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Here are few short comings of Riemann Integration. 

i. The class of Riemann Integration function is relatively small. 

ii. Riemann Integral does not satisfy limit properties *  + 
  of Riemann 

Integration functions on [a,b] such that           , then it is not 

necessarily true that           , then it is not necessarily true that  

      ∫  ( )  
 

 
 ∫  ( )  

 

 
 ∫ (    

   
 ( ))  

 

 
 

iii.    space except    fail to be complete under the integral norm. 

The main aim of this course is to develop a more satisfactory theory of integration 

to overcome above mentioned drawbacks. 

Muhammad Usman Hamid 

University of Sargodha 

The Riemann integral, dealt with in calculus courses, is well suited for 

computations but less suited for dealing with limit processes. In this course we will 

introduce the so called Lebesgue integral, which keeps the advantages of the 

Riemann integral and eliminates its drawbacks. 

Saima Akram 

University of Gujraat 
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Algebras 

Let X be an arbitrary non – empty set. A collection   of subsets of X is an algebra 

on X if 

(a) X ∈   

(b) For each set E that belongs to   ,the set E
c
 belongs to   

(c) For each finite sequence E1, E2 ,..., En of sets that belong to   ,the set 

    
   belongs to   

(d) For each finite sequence E1, E2 ,..., En of sets that belong to   ,the set 

    
    belongs to   . 

Of course, in conditions (b), (c), and (d),we have required that   be closed under 

complementation, under the formation of finite unions, and under the formation of 

finite intersections. It is easy to check that closure under complementation and 

closure under the formation of finite unions together imply closure under the 

formation of finite intersections (use that fact that     
    (    

   
 )  ). Thus we 

could have defined an algebra using only conditions (a), (b), and (c). A similar 

argument shows that we could have used only conditions (a), (b), and (d). 

Property: If   is algebra then    ∈   

Solution: Since     therefore  ∈   implies   ∈   

Now if     ∈   this implies       ∈  . Thus  ∈   

Also as  ∈   implies     ∈  . Thus  ∈   

Hence    ∈   

 

Property: If a finite sequence E1, E2 ,..., En of sets that belong to   ,the set     
    

belongs to   . 

Solution: If E1, E2 ,..., En ∈   implies   
    

      
 ∈   

Then by definition     
   

 ∈   

Implies by using de – Morgan‘s law     
    (    

   
 ) ∈   

 

Property: If    ∈   then    ∈                                                                         

Solution:  ∈     ∈   then     ∈   implies         ∈   
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Sigma-Algebras ( -Algebras) 

Let X be an arbitrary non – empty set. A collection   of subsets of  ( ) is a ζ-

algebra on X if 

(a) X ∈   

(b) For each set E that belongs to   ,the set E
c
 belongs to   

(c) For each infinite sequence E1, E2 ,..., En, En +1,… of sets that belong to   ,the 

set     
   belongs to   

(d) For each infinite sequence E1, E2 ,..., En, En +1,…  of sets that belong to  , 

the set     
    belongs to   . 

Thus a ζ-algebra on X is a family of subsets of X that contains X and is closed 

under complementation, under the formation of countable unions, and under the 

formation of countable intersections. Note that, as in the case of algebras, we could 

have used only conditions (a), (b), and (c), or only conditions (a), (b), and (d), in 

our definition. 

Each ζ-algebra on X is an algebra on X since, for example, the union of the finite 

sequence E1, E2 ,..., En is the same as the union of the infinite sequence E1, E2 ,..., 

En, En+1 .... 

If X is a set and   is a family of subsets of X that is closed under 

complementation, then X belongs to   if and only if   belongs to  . Thus in the 

definitions of algebras and ζ-algebras given above, we can replace condition (a) 

with the requirement that   be a member of   .Furthermore, if   is a family of 

subsets of X that is nonempty, closed under complementation, and closed under the 

formation of finite or countable unions, then   must contain X: if the set A 

belongs to  ,then X, since it is the union of E and E
c
, must also belong to   . Thus 

in our definitions of algebras and ζ-algebras, we can replace condition (a) with the 

requirement that   be nonempty. 

If   is a ζ-algebra on the set X, it is sometimes convenient to call a subset 

of X,   -measurable if it belongs to  . Also if algebra   is a finite collection of 

subsets of a set X, then it is ζ-algebra. Actually this follows from the fact that 

countable union of members of   is actually finite union of members of  . 

Remember that the smallest ζ-algebra on X is {  ,X} and called trivial 

  algebra. Also  ( ) is the largest   algebra on X 
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Examples: (Some Families of Sets That Are Algebras or σ-algebras, and Some 

That Are Not). 

Á Let X be a set, and let   be the collection of all subsets of X. Then   is a ζ-

algebra on X. 

Á Let X be a set, and let   = {  ,X}.Then   is a ζ-algebra on X. 

Á Let X be an infinite set, and let   be the collection of all finite subsets of X. 

Then   does not contain X and is not closed under complementation; hence 

it is not an algebra (or a ζ-algebra) on X. 

Á Let X be an infinite set, and let   be the collection of all subsets   of X 

such that either E or E
c 
is finite. Then   is an algebra on X (check this) but 

is not closed under the formation of countable unions; hence it is not a ζ-

algebra. 

Á Let X be an uncountable set, and let   be the collection of all countable 

(i.e., finite or countably infinite) subsets of X. Then   does not contain X 

and is not closed under complementation; hence it is not an algebra. 

Á Let X be a set, and let   be the collection of all subsets E of X such that 

either E or E
c 
is countable. Then   is a ζ-algebra. 

Á Let   be the collection of all subsets of   that are unions of finitely many 

intervals of the form (a,b], (a,+∞),or (−∞,b]. It is easy to check that each set 

that belongs to A is the union of a finite disjoint collection of intervals of the 

types listed above, and then to check that   is an algebra on   (the empty 

set belongs to   , since it is the union of the empty, and hence finite, 

collection of intervals). The algebra   is not a ζ-algebra; for example, the 

bounded open subintervals of   are unions of sequences of sets in   but do 

not themselves belong to  . 

Á The collection of intervals in [0,1] forms a semi algebra.    

 

Proposition: If   is sigma algebra then for *  + 
  in   we have     

   ∈   

Solution:  

Since *  + 
  is a sequence in sigma algebra   therefore *  

 + 
  is also in  .  

Then by definition     
   

 ∈   

Implies by using de – Morgan‘s law     
    (    

   
 ) ∈   
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Question:  Let X be a non – empty set. Then the collection                                       

  *                       + is a ζ-algebra on X 

Solution:  Let *  + 
  be a sequence in   then two cases arise; 

Case – I: If each    is countable then     
    is countable. Because countable 

union of countable set is countable. 

Case – II: Suppose   *             
              + 

Now        
    implies (    

   )
    

              

This means (    
   )

  is countable.      
  is countable 

Implies     
   ∈   . This prove that   is a ζ-algebra on X 

 

Proposition: Let X be a set. Then the intersection of an arbitrary nonempty 

collection of ζ-algebras on X is a ζ-algebra on X. 

Proof:  Let *  + 
  be a nonempty collection of ζ-algebras on X, we have to prove 

    
    is ζ-algebra.  

For this let   ∈     
     then   ∈              

Then   
 ∈              so that   

 ∈     
    

Let *  + 
  be the sequence in     

    then *  + 
  will be the sequence in 

           . Then     
   ∈             . So that     

   ∈     
             

Hence      
    is a ζ-algebra. 

Remark: The reader should note that the union of a family of ζ-algebras can fail 

to be a ζ-algebra. For example; let   *       + and    {    * + *     +} 

and    {    * + *     +} then       {    * + * + *     + *     +} 

Now as * + * +        but *   +         

Hence       is not ζ-algebra. 

Another similar example is for the sets   *       + and    {    * + *     +} 

and    {    * + *     +} 
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Property: Every Algebra is a ζ-algebra. 

Proof:  Consider       
        

          
    …………..(i) 

Take                     

     
        

   ∈        
   ∈       is a ζ-algebra. 

Interesting to Remember: 

Á Every algebra is a topology. 

Á Topology needs not to be algebra. 

Á Sigma algebra is not a topology. 

Sequence 

A function whose domain is set of natural numbers is called sequence. 

Sequence of Sets 

Let *  + 
  be a sequence of subsets of a set X. We say that *  + 

  is increasing if 

              i.e.            

Similarly  

We say that *  + 
  is decreasing if               i.e.            

Monotone Sequence: 

A sequence is called a monotone sequence if it is either increasing or decreasing. 

Limit of Sequence of Sets 

If *  + 
  is increasing then              

    

If *  + 
  is decreasing then              

    

Remark: 

Á For a monotone sequence          always exists although it may be   

Á If *  + 
  is increasing then                         

Á If *  + 
  is decreasing then we may have            even      for 

all    . For example if    .  
 

 
/              Then *  + 

  is 

decreasing and            also if    ,  
 

 
)  then          * + 
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How do we find limit of an arbitrary sequence *  + 
  of subset of a set X? 

Let *  + 
  be an arbitrary sequence of set X, then define two new sequences 

           and            

i.e.                         (          ) 

also                         (          ) 

obviously    is increasing and    is decreasing then 

limit inferior of the sequence *  + 
  defined as                 (      ) 

i.e.             (      )  (      )            

limit Superior of sequence *  + 
  defined as                 (      ) 

i.e.              (      )  (      )            

Remember: 

If the limit superior and the limit inferior become equal then we say that limit 

exists. Then we can use as needed following; 

                                  

Theorem:  

Let   be a ζ-algebra of subsets of X, then          and          are in  . 

Proof: Since *  + 
  is in   therefore; 

       ∈         is closed under countable intersection. 

Then      (      )  ∈        is ζ-algebra 

Implies             ∈    

Similarly     (      )  ∈    Implies             ∈    

If          exists then                         ∈    
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Smallest Sigma Algebra 

Let   be an arbitrary collection of subsets of X that are sigma algebras, then 

smallest sigma algebra is defined as  

 ( )                               
                       

By the phrase ‗smallest ζ-algebra on X that contains  ‘, we mean a ζ-algebra on X 

that includes   and every ζ-algebra on X that includes   also includes it. 

Remark: 

Á    ( ) 
Solution: Since                  

        ( )  
 

Á If    and    are collections of subsets of X, and       then  (  )   (  ) 
Solution: Since     (  )              (  )         (  )  
But  (  ) is smallest for collection    

      (  )   (  )    (  )   (  )  
 

Á If   be a ζ-algebra of subsets of X, then  ( )    

Solution: Since   is smallest subcollection of subsets of X, therefore by 

definition of smallest sigma algebra  ( )    

 

Á  ( ( ))   ( ) 
Solution: Since  ( ) is smallest ζ-algebra on X, then by using  ( )    

and putting    ( ) we get  ( ( ))   ( ) 

Corollary: Let X be a set, and let   be a family of subsets of X. Then there is a 

smallest ζ-algebra on X that includes  . 

Or Let   be an arbitrary collection of subsets of X, then there exists smallest 

sigma algebra    of subsets of X containing  . 

(Smallest in the sense that if   is a ζ-algebra of subsets of X containing   then 

     ) 

Proof: Let *  + 
  be a collection of ζ-algebras containing  . This collection is non 

– empty. Since it contains at least  ( ) then        
    is the ζ-algebras 

containing  . Let   be another ζ-algebras containing  , then     
   ∈   so that 

    
        . This implies      

Hence    is the smallest ζ-algebras containing  . 
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Recall: 

If X and Y are two sets and       then 

Á  ( )     

Á If     then E needs not to be subset of  ( ) and    ( )  *     ( )  + 
thus if    ( )    then    ( )    

Á If     then  (   ( ))    

Á    ( )    

Á    (  )  (   ( ))
 
 

Á    (  )     (   )     ( )    ( )       ( )  (   ( ))
 
 

Á    (  
   )    

    (  )  also    (  
   )    

    (  ) 
Á If   is an arbitrary collection of subsets of Y then    ( )  *   ( )    + 

 

Preposition: Let       if B is a ζ-algebra of subsets of Y then    ( ) will be 

a ζ-algebra of subsets of X. 

Proof:     

Since     therefore    ( )       ( ) 

Now suppose      ( ) then       ( ) for some     

Since B is a ζ-algebra, therefore      so that 

   (  )  (   ( ))
 
        ( )  

Let *  + 
  be a sequence in     ( ) then        (  ) for some      

So that   
           is a ζ-algebra 

Then    (  
   )    

    (  )    
      

  ( ) 

This proves that    ( ) is a ζ-algebra. 
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Preposition: Prove for a function       and an arbitrary collection   of subsets 

of X,   .   ( )/     ( ( )) 

Proof:    Since  ( ) is a ζ-algebra on subsets of Y, therefore    ( ( )) is a ζ-

algebra on subsets of X, so that     .   ( ( ))/     ( ( )) ……..(i)    

And since    ( ) therefore    ( )     ( ( )) ……..(ii)    

Implies    (   ( ))   .   ( ( ))/           then  (  )   (  ) 

So that    (   ( ))     ( ( ))   ……..(iii) 

To prove the inverse inclusion, let    be an arbitrary ζ-algebra of subsets of X, 

then we claim that    *        ( )    + is ζ-algebra 

Let       then    ( )     so that    (  )  (   ( ))
 
           ζ-algebra 

Implies          by definition 

Let *  + 
      then *   (  )+ 

      so that    (  
   )    

    (  )     

Since    is a ζ-algebra  

Then   
       . This proves that    is ζ-algebra 

In particular;  If we choose     (   ( )) then 

   {        ( )   (   ( ))} is a ζ-algebra. 

Now                then    ( )     ( )   (   ( )) 

  ( )   (  )      

So     ( ( ))       (  )   (   ( )) 

    ( ( ))    (   ( ))  ……..(iv)    

From (iii) and (iv) we get    .   ( )/     ( ( )) 
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Borel Subsets of    

Let   be the intersection of all the ζ-algebra of subsets of   containing every open 

subset of  . Then the member of   are called Borel subsets of  . 

The Borel σ-algebra  

Let (   ) be a topological space then  ( ) is called Borel ζ-algebra of open 

subsets of topological space X. It is denoted by  ( ) or   . Then the members of 

 ( ) are called Borel Sets. 

Or The Borel ζ-algebra on    is the ζ-algebra on    generated by the 

collection of open subsets of   ; it is denoted by  (  ).The Borel subsets of    

are those that belong to  (  ). In case d = 1, one generally writes  ( ) in place 

of  (  ). 

Lemma: Let   be the collection of all closed sets in a topological space (   ) 
then  ( )   ( ) 

Proof: Let      a closed set then    will be open. Then         ( ) 

      ( )  (  )    ( )      ( )      ( ) is ζ-algebra 

Thus     ( ) 

  (  )   ( ( ))   ( )          then  (  )   (  ) 

  (  )   ( )   ……………(i) 

For inverse inclusion let      an open set then    will be closed 

       (  )  (  )    (  )      (  )     (  ) is ζ-algebra 

Thus    (  ) 

  ( )   ( (  ))   (  )          then  (  )   (  ) 

  (  )   (  )   ……………(ii) 

From (i) and (ii)    ( )   ( ) 
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Proposition (Just Read): The ζ-algebra  ( ) of Borel subsets of   is generated 

by each of the following collections of sets: 

(a) The collection of all closed subsets of   

(b) The collection of all subintervals of   of the form (−∞,b] 

(c) The collection of all subintervals of   of the form (a,b] 

Proof: Let      ,and    be the ζ-algebras generated by the collections of sets in 

parts (a), (b), and (c) of the proposition. We will show that  ( )             

and then that       ( ); this will establish the proposition.  

Since  ( ) includes the family of open subsets of   and is closed under 

complementation, it includes the family of closed subsets of  ; thus it includes the 

ζ-algebra generated by the closed subsets of  , namely   . The sets of the form 

(−∞,b] are closed and so belong to   ; consequently       . 

Since (   -  (    -  (    - , each set of the form (a,b] belongs to 

  ; thus       . Finally, note that each open subinterval of   is the union of a 

sequence of sets of the form (a,b] and that each open subset of   is the union of a 

sequence of open intervals. Thus each open subset of   belongs to   , and so            

      ( )  

As we proceed, the reader should note the following properties of the ζ-algebra 

 ( ): 

(a) It contains virtually every subset of   that is of interest in analysis. 

(b) It is small enough that it can be dealt with in a fairly constructive manner.   

It is largely these properties that explain the importance of  ( ). 

Proposition (Just Read):  The ζ-algebra  (  ) of Borel subsets of    is 

generated by each of the following collections of sets: 

(a) the collection of all closed subsets of    

(b) the collection of all closed half-spaces in    that have the form 

*(         )        + for some index   and some   in  ; 

(c)  the collection of all rectangles in    that have the form 

 *(         )                         +  
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Let us look in more detail at some of the sets in  (  ).Let G be the family of all 

open subsets of   ,and let F be the family of all closed subsets of   . (Of course 

G and F depend on the dimension d, and it would have been more precise to write 

 (  ) and  (  ).) Let Gδ be the collection of all intersections of sequences of 

sets in G ,and let Fζ be the collection of all unions of sequences of sets in F. Sets in 

Gδ are often called Gδ ‘s, and sets in Fζ are often called Fζ‘s. The letters G and F 

presumably stand for the German word Gebiet and the French word ferm ̀, and the 

letters ζ and δ for the German words Summe and Durchschnitt. Now we properly 

define above discussed terms. 

Gδ Set: Let  (   ) be a topological space. A set E of X is called Gδ set if E is an 

intersection of countably many open sets. i.e.     
     where    are open. 

Fσ Set: Let  (   ) be a topological space. A set E of X is called Fζ set if E is a 

union of countably many closed sets. i.e.     
     where    are closed. 

Remark: 

Á If E is Gδ set then    is Fζ set and vice versa. 

Á If E is Gδ set then there exists a sequence *  + 
  of open sets such that 

    
    

Á Gδ set is the limit of decreasing sequence. i.e. if *  + 
  be a sequence of 

open sets then            
      

Á Fζ set is the limit of  increasing sequence. i.e. if *  + 
  be a sequence of 

closed sets then            
      

Proposition (Just Read): Each closed subset of    is a Gδ , and each open subset 

of    is an Fζ. 

Proof: Suppose that F is a closed subset of   . We need to construct a sequence 

{Un} of open subsets of    such that F = ∩nUn. For this define Un by 

    {  ∈     ‖   ‖  
 

 
                }  

(Note that Un is empty if F is empty.) It is clear that each Un is open and that 

       . The reverse inclusion follows from the fact that F is closed (note that 

each point in      is the limit of a sequence of points in F). Hence each closed 

subset of    is a Gδ . 

If U is open, then U
c
 is closed and so is a Gδ . Thus there is a sequence {Un} 

of open sets such that U
c
 =     .The sets   

  are then closed, and U =     
  

hence U is an Fζ.    
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Lemma: Let *  + 
  be an arbitrary sequence in ζ-algebra   of subsets of X. Then 

there exists a disjoint sequence *  + 
  in   such that   

       
    

Proof: Given *  + 
  be an arbitrary sequence in ζ-algebra   of subsets of X. 

We now define a new sequence *  + 
  in   such that  

       

             

                

                        

                         

       (              )
              

       (  
    

          
 )  by De – Morgan‘s Law 

Since *  + 
  be an arbitrary sequence in ζ-algebra   therefore 

   (  
    

          
 )                                 

Implies *  + 
  is a sequence in   

Now we have to show that *  + 
  is a disjoint sequence in  .i.e.         

Let     then by definition of    we have       

               ……….(i) 

Consider           (     
    

        
        

 ) 

       (     
 )  (     

    
          

      
        

 )  

         (     
    

          
      

        
 )  

          

Thus   ( )          

Hence proved that *  + 
  is a disjoint sequence in   

Now we have to prove that   
       

    

Since          
       

      ……….(ii) 
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Let       
            for some     

If ‗m‘ is the smallest positive integer then        but                    

                              (              )
   

        (  
    

          
 )                      

     

   
       

       ……….(iii) 

From (ii) and (iii)      
       

    

 

Proposition (Just Read):  Let X be a set, and let   be algebra on X. Then   is a 

ζ-algebra if either 

(a)   is closed under the formation of unions of increasing sequences of sets, or 

(b)    is closed under the formation of intersections of decreasing sequences of 

sets. 

Proof: First suppose that condition (a) holds. Since   is an algebra, we can check 

that it is a ζ-algebra by verifying that it is closed under the formation of countable 

unions. Suppose that {  } is a sequence of sets that belong to  . For each n let 

      
   . The sequence {  } is increasing, and, since   is an algebra, each    

belongs to  ; thus assumption (a) implies that      belongs to   .However,      

is equal to      and so belongs to   . Thus   is closed under the formation of 

countable unions and so is a ζ-algebra. 

Now suppose that condition (b) holds. It is enough to check that condition 

(a) holds. If {  } is an increasing sequence of sets that belong to   ,then {  
 } is a 

decreasing sequence of sets that belong to   , and so condition (b) implies that 

    
  belongs to   .Since      (    

 )  , it follows that      belongs to   . 

Thus condition (a) follows from condition (b), and the proof is complete.  

Set of extended Real Numbers 

A set  ̅  *  +    * +  is called set of extended real numbers. 

Set Function 

Let     and   be an arbitrary collection of subsets of X, then the function 

    ,   - is called the set function. 
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Properties of Set Function 

Á Additive Set Function: A set function     ,   - is said to be additive if 

           and         such that   (     )   (  )   (  )  
Á Sub – Additive Set Function: A set function     ,   - is said to be 

additive if            and           having no need to         such 

that   (     )   (  )   (  )  
Á Monotone Property: A set function     ,   - is said to be monotone if 

          such that         (  )   (  ) 
Á Finitely Additive Property: A set function     ,   - is said to be 

finitely additive if for every disjoint sequence *  + 
   

We have  (  
   )  ∑  (  )

 
  

Á Finitely Sub – Additive Property: A set function     ,   - is said to be 

finitely sub – additive if for every disjoint sequence *  + 
   

We have  (  
   )  ∑  (  )

 
  

Á Countably Additive Property: A set function     ,   - is said to be 

finitely additive if for every disjoint sequence *  + 
   

We have  (  
   )  ∑  (  )

 
  

Á Countably Sub – Additive Property: A set function     ,   - is said to 

be finitely sub – additive if for every disjoint sequence *  + 
   

We have  (  
   )  ∑  (  )

 
  

Á Signed measure: If μ is countably additive and satisfies μ(∅)= 0, then it is a 

signed measure. Thus signed measures are the functions that result if in the 

definition of measures the requirement of non – negativity is removed.  

Rough Sketch of Measures 

Roughly speaking a measure is a weight distribution on a set X. For example, if we 

toss a coin, the sample space is   *   + so  ( )  
 

 
  ( ). Also noted that 

measure is a set function. 

Pre – Measure 

Let   be sigma algebra of subsets of a non – empty set X, then a non – negative 

extended real valued function     ,   - is called a measure if   ( )     
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Measures 

Let   be sigma algebra of subsets of a non – empty set X, then a non – negative 

extended real valued function     ,   - is called a measure if; 

i.  ( )     

ii. If *  + 
  is a disjoint sequence in   then    (  

   )  ∑  (  )
 
  

Or Let X be a set, and let   be a ζ-algebra on X. A measure (or a countably 

additive measure) on   is a function     ,   - that satisfies μ( )= 0 and is 

countably additive. 

Remember: 

Á If X is a set, if   is a ζ-algebra on X, and if     ,   - is a measure on  , 

then the triplet (X,   ,μ) is often called a measure space.  

Á If X is a set and if   is a ζ- algebra on X and if     ,   - is a measure 

on   then the pair (X,   ) is often called a measurable space.  

Á If X is a set, if   is a ζ-algebra on X, and if     ,   - is a finite 

measure on  , then the triplet (X,   ,μ) is often called a finite measure 

space. i.e.  ( )     
Á If X is a set, if   is a ζ-algebra on X, and if     ,   - is a ζ-finite 

measure on  , then the triplet (X,   ,μ) is often called a σ- finite measure 

space. i.e. there exists a sequence *  + 
  in   such that      

    with 

 (  )        ∈   

Á Let (X,  ) be a measurable space then the members of   are called   – 

measurable sets. 

Á Let (X,   ,μ) is a measure space a set     is called σ- finite set if there 

exists a sequence *  + 
  in   such that      

    with  (  )        ∈   

Á If (X,   ,μ) is a measure space, then one often says that μ is a measure on 

(X,   ), or, if the ζ-algebra   is clear from context, a measure on X. 
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Examples: 

(a) Let X be an arbitrary set, and let   be a ζ-algebra on X.  

Define a function μ :   → [0,+∞] by letting μ(E) be n if E is a finite set with 

n elements and letting μ(E) be +∞ if E is an infinite set. Then μ is a measure; 

it is often called counting measure on (X,  ). 

(b) Let X be a nonempty set, and let   be a ζ-algebra on X. Let x be a member of 

X. Define a function δx :   →[0,+∞] by letting δx(E) be 1 if x ∈ E and letting 

δx(E) be 0 if x   E. Then δx is a measure; it is called a point mass concentrated 

at x. 

(c) Let X be the set of all positive integers, and  let   be the collection of all 

subsets E of X such that either E or E
c
 is finite. Then   is an algebra, but not a 

ζ-algebra .Define a function μ :   →[0,+∞] by letting μ(E) be 1 if E is infinite 

and letting μ(E) be 0 if E is finite. It is easy to check that μ is a finitely additive 

measure; however, it is impossible to extend μ to a countably additive measure 

on the ζ-algebra generated by   (if Ek = {k} for each k, then μ(  
   ) = μ(X) 

= 1, while ∑  (  )
 
   ). 

(d) Let X be an arbitrary set, and let   be an arbitrary ζ-algebra on X. Define a 

function μ :   →[0,+∞] by letting μ(E) be +∞ if E    , and letting μ(E) be 0 if 

E =  .Then μ is a measure. 

(e) Let X be a set that has at least two members, and let   be the ζ-algebra 

consisting of all subsets of X. Define a function μ :   → [0,+∞] by letting μ(E) 

be 1 if E     and letting μ(E) be 0 if E =  .Then μ is not a measure, nor even a 

finitely additive measure, for if    and    are disjoint nonempty subsets of X, 

then μ(       ) = 1, while μ(  ) + μ(  ) = 2. 

(f) The set function       ,   - where     define as  ( )  | | is a 

measure on   . 

(g) The set function       ,   - define as  ( )  {
           
           

 is a measure 

on   . 

Solution: Clearly  ( )    because     

Let  *  + 
  be a disjoint sequence in    then 

Case – I: If           then   (  
   )    ∑  (  )

 
  

Case – II: If                  then   (  
   )    ∑  (  )

 
  

Thus    is a measure on   . 
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(h)  Give an example of set function which is not a measure. 

Or  The set function     ( )  ,   - where       define as  

 ( )  {
                   

                     
 is not a measure on   ( ). 

Solution: Clearly  ( )    because   is finite. 

Let  {* +}
 

 
 be a disjoint sequence in  ( ) then 

 (* +)                       * +           ∑  (* +) 
     

But   (  
 * +)     ( )  since N is infinite. 

Implies   (  
 * +)  ∑  (* +) 

  

Hence    is not countably additive. Not a measure. 

 

Lemma:  Let      and   is a ζ-algebra on X, also     ,   - is a 

measure on a ζ-algebra  , then prove that   has finitely additive property. 

i.e. for  a disjoint sequence *  + 
  in   we have   (  

   )  ∑  (  )
 
  

Proof:  

Let  *  + 
  be a disjoint sequence in   such that                      

Since   is a measure therefore  ( )    and  (  
   )  ∑  (  )

 
  

  ,(  
   )  (    

   )-  ∑  (  )
 
  ∑  (  )

 
     

  ,(  
   )  (    

  )-  ∑  (  )
 
  ∑  ( ) 

       

  ,(  
   )  ( )-  ∑  (  )

 
  ∑ ( ) 

        ( )    

  (  
   )  ∑  (  )
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Lemma: Let      and   is a ζ-algebra on X, also     ,   - is a measure 

on a ζ-algebra  , then prove that   has monotonicity  property. 

Or Let (X,   ,μ) be a measure space, and let    and    be subsets of X that 

belong to   and satisfy        . Then μ(  ) ≤ μ(  ). 

Or Let   be a signed measure on the measurable space (X,   ), and let    be a 

subset of X that belongs to   and satisfies     (  )    . Then there is a 

negative set    that is included in    and satisfies  (  )   (  ) 

Proof:  Let           and           then       (     ) 

  (  )   (   (     ))   (  )   (     )     is finitely additive 

  (  )   (  )   (     )                           (     )    

  (  )   (  )     (  )   (  )   (  )     (  )  

 

Lemma: Let      and   is a ζ-algebra on X, also     ,   - is a measure 

on a ζ-algebra  ,  also if        . Then prove that μ(     )   (  )   (  ) 

Proof:  Let           and           then       (     ) 

  (  )   (   (     ))   (  )   (     )     is finitely additive 

  (     )   (  )   (  )        (     )    

 

Lemma:  Let      and   is a ζ-algebra on X, also     ,   - is a measure 

on a ζ-algebra  , then prove that   has Countably Sub – additive property. 

i.e. for  a disjoint sequence *  + 
  in   we have   (  

   )  ∑  (  )
 
  

Proof:  

Let  *  + 
  be a sequence in   then   

       (     )  (        )    

  (  
   )   (   (     )  (        )   )  

  (  
   )   (  )   (     )   (        )     

  (  
   )   (  )   (  )   (  )    ∑  (  )

 
      monotonicity property 

  (  
   )  ∑  (  )
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Lemma:  Let      and   is a ζ-algebra on X, also     ,   - is a measure 

on a ζ-algebra  , then prove that   has finitely Sub – additive property. 

i.e. for  a finite sequence *  + 
  in   we have   (  

   )  ∑  (  )
 
  

1
st
 Proof:  Let  *  + 

  be a sequence in   define *  + 
  by                    

and                      then    
      

    

  (  
   )   (  

   )  ∑  (  )
 
  ∑  (  )

 
  ∑  (  )

 
     

  (  
   )  ∑  (  )

 
  ∑  ( ) 

                     

  (  
   )  ∑  (  )

 
  ∑ ( ) 

          ( )    

  (  
   )  ∑  (  )

 
               

 

2
nd

 Proof:  Let  *  + 
  be a sequence in   such that                      

then    
    (  

   )  (    
   )  (  

   )                 

  (  
   )   (  

   )  ∑  (  )
 
  ∑  (  )

 
  ∑  (  )

 
     

  (  
   )  ∑  (  )

 
  ∑  ( ) 

                     

  (  
   )  ∑  (  )

 
  ∑ ( ) 

          ( )    

  (  
   )  ∑  (  )

 
   

 

Finite measure  

Let      and   is a ζ-algebra on X, then      ,   - is called a finite 

measure if   ( )   . 

σ- Finite measure  

Let      and   is a ζ- algebra on X, then      ,   - is called a ζ- finite 

measure if there exists a sequence  *  + 
  in   such that     

    and  (  )    

Note 

If *  + 
  is a monotone sequence in   then * (  )+ 

  is also a monotone sequence. 

So        (  ) exists in ,   - 
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Question:  Give an example of measure which is ζ- finite but not finite measure. 

Solution:  

Let      and    ( )  then define a function     ( )  ,   - by 

 ( )  | | this measure is ζ- finite but not finite measure because  ( )    

which is not finite. But for a sequence {* +}
 

 
 such that     

 (* +) and 

 (* +)  |* +|      for each    . 

This implies   is ζ- finite but not finite measure. 

 

Question:  Give an example of measure which is finite measure. 

Solution:  

Let    *   + and   {    * + * +} is a ζ- algebra on X then define a function  

    ,   - by  ( )     ( )     (* +)  
 

 
  (* +) then   is a measure 

on    and   (* +  * +)   (*   +)     

Also  (* +)   (* +)  
 

 
 

 

 
   and  ( )      

Therefore   is a finite measure. 

 

MONOTONE CONVERGENCE THEOREM FOR MONOTONE 

SEQUENCE OF MEASUREABLE SETS (The Continuity of Measure) 

Let      and   is a ζ-algebra on X, also     ,   - is a measure then 

a) If *  + 
  is an increasing sequence then  

 (  
   )     

   
 (  )   .    

   
  / 

b) If *  + 
  is a decreasing sequence with  (  )    then  

 (  
   )     

   
 (  )   .    

   
  / 

 

Proved on next page 
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Theorem: Let      and   is a ζ-algebra on X, also     ,   - is a measure 

then if *  + 
  is an increasing sequence then        (  )   .   

   
  / 

Proof: Note that if *  + 
  is a monotone sequence in   then * (  )+ 

  is also 

monotone sequence. So that        (  ) exists in ,   -. Now suppose that 

*  + 
  is increasing then * (  )+ 

  is increasing. Here we discuss two cases; 

Case – I: If  (   
)    for some      then        (  )     ……..(i) 

Now    
   

       
   

      *  + 
  is increasing 

  (   
)   .    

   
  /    by monotonicity of   

  .    
   

  /   (   
)     .    

   
  /     .    

   
  /      ……..(ii) 

From (i) and (ii) we get         (  )   .    
   

  / 

Case – II: If  (  )         then taking       we define a disjoint sequence 

*  + 
  as  

          

          

                    

                 

Obviously    
      

    ……..(iii) 

Since we know that fact that for increasing sequence            
    

            
       from (iii) 

  .    
   

  /   (  
   )  ∑  (  )

 
   .    

   
  /  ∑  (       )

 
   

  .    
   

  /  ∑ , (  )   (    )-
 
     

   
∑ , (  )   (    )-

 
     

  .    
   

  /     
   

,* (  )   (  )+  * (  )   (  )+    * (  )  

 (    )+-  
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  .    
   

  /     
   

, (  )   (  )-     
   

, (  )   -  

Here we use the fact  (  )   ( )    

  .    
   

  /     
   

 (  )     
   

 (  )   .   
   

  /     
   

 (  )  

……………………………………………………………….. 

Theorem:  Let      and   is a ζ-algebra on X, also     ,   - is a 

measure then if *  + 
  is a decreasing sequence then        (  )   .   

   
  / 

where  (  )    

Proof:  

Suppose that *  + 
  is decreasing with   (  )    then            

    

Consider       
       (  

   )
             

      
       (  

   
 )    

 (     
 )    

 (     )  

  (     
   )   (  

 (     ))  

Since *     + 
  is increasing therefore       (     )    

 (     ) 

  (     
   )   (  )   (  

   )   (      (     ))  

  (  )   (        )     
   

( (     ))    .    
   

  /     
   

 (  ) 

  (  )   (        )     
   

( (  ))     
   

( (  ))  

  (  )   (        )   (  )     
   

( (  ))    (  )    

  (        )     
   

( (  ))  
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Hahn Decomposition Theorem  

Let (   ) be a measurable space, and let   be a signed measure on (   ). Then 

there are disjoint subsets P and N of X such that P is a positive set for  , N is a 

negative set for  , and X = P N. 

Proof:   

Since the signed measure   cannot include both +∞ and −∞ among its values, we 

can for definiteness assume that −∞ is not included.  

Let        * ( )                            +     …………..(i) 

Choose a sequence {An} of negative sets for   for which       (  ), and let 

     
    

Where N is a negative set for   (each    measurable subset of N is the union of a 

sequence of disjoint   measurable sets, each of which is included in some   ). 

Hence    ( )   (  ) holds for each n, and so    ( ). 

Furthermore, since   does not attain the value −∞,  ( ) must be finite. 

Let     . Our only remaining task is to check that P is a positive set for  . 

If P included an   measurable set A such that  ( )   , then it would include a 

negative set B such that  ( )    by the following result; 

(Let   be a signed measure on the measurable space (   ), and let A be a subset 

of X that belongs to   and satisfies     ( )    . Then there is a negative set 

B that is included in A and satisfies  ( )     ( )),  

And N  B would be a negative set such that 

 (    )    ( )   ( )     ( )       where μ(N) is finite 

However this contradicts (i), and so P must be a positive set for μ.  

……………………………………………………….. 

Hahn decomposition 

A Hahn decomposition of a signed measure   is a pair (P,N) of disjoint subsets of 

X such that P is a positive set for  , N is a negative set for  ,and X = P  N. 
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Jordan Decomposition Theorem  : Every signed measure is the difference of 

two positive measures, at least one of which is finite. 

Proof: Let   be a signed measure on (   ). Choose a Hahn decomposition (P,N) 

for  , and then define functions    and    on A by 

  ( )   (   )  and   ( )    (   )  

It is clear that    and    are positive measures such that        .Since +∞ 

and −∞ cannot both occur among the values of  , at least one of the values  ( ) 
and  ( ), and hence at least one of the measures μ+ and μ−, must be finite.  

…………………………………………. 

Á The variation of the signed measure μ is the positive measure |μ| defined by 
| |       . It is easy to check that | ( )|  | |( ) holds for each A in 

  and in fact that |μ| is the smallest of those positive measures   that satisfy 

| ( )|    ( ) for each A in  . 

Á  The total variation ‖ ‖ of the signed measure   is defined by  

‖ ‖    | |( )  

Á Complex Measure: Let (   ) be a measurable space, then μ be a complex 

measure if  ( )     and  (  
   )  ∑  (  )

 
  for disjoint sequence    

…………………………………………. 

Proposition:  Let (   ) be a measurable space, and let μ be a complex 

measure on (   ). Then the variation | |of μ is a finite measure on (   ). 

Proof:  The relation | |( )     is immediate. 

We can check the finite additivity of |μ| by showing that if B1 and B2 are disjoint 

sets that belong to   ,then  | |(     )  | |(  )  | |(  ).  

For this, note that if *  + 
  is a finite partition of       into    measurable sets, 

then ∑ | (  )|  ∑ | (     )|  ∑ | (     )|  | |(  )  | |(  ) 

Since | |(     ) is the suprimum of the numbers that can appear on the left side 

of the inequality, it follows that  | |(     )  | |(  )  | |(  )  

A similar argument, based on partitioning B1 and B2, shows that 

| |(  )  | |(  )  | |(     )  

Thus | |(     )  | |(  )  | |(  ), and the finite additivity of |μ| is proved. 
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Lemma: Let      and   is a ζ-algebra on X, also     ,   - is a measure 

on a ζ-algebra  , then for  an arbitrary sequence *  + 
  in   we have 

  (        )         (  ) 

Proof:  We have              (      ) where *      + 
  is an increasing 

sequence, then              (      )        (      ) 

  (        )   (      (      ))  

  (        )     
   

( (      ))  by monotone convergence theorem 

  (        )     
   

   ( (      ))   as limit exists 

  (        )     
   

   ( (  ))                     (      )   (  ) 

  (        )         (  )  

 

Lemma: Let      and   is a ζ-algebra on X, also     ,   - is a measure 

on a ζ-algebra  , then there exists a set  ∈   with  ( )    such that       

for all  ∈   then we have 

  (        )         (  ) 

Proof:  We have              (      ) where *      + 
  is a decreasing 

sequence, then              (      )        (      )  ……..(i) 

Since      ∈    for all  ∈   therefore          

  (      )   ( )      by monotonicity of   

  (      )     

( )   (        )   (      (      ))  

  (        )     
   

( (      ))  by monotone convergence theorem 

  (        )     
   

   ( (      ))   as limit exists 

  (        )     
   

   ( (  ))                     (      )   (  ) 

  (        )         (  )  
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Lemma: Let  (     ) be a measure space. If  ∈   is a  - finite set then there 

exists an increasing sequence *  + 
  in   such that    

   
     and  (  )    

also there exists a disjoint sequence *  + 
  in   such that   

      and 

 (  )    for all  ∈  . 

Proof:  Suppose  ∈   is a  - finite set then there exists *  + 
  in   such that 

    
    and  (  )    for all  ∈  . Now define a sequence *  + 

  as 

     
    ………….(i) 

Then clearly the sequence *  + 
  is increasing in  , then    

   
     

    and  

  
      

 (  
   )    

      implies    
   

     

Now ( )   (  )   (  
   )  ∑  (  )

 
   ( )   (  )    

Now we define a sequence by *  + 
  by 

       ,               ,     ……..     ,                   

Then *  + 
  is a disjoint sequence such that   

      
      

Thus   (  )   (  )   ( )   (  )    

Now   (  )   (       )   (  )   (    )   (  )    

  (  )           

 

Lemma: If  (     ) is a  - finite measured space then every  ∈   is a  - finite. 

Proof:  Let (     ) is a  - finite measured space then there exists *  + 
  in   

such that    
      and  (  )        ∈   

Let  ∈   define a sequence *  + 
  such that         then 

  
      

 (    )    (  
   )          

       

Now           ∈      

  (  )   (  )     (  )     

Hence   ∈   is a  - finite. 
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Remarks  

Á Null Set: Let (     ) be a measure space, and    . Then E is called 

Null Set with respect to   if  ( )   . This also sometime called    

negligible. 

Á   is Null Set in every measure space but a Null Set need not to be   

 

Lemma: Countable union of null sets is null set. 

Proof:  Let *  + 
   be a collection of null sets in (     ). We need to show that 

  
    is a null set. i.e.  (  

   )    

Since   (  
   )  ∑  (  )

 
     as  (  )        ∈   

Therefore   (  
   )    implies   

    is a null set. 

Hence Countable union of null sets is null set. 

 

Complete  - Algebra: Let (     ) be a measure space, then  - Algebra   is 

called Complete  - Algebra with respect to measure   if every subset    of a null 

set E is a member of  . 

 In other words,      implies  (  )   ( ). Remember since  ( )    

therefore  (  )    but  (  )   . Hence  (  )    

Complete Measure Space: A measure space (     ) is called a complete 

measure space if  - Algebra   is a complete  - Algebra with respect to measure   

For example: Let   *     + and   {    * + *   +} is a  - Algebra on    

the n define   on   by  ( )      ( )      (*   +)      (* +)    then   is 

a measure on  , (*   +) is a null set in  , but * +  *   + is not a member of  - 

Algebra. So (     ) is not a complete measure space. 
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Outer Measures: Let X be a set, and let P(X) be the collection of all subsets of X 

.An outer measure on X is a function     ( )  ,    - such that 

(a)   ( )    

(b)  if         ∈  ( ), then   (  )    (  )  (monotonicity) 

(c) if *  + 
  is an infinite sequence of subsets of X, then 

   (  
   )  ∑   (  )

 
   (countably sub – additive) 

Remember 

Á An outer measure on X is a monotone and countably sub – additive function 

from P(X) to [0 ,+∞] whose value at   is 0. 

Á In general, an outer measure does not satisfy additivity condition on P(X) 

and so fails to be a measure but we will prove later that there exists a  - 

Algebra    ( ) such that outer measure when restricted to   satisfy the 

additivity condition and hence becomes a measure. 

Á A measure can fail to be an outer measure; in fact, a measure on X is an 

outer measure if and only if its domain is P(X). 

Á For each outer measure μ  on X there is a relatively natural ζ-algebra     

on X such that the restriction of μ  to     is countably additive, and hence a 

measure.  

Examples: 

(a) Let X be an arbitrary set, and define μ  on P(X) by μ  (A) = 0 if A =   and 

μ (A) = 1otherwise.Then μ  is an outer measure. 

(b)  Let X be an arbitrary set, and define μ  on P(X) by μ (A) = 0if A is 

countable, and μ (A)= 1if A is uncountable. Then μ  is an outer measure. 

(c) Let X be an infinite set, and define μ  on P(X) by μ (A) = 0 if A is finite, and 

μ (A) = 1if A is infinite. Then μ  fails to be countably subadditive and so is 

not an outer measure. 

(d) Let   *   + then  ( )  {    * + * +}. Define P(X) by μ  ( ) = 0 , 

  (* +)      (* +)      ( )    then    is an outer measure. 

(e) Let   *   + then  ( )  {    * + * +}. Define P(X) by μ  ( ) = 0 , 

  (* +)      (* +)       ( )     then    is not an outer measure, 

because not countably sub – additive.  

i.e.   (* +  * +)    (* +)    (* +) 
(f) For a set function        ( )  ,   -, following functions are outer 

measures.  

  ( )  | |    ( )  {
          
          

     ( )  {
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Property: Sum of two outer measures is outer measure. 

Proof: let „f‟ and „g‟ be two outer measures from    ,   - then define 

(   )     ( )  ,   - by (   )( )   ( )   ( ) 

Á Now if     then (   )( )   ( )   ( )        

 (   )( )              are outer measure. 

Á Let      ∈     ( ) such that       then 

(   )(  )  (   )(  )  
Á And let           ∈     ( ) and       then 

(   )( )   ( )   ( )  ∑  (  )
 
  ∑  (  )

 
   

(   )( )   ( )   ( )  ∑ , (  )   (  )-
 
  ∑ (   )  

 
  

(   )( )  ∑ (   )  
 
   

Hence     or Sum of two outer measures is outer measure. 

 

Property: Difference of two outer measures needs not to be outer measure. 

Proof: let    ( )  ,    - and     ( )  ,    - be two outer 

measure defined respectively by 

 ( )  {
          
          

      ( )  {
                             
                          

  

Then define        ( )  ,    - by (    )( )   ( )    ( ) 

Clearly (    )( )    but if A is uncountable and     then  

(    )( )   ( )    ( )       

 (    )( )      

 (    )( )  ,   -  

Thus        ( )  ,    - is not an outer measure. Hence the result. 
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Property: Scalar multiplication of outer measures is an outer measure. 

Proof: let    ( )  ,    -be an outer measure and ‗c‘ be a non – 

negative real number then define     ( )  ,    - by (  )    ( ) 

Á Now if     then (  )    ( )    

 (  )      

Á Let      ∈     ( ) such that       then 

 (  )   (  )    (  )    (  )  (  )   (  )    

Á And let           ∈     ( ) and     
    then 

(  )    ( )   ∑  (  )
 
  ∑   (  )

 
   

(  )  ∑   (  )
 
   

Hence    or Scalar multiplication of an outer measures is an outer measure. 

Remark 

Let  ∈  ( ) then for any  ∈  ( ) we have; 

(   )  (    )     and  (   )  (    )    

 

   - Measurable Set: Let    be an outer measure on P(X) we say that  ∈  ( ) is 

   - Measurable or additive if for all  ∈  ( ) we have carethedory condition as 

follows; 

  ( )    (   )    (    )  

Where A is called testing set for E. Remember that the collection of all    - 

Measurable sets is denoted by  (  ) 

Remember:  

Á If   (   )  (    ) then by sub – additivity of    we have  

  ( )    (   )    (    )  
In order to prove carethedory condition i.e. 

   ( )    (   )    (    )  
We need only to verify that    ( )    (   )    (    )  

Á A μ -measurable subset of X is one that divides each subset of X in such a 

way that the sizes (as measured by μ ) of the pieces add properly. A 

Lebesgue measurable subset of   or of    is of course one that is 

measurable with respect to Lebesgue outer measure. 
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Property:   and X are    - Measurable. Or    ∈  (  ). 

Proof: By carethedory condition for any  ∈  ( ) 

  ( )    (   )    (    )  ………(i) 

Let     in (i)   ( )    (   )    (    ) 

  ( )    ( )    (   )      ( )  

  ( )    ( ) implies  ∈  (  ) 

Now let      in (i)   ( )    (   )    (    ) 

  ( )    ( )    (   )    ( )    ( )    ( )     

  ( )    ( ) implies  ∈  (  ) 

Thus   and X are    - Measurable. 

Property:  If   is     - Measurable then    is     - Measurable. Or if  ∈  (  ) 
then   ∈  (  ). 

Proof: If  ∈  (  ) then for all  ∈  ( ) we have  

  ( )    (   )    (    )  

  ( )    (    )    (  (  ) )  by taking      

Implies   ∈  (  ) 

Remark: if    (  ) then     (  ). i.e. if    (  ) then    is not 

Measurable. For example, consider   *   + then  ( )  {    * + * +}. Define 

P(X) by μ  ( ) = 0 ,   (* +)      (* +)      ( )     then    is not an outer 

measure, because not countably sub – additive.  

i.e.   (* +  * +)    (* +)    (* +) 

Take     and   * + then  

  (   )    (    )    (  * +)    (  * +)    (* +)    (* +)  

  (   )    (    )           ( )  

If * + is not    - Measurable then * +  * + is also not    - Measurable. 

Similarly for     and   * + 
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Lemma:  Let      and     ( )  ,   - be an outer measure on  . If 

     ∈  (  ) then      ∈  (  ) for      ∈  ( ). i.e. The union of a finite 

collection of measurable sets is measurable. 

Proof: Since   ∈  (  ) then for a testing set  ∈  ( ) we have  

  ( )    (    )    (    
 )   ……….(i) 

If we take a particular testing set     
 ∈  ( ) for   ∈  (  ) we have 

  (    
 )    ((    

 )    )    ((    
 )    

 )  

  (    
 )    ((    

 )    )    (  (  
    

 ))  

  (    
 )    ((    

 )    )    (  (     )
 )    ……….(ii) 

Using (ii) in (i) 

  ( )    (    )    ((    
 )    )    (  (     )

 )    ……….(iii) 

To prove the required      ∈  (  ) consider first two terms of above 

(    )  ((    
 )    )  (    )  (  (  

    ))  

(    )  ((    
 )    )    (   (     

 ))  

(    )  ((    
 )    )    (   (     ))  

(    )  ((    
 )    )    (     )  

  (     )  (    )  ((    
 )    )  

   (  (     ))    .(    )  ((    
 )    )/  

   (  (     ))    (    )    ((    
 )    )  

   (    )    ((    
 )    )    (  (     ))      ……….(iv) 

Using (iv) in (iii)   ( )    (  (     ))    (  (     )
 )  

And    ( )    (  (     ))    (  (     )
 ) 

Hence     ( )    (  (     ))    (  (     )
 ) 

Implies      ∈  (  ) 
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Remark: 

Á If           ∈  (  ) then   
   ∈  (  ) 

Á Every subset of a null set is    - Measurable. 

Á Measure always positive. 

Lemma:  Let      and     ( )  ,   - be an outer measure on  . If 

     ∈  (  ) then      ∈  (  ) for      ∈  ( ). 

Proof: Let       ∈  (  ) then   
    

 ∈  (  ) 

   
    

  (     )
 ∈  (  )  ((     )

 )       ∈  (  )  

 

Lemma:  Let      and     ( )  ,   - be an outer measure on  . If 

 ∈  ( ) such that   ( )    then every      is    - Measurable. In particular, 

E itself is    - Measurable. 

Or Prove that every subset of a null set is    - Measurable. In particular, a null 

set is    - Measurable. 

Or Any set of outer measure zero is measurable. In particular, any countable set 

is measurable. 

Proof: Let    is a null set then   ( )   . And      then by monotonicity of    

we have   (  )    ( )    implies   (  )   , but   (  )     

Thus    (  )    

For  ∈  ( ) we have         and     
    

Then   (    )    (  ) ……(i)  and   (    
 )    ( ) ………(ii) 

Adding (i) and (ii) we get    (    )    (    
 )    (  )    ( ) 

  (    )    (    
 )    ( )    since   (  )    

  ( )    (    )    (    
 )  

But obviously we have   ( )    (    )    (    
 ) 

Then    ( )    (    )    (    
 ) Implies    is    - Measurable. 

By the similar argument we can show that   is    - Measurable. 

i.e.   ( )    (   )    (    ) 
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Preposition (Countably Sub –Additive Property):  

Outer measure is countably subadditive, that is, if *  + 
  is any countable 

collection of sets, disjoint or not, then 

  (  
   )  ∑   (  )

 
   

Proof:  

Let *  + 
  be a sequence in  ( ), for which we have to show that; 

  (  
   )  ∑   (  )

 
   

Let *   + 
  be a sequence in   and cover of     

i.e.      
     then   (  )    (  

    )  

Then by hypothesis   (  )  ∑  (   )
 
    ∑  (   )

 
    (  )   

Let for any     we have  ∑  (   )
 
    (  )      

Similarly ∑  (  
 ) 

    (  )       continuingly ∑  (  
 ) 

    (  )       

For this      
   

  implies     
        

 (    
   

 ) 

   (    
   )  ∑  (    

   
 ) 

   ……..(i) 

Since *  + 
  is a sequence for which  (    

   )  ∑  (  )
 
  then 

( )    (    
   )  ∑ (∑  (  )

  
 ) 

   

   (    
   )  ∑ (  (  )      ) 

   

   (    
   )  ∑   (  )

 
  ∑

 

  
 
   

   (    
   )  ∑   (  )

 
       

Since     was an arbitrary positive real number therefore inequality true for all 

    and we get  

  (    
   )  ∑   (  )

 
   and    is countably sub – additive. 

Hence the result. i.e.   ( ) is an outer measure. 
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Lemma (Finitely Additive Property): Let      and     ( )  ,   - be an 

outer measure on  ( ). If      ∈  (  ) and         then 

  (     )    (  )    (  )  

Proof: Since   ∈  (  ) then for any  ∈  ( ) we have 

  ( )    (    )    (    
 )  

In particular if         then 

  (     )    ((     )    )    ((     )    
 )  

  (     )    ((     )  (     ))    ((     )   )  

  (     )    (    )    (  )                      (     )        

  (     )    (  )    (  )  

 

Lemma:  Let      and     ( )  ,   - be an outer measure on  . If 

     ∈  ( ) and   (  )    then   (     )    (  ) 

Proof: By finitely sub - additive property we have, 

  (     )    (  )    (  )  

  (     )    (  )  …….(i)     (  )    

Since          then by monotonicity of     

We have   (  )    (     ) …….(ii) 

Combining (i) and (ii)    (     )    (  ) 

 

Lemma: If    ∈  (  ) and     then    ∈  (  ) 

Proof: Since  ∈  (  ) then   ∈  (  ) also then     ∈  (  ) 

     ∈  (  )  

    ∈  (  )             
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Caratheodory Theorem:  

Let µ  be an outer measure in X. Then,  (  ) is a ζ–algebra, and µ  is ζ–additive 

on  (  ). 

Proof:  We will split the reasoning into four steps. 

Step – I:  (  ) is an algebra. 

Proof: If  ∈  (  ) then   ∈  (  ) 

Then also     ∈  (  ) and     ∈  (  ) 

Implies  (  ) is an algebra, because it closed under compliment and finite union. 

Step – II:  (  ) is a  - Algebra. 

We need to show that  (  ) is closed under compliment and closed under 

countable union. 

P – I: Let  ∈  (  ) then for all  ∈  ( ) we have; 

  ( )    (   )    (    )    (  (  ) )    (    )  

  ( )    (    )    (  (  ) )  

Implies   ∈  (  ). Then  (  ) is closed under compliment. 

P – II: Let *  + 
  be a sequence in  (  ) we have to prove   

   ∈  (  )  

Since  (  ) is closed under finite union. i.e.   
   ∈  (  ) 

Then for  ∈  ( ) we have    ( )    (  (  
   ))    (  (  

   )
 ) 

Applying limit approaches to infinity; 

        ( )          (  (  
   ))          (  (  

   )
 )  

  ( )    (  (  
   ))    (  (  

   )
 )  

Implies   
   ∈  (  ). Thus  (  ) is a  - Algebra. 
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Step – III:  (  ) is a Additive. 

Since   ∈  (  ) then for any  ∈  ( ) we have 

  ( )    (    )    (    
 )  

In particular if         then 

  (     )    ((     )    )    ((     )    
 )  

  (     )    ((     )  (     ))    ((     )   )  

  (     )    (    )    (  )                      (     )        

  (     )    (  )    (  )  

Step – IV: µ is σ–additive on  (  )  

Since µ  is countably sub–additive, and additive, then by result ―additive function 

is ζ–additive if and only if it is countably sub - additive‖ gives the conclusion. 

 

Additive and σ–additive functions 

Let     P(X) be an algebra. and     ,    - be such that  ( )   . 

Á We say that µ is additive if, for any family A1, A2 ,...,An ∈   of mutually 

disjoint sets, we have 

 (  
   )  ∑ (  )

 

 

 

Á We say that µ is ζ–additive if, for any sequence (An)     of mutually 

disjoint sets such that   
   ∈   we have 

 (  
   )  ∑ (  )
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Lemma: Let    be any set and *  + 
  be a finite disjoint collection of measureable 

sets then   (    
   )  ∑   (    )

 
  and particularly    (  

   )  ∑   (  )
 
   

Or Let      and     ( )  ,   - be an outer measure on  . Let *  + 
  be a 

disjoint sequence in  (  ) then for all  ∈  ( ); 

  (    
   )  ∑   (    )

 
   

Proof: We prove it by induction method; 

For n = 1, the result is true. i.e   (    )    (    ) 

Suppose that result is true for n = k; 

  (    
   )  ∑   (    )

 
   

Now we check at n = k + 1; using the fact that         is    - Measurable. 

  (    
     )    .(    

     )      /    .(    
     )      

 /  

  (    
     )    .  (  

          )/    .  (  
          

 )/  

  (    
     )    (      )    .  (  

   )/   *  + 
  be a disjoint sequence. 

  (    
     )    (      )  ∑   (    )

 
   

  (    
     )  ∑   (    )

   
   

Induction is true for n = k + 1.Hence the result. i.e.   (    
   )  ∑   (    )

 
  

And   (  
   )  ∑   (  )

 
   for     

………………………………………. 

Lemma: If    is an outer measure, then  (  ) is an algebra. 

Proof: If  ∈  (  ) then   ∈  (  ) 

Then also     ∈  (  ) and     ∈  (  ) 

Implies  (  ) is an algebra, because it closed under compliment and finite union. 
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Lemma: If    is an outer measure, then  (  ) is a  - Algebra. 

Proof: We need to show that  (  ) is closed under compliment and closed under 

countable union. 

P – I: Let  ∈  (  ) then for all  ∈  ( ) we have; 

  ( )    (   )    (    )    (  (  ) )    (    )  

  ( )    (    )    (  (  ) )  

Implies   ∈  (  ). Then  (  ) is closed under compliment. 

P – II (1
st
 method): The union of a countable collection of measurable sets is measurable. 

Let *  + 
  be a sequence in  (  ) we have to prove   

   ∈  (  )  

Since  (  ) is closed under finite union. i.e.   
   ∈  (  ) 

Then for  ∈  ( ) we have    ( )    (  (  
   ))    (  (  

   )
 ) 

Applying limit approaches to infinity; 

        ( )          (  (  
   ))          (  (  

   )
 )  

  ( )    (  (  
   ))    (  (  

   )
 )  

Implies   
   ∈  (  ). Thus  (  ) is a  - Algebra. 

P – II (2
nd

 method): Let *  + 
  be a sequence in  (  ) then there exists a disjoint 

sequence *  + 
  in  (  ) such that   

      
    

Suppose that   
      

      then   
      implies    (  

   )
  

Then for  ∈  ( ) we have         (  
   )

  

Then   (    )    (  (  
   )

 )  ……..(i) 

Since   
    is    - Measurable, as  (  ), then for all  ∈  ( ) we have; 

  ( )    (  (  
   ))    (  (  

   )
 )  

  ( )    (  (  
   ))    (    )       (  

   )
  

  ( )    (  (  
   ))    (    )  ∑   (    )

 
    (  (  

   )
 )  

  ( )  ∑   (    )
 
    (  (  

   )
 )   ……..(ii) 
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Since L.H.S. of (ii) is independent of ‗n‘ therefore R.H.S. is also independent of 

‗n‘ then (ii) implies 

  ( )  ∑   (    )
 
    (  (  

   )
 )  

  ( )    (  
 (    ))    (  (  

   )
 )            (  

   )  ∑   (  )
 
  

  ( )    (  (  
   ))    (  (  

   )
 )  

  ( )    (  (  
   ))    (  (  

   )
 )      

      
    

But   ( )    (  (  
   ))    (  (  

   )
 ) 

Then    ( )    (  (  
   ))    (  (  

   )
 ) 

Implies   
   ∈  (  ) 

Thus  (  ) is a  - Algebra. 

Remark 

Á Since  - Algebra is closed under countable intersection therefore  (  ) is 

closed under countable intersection. 

i.e. if              ∈  (  ) then   
   ∈  (  ) 

Á If    is zero on X then subset of X is    - Measurable. 

Symmetric difference ( ) 

Symmetric difference is given as follows; 

    (   )  (   )  (    )  (    )           

Explanation: 

Let       then symmetric difference will be as follows; 

    (   )  (   )  (    )  (    )  

    (  (    ))  (   (    ))  

    ((   )  (    ))  ((    )  (     ))  

    ((   )   )  (  (   ) )  (   )  (   )   
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Theorem: If  ∈  (  ) and   (   )    then  ∈  (  ). 

Proof:(1
st
 method) 

 

Since   (   )    and             

Implies        ∈  (  )    because every subset of null set is   -measurable 

 (   )  (   ) ∈  (  )  

Now       (   )   ……….(i) 

And since    (   ) ∈  (  ) implies   (   ) ∈  (  ) 

    ∈  (  )   using (i) 

From figure   (   )  (   )  ……….(ii) 

And since         ∈  (  ) implies (   )  (   ) ∈  (  ) 

  ∈  (  )   using (ii) 

Proof:(2
nd

 method) Since   (   )    and             

Implies        ∈  (  )    because every subset of null set is   -measurable 

 (   )  (   ) ∈  (  )  

Now       (   )  be intersection of two   -measurable sets is   -

measurable then   (   )  (   ) being union of two   -measurable is   -

measurable. 

Theorem: If    ∈  ( ) and  (   )    then  ( )   ( ). 

Proof: Since  (   )   (   )   (   ) and  (   )    

We have   (   )   (   )    Also writing    (   )  (   ) and 

  (   )  (   ) We have  ( )   (   )   (   )                            

and   ( )   (   )   (   )                     

And hence    ( )   (   )   ( ) 
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Theorem:  

Let    ( ) such that    ∈   and     ,   - given by  ( )    and   is 

countably sub – additive i.e.  (    
 )  ∑  (  )

 
  then for any  ∈  ( ); 

  ( )     *∑  (  )
 
      

       ∈  +  is an outer measure. 

Proof: To prove    is an outer measure we will prove   ( )   , monotone 

property as well as countable sub – additive property. 

P – I:   ( )   : Since     
   and  ( )    therefore ∑  (  )

 
   , this 

implies   ( )     *∑  (  )
 
      

       ∈  +    ( )     

P – II: Monotone Property: 

Suppose    ∈  ( ) and     then every covering sequence for B is covering 

sequence for A but every covering sequence for A needs not to be covering 

sequence for B 

Then *∑  (  )
 
      

       ∈  +  *∑  (  )
 
      

       ∈  + 

Since every covering sequence for B is covering sequence for A therefore; 

   *∑  (  )
 
      

       ∈  +     *∑  (  )
 
      

       ∈  +  

Implies   ( )    ( )           ( )     ( ) 

P – III: Countably Sub - Additive Property: 

Let *  + 
  be a sequence in  ( ), for which we have to show that; 

  (  
   )  ∑   (  )

 
   

Let *   + 
  be a sequence in   and cover of     

i.e.      
     then   (  )    (  

    )  

Then by hypothesis   (  )  ∑  (   )
 
    ∑  (   )

 
    (  )   

Let for any     we have  ∑  (   )
 
    (  )      

Similarly ∑  (  
 ) 

    (  )       continuingly ∑  (  
 ) 

    (  )       

For this      
   

  implies     
        

 (    
   

 ) 

   (    
   )  ∑  (    

   
 ) 

   ……..(i) 
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Since *  + 
  is a sequence for which  (    

   )  ∑  (  )
 
  then 

( )    (    
   )  ∑ (∑  (  )

  
 ) 

   

   (    
   )  ∑ (  (  )      ) 

   

   (    
   )  ∑   (  )

 
  ∑

 

  
 
   

   (    
   )  ∑   (  )

 
       

Since     was an arbitrary positive real number therefore inequality true for all 

    and we get  

  (    
   )  ∑   (  )

 
   and    is countably sub – additive. 

Hence the result. i.e.   ( ) is an outer measure. 

 

Theorem: Let    be an outer measure on X and  (  ) be the collection of all    - 

measurable subsets. Prove that    when restricted to  (  ) is a measure. 

 Furthermore (   (  )  ) is complete measure space. 

Proof: Since     ( )  ,   - is countably sub – additive so its restriction 

    (  )  (  )  ,   - is also countably sub – additive. We are to show that 

    (  )  (  )  ,   - is a measure on  (  ). 

I: Since   ( )    therefore     (  )( )    

II: For countably additive suppose *  + 
  be a sequence in  (  ) therefore *  + 

  

is a disjoint sequence in  (  ) and  

  (  
   )  ∑   (  )

 
         is an outer measure 

     (  )(  
   )  ∑     (  )(  )

 
    ………(i) 

Now for     we have   
      

    

     (  )(  
   )      (  )(  

   )  

  If *  + 
   (  ) and disjoint then     (  )(  

   )  ∑     (  )(  )
 
  therefore 

 ∑     (  )(  )
 
      (  )(  

   )    
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     (  )(  
   )  ∑     (  )(  )

 
   

Since this is true for all     therefore we have  

     (  )(  
   )  ∑     (  )(  )

 
      ………(ii) 

Combining (i) and (ii)      (  )(  
   )  ∑     (  )(  )

 
  

    (  ) is countably additive. 

Hence     (  ) is a measure on  (  ) 

 Now let    (  ) be a null set then   ( )    implies     (  )( )    

then every subset of E is    - measurable. Implies every subset of E is a member of 

 (  ) and hence (   (  )  ) is complete measure space. 

 

Interval 

An interval is the set of real numbers. e.g.   ,   -  *   ∈        + 
and length of interval    ( )      , also keep in mind ,   - (   ) have same 

length. 

Notations: Let   is the set of real numbers then; 

Á     Collection of   and all open intervals on  . 

Á     Collection of   and all close intervals on  . 

Á      Collection of   and all open close intervals on  . i.e. (   - 
Á      Collection of   and all close open intervals on  . i.e. ,   ) 
Á                  Collection of   and all intervals on  . 

 

Remember: Let   is the set of real numbers then; 

Á ,   -  ,   ) and (    -  ,    - 
Á For extended real valued function     ,   - and   ∈   we have 

 ( )        and   ( )    

Á For an arbitrary disjoint sequence *  + 
  in   we have 

 (  
   )  ∑ (  )
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Theorem: Open interval (   ) is     measurable. We may use jut measurable. 

Or A monotone function that is defined on an interval is measurable. 

Or Every Borel set in   is measurable. 

Proof:   

Actually we have to prove every interval is measurable. Using the fact  (  ) is 

  Algebra. 

Let A be any set of real numbers then   (   )      (   )  (    - 

For     measurable set   (   ) we have to prove  

  ( )    (   )    (    )  

  ( )    (  (   ))    (  (    -)  

Suppose      (   ) and      (    - then 

  ( )    (  )    (  )  

Obviously true that    ( )    (  )    (  ) ……………(i) 

Therefore we are to show that    ( )    (  )    (  ) 

Now if   ( )    then there is nothing to prove. 

But if    ( )    then for any     there exists a countable collection *  + 
  of 

open intervals such that  

∑  (  )
 
    ( )     ……………(ii)     ( )  ∑  (  )

 
  

Let   
     (   ) and   

      (    - then   
    

   are intervals and 

     
    

   

 ∑  (  )
 
  ∑  (  

 ) 
  ∑  (  

  ) 
    ……………(iii) 

Now      
 (  

 ) and      
 (  

  ) 

   (  )    (  
 (  

 ))  ∑  (  
 ) 

   

   (  )  ∑  (  
 ) 

   ……………(a) 

Similarly    (  )  ∑  (  
  ) 

   ……………(b) 
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From (ii)  ∑  (  )
 
    ( )    

   ( )    ∑  (  )
 
   

   ( )    ∑  (  
 ) 

  ∑  (  
  ) 

    using (iii) 

   ( )      (  )    (  )   using (a) and (b) 

Since     was an arbitrary, so     

   ( )    (  )    (  )   ……………(iv) 

From (i) and (iv) we get     ( )    (  )    (  ) 

   ( )    (  (   ))    (  (    -)  

Hence Open interval (   ) is     measurable. We may use jut measurable. 

Hence in view of above all discussion, the   Algebra  (  ) contains all the 

open sets in  . Since   is the smallest   Algebra containing all the open sets, we 

conclude that Borel set in   is measurable. 

 

Lebesgue Outer measure 

The set function   
   ( )  ,   - defined by for all  ∈  ( ) 

  
 ( )     *∑  (  )

 
      

       ∈   +  

Is called Lebesgue outer measure on  ( ) where     ,   - such that  ( )    

and  ( )      

 

Lebesgue Sigma Algebra 

The collection  (  
 ) of all   

   measureable sets is denoted by    is called the 

Lebesgue    Algebra. Member of    are called     measureable or Lebesgue 

measurable set s, the pair (    ) is called Lebesgue measurable space and the 

triplet (       ) is called Lebesgue measure space, where    is measure on   . 

 

Remark:  

 (  ) in general is    Algebra, so  (  
 ) is    Algebra in particular case. 
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Lemma:  Singleton are null sets in Lebesgue measure space. 

Or  for every     we have   
 * +    and      

Or Prove that Lebesgue outer measure of singleton sets is zero i.e.   
 * +    

Proof:  

Let     then for all     we have (  ∈   ∈) ∈    so that (  ∈   ∈)       

is an open cover for * + then   
 * +   (  ∈   ∈)   ( )   ( )     ∈ 

  (  ∈   ∈)   ∈  and   ( )    

   
 * +   ∈  for all     

Since ∈ was an arbitrary therefore we have   
 * +    

          Since if   
 ( )     then      

 

Lemma:  Prove that every countable subset of   is a null set in Lebesgue 

measure space. i.e. (       ) 

Proof: Let   be a countable subset of   then   is countable union of 

singletons. i.e.     ∈ * +. 

Then   ( )    (  ∈ * +)  ∑   * + ∈    

   ( )        Since   * +       ∈   

 

Question:  Prove that the set of rational numbers Q is null set and      

Solution: Since Q is countable subset of   then Q is countable union of 

singletons. i.e.     ∈ * +. 

Then   ( )    (  ∈ * +)  ∑   * + ∈    

   ( )    i.e. Q is null set    Since   * +       ∈   
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Question:  Prove that the set of irrational numbers   ( 
    )    but       

Solution: Since        and            

Then   ( 
 )    (   )    ( )    ( )        ( 

 )    

Since      and      then        as    is sigma algebra. 

        

 

Dense Subset of X: Let (   ) be a topological space a subset E of X is called 

dense in X if for all open sets O in X we have       or   ̅    

 

Preposition: If E is a null set in (       ) then    is dense in  . 

Proof: Suppose      is a null set in (       ) i.e.   
 ( )    and let 

    is an open interval then   
 ( )    

 ( )      
 ( )    

But in fact,   
 ( )    

Hence     implies       . Thus    is dense in  . 

 

Lemma: Prove that Lebesgue outer measure of an interval is its length. i.e. 

  
 ( )   ( ) where   is an interval in  . 

Proof: Case – I: If   is a finite closed interval i.e.   ,   - where    ∈   such 

that     for every ∈   we have ,   -  (  ∈   ∈) so that (  ∈
   ∈)       is covering sequence of open intervals that cover ,   - then by 

definition of   
  we have   

 (,   -)  ∑  (  )
 
  

  
 (,   -)   ((  ∈   ∈))   ( )   ( )     

  
 (,   -)  (   )   ∈         

Since this is true for all ∈   therefore   
 (,   -)  (   )   ( ) 

  
 (,   -)   ( )   ……..(i) 

Now we will prove the reverse inequality   
 (,   -)   ( ) but this is equivalent to 

∑  (  )
 
   ( )   ……..(ii) 
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For any countable cover *  + 
  in    of the   i.e.     

    it its sufficient to prove 

inequality (ii) by using Hein Borel Theorem, according to which  ―every countable 

cover of closed interval can be reduced to finite sub – cover‖ 

For a finite sub – cover i.e. if *  + 
  is the finite sub – cover of the interval ,   - 

then we are to prove ∑  (  )
 
   ( )    ……..(iii) 

Since     
    and as for  ∈ ∑  (  )

 
  there exists an open interval (     ) ∈ *  + 

  

so  ∈ (     ) then           

If      then   ∈ ,   - but    (     ) then there exists an open interval 

(     ) ∈ *  + 
  such that   ∈ (     ) then          

Preceding in this manner, we get an open interval (     ) ∈ *  + 
  such that 

        i.e.  ∈ (     ), so we obtain a sub – sequence of *  + 
  that will be 

*(     ) (     )   (     )+  *  + 
  therefore ∑  (  )

 
  ∑  (     )

 
  

∑  (  )
 
   (     )   (     )     (     )  

∑  (  )
 
                       

∑  (  )
 
  (     )  (         )    (     )  

∑  (  )
 
             

∑  (  )
 
   ( )  

  
 (,   -)   ( )    ……..(iv) 

From (i) and (iv)     
 (,   -)   ( ) 

i.e.     
 ( )   ( ) 

Case – II: If   (   ) then (   )  ,   - 

Then by monotone property   
 ((   ))    

 (,   -)   (,   -)      

  
 ((   ))          ……..(v) 

For ∈   we have     
 ((   ))      ∈ 

Since ∈   was an arbitrary therefore    
 ((   ))       ……..(vi) 

Combining (v) and (vi)   
 ((   ))      

Thus   
 ( )   ( ) 

ὥ ὦ   

ὥ ὦ     

ὦ  ὦ ὥ  ὥ 

ὦ  ὥ  ὦ ὥ 

ὦ  ὦ  ὥ   ὥ  
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Case – III: If   (   - then (   -  (   )  * + 

Then    
 ((   -)    

 ((   ))    
 (* +)            

 (* +)    

  
 ((   -)      . Hence    

 ( )   ( ) 

Case – IV: If   ,   ) then ,   )  * +  (   ) 

Then    
 (,   ))    

 (* +)    
 ((   ))            

 (* +)    

  
 (,   ))      . Hence    

 ( )   ( ) 

Case – V: If   (   ) then (   )  (   ) 

Then    
 ((   ))    

 ((   ))        
 ((   )) 

Since this hold for all     we must have    
 ((   ))     ((   )) 

Thus     
 ( )   ( ) 

Case – VI: If   (    ) then (    )  (    ) 

Then    
 ((    ))    

 ((    ))    (  )    
 ((    )) 

Since this hold for all     we must have    
 ((    ))     ((    )) 

Thus     
 ( )   ( ) 

Theorem:  

Prove that every Borel set is Lebesgue measurable. Or     measurable. 

Or Prove that        (  
 ) 

Proof: As every interval in   is     measurable. And since every open set in   

is countable union of open intervals in   therefore it is member of   . If   be a 

collection of open sets in   then  ∈    

Implies  ( )   (  )      

i.e.        (  
 ) 

Remark: The condition   
 ( )    

 (   )    
 (    )    ∈  ( ) is 

equivalent to    
 ( )    

 (   )    
 (    )    ∈    
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Lemma:  

Prove that every interval in   is Lebesgue measurable. Or   
   measurable. 

Or Prove that       (  
 ) 

Proof: Note that a subset E of   is   
   measurable, if for all  ∈    we have 

  
 ( )    

 (   )    
 (    )   

Case – I: If   (   ) ∈        ∈   then       

    ,(   )  (   ) -           so   (   )  (   )  

  ,  (   )-  ,  (   ) -  

Since   (   ) and   (   )  are disjoint so that; 

 ( )   (  (   ))   (  (   ) )  

  
 ( )    

 (  (   ))    
 (  (   ) )      

 ( )   ( ) 

Implies (   ) ∈    

Similarly  (    ) ∈    

Case – II: If   (   ) ∈     then (   )  (    )  (   ) ∈    

Implies (   ) ∈          is   algebra 

Case – III: If   (    ) ∈     then (    )  (    )  (   )   ∈    

Implies (    ) ∈          is   algebra 

Case – IV: If   ,   -  then ,   -  * +  (   )  * + ∈    

Implies ,   - ∈          is   algebra 

Case – V: If   ,   )  then ,   )  * +  (   ) ∈    

Implies ,   ) ∈          is   algebra 

Case – VI: If   (   -  then (   -  (   )  * + ∈    

Implies (   - ∈          is   algebra 

Hence every interval in   is    
   measurable. 
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Theorem:  Prove that the Lebesgue measure space (       ) is   finite but not 

finite. 

Proof: Since   (    ) therefore   ( )   ( )   ,  

so (       ) is not finite. 

Now consider the sequence *(    )+ 
  in    then   

 (    )    and 

  (    )   (    )    (  )       

Hence (       ) is   finite space. 

 

Translation of a Set 

For each element    and subset E of    we will denote by      the subset of    

defined by       * ∈                            +  

The set      is called the translate of E by   . We turn to the invariance of 

Lebesgue measure under such translations. 

Or Let X be a linear vector space over a field   then for     and   ∈   we 

have         *       ∈  + and call it    translate of   

Dialation of a Set 

Let X be a linear vector space over a field   then for     and  ∈   we have   

    *     ∈  + and is call dialation of  by   

 

Remark: 

Á For a collection   of subsets of  ( ) and for all   ∈   we have 

      *       ∈  +  and     *     ∈  + 
Á (    )       (     ) 
Á (   )  (    ) 
Á If       then           

Á   
        

 (    ) 
Á   

        
 (    ) 

Á  (  )  (  )  

Á (  )      

Á     is translation invariant. 



56 
 

MUHAMMAD USMAN HAMID (0323 – 6032785) 

Translation Invariant: Let (X,   ,μ) be a measure space where X is a linear 

vector space over a field   then; 

Á     algebra   is called translation invariant if for all  ∈   and  ∈   we 

have    ∈   

Á The measure   is said to be translation invariant if for all  ∈   and  ∈   

we have    ∈   and  (   )   ( ) 
Á The measure space (X,   ,μ) is called translation invariant if   and   both 

are translation invariant. 

 

Theorem: Prove that Lebesgue outer measure is translation invariant. 

Or Prove that for all  ∈  ( ) and  ∈   we have   
 (   )    

 ( ) 

Proof:    

First we will show that      ,   - i.e.  ( )      for   (   ) ∈    is 

translation invariant. 

If   (   ) ∈    then     (       ) ∈    and  (   )   ( ) 

i.e.  (   )   (       )               ( ) 

if    (   ) or   (    ) or   (    ) 

then      (     ) or     (      ) or     (    ) 

and for all   (   )     ( ) 

hence for all  ∈    and  ∈   we have    ∈    and  (   )   ( )    ……(i) 

so length of   is translation invariant. 

Now let *  + 
  be an arbitrary sequence in    such that     

   . Then for an 

arbitrary  ∈   we have *    + 
  in    with  (    )   (  )      ∈   

Now     (  
   )      

 (    ) implies       
 (    ) 

  
 (   )    

 (  
 (    ))   by monotonicity property 

  
 (   )  ∑   

  
 (    )  ∑   

 (    )  ∑   
 (  )  

  
 (   )  ∑   

 (  )    from (i) 
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Since   
 ( )     *∑   

 (  )     
       ∈    + 

Therefore    
 (   )    

 ( ) ………..(ii) 

Applying (ii) to (   ) and its translation by (  ) i.e. (   )  (  ) we obtain  

  
 (   )    

 ((   )  (  ))    
 ( ) 

Implies    
 (   )    

 ( )  ………..(iii) 

From (ii) and (iii) we obtain   
 (   )    

 ( ) 

This shows that Lebesgue outer measure is translation invariant. 

Theorem: Prove that Lebesgue measure space (       ) is translation invariant. 

Or Prove that for all  ∈    and  ∈   we have    ∈     

and   (   )    ( ) furthermore         

Or  The translate of a measurable set is measurable. 

Proof:   Let  ∈    and  ∈   we are to show that     ∈    

For this we have to show that for all  ∈  ( ) following phenomenon; 

  
 ( )    

 (  (   ))    
 (  (   ) )  

For this we will solve R.H.S. and equate it with L.H.S 

  
 (  (   ))    

 (  (   ) )    
 (*  (   )+   )    

 (*  
(   ) +   )  

   
 ((   )  *(   )   +)    

 ((   )  *(   )   +)  

   
 ((   )  *(   )   +)    

 ((   )  *(    )   +)  

   
 ((   )   )    

 ((   )    )  

   
 (   )  considering (   ) a testing set for  ∈    

   
 ( )   since   

  is translation invariant 

So    
 ( )    

 (  (   ))    
 (  (   ) )   for all  ∈  ( ) 

Implies    ∈    
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Since restriction of   
  to    become measure, mean outer measure become 

measure. i.e.   
     therefore  

For   
 (   )    

 ( ) we have   (   )    ( ) 

Now for  ∈    and  ∈   we have    ∈    implies         …….(i) 

Let  ∈    and  ∈   then we have    ∈    

 (   )   ∈        (    ) ∈       ∈       

So          …….(ii) 

Combining (i) and (ii)           

 

Addition modulo 1: For    ∈   ,   ) in   we define addition modulo 1 by 

  ̇  {
                   

                  
 

The operation  ̇ takes a pair of elements from ,   ) to an element of ,   ). 

The operation  ̇ is commutative as well as associative. i.e.  

  ̇    ̇   and   ̇(  ̇ )  (  ̇ ) ̇  

Translation of E modulo 1: Let     ,   ) and  ∈   ,   ) we define 

translation of E modulo 1 by   ̇  *  ̇   ∈  + and call it y translate of E 

modulo 1. 

Lemma: Lebesgue measure is translation invariant modulo 1 

Let   ,   ) and if  ∈    then for every  ∈ ,   ) we have   ̇ ∈    and  

  (  ̇ )    ( ) 

Proof: Let   ,   ) and  ∈ ,   ) then the intervals ,     ) and ,     ) are 

disjoint. i.e. ,     )  ,     )    

Now we define two subsets of E as follows; 

     ,     )  and       ,     ) where         ,         

Since   ,     ) ,     ) ∈    therefore      ∈    as    is   algebra. 

Then using         we have   ( )    (     ) 
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  ( )    (  )    (  )   ………..(i) 

Since    ̇  *  ̇   ∈   +  *     ∈                     + 

Implies    ̇      ∈         is translation invariant 

Now   (   ̇ )    (    ) 

  (   ̇ )    (  )   ………..(ii)      is translation invariant 

Also Since    ̇  *  ̇   ∈   + 

   ̇  *       ∈                     +  

Implies    ̇     (   ) ∈         is translation invariant 

Now   (   ̇ )    (   (   )) 

  (   ̇ )    (  )   ………..(iii)      is translation invariant 

Now    ̇  (     ) ̇ ∈     

  ̇  (   ̇ )  (   ̇ ) ∈           is   algebra. 

Then    (  ̇ )    (   ̇ )    (   ̇ ) 

  (  ̇ )    (  )    (  )    by (ii) and (iii) 

  (  ̇ )    ( )     by (i)  

Hence proved Lebesgue measure it translation invariant modulo 1 

 

For video lectures  

@ You tube visit  

Learning with Usman Hamid  
visit facebook page òmathwathó 

or contact: 0323 ð 6032785  
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Theorem:   

There is a subset of  , and in fact of the interval (0,1), that is not Lebesgue 

measurable. 

Or The interval (   ) ∈    contains a non - Lebesgue measurable set 

Proof:  

First we define a relation   on (   ) ∈   by letting       hold if and only if 

    is rational. The relation   partition (   ) into equal classes *  + any two 

numbers of (   ) which are in same equivalence class differ by a rational. i.e. 

   ∈    for some ‗k‘ if     is rational. And any two numbers of (   ) which 

are not in same equivalence class differ by an irrational. i.e.  ∈     ∈    for 

some ‗i , j‘ if     is irrational. Since these equivalence classes are disjoint, and 

since each intersects the interval (   ), we can use the axiom of choice to form a 

subset   of (   ) that contains exactly one element from each equivalence class. 

We will prove that the set   is not Lebesgue measurable 

By axiom of choice, construct a set   (   ) by picking exactly an element 

from each equivalence class. Also let *       
 + be rational in (   ) with      

and for each     
  let      ̇   we will check that 

(a) the sets    are disjoint 

(b) the interval (   ) is included in      
    

(c)      

a) Contrarily suppose that    *        ̇       
 + are not disjoint i.e. 

        for     then  ∈       implies  ∈    and  ∈    then there 

exists      ∈   such that      ̇   and      ̇   then    ̇      ̇   

Since    ̇   is either       or    (    ) also    ̇   is either       or 

   (    ) therefore in either case       is rational number, so      ∈    

for some  . 

Now since      ∈    for some   therefore  contains exactly one element from 

each equivalence class, thus for       we have    , which is contradiction. 

Hence         for     

b) Now we claim that (   )       
    

Since    (   ) for all     
  implies      

    (   ) ………(i) 
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Now let  ∈ (   ) then  ∈    for some   and since  contains exactly one 

element from each equivalence class therefore there exists  ∈   such that  ∈    

so     is rational in (   ) 

Implies     ∈ *       
 + therefore        for some     

  

Here we discuss two cases; 

i. If     then       ∈           ∈ (   ) 
ii. If     then       

  

Let        
 ∈ (   ) then       

  

Implies       
    (    )        ∈    

Hence  ∈     
    implies (   )       

    ………(ii) 

Combining (i) and (ii) (   )       
    

c) Now we will show that      

Contrarily suppose that  ∈    then from (   )       
    we obtain  

  ((   ))    (     
   )  

 ((   ))  ∑   

    
 

(  ) 

    ∑       
 (  ̇  )  ∑       

 ( )       is translation invariant 

  ∑       
 ( )  ………(iii)   where   ( )    

Since  ∈    then   ( )    but if   ( )    then equation (iii) reduces to 

   , also if   ( )    then equation (iii) reduces to     which is 

contradiction. 

Thus     . 

Hence the result. 
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Functions and Integrals 

This chapter is devoted to the definition and basic properties of the Lebesgue 

integral. We first introduce measurable functions—the functions that are simple 

enough that the integral can be defined for them if their values are not too large. 

After a brief look at properties that hold almost everywhere (that is, that may fail 

on some set of measure zero, as long as they hold everywhere else), we turn to the 

definition of the Lebesgue integral and to its basic properties. The chapter ends 

with a sketch of how the Lebesgue integral relates to the Riemann integral and then 

with a few more details about measurable functions. 

In this section we introduce measurable functions and study some of their 

basic properties. We begin with the following elementary result. 

Proposition: Let (   ) be a measurable space, and let A be a subset of X that 

belongs to   i.e.     . For a function      ,     - the following 

conditions are equivalent for all  ∈  . 

(a) *  ∈       ( )    +     (,    -) belongs to   

(b) *  ∈       ( )    +     ((   -) belongs to   

(c) *  ∈       ( )    +     (,   -) belongs to   

(d) *  ∈       ( )    +     (,    )) belongs to   

Proof: ( )  ( ) 

Let  ∈   and let    * ∈     ( )    + and    *  ∈       ( )    + then 

        and         

Let    ∈   then        ∈      is sigma algebra 

And   ∈   then        ∈      is sigma algebra 

Implies  ( )  ( ) 

( )  ( )  

Let  ∈   and let    * ∈     ( )    + and    *  ∈       ( )    + then 

        and         

Let   ∈   then        ∈      is sigma algebra 

And   ∈   then        ∈      is sigma algebra 

Implies  ( )  ( ) 
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( )  ( )  

Suppose ( ) is true then *  ∈       ( )    + belongs to   then for every   ∈    

and  ∈   we have   ( )     if and only if   ( )     
 

 
 for all  ∈   and since 

  is sigma algebra therefore  

*  ∈       ( )    +    
 {  ∈      ( )     

 

 
} belongs to   

*  ∈       ( )    + belongs to   which is ( ) 

Implies  ( )  ( ) 

( )  ( )  

Suppose ( ) is true then *  ∈       ( )    + belongs to   then for every   ∈    

and  ∈   we have   ( )     if and only if   ( )     
 

 
 for all  ∈   and since 

  is sigma algebra therefore  

*  ∈       ( )    +    
 {  ∈      ( )     

 

 
} belongs to   

*  ∈       ( )    + belongs to   which is ( ) 

Implies  ( )  ( ) 

Hence all given conditions are equivalent. 

Measurable functions  

Let (   ) be a measurable space, and let A be a subset of X that belongs to  . 

An extended real valued function      ̅  or     ,     - is measurable 

with respect to A if  

* ∈     ( )    +  * ∈     ( ) ∈ ,    ) +     ((,    ))) ∈    

Remark: 

Á Above definition requires that we must be able to measure inverse image of 

intervals of the type,    ) for  ∈   

Á A function that is measurable with respect to   is sometimes called   -

measurable or, if the ζ-algebra   is clears from context, simply measurable 

Á In case     , a function that is measurable with respect to  (  )is called 

Borel measurable or a Borel function. 



64 
 

MUHAMMAD USMAN HAMID (0323 – 6032785) 

Examples:  

(a) Let          be continuous. Then for each real number „t‟ the set 

*  ∈        ( )     } is open and so is a Borel set. Thus f is Borel 

measurable. 

(b)  Let I be a subinterval of  , and let         be non-decreasing. Then for 

each real number „t‟ the set *  ∈       ( )     + is a Borel set (it is either 

an interval, a set consisting of only one point, or the empty set). Thus f  is 

Borel measurable. 

(c) With    ( ) every extended real valued function defined on X is   –

measurable. 

(d) Let (   ) be a measurable space, and let B be a subset of X. Then   ,the 

characteristic function of B, is   -measurable if and only if B ∈   . 

 

Question: Let    and    are sigma algebras such that        then every 

    measurable function is     measurable. 

Solution: Suppose f  is     measurable function then for all  ∈   and  ∈   we 

have * ∈      ( )   + ∈    and since        therefore we have   

* ∈      ( )   + ∈    and this implies f  is     measurable. 

 

Result: If   *   + is the smallest   algebra on X then     ,     - an 

extended real valued function on X is   –measurable if and only if   is constant 

function. 

Proof:  

Suppose f  is   –measurable then for  ∈   we have * ∈      ( )   + ∈   

If * ∈      ( )   +    then   ( )                 ∈   and  ∈   

If * ∈      ( )   +    then   ( )                 ∈   and  ∈   

Conversely: Suppose   is constant function. i.e.   ( )       ∈    and let  ∈   

then * ∈      ( )   +  {
          
          

 

In each case; * ∈      ( )   + ∈     ∈   

Hence f  is   –measurable. 



65 
 

MUHAMMAD USMAN HAMID (0323 – 6032785) 

Result:  With    ( ) every extended real valued function defined on X i.e. 

     ̅  is   –measurable. 

Proof: For every subset of X and  ∈   we have * ∈      ( )   + ∈  ( ).               
So f  is   –measurable. 

Proposition: Let (X,   ) be a measurable space, let A be a subset of X that 

belongs to   , and let f and g be ,     -   valued measurable functions on A. 

then 

a) * ∈      ( )    ( )+ belong to   

b) * ∈      ( )    ( )+ belong to   

c) *  ∈     ( )    ( )+ belong to   

d) * ∈     ( )   ( )+ belong to   

Proof: Note that the inequality  ( )   ( ) holds if and only if there is a rational 

number r such that  ( )     ( ). Thus 

a) As 

* ∈    ( )   ( )+     ∈ (* ∈    ( )    +  * ∈       ( )+)  

So * ∈    ( )   ( )+, as the union of a countable collection of sets that 

belong to   , itself belongs to   . 

b) Similarly  

* ∈    ( )   ( )+     ∈ (* ∈    ( )    +  * ∈       ( )+) 

So * ∈    ( )   ( )+ as the union of a countable collection of sets that 

belong to  , itself belongs to  .  

c) As we know that  

* ∈    ( )   ( )+      * ∈     ( )    ( )+   
Imply that * ∈     ( )   ( )+ belongs to  .  

 

d) * ∈    ( )   ( )+ is the difference of * ∈     ( )   ( )+ and 

* ∈    ( )   ( )+ and so belongs to  .   

  

Characteristic Function: For an arbitrary subset E of X then characteristic 

function of E is defined as      ,   - by   ( )  {
            
                

 

Note: In measure theory    is replaced by   . 
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Result: Let (X,   ) be a measurable space and let    ( ) then    is    

measurable if and only if     . 

Proof: Suppose      and let  ∈   be fixed then we are to show that    is    

measurable, then *       ( )   +  {

                    

               
                    

 

In each case *       ( )   +    and so       

Conversely: Suppose that    is    measurable then for all  ∈   we have 

*       ( )   +    and in particular if       then *       ( )   +            

so that      as   is sigma algebra. 

 

Proposition: Let (X,   ) be a measurable space, let D be a subset of X that 

belongs to   , and let f  be    measurable functions on D. then 

a)    (,   ))  * ∈        ( )   + belong to   

b)    ((   -)  * ∈        ( )   + belong to   

c)    ((   ))  * ∈        ( )   + belong to   

d)    (, -)  * ∈      ( )   +belong to   

e)    (,  -)  * ∈      ( )    +belong to   

f)    (, -)  * ∈      ( )   +belong to   

Proof: Here for all case we will use the following result 

  is    algebra ,      is    measurable and     (  
   )    

    (  ) 

a) As  

   (,   ))     (,   -  ,    ))     (,   -)     (,    ))    

    (,   ))  * ∈        ( )   +     

b) As  

   ((   -)     ((   -  ,    -)     ((   -)     (,    -)    

    ((   -)  * ∈        ( )   +     

c) As  

   ((   ))     ((   -  ,    ))     ((   -)     (,    ))    

    ((   ))  * ∈        ( )   +     
d) As 

   (, -)  * ∈      ( )   +    
 * ∈      ( )   +     

    (, -)  * ∈      ( )   +     
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e) As 

    (,  -)  * ∈      ( )    +    
 * ∈      ( )    +    

    (,  -)  * ∈      ( )    +     

f) As 

   (, -)  * ∈      ( )   +  
   (, -)  * ∈      ( )   +  * ∈      ( )   +     

    (, -)  * ∈      ( )   +     

 

Question:  

Let G be an open set in  , and let (    ) be a measurable space and      ̅ is 

    measurable on      then show that    ( )    

Proof:  

Since G is open subset of   therefore there exists disjoint collection of open 

intervals in   such that     
    then  

   ( )     (  
   )    

    (  )     implies    ( )    

Here we use the following results; 

       - measurable and     is    algebra 

Proposition:  

Let (X,   ) be a measurable space, let D be a subset of X that belongs to   , and 

let      ̅ be an extended real valued    measurable functions on D. then for 

all  ∈   ̅    ,    - we have * ∈      ( )   + belong to   

Proof: 

 If  ∈   then    (, -)  * ∈      ( )   +    

If     then    (, -)  * ∈      ( )   +    

If      then    (,  -)  * ∈      ( )    +    

Hence * ∈      ( )   +    for all  ∈  ̅ 

Note: Converse of this proposition not holds. See next. 
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Proposition: An extended real valued function      ̅ defined on      

satisfying  * ∈      ( )   +    needs not to be    measurable. 

Proof: Consider the Lebesgue measurable space (    ). And also we know that 

there exists a non – Lebesgue measurable subset of (   ) i.e.   (   ) then let 

define a function   (   )  *    + by  ( )  {
                                           

               (   )          
 

then for every  ∈   ̅ the set * ∈  (   )    ( )   + is either singleton or empty 

set. In each case it is member of    but if we choose      

then * ∈  (   )    ( )   +      . So that f  is not    measurable. 

 

Theorem :  

Let (X,   ) be a measurable space, let D be a subset of X that belongs to   , and 

let      ̅ be an extended real valued measurable functions on D. then for every 

     such that       then restriction of f  on    is    measurable. 

Or For a measurable subset D of E,   is measurable on E if and only if the 

restrictions of   to D and E  D are measurable. 

Proof:  Since   is measurable functions on D and   is sigma algebra then for 

        we have * ∈       ( )   +  * ∈      ( )   +         

Implies f  on    is    measurable. 

 

Theorem:  

Let (X,   ) be a measurable space, and *  + 
  be a sequence in   also     

   . 

Let      ̅ be an extended real valued measurable functions on D. if the 

restriction on    is    measurable for all  ∈   then f  is    measurable on D. 

Proof:  

Since   is   measurable functions on    and   is sigma algebra then for  ∈    

consider  

* ∈      ( )   +  * ∈   
      ( )   +    

 * ∈       ( )   +     

Implies f  is    measurable on  . 
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Theorem: Let (X,   ) be a measurable space, and      then every constant 

function on D is   measurable. 

Proof: Let  ( )         then for all  ∈   we have  

*      ( )   +  {
               
               

  

In each case *      ( )   +    for all  ∈  . So that f  is    measurable on  . 

In the following proposition we deal with arithmetic operations on 

,    -  valued measurable functions and on   valued measurable functions. 

Arithmetic operations on ,     -   valued functions are trickier and are seldom 

needed. 

Proposition: Let (X,   ) be a measurable space, let D be a subset of X that 

belongs to   , let   and   be ,    -  valued measurable functions or extended 

real valued measurable functions on D, and let   be any real number. Then 

                       and 
 

 
   (   ) are    measurable. 

Proof: Let  ∈   also using   measurable function then 

*        ( )   +  *      ( )     +  *      ( )     +     

Implies        ̅ is    measurable. 

……………………………… 

If     then      so   being constant function is    measurable. 

If     then for all  ∈   we have  

*     (  )   +  *       ( )   +  {      ( )  
 

 
}      

If     then for all  ∈   we have  

*     (  )   +  *       ( )   +  {      ( )  
 

 
}      

Implies       ̅  is    measurable. 

Particularly    is    measurable for      

……………………………… 
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Now we are to show that        ̅  is    measurable function, equivalently 

we are to show that the set *        ( )   +    

Let  ∈   also using   and   measurable functions then consider the set 

*     (   )   +  *      ( )   ( )   +  *      ( )     ( )+  

Since  ( )    ( ) ∈   and set of rational number   is dense in   therefore 

 ( )       ( ) where  ∈  . And we claim that; 

*     (   )   +    ∈ (* ∈    ( )    +  * ∈      ( )   +)  

To show this let  ∈ *     (   )   + 

Then (   )      ( )   ( )      ( )     ( ) 

  ( )       ( )  where  ∈   then  

 ∈ * ∈    ( )    +  * ∈      ( )   +  

  ∈  ∈ (* ∈    ( )    +  * ∈      ( )   +)  

 *     (   )   +    ∈ (* ∈    ( )    +  * ∈      ( )   +)  

          ………………(i) 

Now suppose that   ∈  ∈ (* ∈    ( )    +  * ∈      ( )   +) 

  ∈ * ∈    ( )    +  * ∈      ( )   +  where  ∈   

  ( )       ( )  where  ∈    

  ( )     ( )   ( )   ( )    (   )     where  ∈   

   ∈ (* ∈    ( )    +  * ∈      ( )   +)  *     (   )   +  

          ………………(ii) 

Combining (i) and (ii) 

*     (   )   +    ∈ (* ∈    ( )    +  * ∈      ( )   +)  

Implies *        ( )   +    as is   sigma algebra 

Implies        ̅ is    measurable. 

……………………………… 
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Now we are to show that        ̅  is    measurable function on D 

Since    is    measurable function on D then     is also     measurable 

function on D. Now Since    and      are     measurable function on D 

therefore their sum   (  )       is also     measurable function on D 

Implies        ̅ is    measurable. 

……………………………… 

Let       ̅ is extended real valued function defined on D such that for all      

  ( )  , ( )-  

Now we are to show that       ̅  is    measurable function on D, then 

consider the set *       ( )   + 

If  ∈     then we have  *       ( )   +        

If  ∈     then we have  *       ( )   +  

 *     , ( )-   +  {      ( )   √ }  

 {      ( )   √ }  {      ( )   √ }     

So *       ( )   +       

Implies       ̅ is    measurable. 

……………………………… 

Now we are to show that       ̅  is    measurable function on D 

Since    
 

 
,(   )  (   ) -  

Also                   (   )  (   )  are    measurable 

Therefore 
 

 
,(   )  (   ) -     is    measurable 

Implies       ̅ is    measurable. 

……………………………… 
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Now we are to show that 
 

 
    ̅  is    measurable function on D. For this 

first we show that 
 

 
    ̅  is    measurable function on D. Let 

 

 
    ̅ is 

extended real valued function defined on D such that for all     ;  
 

 
( )  

 

 ( )
 

Consider the set {     
 

 ( )
  } and  ∈   then discuss following assumptions; 

If     then assuming   as    measurable 

{     
 

 
( )   }  {     

 

 ( )
  }  *      ( )   +     

If     then assuming   as    measurable 

{     
 

 
( )   }  {     

 

 ( )
  }  {      ( )  

 

 
}      

If     then assuming   as    measurable and   as sigma algebra 

{     
 

 
( )   }  {     

 

 ( )
  }  

 {      ( )  
 

 
  ( )   }  {      ( )  

 

 
  ( )   }      

{     
 

 
( )   }  {      ( )  

 

 
}  {      ( )  

 

 
}      

Hence in each case  
 

 
    ̅  is    measurable function on D. 

Now using the fact “If   and   are    measurable then     is    measurable” 

Implies 
 

 
   

 

 
    ̅ is    measurable. 

……………………………… 
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Larger and Smaller of two functions or Maximum and Minimum of f and g  

Let f and g be ,     -  valued functions or extended real valued functions 

having a common domain A. The maximum and minimum of f and g, written 

    and    , are the functions from A to ,     - defined by 

(   )( )     ( ( )  ( )) and (    )( )     (  ( )  ( )) 

Equivalently, we can define     by (   )( )  {
 ( )       ( )   ( ) 

 ( )               
 and 

(   )( )  {
 ( )       ( )   ( ) 

 ( )               
 

Limit inferior and limit superior of a sequence  

If { fn} is a sequence of [−∞,+∞]-valued functions on A, then  

Á          ,     - is defined by  

(      )( )     *   ( )            +  
Á          ,     - is defined by  

(      ( ))     *   ( )            +  

Á                    (   *   ( )     +) 
Á                    (   *   ( )     +) 

The domain of    
 

   consists of those points in A at which          and 

   (     ) agree. 

Remember 

Á For an increasing sequence i.e.         we have  

                   (   *   ( )     +)        (      *  +)  
Á For a decreasing sequence i.e.         we have  

                   (   *   ( )     +)        (      *  +)  
Á *  + 

  is a sequence of functions and *  ( )+ 
  is a sequence of real 

numbers. 

Á (              )( )              (  ( )) 

Á (              )( )              (  ( )) 

Á (         )( )         (  ( )) and 

(         )( )         (  ( )) 

Á (         )( )     
   

(  ( )) 

Á (    ∈   )( )      ∈ (  ( )) and (    ∈   )( )      ∈ (  ( )) 
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Proposition: Let (X,  ) be a measurable space, let A be a subset of X that belongs 

to   , and let f and g be [−∞,+∞]-valued measurable or extended real valued  

functions on A. Then f  g and f  g are measurable. 

Proof: The measurability of     follows from the identity 

*  ∈   (    )( )    +    * ∈     ( )    +  *  ∈     ( )    +  

And the measurability of     follows from the identity 

* ∈   (    )( )    +    * ∈     ( )    +  * ∈     ( )    +  

Proposition:  

Let (X,  ) be a measurable space, let D be a subset of X that belongs to  , and let 

*  + 
  be a monotone sequence of extended real valued measurable functions on D. 

Then           exists on D and is    measurable. 

Proof:  

Since *  + 
  is a monotone sequence on D, therefore *  ( )+ 

  is a monotone 

sequence of extended real valued numbers so that          ( ) in  ̅ for all 

 ∈  . And hence           exists on D. 

Now we are to show that             is    measurable on D. 

If    is increasing then             
    using   as sigma algebra for every 

 ∈   we have;     * ∈   (         )( )   +  * ∈            ( )   +  

          ( )      ( )     for some n 

 * ∈   (         )( )   +    ∈ * ∈     ( )   +     

           is    measurable on D 

If    is decreasing then     is increasing  

So that        (   ) is    measurable on D 

  (         ) is    measurable on D 

           is    measurable on D 

 

Note: We may write the above phenomenon as follows with a different proof. 
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Proposition:   

Let (X,  ) be a measurable space, let D be a subset of X that belongs to  , and let 

*  + 
  be a monotone sequence of extended real valued measurable functions on D. 

Then        is    measurable on D. 

Proof:  Let  ∈   and  ∈   also using   as sigma algebra and each    is    

measurable and Let    * ∈                      + be the domain of 

       then;  

* ∈            +     * ∈              +     

 * ∈            +     

        is    measurable on D 

……………………………………….. 

Proposition:   

Let (X,  ) be a measurable space, let D be a subset of X that belongs to  , and let 

*  + 
  be a monotone sequence of extended real valued measurable functions on D. 

Then                is    measurable on D. 

Proof:  

Let  ∈   and  ∈   also using   as sigma algebra and each    is    

measurable then 

            *  ( )+      ( )      for some           

 { ∈   (              )( )   }  { ∈      
         

  ( )   }  

 { ∈   (              )( )   }            * ∈     ( )   +     

                is    measurable on D 
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Proposition:   

Let (X,  ) be a measurable space, let D be a subset of X that belongs to  , and let 

*  + 
  be a monotone sequence of extended real valued measurable functions on D. 

Then                is    measurable on D. 

Proof:  

Let  ∈   and  ∈   also using   as sigma algebra and each    is    

measurable then 

            *  ( )+      ( )      for some           

 { ∈   (              )( )   }  { ∈      
         

  ( )   }  

 { ∈   (              )( )   }            * ∈     ( )   +     

                is    measurable on D 

……………………………………….. 

Proposition:   

Let (X,  ) be a measurable space, let D be a subset of X that belongs to  , and let 

*  + 
  be a monotone sequence of extended real valued measurable functions on D. 

Then     ∈    is    measurable on D. 

Proof:  

Let  ∈   and  ∈   also using   as sigma algebra and each    is    

measurable then 

    ∈ *  ( )+      ( )      for some  ∈   

 * ∈   (    ∈   )( )   +  { ∈      
 ∈ 

  ( )   }  

 * ∈   (    ∈   )( )   +    ∈ * ∈     ( )   +     

     ∈    is    measurable on D 
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Proposition: Let (X,  ) be a measurable space, let D be a subset of X that belongs 

to  , and let *  + 
  be a monotone sequence of extended real valued measurable 

functions on D. Then     ∈    is    measurable on D. 

Proof: Let  ∈   and  ∈   also using   as sigma algebra and each    is    

measurable then 

    ∈ *  ( )+      ( )      for some  ∈   

 * ∈   (    ∈   )( )   +  { ∈      
 ∈ 

  ( )   }  

 * ∈   (    ∈   )( )   +    ∈ * ∈     ( )   +     

     ∈    is    measurable on D 

……………………………………….. 

Proposition:  Let (X,  ) be a measurable space, let D be a subset of X that 

belongs to  , and let *  + 
  be a monotone sequence of extended real valued 

measurable functions on D. Then           is    measurable on D. 

Proof:  We know that                 (      *  +) where *      *  ++ 
  is 

an increasing sequence and since          is    measurable for all  ∈   

therefore 

                (      *  +) is    measurable on D 

……………………………………….. 

Proposition:   

Let (X,  ) be a measurable space, let D be a subset of X that belongs to  , and let 

*  + 
  be a monotone sequence of extended real valued measurable functions on D. 

Then           is    measurable on D. 

Proof:  

We know that                 (      *  +) where *      *  ++ 
  is a 

decreasing sequence and since          is    measurable for all  ∈    

Therefore                 (      *  +) is    measurable on D 
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The positive part    and the negative part   of f 

Let D be a set, and let   be an extended real-valued function on D. The positive 

part    and the negative part    of   are the extended real-valued functions 

defined by 

   (   )( )     ( ( )  ) and     (    )( )      (  ( )  ) 

The absolute value of f 

Let D be a set, and let   be an extended real-valued function on D. The absolute 

valued of   is the extended real-valued functions defined by | |( )  | ( )|     

or  | |( )     ( ( )   ( )) 

Remember 

Á | |         

Á For any  ∈   at least one of   and    is zero. So that       is well 

defined and we have         

Proposition:  Let (X,  ) be a measurable space, let D be a subset of X that 

belongs to  , and let   be an extended real valued measurable functions on D. 

Then       | | are    measurable on D. 

Proof:  Since we know that       ( ( )  ) and   and   are    measurable 

on  ∈  . Also using the fact ―*  + 
                   and is                ‖ 

Therefore    is    measurable on  ∈  . 

Also we know that        ( ( )  ) and   and   are    measurable on 

 ∈  . Also using the fact ―*  + 
                   and is                ‖ 

Therefore    is    measurable on  ∈  . 

Now | |        being addition of    measurable on  ∈   is    

measurable on  ∈   

Proposition: Let  f  be a measurable function on E. Then    and    are integrable 

over E if and only if | | is integrable over E.  

Proof:  Assume    and   are integrable nonnegative functions. By the linearity of 

integration for nonnegative functions, | |        is integrable over E. 

Conversely, suppose| | is integrable over E. Since         | | on E, we 

infer from the monotonicity of integration for nonnegative functions that both    

and     are integrable over E. 
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Properties That Hold Almost Everywhere 

Let (      ) be a measure space. A property of points of X is said to hold 

  almost everywhere if the set of points in X at which it fails to hold is 

  negligible. In other words, a property holds   almost everywhere if there is a 

set N that belongs to   , satisfies μ(N)=0, and contains every point at which the 

property fails to hold. More generally, if E is a subset of X, then a property is said 

to hold μ-almost everywhere on E if the set of points in E at which it fails to hold is 

μ-negligible. The expression μ-almost everywhere is often abbreviated to      . 

or to     , -. In cases where the measure μ is clear from context, the expressions 

almost everywhere and      are also used. 

Consider a property that holds almost everywhere, and let F be the set of 

points in X at which it fails. Then it is not necessary that F belong to  ; it is only 

necessary that there be a set N that belongs to A , includes F, and satisfies μ(N)= 0. 

Of course, if μ is complete, then F will belong to  . 

In short we can define Almost Everywhere as 

A property is said to be almost everywhere if the set of points where does not hold 

is a set of measure zero. 

Or Let (      ) be a measured space, a property P holds almost everywhere in 

X, iff a set  ∈   such that  ( )    and property P is hold for all  ∈    . 

Equal almost Everywhere 

For a given complete measure space (      ), we say that two extended real 

valued    measurable functions   and   defined on  ∈   are equal almost 

everywhere (               ) if there exists a null set   in (      ) such that 

    and  ( )   ( ) for all  ∈    . 

Remember 

Á In above definition           on D if     outside a null set     

This does not exclude the possibility that  ( )   ( ) for some and indeed 

for every  ∈   

Á Every subset of a null set is null set and belongs to Sigma algebra. 
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Proposition:  

Let (      ) be a complete measure space, then every extended real-valued 

function defined on a null set N in (      )  is    measurable. 

Proof:  

Let  ∈   and   be an extended real-valued function defined on a null set N in 

(      )  then  

* ∈    ( )   +       

  ( )    and every subset of a null set is null set and belongs to  . 

 * ∈    ( )   +   ∈    

Implies   is    measurable on the null set N. 

 

Proposition:   

Let (      ) be a complete measure space, and let   and   be extended real-

valued functions on  ∈   that are equal almost everywhere. If   is    

measurable on D, then   is    measurable on D. 

Proof:  

Suppose           on D then there exists a null set   in (      ) such that 

    and  ( )   ( ) for all  ∈    .  

Since   is    measurable on D then it is    measurable on     by theorem ―if 

  is    measurable on D then   is    measurable on     ‖ 

But     on     so that   is    measurable on      . 

Since (      ) is a complete measure space then by theorem “Let (      ) be a 

complete measure space, then every extended real-valued function defined on 

a null set N in (      )  is    measurable.”   is    measurable on    . 

So   is    measurable on   (   )   . 

Remark 

If   is    measurable on *  + 
  then it is    measurable on   
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Existence of limit Almost Everywhere 

Let (      ) be a measure space, and *  + 
  be a sequence of extended real 

valued    measurable function on  ∈  . Then we say that       (  ) exists 

almost everywhere on  ∈   if there exists  a null set N such that       (  ) 
exists on    . 

Equivalently we say that *  ( )+ 
  converges a.e. on D if *  ( )+ 

  converges on 

    where  ( )   . 

Note that the convergence of the sequence *  + 
  depends on the convergence of 

*  ( )+ 
  for  ∈   

……………………………………………….. 

Lemma:  

Let (      ) be a measure space, and *  + 
  be a sequence of extended real 

valued    measurable function on  ∈  . If for every     there exists a    

measurable subset E of D (   ) with  ( )  
 

 
 such that         ( ) exists 

for all  ∈     then         ( ) exists almost everywhere on D. 

Proof:  

From the condition for all  ∈   there exists a    measurable subset    of D 

(    ) such that  (  )  
 

 
 and         ( ) exists for all  ∈     . 

Now we have to prove         ( ) almost everywhere on D. 

Define     
    then     such that  ( )   (  

   )   (  )  
 

 
       

i.e.  ( )   , so N is null set in (      ) 

           (  
   )

    (  
   

 )    
 (    

 )    
 (    )  

  ∈      ∈       for  ∈   

Hence         ( ) exists for all  ∈      

Implies         ( ) exists for all  ∈     

That is         ( ) exists almost everywhere on D. 
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The Integral 

In this section we construct the integral and study some of its basic properties. The 

construction will take place in three stages. 

Á We begin with the simple functions 

Á As our next step, we define the integral of an arbitrary ,    -   valued 

  measurable function on X 

Á Finally, let f  be an arbitrary ,     -  valued    measurable function 

on X. If ∫     and ∫     are both finite, then f is called integrable (or 

   integrable or summable), and its integral ∫    is defined by  

∫    ∫     ∫      

The integral of   is said to exist if at least one of ∫     and ∫     is finite, and 

again in this case, ∫    is defined to be ∫     ∫    . In either case one 

sometimes writes ∫ ( ) (  ) or ∫ ( )  (  ) in place of ∫    

………………………………………………….. 

Step Function 

Let   ,   - in   and   *                             + is a 

partition of interval   ,   - such that     
    where    (         ) then a 

real valued function       is called step function that is defined as follows; 

 ( )  {
            ∈    
               

   ; k = 0 , 1 , 2 , ... , n 

Or  

A real valued function   with   ,   - is called a step function if there exists a 

partition                               of the interval   ,   - such 

that   is constant on each sub – interval    (         ). i.e. 

 ( )  {
            ∈    
               

   ; k = 0 , 1 , 2 , ... , n 
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Simple Function:  

Let (      ) be a measure space, and    ∈     is called simple function if  

Á  ( ) ∈    (domain of  ) 

Á  ( ) is finite subset of  . i.e.  Range of   is only finitely many reals. 

Á   is    measurable function on  ( ) 

We will denote the collection of all simple    measurable real valued functions 

with   and    the collection of all non – negative functions in   

Question:  

Every step function is simple but Simple function needs not to be a step function. 

Answer: Consider the following function; 

 ( )  {
           ∈   

           ∈   
  

This is simple function but not a step function. 

Keep in mind a simple function is linear combination of characteristic functions. 

………………………………….. 

Canonical Representation: Let   be a simple function on  ∈   in a measure 

space (      ), also let            are distinct values assumed by   on   and let 

   * ∈    ( )    + then *  + 
  is a distinct collection with     

    then the 

representation  ( )  ∑      
( ) 

       ∈   is called the canonical representation 

of   on   

Remark 

Á In above definition the collection *  + 
  is a partition of set  ∈    

i.e.     
    and                         

Á If   ∈   and   ∈   for i = 1, 2,…., n and if we have     
    then if  

 ( )  ∑      
( ) 

       ∈   is a simple function on D then the expression 

∑      
( ) 

  may not be a canonical representation of  . Since *  + 
  may not 

be disjoint collection and      may not be distinct. 
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Integrable Function 

Suppose that     ,     - is    measurable and that  ∈   .Then   is 

integrable over D if the function    
 is integrable, and in this case ∫

 
   , the 

integral of   over D, is defined to be ∫
 
   

  . Likewise, if  ∈   and if   is a 

measurable function whose domain is D (rather than the entire space X), then the 

integral of   over D is defined to be the integral (if it exists) of the function on X 

that agrees with   on D and vanishes on   .In case  (  )   , one often writes 

∫     in place of ∫
 
    and calls   integrable, rather than integrable over D. 

Lebesgue Integral of a Simple Function 

Let  ( )  ∑      
( ) 

  be a canonical representation of a simple function   on 

 ∈   in a measure space (      ) then Lebesgue Integral of   on   with 

respect to   is defined as; ∫
 
    ∑    (  )

 
  

Lebesgue Semi – Integrable Function 

If Lebesgue Integral of   exists in  ̅ then we say that   is Lebesgue Semi 

integrable on D  

Or A simple function   on a set  ∈   is called                        if 

∫
 
   ∈  ̅ 

 

Lebesgue Integrable Function 

If Lebesgue Integral of a simple function   on  ∈   exists in   then we say that 

  is Lebesgue Integrable on D 

Or A simple function   on a set  ∈   is Lebesgue Integrable on D  

Or                    if ∫
 
   ∈   
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Question:  

Give an example of a simple function which is semi – Lebesgue integrable. 

Solution: Consider (        ) be a Borel measureable space and let a simple 

function       is defined as  ( )  {
           ∈   

           ∈   
 then canonical 

representation of   is  ( )      ( )       ( ) 

And so its Lebesgue integral is  ∫
 
         ( )      (  ) 

∫
 
         (   )  

∫
 
       ( )    ( )       ∈  ̅   

∫
 
    ∈  ̅  Implies   is semi – Lebesgue integrable. 

………………………………….. 

Question: Give an example of a simple function which is Lebesgue integrable. 

Solution: Consider (        ) be a Borel measureable space and let a simple 

function   ,   -    is defined as  ( )  {
           ∈   ,   - 

           ∈    ,   -
 then canonical 

representation of   is  ( )       ,   -( )        ,   -( ) 

And so its Lebesgue integral is  ∫,   -
         (  ,   -)      (   ,   -) 

∫
 
         (   ,   -)    (,   -    )    (,   -  )  

∫
 
       (,   -)    ( )       ∈    

∫
 
    ∈     Implies   is Lebesgue integrable. 

 

 

 

 

 

 

Set of rational is 

countable union of 

singletons. i.e. 

‘(ὗ)    
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Question:  

Give an example of a simple function which is not Lebesgue integrable. 

Solution:  

Consider (        ) be a Borel measureable space and let a simple function 

  ,   )    is defined as  ( )  {
            ∈  ∈  

 ,         - 

                  ∈  ∈  
 ,       -

 then 

canonical representation of   is  

 ( )  (  )   
 ∈  

 ,         -( )      
 ∈  

 ,       -( )  

And so its Lebesgue integral is   

∫      (  )   (  ∈  
 ,         -)      (  ∈  

 ,       -)  

∫      (  ) ∑   ,         - ∈  
    ∑   ,       - ∈  

   

∫            Undefined and Lebesgue Integral is not exists 

Implies   is not Lebesgue integrable. 

………………………………….. 

Proposition:  

Let (      ) be a measure space, let   belongs to    is a simple function defined 

on a set  ∈   with finite members i.e  ( )    and let  ∈  . Then    is 

simple on  ∈   and ∫
 
      ∫

 
    

Proof:  

Since   is simple function on   therefore there exists a disjoint sequence *  + 
  and 

distinct numbers *  + 
  such that     

    and its canonical representation is 

 ( )  ∑      
( ) 

  then 

  ( )   ∑      
( ) 

  (  )  ∑ (   )   
( ) 

   this is canonical 

representation of    and it is a simple function. 

Now ∫
 
     ∑     (  )

 
   ∑    (  )

 
   ∫
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Proposition (Linearity of Integration):  

Let (      ) be a measure space, let       belongs to    are simple function 

defined on a set  ∈   with finite members i.e  ( )    then     is simple on 

 ∈   and ∫
 
(     )    ∫

 
     ∫

 
     

Proof:  

Since       are simple function on   therefore there exists disjoint sequences 

*  + 
  and {  } 

 
and distinct numbers *  + 

  and {  } 
 

such that     
    and 

    
    and their canonical representations are  ( )  ∑      

( ) 
  and 

 ( )  ∑      
( ) 

 . 

Now we define            then {                       } is a disjoint 

collection such that       
     

     then (   )  ∑ ∑ (     )    
( ) 

   
 
    

This implies     and also in similar way       is simple on  ∈   

Then ∫
 
(     )   ∑ ∑ (       ) (   )

 
   

 
    

∫
 
(     )   ∑ ∑     (   )

 
   

 
    ∑ ∑     (   )

 
   

 
     

∫
 
(     )    ∑ ∑    (     )

 
   

 
     ∑ ∑    (     )

 
   

 
     

∫
 
(     )    ∑   [∑  (     )

 
   ] 

     ∑   [∑  (     )
 
   ] 

     

∫
 
(     )    ∑    [    

 (     )]
 
     ∑    [    

 (     )]
 
     

∫
 
(     )    ∑    [   (    

   )]
 
     ∑    [(    

   )    ]
 
     

∫
 
(     )    ∑    ,    - 

     ∑    [    ]
 
     

∫
 
(     )    ∑    (  )

 
     ∑    (  )

 
     

∫
 
(     )    ∫

 
     ∫
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Proposition (Monotone Property): Let (      ) be a measure space, let       

belongs to    are simple function defined on a set  ∈   with finite members i.e 

 ( )    and     on  ∈   then ∫
 
    ∫

 
     

Proof: If     then       so that ∫
 
(   )     

 ∫
 
    ( ∫

 
   )       ∫

 
(   )   ∫

 
    ∫

 
    

 ∫
 
    ∫

 
          ∫

 
      ∫

 
    

 ∫
 
    ∫

 
    ∫

 
     ∫

 
     

…………………………………………… 

Proposition:  

Let (      ) be a measure space, let    belongs to    is simple function defined 

on a set  ∈   with finite members i.e  ( )    and if       are disjoint 

measurable subsets on  ∈   with         then  

∫
 
    ∫

  
    ∫

  
     

Proof: Since   is simple function on   therefore there exists a disjoint sequence 

*  + 
  and distinct numbers *  + 

  such that     
    and its canonical 

representation is  ( )  ∑      
( ) 

 . 

Now if         and         then   ( )     
( )     

( ) 

Now ∫
 
    ∑    (  )

 
  ∑    (    ) 

  ∑    ,   (     )-
 
  

∫
 
    ∑    ,(     )  (     )-

 
  ∑   , (     )   (     )-

 
   

∫
 
    ∑    (     )

 
  ∑    (     )

 
    …………(i) 

Now *     + 
  and *     + 

  are disjoint sequences  

And   
 (     )    

                

Also   
 (     )    

               

( )  ∫
 
    ∫

  
    ∫
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Proposition: Let (      ) be a measure space, let    be a simple function defined 

on a set  ∈   then if  ( )    then ∫
 
       

Proof: Since   is simple function on   therefore there exists a disjoint sequence 
*  + 

  and distinct numbers *  + 
  such that     

    and its canonical 

representation is  ( )  ∑      
( ) 

 . 

Let  ( )    and      then  (  )   ( )    implies  (  )    

So ∫
 
    ∑    (  )

 
    implies ∫

 
      

……………………………………………. 

Proposition: Let (      ) be a measure space, let    be a simple function defined 

on a set  ∈   then if     then ∫
 
       

Proof: Since   is simple function on   therefore there exists a disjoint sequence 

*  + 
  and distinct numbers *  + 

  such that     
    and its canonical 

representation is  ( )  ∑      
( ) 

 . 

Let     then                   

So ∫
 
    ∑    (  )

 
    implies ∫

 
      

……………………………………………. 

Proposition:  

Let (      ) be a measure space, let    be a simple function defined on a set 

 ∈   then if     then ∫
 
       

Proof:  

Since   is simple function on   therefore there exists a disjoint sequence *  + 
  and 

distinct numbers *  + 
  such that     

    and its canonical representation is 

 ( )  ∑      
( ) 

 . 

Let     then  ( )  ∑      
( ) 

     

So ∫
 
    ∑    (  )

 
    implies ∫
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Proposition: Let (      ) be a measure space, let    be a simple function defined 

on a set  ∈   then if     then ∫
 
       

Proof: Since   is simple function on   therefore there exists a disjoint sequence 
*  + 

  and distinct numbers *  + 
  such that     

    and its canonical 

representation is  ( )  ∑      
( ) 

 . 

Let     then      then   ( )  ∑      
( ) 

     

So  ∫
 
     ∑    (  )

 
    implies  ∫

 
      

Hence ∫
 
      

……………………………………………. 

Proposition:  

Let (      ) be a measure space, let    be a simple function defined on a set 

 ∈   then   is   integrable on D iff  (* ∈    ( )   +)    

Proof:  

Since   is simple function on   therefore there exists a disjoint sequence *  + 
  and 

distinct numbers *  + 
  such that     

    and its canonical representation is 

 ( )  ∑      
( ) 

 .  

Let   is   integrable on D then  ∫
 
    ∑    (  )

 
    

Now  (* ∈    ( )   +)   (* ∈  
     ( )   +) 

 (* ∈    ( )   +)   (* ∈     ( )   +)       (  )    

Conversely suppose that  (* ∈    ( )   +)    

  ( )        ∈    

Since      therefore ∑    (  )
 
    

 ∫
 
       

Hence   is   integrable on D 
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Proposition:  

Let (      ) be a measure space, let    be a simple function defined on a set 

 ∈  . Let *          + be a disjoint collection in   such that     
    then 

   is simple function on   ∈              and ∫
 
    ∑ ∫

  
    

    

Proof:  

Since   is simple function on   therefore there exists a disjoint sequence {  } 
 

 and 

distinct numbers {  } 
 

 such that     
    and its canonical representation is 

 ( )  ∑      
( ) 

 . Also the Lebesgue integral of   on  ∈   will be  

∫
 
    ∑    (  )

 
     ……………..(i) 

Since   assumes finitely many values on   so its restriction to              

assumes only finitely many values with     
   . Hence    is simple function on 

  ∈             . Then we have a disjoint sequence *    + 
  and distinct 

numbers {  } 
 

 such that      
 (     )              and its canonical 

representation is   ( )  ∑         
( ) 

   

Then from (i) we have ∫
 
    ∑    (  )

 
    

∫
 
    ∑    (    ) 

    ∑    .   (  
   )/

 
          

    

∫
 
    ∑    .  

 (     )/
 
      by distributive property 

∫
 
    ∑   

 
   ∑  (     )

 
      by definition of measure 

∫
 
    ∑ [∑    (     )

 
   ] 

     

∫
 
    ∑ ∫
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Proposition:  

Let (      ) be a measure space, let   belong to   , and let *  + be a 

nondecreasing sequence of functions in    such that   ( )           ( ) holds 

at each x in X. Then ∫            ∫     . 

(This proposition is a weak version of one of the fundamental properties of the 

Lebesgue integral, the monotone convergence theorem. We need this weakened 

version now for use as a tool in completing the definition of the integral) 

Proof: Since from Proposition we know that 

 ―Let (      ) be a measure space, let       belongs to    are simple function 

defined on a set  ∈   with finite members i.e  ( )    and     on  ∈   

then ∫
 
    ∫

 
   ‖ 

Therefore  ∫      ∫        ∫     

Hence             exists and satisfies        ∫      ∫     ……..(i) 

Conversely:    Let ε be a number such that       .We will construct a 

nondecreasing sequence *  + of functions in    such that       holds for each n 

and such that        ∫      (   )∫      

        ∫      (   )∫            ∫           ∫      ∫      

        ∫      ∫            ∫           is arbitrary 

 ∫            ∫         ……..(ii) 

From (i) and (ii)   ∫            ∫      

……………………………………………. 

Lemma:  Let (      ) be a measure space, and let          and    be 

nonnegative real-valued integrable functions on X such that 

           .Then  ∫      ∫      ∫      ∫       

Proof: Since the functions          and    satisfy            ,they also 

satisfy             and so satisfy ∫      ∫      ∫      ∫      

since all the integrals involved are finite, this implies that 

∫      ∫      ∫      ∫       
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Examples of Integrable Functions 

a) If   is a finite measure, then every bounded measurable function on 

(      ) is integrable. 

b) In particular, every bounded Borel function, and hence every continuous 

function, on [a,b] is Lebesgue integrable. 

c) Suppose that   is the   algebra on N containing all subsets of N and that 

  is counting measure on  . It follows that a nonnegative function   on N is 

   integrable if and only if the infinite series ∑ ( ) is convergent, and that 

in that case the integral and the sum of the series agree. Since a not 

necessarily nonnegative function   is integrable if and only if    and    are 

integrable, it follows that   is integrable if and only if the infinite series 

∑ ( ) is absolutely convergent. Once again, the integral and the sum of the 

series have the same value. 

d) Note that a simple measurable function that vanishes almost everywhere is 

integrable, with integral 0. 

……………………………………………. 

Proposition:  

Let (      ) be a measure space, and let   be a ,     -  valued  or extended 

real valued    measurable function on X. Then   is integrable if and only if | | 

is integrable. If these functions are integrable, then |∫    |  ∫ | |   

Proof:  

Recall that by definition   is integrable if and only if    and    are integrable.  

since | |         

∫
 
| |   ∫

 
     ∫

 
        ∫

 
(   )   ∫

 
    ∫

 
    

Thus the integrability of   is equivalent to the integrability of | |.  

Now |∫    |  |∫ 
     ∫

 
    |  ∫

 
     ∫

 
     ∫ | |    

Hence  |∫    |  ∫ | |   
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Proposition: Let (      ) be a measure space, and let   and   be 

,     -  valued or extended real valued    measurable function on X that 

agree almost everywhere. If either ∫
 
    or ∫

 
    exists, then both exist, and 

∫
 
    ∫

 
    

Or  Let (      ) be a measure space, let       are simple function defined on a 

set ∈   . Assume that       are   integrable on  . If     almost everywhere 

on  ∈   then ∫
 
    ∫

 
     

Proof:  

Given that If     almost everywhere on  ∈   then there exists a null set 

    in (      ) such that  ( )   ( )     ∈     

Since   (   )    therefore 

∫
 
    ∫

   
    ∫

 
    ∫

   
        ( )    ∫

 
      

∫
 
    ∫

   
              almost everywhere  

∫
 
    ∫

   
      ∫

   
    ∫

 
    ∫

 
     

∫
 
    ∫

 
     

……………………………………………. 

Proposition:  

Let (      ) be a measure space, and let   be a  ,   -  valued    measurable 

function on X. If   is a positive real number and if     * ∈    ( )   +  then 

 (  )  
 

 
∫
  
    

 

 
∫     

Proof:   

Since       
      

   and     implies ∫
 
    ∫

 
    then  

∫     
   ∫

  
    ∫      

  (  )  ∫
  
    ∫             (  )  ∫     

   

 (  )  
 

 
∫
  
    

 

 
∫      
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Corollary: Let (      ) be a measure space, and let   be ,     -  valued or 

extended real valued    measurable function on X. Then * ∈     ( )   } is 

  finite under  . 

Proof: Consider a sequence         such that    { ∈   |  ( )|  
 

 
} 

Now using the result ―Let (      ) be a measure space, and let   be a  

,   -  valued    measurable function on X. If   is a positive real number and if  

   * ∈    ( )   +  then  (  )  
 

 
∫
  
    

 

 
∫    ‖ 

If we replace   with | | we conclude that   (  )   .* ∈   |  ( )|  
 

 
+/ is 

finite under  . Then   
    * ∈     ( )   + is   finite under  . 

……………………………………………. 

Corollary: Let (      ) be a measure space, and let   be ,     -  valued or 

extended real valued    measurable function on X that satisfies ∫ | |    . 

Then   vanishes   almost everywhere. 

Proof: Consider a sequence          such that    { ∈   |  ( )|  
 

 
} 

Now using the result ―Let (      ) be a measure space, and let   be a  

,   -  valued    measurable function on X. If   is a positive real number and if  

   * ∈    ( )   +  then  (  )  
 

 
∫
  
    

 

 
∫    ‖ 

If we replace   with | | we conclude that   

 (  )   .* ∈   |  ( )|  
 

 
+/   ∫ | |     hold for each  ∈    

Since   
      

 { ∈   |  ( )|  
 

 
}  * ∈     ( )   + 

Therefore  (  
   )   .  

 { ∈   |  ( )|  
 

 
}/   (* ∈     ( )   +) 

 (* ∈     ( )   +)   .  
 { ∈   |  ( )|  

 

 
}/   Rearranging 

 (* ∈     ( )   +)  ∑  { ∈   |  ( )|  
 

 
} 

   ∫ | |      

Implies  (* ∈     ( )   +)   . Thus   vanishes   almost everywhere. 
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Corollary:  

Let (      ) be a measure space, and let   be ,     -  valued or extended 

real valued    measurable function on X such that ∫
 
      holds for all A in 

  (or even just for all A in the smallest ζ-algebra on X that makes   measurable). 

Then     holds   almost everywhere. 

Proof: Let   * ∈    ( )   +.Then ∫       ∫
 
      (since     on 

A, yet we are assuming that ∫
 
     ). It follows from Corollary 

―Let (      ) be a measure space, and let   be ,     -  valued or extended 

real valued    measurable function on X that satisfies ∫ | |    . Then   

vanishes   almost everywhere‖ 

That     vanishes almost everywhere and hence that     holds almost 

everywhere.    

……………………………………………. 

Corollary:  

Let (      ) be a measure space, and let   be ,     -  valued or extended 

real valued    measurable function on X. Then | ( )|    holds at   almost 

every x in X. 

Proof: Using the result  

―Let (      ) be a measure space, and let   be a  ,   -  valued    measurable 

function on X. If   is a positive real number and if     * ∈    ( )   +  then 

 (  )  
 

 
∫
  
    

 

 
∫    ‖ 

If we replace   with | | we conclude that   

 (  )   (* ∈   |  ( )|   +)  
 

 
∫ | |      holds for each  ∈    

 Thus   (* ∈   |  ( )|   +)   (* ∈   |  ( )|   +)  
 

 
∫ | |     holds 

for each   

And so  (* ∈   |  ( )|   +)     
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Limit Theorems 

In this section we prove the basic limit theorems of integration theory. These 

results are extremely important and account for much of the power of the Lebesgue 

integral. 

non – Negative Functions  

Let (      ) be a measure space, a real valued function       on  ∈   is 

said to be non – negative if  ( )        ∈   with  ( )    

Lebesgue Integral of non – Negative Functions 

Let (      ) be a measure space, let    be a non – negative extended real valued 

  measurable function on  ∈   with  ( )   . Then Lebesgue Integral of 

non – negative function   on D with respect to   is defined as; 

∫
 
            ∫ 

    

Where suprimum is taken over all non – negative simple function   on   such that 

    

Remark: A non – negative extended real valued function need not to be bounded 

and therefore there exists may not be simple function   such that     then the 

equality ∫
 
          ∫

 
    for a bounded real valued   measurable 

function does not exists for a non – negative extended real valued   measurable 

function  . 

This fact has the consequence that while the integral of a non – negative extended 

real valued   measurable function can be approximated by integrals of simple 

functions from below, it cannot be approximated by integrals of simple functions 

from above. 

Lemma (Without Proof): Let (      ) be a measure space, let          be non – 

negative extended real valued   measurable functions on  ∈   then 

Á If ∫
 
      then     almost everywhere on  ∈   

Á If      is   measurable then ∫
  

    ∫
 
     

Á If     almost everywhere on  ∈   and  ∫
 
      then  ( )    

Á If       on  ∈   then ∫
 
     ∫

 
      

Á If       almost everywhere on  ∈   then ∫
 
     ∫
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Preposition 

Let (      ) be a measure space, and let   be a non – negative simple functions 

on X. Then show that a set function     ,   - defined as  ( )  ∫
 
    for 

all  ∈   is a measure on  . 

Proof: To show that  ( )  ∫
 
    is a measure we have to show; 

Á  ( )     

Á For a disjoint sequence {  } 
 

 we have  (  
   )  ∑  (  )

 
  

Let  ( )  ∑      
( ) 

 be a canonical representation of   on X then   
      

then the restriction of   on  ∈   is given by  ( )  ∑        ( )
 
  then 

 ( )  ∫
 
    ∑    (    ) 

 ∈ ,   - for all  ∈   

Particularly if      then  

 ( )  ∫
 
    ∑    (    ) 

  ∑    ( ) 
         ( )    

 ( )     

Now let {  } 
 

 be a disjoint sequence in   then; 

 (  
   )  ∫

  
   

    ∑   .   (  
   )/

 

 

 

 (  
   )  ∑   .  

 (     )/

 

 

 

 (  
   )  ∑  ∑ (     )

 

   

 

 

 

 (  
   )  ∑[∑   (     )

 

   

]

 

   

 

 (  
   )  ∑  (  )

 
   

Hence  ( )  ∫
 
    is a measure. 
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Theorem: (The Monotone Convergence Theorem) 

Let (      ) be a measure space, and let *  + 
  be an increasing sequence of 

,   -  valued or non – negative extended real valued   measurable functions 

on  ∈   and  ( )           ( ) on  ∈  . Then ∫
 
           ∫

 
      

In this theorem the functions   and           are only assumed to be nonnegative 

and measurable; there are no assumptions about whether they are integrable. 

Proof:  

Since *  + 
  is an increasing sequence of non – negative extended real valued 

  measurable functions on  ∈   then  ( )           ( ) exists in ,   - 
for all  ∈    so that  ( )           ( ) is a non – negative extended real 

valued   measurable functions on  ∈  , also   is   measurable function ( if 

*  + 
  is   measurable so its limit exists) 

Since      therefore ∫
 
     ∫

 
        ∈   

Also         therefore ∫
 
     ∫

 
       

So {∫ 
      ∈  } is an increasing sequence of non – negative extended real 

valued numbers bounded above by ∫
 
    

Hence         ∫
 
     ∫

 
     …………..(i) 

Now let   be an arbitrary non – negative simple functions on  ∈   such that 

      with  ∈ (   )arbitrarily fixed as          on  ∈   

Define a sequence *  + 
  of subset of D by setting as follows for all  ∈     

   * ∈     ( )    ( )+    …………..(ii) 

Since    and    are   measurable therefore for all  ∈   we have   ∈   

Now         implies          

And this shows that *  + 
  is an increasing sequence in   

Since      therefore   
        …………..(iii) 

We claim that   
      

To see this let  ∈   
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If  ( )    then since       therefore  ( )    and since          

therefore   ( )    

This implies   ( )      ( ) and  ∈    

Implies      for some  ∈   

Then     
       …………..(iv) 

If  ( )    then since       and  ∈ (   ) we have  ( )    ( ) 

Since    is an increasing function therefore there exists  ∈   such that 

  ( )    ( ) and so  ∈    

Implies      for some  ∈   

Then     
       …………..(v) 

Using (iii),(iv),(v) we have    
      

Now define a set   on   by setting   ( )  ∫
 
    then   is a measure 

Now ∫
 
     ∫

  
     ∫

  
      ∫

  
      (  ) 

Implies ∫
 
       (  ) or    (  )  ∫

 
     

          (  )         ∫
 
      

   (         )         ∫
 
      

   (  
   )         ∫

 
           is increasing  

   ( )         ∫
 
      

  ∫
 
           ∫

 
      

Since this holds for arbitrary non – negative simple function   on D such that  

      we have  ∫
 
           ∫

 
     

 ∫
 
           ∫

 
         ∈ (   )          …………..(vi) 

Hence from (i) and (vi)          ∫
 
     ∫

 
    

Note: This theorem is not valid for decreasing sequence. (See Next) 
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Theorem:  

Let (      ) be a measure space, and let *  + 
  be a decreasing sequence of 

,   -  valued or non – negative extended real valued   measurable functions 

on  ∈   and  ( )           ( ) on  ∈  . Then ∫
 
           ∫

 
      

Proof:  

Consider a Lebesgue measure space (       ) and *  + 
  be a decreasing 

sequence of ,   -  valued or non – negative extended real valued functions on   

defined by     ,   )    ∈   then we have 

∫
 
      ∫

 
 ,   )( )      (,   ))     

        ∫
 
        

Now  ( )           ( )    for decreasing sequence *  + 
  i.e. 

*  + 
 converges to infimum then   

 ( )     ∫
 
      

Hence ∫
 
           ∫

 
     

……………………………………………. 

Lemma (Without Proof) 

Let (      ) be a measure space, and let   be a non – negative extended real 

valued functions on   then there exists a sequence of non – negative simple 

functions *  + 
  on X such that; 

Á    approaches   on X 

Á    approaches   uniformly on an arbitrary subset E of X on which   is 

bounded. 

Á ∫
 
           ∫
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Corollary:  Let (      ) be a measure space, and let ∑   
 
  be a finite series 

whose terms are ,    -  valued or non – negative extended real valued 

  measurable functions on  ∈  . Then ∫ ∑   
 
    ∑ ∫     

 
  

Proof: Let       be two non – negative extended real valued   measurable 

functions on  ∈   then there exists two increasing sequences {   
}
 

 
 and {   

}
 

 
 

on X such that    
    and    

    then the {   
    

}        as     

and clearly is a non – negative increasing sequence of simple functions on X. Then 

by monotone convergence theorem we have  

       ∫
 (   

    
)   ∫

 
(     )    ………..(i) 

Now consider        ∫
 (   

    
)          (∫ 

   
   ∫

 
   

  ) 

       ∫
 (   

    
)          ∫

 
   

          ∫
 
   

    

       ∫
 (   

    
)   ∫

 
     ∫

 
       ………..(ii) 

Using (i) and (ii)  ∫
 
(     )   ∫

 
     ∫

 
             ………..(iii) 

By repeated application of (iii) to the sequence ∑   
 
  we obtain 

∫ ∑   
 
    ∑ ∫     

 
   

……………………………………………. 

Beppo Levi’s Theorem:  Let (      ) be a measure space, and let ∑   
 
  be 

an infinite series whose terms are ,    -  valued or non – negative extended real 

valued   measurable functions on  ∈  . Then ∫ ∑   
 
    ∑ ∫     

 
  

Proof: If *  + 
  is a sequence of non – negative extended real valued 

  measurable functions on  ∈   then for ∑   
 
    ∈   we have  

∫ ∑   
 
    ∑ ∫     

 
   

Now the sum of the series ∑   
 
  is the limit of the sequence of partial sums 

*∑   
 
    ∈  + and since *  + is non – negative therefore *∑   

 
    ∈  + is 

increasing with                  ∑   
 
    ∑   

 
  

Then by monotone convergence theorem        ∫ ∑   
 
    ∑ ∫     

 
  

       ∑ ∫     
 
  ∑ ∫     

 
   i.e.  ∫ ∑   

 
    ∑ ∫     
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Corollary:  Let (      ) be a measure space, and let   be a non – negative 

extended real valued   measurable functions on  ∈  . Suppose    ∈   such 

that       and      . If     on B Then ∫
 
    ∫

 
    

Proof: Since   is non – negative extended real valued   measurable 

functions on  ∈   then there exists an increasing sequences *  + 
  of non – 

negative simple function such that      and since        also     on B 

therefore      on B for all  ∈   and ∫
 
       then 

∫
 
     ∫

 
     ∫

 
     ∫

 
          ∫

 
       

Now      on D implies      on A 

Then by monotone convergence theorem 

∫
 
           ∫

 
            ∫

 
     ∫

 
     

Hence ∫
 
    ∫

 
    

……………………………………………. 

Corollary:   

Let (      ) be a measure space, and let   be a non – negative extended real 

valued   measurable functions on  ∈  . If  *  + 
  is a disjoint sequence in   

such that   
       Then ∫

  
   

    ∑ ∫
  
    

  

Proof: Let   be a non – negative extended real valued   measurable 

functions on  ∈   and *  + 
  be a disjoint sequence in   such that   

       

Then define a function    
 on D by setting     

( )  {
 ( )         ∈   

           ∈     
  then 

{   
}
 

 
 is a non – negative extended real valued   measurable sequence of 

functions on  ∈   and ∑    

 
    then 

∫
 
    ∫

 
∑    

 
    ∑ ∫

 
   

   
   

∫
 
    ∑ ∫

  
   

   
      ∫

 
    ∫

 
    when     on B 

∫
 
    ∑ ∫

  
    

              
 on    where   

      and         
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Corollary:  

Let  f  be a bounded measurable function on a set of finite measure E. Suppose A 

and B are disjoint measurable subsets of E. Then  

∫
   

    ∫
 
    ∫

 
     

Proof: 

 Both      and      are bounded measurable functions on E. Since A and B 

disjoint, 

                  

Furthermore, for any measurable subset El of E 

∫
  
    ∫

 
        

Therefore, by the linearity of integration, 

∫
   

    ∫
 
         ∫

 
       ∫

 
       ∫

 
    ∫

 
     

Hence  ∫
   

    ∫
 
    ∫
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Corollary:   

Let (      ) be a measure space, and let   be a non – negative extended real 

valued   measurable functions on  ∈  . If  *  + 
  is an increasing sequence in 

  such that              Then ∫
    

   
           ∫

  
    

Proof:  

Let   be a non – negative extended real valued   measurable functions on 

 ∈   and *  + 
  be a disjoint sequence in   such that              Then 

define a function    
 on D by setting     

( )  {
 ( )         ∈   

           ∈     
  then {   

}
 

 
 is 

an increasing sequence with           
   on D. 

So by monotone convergence theorem we have           ∫
 
   

   ∫
 
     

      ∫
  
   

   ∫
 
     

       ∫
  
    ∫

 
     

……………………………………………. 

Corollary:   

Let (      ) be a measure space, and let   be a non – negative extended real 

valued   measurable functions on  ∈  . If  *  + 
  is a disjoint sequence in   

such that   
       Then ∫

    
   

    ∑ ∫
  
    

  

Proof: Let   be a non – negative extended real valued   measurable 

functions on  ∈   and *  + 
  be a disjoint sequence in   such that   

       

Then define an increasing sequence *  + 
  such that;      

     
    and             

      
      then by theorem  

―Let (      ) be a measure space, and let   be a non – negative extended real 

valued   measurable functions on  ∈  . If  *  + 
  is an increasing sequence in 

  such that              Then ∫
    

   
           ∫

  
   ‖ 

We have  ∫
 
           ∫

  
     or ∫

 
           ∫

  
   

    

 ∫
 
           ∑ ∫

  
    

   

 ∫
 
    ∑ ∫
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The next result is often used to show that a function is integrable or to provide an 

upper bound for the value of an integral. 

Fatou’s Lemma 

Let (      ) be a measure space, and let *  + 
  be a sequence of ,    -  valued 

A -measurable functions on X. Then ∫            ∫      

Or Let (      ) be a measure space, and then for every sequence *  + 
  of non 

– negative extended real valued   measurable functions on  ∈  , we have 

∫                  ∫      

Proof: We have                   (        ) where *        + 
  is an 

increasing sequence of extended real valued   measurable functions on  ∈  , 

then by monotone convergence theorem; 

∫               
   

∫              ……………(i) 

Since *        + 
  is an increasing sequence in  ̅ therefore its limit exists in  ̅ and 

is equal to ‗    
   

(     )‘ so that from (i)  

∫                  ∫ (        )    

∫                  ∫                         ∈   

Hence  ∫                  ∫      

……………………………………………. 

Lebesgue’s Dominated Convergence Theorem (Without Proof) 

Let (      ) be a measure space, let g be a ,    -  valued integrable function 

on X, and let   and           be ,    -  valued    measurable functions on X 

such that  ( )           ( ) and |  ( )|   ( )             hold at 

  almost every x in X. Then   and           are integrable, and  

∫            ∫       

 

 

 

 



107 
 

MUHAMMAD USMAN HAMID (0323 – 6032785) 

The Riemann Integral 

This section contains the standard facts that relate the Lebesgue integral to the 

Riemann integral. We begin by recalling Darboux‘s definition of the Riemann 

integral, as given in the Introduction (we use it as our basic definition), and then we 

give a number of details that we omitted earlier. We also give the standard 

characterization of the Riemann integrable functions on a closed bounded interval 

as the bounded functions on that interval that are almost everywhere continuous. 

Partition of an Interval:   

Let [a,b] be a closed bounded interval. A partition of [a,b] is a finite sequence 

*  + 
  of real numbers such that                  and We will 

generally denote a partition by a symbol such as   or   . 

Refinement of a Partition  

If *  + 
  and *  + 

 are partitions of [a,b] and if each term of *  + 
  appears among 

the terms of *  + 
 ,then *  + 

  is a reýnement of or is ýner than *  + 
  

Lower Sum and Upper Sum 

Let   be a bounded real-valued function on [a,b].If   is the partition *  + 
  of [a,b] 

and if        *  ( )   ∈ ,       -+ and        *  ( )   ∈ ,       -+ for 

         , then  

Á The lower sum  (    ) corresponding to   and   is defined to be 

∑   (       )
 
  

Á The upper sum  (    ) corresponding to   and   is defined to be 

∑   (       )
 
  

Á It is easy to check that if   is an arbitrary partition of [a,b],then  

 (    )   (    )  
Á If    and    are partitions of [a,b] such that    is a refinement of   , then 

 (     )   (     ) and  (     )   (     ) 
Á If    and    are arbitrary partitions of [a,b],then  (     )   (     ) 
Á Let    be a partition of [a,b] that is a refinement of both    and    and note 

that  (     )   (     )   (     )   (     ) 

Hence the set of all lower sums for   is bounded above by each of the upper sums 

for  .  
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Lower Integral of a Function 

Let (      ) be a measure space and   is bounded function defined on  ∈   

with  ( )    then the suprimum of the set of lower sums  (    ) is the lower 

integral of   over [a,b] and is denoted by the formula ∫    
 

  
       ∫  ( )   

where  ( ) is simple function. 

The lower integral satisfies b a ∫    
 

  
  (    )for each upper sum  (    ) and 

so is a lower bound for the set of all upper sums for  .  

Upper Integral of a Function 

Let (      ) be a measure space and   is bounded function defined on  ∈   

with  ( )    then the infimum of the set of upper sums is the upper integral of   

over [a,b] and is denoted by ∫    
  

 
       ∫  ( )   where  ( ) is simple 

function. 

It follows immediately that ∫    
 

  
 ∫    

  

 
 and ∫    

 

  
 ∫    

  

 
,then   is 

Riemann integrable on [a,b], and the common value of ∫    
 

  
   ∫    

  

 
 is 

called the Riemann integral of   over [a,b] and is denoted by ∫    
 

 
 or ∫  ( )  

 

 
 

Riemann Integral 

Let   be a step function on [a,b] then Riemann Integral of   on [a,b] is defined by  

∫ ( )  

 

 

 ∑   (  )

 

 

 ∑  (       )

 

 

 

Remark 

Á We can write the step function as  ( )  ∑    (       )
( ) 

  ∑    (  )
( ) 

  

Á The step function‘s value at the end points of the sub – intervals have no 

bearing on existence or value of Riemann Integral the step function 

 ( )(Since    does not appear in the definition of integral) 

Á The value of Riemann Integral of step function is independent of choice of 

partition of [a,b] as long as step function is constant on the sub – interval of 

the partition. 
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The following reformulation of the definition of Riemann integrability is often 

useful. 

Á Lemma: A bounded function   ,   -    is Riemann integrable if and 

only if for every positive   there is a partition   of [a,b] such that 

 (     )   (     )    

Á Theorem: Let [a,b] be a closed bounded interval, and let   be a bounded 

real-valued function on [a,b].Then 

(a)   is Riemann integrable if and only if it is continuous at almost every 

point of [a,b], and 

(b)  if   is Riemann integrable, then   is Lebesgue integrable and the 

Riemann and Lebesgue integrals of   coincide. 

Á The mesh or norm ‖ ‖ of a partition (or a tagged partition)   is defined by 

     (       ), where *  + is the sequence of division points for  . In 

other words, the mesh of a partition is the length of the longest of its 

subintervals. 

Á The Riemann sum  (    ) corresponding to the function   and the tagged 

partition   is defined by  (    )  ∑  (  )(       )
 
  

Á Proposition: A function   ,   -    is Riemann integrable if and only if 

there is a real number L such that      (    )    where the limit is taken 

as the mesh of the tagged partition   approaches 0.Ifthis limit exists, then it 

is equal to the Riemann integral ∫  ( )  
 

 
 

……………………………………………. 

Remember 

Á Let (      ) be a measure space and   is simple function defined on 

 ∈   with  ( )    then   will be Lebesgue Integrable. 

Á Bounded Function: Let (      ) be a measure space and let   be a 

function defined on  ∈   then   is said to be bounded if there exists a real 

number     such that | ( )|         ∈   

Á Let    and   be simple functions on  ∈   such that  ( )   ( )   ( ) 
then such pairs of simple functions always exists when  ( ) is bounded. 

Such pairs always exists for instance  ( )     and   ( )    will do. 
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Lemma: Let (      ) be a measure space and       are bounded real valued 

measurable functions defined on  ∈   with ( )    , if       almost 

everywhere on D then ∫
 
     ∫

 
     

Proof: Let              be the collection of all simple functions    on D 

such that        then ∫
 
             {∫ 

       ∈   }  

And  ∫
 
             {∫ 

       ∈   } 

Firstly we will show that for every   ∈    and   ∈    such that  

∫
 
     ∫

 
      

Since       almost everywhere on D then there exists a null set      such that 

  ( )    ( ) almost everywhere on      

Since    and    are bounded on D then there exists     such that  

 (  )  (  ) ∈ ,    -  implies     (  )  (  )    

Define a simple function    on D by setting   ( )  {
  ( )        ∈     

                   ∈   
 then 

              and       a.e. on       so that               

Hence   ∈    

Then ∫
 
     ∫

    
     ∫

  
     ∫

    
        (  )    

Since  (  )    ∫
  

     ∫
  

        therefore ∫
 
     ∫

    
     

∫
 
     ∫

    
     ∫

  
        

∫
 
     ∫

 
      

Thus {∫ 
       ∈   }  {∫ 

       ∈   } 

        {∫ 
       ∈   }          {∫ 

       ∈   }  

∫
 
     ∫

 
      …………(i) 

Interchanging the roles of functions we arrive ∫
 
     ∫

 
        …………(ii) 

From (i) and (ii)   ∫
 
     ∫
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Lemma: Let (      ) be a measure space and   be a bounded real valued 

   measurable function defined on  ∈   with  ( )    , then for any real 

constant ‗c‘ we have then ∫
 
      ∫

 
    

Proof: Since  ∈   then there will be the three cases; 

Case – I: If     then      on  ∈   and ∫
 
       

Also since ∫
 
   ∈   and     then  ∫

 
      

Hence ∫
 
      ∫

 
    

Case – II: If     then ∫
 
            ∫ 

        

 
   

∫
 
    

∫
 
         

 
   

 ∫
 

 

 
         

 
   

∫
 

 

 
     ∫

 
     

Hence ∫
 
      ∫

 
    

Case – III: If     then      and so  

∫
 
     ∫

 
 | |     where | |  {

        
       

  ………..(i) 

Now if      then ∫
 
            ∫ 

            ∫ 
     

∫
 
      ∫

 
      ………..(ii) 

( )  ∫
 
     ∫

 
 | |     ∫

 
| |     

 ∫
 
      | |∫

 
         Reseult for     

Hence ∫
 
      ∫

 
    

Remember 

   ( )      (  )  

Let   *       + then    *           + 

Then    ( )    also     (  )      

And    ( )        (  ) 
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Lemma: Let (      ) be a measure space and         be bounded real valued 

   measurable functions defined on  ∈   with  ( )    then  

∫
 
(     )   ∫

 
     ∫

 
      

Proof: Let       be simple functions on  ∈   such that       and       

then       be simple functions on  ∈   and 

∫
 
     ∫

 
     ∫

 
(     )    

∫
 
     ∫

 
     ∫

 
      where we use          

Also       are bounded therefore their sum         (Say) is bounded and  

              i.e.      

         ∫ 
     ∫

 
           ∫ 

     

 ∫
 
             ∫ 

     ∫
 
     

 ∫
 
     ∫

 
     ∫

 
      ………..(i) 

Similarly       be simple functions on  ∈   such that       and       then 

      be simple functions on  ∈   and 

∫
 
(     )   ∫

 
     ∫

 
      

∫
 
    ∫

 
     ∫

 
       Where we use          

Let       and       therefore             i.e.     then  

 ∫
 
            

∫
 
     ∫

 
      

 ∫
 
    ∫

 
             

∫
 
      

 ∫
 
    ∫

 
     ∫

 
       ………..(ii) 

From (i) and (ii) we have  ∫
 
    ∫

 
     ∫

 
     

Where         
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Lemma: Let (      ) be a measure space and   be a bounded real valued 

   measurable function defined on  ∈   with  ( )    , Let *  + 
  be a 

disjoint sequence in   such that   
      then ∫

 
    ∑ ∫

  
    

  

Proof: Let   be an arbitrary simple function defined on  ∈   such that 

    on  ∈  . Also consider  ( )  ∑      
( ) 

  be canonical representation 

of  . If we consider    be a restriction of   to    then its canonical representation 

will be   ( )  ∑         
( ) 

 . Noting that   
 (     )     then 

∫
 
    ∑    (  )

 
  ∑    (    ) 

                  

∫
 
    ∑    (   (  

   ))
 
  ∑    ,  

 (     )-
 
   

∫
 
    ∑   ∑  (     )

 
   

 
    ∑ [∑    (     )

 
   ] 

     

∫
 
    ∑ ∫

  
    

 
      …………………..(i) 

           on D 

Then ∫
  

           ∫  
      ∫

  
     ∫

  
     

( )  ∫
 
    ∑ ∫

  
    

       …………………..(ii) 

Where the least inequality is from the fact that    is simple function on D and 

     on D. So that  ∫
  

           ∫  
     ∫

  
    

 ∫
  

     ∫
  

     ∫
 
    ∑ ∫

  
    

     

       ∫ 
    ∑ ∫

  
    

        is arbitrary 

 ∫
 
    ∑ ∫

  
    

      …………………..(iii) 

Similarly by starting with a simple function   such that     on D we obtain  

∑ ∫
  

    
          ∫ 

    

 ∑ ∫
  

    
    ∫

 
      …………………..(iv) 

Combining (iii) and (iv)   ∫
 
    ∑ ∫
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Lemma: Let (      ) be a measure space and   be a bounded real valued 

   measurable function defined on  ∈   with  ( )    , if     almost 

everywhere on  ∈   and ∫
 
      then     almost everywhere on  ∈  . 

Proof:   Consider the first case that     on  ∈   and let    * ∈      + 
and    * ∈      + then         and         

We claim that      almost everywhere on  ∈   iff  (  )     ……….(i) 

Suppose     almost everywhere on  ∈   then there exists a null set     in 

(      ) such that     on     

Then                                   

       (  )   ( )     by monotonicity of    

  (  )           ( )    as E is null. 

Conversely Suppose that  (  )    then    is a null set in (      ) but     

on         i.e.      almost everywhere on  ∈   

If  ( )    then from      we have  (  )   ( )     (  )    

     almost everywhere on  ∈    by (i) 

Now consider  ( ) (   ) then we have to show that     almost everywhere 

on  ∈  . But contrarily suppose that     almost everywhere on  ∈   is false  

then by (i) we have  (  )   . 

Now    * ∈      +         
 { ∈     

 

 
} then 

   (  )  ∑ { ∈     
 

 
} 

     then there exists   ∈   such that 

 .{ ∈     
 

  
}/     

Define a simple function   on D by  ( )  {

 

  
        ∈ { ∈     

 

  
} 

         ∈   { ∈     
 

  
}
 then 

 ( )   ( ) on D 

 ∫
 
 ( )   ∫

 
 ( )   

 

  
 .{ ∈     

 

  
}/     
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 ∫
 
 ( )       contradiction to ∫

 
 ( )     

Hence     almost everywhere on  ∈   

Now consider if     on  ∈   and ∫
 
      then  

    almost everywhere on  ∈   ………………(ii) 

Now consider if     almost everywhere on  ∈   and ∫
 
      then there 

exists a null set E in (      ) such that     on     then 

  ∫
 
    ∫

   
    ∫

 
    ∫

   
     

 ∫
   

       

Now     on     and ∫
   

      implies     a.e. on  ∈   by (ii) then 

there exists a null set F in (      ) such that  ∈     and     on (   )   

Implies     on       

Hence     almost everywhere on  ∈          is null set 

……………………………………………. 

Lemma:  

Let (      ) be a measure space and   and   be bounded real valued    

measurable functions defined on  ∈   with  ( )    , if     almost 

everywhere on  ∈   and ∫
 
    ∫

 
    then     almost everywhere on 

 ∈  . 

Proof:   If     almost everywhere on  ∈   then       almost everywhere 

on  ∈   and in addition ∫
 
    ∫

 
    then ∫

 
(   )     then  

By theorem ―if     almost everywhere on  ∈   and ∫
 
      then     

almost everywhere on ∈   ‖ we have 

      almost everywhere on  ∈   

Implies     almost everywhere on  ∈  . 
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The Simple Approximation Theorem  

An extended real-valued function f on a measurable set E is measurable if and only 

if there is a sequence *  + of simple functions on E which converges pointwise on 

E to f and has the property that  |  |  | | for all n. 

If f is nonnegative, we may choose *  + to be increasing. 

…………………………………………………………. 

Theorem 

Let   be a bounded measurable function on a set of finite measure E. Then   is 

integrable over E.  

Proof  

Let n be a natural number. By the Simple Approximation Lemma,  

―An extended real-valued function f on a measurable set E is measurable if and 

only if there is a sequence *  + of simple functions on E which converges 

pointwise on E to f and has the property that  |  |  | | for all n.‖ 

With ∈ 
 

 
 there are two simple functions    and    defined on E for which 

        on E, and         
 

 
 on E. 

By the monotonicity and linearity of the integral for simple functions,  

  ∫      ∫      ∫ (     )   
 

 
 ( )  

However, 

     {∫                 }     {∫                 }  

  ∫      ∫      
 

 
 ( )  

This inequality holds for every natural number n and  ( ) is finite. Therefore the 

upper and lower Lebesgue integrals are equal and thus the function f is integrable 

over E. 
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Proposition:  

Let (      ) be a measure space, and let   be a complex valued function on X 

that is measurable with respect to   and  (C).Then   is integrable if and only if 

| | is integrable. If these functions are integrable, then |∫    |  ∫ | |   

Or Let f be a bounded measurable function on a set of finite measure E. Then 

|∫ 
   |  ∫

 
| |   

Proof:  

Let  ( ) and  ( ) be the real and imaginary parts of   .If   is integrable, then the 

integrability of |   | follows from the inequality |   |  | (   )|  | (   )|,  

while if |   | is integrable, then the integrability of   follows from the inequalities 

| (   )|  |   | and | (   )|  |   | 

Now suppose that   is integrable. Write the complex number ∫     in its polar 

form, letting   be a complex number of absolute value 1 i.e. | |    such that 

∫      |∫    |  

 |∫    |     ∫      

 |∫    |  ∫         

 |∫    |  ∫  (    )        |   |    

 |∫    |  ∫ | |         | (   )|  |   | 

Hence |∫    |  ∫ | |   

2
nd

 Method 

The function | | is measurable and bounded.  

Now  | |    | | on E. 

By the linearity and monotonicity of integration, 

 ∫
 
| |  ∫

 
  |∫ 

   |  ∫
 
| |  

Hence  |∫ 
   |  ∫

 
| |   
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Convergence 

In this chapter we look in some detail at the convergence of sequences of 

functions. 

Uniform Convergence 

Let (      ) be a measure space, A sequence of extended real valued functions 
*  + 

  converges uniformly on a set  ∈   to an extended real valued function   if 

for every ∈   there exists   ∈   depending upon ∈ but not on  ∈   such that 

|  ( )   ( )|  ∈  for all  ∈   whenever     ∈   

Or equivalently for all   ∈   such that  

|  ( )   ( )|  
 

 
  for all  ∈   whenever     ∈   

Almost Uniform Convergence 

Let (      ) be a measure space, A sequence of extended real valued functions 
*  + 

  converges almost uniformly on a set  ∈   to an extended real valued 

function   if for every     there exists a   measurable subset E of    such 

that  ( )    and *  + 
  converges uniformly on a set     

Examples:  

We should note that in general convergence in measure neither implies nor is 

implied by convergence almost everywhere. 

(a) To see that convergence almost everywhere does not imply convergence in 

measure, consider the space (   ( )  ) and the sequence whose nth term 

is the characteristic function of the interval ,    )  This sequence clearly 

converges to the zero function almost everywhere (in fact, everywhere) but 

not in measure. 

(b)  Consider the interval [0,1), together with the ζ-algebra of Borel subsets of 

[0,1) and Lebesgue measure. Let *  + be the sequence whose first term is the 

characteristic function of [0,1), whose next two terms are the characteristic 

functions of [0,1/2) and [1/2,1), whose next four terms are the characteristic 

functions of [0,1/4), [1/4,1/2), [1/2,3/4),and [3/4,1), and so on. Then *  + 
converges to the zero function in measure, but for each x in [0,1) the 

sequence *  ( )+ contains infinitely many ones and infinitely many zeros 

and so is not convergent.    
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Remark 

Á Proposition: Let (      ) be a measure space, and let   and           be 

real valued    measurable functions on X. If   is finite and if *  + 
converges to   almost everywhere, then *  +converges to   in measure. 

Á Proposition: Let (      ) be a measure space, and let   and           be 

real valued   measurable functions on X. If *  + converges to   in 

measure, then there is a subsequence of *  +that converges to   almost 

everywhere. 

 

Proposition: (Egoroff’s Theorem)  

Let (      ) be a measure space, and let   and           be real valued    

measurable functions on X. If   is finite and if *  + converges to   almost 

everywhere, then for each positive number   there is a subset B of X that belongs 

to   , satisfies  (  )   , and is such that *  + converges to   uniformly on B. 

Or Let (      ) be a measure space, and let *  + 
  be a sequence of extended 

real valued    measurable functions on  ∈   with  ( )   . Let   be a real 

valued    measurable function on  ∈  . If *  + 
  converges to   almost 

everywhere then if *  + 
  converges to   almost uniformly on  ∈  . 

Proof: Let ε be a positive number, and for each n let           |      |. 

It is easy to check that each    is finite almost everywhere. The sequence *  + 
converges to 0 almost everywhere, and so in measure. Hence for each positive 

integer k we can choose a positive integer    such that 

 ({       
( )  

 

 
})  

 

  
  

Define sets         by    {       
( )  

 

 
} and let       . Then the set 

B satisfies  (  )   (    
 )  ∑  (  

 )  ∑
 

      

Implies  (  )    

If   is a positive number and if k is a positive integer such that      , then, 

since       then |  ( )   ( )|     
( )  

 

 
   holds for all x in B and all 

positive integers n such that     ; thus *  + converges to   uniformly on B.    
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Bounded Convergence Theorem 

Let (      ) be a measure space, and let *  + 
  be a bounded sequence of real 

valued    measurable functions on  ∈   with  ( )   . Let   be a bounded 

real valued    measurable function on  ∈  . If *  + 
  converges to   almost 

everywhere on  ∈   then       ∫
 
|    |     

And in particular       ∫
 
     ∫

 
   
   

     ∫
 
    

Proof:  

Since  *  + 
  is bounded on  ∈   therefore there exists     such that 

|  ( )|    for all  ∈   and for all  ∈  . Since   is also bounded on  ∈   

then we can assume that there exists     such that | ( )|    for all  ∈   

Now *  + 
  converges to   almost everywhere on  ∈   and  ( )    therefore 

by Egoroff‘s Theorem ―*  + 
  converges to   almost uniformly on  ∈  ‖ then 

for all     there exists a   measurable subset E of    such that  ( )    and 
*  + 

  converges uniformly on a set    . Then for all ∈   there exists   ∈   

depending upon ∈ but not on   such that 

|  ( )   ( )|  ∈  for all  ∈     whenever     ∈   

Now for      we have 

∫
 
|    |   ∫

   
|    |   ∫

 
|    |    

∫
 
|    |   ∫

   
∈    ∫

 
       |    |  |  |  | |      

∫
 
|    |   ∈ ∫

   
     ∫

 
   ∈  (   )     ( )  

∫
 
|    |   ∈  ( )       Hence this holds for all      

We have        ∫
 
|    |   ∈  ( )      

Hence this is true for every ∈   and     therefore        ∫
 
|    |     

Also we have ∫
 
|    |       |    |    

Therefore          ∫
 
|    |         ∫

 
|    |   

Implies        ∫
 
|    |     and hence        ∫

 
|    |     
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Now we have to prove       ∫
 
     ∫

 
   
   

     ∫
 
    

Since ∫
 
(     )   ∫

 
     ∫

 
     

Therefore |∫ 
     ∫

 
   |  |∫ 

(    )  |  ∫
 
|    |   

|∫ 
     ∫

 
   |  ∫

 
|    |    

   
   

|∫ 
     ∫

 
   |     

   
∫
 
|    |    

   
   

|∫ 
     ∫

 
   |               ∫

 
|    |     

   
   

(∫ 
     ∫

 
   )    Hence       ∫

 
     ∫

 
   
   

     ∫
 
    

…………………………………………………………….. 

   Spaces: Let (      ) be a measure space, and let   satisfy      . Then 

  (        ) is the set of all    measurable functions        such that | |  

is integrable, and   (        ) is the set of all   measurable functions 

       such that | |  is integrable. 

In discussions that are valid for both real- and complex-valued functions we will 

often use   (      ) to represent either   (        ) or   (        ). 

   Spaces: Let (      ) be a measure space, and let     then   (        ) 
be the set of all bounded real valued   measurable functions on X, and 

  (        ) be the set of all bounded complex-valued   measurable 

functions on X.  

Remember: (This is already we have done in previous classes) 

Á Lemma: Let   satisfy      , let   be defined by 
 

 
 

 

 
  , and let   

and   be nonnegative real numbers. Then    
  

 
 

  

 
 

Á Holder’s Inequality:  Let (      ) be a measure space, and let   and   

satisfy               , and 
 

 
 

 

 
  .If  ∈   (      ) and 

 ∈   (      ), then   ∈   (      ) and satisfies  

∫ |  |   ‖ ‖ ‖ ‖   

Á Minkowski’s Inequality: Let (      ) be a measure space, and let   

satisfy        . If    ∈   (      ),then    ∈   (      ) and 

‖   ‖  ‖ ‖  ‖ ‖  
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Product measures 

Let (X,  ) and (Y,  ) be measurable spaces. Consider the Cartesian product 

    . A subset of     is said to be a rectangle with measurable sides if it is of 

the form     for some A ∈   and B ∈  . 

The ζ-algebra on     generated by the collection of all rectangles with 

measurable sides is called the product of the ζ-algebras   and   and is denoted 

by    . That is, 

       (*      ∈    ∈  +)   

Á Sections Suppose that X and Y are sets and that E is a subset of X ×Y. 

Then for each x in X and each y in Y the sections Ex and E
y
 are the subsets 

of Y and X given by Ex = {y ∈ Y : (x,y) ∈ E} and E
y
 = {x ∈ X : (x,y) ∈ E}. 

Á If f  is a function on X ×Y, then the sections    and    are the functions on Y 

and X given by    ( )   (   )  and   ( )   (   ) 

……………………………………… 

Theorem  

If (X,  ) and (Y,  ) are measurable spaces, then (   ,    ) is a measurable 

space.  

The measurable space (   ,    ) is the Cartesian product of the two given 

measurable spaces.  

Proof:   

If (   ) ∈     , then there exist sets A and B such that  

       and        

it follows that (   )      ∈     
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Lemma: Let (X,   ) and (Y,  ) be measurable spaces. If E is a subset of     

that belongs to     , then each section Ex belongs to   and each section E
y
 

belongs to   . Or Every section of a measurable set is a measurable set. 

1
st
 Proof: Suppose that x belongs to X, and let   *           ∈  +. 

Then   contains all rectangles A×B for which   ∈    and B ∈  . 

In particular, X ×Y ∈  .  

Furthermore, the identities (  )   (  )
  and (    )     ((  ) ) imply that 

  is closed under complementation and under the formation of countable unions; 

thus   is a ζ-algebra. It follows that   includes the ζ-algebra     and hence 

that Ex belongs to   whenever E belongs to    .  

A similar argument shows that E
y
 belongs to   whenever E belongs to    . 

2
nd

 Proof:  Let   be the class of all those subsets of X ×Y which  have the 

property that each of their sections is measurable. If            is a measurable 

rectangle, then every section of E is either empty or else equal to one of the sides, 

(A or B according as the section is a Y-section or an X-section), and therefore 

 ∈  . Since it is easy to verify that   is a  -ring, it follows that     ∈  . 

………………………………………. 

Lemma: Let (X,   ) and (Y,  ) be measurable spaces. If f  is an extended real-

valued (or a complex-valued)     -measurable function on X×Y, then each 

section    is  -measurable and each section    is  -measurable. 

Or Every section of a measurable function is a measurable function. 

Proof: If   is a measurable function on X×Y if x is a point of X and if M is 

any Borel set on the real line, then the measurability of  (  )    
  ( ) follows 

from previous Theorem and the relations  

  
  ( )  *    ( ) ∈  +  *   (   ) ∈  +  

  
  ( )  *    ( ) ∈  +  *   (   ) ∈  +  

 (Observe that  (  )    ( ) .) The proof of the measurability of an arbitrary Y-

section is similar. 
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Remember 

Á Proposition:  Let (X,   ,μ) and (Y,  , ) be ζ-finite measure spaces. If E 

belongs to the ζ-algebra A ×B, then the function     (  ) is   –

measurable and the function    (  ) is   -measurable. 

Á Theorem:  Let (X,   ,μ) and (Y,  , ) be ζ-finite measure spaces then there 

is a unique measure     on the ζ-algebra       such that 
(    )(   )    ( ) ( )  holds for each A in   and B in  . 

Furthermore, the measure under     arbitrary set E in     is given by 

(    )( )  ∫
 
 (  ) (  )  ∫

 
 (  ) (  ) 

The measure      is called the product of μ and ν. 

Á Tonelli’s Theorem: Let (X,   ,μ) and (Y,  , ) be ζ-finite measure 

spaces, and let       ,    - be      -measurable. Then 

(a) the function    ∫
 
     is   -measurable and the function 

    ∫
 
      is   -measurable. 

(b)   satisfies  

∫
   

 (   ) (    )  ∫
 
(∫

 
    ) (  )  ∫

 
(∫

 
    ) (  ) 

Á Fubini’s Theorem: Let (X,   ,μ) and (Y,  , ) be ζ-finite measure 

spaces, and let        ,     - be     -measurable and     -

integrable. Then 

a) for   almost every x in X the section    is   integrable and for   almost 

everyy in Y the section    is   integrable, 

b) the functions    and    defined by 

   {
∫
 
                              

                                            
   

and        {
∫
 
                              

                                            
  

belong to   (        ) and   (       )  respectively 

c) The relation 

∫
   

  (    )  ∫
 
     ∫

 
     holds. 
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For video lectures  

@ You tube visit  

Learning with Usman Hamid  
visit facebook page òmathwathó 

or contact: 0323 ð 6032785  
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