● ▐ █● ▐█●
▐

Ȧ
█ ● ỄȣȣȣȣȢȢ 

 ᷿ █╬ ◐▀◐
▐

▐
᷿ █ ╬ ◐█╬

◐

Ȧ
█ ╬ ỄȣȣȣȣȢȢ

▐

▐
▀◐ 

Neglecting higher derivatives 

 ᷿ █╬ ◐▀◐
▐

▐
᷿ █ ╬ ◐█╬

◐

Ȧ
█ ╬

▐

▐
▀◐ 

 ᷿ █╬ ◐▀◐
▐

▐
◐█ ╬

◐
█╬

◐

Ȣ
█ ╬

▐

▐

▐█╬
▐
█ ╬ ȣȣȣȣȣȣȢ░ 

 █╪ █╬ ▐ █╬ ▐█╬
▐

Ȧ
█ ╬ ▪▄▌■▄╬◄▄▀ 

 █╫ █╬ ▐ █╬ ▐█╬
▐

Ȧ
█ ╬ ▪▄▌■▄╬◄▄▀                                                    

█╬ ▐ █╬ ▐ █╬
▐

Ȧ
█ ╬ 

 █╬ ▐ █╬ ▐ █╬ ▐█ ╬   Put this value in (i) 

 ᷿ █●▀●
╫

╪
▐█╬ █╬ ▐ █╬ ▐ █╬   

 ᷿ █●▀●
╫

╪

▐
█╬ █╬ ▐ █╬ ▐ █╬  

 ᷿ █●▀●
╫

╪

▐
█╬ █╬ ▐ █╬ ▐

▐
█╬ █╪ █╫  

 ᷿ █●▀●
╫

╪

▐
█● █● █●

▐
◐ ◐ ◐  

For n = 4 

᷿ █●▀●
●

●
 ᷿ █●▀●
●

●
᷿ █●▀●
●

●

▐
◐ ◐ ◐

▐
◐ ◐ ◐     

 ᷿ █●▀●
●

●

▐
◐ ◐ ◐ ◐ ◐  

In General 

 ᷿ █●▀●
● ╝

●

▐
◐ ◐ ◐ȣȣȢȢ◐ ╝ ◐ ◐ȣȣ ◐╝ ◐ ╝ 

 



 

 

59wL±!¢Lhb hC {Lat{hbΩ{  RULE (2nd method)  

 ᷿ █●▀●
● ╝

●
᷿ █●▀●
●

●
᷿ █●▀●
●

●
ỄȣȣȣȣȣȢȣȣ ᷿ █●▀●

● ╝

● ╝
 

᷿ █●▀●
● ╝

●

▐
◐ ◐ ◐

▐
◐ ◐ ◐ ỄȣȣȣȣȣȢȢ

▐
◐ ╝ ◐╝ ◐ ╝    

 ᷿ █●▀●
● ╝

●

▐
◐ ◐ ◐ȣȣ◐ ╝ ◐ ◐ȣ ◐ ╝ ◐ ╝ 

This is requireŘ ŦƻǊƳǳƭŀ ŦƻǊ {ƛƳǇǎƻƴΩǎ (1/3) Rule 

 

EXAMPLE 

Compute  ╘
Ⱬ
᷿▄

●

Ἤὀ   using {ƛƳǇǎƻƴΩǎ όмκоύ Rule when  ▐  Ȣ   

SOLUTION 

X 0 0.125 0.250 0.375 0.5 0.625 0.750 0.875 1 

F(x) 0.798 0.792 0.773 0.744 0.704 0.656 0.602 0.544 0.484 

 

{ƛƴŎŜ ōȅ {ƛƳǇǎƻƴΩǎ wǳƭŜ 

 
Ⱬ
᷿▄

●

Ἤὀ
▐
◐ ◐ ◐ ◐ ◐ ◐ ◐ ◐ ◐  

       
Ⱬ
᷿▄

●

Ἤὀ Ȣ   After putting the values. 

 

 

 

 

 

 

 



 

 

{Lat{hbΩ{  RULE 

Rule is based on fitting four points by a cubic.  

{ƛƳǇǎƻƴΩǎ wǳƭŜ is defined as for simple case  

█●▀●
●

●

▐
◐ ◐ ◐ ◐

▐
◐░○ɘ 

While in composite form όάƴέ must be divisible by 3) it is defined as  

 ᷿ █●▀●
●╝

●

▐
◐ ◐ ◐ ỄȣȣȢȢ◐╝ ◐ ◐ ỄȣȣȢȢ◐╝ ◐╝  

DERIVATION 

█●▀●
●╝

●

█●▀●
●

●

█●▀●
●

●

ỄȣȣȣȣȣȢȣȣ █●▀●
●╝

●╝

 

 ᷿ █●▀●
● ╝

●

▐
◐ ◐ ◐ ◐

▐
◐ ◐ ◐ ◐  

                                     ỄȣȣȣȣȣȢȢ
▐
◐╝ ◐╝ ◐╝ ◐╝     

 ᷿ █●▀●
●╝

●

▐
◐ ◐ ◐ ỄȣȣȢȢ◐╝ ◐ ◐ ỄȣȣȢȢ◐╝ ◐╝  

¢Ƙƛǎ ƛǎ ǊŜǉǳƛǊŜŘ ŦƻǊƳǳƭŀ ŦƻǊ {ƛƳǇǎƻƴΩǎ (3/8) Rule. 

REMARK:   Dƭƻōŀƭ ŜǊǊƻǊ ƛƴ {ƛƳǇǎƻƴΩǎ όмκо) and (3/8) rule are of the same order but if we 

ŎƻƴǎƛŘŜǊ ǘƘŜ ƳŀƎƴƛǘǳŘŜ ƻŦ ŜǊǊƻǊ ǘƘŜƴ {ƛƳǇǎƻƴ όмκоύ ǊǳƭŜ ƛǎ ǎǳǇŜǊƛƻǊ ǘƻ {ƛƳǇǎƻƴΩǎ ό3/8) rule. 

 

 

 

 

 

 



 

 

¢w!t9½hL5![ !b5 {Lat{hbΩ{ w¦[9 !w9 /hb±9wD9b¢ 

If we assume Truncation error, then in the case of Trapezoidal Rule 

 ╘ ═  
╫ ╪▐

◐ ɘ   Where Ȱ╘ȱ is the exact integral and Ȱ═ȱ the approximation. If 

Ȱ■□◄ ▐  ȱ ǘƘŜƴ ŀǎǎǳƳƛƴƎ ά◐έ ōƻǳƴŘŜŘ 

 ͼ■□◄ ╘ ═ ͼ (This the definition of convergence of Trapezoidal Rule) 

CƻǊ {ƛƳǇǎƻƴΩǎ wǳle we have the similar result 

╘ ═  
╫ ╪▐

◐ ɘ    

If Ȱ■□◄ ▐  ȱ ǘƘŜƴ ŀǎǎǳƳƛƴƎ ά◐έ ōƻǳƴŘŜŘ 

 ͼ■□◄ ╘ ═ ͼ (This the definition of convergence of {ƛƳǇǎƻƴΩǎ Rule) 

 

ERROR TERMS 

Rectangular Rule ▐

Ȧ
◐ ɘ 

● ɘ ● 

Trapezoidal Rule ▐
◐ ɘ 

● ɘ ● 

{ƛƳǇǎƻƴΩǎ (1/3) Rule ▐
◐░○ɘ 

● ɘ ● 

{ƛƳǇǎƻƴΩǎ όоκуύ wǳƭŜ ▐
◐░○ɘ 

● ɘ ● 

 

 

  



 

 

WEDDLEΩS 

Lƴ ǘƘƛǎ ƳŜǘƘƻŘ άƴέ ǎƘƻǳƭd be the multiple of 6. Rather function will not applicable. This 

ƳŜǘƘƻŘ ŀƭǎƻ ŎŀƭƭŜŘ ǎƛȄǘƘ ƻǊŘŜǊ ŎƭƻǎŜŘ bŜǿǘƻƴΩǎ ŎƻǘŜǎ όƻǊύ ǘƘŜ ŦƛǊǎǘ ǎǘŜǇ ƻŦ wƻƳōŜǊƎ 

integration.  

First and last terms have no coefficients and other move with 5, then 1, then 6. 

²ŜŘŘƭŜΩǎ wǳle is given by formula 

 ᷿ █●▀●
╫

╪

▐ █● █● █● █● Ễȣȣȣ

ỄȣȢȢ █●▪ █●▪ █●▪ █●▪
 

EXAMPLE:   for ᷿
●
Ἤὀ

Ȣ

Ȣ
  at   n = 6 

X 0.25 0.5 0.75 1 1.25 1.5 1.75 

F(x) 0.9411 0.8 0.64 0.5 0.4 0.3 0.2 

Now using formula᷿
●
Ἤὀ

Ȣ

Ȣ

Ȣ
◐ ◐ ◐ ◐ ◐ ◐ ◐ Ȣ      

 

.hh[9Ω{ w¦[9 

The method approximate ᷿ █●Ἤὀ
●

●
  ŦƻǊ ΨрΩ Ŝǉǳŀƭƭȅ ǎǇŀŎŜŘ ǾŀƭǳŜǎΦ Rule is given by George 

Bool. Rule is given by following formula 

᷿█●Ἤὀ
╫

╪

ἰ
◐ ◐ ◐ ◐ ◐    

 

EXAMPLE:    Evaluate ᷿
●
Ἤὀ

Ȣ

Ȣ
 at   n = 4 and h = 0.1 

SOLUTION 

X 0.2 0.3 0.4 0.5 0.6 

F(x) 0.96 0.92 0.86 0.80 0.74 

Now using formula      ᷿
●
Ἤὀ

Ȣ

Ȣ

Ȣ
◐ ◐ ◐ ◐ ◐  

                 ᷿
●
Ἤὀ

Ȣ

Ȣ
Ȣ      After putting the values. 

 



 

 

RECTANGULAR RULE 

Rule is also known as Mid-Point Rule. And is defined as follows ŦƻǊ Ψƴ Ҍ мΩ ǇƻƛƴǘǎΦ 

᷿█●Ἤὀ
╫

╪
ἰ█● █● ỄȣȣȣȣȢ█●▪      

In general   ᷿ █●Ἤὀ
╫

╪
ἰВ █●░

▪
░  

REMEMBER 

¶ !ǎ ǿŜ ƛƴŎǊŜŀǎŜŘ ΨƴΩ ƻǊ ŘŜŎǊŜŀǎŜŘ ΨƘΩ ǘƘŜ accuracy improved and the approximate 

solution becomes closer and closer to the exact value. 

¶ LŦ ΨƴΩ ƛǎ given, ǘƘŜƴ ǳǎŜ ƛǘΦ LŦ ΨƘΩ ƛǎ given, ǘƘŜƴ ǿŜ Ŏŀƴ Ŝŀǎƛƭȅ ƎŜǘ ΨƴΩ. 

¶ LŦ ΨƴΩ ƛǎ ƴƻǘ ƎƛǾŜƴ ŀƴŘ ƻƴƭȅ ΨǇƻƛƴǘǎΩ ŀǊŜ discussed, ǘƘŜƴ ΨмΩ ƭŜǎǎ ǘƘŀǘ Ǉƻƛƴǘǎ ǿƛƭƭ ōŜ ΨƴΩΦ 

For example, ƛŦ ΨоΩ Ǉƻƛƴǘǎ ŀǊŜ ƎƛǾŜƴ ǘƘŜƴ ΨƴΩ ǿƛƭƭ ōŜ ΨнΩΦ 

¶ If only table is given, ǘƘŜƴ ōȅ ŎƻǳƴǘƛƴƎ ǘƘŜ Ǉƻƛƴǘǎ ǿŜ Ŏŀƴ ǘŜƭƭ ŀōƻǳǘ ΨƴΩΦƻƴŜ Ǉƻƛƴǘ ǿƛƭƭ 

be greater than ΨƴΩ ƛƴ ǘŀōƭŜΦ 

 

EXAMPLE 

Evaluate ᷿
●
Ἤὀ for n = 4 using Rectangular Rule. 

SOLUTION 

Here a = 1, b = 3 then ▐  
╫ ╪

▪
Ȣ  

X 1 3/2 2 5/2 3 

F(x) 1 4/9 1/4 4/25 1/5 

 

 ╝▫◌ ◊▼░▪▌ █▫►□◊■╪        ᷿
●
Ἤὀ ἰ█● █● █● Ȣ  

 

 

 

 



 

 

DOUBLE INTEGRATION 

 

Y/X 2 2.1 2.2 2.3 2.4 

1 0.5 0.4762 0.4545 0.4348 0.4167 

1.1 0.4545 0.4329 0.4132 0.3953 0.3788 

1.2 0.4167 0.3968 0.3788 0.3623 0.3472 

1.3 0.3846 0.3663 0.3497 0.3344 0.3205 

1.4 0.3571 0.3401 0.3247 0.3106 0.2976 

Now using previous formulae we get the required results 

FOR TRAPEZOIDAL RULE:        ╘ Ȣ              FOR {Lat{hbΩ{ RULE:        ╘ Ȣ  

Verify actual integration by yourself. 

 



 

 

QUESTION:  Evaluate  ᷿ ᷿
▀●▀◐

● ◐
 by Trapezoidal rule for h = 0.25 = k 

SOLUTION: ●  ● ȟ● ● ▐ Ȣ ȟ● Ȣ ȟ● Ȣ ȟ●  

And  ◐  ◐ ȟ◐ ◐ ▓ Ȣ ȟ◐ Ȣ ȟ◐ Ȣ ȟ◐  

STEP ς I:  █●ȟ◐
● ◐

 

Y/X 1 1.25 1.50 1.75 2 

1 0.5 0.4444 0.4 0.3636 0.3333 

1.25 0.4444 0.4 0.3636 0.3333 0.3077 

1.50 0.4 0.3636 0.3333 0.3077 0.2857 

1.75 0.3636 0.3333 0.3077 0.2857 0.2667 

2 0.3333 0.3077 0.2857 0.2667 0.25 

 

STEP ςI I:   

╘ █ ȟ◐▀◐
▓
█ ȟ◐ █ ȟ◐ █ ȟ◐ █ ȟ◐ █ ȟ◐ Ȣ  

╘ █ Ȣ ȟ◐▀◐
▓
█ Ȣ ȟ◐ █ Ȣ ȟ◐ █ Ȣ ȟ◐ █ Ȣ ȟ◐ █ Ȣ ȟ◐ Ȣ  

╘ █ Ȣȟ◐▀◐
▓
█ Ȣȟ◐ █ Ȣȟ◐ █ Ȣȟ◐ █ Ȣȟ◐ █ Ȣȟ◐ Ȣ  

╘ █ Ȣ ȟ◐▀◐
▓
█ Ȣ ȟ◐ █ Ȣ ȟ◐ █ Ȣ ȟ◐ █ Ȣ ȟ◐ █ Ȣ ȟ◐ Ȣ  

╘ █ ȟ◐▀◐
▓
█ ȟ◐ █ ȟ◐ █ ȟ◐ █ ȟ◐ █ ȟ◐ Ȣ  

STEP ςIII:   

╘ ᷿᷿
▀●▀◐

● ◐

▐
╘ ╘ ╘ ╘ ╘ ȢȢ   

  



 

 

QUESTION:  Evaluate  ᷿ ᷿ ▼░▪● ◐
ⱫⱫ

▀●▀◐  

SOLUTION: Take n = 4 (by own choice) then ▐
╫ ╪

▪

Ⱬ
Ⱬ
▓ ╪■▼▫ 

 ●
Ⱬ
 ● ȟ● ● ▐

Ⱬ
ȟ●

Ⱬ
ȟ●

Ⱬ
ȟ●

Ⱬ
 

And  ◐
Ⱬ
 ◐ ȟ◐ ◐ ▓

Ⱬ
ȟ◐

Ⱬ
ȟ◐

Ⱬ
ȟ◐

Ⱬ
 

STEP ς I:  █●ȟ◐ ▼░▪● ◐ 

Y/X 0 Ⱬ
 

Ⱬ
 

Ⱬ
 

Ⱬ
 

0 0 0.6186 0.8409 0.9612 1 
Ⱬ

 0.6186 0.8409 0.9612 1 0.9612 

Ⱬ
 0.8409 0.9612 1 0.9612 0.8409 

Ⱬ
 

0.9612 1 0.9612 0.8409 0.6186 

Ⱬ
 1 0.9612 0.8409 0.6186 0 

 

STEP ςI I:   

╘ █ ȟ◐▀◐

Ⱬ
 

▓
█ ȟ◐ █ ȟ◐ █ ȟ◐ █ ȟ◐ █ ȟ◐ Ȣ  

╘ █
Ⱬ
 ȟ◐▀◐

Ⱬ 

▓
█
Ⱬ
ȟ◐ █

Ⱬ
ȟ◐ █

Ⱬ
ȟ◐ █

Ⱬ
ȟ◐ █

Ⱬ
ȟ◐ Ȣ  

╘ █
Ⱬ
 ȟ◐ ▀◐

Ⱬ 

▓
█
Ⱬ
ȟ◐ █

Ⱬ
ȟ◐ █

Ⱬ
ȟ◐ █

Ⱬ
ȟ◐ █

Ⱬ
ȟ◐ Ȣ  

╘ █
Ⱬ
 ȟ◐ ▀◐

Ⱬ 

▓
█
Ⱬ
ȟ◐ █

Ⱬ
ȟ◐ █

Ⱬ
ȟ◐ █

Ⱬ
ȟ◐ █

Ⱬ
ȟ◐ Ȣ  

╘ ᷿ █
Ⱬ
 ȟ◐▀◐

Ⱬ
 ▓

█
Ⱬ
ȟ◐ █

Ⱬ
ȟ◐ █

Ⱬ
ȟ◐ █

Ⱬ
ȟ◐ █

Ⱬ
ȟ◐ Ȣ      

STEP ςIII:       ╘ ᷿ ᷿ ▼░▪● ◐
ⱫⱫ

▀●▀◐
▐
╘ ╘ ╘ ╘ ╘ Ȣ   



 

 

QUESTION:  Evaluate  Ḁ
▀●▀◐

● ◐╓
  where D is the square with comes at (1,1) , (2,1) ,(2,2) , (1,2) 

SOLUTION: Take n = 4 (by own choice) then ▐
╫ ╪

▪

Ⱬ
Ⱬ
▓ ╪■▼▫ 

 ●      Also  ◐   

STEP ς I:  █●ȟ◐
● ◐

 

Y/X 1 1.25 1.50 1.75 2 

1 0.5 0.3902 0.3077 0.2462 0.2 

1.25 0.3902 0.3200 0.2623 0.2162 0.1798 

1.50 0.3077 0.2623 0.2222 0.1882 0.1600 

1.75 0.2462 0.2162 0.1882 0.1633 0.1416 

2 0.2 0.1798 0.1600 0.1416 0.1250 

 

STEP ςI I:   

╘ █ ȟ◐▀◐
▓
█ ȟ◐ █ ȟ◐ █ ȟ◐ █ ȟ◐ █ ȟ◐ Ȣ  

╘ █ Ȣ ȟ◐▀◐
▓
█ Ȣ ȟ◐ █ Ȣ ȟ◐ █ Ȣ ȟ◐ █ Ȣ ȟ◐ █ Ȣ ȟ◐ Ȣ  

╘ █ Ȣȟ◐▀◐
▓
█ Ȣȟ◐ █ Ȣȟ◐ █ Ȣȟ◐ █ Ȣȟ◐ █ Ȣȟ◐ Ȣ  

╘ █ Ȣ ȟ◐▀◐
▓
█ Ȣ ȟ◐ █ Ȣ ȟ◐ █ Ȣ ȟ◐ █ Ȣ ȟ◐ █ Ȣ ȟ◐ Ȣ  

╘ █ ȟ◐▀◐
▓
█ ȟ◐ █ ȟ◐ █ ȟ◐ █ ȟ◐ █ ȟ◐ Ȣ  

STEP ςIII:   

╘ ᷿᷿
▀●▀◐

● ◐

▐
╘ ╘ ╘ ╘ ╘ Ȣ   

 

 



 

 

QUESTION:  Evaluate  ᷿ ᷿ ● ◐ ▀●▀◐ by using Simpson (1/3) rule  

SOLUTION: Take n = 4 (by own choice) then ▓
╫ ╪

▪
Ȣ ▐ ╪■▼▫ 

 ●      Also  ◐   

STEP ς I:  █●ȟ◐ ● ◐ 

Y/X 0 0.25 0.50 0.75 1 

1 1 1.6250 1.25 1.5625 2 

1.25 1.5625 1.6250 1.8125 2.1250 2.5625 

1.50 2.25 2.3125 2.5 2.8125 3.25 

1.75 3.0625 3.1250 3.3125 3.6250 4.0625 

2 4 4.0625 4.2500 4.5625 5 

 

STEP ςI I:   

╘ ᷿█ ȟ◐▀◐
▓
█ ȟ◐ █ ȟ◐ █ ȟ◐ █ ȟ◐ █ ȟ◐ Ȣ   

╘ ᷿█ Ȣ ȟ◐▀◐
▓
█ Ȣ ȟ◐ █ Ȣ ȟ◐ █Ȣ ȟ◐ █ Ȣ ȟ◐ █ Ȣ ȟ◐ Ȣ  

╘ ᷿█ Ȣ ȟ◐▀◐
▓
█ Ȣ ȟ◐ █ Ȣ ȟ◐ █Ȣ ȟ◐ █ Ȣ ȟ◐ █ Ȣ ȟ◐ Ȣ  

╘ ᷿█ Ȣ ȟ◐▀◐
▓
█ Ȣ ȟ◐ █ Ȣ ȟ◐ █Ȣ ȟ◐ █ Ȣ ȟ◐ █ Ȣ ȟ◐ Ȣ  

╘ ᷿█ ȟ◐▀◐
▓
█ ȟ◐ █ ȟ◐ █ȟ◐ █ ȟ◐ █ ȟ◐ Ȣ   

STEP ςIII:   

╘ ᷿᷿ ● ◐ ▀●▀◐
▐
╘ ╘ ╘ ╘ ╘ Ȣ   

 

  



 

 

GUASSIAN QUADRATURE FORMULAE 

DERIVATION OF TWO-POINT GAUSS QUADRATURE RULE  

Method 1:  

The two-point Gauss quadrature rule is an extension of the trapezoidal rule approximation 

where the arguments of the function are not predetermined as a and b, but as unknowns x1 

and x2.  So in the two-point Gauss quadrature rule, the integral is approximated as  

 ᷿ █●▀●
╫

╪
 Ғ c1 f (x1) + c2 f (x2)  

There are four unknowns x1, x2, c1 and c2.  These are found by assuming that the formula gives 

exact results for integrating a general third order polynomial,  

█● ╪  ╪●  ╪●  ╪●.  

 Hence   ᷿ █●▀●
╫

╪
 ᷿ ╪  ╪●  ╪●  ╪● ▀●
╫

╪
 

 ᷿ █●▀●
╫

╪
╪ὀ  ╪

●
  ╪

●
  ╪

●

╪

╫

 

᷿█●▀●
╫

╪
╪ Ἢ Ἡ  ╪

╫ ╪
  ╪

╫ ╪
  ╪

╫ ╪
ȣȣȣȣȢȢ░  

 

The formula would then give  

᷿█●▀●
╫

╪
╬█● ╬█●  Ғ c1 f (x1) + c2 f (x2) 

  ╬ ╪  ╪●  ╪●  ╪● ╬ ╪  ╪●  ╪●  ╪●  

                                                                                                                  ȣȣȣȣȣȣ ░░ 

Equating Equations (i) and (ii) gives  

╪ Ἢ Ἡ  ╪
╫ ╪

 ╪
╫ ╪

 ╪
╫ ╪

╬ ╪  ╪●  ╪●  ╪● ╬ ╪  ╪●  ╪●  ╪●
 

This will give us  

 ᷿ █●▀●
╫

╪
╪ ╬ ╬ ╪ ╬● ╬● ╪ ╬● ╬● ╪ ╬● ╬●  

                                                                                                                                                                               

                                                                                                                            ȣȣȣȣȣȣȣȣȣ ░░░ 
Since in Equation (iii), the constants a0, a1, a2, and a3 are arbitrary, the coefficients of a0, a1, 

a2, and a3 are equal.  This gives us four equations as follows      

░○ȣȣȣȣȣȣȢ

ừ
Ử
Ừ

Ử
ứ

Ἢ Ἡ ╬ ╬
╫ ╪

╬● ╬●

╫ ╪
╬● ╬●

╫ ╪
╬● ╬●

 



 

 

 

we can find that the above four simultaneous nonlinear equations have only one acceptable 

solution 

╬
╫ ╪

 ,  ╬
╫ ╪

 ,   ●
╫ ╪

Ѝ

╫ ╪
 ,   ●

╫ ╪

Ѝ

╫ ╪
 

Hence  

᷿█●▀●
╫

╪
 Ғ c1 f (x1) + c2 f (x2) 

╫ ╪
█

╫ ╪

Ѝ

╫ ╪ ╫ ╪
█

╫ ╪

Ѝ

╫ ╪
 

 

Method 2  

We can derive the same formula by assuming that the expression gives exact values for the  

individual integrals of᷿ ▀●
╫

╪
, ᷿ ●▀●
╫

╪
, ᷿ ●▀●
╫

╪
, and ᷿ ●▀●

╫

╪
Ȣ The reason the formula can also 

be derived using this method is that the linear combination of the above integrands is a 

general third order polynomial given by █● ╪  ╪●  ╪●  ╪●.  

These will give four equations as follows  

 

ừ
ỬỬ
Ừ

ỬỬ
ứ ᷿ ▀●

╫

╪
Ἢ Ἡ ╬ ╬

 ᷿ ●▀●
╫

╪

╫ ╪
╬● ╬●

᷿●▀●
╫

╪

╫ ╪
╬● ╬●

᷿●▀●
╫

╪
Ȣ

╫ ╪
╬● ╬●

 

These four simultaneous nonlinear equations can be solved to give a single acceptable 

solution 

╬
╫ ╪

 ,  ╬
╫ ╪

 ,   ●
╫ ╪

Ѝ

╫ ╪
 ,   ●

╫ ╪

Ѝ

╫ ╪
 

 

Hence   ᷿ █●▀●
╫

╪
 Ғ c1 f (x1) + c2 f (x2) 

╫ ╪
█

╫ ╪

Ѝ

╫ ╪ ╫ ╪
█

╫ ╪

Ѝ

╫ ╪
 

 

Since two points are chosen, it is called the two-point Gauss quadrature rule.  Higher point 

versions can also be developed. 

 

 

 



 

 

 Higher point Gauss quadrature formulas  
For example  

᷿█●▀●
╫

╪
 Ғ c1 f (x1) + c2 f (x2) + c3 f (x3) is called the three-point Gauss quadrature rule.  The 

coefficients c1, c2 and c3, and the function arguments x1, x2 and x3 are calculated by assuming 

the formula gives exact expressions for integrating a fifth order polynomial  

 ᷿ ╪  ╪●  ╪●  ╪● ╪● ╪● ▀●
╫

╪
 

General n -point rules would approximate the integral  

 

᷿█●▀●
╫

╪
Ғ c1 f (x1) + c2 f (x2) + . . . . . .. + cn f (xn )    

   

 

A number of particular types of Gaussian formulae are given as follows. 

GUASSIAN LEGENDER FORMULA 

This formula takes the form   ᷿ █●Ἤὀ
╫

╪
В ═░█●░
▪  

And Truncation error for formula is  ╔
▪
█ █ ╘ В ═░●░█●░

▪  

²ƘŜǊŜ ά╘έ ƛǎ ǘƘŜ approximate integral obtained by n ς point formula. 

 

GUASS ς LAGURRE FORMULA 

This formula takes the form   ᷿ ▄●█●Ἤὀ В ═░█●░
▪  

 

GUASS ς HERMITE FORMULA 

This formula takes the form   ᷿ ▄●█●Ἤὀ В ═░█●░
▪  

 

GUASS ς CHEBYSHEV FORMULA 

This formula takes the form   ᷿
█●

╧
Ἤὀ

Ⱬ

▪
В █●░
▪  

²ƘŜǊŜ ά●░έ is zero n ς Chebysheves polynomial 



 

 

b9²¢hbΩ{ /h¢9{ Chwa¦[! 

A quadrature formula of the form ᷿ █●Ἤὀ
╫

╪
В ╒░█●░
▪   ƛǎ ŎŀƭƭŜŘ ŀ bŜǿǘƻƴΩǎ /ƻǘŜǎ 

Formula if the nodes ͼ●ȟ●ȟȣȣȣȢȟ●▪ͼ are equally spaced. Where  

 ╒░ ᷿╛░●Ἤὀ
╫

╪
᷿Б

● ●░

●░●▒

▪
▒
▒░

Ἤὀ
╫

╪
 

DŜƴŜǊŀƭ bŜǿǘƻƴΩǎ /ƻǘŜs Formula has the form 

█●Ἤὀ
╫

╪

▐ █●░

▪
◄ ▒

░ ▒

▪

▒
▒░

ἬἼ
▪

▪ Ȧ
█▪ ɘ● ● ●░

▪

░

Ἤὀ
╫

╪

 

REMARK:   ¢ǊŀǇŜȊƻƛŘŀƭ ŀƴŘ {ƛƳǇǎƻƴΩǎ wǳƭŜ Are Close Newton Cotes formulae while 

Rectangular Rule is Open Newton Cotes formula. 

[LaL¢!¢Lhb hC b9²¢hbΩ{ /h¢9{ 

bŜǿǘƻƴΩǎ /ƻǘŜǎ ŦƻǊƳǳƭŀŜ ό{ƛƳǇǎƻƴΩǎ, Rectangular Rule, and Trapezoidal Rule) are not 

suitable for Numerical integration ƻǾŜǊ ƭŀǊƎŜ ƛƴǘŜǊǾŀƭǎΦ !ƭǎƻ bŜǿǘƻƴΩǎ /ƻǘŜǎ ŦƻǊƳǳƭŀǎ ǿƘƛŎƘ 

are based on polynomial interpolation would be inaccurate over a large interval because of 

oscillatory nature of high degree polynomials. To solve this problem, we use composite 

Numerical integration.  

FORMULA DARIVATION 

We shall approximate the given tabulated function by a polynomial ͼ╟▪●ͼ and then 

integrate this polynomial. 

Suppose we are given the data ●░ȟ◐░  Ƞ░ ȟȟȟȣȣȢ▪ at equispaced points with spacing  

▐ ●░ ●░ we can represent the polynomial by any standard interpolation polynomial. 

bƻǿ ōȅ ǳǎƛƴƎ [ŀƎǊŀƴƎŜΩǎ ŦƻǊƳǳƭŀ     █● В ■▓●◐▓
▪     ȣȣȣȣȣȣȣȢȢ░ 

With associated error term             ╔●
●

▪ Ȧ
◐▪ ɘ   ȣȣȣȣȣȣȣȢ░░ 

And                               ■▓●
●

● ●▓ ●
  ȣȣȣȣȣȣȣȣȣ ░░░ 

Where    ● ● ● ● ● ȣȣȣȣȣȣ ● ●▪    ȣȣȣȣȣȣȣ ░○ 



 

 

Integrating (i) from  ╪ ● ◄▫ ╫ ●▪   ǿΦ ǊΦ ǘƻ ΨȄΩ 

 ᷿ █●
╫

╪
▀● ᷿В ■▓●◐▓

▪ ▀●
╫

╪
᷿ ■●◐ ■●◐ Ễȣȣ ■▓●◐▓▀●
╫

╪
 

 ᷿ █●
╫

╪
▀● В ᷿■▓●◐▓

╫

╪
▀●▪ В ᷿■▓●

╫

╪
◐▓▀●

▪ В ╒▓◐▓
▪  ◌▐▄►▄ ╒▓  ᷿ ■▓●

╫

╪
▀●  

    And    ͼ╒▓ͼ      ŀǊŜ ŎŀƭƭŜŘ bŜǿǘƻƴΩǎ /ƻǘŜǎ                                           ȣȣȣȣȣȣȣȣȣȢ○ 

Ih² ¢h CLb5 b9²¢hbΩ{ COTES? 

Let equispaced nodes are defined as  ╪ ●  ◄▫  ╫ ●▪   ╪▪▀  ▐
╫ ╪

▪
   and  ●▓ ● ▓▐  

change the variable  ● ● ▬▐ 

Since   ╪ ● ● ▐, ● ● ▐ȟ ΧΧΧΧΧΦΦ ╫ ●▪ ● ▪▐  And  ● ● ▬▐ 

Using above values in (IV) we get 

 ● ● ▬▐ ● ● ▬▐ ● ȣȣȣȣȣȣ ● ▬▐ ●▪     

 ● ▬▐● ▬▐ ● ▐ ● ▬▐ ● ▐ȣȣȣȣȣ● ▬▐ ● ▪▐  

 ● ▬▐▬▐ ▐ ▬▐ ▐ȣȣȣȣȣȣȣȣ ▬▐ ▪▐ 

 ● ▐▪ Ȣ▬▬ ▬ ȣȣȣȣȣȣȣȣ ▬ ▪           ȣȣȣȣȣȢȢ○░ 

So      ■▓●
● ● ● ● ȣȣȣȣȣȣȣȣȣȣ● ●▓ ● ●▓ ȣȣȣȣȣȣȣȣȣȣȢȢ● ●▪

●▓ ● ●▓ ● ȣȣȣȣȣȣȣȣȣ●▓ ●▓ ●▓ ●▓ ȣȣȣȣȣȣȢȣȣȣȣ●▓ ●▪
 

Now  ●▓ ● ▓▐  and  ●▬ ● ▬▐      ●▓ ●▬ ▓ ▬▐ 

 When                            ▬ ●▓ ● ▓ ▐ ▓▐ 

▬ ●▓ ● ▓ ▐ 

                                                                ể           ể         ể 

                                                                ể           ể         ể 

▬ ▓ ●▓ ●▓ ▐ 

▬ ▓ ●▓ ●▓ ▐ 

                                                                ể           ể         ể 

▬ ▪ ●▓ ●▪ ▓ ▪▐ ▪ ▓▐ 

Now putting in ͼ■▓●ͼ we get  

ὼ ὼ

Ὤ
ὴ 

ὼ ὼ

ὦ ὥ
ὲ

ὴ 

If x = b, ὼ = a 

n = p 

 



 

 

 ■▓●
● ▬▐● ● ▬▐● ▐ȣȣȣȣȢ● ▬▐● ▪▐

▓▐▓ ▐▓ ▐ȣȣȣȣȣ▐Ȣ ▐ ▐ ▪ ▓▐
 

 ■▓●
▐▬Ȣ▐▬ ▐▬ ȣȣȢ▐▬ ▓ ▐▬ ▓ ȣȣȢ▐▬ ▪

▐▓▐▓ ▐▓ ȣȢȢ▐▓ ▓ ▐▓ ▓ ȢȢȣ▐▓ ▪
 

 ■▓●
▐▪Ȣ▬▬ ▬ ȣȣȣȢ▬ ▓ ▬ ▓ ȣȣȢȣȢ▬ ▪

▐▪Ȣ▓▓ ▓ ȣȢȣȣȣȢȢȢ ▪ ▓ ȢȣȣȢȢȣȢ▪ ▓
 

 ■▓●
▬▬ ▬ ȣȣȣȢ▬ ▓ ▬ ▓ ȣȣȢȣȢ▬ ▪

▓Ȧ ▪ ▓▪ ▓Ȧ
 

 ■▓●
▬▬ ▬ ȣȣȣȢ▬ ▓ ▬ ▓ ȣȣȢȣȢ▬ ▪

▓Ȧ ▪ ▓▪ ▓Ȧ

▪ ▓

▪ ▓ 

 ■▓●
▪ ▓Ȣ▬▬ ▬ ȣȣȣȢ▬ ▓ ▬ ▓ ȣȣȢȣȢ▬ ▪

▓Ȧ ▪ ▓ ▪ ▓Ȧ
 

 ■▓●
▪ ▓Ȣ▬▬ ▬ ȣȣȣȢ▬ ▓ ▬ ▓ ȣȣȢȣȢ▬ ▪

▓Ȧ▪ ▓Ȧ
        ȣȣȣȣȣȢ○░░ 

Since  ╒▓  ᷿ ■▓●
╫

╪
▀● therefore after putting ͼ■▓●ͼ ŀƴŘ άŘȄέ 

As ͼ● ● ▬▐ͼ then dx = hdp and if  ●ᴼ╪ ◄▐▄▪ ▬ᴼ  ╪■▼▫ ●O ╫ ◄▐▄▪ ▬ᴼ▪     

 ╒▓  
▪ ▓

▓Ȧ▪ ▓Ȧ᷿
▬▬ ▬ ȣȣ ▬ ▓ ▬ ▓ ȣȣ ▬ ▪
▪

Ȣ▐▀▬ 

 ╒▓  
▪ ▓Ȣ▐

▓Ȧ▪ ▓Ȧ
᷿▬▬ ▬ ȣȣ ▬ ▓ ▬ ▓ ȣȣ ▬ ▪
▪

▀▬ 

This is required formula for Newton Cotes. 

ERROR TERM       let      ᶰ ●
●

▪ Ȧ
◐▪ ɘ ȣȣȣȣȢȣȣȢȢ═ 

 ● ▐▪ Ȣ▬▬ ▬ ȣȢȢ▬ ▪     ȣȢȣȣȢȢ    ║  

Using ║  in ═ we get    ɴ ●
▐▪ Ȣ▬▬ ȣȣȣȣȢȢ▬ ▪ Ȣ◐▪ ɘ 

▪ Ȧ
 

Integrating both sides      ᷿ ᶰ ●▀● ᷿
▐▪ Ȣ▬▪ Ȣ▬▬ ȣȣȣȣȣȣȢȢ▬ ▪Ȣ◐▪ ɘ 

▪ Ȧ
 ▐▀▬

▪

▫

╫

╪
 

 ╔●
▐▪ ◐▪ ɘ

▪ Ȧ
᷿▬▬ ▬ ȣȣȣȣȣȣȢȢȣȣ ▬ ▪▀▬
▪

 

E(x) is called integral error. 



 

 

ALTERNATIVE METHOD FOR DARIVATION OF TRAPEZOIDAL RULE AND ITS ERROR TERM 

 █●  В ■▓
▪
▓ ●◐▓

●

▪ Ȧ
◐▪  ɘ 

For trapezoidal rule put  ▪       █●  В ■▓▓ ●◐▓
●

Ȧ
  ◐ ɘ 

 █● ■▫◐▫ ■◐
● ● ● ●

 ◐ ɘ 

Integrating both sides 

 ᷿ █●▀● ◐▫ ᷿ ■▫●▀● ◐
●

●

╫ ●▪ ●

╪ ●
 ᷿ ■●▀●

◐  ɘ●

●
 ᷿ ● ● ● ● ▀●
●

●
 

 ᷿ █●▀●
●

●
◐᷿

● ●

● ●

●

●
▀● ◐᷿

● ●

● ●

●

●
▀●

◐  ɘ
᷿ ● ● ● ● ▀●
●

●
 

Now by changing variables   

 ● ● ▬▐    ◄▐▄▪ ●O ● ᵼ▬ᴼ   ╪▪▀  ● ● ▐ ◄▐▄▪ ●ᴼ● ᵼ▬ᴼ  

 ᷿ █●▀●
●

●
◐᷿

● ▬▐ ● ▐Ȣ▐▀▬

● ● ▐
◐᷿

● ▬▐ ●Ȣ▐▀▬

● ▬▐ ●
 

                             
◐ ɘ

᷿ ● ▬▐ ● ● ▬▐ ● ▐Ȣ▐▀▬ 

 ᷿ █●▀●
●

●
◐᷿

▐▬ ▐▀▬

▐
◐᷿

▬▐Ȣ▐▀▬

▐

◐ ɘ
᷿▬▐▐▬ ▐▀▬ 

 ᷿ █●▀●
●

●
◐▐

▬
◐▐

▬ ◐ ɘ
▐

▬ ▬
 

 ᷿ █●▀●
●

●

◐▐ ◐▐ ◐ ɘ
▐    As required. 

SIMPSONΩ{ RULE AND ERROR TERM 

Since       ╒▓  
▪ ▓Ȣ▐

▓Ȧ▪ ▓Ȧ
᷿▬▬ ▬ ȣȣ ▬ ▓ ▬ ▓ ȣȣ ▬ ▪
▪

▀▬ 

                                                                                                                              ȣȣȣȣȣȣȣȣȣȢ░ 

And    ╔▪●
▐▪ ◐▪ ɘ

▪ Ȧ
᷿▬▬ ▬ ȣȣȣȣȣȣȢȢȣȣ ▬ ▪▀▬
▪

 

                                                                                                                               ȣȣȣȣȣȣȣȣȣ ░░ 

 



 

 

Putting n = 2, k = 0 in (i) we get  

 ╒  
Ȣ▐

Ȧ Ȧ
᷿ ▬ ▬ ▀▬

▐
᷿ ▬ ▬ ▀▬

▐
᷿ ▬ ▬ ▀▬ 

 ╒
▐ ▬ ▬

▬
▐ ▐

 

Now Putting n = 2, k = 1 in (i) we get  

 ╒  
Ȣ▐

Ȧ Ȧ᷿
▬▬ ▀▬ ▐᷿ ▬ ▬▀▬ ▐

▬
▬ ▐ 

Now Putting n = 2, k =2 in (i) we get  

 ╒  
Ȣ▐

Ȧ Ȧ
᷿▬▬ ▀▬

▐ ▬ ▬ ▐ ▐
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Now Putting n = 2 in (ii) we get  

 ╔ ●
▐ ◐ ɘ

Ȧ
᷿▬▬ ▬ ▀▬

▐◐ ɘ

Ȧ
᷿▬▬ ▬ ▀▬ 

 ╔ ●
▐◐ ɘ

Ȧ

▬ ▬ ▬ ▐◐ ɘ

Ȧ
 

Error term is zero so we find Global error term   ╔
▐◐ ɘ

  

Now for n = 3 

 ᷿ █●▀●
●

●
В ╒▓◐▓▓ ╒◐ ╒◐ ╒◐ ╒◐ ╔ ●   ȣȣȣȢȢ░ 

If ╒
▐
ȟ╒

▐
ȟ╒

▐
ȟ╒

▐
ȟ    ╔ ●

▐◐ ɘ
  then (i) becomes 

 ᷿ █●▀●
●

●

▐
◐ ◐ ◐ ◐

▐◐ ɘ
    

  



 

 

DIFFERENTIAL EQUATIONS 

DIFFERENTIAL EQUATION 

It is the relation which involves the dependent variable, independent variable and 

Differential co-efficient i.e. 

 █◄ȟ◐
▀◐

▀◄

◐ ◐

◄◄
          ◄ ◄

▀◐

▀◄
◐ ◐        ◐ ◐ ◄ ◄

▀◐

▀◄
  

ORDINARY DIFFERENTIAL EQUATION 

If differential co-efficient of Differential Equation are total, then Differential Equation is 

called Ordinary Differential equation.  e. g.        
▀◐

▀●

▀◐

▀●
◐ ● 

PARTIAL DIFFERENTIAL EQUATION 

If differential co-efficient of Differential Equation are partial, then Differential Equation is 

called Ordinary Differential equation.    e. g.        
⸗◐

⸗●

⸗●

⸗◐
 

ORDER AND DEGREE OF DIFFERENTIAL EQUATION 

The highest derivative involved in the equation determines the order of Differential Eq. and 

the power of highest derivative in Differential Eq. is called degree of D.E. for example   

▀◐

▀●

▀◐

▀●
◐   Ƙŀǎ ƻǊŘŜǊ άнέ ŀƴŘ ŘŜƎǊŜŜ άмέ 

 

SOLUTION OF DIFFERENTIAL EQUATION 

It is the relation which satisfies the Differential Equation as consider  

 
▀◐

▀●
◐    

Then  ◐ ▼░▪●ȟ╬▫▼●ȟ ▼░▪●ȟ ╬▫▼●  Are all solution of above equation. 

THE MOST GENERAL SOLUTION 

It is the solution which contains as many arbitrary constants as the order of differential 

equation. e.g.   ◐ ◐   Is a 2nd order Differential Eq. with constant co-efficient and 

general solution is   ◐ ╬╬▫▼●╬▼░▪● 



 

 

PARTICULAR SOLUTION 

Solution which can be obtained from General Solution by giving different values to the 

arbitrary constants  ͼ╬ȟ╬ͼ  in ◐ ╬╬▫▼●╬▼░▪●         For example   ◐ ╬▫▼●▼░▪● 

SINGULAR SOLUTION:       Solution which cannot be obtained from General Solution by 

giving different values to the arbitrary constants.   

 SOLVE THE FOLLOWING DIFFERENCE EQUATIONS. 
 ◐▓ ◐▓ ◐▓                    ▼▐▫►◄ ▲◊▄▼◄░▫▪ 

 ◐▓ ◐▓ ◐▓ ▼░▪ ▓             ╛▫▪▌ ▲◊▄▼◄░▫▪ 

 

HOMOGENOUS DIFFERENTIAL EQUATION 

A differential equation for which  ͼ◊  ͼ is a solution is called a Homogenous Differential 

9ǉǳŀǘƛƻƴ ǿƘŜǊŜ ΨǳΩ ƛǎ ǳƴƪƴƻǿƴ function. In other words, a differential equation which always 

possesses the trivial solution  ͼ◊  ͼ  is called Homogenous Differential Equation. 

NON-HOMOGENOUS DIFFERENTIAL EQUATION 

A differential equation for which  ͼ◊  ͼ (i.e. Non-Trivial solution) is a solution is called a 

Nonhomogeneous 5ƛŦŦŜǊŜƴǘƛŀƭ 9ǉǳŀǘƛƻƴ ǿƘŜǊŜ ΨǳΩ ƛǎ ǳƴƪƴƻǿƴ ŦǳƴŎǘƛƻƴ. 

INITIAL AND BOUNDARY CONDITIONS 

To evaluate arbitrary constant in the General solution we need some conditions on the 

unknown function or solution corresponding to some values of the independent variables. 

Such conditions are called Boundary or Initial conditions. 

If all the conditions are given at the same value of the independent variable, then they are 

called Initial conditions. If the conditions are given at the end points of the independent 

variable, then they are called Boundary conditions. 

INITIAL VALUE PROBLEM 

An initial value problem for a first order Ordinary Differential Equation is the equation 

together with an initial condition on a specific interval   ╪ ● ╫  

Such that    ◐ █●ȟ◐ ȟȟ    ◐╪ ◐╪  ȟȟ╪▪▀  ●ᶰ╪ȟ╫   

The equation is Autonomous if   ◐   ƛǎ ƛƴŘŜǇŜƴŘŜƴǘ ƻŦ ΨȄΩ 



 

 

BOUNDARY VALUE PROBLEM 

A problem in which we solve an Ordinary Differential Equation of order two subject to 

condition on ◐●  or  ◐ ● at two different points is called a two point boundary value 

problem or simply a Boundary value problem. 

OR A differential equation along with one or more boundary conditions defines a 

boundary value problem. 

 

CONVEX SET 

A set ╓Ṓ╡  is said to be convex if whenever ◄ȟ◐  and ◄ȟ◐  ōŜƭƻƴƎ ǘƻ Ψ5Ω ǘƘŜƴ 

ⱦ◄ ⱦ◄ȟ ⱦ◐ ⱦ◐  ŀƭǎƻ ōŜƭƻƴƎ ǘƻ Ψ5Ω ŦƻǊ ŜǾŜǊȅ ͼⱦͼ in [0, 1] 

 

LIPSCHITZ CONDITION 

A function █◄ȟ◐ is said to satisfy a LipscƘƛǘȊ ŎƻƴŘƛǘƛƻƴ ƛƴ ǘƘŜ ǾŀǊƛŀōƭŜ ΨȅΩ ƻƴ ŀ ǎŜǘ  ╓Ṓ╡  if a 

constant Ȭ╛ ȭ exists with 

  ȿ█◄ȟ◐ █◄ȟ◐ ȿ ╛ȿ◐ ◐ȿ  Whenever ◄ȟ◐  and ◄ȟ◐  are in Ȭ╓ȭ and Ȭ╛ȭ is called 

Lipschitz constant for Ȭ█ȭ 

 

WELL ς POSED PROBLEM 

The initial value problem   
▀◐

▀●
█●ȟ◐   Ƞ  ╪ ● ╫ Ƞ◐╪ ╪ is said to be a well - posed 

problem if  

A unique solution y(x) to the problem exist. 

There exist constants  ɴ  and ▓  such that for any ͼɴ ͼ with  ᶰ ᶰ  whenever  

♯● is continuous with  ổ♯●Ỗ  ɴᶅ ●ɴ ╪ȟ╫ and when ♯  ɴ  the initial value 

problem  
▀◑

▀●
█●ȟ◑  ♯● Ƞ  ╪ ● ╫ Ƞ◑╪ ╪ ♯  has a unique solution ◑● 

that satisfies ȿ◑● ◐●ȿ ▓  ɴ ᶅ  ●ᶰ╪ȟ╫  

The problem 
▀◑

▀●
  is called a Perturbed problem associated with 

▀◐

▀●
 



 

 

SOME STANDARD TECHNIQUES FOR SOLVING ELEMENTARY DIFFERENTIAL 

EQUATIONS ANALYTICALLY 
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To solve ◊▪ ◊▪ ◊▪   ▌░○▄▪ ◄▐╪◄ ◊ ◊  then ◊▪ ◊▪ ◊▪             

then zero on the right hand side signifies that is a homogeneous differential equation. 

Guess  ◊▪ ═◌▪  then ═◌▪ ═◌▪ ═◌▪   ᵼ◌ ◌                                       

This is the auxiliary equation associated with the difference equation. Being a quadratic, the 

auxiliary equation signifies that the difference equation is of second order.                                   

The two roots are readily determined  ◌
Ѝ
   ╪▪▀ ◌

Ѝ
                                                    

for any ═substituting ═◌▪ for ◊▪ in ◊▪ ◊▪ ◊▪  yield zero                                            

for any ═substituting ═◌▪ for ◊▪ in ◊▪ ◊▪ ◊▪  yield zero 

This suggest a general solution ◊▪ ═◌▪ ═◌▪ ═
Ѝ
▪

═
Ѝ
▪

 

By using initial conditions ◊ ◊  one can get the values of ═ ╪▪▀ ═  

That is      ═
Ѝ

Ѝ
  ╪▪▀    ═

Ѝ

Ѝ
 

Then general solution becomes◊▪
Ѝ

Ѝ
Ȣ

Ѝ
▪

Ѝ

Ѝ
Ȣ

Ѝ
▪

                                         

thus      ◊▪ Ѝ

Ѝ
▪

Ѝ
▪

  as the final solution. 
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To solve ◊▪ ▬◊▪ ▲◊▪   ▌░○▄▪ ◄▐╪◄ ◊ ȟ◊  ╪▪▀ ▬ ▲                               

then      ▬◊▪ ◊▪ ▲◊▪         

Guess  ◊▪ ═◌▪  then ▬═◌▪ ═◌▪ ▲═◌▪   ᵼ▬◌ ◌ ▲                           

The two roots are readily determined  ◌    ╪▪▀ ◌
▲

▬
                                                          

This suggest a general solution ◊▪ ═ ▪ ═
▲

▬

▪

      ▬►▫○░▀▄▀ ▬ ▲                                                                        

By using initial conditions ◊ ȟ◊  ╪▪▀ ▬ ▲ one can get the values of 

═ ╪▪▀ ═       That are ═     ═
▲

▬

■                                                                                        

thus     ◊▪

▲

▬

▪

▲

▬

■   as the final solution. 



 

 

× SECOND ORDER INHOMOGENEOUS LINEAR DIFFERENCE EQUATION 

To solve ○▪ ▬○▪ ▲○▪   ▌░○▄▪ ◄▐╪◄ ○ ○  ╪▪▀ ▬ ▲          

then ▬○▪ ○▪ ▲○▪           

Now equation is solved in two steps. First, deem the right hand side to be zero and 

solve as for the homogeneous case, ○▪ ═ ▪ ═
▲

▬

▪

     ▬►▫○░▀▄▀ ▬ ▲      

then augmented this solution by some f(n) which has to be given further thought:      

○▪ ═ ▪ ═
▲

▬

▪

█▪           this augmented ○▪ has to be such that when 

substituted into ▬○▪ ○▪ ▲○▪   the result is  -1 

Now using █▪ ▓▪  and applying initial conditions we get the general solution 

○▪ ═ ═
▲

▬

▪ ▪

▲ ▬
 

 

 

EXAMPLE: Solve the first order equation ◐▓ ▓◐▓ ▓ given the initial 

condition ◐  

SOLUTION: Values are simply found by doing indicated addition and multiplication 

that are ◐ ȟ◐ ȟ◐ ȟ◐ ȟ◐   and so on. 

 

 

EXAMPLE: Solve the first order equation ◐▓ ◐▓ ◐▓                         

SOLUTION: Here we have ╪ ╪  the only root of ► ►  is r=1  

this means that ◊▓  ╪▪▀ ○▓ ▓  are solutions and that ◐▓ ╬ ╬▓ is a 

family of solutions. This is hardly surprising in view of the fact that this difference 

equation may be written as Ў◐▓  

 

 

EXAMPLE: Solve by direct computation the second order initial value problem 

◐▓ ◐▓ ◐▓     Ƞ      ◐ ȟ◐                                                               

SOLUTION: taking   ▓ ȟȟȟȣȣȣȢ   We can easily find the successive values 

of ◐▓ that are  1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 ΧΧΧΧΧΧΧ which are known as 

Fibonacci numbers. The computations clearly show a growing solution but does 

not bring out its exact character. 

 

                                                                       

  



 

 

METHODS FOR NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS 

SINGLE STEP METHODS:    ! ǎŜǊƛŜǎ ŦƻǊ ΨȅΩ ƛƴ ǘŜǊƳǎ ƻŦ ǇƻǿŜǊ ƻŦ ΨȄΩ ŦƻǊƳ ǿƘƛŎƘ ǘƘŜ value of 

ΨȅΩ ŀǘ ŀ ǇŀǊǘƛŎǳƭŀǊ ǾŀƭǳŜ ƻŦ ΨȄΩ Ŏŀƴ ōŜ ƻōǘŀƛƴŜŘ ōȅ Řƛrect substitution                                             

e.g. ¢ŀȅƭƻǊΩǎΣ tƛŎŀǊŘΩǎΣ 9ǳƭŜǊΩǎΣ aƻŘƛŦƛŜŘ 9ǳƭŜǊΩǎ aŜǘƘƻŘΦ  

MULTI - STEP METHODS:   In multi-step methods, the solution at any poiƴǘ ΨȄΩ ƛǎ ƻōǘŀƛƴŜŘ 

using the solution at a number of previous points.                                                                

(Predictor- corrector method, !ŘŀƳΩǎ aƻǳƭǘƻƴ aŜǘƘƻŘΣ !ŘŀƳΩǎ Bash forth Method) 

REMARK   

There are some ODE that cannot be solved using the standard methods. In such situations we 

apply numerical methods. These methods yield the solutions in one of two forms. 

(i) ! ǎŜǊƛŜǎ ŦƻǊ ΨȅΩ ƛƴ ǘŜǊƳǎ ƻŦ ǇƻǿŜǊǎ ƻŦ ΨȄΩ ŦǊƻƳ ǿƘƛŎƘ ǘƘŜ ǾŀƭǳŜ ƻŦ ΨȅΩ Ŏŀƴ ōŜ ƻōǘŀƛƴŜŘ 

by direct substitution. e.g. TaylƻǊΩǎ ŀƴŘ tƛŎŀǊŘΩǎ ƳŜǘƘƻŘ  

(ii) A set of tabulated values of ΨxΩ ŀƴŘ ΨȅΩ. eΦƎΦ ŀƴŘ 9ǳƭŜǊΩǎΣ Runge Kutta  

 

ADVANTAGE/DISADVANTAGE OF MULTI - STEP METHODS 

They are not self-starting. To overcome this problem, the single step method with some order 

of accuracy is used to determine the starting values. 

Using these methods one step method clears after the first few steps. 

LIMITATION (DISADVANTAGE) OF SINGLE STEP METHODS. 

For one step method it is typical, for several functions evaluation to be needed. 

IMPLICIT METHODS 

Method that does not directly give a formula to the new approximation.  A need to get it, 

need an implicit formula for new approximation in term of known data. These methods also 

known as close methods. It is possible to get stable 3rd order implicit method. 

EXPLICIT METHODS 

Methods that not directly give a formula to new approximation and need an explicit formula 

for new approximation ͼ◐░ ͼ in terms of known data. These are also called open methods. 



 

 

Most Authorities proclaim that it is not necessary to go to a higher order method. Explain. 

Because the increased accuracy is offset by additional computational effort. 

If more accuracy is required, then either a smaller step size.  OR an adaptive method should 

be used. 

CONSISTENT METHOD:  A multi-step mŜǘƘƻŘ ƛǎ ŎƻƴǎƛǎǘŜƴǘ ƛŦ ƛǘ Ƙŀǎ ƻǊŘŜǊ ŀǘ ƭŜŀǎǘ ƻƴŜ άмέ 
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Given ● , smooth function. Expand it at point ● ╬ then  

 █● █╬ ● ╬█╬
● ╬

Ȧ
█ ╬ ỄȣȣȣȢ 

 ᵼ █╬ В   
● ╬▓

▓Ȧ
█▓▓       ¢Ƙƛǎ ƛǎ ŎŀƭƭŜŘ ¢ŀȅƭƻǊΩǎ ǎŜǊƛŜǎ ƻŦ ΨŦΩ ŀǘ ΨŎΩ 

If    ● ╬ ▐    ╪▪▀    █● ◐      ◄▐▄▪  ᵼ╬ ● ▐ 

 ◐● ▐ ◐● ▐◐ ●
▐

Ȧ
  ◐ ● Ễȣȣȣȣȣȣ 

MECLAURIN SERIES FROa ¢!¸[hwΩ{ 

If we put ╬  ƛƴ ¢ŀȅƭƻǊΩǎ ǎŜǊƛŜǎ ǘƘŜƴ 

 █● █ ●█
●

Ȧ
 █

●

Ȧ
   █ ỄȣȢȣ В    

●▓

▓Ȧ
 █▓▓  

!5±!b¢!D9 hC ¢!¸[hwΩ{ {9wL9{ 

(1)  One step, Explicit. 

(2)  Can be high order. 

(3)  Easy to show that global error is the same as local truncation error. 

(4)  Applicable to keep the error small. 

DISADVANTAGE 

Need to explicit form of the derivatives of function. That is why not practical. 
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Assume █▓●   ▓ ▪ are continuous functions. Call 

 █▪● В  
● ╬▓

▓Ȧ

▪
▓  █▓╬    Then first ▪  term is Taylor series  

Then the error is   

  ╔▪ █● █▪●В   
● ╬▓

▓Ȧ▓ ▪   █▓╬
● ╬▪

▪ Ȧ
  █▪   ɘ 

²ƘŜǊŜ Ψɘᴂ iǎ ǎƻƳŜ Ǉƻƛƴǘ ōŜǘǿŜŜƴ ΨȄΩ ŀƴŘ ΨŎΩ . 

CONVERGENCE 

! ¢ŀȅƭƻǊΩǎ ǎŜǊƛŜǎ ŎƻƴǾŜǊƎŜǎ ǊŀǇƛŘƭȅ ƛŦ ΨȄΩ ƛǎ nears ΨŎΩ ŀƴŘ ǎƭƻǿƭȅ (or not at all) ƛŦ ΨȄΩ ƛǎ ŦƻǊ ŀǿŀȅ 

ŦƻǊƳ ΨŎΩ.  

EXAMPLE 

Obtain numerically the solution of   ◐ ◄ ◐  Ƞ  ◐     using Taylor Series method to 

ŦƛƴŘ ΨȅΩ ŀǘ 1.3 

SOLUTION 

◐ ◄ ◐ȣȣȣȢ░   

◐ ◄ ◐◐ȣȣȣȢ░░         ◐ ◐ ◐◐ ȣȣȣȢ░░░ 

  ◐ ◐◐ ◐◐ ȣȣȣȢ░○        ...... ................................and so on.                              

where  ◐   ╪▪▀  ◄  ȟ▐ ◄ ◄ Ȣ   

therefore ░ᵼ◐ , ░░ᵼ◐ , ░░░ᵼ◐ , ░○ᵼ◐░○ ,........................... 

Now by using formula   ◐◄ ▐ ◐◄ ▐◐ ◄
▐

Ȧ
  ◐ ◄ Ễȣȣȣȣȣ                 

we get  

 ◐ Ȣ ◐ Ȣ Ȣ  as required. 

 

 

 



 

 

QUESTION: Explain Taylor Series method for solving an initial value problem described by 
▀◐

▀●
█●ȟ◐Ƞ ȣȣȣȣȣȣȣ ░  ◌░◄▐   ◐● ◐ 

SOLUTION 

IŜǊŜ ǿŜ ŀǎǎǳƳŜ ǘƘŀǘ ŦόȄΣȅύ ƛǎ ǎǳŦŦƛŎƛŜƴǘƭȅ ŘƛŦŦŜǊŜƴǘƛŀōƭŜ ǿƛǘƘ ǊŜǎǇŜŎǘ ǘƻ ΨȄΩ ŀƴŘ ΨȅΩ  LŦ ȅόȄύ ƛǎ 

exact solution of (i) we can expand by Taylor Series about the point ● ● and obtain 

◐● ◐● ● ● ◐ ●
● ●

Ȧ
  ◐ ● Ễȣȣȣȣȣȣ 

Since the solution is not known, the derivatives in the above expansion are known explicitly. 

IƻǿŜǾŜǊ ΨŦΩ ƛǎ ŀǎǎǳƳŜ ǘƻ ōŜ ǎǳŦŦƛŎƛŜƴǘƭȅ ŘƛŦŦŜǊŜƴǘƛŀōƭe and therefore the derivatives can be 

ƻōǘŀƛƴŜŘ ŘƛǊŜŎǘƭȅ ŦǊƻƳ ǘƘŜ ƎƛǾŜƴ ŘƛŦŦŜǊŜƴǘƛŀōƭŜ Ŝǉǳŀǘƛƻƴ ƛǘǎŜƭŦΦ bƻǘƛƴƎ ǘƘŀǘ ΨŦΩ ƛǎ ŀƴ ƛƳǇƭƛŎƛǘ 

ŦǳƴŎǘƛƻƴ ƻŦ ΨȅΩ Φ ǿŜ ƘŀǾŜ ◐ █●ȟ◐ 

ᵼ◐
▀

▀●
◐

▀

▀●
█●ȟ◐

▀█

▀●

⸗█

⸗●
Ȣ
▀●

▀●

⸗█

⸗◐
Ȣ
▀◐

▀●
█● █◐Ȣ█ 

ᵼ◐
▀

▀●
◐

▀

▀●
█●

▀

▀●
█◐Ȣ█ȣȣȣȣȣȣȣȣȣ ░░  

Now    
▀

▀●
█●

⸗█●

⸗●
Ȣ
▀●

▀●

⸗█●

⸗◐
Ȣ
▀◐

▀●
█●● █●◐Ȣ█   ȣȣȣȣȣȣȣ ╪ 

▀

▀●
█◐Ȣ█ █◐Ȣ

▀█

▀●
█Ȣ
▀█◐

▀●
█◐Ȣ█● ██◐ ██◐● ██◐◐  ȣȣȣȣȣȣȣ ╫ 

Using (a) and (b) in (ii) we get 

ᵼ◐ █●● █●◐Ȣ█   █◐Ȣ█● ██◐ ██◐● ██◐◐ 

ᵼ◐ █●● ██●◐   █◐Ȣ█● ██◐ ██◐◐      Ḉ█●◐ █◐● 

/ƻƴǘƛƴǳƛƴƎ ƛƴ ǘƘƛǎ ƳŀƴƴŜǊ ǿŜ Ŏŀƴ ŜȄǇǊŜǎǎ ŀƴȅ ŘŜǊƛǾŀǘƛǾŜ ƻŦ ΨȅΩ ƛƴ ǘŜǊƳ ƻŦ █●ȟ◐ and its 

partial derivatives. 

 

 

 

 

 



 

 

EULERΩ{ METHOD 

To find the solution of the given Differential Equation in the form of a recurrence relation       

◐□ ◐□ ▐█◄□ȟ◐□   Is called Euler Method 

FORMULA DERIVATION 

Consider the differential Equation of the first order 

 
▀◐

▀●
█◄ȟ◐           ╪▪▀    ◐◄ ◐ 

Let ◄ȟ◐   and ◄ȟ◐  be two points of approximation curve. Then 

 ◐ ◐ □ ● ●            ȣȣȣȢȢ░    ▬▫░▪◄ ╢■▫▬▄ █▫►□ 

Given That      
▀◐

▀◄
█◄ȟ◐

▀◐

▀◄
ȿ◄ȟ◐ █◄ȟ◐ □ █◄ȟ◐  

     ░  ◐ ◐ █◄ȟ◐ ● ●  ◐ ◐ ● ● █◄ȟ◐  

Similarly 

             ◐ ◐ ● ● █◄ȟ◐  

             ◐ ◐ ● ● █◄ȟ◐  

              ể          ể                      ể 

            ◐□ ◐□ ●□ ●□ █◄□ȟ◐□  

       ◐□ ◐□ ▐█◄□ȟ◐□       ░▼ ╬╪■■▄▀ ╔◊■▄► ╜▄◄▐▫▀Ȣ 

.!{9 hC 9¦[9wΩ{ a9¢Ih5 

In this method we use the property that in a small interval, a curve is nearly a Straight Line. 

Thus at ◄ȟ◐   We approximate the Curve by a tangent at that point. 

OBJECT (PURPOSE) OF METHOD 

¢ƘŜ ƻōƧŜŎǘ ƻŦ 9ǳƭŜǊΩǎ aŜǘƘƻŘ ƛǎ ǘƻ ƻōǘŀƛƴ ŀǇǇǊƻȄƛƳŀǘƛƻƴǎ ǘƻ ǘƘŜ ǿŜƭƭ ǇƻǎŜŘ ƛƴƛǘƛŀƭ Ǿŀƭue 

problem        
▀◐

▀◄
█◄ȟ◐        Ƞ╪ ◄ ╫  Ƞ◐╪ ╪ 

 



 

 

GEOMETRICAL INTERPRETATION 

Geometrically, this method has a very simple meaning. The desired function curve is 

approximated by a polygon train. Where the direction of each part is determined by the value 

of the function █◄ȟ◐ at its starting point 

Also   ◐□ ◐□ ▐█◄□ȟ◐□  Shows that the next approximation ◐□ is obtained at the 

point where the tangent to the graph of ◐◄ ╪◄ ◄ ◄░ interest with the vertical line ◄ ◄□  

LIMITATION OF EULER METHOD 

There is too much inertia in Euler Method. One should not follow the same initial slope over 

the whole inteǊǾŀƭ ƻŦ ƭŜƴƎǘƘ άƘέΦ 

EULER METHOD IN VECTOR NOTATION 

Consider the system 
▀╨

▀◄
╕╨ where ╨ ●ȟ◐ȟ

▀╨

▀◄

▀●

▀◄
ȟ
▀◐

▀◄
 and ╕╨ █●ȟ◐ȟ▌●ȟ◐  

if we are given the initial condition ╨ ●ȟ◐  then Euler method approximate a solution 

(x, y) by       ●▓ ȟ◐▓ ●▓ȟ◐▓ Ў◄╕●▓ȟ◐▓  

ADVANTAGE/DISADVANTAGE OF EULER METHOD  

¢ƘŜ ŀŘǾŀƴǘŀƎŜ ƻŦ 9ǳƭŜǊΩǎ ƳŜǘƘƻŘ ƛǎ ǘƘŀǘ ƛǘ ǊŜǉǳƛǊŜǎ ƻƴƭȅ ƻƴŜ ǎƭƻǇŜ ŜǾŀƭǳŀǘƛƻƴ ŀƴŘ ƛǎ ǎƛƳǇƭŜ ǘƻ 

apply, especially for discretely sampled (experimental) data points. The disadvantage is that 

errors accumulate during successive iterations and the results are not very accurate. 

 

EXAMPLE:   Obtain numerically the solution of   ◐ ◄ ◐  Ƞ  ◐ Ȣ    using simple 

9ǳƭŜǊ ƳŜǘƘƻŘ ǘƻ ŦƛƴŘ ΨȅΩ ŀǘ лΦм 

SOLUTION:       ◐ ◄ ◐ █◄ȟ◐  where  ◐ Ȣ  ╪▪▀  ◄    

Then   ▪
◄◄

▐

Ȣ

Ȣ
 ▪◊□╫▄► ▫█ ▼◄▄▬▼                     Ḉ▐ ◄ ◄ 

Now by using formula   ◐□ ◐□ ▐█◄□ȟ◐□   we get  

 ◐ Ȣ ◐ ◐ ▐█◄ȟ◐ Ȣ  as required. 

 



 

 

MODIFIED EULER METHOD 

aƻŘƛŦƛŜŘ 9ǳƭŜǊΩǎ aŜǘƘƻŘ ƛǎ ƎƛǾŜƴ ōȅ ǘƘŜ ƛǘŜǊŀǘƛƻƴ ŦƻǊƳǳƭŀ 

 ◐□ ◐□
▐
█◄□ȟ◐□ █◄□ ȟ◐□  

Method also known as Improved Euler method sometime known as Runge Kutta method of 

order 2 

 

CONVERGENCE FOR EULER METHOD 

Assume that f ◄ȟ◐ has a Lipschitz constant L, for ǘƘŜ ǾŀǊƛŀōƭŜ ΨȅΣ ŀƴŘ ǘƘŀǘ ǘƘŜ ǎƻlution ◐░ of 

the initial value problem ◐ █◄ȟ◐ȟ◄ɴ ╪ȟ╫ȟ◐╪ ◐╪  at ◄░ is 

 Approximated by  ◌░ ◐◄░  using Euler Method  

Let ΨMΩ be an upper bound for ȿ◐▪◄ȿ on ╪ȟ╫ then   ◌░ ◐░
╜▐

■
▄╛◄░╪  

 

DARIVATION OF MODIFIED EULER METHOD 

Consider the differential Equation of 1st  order   
▀◐

▀◄
█◄ȟ◐ and  ◐◄ ◐ 

¢ƘŜƴ ōȅ 9ǳƭŜǊΩǎ aŜǘƘƻŘ  

 ◐ ◐ ▐█◄ȟ◐               ḉ▐ ◄░ ◄░ 

 ◐ ◐
▐
█◄ȟ◐ █◄ȟ◐  

 ◐ ◐
▐
█◄ȟ◐ █◄ȟ◐  

 ể            ể                         ể 

 ◐□ ◐□
▐
█◄□ȟ◐□ █◄□ ȟ◐□  

 

 



 

 

EXAMPLE: Obtain numerically the solution of   ◐ ■▫▌◄ ◐  Ƞ  ◐     using modified 

9ǳƭŜǊ ƳŜǘƘƻŘ ǘƻ ŦƛƴŘ ΨȅΩ ŀǘ лΦн 

SOLUTION: Take h = 0.1 (own choice) and  ◄  ȟ◄ ◄ ▐ Ȣ ȟ◄ Ȣ 

bƻǿ ǳǎƛƴƎ 9ǳƭŜǊΩǎ ƳŜthod    ◐ ◐ ▐█◄ȟ◐  

¢ƘŜƴ ōȅ ǳǎƛƴƎ 9ǳƭŜǊΩǎ ƳƻŘƛŦƛŜŘ ƳŜǘƘƻŘ 

 ◐ ◐
▐
█◄ȟ◐ █◄ȟ◐ Ȣ  

!Ǝŀƛƴ ǳǎƛƴƎ 9ǳƭŜǊΩǎ ƳŜǘƘƻŘ    ◐ ◐ ▐█◄ȟ◐ Ȣ  

¢ƘŜƴ ōȅ ǳǎƛƴƎ 9ǳƭŜǊΩǎ ƳƻŘƛŦƛŜŘ ƳŜǘƘƻŘ 

 ◐ ◐
▐
█◄ȟ◐ █◄ȟ◐ Ȣ  ◐ ◐ Ȣ Ȣ  

RUNGE KUTTA METHODS 

Basic idea of Runge Kutta Methods can be explained by using Modified EuleǊΩǎ aŜǘƘƻŘ ōȅ 

Equation      ◐□ ◐▪ ▐  ╪○▄►╪▌▄ ▫█ ▼■▫▬▄▼ 

IŜǊŜ ǿŜ ŦƛƴŘ ǘƘŜ ǎƭƻǇŜ ƴƻǘ ƻƴƭȅ ŀǘ Ψ◄▪Ω ōǳǘ ŀƭǎƻ ŀǘ ǎŜǾŜǊŀƭ ƻǘƘŜǊ ƛƴǘŜǊƛƻǊ Ǉƻƛƴǘǎ ŀƴŘ ǘŀƪŜ ǘƘŜ 

ǿŜƛƎƘǘŜŘ ŀǾŜǊŀƎŜ ƻŦ ǘƘŜǎŜ ǎƭƻǇŜǎ ŀƴŘ ŀŘŘ ǘƻ Ψ◐▪ Ψ ǘƻ ƎŜǘ Ψ◐▪ ΩΦ 

ALSO RK-Approach is to aim for the desirable features for the Taylor Series method but with 

the replacement of the requirement for the evaluation of the higher order derivatives with 

the requirement to evaluate █●ȟ◐ at some points with in the steps ᴂ●dᴂ ǘƻ Ψ●░ Ω 

IMPORTANCE: Quite Accurate, Stable and easy to program but requires four slopes 

evaluation at four different points of (x,y): these slope evaluations are not possible for 

discretely sampled data points, because we have is what is given to us and we do not get to 

choose at will where to evaluate slopes. These methods do not demand prior computation of 

higher derivatives of ◐◄ as in Taylor Series Method. Easy for automatic Error control. Global 

and local errors have same order in it. 

DIFFERENCE B/W TAYLOR SERIES AND RK-METHOD 

  (ADVANTAGE OF RK OVER TAYLOR SERIES) 

Taylor Series needs to explicit form of derivative of █ ◄ȟ◐ but in RK-method this is not in 

demand. RK-method very extensively used. 



 

 

SECOND ORDER RUNGE KUTTA METHOD 

WORKING RULE:     For a given initial value problem of first order   ◐ █●ȟ◐     ȟ     ◐● ◐ 

Suppose ͼ●ȟ●ȟ●ȣȣȣͼ ōŜ Ŝǉǳŀƭƭȅ ǎǇŀŎŜŘ ΨȄΩ ǾŀƭǳŜǎ ǿƛǘƘ ƛƴǘŜǊǾŀƭ ΨƘΩ 

 i.e.    ● ● ▐   ȟ    ●  ● ▐  ȟȣȣȣȣȢȢ 

Also denote ◐ ◐● ȟ    ◐ ◐● ȟ   ◐ ◐● ȣȣȣȣȣȢȢ 

Then for Ȱ▪ ȟȟȣȣȣȢȢȱ until termination do: 

 ●▪ ●▪ ▐   ,,   ▓▪ ▐█●▪ȟ◐▪     ,,    ╘▪ ▐█●▪ ȟ◐▪ ▓▪  

Then          ◐▪ ◐▪  (▓▪ ╘▪   Is the formula for second order RK-method. 

REMARK:   Modified Euler Method is a special case of second order RK-Method. 

IN ANOTHER WAY:     If   ▓ ▐█●▓ȟ◐▓ȟ           ▓ ▐█●▓ ȟ◐▓ ▓  

Then Equation for second order method is   ◐▓ ◐▓ ▓ ▓                                             

This is called IŜǳƴΩǎ aŜǘƘƻŘ 

ANOTHER FORMULA FOR SECOND ORDER RK-METHOD 

 ◐▪ ◐▪ ▓ ▓      Where  ▓ ▐█◄▪ȟ◐▪     ȟ   ▓ ▐█◄▪ ▐ ȟ◐▪ ▓   

LOCAL TRUNCATION ERROR IN RK-METHOD. 

LTE in RK-method is the error that arises in each step simply because of the truncated Taylor 

series. This error is inevitable. Error of Runge Kutta method of order two involves an error of 

O ▐ . 

In General RK-methƻŘ ƻŦ ƻǊŘŜǊ ΨƳΩ ǘŀƪŜǎ ǘƘŜ ŦƻǊƳ    ●▓ ●▓ ◌▓ ◌▓ Ễ ◌□▓□ 

Where     ▓ ▐Ȣ█◄▓ȟ●▓     ȟ▓ ▐█◄▓ ╪▐ȟ● ╫▓   

 ▓ ▐ █◄▓ ╪▐ȟ● ╫▓ ╬▓  ΧΧΧΧΧΧΧΦΧΦΦ▓□  ▐Ȣ█◄▓ ╪□▐ȟ● В ░ɲ ▓░
□
░  

MULTI STEP METHODS OVER RK-METHOD (PREFRENCE):    Determination of ◐░  

require only on evaluation of █ ◄ȟ◐ per step. Whereas RK-method for ▪  require four or 

more function evaluations. For this reason, multi-step methods can be twice as fast as         

RK-method of comparable Accuracy.  



 

 

EXAMPLE: use second order RK method to solve 
▀◐

▀●

◐ ●

◐ ●
█●ȟ◐ Ƞ◐                            

at x =0.4 and h=0.2 

SOLUTION:   
▀◐

▀●

◐ ●

◐ ●
█●ȟ◐    ȣȣȣȣȣȣȢ░ 

LŦ ΨƘΩ ƛǎ ƴƻǘ ƎƛǾŜƴ ǘƘŜƴ ǳǎe by own choice for 4 ς step take h=0.1 and for 1 ς step take h=0.4 

Given that h=0.2 , ● ȟ● ● ▐ Ȣȟ● Ȣ 

Now using formula of order two 

◐▪ ◐▪ ▓ ▓      Where  ▓ ▐█●▪ȟ◐▪     ȟ   ▓ ▐█●▪ ▐ ȟ◐▪ ▓      

 ▓ ▐█●ȟ◐ Ȣȟ      ▓ ▐█●▪ ▐ ȟ◐▪ ▓ Ȣ   

For n = 0; ▓ ▐█●ȟ◐ Ȣȟ      ▓ ▐█● ▐ ȟ◐ ▓ Ȣ   

  ░ ◐ ◐ ▓ ▓ Ȣ ◐ Ȣ Ȣ  

For n = 1; ▓ ▐█●ȟ◐ Ȣ ȟ      ▓ ▐█● ▐ ȟ◐ ▓ Ȣ   

 ░ ◐ ◐ ▓ ▓ Ȣ ◐ Ȣ Ȣ  

CLASSICAL RUNGE KUTTA METHOD (RK ς METHOD OF ORDER FOUR) 

ALORITHM:     Given the initial value problem of first order ◐ █●ȟ◐     ȟ     ◐● ◐ 

Suppose ͼ●ȟ●ȟ●ȣȣȣͼ ōŜ Ŝǉǳŀƭƭȅ ǎǇŀŎŜŘ ΨȄΩ ǾŀƭǳŜǎ ǿƛǘƘ ƛƴǘŜǊǾŀƭ ΨƘΩ 

 i.e.    ● ● ▐   ȟ    ●  ● ▐  ȟȣȣȣȣȢȢ                                                                                    

Also denote ◐ ◐● ȟ    ◐ ◐● ȟ   ◐ ◐● ȣȣȣȣȣȢȢ 

Then for Ȱ▪ ȟȟȣȣȣȢȢȱ until termination do: 

●▪ ●▪ ▐   ,,   ▓ ▐█●▪ȟ◐▪      ▓ ▐█●▪
▐
ȟ◐▪

▓
                                                 

▓ ▐█●▪
▐
ȟ◐▪

▓
     ▓ ▐█●▪ ▐ȟ◐▪ ▓  

Then       ◐▪  ▓ ▓ ▓ ▓ ◐▪  

Is the formula for Runge Kutta method of order four and its error is ͼ╞▐ ͼ 

Ḉὲ
ὼ ὼ

Ὤ
 

n = 2 steps 



 

 

ADVANTAGE OF METHOD 

¶ Accurate method.  

¶ Easy to compute for the use of 

computer.  

¶ It lakes in estimating the error. 

¶ Easy to program and is efficient. 

COMPUTATIONAL COMPARISON:    The main computational effort in applying the 

Runge Kutta method is the evaluation of Ȭ█ȭ. In RK ς 2 the cost is two function evaluation per 

step. In RK ς 4 require four evaluations per step.  

EXAMPLE: use 4th order RK method to solve 
▀◐

▀●
◄ ◐Ƞ◐  from t =0  to 0.4  taking h = 0.4 

SOLUTION:      
▀◐

▀●
◄ ◐   ȣȣȣȣȣȣȢ░                                                                                        

▐ Ȣȟ◄ ȟ◄ ◄ ▐ Ȣ   ȟ    ◄  Ȣ  ȟ◄  Ȣȟ◄  Ȣ 

Now using formulas for the RK method of 4th order                                                                        

◐▪  ▓ ▓ ▓ ▓ ◐▪  ȣȣȣȣȣȣ ░░ 

Where  ▓ ▐█◄▪ȟ◐▪   ,   ▓ ▐█◄▪
▐
ȟ◐▪

▓
    ,   ▓ ▐█◄▪

▐
ȟ◐▪

▓
     ▓ ▐█◄▪ ▐ȟ◐▪ ▓  

STEP I : for n=0; 

▓ ▐█◄ȟ◐ Ȣ  ,   ▓ ▐█◄
▐
ȟ◐

▓
Ȣ                                                         

▓ ▐█◄
▐
ȟ◐

▓
Ȣ      ▓ ▐█◄ ▐ȟ◐ ▓ Ȣ                                    

░░ ◐ ◐ Ȣ  ▓ ▓ ▓ ▓ ◐ Ȣ   

STEP II : for n=1; 

▓ ▐█◄ȟ◐ Ȣ   ,   ▓ ▐█◄
▐
ȟ◐

▓
Ȣ                                                         

▓ ▐█◄
▐
ȟ◐

▓
Ȣ      ▓ ▐█◄ ▐ȟ◐ ▓ Ȣ                                    

░░ ◐ ◐ Ȣ  ▓ ▓ ▓ ▓ ◐ Ȣ   

STEP III : for n=2; 

▓ ▐█◄ȟ◐ Ȣ   ,   ▓ ▐█◄
▐
ȟ◐

▓
Ȣ                                                    

▓ ▐█◄
▐
ȟ◐

▓
Ȣ      ▓ ▐█◄ ▐ȟ◐ ▓ Ȣ                                    

░░ ◐ ◐ Ȣ  ▓ ▓ ▓ ▓ ◐ Ȣ                                                   

THIS IS REQUIRED ANSWER 



 

 

PREDICTOR - CORRECTOR METHODS 

A predictor corrector method refers to the use of the predictor equation with one subsequent 

application of the corrector equation and the values so obtained are the final solution at the 

grid point. 

PREDICTOR FORMULA 

The explicit (open) formula used to predict approximation ͼ◐░
▪ ͼis called a predictor formula. 

CORRECTOR FORMULA 

The implicit (closed) formula used to determine ͼ◐░
▪ ͼis called Corrector Formula. This used 

to improve ͼ◐░ ͼ 

IN GENERAL 

Explicit and Implicit formula are used as pair of formulas. The explicit formula is called 

ΨǇǊŜŘƛŎǘƻǊΩ ŀƴŘ ƛƳǇƭƛŎƛǘ ŦƻǊƳǳƭŀ ƛǎ ŎŀƭƭŜŘ ΨŎƻǊǊŜŎǘƻǊΩ 

 

LƳǇƭƛŎƛǘ ƳŜǘƘƻŘǎ ŀǊŜ ƻŦǘŜƴ ǳǎŜŘ ŀǎ ΨŎƻǊǊŜŎǘƻǊΩ ŀƴŘ 9ȄǇƭƛŎƛǘ ƳŜǘƘƻŘǎ ŀǊŜ ǳǎŜŘ ŀǎ ΨǇǊŜŘƛŎǘƻǊΩ ƛƴ 

predictor-corrector method. why? 

Because the corresponding Local Truncation Error formula is smaller for implicit method on 

the other hand the implicit methods has the inherent difficulty that extra processing is 

necessary to evaluate implicit part. 

REMARK 

¶ Truncation Error of predictor is ╔▬ ▐◐▓    ╞╡  ▐Ў◐ 

¶ [ƻŎŀƭ ¢ǊǳƴŎŀǘƛƻƴ 9ǊǊƻǊ ƻŦ !ŘŀƳΩǎ tǊŜŘƛŎǘƻǊ ƛǎ  ▐◐  

¶ Truncation Error of Corrector is  ▐Ў◐ 

 

Why Should one bother using the predictor corrector method When the Single step method 

are of the comparable accuracy to the predictor corrector methods are of the same order? 

A practical answer to that relies in the actual number of functional evaluations. For example, 

RK - Method of order four, each step requires four evaluations where the Adams Moulton 

method of the same order requires only as few as two evaluations. For this reason, predictor 

corrector formulas are in General considerably more accurate and faster than single step 

methods. 



 

 

REMEMBER 

In predictor corrector method if values of ͼ◐ȟ◐ȟ◐ȣȣȣͼ against the values of 

ͼ●ȟ●ȟ●ȣȣȣͼ are given the we use symbol predictor corrector method and in this 

method we use given values ofͼ◐ȟ◐ȟ◐ȣȣȣͼ 

 

If ͼ◐ȟ◐ȟ◐ȣȣȣͼ Are not given against the values of ͼ●ȟ●ȟ●ȣȣȣͼ then we first find 

values of ͼ◐ȟ◐ȟ◐ȣȣȣͼ by using RK - method  

OR By using formula ᶅ ▒  ȟȟȣȣȣ▪  

 ◐▒ ◐ ▒▐◐  
▒▐

Ȧ
 ◐

▒▐

Ȧ
◐   ȣȣȣȣȢȢ 

 

BASE (MAIN IDEA) OF PREDICTOR CORRECTOR METHOS 

In predictor corrector methods a predictor formula is used to predict the value of Ȭ◐ȭ at ◄▪  

and then a corrector formula is used to improve the value of ◐▪  

Following are predictor ς corrector methods  

1. aƛƭƴŜΩǎ aŜǘƘƻŘ 

2. Adam ς Moulton method 

 

aL[b9Ω{ METHOD 

LǘΩǎ ŀ Ƴǳƭǘƛ-step method. In GenerŀƭΣ aƛƭƴŜΩǎ tǊŜŘƛŎǘƻǊ ς Corrector pair can be written as  

P: ὁ▪  ◐▪  
▐
◐▪ ◐▪ ◐▪    ▪  

C: ὁ▪  ◐▪  
▐
◐▪ ◐▪ ◐▪         ▪  

 

REMARK:  aŀƎƴƛǘǳŘŜ ƻŦ ǘǊǳƴŎŀǘƛƻƴ ŜǊǊƻǊ ƛƴ aƛƭƴŜΩǎ corrector formula is  ▐ Ў◐ 

ŀƴŘ ǘǊǳƴŎŀǘƛƻƴ ŜǊǊƻǊ ƛƴ aƛƭƴŜΩs predictor formula is ▐ Ў◐ 

stable, convergent, efficient, accurate, compeer friendly. 

 

ALGORITHM 

¶ First predict the value of ὁ▪  by above predictor formula. 

Where derivatives are computed using the given differential equation itself. 

¶ Using the predicted value ͼὁ▪  ͼ we calculate the derivative ◐▪ from the given 

differential Equation. 

¶ Then use the corrector formula given above for corrected value of ὁ▪  . Repeat this 

process. 



 

 

EXAMPLE: use aƛƭƴŜΩǎ method to solve 
▀◐

▀●
◐    Ƞ◐   and compute y(0.8) 

SOLUTION:     ▐ Ȣȟ● ȟ● ● ▐ Ȣ   ȟ    ●  Ȣ  ȟ●  Ȣ  ╪■▼▫    ◐  

bƻǿ ōȅ ǳǎƛƴƎ 9ǳƭŜǊΩǎ ƳŜǘƘƻŘ       ◐□ ◐□ ▐█◄□ȟ◐□                                                   

█▫► □ Ƞ     ◐ ◐ ▐█◄ȟ◐ Ȣ ◐ Ȣ                                                    

█▫► □ Ƞ     ◐ ◐ ▐█◄ȟ◐ Ȣ ◐ Ȣ                                                 

█▫► □ Ƞ     ◐ ◐ ▐█◄ȟ◐ Ȣ ◐ Ȣ  

Now              ◐▪ ◐▪ 

For n=1 ◐ ◐ Ȣ  

For n=2 ◐ ◐ Ȣ  

For n=3 ◐ ◐ Ȣ  

bƻǿ ǳǎƛƴƎ aƛƭƴŜΩǎ tǊŜŘƛŎǘƻǊ ŦƻǊƳǳƭŀ 

P: ὁ▪  ◐▪  
▐
◐▪ ◐▪ ◐▪    ▪  

 ὁ ◐ 
▐
◐ ◐ ◐ Ȣ   ◐ ◐ Ȣ   

Now using corrector formula 

C: ὁ▪  ◐▪  
▐
◐▪ ◐▪ ◐▪         ▪                                                                              

ὁ ◐ 
▐
◐ ◐ ◐ Ȣ ◐ Ȣ       
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The predictor ς ŎƻǊǊŜŎǘƻǊ ŦƻǊƳǳƭŀǎ ŦƻǊ !ŘŀƳΩǎ aƻǳƭton method are given as follows 

 ╟ȡ  ◐▪ ◐▪
▐

◐▪ ◐▪ ◐▪ ◐▪  

 ╒ȡ  ◐▪ ◐▪
▐
◐
▪

◐
▪

◐
▪

◐
▪

 

  REMARK 

¶ The predictor Truncation Error is ▐ ◐ᴂ▪ and Corrector Truncation Error 

is ▐ ◐ᴂ▪   

¶ ¢ǊǳƴŎŀǘƛƻƴ 9ǊǊƻǊ ƛƴ !ŘŀƳΩǎ ǇǊŜŘƛŎǘƻǊ ƛǎ ŀǇǇǊƻȄƛƳŀǘŜƭȅ 13-time more than that in the 

corrector. OF course with Opposite Sign.  

 

¶ In the predictor Corrector methods if ᴂ◐ᴂ is given another ◐ȟ◐ȣȢ or not Then Using 

Euler or RK or any other method we can find these. For example, by Euler method  

               ◐□ ◐□ ▐█◄□ ȟ◐□     For m=0    ᵼ◐ ◐ ▐█◄ ȟ◐  

 

EXAMPLEΥ ǳǎŜ !ŘŀƳΩǎ aƻǳƭton method to solve 
▀◐

▀◄
◐ ◄    Ƞ◐   at t = 1.0   taking 

h=0.2 and compare it with analytic solution.                                                                              

SOLUTION:    ƛƴ ƻǊŘŜǊ ǘƻ ǳǎŜ !ŘŀƳΩǎ aƻǳƭǘƻƴ ƳŜǘƘƻŘ ǿŜ ǊŜquire the solution of the given 

Differential equation at the past four equispaced points for which we have RK-4th order 

method which is self-starting. 

Using RK method we get  ◐ Ȣ ȟ◐ Ȣ ȟ◐ Ȣ                                

where   ▐ Ȣȟ◐ ȟ◄ ȟ◄ ◄ ▐ Ȣ   ȟ    ◄  Ȣ  ȟ◄  Ȣ  

Also in easy way we can find ◐ȟ◐ȟ◐ ōȅ ǳǎƛƴƎ 9ǳƭŜǊΩǎ ƳŜǘƘƻŘ ǿƛǘƘ ǎƻƳŜ ŜǊǊƻǊ ŀǎ Ŧƻƭƭƻǿǎ   

bƻǿ ōȅ ǳǎƛƴƎ 9ǳƭŜǊΩǎ ƳŜǘƘƻŘ       ◐□ ◐□ ▐█◄□ȟ◐□                                                   

█▫► □ Ƞ     ◐ ◐ ▐█◄ȟ◐ Ȣ                                                                 

█▫► □ Ƞ     ◐ ◐ ▐█◄ȟ◐ Ȣ                                                                 

█▫► □ Ƞ     ◐ ◐ ▐█◄ȟ◐ Ȣ                                                                                

now as              ◐▪ ◐▪ ◄▪                                                                                                                        

ᵼ◐ ◐ ◄ ᵼ◐ ◐ ◄ Ȣ ᵼ◐ ◐ ◄ Ȣ ᵼ◐ ◐ ◄ Ȣ  



 

 

bƻǿ ǳǎƛƴƎ !ŘŀƳΩǎ tǊŜŘƛŎǘƻǊ ŦƻǊƳǳƭŀ                                                                                                        

╟ȡ  ◐▪ ◐▪
▐

◐▪ ◐▪ ◐▪ ◐▪                                               

 ◐ ◐
▐

◐ ◐ ◐ ◐ Ȣ ◐ Ȣ ᵼ◐
▬ᴂ

◐ ◄ Ȣ  

bƻǿ ǳǎƛƴƎ !ŘŀƳΩǎ /ƻǊǊŜŎǘƻǊ ŦƻǊƳǳla                                                                                                          

╒ȡ  ◐▪ ◐▪
▐
◐
▪

◐
▪

◐
▪

◐
▪

                                                                        

ᵼ ◐ ◐
▐
◐ᴂ ◐ᴂ ◐ᴂ ◐ᴂ Ȣ ᵼ◐

╬
◐ ╬ ◄ Ȣ  

Proceeding in similar way we can get                                                                  

◐ ▬ Ȣ  ȟ◐▬ Ȣ ȟ◐ ╬ Ȣ ◐ Ȣ  

Now the analytic solution can be seen in the following steps                                                                             
▀◐

▀◄
◐ ◄     Then using integrating factor ▄◄ᵼ

▀

▀◄
◐▄◄ ◄▄◄ᵼ◐▄◄ ◄᷿▄◄ 

ᵼ◐ ◄ ◄ ╬▄◄                                                                                                                              

now using initial conditions ◐    we get c = -1 therefor analytic solution is  

ᵼ◐ ◄ ◄ ▄◄           ᵼ◐ Ȣ Ȣ                                                                                                                               

                                                                                                       

 

 

 


