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Course Contents:

» Fourier Methods:
The Fourier transforms. Fourier analysis of the generalized
functions. The Laplace transforms. Hankel transforms for the
solution of PDEs and their application to boundary value
problems.

» Green’s Functions and Transform Methods:
Expansion for Green’s functions. Transform methods. Closed
form Green’s functions.

» Variational Methods:
Euler-Lagrange equations. Integrand involving one, two, three
and n variables. Special cases of Euler-Lagrange’s equations.
Necessary conditions for existence of an extremum of a
functional. Constrained maxima and minima.

» Perturbation Techniques:
Perturbation methods for algebraic equations. Perturbation
methods for differential equations.
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FOURIER TRANSFORMATION AND INTEGRALS

WITH APPLICATIONS

FOURIER TRANSFORMATION: If £ (x) is a continuous, piecewise
smooth, and absolutely integrable function, then the Fourier transform of
f (x)with respect to x € R is denoted by F (k)and is defined by

Fif )= Fk)= X (x) dx

1 (0]
— | e
V2T _L
where K is called the Fourier transform variable and exp (—ikx) is called the
kernel of the transform.

Then, for all x € R, the INVERSE FOURIER TRANSFORM of F (k) is

defined by

FUFUW}=f(x)= T F (k) dk

1
=
CONDITION FOR EXISTENCE OF FOURIER TRANSFORMATION
Fourier Transforamtion and Inverse Fourier Transformation exist if

(i)  The function f(x) or F(k) is continuous or piecewise continuous over
(—o0, o0) and bounded.

(i)  The function f(x) or F(k) are absolutely integrable i.e.
IZ If()ldxor [ _|F(k)|dk this condition is sufficient for

existence of Fourier Transforamtion and Inverse Fourier

Transformation.
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Example:
K2
Show that for a Guassian Function F {Ne "} = \%e(_a) ;a>0,Nis
constant.
Solution. We have, by definition
1 0 . N 00 . w2
F {f (x)} = \/ﬁf—oo elkx f (.X')dX = \/ﬁf—oo eikx o—ax® gy
F _ N (® ikx-ax? dx = N (= _a[(x_%)z-kﬁz] d
U@ =5=z/e x=—=]__€ X
2 Consider ikx — ax?
a ik 2 ikx
PO @) ="22 " bz ax = a(x 1)
ik |2 dp - _a (xz_%x) ]
Puta(x—ﬂ) =P2$ a(x—z—) P:\/—dx—dP:dx—F +(;_|;)2_(;_1;)2
K2 o2 k2 K\2 k2
Ne "4a [ee] —a X—% I\Ie_E o PZ d_P __a[(x_i) +F]
=>T{f(x)}— f_ooe (*24) dx—\/ﬁf_Oo T
K2
S Ff @) =" VE [ e dP=yn

> F{f (0))=F{Ne ™'} =

Example: Find the Fourier transform of a box function

oo ={y
Solution. Let we have, by definition
F{f (1)} = %f_";
FU @0y ==[n

x| <aor —a<x<a
, |X| > a

el®™ f (x)dx

eikx f(x)dx+f eikx f(X)dX+f elkx f(x)dx]

F{f ()} = E [ oe™ 0dx+ [ e 1dx+ [~ e** . 0dx]

e—lka

eika_
(—:

i

2
V2T

2

T

Sinak
k

)= = (57)

FU @0 =7= [0 e dx =
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Example:

a

Find the Fourier transform of g(x) = —

Solution. Let we have, by definition

a

— 1 (> ,ikx — 1 (® oikx _23
a elkz e e sl G
F{g(2)} =Efﬁcm replacing ‘x’ with ‘z

elkZ — elk(x+ly) — elkx.el ky _ elkx.e—ky >0 as y - 0= elkZ >0:k>0

Similarly e** - 0 ;k <0 when y » —

'kz

Let g(z) = 5—5 = z = +ai are the simple poles of g(z)
Now using R(f,a) = lim L [(s — a)"eStF(s)]
S (n—1)1 dsn-1
N 1 . elkZ 1 eikz _ eik(ai) _ e—ak
R(g' ai) = Ry = lim,_4;(z — ai) (z-ai)(z+ai) ;chrzll (z+ai)  2ai  2ai
Similarly
N 1. . eikz . eikz _ eik(—ai) _ eak
R(g —ai) =R, =lim,,_,(z + al)m - ;LT: (z-ai)  —2ai  -2ai
Now = F {g(x)} = — 45 ™ 4z =% 2miY, R, = - . 2mi[R, + Ry
g\x ¢ a2 Z—m. T[l]]—m TR 2

Now we use 2mi for the contour as a semi circle in upper half plane and —2mi

for the contour as a semi circle in lower half plane

=>F{gx)}= [(ZTU)R1 + (2mi)R;] = 21i[R, — R,]

7|

\/ﬁ'

ed {g(x)} B 21'[l [ 2ai Zat] f [e_ak + eak]

=>7-'{9(96)}—}[ alkl 1 glkl ] “k>0k<0> |k|l=

= F {g() = [7.26°K = VZmeeH
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K2
Example: Show that F {e‘axz} = \/%e<_4a> ;a>0
Solution. We have, by definition
1 oo 1 o0 —ax
T{f(x)}zﬁf_ooek"f(x)dx=ﬁf_ooekx.e dx
e A
F {f (x)} mf lkx—ax dx = wor f_ 4a dx
e 4a (X E)Z Consider ikx — ax?
T{f (x)} - V2 f—oo 2 dx ( 2 1kx)
_ Ik 2 _ ik ar N
Puta(x Za) =P =>\/_(x ) P=>\/_dx—dP=>dx—\/E (o
e4a _ ik)? e4a 2 dP =—a| ikzzaikzl
:'T{f(x)}—rf_w ) ax =27 e 2 NONO
=>F{f (x)} = ez—‘:; Vi . [0 e P dP=1n = —a|(x—1)
K2
>F{fx)}=7F {e‘axz } = \/%e< )
— 2
Example: Show that F{e™2X} = J;@ ;a>0
Solution. We have, by definition
1 o i 1 —alx
FU ) =7=/ " f(0dx == ™ .e7Mdx
F {f (x)} — \/%tf_"ooo eikx—alxl dx = \/%_“f_ e(a+1k)x dx + _f —(a—ik)x dx

1 1 1 2 a
Fif 0} = \/T—n[ﬁ + m] = \g(a2+k2)

Example: Show that F {X[_,q(x)} = \ﬁ(

Where X_qq(x) = H(a — [x]) = {

Solution. Let

Sinak

)
, X|<aor —a<x<a

0 , x| >a

us consider f (x) = X[_q4(x) then We have, by definition

Fif (0} = %f_"‘; i f (x)dx

F{f ()} = m[f
FU @y =7=[Ce

FUf @)} =gz [0 e dx = =

eikx f(x)dx+f elkx f(x)dx+f e** f (x)dx|
eikx de+f eikx 1dx-|-f elkx de]

( lka_ —lka) _ (Slnak)
4 2i T\ k

2
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PROPERTIES OF FOURIER TRANSFORMS

LINEARITY PROPERTY: THE FOURIER TRANSFORMATION F IS
LINEAR.

Proof. Let u (x) = af (x) + bg(x) where a and b are constants.

We have, by definition
Flu (@} =—7=[" e uxdx = rf e [af(x) + bg(x)]dx

Flu@} ==/, "™ fOdx+ ﬁ I e g(x)dx
Flu®)}=aF{f(x)}+bF{g(x)}
F{af(x) + bg(x)} =aF {f(x)} + bF {g(x)} hence proved.

LINEARITY PROPERTY: THE INVERSE FOURIER TRANSFORMATION F-1 IS
LINEAR.

Proof. LetU (k) = aF(k) + bG(k) where a and b are constants.
We have, by definition

FLU (0} = 5= e ™ Ulodk = == [ e [aF(k) + b6 (K)]dk
FHU (0} = 2= [, e ™ Fllodk + == [ e G(k)dk

F-1{aF(k) + bG(k)} = aF ! {F(k)} + bF 1 {G(k)} hence proved.

SHIFTING PROPERTY: Let F {f (x)} be a Fourier transform of f(x). Then
(i) F[f(x — a)] =e*@F(k) where ‘a’is areal constant.

Proof. From the definition, we have, for a > 0,

FIf (x — @)] = =%, ™ f (x — a)dx

Putx —a=x"=>dx =dx' alsoas x - +oo then x’' » +
! / / 1 ®© ikx/ i ! /
FIf (x — @)] = = [, e f ()dx' = =7 e e f (x)dx

Flfx —a)] =€ -Ff_oo e f (xN)dx' = " F {f (1)} = e™ F(k)
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(i) F[e™f(x)]=F(k+a) where‘a’is areal constant.
Proof. From the definition, we have, for a > 0,
Fle™ f (0)] = 5= [, e e f (x) dx = 5= [ ell+@x f (x) dx = F(k + a)
SCALING PROPERTY: If F is the Fourier transform of f, then

Flf (ex)] = ( ) F (—) where c is a real nonzero constant.

Proof. Forc # 0 we have F[f (cx)] = e®™ f (cx)dx

L% e
Flf ()] = =" e M) p eyt ot Lo o) fnaw =1k

Sincec # 0theneitherc< Oorc> 0

1
c’

-
A

lfc> 0then F[f (cx)] =—F () Ifc< Othen F [f (cx)] = —F ()

Hence ¥ [f (cx)] = (G ) G )
CONJUGATION PROPERTY: Let f is real then F (—k) = F (k)
Proof. Since f is real therefore f (x) = f (x) then by defination

F(k)=F[f(x)] = mf— '™ f (x)dx

FIO) =F[f@®)] = =/, e ™™ F@dx == [ V% f (x)dx = F (—k)
Hence F (—k) = F (k)

ATTENUATION PROPERTY:

For a function f (x) the resultwill be, F [e“"f (x)] = F (k — ai)

Proof. By definition F (k) = F [f(x)] = =" "™ f (x)dx

Then F [e%f (x)] = —= [, " e®f (x)dx = —= [ e e~"**f (x)dx
F [e™*f (x)] v— [ eltemadx £ ()dx .......... (i)

Also F (k — ai) = F [f(x)] = \/%_11 [2 elk=adX £ (x)dx ......... (i)

Thus from (i) and (ii) F [e**f (x)] = F (k — ai)
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MODULATION PROPERTY (i):
F [Cosaxf (x)] =5[F (k+a) + F (k— a)]

Proof. By definition F [Cosaxf (x)] = F [( i mx)f(x)]

F [Cosaxf ()] = 5[ F (e f ()} + F {e™* f (0)}] =7 [F (k+a) + F (k — )]
MODULATION PROPERTY (ii):

F [Sinaxf (x)] = __[F (k+a) — F (k - a)]

Proof. By definition F [Sinaxf (x)] = F [(*—* - ) f (0]

F [Cosaxf (0)] = L [F (¢ f (1)} — F {7 f (0}] = = [F (k + @) — F (k — )]

ROPERTY: if f (x) isreal and even then F (k) is real.
Proof. Since f is real therefore f (x) = f (x) ...()and f (—x) = f (x) ...... (i)
then by defination

F(k)=F[f(0)] = = f_ ik £ (x)dx = \/%_n [2 e f (—x)dx
F () =2 "™ f () (~dx) = = [ e f@)dx

Hence F (k) = F (k) then F (k) is real.

ROPERTY: if f (x)isreal and odd then F (k) is pure imaginary.

Proof. Since f is real therefore f (x) = f (X) «evevneenne (i)
andisodd f (—x) = —f (x) ......... (ii) then by defination

F(K) =F[f(0)] = =/ e f (x)dx = = [ e (—f (—x))dx
F (k) =F [f(0)] = =" €™ f (-x)dx
Fk)=—[ "™ f(x)(~dx') = =" e f (x)dx’

Hence F (k) = —F (k) or F (k) = —F (k) then F (k) is pure imaginary.
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ROPERTY: if f (x) is complex then F [f(—x)| = F (k)
Proof. by definition

FF0)] = =7 e F=x)dx = = [ 7 &) @) (—dx")
F (] = 22 27 e Fadx' = = [, e F@a’
Ff(—x)] = if_oo e & f(x)dx replacing x’ with x

FF0)] = =[5, e** f(x)dx =F (k)
Flf(—x)| =F (k) as required.

DIFFERENTIATION PROPERTY (higher derivative theorem):
Let f be continuous and piecewise smooth in (—oo, ). Let f(x) approach

zero as |[x| - oo. If fand f' are absolutely integrable, then

Flf 0] = iOF [f (0] = (—ik)F (k)

Proof.
FIf 0] = mf_oo e f' (x)dx
FUF 1= gz(le™f o7, - [, e (@) f (x)dx]

FIF 0] == [0+ (—ik) [, e f(x)dx]
FIf )] = (—lk)T [f )] = (=ik)F (k)

Forn=2
Flf (x)] = J% [ e 7 (x)dx
FIf'(x)] = [|e'kx Fool” el (ik) f’ (x)dx]

Flff(]= [0 + (—ik) [~ e™ f' (x)dx]
Flff(0]= (—lk)T [f' ()] = (—ik)(—ik)F (k) = (—ik)* F (k)
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This result can be easily extended. If f and its first (n — 1) derivatives are
continuous, and if its nth derivative is piecewise continuous, then
Flf"(x)] = (ik)"F[f (x)] = (mik)"F(k) n= 0,1,2,............

provided f and its derivatives are absolutely integrable. In addition, we

assume that f and its first (n — 1) derivatives tend to zero as |X| tends to

infinity.

CONVOLUTION FUNCTION / FAULTUNG FUNCTION

The function (f « g) (x) = = [0 f (x — & g (§) d§

is called the convolution of the functions f and g over the interval (—oo,o0)

NOTE: The convolution satisfies the following properties:
1.f g = g * f (commutative)

2.f » (g * h) = (f » g) * h (associative)

3. x (ag + bh) = a(f * g)+ b (f » h), (distributive)

where a and b are constants.

PROPERTY:f +g =g * f

PROOF: since by definition (f * g) (x) = \/%_nf_oooof (x — &g (&dé¢
Putx — {=x d¢=—-dxalsoé=x—x and if § - Foo then «c— +oo
then

f* P@ = =["F)gx—)(-dx)= g * f
f*9@==[79x—00f () de)=g * f

Hence f x g = g * f
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CONVOLUTION/FAULTUNG THEOREM

If F(k) and G (k) are the Fourier transforms of f(x) and g(x) respectively,
then the Fourier transform of the convolution (f * g) is the product

F (k)G(k). That is,

F{f )« g ()} = F (K)G(k)

Or, equivalently, F 1{F (k)G(k)} = f (x) * g (x)

Or

FHF (0G0} = 7= [, e ™ F (l)6()dk = (f * g) (®) = 7=/ f (x—§) g (§) d§

PROOF: By definition, we have
_ 1 © i
FHF (kG(k)} = \/T—nf—oo e X F (k)G (k)dk

FHF (WG6(K)} == [, e F(k) { =" e g (x)dx'} dk
By changing the order of integration

FHF (0G0} = =7 | 5= /7, €M) F(kydk| g (x')dx’
FHF (060} = 7= [, f (x —x)g (x)dx’

FUF OGU} ==, f x—§ 9§ d§ = (f  9)(x)

Where we replace & with x’

Hence F~' {F ()G(k)} = f (x) * g (x)

Or F{f(x)* g(x)}= F(k)G(k)
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PARSEVAL’S FORMULA OF 1°" AND 2"° KIND
Theorem given by Marc Anotoine des Chenes Parseval (1755 — 1836)

15T KIND: According to this formula [~ |f(x)[?dx = [ |F(kK)|? dk

PROOF: The convolution formula gives

=" e F ()6(kydk = — [ f (g (x— §)d§
Lof©gx—9ds=["_ e ™ F (k)G(k)dk

which is, by puttingx = 0 = F(®g (—§dé = ["_F (k)G(k)dk
[2.F (09 (=x) dx = [*_ F (k)G(k)dk

Putting g (—x) = f (x) theng (x) = f(—x) = F{g )} =F{f (-x)}
= G(k) =F (k) ~ F{f (—x)} = F (k) for complex f.

2o F (OF (@) dx = [ F (I)F (k)dk
where the bar denotes the complex conjugate.

> [T Ife2 dx = [ [F(K)|? dk

In terms of the notation of the norm, thisis ||f|| = ||F]||

2P KIND: According to this formula

L. F 06U dk = [ f (wg (—u)du
PROOF: The convolution formula gives

=" e F (k)G(kydk = — [ f (u)g (x —w)du

by puttingx = Oweget [ F(k)G(k)dk= ["._f (w)g (—w)du
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BOUNDEDNESS AND CONTINUITY OF FOURIER TRANSFORMATION
If f(x) is piecewise smooth and absolutely integrable function on the interval
(—o0, o) then its fourier transformation F (k) is bounded and continuous.

PROOF: given that f(x) is piecewise smooth and absolutely integrable
function i.e. J = f_oooolf(x)ldx

now by definition F (k) = F [f(x)] = e™ f (x)dx

=J e
For boundedness taking mod on both sides

= |F (k)| = |%—f_°; el f (x)dx| < = |e"*| If (x)|dx

= |F (k)| < —=— f If (x)| dx since |e*| =1
= |F (k)| < J_ J sinceJ = [___|f(x)|dx
= |F(k)|<A wherel=\/%_n.]eR

= F (k) is bounded.

Now for continuity of F (k) we have

F(k+h) = F (k) = = [ el f (x)dx — == [ el f (x)dx

F(k+h)—F (k) == e (e"™ —1) f(x)dx = I(k,h)  say
limh_)o [F (k + h) —F (k)] = limh_m I(k, h) ........... (i)

Now limy,_,, I(k, h) exists if 1(k, h) is uniformly convergent.

For this consider

= |I(k, h)| = | eikx (gihx — 1) f(x)dx|

L=
= [I(k, h)| < ﬁf_ e | |ei"™ —1]||f (x)|dx

1 00 g
= |[I(k,h)| < \/T_nf—oo (1) |Coshx + iSinhx — 1||f (x)|dx

1 00 .
= |[I(k,h)| < \/T_nf_ool(COth — 1) + iSinhx||f (x)| dx
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= |I(k, h)| < %.\/Ef_""mxh —Coshx|f (x)| dx
= |I(k, h)| < \/iﬁf_oooo\/I — Coshx|f (x)| dx

. 1 oo ..
< — —
= }gr(}ll(k, h)| < ﬁf_oo }11_1)1(}\/1 Coshx|f (x)|dx -0
. < . _
= }gr(}ll(k, h|<0= %1_1)131(k, h)=0

(i) = limy,_o[F (k+ h)—F (k)] =0

= lim;,_y F (k+ h) = F (k) = F (k) is continuous.

Hence If f(x) is piecewise smooth and absolutely integrable function on the
interval (—oo, c0) then its fourier transformation F(k) is bounded and
continuous.

RIEMANN LEBESQUE THEOREM

If f(x) is piecewise smooth and absolutely integrable function then
lim ., F (k) =0

PROOF: given that f(x) is piecewise smooth and absolutely integrable
functioni.e. J = f |f (x)|dx

now by definition F (k) = F [f(x)] = e™ f (x)dx

L7
Fio = =[ros] - 105 rway|

skl = | &S] -1 —f(x)dx“
= IF (0l = | %=|re )—| e
= IFol< = |If@ll + |- 17 S r@ay

= IF ()] < 4= limm%—limxﬁ_w ol 7 I @lax

Q‘

= |F (k)] < — limx_m%—limx_)_w |f|§cx|)| o LIF@IAX ...l

Q‘
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Since f(x) is absolutely integrable function then lim,_.|f(x)| =0
(i) = |F (k)| < r IkI If (|dx  ....... (i)
Since f(x) is piecewise smooth then f'(x) will be piecewise continuous and

therefore f If'(x)|dx =1

(ii) = llm |F (k)| < I=0=> llm |F (k)| =0

J:T

FOURIER TRANSFORM OF THE FUNCTION OF THE FORM [x"f(x)]

Let f be piecewise continuous on the interval [—, I] for every positive ‘I’ and

7 |x™f (x)| converges then
F [x"f(x)] =il,,F"(k) = i"F(k) n= 01,2, ..

Proof. By definition F [f (x)] = F(k) = \/_f

= F'(k) = e™ (ix)f(x)dx diff. w.r.to ‘K’

=le
= i"'F'(k) = Ff_oo e () f(x)dx = F [xf(x)] = i"'F' (k)

= F'"(k) = e®™ (ix)?f(x)dx  again diff. w.r.to ‘K’

<[
= i 2F"(k) = ﬁf_w e®™ (x®)f(x)dx = F [x*f(x)] = i %F?(k)
Continuing in this mannar we can get the required result as follows;
F [x*f(x)] = i "F*(k) = %Fn(k) = 0,1,2, .
Fx"f(x)] = (- 1)"WF(k) nm=0,1,2,............

Where we use the result i™ = (—_)n = (— X )n = (i)n = (=D)"
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FOURIER TRANSFORM OF AN INTEGRAL

Let f be piecewise continuous on the interval (—oo, 00) and that

JZ If(®)| < oo also F(0) = 0 with F [f (x)] = F(k) then
F{*, f@)dx'} = —F(k) = F(k)
Proof. Let g(x) = [© f(xX)AX cevovervuernnes (i)

Given that F [f (x)] = F(k) = % [2 e flx)dx

= F(0) = \/%f_moo f(x) dx putting k =0 also e® = 1
= \/%ffooo f(x)dx=0 since F(0) = 0

> L f@)dx=0=lim [°_f(x)dx'= 0= limg(x) = 0
Now from (i) we get by using Leibniz Rule

9'(®) =f(x)=>F{g 0} =F{f(x)}= (—ik)F{g(x)} = F(k)
> F {g(x)} = —F(k)

> F g0} = F {7, F&) dx} = = F(k) = - F(k)

FOURIER INTEGRAL THEOREM

If f (x) is real valued function over (—oo, +0) and the integral ffooo f(x)dxis
absolutely convergent then f (x) = % Jy dk [ Cosk(x —x')f(x")dx'
PROOF: Since f_oooo f(x) dx is absolutely convergent then F.T and I.F.T of

function exists.

f (%) = J% [ ek F(k)dk since F~1 {F (k)} = f (%)
fx) == 1%, e F(kydk + [, e F(k)dK]| ............. i)
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Putin 1®term —k = k' = dk = —dk' also if k - —,0 then k' - o, 0
: 1 [0 ik'x ' ' © i
®) = f () = 5= [ €% F(=k)(~dk") + [, e™* F(k)dK|
1 0 i/ I} ’ 0o _:
= f() = —=f; "> F(~k)dk' + [;" e F(k)dK]

= f(x) = J% [J,” €™ F(-k)dk + [,” e™™ F(k)dk| replacing k' with k

= f(x) = 7= [; [e"F(k) + e ™ F(k)] dk ..oovvevnnn Gi) -~ F(-k) =F(k)
Consider F(k) = \/%_nf_moo e f(x")dx’

= F(k) = % [ e ' Fx")dx' taking conjugate

Then e F(k) = — [ e k&%) f(x")dx

Also e™ F(k) = \/% [© e Fiydx’
Since f(x) is real therefore f(x") = f(x")

Now e** F(k) + e ** F(k) = \/%_ﬂ f_oooo[eik(x—x') + e—ik(x—x')] f(x)dx’
X F(k) + e ®* F(k) = \/%_ﬂfj"w% [eik(x—x’) + e—ik(x—x’)] f(x)dx’
e F(k) + e ™ F(k) = \/%ffooo Cosk(x — x') f(x")dx’'

(i) = f(x) = J% Iy J% [ Cosk(x — x') f(x")dx’ dk

f )= [ dk [ Cosk(x — x)f(x)dx’

f(x) = % fy dk [" Cosk(x —x')f(x")dx’ as required.
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THE FOURIER TRANSFORMS OF STEP AND IMPULSE FUNCTIONS

The Heaviside unit step function is defined by

0 x<a
1 X= a

The Fourier transform of the Heaviside unit step function can be easily

H(x — a) ={ wherea>0

determined. We consider first

F[H(x — a)] = \/%ffoooeik" H (x — a)dx
1 a ; 1 o
F[H(x — a)] = \/T_nf_ooe‘k"H(x — a)dx+\/7_ﬂfa e™ H (x — a)dx
1 a ; 1 o 1 o
T[H (x — a)] = \/ﬁf—oo e‘kx 'de+\/ﬁfa e‘kx .1dx =ﬁfa e‘kx dx

This integral does not exist. However, we can prove the existence of this
integral by defining a new function

0 x<a

Hx - aje ™ ={ o, *=*

This is evidently the unit step function as @ — 0. Thus, we find the Fourier
transform of the unit step function as
F[H((x — a)] =lim,_oF[H (x — a)e™*]

F[H(x — a)] = limaao\/%—nfjooo e™ H (x — a)e ™ dx

FIH(x — a)] = 1im0H0%_1T [ e e~ dx = lima_ﬂ,\/%_n [ efleax dx

1 o s ika 1
F[H(x — a)] =\/T_nfa elkx dx=\;"2_nik Fora=0= F [H (x)] = ik

An impulse function is defined by

(x)={h a—&g<x<a-+e¢e
p 0 x< a-—¢€orx=>a-+ ¢

where his large and positive, a > 0, and ¢ is a small positive constant, This
type of function appears in practical applications; for instance, a force of large

magnitude may act over a very short period of time.
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The Fourier transform of the impulse function is

Flp ()] = 7= /7, €™ p (x)dx

Flp(x)] = =0, e p (x)dx+ =" Te* p (x)dx + =] €™ p (x)dx

Flp(x)] = - [ hetx gy = L |22
P V2nla-e 2| ik 14—
Flp ()] = \/%.i(eik(a+s) _eik(a—s))
_ h eika ik _ik _ 2he ik eiks_e—iks _ 2he ik Sinke
Flp ()] = gz G (e —ene) = Gt (=) = ret (557)

Now if we choose the value of h = (218) then the impulse defined by

at+e 1l

I(e)= [ p)dx=[" —dx=1

which is a constant independent of €. In the limitas € — 0, this particular
function p, (x ) with h = (1/2¢) satisfies lim, _, g p (x) =0 ;x # 0
andlim,_ oI (e) =1

Thus, we arrive at the result § (x —a) =0, x # a,and ffooo 6(x—a)dx=1
This is the Dirac delta function

We now define the Fourier transform of §(x) as the limit of the transform of

pe (x ). We then consider

elka (Sinks) _ eika

T[(s(x — a) ] = lims%OT[ps (X) ] =lims—>0ﬁ ke V2n

in which we note that, by L’Hospital’s rule, lim, _, , (Si;::s) =1

When a = 0, we obtain Flo6(x) ] =

-
L]
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FOURIER COSINE TRANSFORMATION AND INVERSE
Let f (x) be defined for 0 < x < oo, and extended as an even function in
(—o0, ) satisfying the conditions of Fourier Integral formula. Then, at the

points of continuity, the Fourier cosine transform of f(x) and its inverse

transform are defined by

Folf () = Fe () = (217" (0) Coskudx

FlefFc(D}=f ) = \/%fooo F. (k) Coskxdk

FOURIER SINE TRANSFORMATION AND INVERSE
Let f (x) be defined for 0 < x < oo, and extended as an odd function in
(—o0, ) satisfying the conditions of Fourier Integral formula. Then, at the

points of continuity, the Fourier sine transform of f(x) and its inverse

transform are defined by

FoAf )= F, () = [2f7 f (o) Simkxdx

T_ls {Fs(B)}=f(x) = \/%fooo F (k) Sinkxdk
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Example:

Show that F. {e"**} = I a2+k2 ;a>0

Solution: We have, by definition

Folf () = Fe () = (217" (0) Coskudx
0 ikx —ikx © . .
{e—aX} — \/%fo e ax (6’ +2e )dx — %\/%fo [e—(a—lk)x + e—(a+lk)x] dx
—axy 1 |2[ 1 1
Fe {e ¢ } T2 \/; [a—ik + a+ik] dx

_ 2
Fele™} = \/;(az-al-kz) ;a>0

Example:

Show that 7, (e = [2(245) 5 a> o0

Solution: We have, by definition

FoAf )} = Fy () = J% f0°° f () Sinkxdx

Fotey = LIy e (T ar = 2. 2ot - oot
Fole ™=, \F[allk—a:lk] dx
Fole = [2(g) a0

Example:

Show that F,? {k ‘S"} \/%tan‘1 (;—‘)

Solution: To prove this we use the standard definite integral

T -1 _ 2 po0 _ . X
\ETS {e Sk}:\f;fo e~k Sinkxdk = 5 —
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Integrating both sides w.r.to ‘s’ from ‘s’ to ‘oo’

=Z—tan™! (f)
S

fooo%Sinkxdk R |tan‘1 (f) _ =3

s sZ+x?

Consequently

-1 {1 - k _S Ztan 1 (%
F s \f Jy =—Sinkxdk = \/; tan (s)
Example:

2 a’-k?

@itz @ >0

Show that F, {xe **} =

Solution: We have, by definition
Felif @)= F. (k) = \/:Etfooof (x) Coskxdx
Fc{xe ™} = \/% [ 000 xe X Coskxdx

Fc{xe ™} = \/% [Ix(f e~ Coskxdx)|§ — fooo(f e *Coskxdx) dx| ........ (i)

ax

Now using formula [ e™Cosbxdx = ae+ [aCosbx + bSinbx] one becomes

Fe{xe ™} =

—ax

\/% [lx% [-aCoskx + kSinkx] |:o — fooo (ﬁ [-aCoskx + kSinkx]) dx]

Fc{xe ¥} = \/% [(0 -0)+ #'szooo e *Coskxdx — ﬁfooo e‘“XSinkxdx]

f[a2+k2
o tre ) = Eltefo- (520} - i fo - (29
g2 K2
Fc{xe ™} = \/1:1 (@2 +k2)2 + (a2+k2)2]

F g2 12 )
F{xe ™} = \E %} as required.

e—ax

_ax |00 k
a2 +k2

2 [—aCoskx + kSinkx] oy T

[—aSinkx — kCoskx] |:]
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Example:

Show that F, {xe %} = \ﬁ 2ak ;a>0

w (a2 +k?%)2

Solution: We have, by definition

Fsif )= Fs (k) = \/% Jy f (x) Sinkxdx
— 2 poo - .

F, {xe ¥} = \E J, xe"™Sinkxdx

F, {xe ™} = \/%[lx(f e~ *Sinkxdx)|y — fooo(f e~ *Sinkxdx) dx| ........(J)

eax

Now using formula [ e®™*Sinbxdx = — 5z laSinbx — bCosbx] one becomes

Fs {xe™ ™} =

e—ax

a2 +k2

2 Hx e—ax [—aSinkx — kCoskx] |: - fooo(

T "a?2+k2

[—aSinkx — kCoskx]) dx]

F, (xe~™} = \/% [(0 —0) + o J, e~ Sinkxdx + —— |7 e‘“XCoskxdx]
7 txe ) = 550 - ()} + mimlo - )
e = s ]

F, {xe ™} = \/%(i ;a>0 as required.

aZ+k2)?

i[—aSinkx—kCoskx]| + =X

© e—ax
a2 +k2 0 a2+ k2

a2 +k2

[-aCoskx + kSinkx] |:]
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Example:
Calculate Fourier Sine Transform of the function f (x) = e *Cosx

Solution: We have, by definition
F{f @)} = Fg (k) = \/% Jy f (x) Sinkxdx

F,{e *Cosx} = \Efooo e XCosx Sinkxdx = %\/%fooo e X (2SinkxCosx)dx

F{xe %%} = rf e X[Sin(kx + x) + Sin(kx — x)]dx

— — . 1 o _ .
F, {xe %} = Ff e XSin(k + 1)xdx + Efo e *Sin(k — 1)xdx
Folxe ™ =——li+=l e (i)

Now using formula [ e**Sinbxdx = [aSmbx bCosbx]

ZbZ

Iy = [ e Sin(k + Dxdx = |m [(~DSinCk + 1x - (k + DCos(k + Dx]|

_ _ _ (k+1)
I = [O 1+(k+1)2{ 0 (k T 1)(1)}] 1+k2+2k+1 (k T 1) k242k+2
Similarly
f e *Sin(k — 1)xdx = |m [(-DSin(k — 1)x — (k—1)Cos(k — 1)x] .
_ _ I 2 _ (k-1)
I; = [O 1+(k— 1)2{ 0— (k- 1)(1)}] 1+k2—2k+1 (k—-1) = k2—2k+2

1 [ (k+1) (k-1)
V2m Lk242k+2  k2-2k+2

(D) = Fs (xe™ ™} =

= Fs {(xe™™} = \/_[k4+4]

= Fs {xe™™} = \E [k‘li—c}]
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Calculate Fourier Sine Transform of the function f (x) = {

26

0<x<m
X>T

Sinx
0

Solution: We have, by definition

FoAf ()= Fy () = 2[5 f () Simbxdx

Fo {f 0} = \Efo”

F {f 0} = ﬁfo”
FoAf 0} ==,
FAf O} =]y

Sinx Sinkxdx + \ﬁ [ 0.Sinkxdx
v

Sinx Sinkxdx = J:(— —) f (—2SinxSinkx) dx
Cos(kx + x) — Cos(kx — x)] dx

Cos(k+ Dxdx + if” Cos(k — Dxdx

- Sin(k+1)x|™ Sin(k— 1)x
‘Ts{f(x)}_m Y m| 0
Sin(kx—x) Sm(kx+x) Sm(kn 1T) Sln(kn+1t)
Fs if 0} = \/ﬁ k-1 k+1 g m ( k+1 )_O]
SinkmCosm — CosknSint SinkmCosm + CosknSinm
?s{f(x)}:\/—[ k-1 B K+ 1
2T
F {f )} = \/—n[ imfn S:lkl”] since Cosm = —1
Sinkn [ 1 1
Fs if (0} = n_k+1_k—1]
Sinkm [ k—1-k—-1
Fs Uf 0} =—% DD
Sinkn [ -2
FAf (0} == [ ]
2 [Sink
Fy {f (1)) = —ﬁ ey
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Example: Evaluate F,{x*"1} and F{x*"1}

Solution:

a : S

L Eood W)

We have by definition

F (x>} = F, (k) = \/%fooo x* 1 Coskxdx ..ccuuene...... Ip)
F,{(x* 1} = F, (k) = \/%fooo x*“1Sinkxdx  ....couennne... I,)

Firstly we calculate I, I, for this we consider the complex valued function
f(2)=z"1e* ; 0<x<1

Which is analytic in the closed contour I, then by Cauchy Theorem

$ f(2)dz =0

fABf(z)dz+ J. f(2)dz + f:f(z)dz+ [ f(@dz=0

If € - 0, R — Othen by Jordan theorem fclf(z)dz =0, fCZf(z)dz =0
fABf(z)dz + f;f(z)dz =0

fGR x*lekxdx + f;(iy)“‘le‘k("y)(idy) =0

fooo X le=kx gy — — fog(i)oc—l(y)oc—le—k(iy)(idy)

fooo xoc—le—kxdx — fow(i)oc(y)oc—le—k(iy)dy

(i)—oc J‘OOO < lo=kx gy = J‘Ooo(y)oc—le—k(iy)dy

L ()T = (Cosg + iSin ;—r)_oc = (e"g)_oc — e7iz%

e 5% fooo x> le~kxdy = fooo(y)“‘le‘k(i”dy

(60s§ x —iSing oc) J, xte**dx = [ "(y)*"!(Cosky — iSinky)dy
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Comparing real and imaginary parts

(Cosg oc) fooo x* e kxdyx = fooo(y)“‘l(Cosky)dy ............ (i)

(Sing oc) fooo x* e kxdx = fooo(y)“‘l(Sinky)dy ............ (ii)

Put x =y in both above

(i) = fooo x*"1(Coskx)dx = (Cosg oc) fooo x* e kxdy ... (iii)
(i) = [ 7V (Sinkx)dx = (SinT ) [ x5 e Mdx e, (iv)

Multiplying \/% on both sides of (iii)
=>\/gfoox“‘l(Coskx)dx:\/E(CosE oc) [ x e kxdx
n’0 T 2 0
= F {x*1} = \/E(Cosz oc) [ x e kxdx
14 2 0
o 2 o\ 1 _ at
= F.{x 1}=\/;(Cos§oc)f0 (E) e t? ~kx=tx=
oc— 1 |2 T © x—1 .—
= F{x*"1} =F\/;(COSE oc) J, ®* e tdt
x— 2 T I'(x
= F. {x 1}=\/;(Cosz OC)IET)
Multiplying \/% on both sides of (iv)
2 (® x—1/cs —_ |2(cinT™ © «—1,-kx
:\/;fo X (Smkx)dx—\/;(SmE oc)fo x*le~**dx
= F, (x> 1} = \/E(Sinf oc) [ x e kxdx
T 2 0
w1y =1 2 (g™ N (8 etdt s kx=tx="
= F, {x }—k\/;(szoc)fO (k) e'dt -~ kx=1tx=

= F, (x> 1) = kl“\[% (Sin’z—r oc) fooo(t)“‘le‘tdt

= F, (x> 1} = \/% (Sing oc) ri:)

& e
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Theorem : Let f (X) and its first derivative vanish as x — . If F, (k) is the

Fourier cosine transform, then F {f" (x)} = —k*F, (k) — \/%f’ (0)

PROOF: Consider f (x) is real and lim, _, .| f (x)| = 0 then

Fc{f' 0} = \/%fooo f" (x) Coskxdx

Fc{f' ()} = \E [ICoskxf’ (x)|§ — fooo f' (x) (—kSinkx)dx]|

Fe{f" (0)}) = \/% [lim, _, o Coskxf' (x)| — limy _, o|Coskxf' ()| + k [, f' (x) Sinkxdx]
Felf' (0)} = \/% [0— £ (0)+ k[, f' (x)Sinkxdx]

F{f' (0} = l— \E f0)+k { \E |Sinkxf (x)|§ — \/% Jy f @ (kCoskx)dx}l

Fcl{f' 0)}= l—\/%f’ (0) + k{\/% |Sinkxf (x)|g — k\/%fooof (x) (Coskx)dx}

Felf' (0} = [—ﬁf’ 0 +k {ﬁ (limy_, oo [Sinkxf ()] — lim, _, o|Sinkxf (x)]) — kF, <k>}]

Fc{f" (0} = —k*F. (k) - \/,%f' (0)

In a similar manner, the Fourier cosine transforms of higher-order

derivatives of f (x) can be obtained.
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Theorem : Let f (X) and its first derivative vanish as x — . If F (k) is the

Fourier cosine transform, then  F {f" (x)} = \/%kf (0) — k?F, (k)

PROOF: Consider f (x) is real and lim, _, .| f (x)| = 0 then

F A" ()} = \/%fooo f" (x) Sinkxdx

Fo A" () = [2[ISinkxf’ (15 ~ [y (0 (kCosx)dx]

FAf" (0)} = \E [lim, _, o, [Sinkxf’ (x)| — lim, _, o|Sinkxf'(x)| — kfooo f' (x) Coskxdx]
F A" ()} = \/% [0—0- kfooo f' (x) Coskxdx]|

FoAf" (0} = —k [\P |Coskxf ()3 — \/éfo‘”f (%) (—kSinkx)dx
F Af" (0} =

-k lﬁ (limy _, o |Coskxf (x)| — limy _, o|Coskxf (x)|) + k\/%fooof (x) (Sinkx)dxl

F A" 0} =—-k l\/% (limy _, |Coskxf (x)| — limy _, o|Coskxf (x)|) + kF (k)l

F A ()= [Ekf 0~ K2F, (10

In a similar manner, the Fourier sine transforms of higher-order

derivatives of f (x) can be obtained.
REMARK:
> FIf"®)] = (mik)"F[f (x)] = (—ik)"F (k) n= 0,1,2,.........
> If Flu}=F{u )= o F (u(x0} = (—ik) F {u (x,t)} when ‘X’ varies not ‘t’
» When range of spatial variable is infinite then Fourier transform is used rather than
the sine or cosine.
» If boundry conditions are of the form u(0, t) = value then use Sine transform,

while conditions are of the form u, (0, t) = value then use Cosine transform,
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EXAMPLE: Solve the potential equation for the potential u(x, y) in the semi
infinite strip 0 < x < ¢; y > 0 that satisfies the following conditions;
u0,y)=0; u,(x,0)=0; u,(c,y) =f(»)

Solution: the potential equation is givenas u,, +u,, =0 ; 0<x<c; y>0
Since the BC’s are in the form u,(x, 0) = constant therefor we use fourier

cosine transform w.r.to ‘y’

dZ
TC {uxx} +~‘PC {uyy} =0= @TC {u(x'y)} + TC {u}’y} =0
d? 2 2 _
= ——Uc (x, k) +|-K*U, (x, k) — |-u,(x,0)| =0

dZ
=——Uc(x k) - k*U,. (x, k) =0

Then general solution will be U.(x, k) = c;e** + c,e™™* ............. (i)
Now using BC’s u (0,y) =0=>F A{u(0,y)}=0=>U.(0,k) =0

(i) =>U.(0,k)=0=cqe’+ce’ = ¢c; = —c,

Now %UC (x, k) = c ke** — c,ke™* ............. (i)

using BC’s 1,(c,y) = f(¥) = Fclte(c,y)} = () = -Uelc, k) = F(k)

o d _
(i) = —U.(c, k) = F (k) = c1ke* — c,ke~*¢

= %UC(C, k) = F.(k) = —c ke¥¢ — c,ke "¢ since ¢; = —c,
= F.(k) = _Czk(ekc + e—kc) =>cp=— Sfc(ﬁ-kc _ __F®

Zk(T) 2kCoshkc
ﬁczz_#ﬁke:’ 1:% since ¢; = —¢,
Then (i) = U.(x, k) = #(Skzkcekx _ Zki:(:(zkc e—kx

kx_ ,—kx
U.(x, k) = Fe(k) (e ° )— Fe®)_ Sinhkx

kCoshkc 2 " kCoshkc
-1 _ 1 Fc(k) -
> F: {U.(x,k)} = F {kCoshkc S mhkx}
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|2 poo F¢(k) oo SinhkxCoskx
= u(x,y) = f —<—Sinhkx Coskxdk = f Jo e F.(k)dk

o SinhkxCosk o ) L
= u(x, J’)_\ff S";CO’:,CLZSCQC[\/%]O f(y)Coskydy]dk

co SinhkxCoskxCosky’
2w =gy T e Oy dke

EXAMPLE: Solve the problem using Fourier Transformation method
U, = U, with u(0,t) =uy; ulx,0)=0;x>0,t>0,u,>0
Solution: BC’s suggest that we should use fourier sine transform w.r.to ‘x’

ad
Fs {ut} =Fy {uxx} = ETS {u(x, t)} =F; {uxx}
=2 U, (k,t) = \/%ku(o, £) — K2U, (k t) = \/%kuo — K2U, (k,t)
= %Us (k,t) + K*U (k,t) = \/%kuo ................ )

This is 1% order, linear, non — homogeneous ODE
Therefore IF. = e/ k'dt = gk’t

(i) = ekzt%Us (k,t) + k2U, (k, t)e*"t = \/%kuoe"zt

= f L Kty dt = f\/%kuoe"ztdt + Cosntant

2 2 K2 2 52 .
= ek tUsz\/;kuoek—z+c:>Us(k,t)= ;%+ce Kol e (i)
Now using IC’s u(x,0) =0=> F{u(x,0)}=0=>U,(k,0) =0
(ii) > U,(k,0) = 0 = ——+ce >c=-— 1211:’

Thus (i) = Uy(k,t) = \[5”0 \[5”0 K= 1220(1 - emKY)
-1 _q -1) [2U0 g K%t
= FHU(k, )} = F { (1-e )}

= u(x,t) = \ff 2u° 1 - e ) Sinkxdk = %2 Zf (1 —e™*t) Sinkxdk
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EXAMPLE: Solve the problem using Fourier Transformation method
U; = U, Withu, (0,8) =0, u(x,0) = f(x); 0<x <o ,t>0

Solution: BC’s suggest that we should use fourier cosine transform w.r.to ‘x’

Fe ) = F (i} = L Fo (u(xy)} = Fe ()

> 2 Uc (k1) = [—szc (k,t) — \/%ux(o, )| = —k2U, (k,t) — 0
N %UC (kt) + K2U, (K, £) = 0 oo @)

This is 1% order, linear, homogeneous ODE

Then general solution will be U.(k,t) = de ¥t ............. (i)

Now using IC’s

u(x,0) = f(x) = Ffu (x,0)} = FAf(x)} = U.(k,0) = F (k)
Thus (i) = U.(k,0) = F.(k) = Ae® = A = F.(k)

(i) = U (k,t) = F (ke

= Fe HU(k 0)} = Fc {F (ke ™)

> u(x,t) = \/%fooo Fc(k)e‘kzt Coskxdk

= u(x,t) = \/%fooo [\/1% fooo f(x") Coskx'dx'| e **t Coskxdk

= u(x,t) = %fooo[fooo f(x" Coskx’dx’]e‘kzt Coskxdk
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Example: Solve the problem using Fourier Transformation method
Uy =U;; 0<x <00, t=0

withu(x,0) = e —ax’ ;u(x),u'(x) >0 as x -

Solution: since x — oo therefore we should use fourier transform w.r.to ‘x’
Flunt = Flul

= (—ik)?F {u(x, )} = F (u(x, )} = —k2U(k,t) = L U(k,t)

1dU dau
= —=—k¥=[=-k?[dt=InU=-kt+A4

> Uk t) = e ¥t s Uk t) =ce ™ nnnnnnnnnnn. (i) where ed = ¢

Now using IC’s
u(x,0) = e~ = F{u (x,0)} = T{e‘“"z}

= U(k,0) = == e e dx = — [ elkx-adx
= U(k’ 0) = \/L_f_oooo _a[(X 2a 4a ] dx
Consider ikx — ax?
a ik )2 e
= U(k,0) == i f e z) dx =-a(x*-77)
(=50 ]
ik dap =-a ) .,
Puta(X—z) —Pzﬁ\/_(x—z—) P=>\/—dx—dP=>dx—ﬁ +(;_1;) _(;_1;)
_ e 4a X—l 2 _ e 4—a —_p2 dP =—a[(x—;—t)2+%2]
= U(k,0) = f ( ) dx = NeT f_ ‘Ja
kZ

= U(k,0) = j% Vi . [2 e P dP=+n

kZ
(D)= Uk,0) = ce® = ¢ = v%_e(—a)

kZ
Thus = U(k,t) = \/%_ae(_a) ek = J%_ae—kz(ﬁﬁ)
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= F YUk, t)} = :r—l{

1 e—kz(t+$) }

V2a

A 1
= u(x,t) = \/%\Ef_oom e tkx e_kz(“’a) dk

- (t + i) {kz + (t%;)} Ak eoeeeenennn, (iii)

2 2
Since k2 + = k2+2k< >+< = —( ""1>
nee Ko+ oD O\een) H oen) ~ e

2
k% — _kx — <k + L) + L
() 2(trg))  a(ed)”

1 [e'e)
= u(x,t) = \/ﬁf_m Exp

(iii) = u(x, t) = Ff Exp|—

e<4<t+ﬁ>2> o

= u(x,t) = N f_ooExp <k+2( L)
4

Now put (t+$)<k+ D) =m2=> (t+i)<k+2(:i)>=m

N /(t+i)dk — dm = dk = (tii)dm
<@#>

(iv) > u(lx,t) = ™ dm =

1 .

[Aar. ’ t+ 4an.mv4at+1
1 (ax )
2ulnt) = Fme
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Example: Solve the problem using Fourier Transformation method
u,(x,t) = u,, (x,t); —0o<x<o0 ,t>0

with u,(x,0) = f(x); |u(x,0)| <

Solution: since x — +oo therefore we should use fourier transform w.r.to ‘x’
F {u,} = F {u,,}

N %:7-" (u(x, t)} =2 (—ik)?F {u(x, t)} = %U(k, t) = —«2 K2U(k, t)

22 = o2 k= [T = —o? k2 [dt = InU = —o? kPt + A
= Uk, t) = e Kt 5 y(k, t) = ce™F ... (i) where e4 = ¢

Now using IC’s

u,(x,0) = f(x) and |u(x,0)| < o0 = u(x,0) = f(x)
= Flu(x,0)} = F{f(x)} =>Uk,0)=F(k)

(i) > U(k,0) = ce® = c = F(k)

Thus (i) = U(k,t) = F(k)e * k't

= FHUk )} = FYF(k)e =¥}

= u(x, t) = \/%_nf_oooo e ikx .F(k)e_oczkztdk
= u(x t) = ifoo e_ikx [Lfoo eikx’ f(xl)dxl] e—oczkztdk
’ V2m U - V2 /-
> u(xt) = [7 [ e "R p] f(x)dx' vnreneen. (i)
Now consider I = f_°°oo e~ ik(x—x") -2kt g1 Consider k? +%u
© i =k 2k () + () -
I = f_oo e—lku—ﬂkzdk put x — x, —u and 0(2 t = ﬂ + ((l_u;)2+( B)
28
_ (% —B(kz+%) L
1=l rk = (k+35) ~(3p)
e o
= f_oo B/ e 48dk _( +z;;) .
u? iu
I=e %[ e_ﬁ(k+ﬁ) dk .......... (iv)
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2 )
W\ _ p2 i) B _ap
Put B (k +52) = v = B (k+5;) =P = JBdk=ap = ak = 7
u? u N
@ =1=e [ et Gepe Lo dp=pe iV
u2
(iii) = u(x, t) = _f OO\/E ﬁf(xr)dxr
2
o0 \/_ (x—xz) , ,
= u(x,t) = 2\/_\/_f e 20 f(x")dx
g -("("z’)f
= 44t ! !
= u(x, t) e f_oo e f(x )dx
Example:

Solve the problem using Fourier Transformation method u,,,, = —Uu

with u(x,0) = f(x); u,(x,0) = ag'(x) and g, u, Uy, Uyy, Uy = 0 @S X > +0

Solution: since x —» +oo therefore we should use fourier transform w.r.to ‘x’
1
F {uxxxx} = 22 F {utt}
] 1 d? d?
= (—ik)*F {u(x, t)} = S Fux = a’k*U(k,t) = = UK D)
L y_a?ktu=0
dt2 a o
= U(k,t) = Ae™’t + Be=®*t ... (i)
= %U(k, t) = Aak?e™’t — Bak?e=%"t . ............ (i)

Now using IC’s u(x,0) = f(x) = F{u (x,0)} = F{f(x)} = U(k,0) = F(k)
Then (i) 2 U(k,0) = Ae® + Be® 2 A+ B = F(K) «ccovuvuuenen. (i)

Also u,(x,0) = ag'(x) = F{u, (x,0)} = F{ag'(x)}

N %U(k, 0) = a(—ik)'F {g'(x)} > % U(k,0) = —iakG(k)

Then (ii) = % U(k,0) = Aak?e® — Bak?e® = —iakG(k) = Aak? — Bak?

= —iG(k)=(A—-Bk=>A—-B = —i'(;(k) ............... (iv)
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Adding (iii) and (iv) A=2|Fl) -Gk |

Subtracting (iii) and (iv) B=>|F(k)+6(K)]

Then (i) becomes

> U(k,t) = 3 |[F(k) — < G(k) | e®*t + 2| F(k) + £ G(K) | e=o¥*t

= Uk, t) = F(K) [—kzt”_ " ] - —G(k)[ e ]

= U(k,t) = F(k)Coshak?*t — E G(k)S mhak2

= F-YU(k,t)} = F-1{F(k)Coshak*t} — F~1 {; G(k)Sinhakzt}

> u(x,t) = | [ e~ F(k)Coshak?*tdk — [ ™+ G(k)Sinhak®tdk|
= u(x,t) = \/%ffooo e y(k, t)dk is our required solution.
Example: Solve the problem using Fourier Transformation method
1
Uyy = c_zutt

with u(x,0) = p(x); u,(x,0) = q(x) andu,u, - 0as x » t
Solution: since x —» +oo therefore we should use fourier transform w.r.to ‘x’
1
F {uxx} = 2 F {utt}
S (—ik)2F u(x, 0} = L L Fu(x, D)} > ~R2UKE) = L Uk, D)
! CZ dtz ’ 4 dtz 4
2
= %U + c?k?U = 0= U(k,t) = c,Cosxkt + c,Sinckt
ickt, ,—ickt ickt__ ,—ickt
= U(k,t) = ¢4 (—e +2e ) + ¢y (—e Ze )

= U(kt) = (cl-l-—cl) elckt (ﬂ) e ickt

2 2
= U(k,t) = Ae’kt + Be~ickt . ......... )
= %U(k, t) = Aice'kt — Bice ikt _............. (i)

Now using IC’s u(x,0) = p(x) > F{u (x,0)} = F{p(x)} = U(k,0) = P(k)
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Then (i) = U(k,0) = Ae® + Be* = A+ B = P(k) ............... (iii)
Also u,(x,0) = q(x) = F{u, (x,0)} = F{q(x)} = %U(k, 0) =Q(k)
Then (ii) = < U(k, 0) = Aicke® — Bicke®

> Q(k) = ick(A—B)k > A—B = —Q(K) eevvrurens (iv)

Adding (iii) and (iv) A=2|P(k)+—Qk) |

Subtracting (iii) and (iv) B =2|P(k)-—Q(kK |

Then (i) becomes

= U(k,t) = 5 |[P(k) + —Q(k) | ekt + 2 [p(k) — = Q(k) | e~tekt

> U(k,t) = P(k) [_] 1 g [ wkt]
= F YUk t)} =
- [T 1{P(k)elet} +F 1{P(k)e‘l€kt}] +o— I{Q(k) (ezckt ickt)} lA)

T_l{P(k)eith} — \/T_T[f—oo e—ikx P(k)eicktdk _

\/ﬁf—oo e—i(x—ct)k P(k)dk

FYP(k)e'*t} = P(x — ct)
Similarly  F1{P(k)e it} = P(x + ct)
And consider  q(x) = FH{QK)} = =7 e"** Q(k)dk

f:fc";tq(x)dx =—— fxx+;t [Z e7tx Q(k)dkdx

(2 a@dx = = [ [T e M dx'Qkydk = [, ' zi: Q(k)dk
f::rct (xX)dx = Ffwm lk[ e—ik(x+et) _ —lk(x—ct)] Q(k)dk
f:—-'-c‘;t (xX)dx = \/:fwoo ;[ —ik(x—ct) _ —ik(x+ct)] Q(k)dk
xx+cctt (x)dx chx/z_f— e ikx[glckt _ e—ickt]%dk
zlc xxjcctt q(x)dx = —_T‘l {(eic’“ — e~ickt) Mdk}
(4) > u(x,t) =5 [P(x + ct) + P(x — ct)] +5- [ q(a)dx’
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THE DOUBLE FOURIER TRANSFORM AND ITS INVERSE
Let f(x4,x2) be a function defined over the whole plane i.e. —c0 < x4,x, < ©©

then its fourier transform and inverse are defined as follows;

F{f(xy,x2)} = F(ky, ky) = —

(Vzm)
FUYF(ky,kp)} = f(x,x3) =

2 fjooo fjooo f(xq, xp)etlrxathkex2) dy. dx,

1
(Vzm)

5 7 Fky, ky)emiUasitlox) g, dk,

THREE DIMENSIONAL FOURIER TRANSFORM AND ITS INVERSE
Let f(x4,x2, x3) be a function defined over the whole plane i.e.

—o0 < X1, X9, X3 < oo then its fourier transform and inverse are defined as
follows;

F{f (x1,%x2,x3)} = F(kq, ky, k3) =

(\/21_'")3 f_oooo f—oooo f—oooo f(xll xz; x3)ei(k1x1+k2x2+k3x3) dxldxz dx3

FYF(ky, ky, k3)} = f(xq,x2,x3) =

(\/21—1'[)3 f_oooo f—oooo f—oooo F(kll kZ; k3)e_i(k1x1+k2xz+k3x3) dkldkzdk3

n - DIMENSIONAL FOURIER TRANSFORM AND ITS INVERSE
1
F{fQitax)} = FQiz ki) = (vzn)" Jatt space

FUHFQL 1 kDY = Q1 x) =
FQOML ke iCiikixd gy k,

fQq xi)ei(z€l=1 ki) gy x;

—
(\/Z_n)n all space
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FOURIER SERIES

A trigonometric series with any piecewise continuous periodic function

f (x) of period 2m and of the form f (x) ~ =X + X (a cos kx + by sin kx)
Is called the Fourier Series of a real valued function f(x) where the symbol ~
indicates an association of ag, ax, and by to f in some unique manner.

Where

ap = }Tf_”nf(x)dx , Ay = Tlrf_nnf(x)COSkxdx , by, = %f_nnf(x)Sinkxdx
And are called Fourier Coefficiets.

We may also write f (x) = 2! + X1 (ay cos kx + by, sin kx)

COMPLEX FORM OF FOURIER SERIES

Fourier Series expansion for in complex form is given as follows

f(x) =35 _ocpeth M <x<mW Where

Cp = i _nnf(x)e‘”‘xdx

Jkmrx

OR f)=Yi_wce't  Where ¢ =Zil _llf(y)e_i?dy
Example (just read) :Find the Fourier series expansion for the function

fX)=x+x5, —w<x<m

. 1 2 2
Solultion: Here aq = ;ffnf(x)dx — %
a, == " f(x)Coskxdx = = Coskm = = (—-1)* ; k=1,23, ...

b, = %f_nnf(x)Sinkxdx = —%Coskn = —%(—1)"  k=1,23, ...
Therefore, the Fourier series expansion for f is

f(x) = % + Y r=1(ay cos kx + by sin kx)
f (0 =+ FiyGy (~DF cos kx —2(~ ¥ sin k)

2
f (x) =%— 4 cos x + 2sinx + cos2x — sin2x —....
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Example (just read): Find the Fourier series expansion for the function

- < x <0
f(x)_{x 0<x<T

Solultion: Here

ap =2 (" fdx =" f@dx+ [} f(x)dx| = -2

ay =~ [" f(x)Coskxdx = }r[ [° f(x)Coskxdx + [ f(x) (:oskxdx]

a, = #(Coskn— 1) = #[(—1)" ~1]; k=1,23,.....

b == " f(x)Sinkxdx = %[ [0 f(0)Sinkxdx + [ f(x)Sinkxdx]
1

by =+ (1 — 2Coskm) = %[1 —2(-D4; k=1,2,3,....

Therefore, the Fourier series expansion for f is

f(x)= % + Y r=1(ay cos kx + by sin kx)

f@)=-%+37, [ [(-1* — 1] cos kx + 1 [1 - 2(~1)¥] sin kx)]
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FOURIER INVERSION FORMULA:

The proper inversion formula is given as

f(x) = -ikx F(k) dk

1 (e o]
e e
V2T _.[o
The formula nearly states that f is the fourier transform of F(k)
where F(k) = F {f(x)}

PROOF:

by Fourier integral theorem f (x) = %fooo dk [~ Cosk(x — x")f(x))dx'

> f (0) == f; dk [* Cosk(x — x)f(x')dx’

> f () =" f(x)dx' [; Cosk(x — x")dk changing the order

> f () =7 f)dx Nimy, o f; Cosk(x — x)dk ......... (i)

Since J7 Cosk(x' —x)dk =2 [ Cosk(x — x)dk ......... (ii)

Also S Sink(x' —x)dk=0=i[" Sink(x—-x)dk=0 ......... (iii)

On subtraction from (ii) and (iii) we have

/7 [Cosk(x — x') — iSink(x — x')|dk = 2 [ Cosk(x — x")dk
= [0 e" k=g = 2 [ Cosk(x — x')dk

= [ Cosk(x — x)dk =3 [ e Gk ........ (iv)

Hence from (i) and (iv)

> f @) =7 fO)dx Nimy, ., [T e KO- dk

> f () =57 fx)dx' [ e dk

1 [o'e] s 1 oo ikxr / /
= f(x) = \/T_n-f—ooe thex dk'\/T_nf—oo e f(x"dx

=f(x)= \/%f_c’ooo e % F(k) dk as required.
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LAPLACE TRANSFORMATION WITH APPLICATIONS

Because of their simplicity, Laplace transforms are frequently used to solve a
wide class of partial differential equations. Like other transforms, Laplace
transforms are used to determine particular solutions. In solving partial
differential equations, the general solutions are difficult, if not impossible, to
obtain. The transform technique sometimes offers a useful tool for finding
particular solutions. The Laplace transform is closely related to the complex
Fourier transform, so the Fourier integral formula can be used to define the

Laplace transform and its inverse.

INTEGRAL TRANSFORMATION
Consider aset K(x,y) = {f(x); f is function of x over [a, b]} then integral

transformation is defined as

T{f(x)} = F(y) = f:f(x)K(x, y)dx where K(x,y) is kernel of T.

LAPLACE TRANSFORMATION
If £(t) is defined for all values of t > 0, then the Laplace transform of f(t) is
denoted by F(s) or L{f(t)} and is defined by the integral

0o T

LF©) = F) = [ e f@de = Jim [ e (e
0

0
If F(s) is laplace transform of f(t) then f(¢) is called the INVERSE

LAPLACE TRANSFORM of F(s)ie. L 1{F(s)}= f(t)
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QUESTION: Show that £L{c} = gwhere ‘¢’ is constant.

SOLUTION: Since L{f(1)} = [, e™* f(t)dt

—st | c

Then Li{c} = [ et cdt =c [ et dt =c |— 0 =

QUESTION: Show that L{e?'} = ﬁ where ‘a’ is constant.

SOLUTION: Since L{f(1)} = [, e™* f(t)dt

e—(s—a)t ©

aty — (® ,—st gat — (® ,—(s—a)t — | _ 1
Then L{e*'} = [ e edt= [ e dt—| o l, =i
QUESTION: Show that £{t"} = -
SOLUTION: Since L{f(1)} = [, ™" f(t)dt
Then for n =1;

(et pdr = | L P g = | (P est g = L
L{t}_fOeStdt_| 0+f0 sdt—| S|O+sf0e5dt_s
In above te™' - 0 ast - o
for n = 2;

2 —st 2 —st
L2y = [ e‘SttZdt—|—t +f : 0+

2(Pest gt =2
~f, etdt=

5 Inthispart t?e™", te™" > 0 ast - o

And in general

—st

Ly = [ e‘“t“dt—|— +f 1 dt

n ,—st
Lit"} = |—t ‘; g N t“‘ldt=§£{t“‘1}=
L 2206t
Pl ...........S.SL{t }
L{tn} _ (n—1)(n—1)(131;1) ........... 3.211:{1} _ in 1
Hence L{t" } = —= where ‘n > 0’
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QUESTION: Show that £L{Sinat} =

SOLUTION: Since L{f (1)} = [, e~ f(t)dt

Then L{Sinat} = foo e st Sinatdt

f e® Sinbtdt = aSinbt — bCosbt] therefore

2b2[

—st

[-sSinat — aC t]|°°—[0— ° (- )| ===
az | sSinat — aCosat|| = 22TV =
. _ S
QUESTION: Show that L{Cosat} = S
. . _ © st
SOLUTION: Since L{f(£)} = [, e™* f(t)dt

Then L{Cosat} = foo e s Cosatdt

« [, e Cosbtdt = — b2 [aCosbt + bSinbt] therefore
e st , @ e? _ s
Z21aZ [—SCOSClt + aSlnat]|0 = [0 - m(—S)] = 21aZ

QUESTION: Show that L{Sinhat} = 5"

SOLUTION: Since L{f(£)} = [, e~ f()dt

et _p—at

Then L{Sinhat} = fooo e st ( )dt - %U e~st eqtdt — f et e~atd]

L{Sinhat} = %[ [ et dg — [ g=(s+at gy]

e—(s—a)t e—(s+a)t © a

L{Sinhat} = %

—(s—a) - (s+a) g T s2-q2
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)
s2—q2

SOLUTION: Since L{f(1)} = [, e™* f(t)dt
Then

QUESTION: Show that L{Coshat} =

eat+e—at) dt = %[fooo e—st eatdt + fooo e—St e—atdt]

L{Coshat} = fooo e st ( s

L{Sinhat} = %[ [ et dg 4 [ e=(s+at gy]

e—(s—a)t e—(s+a)t © s

o  s2-a?

L{Sinhat} = >

~(s—a) ' (s+a)
FUNCTION OF EXPONENTIAL ORDER: A function f (t) is said to be of
exponential order ast — oo if there exist real constants M and c such that
If ()| < Me for0 < t < oo.

FUNCTION OF CLASS “A’: A function f (t) which is peicewise continuous

and is of exponential order is said to be function of class A.

EXISTENCE THEOREM OF LAPLACE TRANSFORMATION:

Let f be piecewise continuous in the interval [0, T] for every positive T, and let
f be of exponential order, that is, f (t) = 0 (e*')ast — oo forsomea > 0.
Then, the Laplace transform of f (t) exists for Res > a.

OR sufficient condition for the existence of Laplace transformation is that it
should be a function of class A.

Proof: Since f is piecewise continuous and of exponential order, we have

ILF O} = |[, et fOdt]| < [ e st [f(D)]dt < [ e Me*dt =M [ e=~Vt dt

|IL{f()} < % Thus the Laplace transform of f (t) exists for Res > a.
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Remark: F(s) = s?is not L.T. of any piecewise continuous function of

exponential order, because s? does not approaches to zero as s — oo i.e.

L~1{s?} does not exists.

I‘(a+1)

QUESTION: Show that £{t*} = where a is any real.

SOLUTION: Since L{f(£)} = [, e~ f()dt

Lt} = [Je st ttdt = [ e™ (g)a %du = s“1+1 [Zeu* du....

Since by definition of Gamma function we have
I'a) —f e'"u*ldu=rT(a+1) —f e "udu (i)=L{t*}=

USEFUL RESULTS:

al'(a)
Sa+1

* T(a+1) =al(a) then L{t*} =

= L{t*}=-Lt*")

QUESTION: Find £{t/?}and {t~1/2}

INa+1)
S“+1

SOLUTION: Since L{t“} =

Puta = % Then £ {t%} = r(%%jl) now using L{t* } = af,(f?

we have £ {tz } %

Then £{tV/?} = 2—18% asT (%) =+m thus £{t'/?} = 2—1S E
Putoa = — —Then L{t™1/2} = r(s :+11) now we have £{t"1/2} = sl(%
Then £{t71/2} = % asT G) =n thus £{¢t~1/2} = \/%

I'a+1)
satl
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QUESTION: Find L{tk/z } where ‘K’ is an odd positive integer. L{ts/z } =?
SOLUTION: Suppose k=m + 1 where ‘m’ is any positive integer.
Then using £{t*} = %L{t"“1 }

B e e Rt G

S S

k 1
L{ti} 2m+1.2m 1 2m- 3 i 1 L{ }:(2m+1).(2m+1).(2m+1)...........3.1\/:

A

2s 2s  2s "2s°2s (2s)m+1 s

)  @2m+1).2m+1-2).2m+1-4).......... 31 [m (K).(k=2).(k=4)........ 31 [ n
Litz ¢ = Zs)m+1 P K+l Sk+2

(2) 2
Whereweuse2m+1=k=>m=(k—1)/2

531 i
If k=5 then L = f
(2)5;1 s5+2 (2)3

PROPERTIES OF LAPLACE TRANSFORMS

LINEARITY PROPERTY: THE LAPLACE TRANSFORMATION £ IS
LINEAR.
Proof. Letu (t) = af(t) + bg(t) where a and b are constants.

We have, by definition

L{u®}= [ e f(Odt= [ e [af(t) + bg(t)]dt
L{u@®}=af e f(tdt+b [ e g(t)dt = aL {f(D)} + bL{g (D)}
L {af(t)+bg(t)} =aL{f(t)}+bL{g(t)} hence proved.

1 SHIFTING PROPERTY (1St TRANSLATION THEOREM):
If F(s) is the laplace transformation of f(t) Then £L{e*' f(t)} = F(s — a)

Proof. By definition, we have
L{efD} = [, et e f(Ddt = [ e D f(D)dt = F(s — a)

This result also known as 1% shifting theorem or 1% translation theorem.
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EXAMPLES:
i IFL{t?)} = then L{t? '} = 1)3
.. at - %
ii. If L{Sinwt} = —; then L‘{e Sinwt} =
at —_sa
iii.  1f L{Coswt} = 5— then L{e™ Coswt} = P
. n — at n!
iv. IfL{t"}= = oo

Question: Find £~ {2+23}

Answer: in this question we will use the first shifting theorem according to
which L{e*' f(t)} = F(s —a) = e®' f(t) = e®* L7Y{F(s)} = LY{F(s — a)}

Thus £~ { - Zs} =1 {m} =e L { — 12} = e 'Cosht

Question: Find L‘l{ ! }

s2+2s
Answer: in this question we will use the first shifting theorem according to
which L{e*' f(t)} = F(s —a) = e®' f(t) = e®* L7Y{F(s)} = L Y{F(s — a)}

Thus £ = £t = et £ = et Sinht

s242s (s+1)2-12

. e -1 s+4
Question: Find £ {sz+3s+2}
Answer: in this question we will use the first shifting theorem according to

which L{e® f(D)} = F(s — @) > e™ f(t) = e L} {F(s)} = L {F(s — @)}
Ths £ 2] = £ (- ) = 0 () - 0 () )
et ) et - et )

L—l{ st } = 3e~t —2e 2t since £1 {%} =1

s243s+2
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SCALING PROPERTY: If F(s) is the laplace transformation of (t) , then
L[f (ad)] = i F() witha>0

Proof. By definition we have

L{f@) = [ e flande =2 [2e @ ferar =1 F )

putting at = t' This result also known as Rule of Scale.

EXAMPLES:

s
s241

i. IfL{Cost} =

then L{Coswt} =

s 1 s/w ]

sZyw?  w (s/w)2+1

i Ircet) = 2 then £le*) = - = 2t

DIFFERENTIATION PROPERTY:
Let f be continuous and f' piecewise continuous,in0 < t < TforallT > 0.
Let f also be of exponential order as t — o Then, the Laplace transform of
f' (t) exists and is given by
LIf' (] = sLIf(®] —f(0) = sF(s) —f(0)

Proof. If f(t) is continuous and f'(t) is sectionally continuous on the interval
[0, 00) and both are of exponential order then
L©}= [ e frodt = e f(DIF — (—s) [, e f(t)dt
L ®}=1[0-f(0)]+sL{f(D)}
LIf' ] = sLf®] —f(0) = sF(s) —f(0)
If f/and f"' satisfy the same conditions imposed on f and f' respectively,
then, the Laplace transform of f"' (t) can be obtained immediately by
applying the preceding theorem; that is

LIf"®] = sLIf(®] - f'(0) = s*F(s) — sf(0) — f' (0)
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Proof. If f(t), f'(t) are continuous and f''(t) is sectionally continuous on the

interval [0, o) and all are of exponential order then
LY'®)= [y e frDdt = e f(OIF — (=) [y e f(Ddt
L'} =[0—-f (O] +sL{f'(®)}=—f'(0) +s[sF(s) — f(0)]
LIf"®] = sLIf(®] - f'(0) = s*F(s) — sf(0) — f' (0)

Clearly, the Laplace transform of f™(t) can be obtained in a similar

manner by successive application.The result may be written as

LM ()] = s"LIFO] = s"7Hf(0) — -+ ... = sf72(0) — f771(0)

INTEGRATION PROPERTY :
If F(s) is the Laplace transform of f(t), then

t _F(s)
L[Jof(’l')d’l'] —T

PROOF:
Consider g(2) = [, f()dr = g'(2) = f(8) = L[g' (D)] = LIf(D)]
= 56(s) — g(0) = LIF®] = sLIg(®] - 0 = LIf(®)]

= L[g(7)] =@ =>£[f(ff(t)dr] O]

S
Question: Solve the initial value problem u' —2u = 0 withu(0) =1
Answer: Givenu' —2u =0
=>L{u'}-2L{u}=0=sU(s)—u(0)—2U(s) =0

Usingu(0) =1 = sU(s) —1-2U(s) = 0 = U(s) = —

=LY Uu(s)}=£1 {ﬁ} = u(t) = e** required answer.
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Question:

Solve the initial value problem u"" + 4u’ + 3u = 0 withu(0) = 1,u'(0) = 0
Answer: Givenu"” +4u' +3u=0

>L{u"'}+4L{u}+3L{u}=0

= s2U(s) — su(0) — u'(0) + 4sU(s) —4u(0) + 3U(s) = 0

= s2U(s) —s+4sU(s) —4+3U(s) =0 since u(0) = 1,u'(0) =0
s+4 _ _ s+4
= U(S) - s2+4s+2 = £ I{U(S)} =L {sz+4s+2}
_ -1 st _ -1 (3/2 1/2) _ -1 (3/2) _ p-1(1/2
= u(t) =L {sz+4s+2} =L {s+1 s+3} =L {s+1} L {s+3}

su(t)=etL! {ﬂ} _e3tr-1 {lsﬁ}

s

L‘l{ ik } =3¢t - %e‘“ since £1 {%} =1

s24+3s5+2

UNIT STEP FUNCTION: A real valued function H: R — R is defined as

H(t—§ ={; ‘; ii? When§=0 ; H(t)={3 ’; tti((’)

CONVOLUTION FUNCTION / FAULTUNG FUNCTION OF LAPLACE
TRANSFORMATION.

The function (f * g) (t) = f(ff (t — & g (&) dé& is called the convolution of
the functions f and g regarding laplace transformation.

THE CONVOLUTION SATISFIES THE FOLLOWING PROPERTIES:

1.f x g = g * f(commutative).

2.f = (g * h) = (f » g) = h(associative).

3.f * (ag + Bh) = a (f * g)+ B (f * h) (distributive),

where a and B are constants.

USEFUL RESULT:

F*®=[f—-Hg®di= [JHE-Hf (t — § g d§
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CONVOLUTION/FAULTUNG THEOREM OF LAPLACE
TRANSFORMATION

If F(s) and G(s)are the Laplace transforms of f(t) and g(t) respectively,
then the Laplace transform of the convolution (f * g) (t) is the product
F(s)G(s)

OR L HF(s)G(s)}=f = g = L{f x g} = F(s)G(s)
PROOF: By definition, we have

Lifx g} = [, et (f+ g)dt

Lif gy = [ e [{f(t — g d§ dt

Lif+ g} = [ e [ (gt — §di dt sincef + g =g * f
Lif« g} = [ e [[{ HE-Df(©g — §) dE] dt

By reversing the order of integration, we have

Lif = gy = fy [fy e H(t =gt — & dt|f(§)ds

If we introduce the new variable n = (t — §) in the inner integral, we obtain
Lif + gy = [} f &) dg |[5 e H ()g(n) dn]

Lifx g} =

Iy £ (© g [[° e EH () g(n) dn + [ e H (g (n) dn]

Lif « g} = [} £©) dE[[°, e 0. g(p) dp + [} €755+, 1. g (1) dn]| by step function
Lif + g} = fy f(§) dg[f;" e g(x) dn]

Lif = g} = [, e f()dE [ e™g () dn

L{f x g} = F(s)G(s)
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PROBLEM: Use covolution theorem to find £~1 { 3 }

s2(s2+49)

Solution: Here we have H(s) = F(s)G(s)

then taking F(s) = 12 = L7 YF(s)} = L1 {12} =S fE) =t

— -1 — r—1
6(5) = Gy = LTHES)) = L7
Now using Convolution theorem

ht)=f+g=[f(t— g @®dE= [t — & Sin3() d&

2+9)} = g(t) = Sin3t

ozt
h(t) = thSinS(f) df - fot ESln3(f)df — |_ t60353f + fC0333f _ Sin3§
Sin3 3
h(t) e — ”; t é: —(3t - SlnSt) - {52(52+9)}

PROBLEM: Use covolution theorem to find £~1 { > }

(s2+9)2

Solution: Here we have H(s) = F(s)G(s)
> L7YF(s)} = £71f

then taking F(s) = =N 9) & 9)} = f(t) = Cos3t

G(s) = = L7HG(s)} = —L { } = g(t) = —Sth

(s2+ 9) s2+9)

Now using Convolution theorem

h(®)=f+g=[,f(t - §g&df =1, Cos3(t — § Sin3(¢) d§
h(t) = 3 J,(Cos3tCos3 § + Sin3tSin3 §) Sin3(§) d§

h(t) = % f, Cos3tCos3ESin3¢ + Sin3tSin?3¢ d§

h(t) = < Cos3t [} 2Cos3§Sin3§d§ + 3 Sin3t [, Sin?3 d§

h(t) = %CosStf Sin6&dé + - Sm3tf (1 6036‘() dé
h(t) = £ Cos3t |- Cossi’ 4 1 i3t € - S‘Lﬂ

6 0 6

1 1. Sin6t
h(t) = §COS3t(1 — Cosb6t) + gSm3t (t - )
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h(t) = = Cos3t — — Cos3tCos6t + > tSin3t — — Sin3tSin6t
36 36 6 36
h(t) = — % [Cos3tCos6t + Sin3tSin6t] + %tSinSt + % Cos3t

h(t) = — % [Cos(6t — 31)] + %tSinBt + % Cos3t

__1 Lisin3t + L = —=tSin3t = £~
h(t) = — 5 Cos3t + ¢ tSin3t + o Cos3t = —~tsin3t = £ { =]

PROBLEM:

Use covolution theorem to find £-1 {s2+6ls+13}

1 1
s24+6s+13  (s+3+2i)(s+3-2i)

Solution: Here we have H(s) = F(s)G(s) =

= -1 v _ ,—(3+20)t
F(S) - s+3+2i = L {F(S)} - L {S+3+2i} = f(t) =e L
1 - _ 1 P

G(s) = ——=>LHG(s)} = L} {s+3—2i} = g(t) = e~3-20

Now using Convolution theorem

h(®) =f* g= [, f ©)g(t—dE = [[e"(+20% e=G-200=Dgg
t
h(t) = e—(3—2i)tfe—(3+2i)$ e(3—2i)$d$

0
t

h(t) — e—(3—2i)tje—4if df

0
it ea Can
(o) = 20 [ - e :’)t jetit g0 =& :m et _ 1
e—3t e—Zit _ eZit e—3t eZit _ e—Zit
h(t) = 2[ —2i ]: 2 [ 2i ]
-3t
h(t) = ——Sin2t
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PROBLEM:

Use covolution theorem to calculate laplace transform of

f© = [t — B)3efsinpdp

Solution:
Let f(t) = g+ h = [[(t — B)’ePSinBdp .............. @)
Comparing with g * h = f(fg (t — ph(B)dp .............. (ii) we get

gt—RB=>t—-P3=>g@)=1t3 and h(B) = efSinB = h (t) = e'Sint

Now L{f(t)} = L{g * h} = F(s)G(s) = L{g(1)}. L{h(1)} = L{t*}. L{e'Sint}

3! 1 6
L{f(t)} - §3+1° (s—1)2+12 - s*(s2-2s+1)

THE GAUSSIAN INTEGRAL

15

Show that [* e™* dx =+m or Jy e dx = 2”

Solution: consider I = [~ e dx andI= [~ e™ dy
then multiplying both 12 = [~ [~ e > dxdy
Now using polar coordinates
2 co  _ 2 1 o _
= ["["e ™ rdrd@ = J " de (_E) Jy, e P (—2r)dr=m=>I=n

= [© e dx:\/E=>2f0°°e—x2 dxzﬁ:fome—xz dx=g

— 00
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LAPLACE TRANSFORM OF STEP FUNCTION:

The Heaviside unit step function is defined by

H(t — a) ={(1) tt:: wherea>0

Now, we will find its Laplace transform.
L{H(t — a)} = fooo e S'H(t — a)dt
LH({t-a)}=[eH(t - adt+[ e H(t - a)dt
LHE —a)}= ["est.0dt+ [ e . 1dt

e—St e—llS

a S

L{H(t — a)} = faooe‘“ dt = ; §>0

-S

THEOREM:

If £(¢) is a function of exponential order ‘c’ then
LEf(O) = (V" 1ZF(s) is>a

PROOF: Consider F(s) = L{f()} = [,” e f(Ddt
Differentiating w.r.to ‘s’

= 5 F() = (“D [} e tf(©dt = (“DLEFO} = (~1) 15 F(s) = L{EF(©)

Again differentiating w.r.to ‘s’

- ;_:2 F(s) = (=1)(-1) f0°° et (—=0) tf()dt = (—1)2 f0°° e St 2 f(dt = (—1)2L{t?f(t)}

2
> (-1)2 25 F(s) = L{IE2f ()}
Continuing this process, we get the required

LEf(O} = (CV"SF(s) is>a s (-t = (D)7

REMARK: L{t™"f()} = < F(s)
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LAPLACE TRANSFORMATION OF LOGRITHMIC FUNCTION:
Show that L{Int} =~ (I"(1) — Ins)
SOLUTION: by using definition

L{lnt} = [ e Intdt = ["e™ In (u) du

- by putting st = u
L{lnt} = %fooo e " lnudu — %fooo e " Insdu = %(I) — %lns fooo e " du
Lint} = < (D) — < Ins(1) =< (D) = INS .vverreree, (i)

Now consider I = [~ e™ Inudu

Sincel'(@) = [ e u*tdu=>T(a+1) = [ e udu=T'(1) = [ e“u*lnudu
Puta=0=T'(1) = fooo e YIlnudu=1

Thus L{Int} = %(r'(n — Ins)

where I''(1) = 0.57721 is called Euler’s constant.

THE GAMMA FUNCTION:

Gamma function can be defined as follows TI'(a) = f0°° e "u*1 du

USEFUL RESULTS:

" T(a+1) =al(a)

Proof: sinceI'(a) = ["e™u*' du=T(a+1) = [, e u* du

(0]
_ f0°°

0

e U
-1

>T(a+1) = fooo e "u® du= |u°‘

£| au*! du
—1
>T(a+1)=0+ (xfooo e "u*! du = al'(a)

= T'(1) = 1wecanproveitusing '(a) = [ e u*! du witha =1
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" T(a+1) =al

Proof: sinceI'(ax + 1) = al'(a)
put a=1=>T2)=1T1)=1.1=1!
put a=2=>TI3)=2T2)=2.1=2!
put a =3=>T4) =3.T(3)=3.2.1=3!

ThenT(a) = a—-1'=T(a+1) =a!
SECOND SHIFTING (TRANSLATION) THEOREM:
If F(s) and H(s) are the Laplace transforms of f(t) and h(t) respectively,
then
LHE - a)f(t —a)] = e F(s) = e L{f (1)}
OrLYe ™ F(s)}=H(t — a)f(t — a)
Proof: By definition
LH(-a)f(t—a}= [eH@ - a)f - a)dt
LHE-a)ft-a)}= [[e*H{Et —a)f t — a)dt+ [ e H( — a)f (t — a)dt
LHE-a)f(t-a}=["e*f(t— a)dt
Introducing the new variable § = t — a, we obtain
LHE-a)f(t-a}= [[e &P f@di=e["e® f(5)dE
LH({M —a)f(t —a)}= e “L{f(t)}=e “F(s)

REMARK:

1% Shifting theorem enables us to calculate Laplace transform of the function
of the form e*t f(t) where the 2" Shifting theorem in similar way enables us

to calculate inverse Laplace transform of the function of the form e~ *SF(s)
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COROLLARY: Prove that L{p(t)f(t)} = P(—D)F(s) where p(t) isa
polynomial in ‘¢’.

SOLUTION:

Since p(t) = ay + a t + ayt? +.............. +a,t" =Y",a;tt Then

Lip®Of O} = LEL ait (O} = T a LIEf(O)} = Tiy ai (- 1)‘—F(S)

Lp(Of )} = LiLq a; (—D'D'F(s) = XL, a; (-D)'F(s) = P(~D)F(s)
LAPLACE TRANSFORMATION OF BESSEL’S FUNCTION
EXAMPLE:

Find Laplace Tranformation of J(t) = if: Cos(tSin0)dao also find L{J,(at)}

Solution: By definition
LT} = [ et Jo() dt = [ e E i cOs(tSine)de] dt

LYo} =~ [, e Cos(tSind) dt]d6 =~ [F1dB .................. i)
_[° st . _ . _ s
Now I = [~ e **Cos(Sin0)t dt = L{Cos(SinB)t} = FrGime)?
> LYo O} = [y s @0 = 2 [ o= nde - [Ff(0dx =2 [} f(x)dx
/2
= LYo} =~ [ o) 20 o fdx = [y f(a—x)dx
_ 2 ,m/2 s _ 2 ,m/2 sSec?0 m/2 sSec?0
= LYo (D)} = ;f0 s2+Cos%0 do = 1_rf0 Sec20(52+Cos20) _f s2Sec20+1 e
_ E /2 sSec%0 _ E /2 sSec%0
= LUO(t)} - n.f() s2(1+Tan20)+1 de = nfo (s2+1)+(s2Tan20) do
/2 sSec?0 2 ,m/2 Sec?0
= Lo} =2 (" dg =2 ["* 50 _gg
o) =l S ] % "o 5t
= L{J, (D)} == 000% by putting x = Tan8 = dx = Sec’>6d0
_2 qx[®_2(m\_1_1 s 1 .o s*41
:LUO(t)}_n’sLTan alg s(Za)_as_s'm_m Lan= s2

= LUo(D} = ==

= Tofind £{J,(at)} see last portion of next example.
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EXAMPLE: Given the Bessel’s functions of the first kind and positive integral order satisfy
the recurrence relations J1 = —J'y, Jpy1 =Jn-1—2J', ;m =1
(\/52+1—s)n

with J(0) =1,J,(0) = 0;n > 0 thenshow that L{J,(t)} = —

also find £{J,,(at)} ;a>0
Solution: We will prove the result by mathematical induction.

Using first recurrence relation:
1

L1} = L{~]' o)} = —L{J ((©)} = ~[sLT (1)} = Jo(0)] = ~Ta !

ey =)

Now J; =]o—2J'y = LY(O)} = LYo(®)} — 2LY"1(D)} =

result is true for 0
1

—2[sL{J1(©)} = J1(0)]

sZ+1
o (oFi-s) | 1 as(VeEe-s) | (VeEras)
R A e Sl e i [l M e

2
_ (\/sz+1—s) .
= L{J,(t)} = T result is true for 1

E

(V3T+i=s)

s2+1

Suppose that result is true for k. = L{J, (D)} =

Now we will check the result For k+1:
k-1

Jirr =Jke1— 2] = LUks1} = LUk} — 2L} = % — 2[sL{J ()} — J1(0)]

(V=) (Vsris)" (Vszri=s) " 2s(sEri-s)"
B e o S N e S N

/~
q
+
Dl =

k-1 k-1
(\/ sz+1—s) (\/sz+1—s) 2
= L{ 1) = T[l —2s(Vst+1-5)] = T(Vsz +1-5)
k+1
JsZ4+1—
= L1} = % result is true for k+1
. . . . _ (\/sz+1—s)n
So induction complete and result is proved.i.e. £{J,(t)} = T

Now to find L{Jy(at)} ;a > 0 we will use rule of scale. i.e £ [f (at)] = i F (E)

CREC) pp—
Then £ [J(at)] == F, (3) = §< _ (Jsr+a?—s)

2 n,/¢2 2

(i +1 a s“+ta
a
1]

Fa-s)

a%/s2+a? N Vs2+a?

Thenforn=0 L [Jy(at)] = (

For video lectures @ Youtube; visit out channel “Learning With Usman Hamid”



63

EXAMPLE:

1-Cosax 1 a?
Show that L{ . } = Eloge {1 +—2}
f&) i
Solution: We will use the result L{ } fs F(s)ds' ............. (i)

provided lim,,_,, {f (x )} exists

now lim,_, {f( )} = lim,_, {1_Cosax} = lim,_, {aSinax} =0

ax

F(s) = L{f(x)} = L{1 — Cosax} = L{1} — L{Cosax} = %— s>a

s2+4a?

Hence

(D)=L {’%} = [P F(sds' (D) > £ {1“"’5“"} S (l _ 512+a2) ds'

ax S/

e —0— \/ — In Jsz+a2

Thus £{=2%) = 2 {1 + :—2} = log. {1+ “—2}

1-Cosax

:,'L{ }= |lns’—%ln(s’2+a

|ln

VsiZ+a?|g

ax

EXAMPLE: Find L{w} and deduce L{S’" t} =In (32”) is>1

s2

Solution: We will use the result L{f(t)} J, Fwdu ............. (i)

provided lim,_,, {f G )} exists

f® . at_cosht . at 4 pSinbt

now llmHO{ } = lim,_, {i} = lim,_, {%} =a
F(s) = L{f(t)} = L{e™ — Cosbt} = L{e"} — L{Cosbt} = — —

1 u
Fw = —-=F

. f®) _ oo e?—Cosbt) (o 1 u
Hence (i) = £{E2} = (7 Fandu = £{=—} = [ (= - 2 ) du

e —Cosbt) _ 1 2 o _ 1_%

zL{ . }— |ln(u a) Zln(u |ln\/m lnu 1+(g)2
N L{e“t—Cosbt} 0 — In _ Vs2+b2

t s2+b2 s—a
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s—a

Thus L{e“t—fosbt} — In v s2+b?

—Cos2t Vs2422 1-Cos2t VsZ+4
- }—ln :>L{ - }zln

Now puttinga =0, b =2 we get 1:{ 0

HenceL{Si’Zzt} —l (S +4) ;s> 1

S

NULL FUNCTION: A function N(x) is called Null Function if f0°° N(x)dx =0
HEAVISIDE EXPANSION THEOREMS

THEOREM -1 :

If M(s) and N(s) are polynomials of degree ‘m’ and ‘n’ respectively with

m < n and N(s) has ‘n’ distinct zeros a; ;i =1,2,3....... none of which is

zero of M(s) then
M(s)
{N(S)} 4N’ (

Proof: Given M(s) and N(s) are polynomials of degree ‘m’ and ‘n’

respectively

Let N(s) = ag + a;s + a;s* +.......... +a,s"=(s—a)(s—ay) ......(s—ap)
Then consider = = € 4 @2 4. 4G —yn G (i)
N(s) s—a; s—az s—ap s—a
M(s) _ i _ 1
=L {N( )} £ 1{ 1‘1=1s a,-} - Z?:1 CI,L ' {s—a,-}
M(s) . .
= L {N(S)} Y cedt ... (i)

. . M(s)
(D) = ¢g=Ilimg,, [(s — a;) N(s)] =

limy_ . [M(s)] lim,_, [S2] = M(a)).lim,_, [~

N(s) N(s)
; _ M(a)
M(S) n M(ai) a;t
(i) = L7 {N(s)} i=1 7,z €
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THEOREM - 11 :

If M(s)and N(s) are polynomials of degree ‘m’ and ‘n’ respectively with

m<nand if N(s) has a repeated root a; of multiplicity ‘r’ while othere roots
i, a; are not repeated then

. . "M(a, , a! M(s)
LYF(s)} = £t {N()} P :+Z(11,){d,1< )N()}e

i=2

s=ay
Proof: Since N(s) has a repeated root a; of multiplicity ‘r’ while othere roots

a,,as,....a, are not repeated it means

N(s)=(s—ap)'"(s—ay)......(s—a,)
M(s) M(s)
N(s)  (s—ap'(s—ap).....(s—ay)

Then in terms of Partial fraction we will be as follows

M(s) _ d, dr_q dr_ dr_| 1
N(s) (s—apr (s—apr!  (s—ap™2 7 (s—apr! T (s—ap!
dq C2 c3 Cn
+ + e R T LT T T s A
(s—apl = (s-ap (s-ayp) (s—ap) (A)
Multiplying (s — a;)" on both sides
(s—ap" 1:((:)) =d,+d,_1(s—ap)+ . tdi(s—a)" 1 +32,¢ ((ss—_a;i))r ............ (B)

Now taking lim on both sides we get

s—ay
d, = lim,_,, (s — 2" 55

d,_y = lim,._,,+|(s — 2))" ’;E:))] diff.w.to ‘s’

d._, = %limsﬁa 1;—; [(s —a))" Z((:)) again diff.w.to ‘s’

d,_; = %lims_)a , (%)l [(s —ay)" Z((:)) again diff.w.to s’ [ - time
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Now by second translation theorem
LYe ™ F(s)}=H({t —a)f(t —a)
orLH(t —a)f(t — a)] = e F(s) = e L{f ()}

=L {(s—;)r} = et {slr} - eajt(ir—__:)!

M(Gs) _ yr L+ n__ 4
N(s)  “1=1(s—a))! =2 (s-a)

Now by ‘A’ we have

Then taking laplace inverse on both sides

£ {%} - L_l{ 7=1(s—d;1)l} + L_l{ i=2 (sf;,-)} =X L7 {(s aJ)l} Li= {(s_a,)}

M(s) S AN o L VMO aye AN (O]
:>L {N(S)} 21:1(1_1)!11ms—>a1 (ds) [(S a]) N(S) 1 +2 =2 llms—>a,(s al) N(S)

M(s) M(a;) 1 a1 M(s)
= LTHF(s)} = L {N(S)} 2w €+ g { a1 —aY N(s)}eajt

s=ay

EXAMPLE:

Using Heaviside Expansion theorem evaluate £71 {(s_s:)zzsg}

Solution: Given that F(s) = has a pole at s = 1 of order<2’ and at s = 0 of order “3’

1)2 3

Then in terms of Partial fraction we will be as follows

F(S)—(S 1)2+(S 1)+ + +

Now using Heaviside formula

. . 2 . 2
d, = lim,_, ,[(s — D2F(s)] = lim,_,, [(s — 1)? (s_s:)zss] = lim, [%] _3
. d . d[
dz = limg_ ;- [(s — D?*F(s)] = lim,_, ;- [(s — 1)?

s+2
(s—1)2s3

|=tim, 4[] o

3 Ss+2
(s—1)2s3]
dJ 3 s+2 ]

1. i 3 T a o oTe
cy = hms"”ds [s°F(s)] = llms_,gds 5" Gonzs

= lim,_,[ 2] = 2

¢y = lim,_, o [s°F(s)] = lim,_,[s ="

. d|[ s+2
= llmsﬁga m] =5

c3 = %lims_,(;;—:z [s3F(s)] = llims_,a;—:2 [53 ﬁ] = Elims_,(,% %] =8
= LHF()} = f(1) =diL™ {< 1)2} +d L {(sil)} +e L™ {s%} + L7 {siz} +es L7 {%}

2
= L YF(s)} = f(t) = 3te' — 8e' + 2% +5t+8=(3t—8)e' + (t? + 5t + 8)
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EXAMPLE: Using Heaviside Expansion theorem evaluate L‘l{ ! }

s2(s2+2as+b2)
1 _ 1
s2(s2+2as+b%)  s2(s—s1)(s—s3)

Solution: Given that F(s) = has simple poles at

S = §51,5 = S, and a pole of order ‘2’ ats=0
Then in terms of Partial fraction we will be as follows

_ 1 _ 1 _dy  dy 1 2
F(S) T s2(s2+2as+b2)  s2(s—sp)(s—sp)  s2 T s t+ (s—s1) t (s—s2)

Where we take s; = —a — if8 , s, = —a + iff then s;s, = a? + f? = b?

Now using Heaviside formula

1

s2(s—s1)(s—s2)

ool =7

d, = lim,_,[s*F(s)] = limg_,, [sz ] = lim,_,,

d, = lims_,oi [s2F(s)] = lims_w% = lim

|5* samsnamn) = ims-og; [0

d, = lim d [ 1 ] — lim -(25+2a) _ -2«
2~ 520gs [s2+2as+b2] — s_)o(s2+2a3+b2)2 bt

. - 1 . 1
C1 = lll'lls_,s1 [(S - SI)F(S)] = lll'l'ls_)s1 [(S - Sl) m] = lln‘ls_,s1 [m]

1

c{=—————
17 512(s1-s2)

. . 1 . 1
cz =limg_;, [(s — 52)F(s)] = limg_s, [(S —52) m] = limg_,, [m]

c, = 1
27 532(sy-51)

Now as s; = —a — iff = /a2 + f2e™ % = 5,2 = (a? + B?)e 2 = p%e2i0
S, = —a+if = a? + p2e'f = 5,2 = (a?® + f?)e?? = b?e?® then

S1— S = —2ip
1 210 1 e2i0
Then (e s12(s1-57) = — 2ib28 and Cy = $22(sp2—51) - 2ib2pB
-1 _ _ -1f1 -1(1 -1 1 -1 !
= LHFE) = (0 = dit™ {5} + do L {+ et {75} + el )

— t 2a t 2a e2if e~2i0
> L 1{F(S)} = f(t) = b_2 - F + c1eslt + cZeSZt = ﬁ - F - Zibzﬁ' s1t + mesﬁ
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EXAMPLE:

Find the general solution of the differential equation evaluate

y'(@®) + Ky = f(©)
Solution: Given that y"(t) + kK2y(t) = f(t)

= L{y" (D)} + K2 L{y()} = L{f(D)}
= s2Y(s) — sy(0) — y'(0) + k*Y(s) = F(s) = s*Y(s) + k*Y(s) = F(s) + sy(0) + y'(0)

c1+cas+F(s)
s2+k2

= Y(s) = where we use y'(0) = ¢4, y(0) = c,

Now = £71{¥(s)} = y(8) = £ {2} + £ {2} + 0 (5}

s24+k2 sZ4 k2 sZ4+k2

_ _ k _ —1 { F(s)
= L) =y©® = L g+ e w0 )
= LYY ()} =y(t) = C—kl.S'inkt + c,Coskt + %Sinkt * f(t)

= y(t) = L Sinkt + c,Coskt + [, et Sink(t — §)f (§) d§

EXAMPLE:
Slove the IVP  y"(t) +ty'(t) —y(t) =0 with y(0) = 0,y'(0) =1
Solution: Given that y'@®)+ty'(t)—yt)=0

= L{y" ()} + L{ty' (D} — Ly(D)} = 0
= 52 (s) — sy(0) — ¥ (0) + (—=-) L/ (D} — ¥ (5) = 0

= s2Y(s) — 1 — (di) {sY(s) —y(0)} —Y(s) =0

where we use y(0) = 0,y'(0) =1

= s?Y(s)—1—sY'(s) = Y(s) = Y(s) =0 where we use y(0) = 0,y'(0) = 1
_e2 s2
> V'(s) + == ¥(s) = — ¢ this will have in I F = s%e” 7
1 s? 1
Thus:>Y(s)=s—2+ce7:>Y(s)=S—2 whens - co thenc =0

Now = LYY (s)} = y(t) = £ {lz} > y(t) =t
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EXAMPLE:
Slove the IVP  u"' — au = f(t) with u(0) = uy, u'(0) = u4
Solution: Given that u' —au = f(t)

= L{u"} — aLl{u} = L{f ()}

= s2U(s) — su(0) — u'(0) — aU(s) = F(s)

= s2U(s) — suy —uy —al(s) = F(s) where we use u(0) = ug, u'(0) = uy
= (s?2 —a)U(s) = F(s) + sug + u,

F(s) 1

=>U()— _ U

"s2-a

N0W=>L‘1{U(s)}=u(t)= {F“)}+ uoL |-

—a} + ulL_l {szl—a}

= LU = u(®) = £HF). ok o} + oLt z_(sﬁ)Z}Jf%L_l{sz_&f}

= u(t) = \/%L‘l{f(t) * Sinhv\/at} + ugCoshat + %Sinh\/at
1t ot e .
= u(t) = ﬁf;e st Sinha(t — & f (§) d€ + uyCosh/at + %Slnhx/at

MELLIN INTEGRAL TRANSFORMATION:

For a well behaved function ‘f’ Mellin Integral Transformation is defined as

M{f(0):s} = f*(s) = [y f(Odt

INVERSE MELLIN INTEGRAL TRANSFORMATION:
For a well behaved function ‘f’ Inverse Mellin Integral Transformation is

defined as

M Yf*(s):t} = — r+‘°°f (s)t~5ds ;t> 0;1 = R(s)

r—ioo
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THE LAPLACE INVERSION INTEGRAL
or THE FOURIER MELLIN INTEGRAL
or DERIVATION OF INVERSION INTEGRAL

STATEMENT :
If £(t) is inverse Laplace Transformation of F(s) and all singularties of F(s)

in the complex plane ‘S’ lie to the left of the line x = y then
ft) = zim limg_, f;’:‘; eStF(s)ds
Proof:
Draw the line x = y in the ‘S’ plane and mark the points A = (y, R) and
B = (y,—R) on this line and draw a semicircle S of radius R to the right of the
line x = y. Let C = AB U S be the closed contour consisting of the line

segment AB and S.

Ty-lms

(¥R
A

? x=Res

5 (%R

Let the function F(z) = fooo e 2 f(t)dt is an analytic function on and within

- -

the contour C. if ‘s’ is any point inside C then by Cauchy Integral Theorem
F(s) = 5= “2dz > F(s) = ;- § = [, e f(t)dt dz

= F(s) = 2_11'if0 f [gﬁ Z—_se‘”dz] dt interchanging the order of integration.

1 o) —zt Be %t 1 foe) B e %t .
> F(s)=o—J, f(® [f—siTst-l_fA ZTst] dt=—[ f®J, szdZdt by Jordan’s
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-zt y+iRe % y+ico e™%t
Alsof —dz =limp_o, [,_;p — oo 75 42
S F(s) == [ f® [0 dzde = = [ f(0) [0 dzde
= F(s) = ﬁf;’tf[fw e 7t f(t)dt] ;dz again changing the order of integration.
Y+ioco F(z)
= F(S) = ﬁfy—ioo ;dz
_ y+ico _ y+ioo
> LYF()} = f(O) = - [ F@L {hdz = — [ e F(z)dz
= L7YF(s)} = £(©) ——fyyii;’f’ et F(s)ds = o —limp_, [/ eF(s)ds

SPECIAL CASE:
Now suppose F(s) has poles only to the left of the line x = ReS = y then we

can enclose all those poles in a contour C on the left of x = y then
1 1 .
= f(t) = ﬁfﬁce“F(s)ds = %Zj(Zij) =YiR;

where R; = residue of e*'F(s) at the poles s = s

EXAMPLE:
Use Laplace Inversion Intgral (or Rasidue method) evaluate £7* {53”52”}
g J s2(s2+1)
Solution:
3 2 3 2
Given F(s) = 2241 - 291 s simple poles at s = +i and a pole of

s2(s2+1)  s2(s+i)(s—i)
order 2’ats =0

1 dn—l

Now using R(f, a) = llmsﬁamm [(s — a)"estF(s)]

d d 3+252+1
R(f, 0) - 0 - llms—>0d [S eStF(S)] - llms—>0d [SZeSt'SSZ(SZS_l_l) =

s3+2s52+1
s2(s+i)(s—i)

R(f,i) = Ry = lim,_;[(s — i)e’tF(s)] = lim,_, [(s — et

R(f,i) =R, = oy Lol pit
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st s3+2s52+1
s2(s+i)(s—i)

R(f,—i) = Ry = limy_,_;[(s + De*F(s)] = lim,_,_; | (s + De

1+i —it

R(f —l)—Rz—Z—e
_ _ -0 g I+ g
ﬁf(t)—ZjRj—t‘l‘Zie te

= f() =R =t + % (Cost + iSint) + % (Cost — iSint)

= f(t) =XjRj =1t + Cost + Sint after solving.
EXAMPLE:

. . -1 2s+1
Use Laplace Inversion Intgral (or Rasidue method) evaluate £ {S (s2+1)}

2s+1 _ 2s+1
s(s241)  s(s+i)(s—i)

Solution: Given F(s) = has simple polesat s = 0, +i

n—1
Now using R(f,@) = lim,_, - 11), (s — @)"etF(s)]
. . 2s+1
R(f,0) = Ry = limg_[se’ F(s)] = limg_,, [se“.s(:zﬂ) =1
2s+1

R(f,D) = Ry = limg_[(s — DeStF(s)] = lim,_q (s - Dest

1+2i
elt
-2i

s(s+i)(s—i)

R(f,i) = R, =

2s5+1
s(s+i)(s—i)

R(f,—i) = Ry = lim,__;[(s + De*F(s)] = lim,_,_; (s + De

=-2i _
R(f,—i) =R, = e

1+Zl lt 1—Zi _it

= f() =2jRj=1-——e" ———e
=>f()=XjRj=t- 2 iSint)
= f(t) = X;R; = 1+ 2Sint — Cost after solving.
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EXAMPLE:

Use Laplace Inversion Intgral (or Rasidue method) evaluate £71 {sz (; 1)}

Solution: Given F(s) = ﬁ has simple pole at s = —1 and a pole of order ‘2’ at s = 0

1 dn—l

s—a Gropy asni LS — @)"e*F(s)]

Now using R(f,a) = lim

. d . d 1
R(f,0) = Ro = lim_o 5 [s2e"F(s)] = lim, o 5[ s%e*. 5| = £~ 1

= - 1 1 B
R(f,—1) = Ry = lim,__4[(s — De*F(s)] = lim,_; (s + D). e 5| = e™*

Now = f(t) = YjRj = Ry + R4

In order to find a solution of linear partial differential equations, the following
formulas and results are useful.
If Llu(x,t)] = U(x,s) then

L{Z—':} =sU(x,s)—u(x0)

L{az—u} =52 U(x,s) — su(x,0) — u,(x,0)

at?

L{%} =s"U(x,s) —s" tu(x,0) — - .......—su,_,(x,0) —u, _ (x,0)
Similarly, it is easy to show that

u 2u 2 1Y) n
L{g—x}=% Ulx,s), L{%}z%U(x,s), ................. " L{Z?}za%U(x,s)
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EXAMPLE:

Use Laplace Transformation method to solve BVP

?u du

ﬁ—5,0<x<a, 0<t<ow

u@0,t)=1, u@,t)=1 ;t>0 ,u(x,0) =1+ Sinnx
Solution:

2 2 2
Given a—u=a—u=>12{a u} =£{a—u} :%U(x,s) =sU(x,s)—u(x,0)

ox2 at dx2 at

2
= ;?U(x,s) =sU(x,s)— (1+ Sinnx)

:%U(x,s)—sU(x,s) =—1-Sintx ....cee...e. @)
Which is non — homogeneous 2" order DE with solution

Ulx,s) =U.(x,s) +U,(x,s)  .ceeeenan. (i)

For Chractristic (auxiliary) solution

()= D?*-s5U(x,s) =—1—-Sinrx=>D?*—-s=0=>D = +/s
Then U.(x,s) = cle\/gx + cze“/gx

For Particular solution

—1-Sinmx _ —-e%% | elmx -1 Sintx _ 1 Sinmx

Consider Up(x' s) = Dp2-s  DZ-s tmg D?2—s  02-s (im2-s s -m2-s
1  Sinnx
Then U, (x,s) = St
(i) > U(x,s) = U (x,s) + Uy(x,s) = cle\/;x + cze“/gx + % + 51:?-1:
_ Vsx —Vsx 4 1 | Sinmx
= U(x,s) = c,eV* + c,e Tt e (iii)
Now using BC’s
w(0,t) =1 L{u(0,6)} = L{1 = t°} = U(0,s) = 1
u(L,)=1>Lu1,)}=L{1=t)=U(s) = 1
1 1 Sin(0) 11
(iid) = U(0,s) = < = c.e® + c,e’ t-to o 2atat =:20="0
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=1_ ¢ e ~Vs(1) 4 1 Sinm Vs ~vs 4 1_1_
(ul)=>U(1,s)—s—c1e + c,e tot o> e’ + e + o S—O

= cle\/g + cze‘“/E =0= —cze‘/g + cze“/g =0 5 Cp = —Cy
= cle™VS—e’|=0>¢,=0, [eV*—e| %0

$C2=O$C1=O S Cp = —Cy

Sinnx

(iii):U(x,s)=%+ "1 =¢6=0

l+s

= L YHU(x,s)}=L1 E} + L1 {Sinnx} =L£1 E} + SinmxL™1 { ! }

m2+s s—(-m?)

s>u(xt) =1+ Sinmxe ™t required solution.

EXAMPLE:

Use Laplace Transformation method to solve BVP

u, (x,t) = a®u,, (x,t);t>0,x>0

ux0)=u;(x,0)=0, u(0,t) = f(t) ,lim,_,,u(lx,t)=0
Solution:

Given u, (x,t) = a’u,, (x,t) = L{u,} = a*L{u,,}

2
= s?U(x,s) — su(x,0) —u,(x,0) = a2:7U(x, s)

aZ
ax2

aZ

= s2 U(x,s) — (0) — (0) = a? o2

U(x,s) = s?U(x,s) = a*—=U(x,s)

a? 52
= SU(xs)—5 Uxs)=0
This is Homogeneous DE of 2" order therefore
SZ

2
> (D?-5)U(xs)=0>D* -5 =0=D =1

Then U(x,s) = cleix + cze_ix ............ ()
Now using BC’s
u(0,t) =f(t) > L{u(0,0)} = L{f(t)} = U(0,s) = F(s)

lim,,,u(x,t) =0= L{lim,_,,u(x,t)} =0=lim,_,U(x,s) =0
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(i)=U(0,s) =F(s) = clei(o) + cze_i(o) = c;+c, =F(s)

() =lim,_, U (x,s) =0 = lim [clezx + cze_zx] =c,e° + ce”®
=>c; =0 then c, =F(s) ~ €1+ cy =F(s)

Thus (i) = U(x,s) = F( s)e‘ix

> L {U(x,5)} = £ {F( s)e‘i"}

a

cueo=n(eDr(e)  ween(e-Yr(eD=[0, L

EXAMPLE:

Use Laplace Transformation method to solve BVP

U (x,t) = a®u,, (x,t) — g

ux0) =u,(x,0)=0, u(0,t) =0 ,lim,_,,u, (x,t) =0

Solution: Given u,, (x,t) = a®u,, (x,t) — g = L{u,} = a*L{u,,} — gL{1}

2
= s? U(x,s) — su(x,0) —u,(x,0) = aZ%U(x,s) —%
> 52 U(x,s) — (0) — (0) = a®> 2 U(x,s) — 2
! dx2 ’ s
2 _ 29 _g
=s°U(xs) =a asz(x,s) .

a? s? _ 9 .
:JU(x,s)—; U(x,s)—azs ............ (i)

Which is non — homogeneous 2" order DE with solution
Ulx,s) =U.(x,s) +U,(x,s)  .ceernnnnn. (i)
For Chractristic (auxiliary) solution

S2 S

2
> (D?-5)U(xs)=0>D* -5 =0=D =1

s s
Then U.(x,s) = c,ea" + cye "
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For Particular solution

&

Consider U, (x,s) = 5 =25 = 45 = -4
D2 02 s
" a? aZ2 a?
S s

(ll) = U(x, S) = Uc(x, S) + Up(x, S) = cleEx + cze_Ex — ;%
2 U(x,s) =cied” + e —5 (iif)
Now using BC’s

u0,t)=0=L{u(0,t)}=0=>U0(0,s)=0
lim,,,u, (x,t) = 0= L{lim,_, u, (x,t)} =0 = lim,_,, % U(x,s) =0

-0

({i) > U(0,5) =0 =c1e® + e — S =2 c1+ ¢ = 5

. i) . s 5 s _s s s _
(iii) = lim,_, —U (x,s) = 0 = lim [cl—eax —=cye ax] =c,-e* +c,-e
ax xX—00 a a a a

) . S
>c-e®=0>c, =0 since -e* #0, then c =4 ci+c, =2
1a 1 a 2 s3 1 2 S3

Thus (iii) = U(x,s) = %e_zx - S%
= L HU(x,s)} = { z+1} %‘6_1 {%}
:u(xt)—gH(t——)( )2 2(e2)

:u(x,t)z*;l[H(t—g)(t—g) —(tz)]

WhereH(t—E)(t—f)2 = {22 tt:

Q|Rg|§<
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EXAMPLE:

Use Laplace Transformation method to solve BVP

U () =u,; (X, 6);t>0,0<x<1

u0,t)=0=u(1,t), u(x,0) =Sinnx ,u; (x,0) = —Sinnx
Solution:

Given u,, (x,t) = u; (x,t) = L{u,,} = L{uy}

2

> 2 U(xs) = s U(x,s) — su(x,0) — u,(x,0)
2

= :711(76 s) = s> U(x,s) — sSinmtx + Sinmx

= % U(x,s) — s> U(x,s) = —sSinnx + Sinmtx ............ (i)
Which is non — homogeneous 2" order DE with solution
Ulx,s) =U.(x,s) +U,(x,s)  .ceeeenan. (i)

For Chractristic (auxiliary) solution

= (D2 -s)HU(x,s) =0=>D?—-s2=0=>D = +s

Then U.(x,s) = c,e* + c,e™%*

For Particular solution

Consider
_ (A-s)Sinmx _ . elmx _ Sinmtx Sinmx
U,(x,s) = a2 = (1-s)img romche 1-y5) s = 1-y5) —
_ (s—-1)Sinnx
Up(x' s) = m2+s
(i) > U(x,s) = U (x,s) + Uy(x,5) = c1€°* + c,e™* + %
— c.e5* —sx y (s7DSinmx
= U(x,s) = c,e** + c,e™* + are | teeeeeeeeees (iii)
Now using BC’s u (0,t) = 0= L{u (0,t)}=0=>U(0,s) =0
u(1,t)=0=>L{u(1,)}=0=>U1,s)=0
(iii) > U(0,5) = 0 = c1e® + c,e 0 + &0 o e, =03 ¢, = —¢4

ml4s
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(s—1)Sinm
n2+s

S

(iii) > U(1,s) =0 =c,e° + c,e7 5 + >ce+ce*=0=>ce’—cie*=0

>ci(eS—e ) =0>c;=0as(eS—e ) #0=>¢c, =0

Thus (iii) = U(x,s) = (s=1)Sinmx

w2+s

:>L-1{U(x,s)}=5innx1;—1{ s }—Si"”"L—l{ il }

s24m2 8 s24m2

Sinntx

Sinntt = Sinntx [C osttt — Sinnx]

= u(x,t) = SinmxCosmt —

EXAMPLE:

A uniform bar of length ‘U’ is fixed at one end. Let the force

f(t) = {0 t<9 be suddenly applied at the end = [, if the bar is
fo t>0

initially at rest, find the longitudinal displacement for t > 0 using Laplace
Transformation the motion of bar is govern by the differential system

u,; = a’u,,;t>0,0<x<1anda is constant.

u(x,0) =u(0,t) =u,(x,0) =0, u,(lt)= % where E is constant.
Solution:

Given u, (x,t) = a’u,, (x,t) = L{u,} = a*L{u,,}

2
= s? U(x,s) — su(x,0) —u,(x,0) = aZ%U(x, s)
2 2
= s2U(x,s) — (0)—(0) = aZ%U(x,s) = s?U(x,s) = a2;7U(x,s)

9?2 52
= SU(xs) -5 Uxs)=0
This is Homogeneous DE of 2" order therefore

s

2 2
>(D*-S)U(s)=0=D2 -5 =0>D=1+"

Then U(x,s) = ciea” + c,e”a ... ()

79
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Now using BC’s
u0,t)=0=L{u(0,t)}=0=>U0(0,s)=0

_fo _ rffo ad _Fo
w, (L) =L (0} = L{F} > U (Ls) =2
(i) =>U0,s) =F(s)=cie®+ce%=>¢c,+c; =0 ¢ = —¢4
Then U(x,s) = cied” — c,e”a" ............ (i)

a _ s Ex s —Ex

= aU(x,s) =ci-es +ci-e

. d _Fo
Then using aU (I,s) = — We get

Fo

=>6U(xs) Fo _ ¢ Se e @ >c
—_ = — = — @a - a =
x ’ E 1a 1a 1

Hence (ii) = U(x,S) = Ts—ix'(ea —e a ) = %
(i )

Taking Laplace inverse on both sides

Fo (eﬁx—e_5x>

u(x,t) = L‘l{

which is required longitudinal displacement for t > 0

80
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THEOREM: Let f (t) be a piecewise continuous function for t > 0
and of exponential order. If f (t) is periodic with period T then show
that

1

LUf ()} =—=, e f (t) dt
PROOF: By definition, we have
L{f ()} = [, e f(t)dt

LU ()} = [y e f(e)de+ e f(t)dt
In the 2" integral on the right put t =u + T = dt = du

LF@N=[, et f@E)dt+ [ e T fu+T)du

LFN =/, et fi)dt+eT ["e™ f(u+T)du

Since given functionis periodic with period T therefore f (u+T ) = f (w)
LUf ()} = fy et f(t)dt+e™T ["e" f(u)du

L (O} =[] et f(t)dt+e T L{f (u))

LF (O} =[] et f(t)dt+e T L{f ()}

A —e"NL{f ()} = [, e f(t)dt

L{f (t)} = 1_2_5T fOT e St f (t) dt As required the result.

THEOREM: If L{f (t)} = F(s) then £{L2} = [ F(s) ds

PROOF: By definition, we have

LIf (&} =F(s)= [, e f(t)dt

[ F(s)ds = ["[f, et f(t)dt]ds integrating.
JF(s)ds=[f@®[f e tds|dt  changing the order of integration.
[T F(s)ds = ["f (t) e_—tt|:° dt = [/ 1O estar = £{ L9}

t
Hence L { Ltt) } = ["F(s)ds
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HANKEL TRANSFORMS

HANKEL TRANSFORMS
fn () is called the Hankel transform of f(r) and is defined formally by

Fa () = H0 f 0} = Fa ) = [ 100 f @
The inverse Hankel transform is defined by ’

o

H; (Fo (10} = 23 (Fr ()} = £ () = f K] (kT) ' (1)

0

Alternatively, the famous Hankel integral formula

f @) = [y kln(er)dk [ pln(kp)f (p)dp

can be used to define the Hankel transform and its inverse

In particular, the Hankel transforms of zero order (n = 0) and of order

one (n =1) are often useful for the solution of problems involving Laplace’s
equation in an axisymmetric cylindrical geometry.

REMARK: For Bessel Functions
i, Jo(rr) = %f: Cos(krSin0)do
. J'o(rr) = —=J1(xr) also Jpi11 = Ju1 — 2J'n for Jo(0) =1,J,(0) =0 ; n>0

Example:

Obtain the zero-order Hankel transforms of

(@) 1" exp (-ar), (0)=2 (c)H(a — 1)

where H (r) is the Heaviside unit step function.
Solution:

(a)

o (e} = Fo (k) = [ 1)u(kr) f ()dr = [ 1.2 e o (1er) dr =

K2 +a?

5(r)
r

Ho (772} = Fo 00 = [ thulier) f dr = [ 1.2 2 Jo(er) dr = 1

Ho{H(a — 1)} = fo (1) = [ 1)) f (dr = [["H(a — 1)]Jo(xr) dr

Ho{H(a — 1} = fo () = [ oGer) dr == [ pJo(p) dp = ] ()I§" = 2] (ar)
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Example:
Find the first-order Hankel transform of the following functions:

(@) f(r)=e™
(b) £(r) =~ e~
Solution:

(a)
Hi{e = F () = [, vJ1Ger) f (Pdr = [ e (xr) dr =

K

(K2+a2)3/2

7, {1 e—ar} = F @) = [, 1J1(er) f (r)dr = fowr%e-ar 7, (kr) dr
¥, {l e_ar} = fooo e Y] (kr)dr = i[l — a(k? + a®)"1/2]

Example:
Find the nth-order Hankel transforms of

@f r)=r"H(a — 1)
b)f (r)=1"e "
Solution:
(a)
Ho{r"H(a —1)}= f () = fooo r]n(kr) f (r)dr = foa L () dr

Ho r"H (@ = 1)) = F (1) = J s (ar)

(b) o 2
Hyrre= = F ) = [ 1)uler) f (0)dr = [y (er)e™ " dr
H, {r"e—ur2 } = f(x) = (z:;ﬂ exp (— g)
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PROPERTIES OF HANKEL TRANSFORMS AND APPLICATIONS
(i) THE HANKEL TRANSFORM OPERATOR, “#,,” IS A LINEAR INTEGRAL
OPERATOR for any constants a and b.

i.e. H, {af(r) + bg(r)} =a¥, {f(r)} + bH, {g(r)}
Proof: by using definition

Hy{af (1) + bg(r)} = [; rJn(ker) {af (r) + bg(r)}dr
Hy {af () + bg(M} = a [ v],(er) f(r)dr + b [ 1], (xr) g(r)dr
Ho{af (r) + bg()} = ad, {f (1)} + bH, {g()}

(i) THE HANKEL TRANSFORM SATISFIES THE PARSEVAL RELATION

[ rrw amar = [ kroog e ax

0 0

where f(x) and § (k) are Hankel transforms of f(r) and g(r) respectively.
Proof:

Iy kf(0)g () dk = [ kfGo)dk [ 1), (kr) g(r)dr
fy kf(0F (1) dke = ["rg(r)dr [, k], (er)f(x)dk
fy k(g (o) dk = ["rf(r) g(r)dr

(ili) (SCALING PROPERTY). If #£,, {f(r)} = () then 7, {f(ar)} == Fu (%) ;2> 0
Proof. We have, by definition,

H (f@r)} = [ raGer)f(an)dr = 5 (s (55) f()ds - ar=s

H, (fa)}==Fu () sa>0

These results are used very widely in solving partial differential equations in the
axisymmetric cylindrical configurations.

For video lectures @ Youtube; visit out channel “Learning With Usman Hamid”



85

GREEN’S FUNCTION AND ASSOCIATED BVP’s

THE KRONECKER DELTA FUNCTION:

It is denoted by &;; and can be defined as follows;
5. — {1 ifi=j
Y 0 ifi+#j
DIRAC DELTA FUNCTION
The dirac delta function is defined as follows;

6(x)=lim€_>06€(x)={o(;) :}:::8 Or 6(x—t)={%o :;;:tt

PROPERTIES:
i [ 8(x)dx=1
ii.  For any continuous function f(x); [°_f(x)8(x)dx = £(0)
i, 8(x) =8(—x)
iv. é6(ax) = %5(::) ;a>0
v. SHIFTING PROPERTY: For any continuous function f(x);
5, f08(x — a)dx = f(@)
vi. If 8(x) is continuous differentiable. Then [~ f(x)8'(x)dx = —f'(0)
REMARK:
. Dirac delta function can be regarded as the generalization of
Kronecker delta function. It strictly speaking a “generalized

function” or “distribution function” or *“ a unit impulse function”

ii. In kronecker delta function §;; the indecis i,j, are integral variables,

whereas in passing to direc delta function they become real

continuous variables.

For video lectures @ Youtube; visit out channel “Learning With Usman Hamid”



86

1 SHIFTING PROPERTY OF DIRAC DELTA FUNCTION:

For any continuous function f(x); f_oooo f(x)6(x)dx = f(0)

Where f(x) is analytic (regualar or continuous function) at x =0

Proof: Since §(x) has singularity at x = 0, the limits —oo and oo of the
integration may be changed to (or replace by) 0 — e and 0 + € where e is a

small positive number.

since [ f(x)8(x)dx = lim._g [, "~ f(x)6(x)dx

Moreover, since f(x) is continuous at x = 0. We obtain in lel_)r{)l follow;
f(0—-e) =f(0+e) = f(0)

Therefore [* f(x)8(x)dx = f(0)lim o [, f(x)8(x)dx

since 8(x) has singularity at x = 0. Therefore

[Z F(x)8(x)dx = £(0).1 = £(0)

2" SHIFTING PROPERTY OF DIRAC DELTA FUNCTION:
For any continuous function f(x); ffooo f(x)6(x —a)dx = f(a)
Where f(x) is analytic (regualar or continuous function) at x = a
Proof: Consider [ f(x)8(x — a)dx

Setx —a=tandwrite f(t+a)=g(t) = f(a) = g(0)

[ f@8x—a)dx = [7 ft+a)s@®dt = [ g(t)s(t)dt
ffooo f(x)6(x — a)dx = g(0) by 1% shifting property

IZ f(x)8(x — a)dx = f(a) by hypothesis
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GREEN’s FUNCTION

Green’s Function is the impulse response of non — homogeneous differential

equation with specified initial and boundry conditions.

IMPORTANCE: it provides an important tool in the study of BVP’s. it

also have an intrinsic value for mathematicians. Such function is the response

corresponding to the source unit.
PROPERTIES OF GREEN’s FUNCTION:

VI.

Green’s Function is denoted by G(x, x")

G(x,x") is symmetrici.e. G(x,x") = G(x', x)

G(x, x") as a function of ‘x’ satisfies the D Equation ;—;G(x, x)=0in
each of theinterval 0 < x < x'and x' <x <1

G(0,x") = 0and G(I,x") = 0 which are the same BC’s as those satisfied
by u

G(x,x') is continuous function of ‘x’ in the interval [0, ]

(in constructing the Green’s function, we will make use of its continuity
at x = x' and this can be seen from the following

lim,_ . G(x, x") =1lim,_, G(x,x")
lim, . xT,(x -0 =1lim,_,/ % Cay))
tw-D=2@-D

If we calculate G'(x, x") = % G(x, x") we find that

x' -1

] ;0<x<x
G'(x,x") = Y and G’ (x, x") will be

T ;x’<xSl

discontinuous at x = x’
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AN IMPORTANT RESULT: [ f 2 @(xy) dxydx; = [ | I dx;| @(xy)dx
EXAMPLE: Solve the problem — =f(x)withu(0)=0=u(l) ;0<x<1
SOLUTION: This a Singular SL system with p(x) = 1

Ch=f0) > u' () = f) = [ u"(dx = [} f(0dx

> W @IE = [ FDdx = u'(x) - w'(0) = [ fx)dx’

= [XTw' (x) — W/ ()] dx = [ () dx] dx

> [Fu'@)dx— [fu'@dx = [F[F f(x)dx dx”

= u()l§ — w O)xlf = [;[[; dx"] fx)dx’

= [u(x) —u(0)] —w'(0)[x — 0] = [|x"|} f(x)dx’

=>ulx) —xA = fo (x—x") f(x)dx’ whereu'(0) =A4 (say)and u(0) =0
su@) = [[(x—x)fx)dx' + x4 e (i)

Putx = I = u() = [,(1—x) f(x)dx' + 14

= [[(1—x) f(x)dx' +1A=0 since u(l) = 0
SA=—2[(I-x)f)dY e, (ii) use it in (i)

> u(x) = [ —x) fadx' =2 [ (1 - x) fx)dx’

s u(x) = [{(x—x) f@)dx' +3 [ =D fNdY . (iif)

This is the solution of given problem.

Now we can costruct a Green’s Function by solving (iii)

= u(x) = [0 — &) fFdx + 5[5 = D fxdx + [[(¢ = D f(x)dx'|
> u(x) = [f [x— 2 +3(¢ - D| F)dx’ +3 [[(x' = D f(x)dx’

s ule) = [ [x -2 + 2 x| fxdx’ + 2 {1 = D) fx)dx
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= u(x) = xT’f:(x - f(x)dx' + %fxl(x’ - D f(x)dx'

= u(x) = f;G(x, x") f(x)dx'

x—’(x—l) ;0<x' <«x

Where G'(x,x)=1,"
(' =D x<x <1

is called Green’s function of given problem.

EXAMPLE: Solve and obtained the associated Green’s Function

T 4 K2y = f) with y(0) = 0= y(1) ;0 < x <1

SOLUTION: This a linear non — homogeneous DE of order 2 with constant
coefficients. Its general solution is as follows;

Y=YctYp

For Charactristic Solution:

2
%+k2y= 0=>D*+k*=0=D=+ik =1y,.=c,Coskx+ c,Sinkx
For Charactristic Solution:

For this we will use Wronskian method (Variation of Parameters)

Let = y, = uyCoskx + u,Sinkx

Where u, = — f;:, s—i"k;f @ dx and u, = fx’; —COS’:jf @) dx

Coskx Sinkx |
—kSinkx kCoskx

Thenu, = — f;: S—inkxkf @) dx’ and u, = fx’; —COSk:Vf @) dx’

= Wronskian =W =

S. k / ! , C k ! ! , .
>y, = —f;%ﬂx)dx Coskx + f;%mdx Sinkx
>y, = % f):) [SinkxCoskx' — CoskxSinkx'|f(x")dx'

1 . / / ! 1 = ! ! !/
>y, = Ef;, Sin(kx — kx)f(x)dx' =y, = ;f,:, Sink(x — x'")f(x")dx

> yp =1 Jy Sink(x — x)f (x')dx’ with x, = 0 a fixed point
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Thus fory =y, + y, we have

y(x) = c;Coskx + c,Sinkx + %f: Sink(x — x")f(x")dx" .............. i)
= y(0) = ¢;C0s(0) + c,Sin(0) + %foo Sink(0 — x)f(x")dx’

=>c; =0 sincey(0)=0

= y(I) = c;Coskl + ¢ Sinkl + - [ Sink(l - x)f(x')dx' putx = I

= 0 =0+ c,Sinkl + f, Sink(l — x')f (x')dx’

=cy = f Sink(l — x')f(x)dx'

kS nkl
Using ¢4, ¢5 in (i)

Sink l .. / / / 1 . / / /
y(x) = — ks"i‘n:l Jo Sink(l = x)f(x))dx' +- [y Sink(x — x)f(x)dx

ya) = -2 [ [F Sink(l - x")f(x)dx' + [ Sink(l— x")f(x')dx' +

= Jo Sink(x — x)f(x')dx'|
Sinkx Sinkx

l ) !/ ! !/
i klf Sink(l - x"f(x)dx

2 Sink(l— ')]f(x')d -

y(x) = f [Smk(x x) -3

Sinkx Sinkl Sinkx

o sink(l - x')| 50 f()dx' — 22 [Sink(l - x)f (x') dx’

= —f [Smk(x x') —
y(x) =
% fox [(SinkxCoskx' — CoskxSinkx")Sinkl —

Sinkx

Sinkx(SinklCoskx' — CosklSinkx')] % dx' — Sinl

J. Sink(l— x')f(x")dx’

y(x) = % f: [SinklSinkxCoskx' — SinklCoskxSinkx' — SinklSinkxCoskx' +

SinkxCosklSinkx'] L () gt — Simkx

l 7 ! 14 !
Sinkl Ty fx Sink(l — x")f(x)dx

y(x) = %f: [-SinklCoskxSinkx' + SinkxCosklSinkx'] Sf—i(;;c)l dx' —

Sinkx

l - ! ! !
kSinklf Sink(l — x")f(x)dx

y= %f [-Sinkx'(SinklCoskx + SinkxCoskl)] /) dx' — Sk fxl Sink(l - x")f(x")dx'

Sinkl kSinkl
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y= f [Sinkx'(SinkxCoskl — SinklCoskx)] g( k)l dx' — %f; Sink(l — x")f(x")dx'

_1 . fx" y _ Sinkx
= f [Sinkx'Sink(x l)]s kl Skl

f Sink(l — x")f(x")dx'

Sinkx'Sink(x-1) / l SinkxSink(x'-1) ’ ’
y<x)=f<f L e [COL

y(x) = [ G(x,x)f(x)dx’

Sinkx'Sink(x-1)

kSinkl 0= <x
! J—
Where G(x,x'") = SinkxSink(x' 1) d
_ x<x <l
kSinkl

is called Green’s function of given problem.
Note: Sinkl # 0 i.e. ‘k’ is not eigenvalue of associated homogeneous problem.
PROPERTIES OF PREVIOUS GREEN’s FUNCTION

I.  G(x,x") issymmetrici.e. G(x,x") = G(x', x)
2
ii. G(x,x") as a function of ‘x’ satisfies the D Equation % G(x,x)=0in

each of theinterval 0 < x < x'and x' < x <1

iii. G(0,x")=0andG(l,x") = 0 are the same BC’s as those satisfied by the
given Green’s function.

iv. G(x,x') is continuous function of ‘x’ in the interval [0, ] and

!

particularly atx = x
v. G'(x,x") = %G(x, x') exists as

Sinkx'Cosk(x-1)

kSinkl 0=x <x
! N ! ! H
G'(x,x") = CosknSink(x'—D , and G’ (x, x") will be
- x<x <l
kSinkl

discontinuous at x = x’
REMEMBER: The Greenn’s Function technique is used to solve DE of the
form (L,u)(x) = f(x) + BC's where L, is a linear operator with specified
BC’s.
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EXITENCE OF GREEN’s FUNCTION:

If the homogeneous problem associated with SL system
%{p(x) j—:} + g(x)u + A r(x)u = 0 with usual BC’s has trivial solution then

Green’s Function exists.
In other words, if 2 = 0 is not an eigenvalue for L(u) + A r(x)u = 0 with

usual BC’s then Green’s Function exists.

GREEN’s FUNCTION ASSOCIATED WITH REGULAR SL SYSTEM:
Let L(u) + A r(x)u = 0 be the SL equation with the endpoint conditions
o u(a) +<, u'(a) = 0 and B,u(b) + B,u’'(b) = 0 which may also be

written as By (u) =x; +o<, % =0 and B;(u) = B, + B> % = 0where B isa
BC’s operatior define regular SL system and gives a trivial solution. Then the
Green’s Function associated with regular SL system has the following
properties;
i.  G(x,t) considered as the function of ‘x’ satisfies the DE L{G(x,t)} =0
ineach of theintervala < x <tandt<x<b
ii. B41(G)=0and B,(G) = 0 are the same BC’s as those satisfied by the

given Green’s function.

lii. G(x,t) is continuous function of ‘x’ in the interval [a , b ]

. d . . .
iv. G'(xt)= aG(x, t) will be discontinuous as x — t and moreover

3 ! - I} 1
lim,_,+ G'(x,t) — lim,_,- G'(x,t) = 5

but lim,_+ G'(x,t) # lim,_.- G'(x,t)
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EXAMPLE: Solve the problem associated with non — homogeneous DE

L(u)+ Ar(x)u = f(x) whereL = %{p(x) %} + q(x)

SOLUTION: The solution of this non — homogeneous DE subject to BC’s is
closely related to the existence of Green’s function associated with
homogeneous equation L(u) + Ar(x)u =0

If the function G (x, t, 4) which does not depends on the source function f(x)
exists, then solution of given equation can be written as

u(x) = f: G(x, t,)f(t)dt where G(x,t,A) is called Green’s function and

satisfies the equation L(G) + Ar(x)G = 8§(x — t)

EXAMPLE:
Construct Green’s function associated with the problem u” + Au = 0 with
the boundry conditions u(0) = 0 and u(1) =0
Solution:  herep(x) =1 = p(t)

. Put 4 = 0 in given equation
%+Au=0:%+(0)u=0:%=0:u(x)=Ax+B .......... (i)

Now using BC’s u(0) =0 andu(1) = 0wehaveA=0,B=0

(i) = u(x) = 0 which is trivial solution. So 4 = 0 is not an eigenvalue.
2
ii. G(x,t) as a function of ‘x’ satisfies the D Equation % G(x,t) =0 in

each of theinterval 0 < x < tand t < x < 1 therefore we have

Ax + B 0<x<t
G(x't)_{A’x+B’ t<x<1

iii.  G(x,t) is continuous function of ‘x’ in the interval [0, 1] and
particularly atx = t therefore

lim,_;- G(x,t) = lim,_+ G(x,t)
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lim,_;-(Ax + B) = lim,_,+(A'x+ B")
At+B=At+B =>B =(A-A)t+B

Ax+ B 0<x<t
Ax+(A-A)t+B t<x<1

G(0,t) = 0and G(1,t) = 0 are the same BC’s as those satisfied by

Hence G(x, t) = {

the given Green’s function.i.e.

G0,6)=0=>A(0)+B=0=>B=0

G(LH)=0>A1)+(A-A)N+B=0=>4=2CD withp=0
%_Ux+0 0<x<t
Then G(x,t) = b
A’x+(A(t 1)—A’)t+0 t<x<1
A'(t-1)
0 <
HenceG(x,t)={ t 0sx<t
Ax—A t<x<1

d . . . . .
G'(x,t) = aG(x, t) exists and will be discontinuous as x — t i.e.

lim,_+ G'(x,t) # lim,_,- G'(x,t)
1

But lim,_ .+ G'(x,t) —lim,_,- G'(x,t) = s

. d VR T _iA'(t—l) _1
llmx_)t+a(Ax A') —lim,_, dx( - x)—l

nmﬁﬁmq—nmﬁr@ﬁ*§=1

_ A(t-1)
— =

A 1

A’G)=1=>A’=t

t(t-1) .
Then G(x,t)={ t o=x<t
tx —t t<x<1
t—1)x 0=x<t
Hence G(x, t) :{((x—l))t t<x<1

This is our required Green’s Function.
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EXAMPLE:

Construct Green’s function associated with the problem xu'’ + u' + Aru =0

with the boundry conditions u(0) is finite and u(1) =0

Solution:

here p(x) = x then p(t) =t

Put 4 = 0 in given equation

d
xu"+u' +Aru=0=>xu""+u' = Oz;(xu’)

= u(x) =Alnx+B .......... i)
Now using BC’s u(0) = finite andu(1) =0wehaveA=0,B=0

(i) = u(x) = 0 which is trivial solution. So 4 = 0 is not an eigenvalue.

G(x,t) as a function of ‘x’ satisfies the D Equation xG"' + G' = 0 in
each of the interval 0 < x < tand t < x < 1 therefore we have

G(xt)—{Alnx-l_B 0<x<t
7 A'lnx + B’ t<x<1

G(x,t) is continuous function of ‘x’ in the interval [0, 1] and
particularly atx = t therefore

lim,_ ;- G(x,t) =lim,_+ G(x,t)

lim,_;-(Alnx + B) = lim,_,+(A'Inx + B")
Aint+B=A'lnt+B >B =(A-A)Int+ B

Alnx + B 0<x<t
Alnx+ (A—A)Int + B t<x<1

G(0,t) = finite and G(1,t) = 0 are the same BC’s as those satisfied

Hence G(x, t) = {

by the given Green’s function.i.e.

G(0,t) = finite = Aln(0) + B = finite = A =0
G1L,t)=0=>A'ln1)+(A-A)Int+ B=0=B=A'Ilnt
= A' =z% with 4 = 0,In(1) = 0

A'lnt 0<x<t

Then G(x,t) = {A’lnx t<x<1
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d . . . . .
V. G'(x,t) = EG(x, t) exists and will be discontinuous as x — t i.e.

lim,_,+ G'(x,t) # lim,_,- G'(x,t)
1

But lim, .+ G'(x,t) —lim,_ .- G'(x,t) = e

. ) (1 . 1
lim,_,+ A (;) —lim,_-(0) = -

ORSEE

_(Int ;05 x<t . . , .
Then G(x,t) = { Inx t<x<1 Is our required Green’s Function.
EXAMPLE: Construct Green’s function associated with the

2
problem xu'' +u’ — %u + Aru = 0 with the boundry conditions u(0) is

finite and u(1) =0

n2

Solution:here p(x) = x then p(t) =t this is regular system with q(x) = -

. Put 4 = 0 in given equation

2 2
xu”+u’—"7u+(0)ru=0=>xu”+u’—n7u=0

= (xD2 +D—n72)u= 0

= (x?D?*+xD —n*)u=20........... (i) this is Cauchy Euler equation
Putx=e!=>Ilnx=t=>xD=A andx?D? =A(A—1) = A%> - A
(D)= LA?>-A+A—nPHDu=0= (A%>-nPH)u=0=A=+n

= u(x) = Ae™ + Be™ = A(e")" + B(eH)) ™

=>u(x) =Ax"+Bx™ .......... (i)

Now using BC’s u(0) = finite and u(1) =0wehaveA=0,B =0

(ii) = u(x) = 0 which is trivial solution. So 4 = 0 is not an eigenvalue.
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G(x,t) as a function of ‘x’ satisfies the Differential Equation
x%G" + xG' —n*G = 0 ineach of the interval 0 < x < t and
t < x < 1 therefore we have
6O = (i g rexet
G(x,t) is continuous function of ‘x’ in the interval [0, 1] and
particularly at x = t therefore
lim,_ ;- G(x,t) =lim,_+ G(x,t)
lim,_;-(Ax™ + Bx™) = lim,_,+(A'x™ + B'x™)
At"+Bt " =At"+B't"=>B =(A4-A)t*"+B
Ax"™ + Bx™" ;0<x<t
Ax"+(A—-A)t?""x ™ + Bx™ t<x<1

G(0,t) = 0and G(1,t) = 0 are the same BC’s as those satisfied by

Hence G(x, t) = {

the given Green’s function.i.e.

G(0,t) = finite = A(0)"+ B(0)™ = finite=B =0
GL)=0=>A1D)"+A-A)t*"(1)™+ (0)(1)™
A=A1-t2") withB=0

Then
A'(1—t72Mx" + (0)x ™" 0=x<t
feo= {A’x" +H{(aa-em) ) @x se<xsa
A’(l _ t—Zn)xn 0<x<t
G(x,t ={ '
( ) Ax"+ A'x™™ t<x<1
A’(l _ t—Zn)xn ;0 <x<t

Hence G(x, t ={
(x,0) A'(x™—x™) it<x<1

G'(x,t) = %G(x, t) exists and will be discontinuous as x — t i.e.

97

lim,_ .+ G'(x,t) # lim,_,- G'(x,t)
But lim,_ .+ G'(x,t) — lim,,- G'(x,t) = pTlt)
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lim, .+ A'(nx™! —nx™ 1) —lim,_,- n4'(0 — ¢t 2")x"1 ==

/ n-1 _ -n-1y\ __ I(_¢4—2nyyn—1 _ l - t" H
A'(nt nt ) —nA'(—t ™)t i A TS after solving
——— (1 —t2)x" ;0<x<t
Zn
Then G(x,t) = n(2+t,t1 )
n_ .—n .
n(2+t2")(x x™™) t<x<1
IS our required Green’s Function.
EXAMPLE: Construct Green’s function associated with the

problem —{(1 xHu’

= 0 with the boundry conditions
u(+1) are finite
Solution:here p(x) = 1 — x% then p(t) = 1 — t? this is singular system

. Put A = 0 in given equation

el 2 _ I h? _
{(1 x“)u Yu'' — 2xu il 0
= (1 —-x®)2%u" - 2x(1 —xHu' —h*u=0 .......... )
1+x dt 2

Putt =In (—x) =n(1+x)—In(1-x) = = 1

y_du _dudt 2 du v 4 dz_u du i

B bl e Ry [ Tz TX dt] after solving

' _ 22t [ 2 _du_ 42

iD= 1—-x%) 1) [dtz +x dt] 2x(1—x ) 5 — —h*u=0
d>u  h?

=>4—+4 ——4x——h2u O:F——u 0=>D = +—

h
= u(x) = Aeit + Be 2! = A(et)h/Z + B(et)—h/z
h/Z _h/2 -
> u(x) =4 (%) + B (&) .......... (i)

1 1-x
Now using BC’s u(+1) = finite wehave A=0,B =0

(ii) = u(x) = 0 which is trivial solution. So 4 = 0 is not an eigenvalue.
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G(x,t) as a function of ‘x’ satisfies the Differential Equation
41— 226
™ {(1-x%)G

t < x < 1 therefore we have

G(x,t) = ! (g)h/j e (g)_h/z ;—1<x<t
A (it) +B’ (g)_h/z t<x<1

G(x,t) is continuous function of ‘x’ in the interval [0, 1] and
particularly atx = t therefore
lim,_ ;- G(x,t) =lim,_,+ G(x,t)

lim,._..- (A (g)h/z +B (g)_h/z) = lim,_ .+ <A’ (g)g +B' (%)_h/ 2)
h

A (E)h/z ' B (E)_h/z _ (E)E g (E)—h/z

B =(4-A4" (”t)h +B

then
h/2 —h/2
A(2)" 0
G(x1) = 14x : 1+t 1+x —h/2
m )4{@ AU - +B] t<x<1
1+x h/2 1+x —h/2
) A +B(2) —l<x<t
G(xt) = 1+x h 1+t 1+x —h/2
A [m AU - +B] t<x<1

G(4,t) = finite are the BC’s satisfied by the Green’s function.

o\ h/2 o —h/2
G(—1,t) = finite = 4 (”( 1)) +B (1“ ”) = finite > B = 0

1-(=1 1-(-1)

1+(1)
(1)

1+(1)

G(1,t) = finite = A’ (1)

[(A a) fi +B] = finite

A4 =0
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A (i) 1<x<t
Then  G(x,t) = et ey -h2
A (;) (E) t<x<1

V. G'(x,t) = %G(x, t) exists and will be discontinuous as x — t i.e.
lim,_+ G'(x,t) # lim,_,- G'(x,t)
But lim,_ .+ G'(x,t) —lim,_,- G'(x,t) = %
h

lim, .+ <_ (1+t)h (1+x)_5_1 [(1_ )z]> — lim, ;- <Ag(g)i_1 [(l_zx)z]) = 1—1t2
_h_ h_
() () [l - AR [ =

1 (1-t\/2 .
= __h(ﬁ) after solving
- L (L) (1) ~1sx<t
Then G(x,t) ={ 2" 1+1t h/zl Y _ny2
R = ISP
1+t 1-t/ \1-x

is our required Green’s Function.

EXAMPLE:
Construct Green’s function associated with the problem u” + Au = 0 with
the boundry conditions u(0) + u’'(1) = 0 and u(1) + 2u'(0) =0
Solution:  herep(x) =1 =p(t)

. Put 4 = 0 in given equation
—+Au 0=>—+(O)u 0=>——0:>u(x) Ax+B .......... (>i)
Now using BC’s
u(0)+u'(1) =0 and u(1) + 2u’(0) = 0wehaveA=0,B=0

(i) = u(x) = 0 which is trivial solution. So 4 = 0 is not an eigenvalue.
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But lim,_ .+ G'(x,t) —lim,_,- G'(x,t) =
lim,_,+ (4") - lim,_- 4’ () =

A'—A'(L)=1 =4 =22

2
G(x,t) as a function of ‘x’ satisfies the D Equation % G(x,t) =0 in

each of theinterval 0 < x < tand t < x < 1 therefore we have

Ax + B 0<x<t
G@i%{Ax+H t<x<1

G(x,t) is continuous function of ‘x’ in the interval [0, 1] and
particularly at x = t therefore

lim,_ ;- G(x,t) =lim,_+ G(x,t)

lim,_;-(Ax + B) = lim,_,+(A'x+ B")

At+B=At+B =B =(A-A)t+B

Ax+ B 0<x<t
Ax+(A-A)t+B t<x<1

G(x, t) satisfies the BC’s
G0,)+G6G(1L,Lt)=0=>4(00+B+A' =0=>B=-4'
G(1,t)+26'(0,t) =0=>4A1)+(A-ANt+B+24=0

Hence G(x, t) = {

A=A (L) with B = —A'

t+2
Then 6(x, ¢) = A(5)x-A 0<x<t
e = ax+(a()-a)e-a t<x<1
A’(éx—l) 0<x<t
Hence G(x, t) = .
A’[x+(§—1)t—1] t<x<1

G'(x,t) = %G(x, t) exists and will be discontinuous as x — t i.e.

lim,_+ G'(x,t) # lim,_,- G'(x,t)

1
p(t)

t+2
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%(ﬁx—l) ;05 x<t
Then G(x,t) =1 ., .
—[x+(——1)t—1] t<x<1
2 t+2
%x — % ;05 x<t
= G(x; t) = 2
2yl M2 _ 2 t<x<1
2 2 2 2
tx_zt_z 0 x<t
Hence = G(x,t) = Cmr required Green’s Function.
(t+2)7;3t2 t<x<1
EXAMPLE:

Construct Green’s function associated with the problem u" + Au = 0 with
the boundry conditions u’'(0) =0 and u(1) =0
Solution:  herep(x) =1 =p(t)

. Put A = 0 in given equation
d*u d*u d*u .
m+lu—0=>@+(0)u—0=>ﬁ—0=>u(x)—Ax+B .......... (>i)

Now using BC’s u'(0) =0 and u(1) = 0wehaveA=0,B =0

(i) = u(x) = 0 which is trivial solution. So 4 = 0 is not an eigenvalue.
2
ii. G(x,t) as a function of ‘x’ satisfies the D Equation % G(x,t) =0 In

each of theinterval 0 < x < tand t < x < 1 therefore we have

Ax+B 0<x<t
G(x’t)_{A’x+B’ t<x<1

lii.  G(x,t) is continuous function of ‘x’ in the interval [0, 1] and
particularly at x = t therefore
lim,_ ;- G(x,t) =lim,_+ G(x,t)
lim,_,-(Ax + B) = lim,_,+(A'x + B")
At+B=At+B =B =(A-A)t+B

Ax+ B ;0<x<t

HenceG(x,t)={A,x+(A_Ar)t+B t<x<1

For video lectures @ Youtube; visit out channel “Learning With Usman Hamid”



103

iv. G(0,t) =0andG(1,t) = 0 are the same BC’s as those satisfied by
the given Green’s function.i.e.
G'0,)=0=>4=0
G(L,)=0=>B=A(t—1) withd=0

B Al(t_l) ;OSx<t
ThenG(x,t)—{A1x+(0—A’)t+A’(t—1) ;t<x <1
Hence G(x, t) _{A’(x—l) t<x<1

d . . . . .
V. G'(x,t) = aG(x, t) exists and will be discontinuous as x — t i.e.

lim,_,+ G'(x,t) # lim,_,- G'(x,t)

But lim,_ .+ G'(x,t) —lim,_,- G'(x,t) = —

p(t)
lim,_+(4") — lim,_,-(0) = % A =1
t—1 ;0<x<t . .
Hence G(x, t) = {Ex _ 1)) e ;C <1 required Green’s Function.

EXAMPLE:

Construct Green’s function associated with the problem u” + Au = 0 with
the boundry conditions u’'(0) = 0 and u(2) =0
Solution:  herep(x) =1 = p(¢t)

. Put 4 = 0 in given equation
d?u d?u d?u .
@+Au—0:ﬁ+(0)u—0=>w—0=>u(x)—Ax+B .......... (>i)
Now using BC’s u'(0) =0 and u(2) = 0wehaveA=0,B =0
(i) = u(x) = 0 which is trivial solution. So 4 = 0 is not an eigenvalue.

2
ii. G(x,t) as a function of ‘x’ satisfies the D Equation % G(x,t) =0 in

each of theinterval 0 < x < tand t < x < 1 therefore we have

Ax + B 0<x<t
G(x’t)_{A’x+B’ t<x<?2
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G(x,t) is continuous function of ‘x’ in the interval [0, 2] and
particularly at x = t therefore

lim,_ ;- G(x,t) =lim,_+ G(x,t)

lim,_,-(Ax + B) = lim,_+(A'x + B")

At+B=At+B =B =(A-A)t+B

Ax+ B 0<x<t
Ax+(A-A)t+B t<x<2

G(0,t) = 0 and G(2,t) = 0 are the same BC’s as those satisfied by

Hence G(x, t) = {

the given Green’s function.i.e.

G'0,t)=0=>A4=0
G2,t))=0=>A4A2)+(0-ANt+B=0=>A2-t)+B=0
=>B=A'(t-2) withA =0

~ A/(t_z) 0<x<t

ThenG(x,t)—{A,x+(0_Ar)t+A'(t_z) t<x<1
_(A(t-2) ;0<x<t

Hence G(x, t) _{A’(x—Z) t<x<1

G'(x,t) = %G(x, t) exists and will be discontinuous as x — t i.e.
lim,_+ G'(x,t) # lim,_ .- G'(x,t)

But lim,_ .+ G'(x,t) — lim,,- G'(x,t) = %

lim,_+(4") — lim,_,-(0) = % >4 =1

(t—2) 0<x<t

HenceG(x,t)={(x_2) t<x<1

required Green’s Function.
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MODIFIED GREEN’s FUNCTION

When A = 0 is an eigenvalue of the SL system defined by L(u) + Aru =0
with g1 (u) = 0, B, (1) = 0 then the associated Green’s function is called
modified green’s function. And is denoted by G, (x, t)

PROPERTIES OF MODIFIED GREEN’s FUNCTION: (UoS; S.Q)

Let uy(x) be the normalized eigenfunction corresponding to 4 = 0 this means
that (ugy(x), ug(x)) = f: uy(x). up(x)dx = 1 then Gy (x, t) will have the
following properties;
I.  Gy(x,t) satisfies the D Equation L[Gy(x,t)] = ue(t).ue(t) ineach of
theintervala<x <tandt<x<b
ii.  B1lGy(x,t)] = 0 and B,[Gy(x,t)] = 0 which are the same BC’s as
those satisfied by G (x, t)
iii. Gu(x,t) is continuous function of ‘x’ in the interval [a, b ] and
particularly at x = t
iv. G'ylxt)= %GM(x, t) exists and will be discontinuous as x — t i.e.
lim,_+ G'y(x,t) # lim,_ G y(x,t)
But lim,_ .+ G'y(x,t) —lim,_ - G'y(x,t) = %
v. The modified Green’s function G, (x, t) satisfies the orthogonality

condition f: Gy(x,t). ug(x)dx =0
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EXAMPLE:Construct Green’s function associated with the problem
u'' + Aru = 0 with the boundry conditions u’(0) =0 and u'(1) =0
Solution:  herep(x) =1 = p(t)

. Put 4 = 0 in given equation

d?u d?u d?u
E+/1u—0:@+(0)u—0=>ﬁ—0=>u(x)—Ax+B

Now using BC’s u'(0) =0 and u’'(1) = 0wehaveA=0,B + 0
(i) = u(x) = B which is non - trivial solution. So 4 = 0 is an eigenvalue.

Therefore we take uy(x) = 1 as a normalized function.i.e.
(g (1), g (1)) = J;, o(x). g (¥)dx = [ 1dx =1
ii.  Gy(x, t) as a function of ‘x’ satisfies the D Equation
:—;GM(x, t) = uy(x)uy(t) =1 ineach of theinterval 0 < x < t and
t < x < 1 thereforewe have G y(x,t) =1=> G y(x,t) =x+ A

2
:GMu¢y=%+Ax+B

2
x7+Ax+B 0<x<t

ﬁGM(x,t)z xz
?+A%+B’ t<x<1

iii.  Gy(x,t) satisfies the BC’si.e. = G'(0,t) =0=>A4=0 and
>6y(1,t)=0>4"=-1
xZ
—+ B 0<x<t

thus = Gy(x,t) =1 , 2

?—X+B’ ;t<XS1

Iv.  Gy(x,t) is continuous function of ‘x’ in the interval [0, 1 ] and
particularly atx =ti.e.

lim,_ .+ Gy(x,t) = lim,_,- Gy (x,t)
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l- xz

t2

;—t+B’——+B=>B’=B+t

—x+ B’) =lim,_ ;- G'y (J;—Z + B)

2
%+B 0 x<t
thus = Gy (x, t) = 2
?—x+B+t it<x<1

d . . . . .
V. G'y(x,t) = ;GM(x, t) exists and will be discontinuous as x — t i.e.
lim,_ .+ G'y(x,t) # lim,_- G'y(x,t)

But lim,_ .+ G'y(x,t) —lim,_ - G'y(x,t) = L

p(t)
i (2 - 1) ~tim,,-(2) =

t—-1-t=1=>-1+1
Thus the discontinuity condition does not help to determining the

unknown constant B. so we will use orthogonality condition.
vi.  Using orthogonality condition fol Gy(x,t). usg(x)dx=0
ftGM(x, t). ug(x)dx + fl Gy(x,t).ug(x)dx =0

f( +B)dx+f (——x+B+t)dx—O 0 withuy(x) =1

2
B = t— —t + — after solving

Hence our required Green’s function is as follows;

—+f—t+— ;0<x<t
= Gyx,t) = 2 tZ
7—x+——t+ +t t<x<1
£+ﬁ—t+— ;0<x<t
>6ux)=1% *
ST —xt +— t<x<1
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EXAMPLE:Construct Green’s function associated with the problem
u'' + Au = 0 with the boundry conditions u(0) = u(1) and u'(0) = u'(1)
Solution:  herep(x) =1 = p(t)

. Put 4 = 0 in given equation

d?u d?u d?u
E+/1u—0:@+(0)u—0=>ﬁ—0=>u(x)—Ax+B

Now using BC’s u(0) = u(1) and u’'(0) = u'(1)wehaveA =0,B # 0
(i) = u(x) = B which is non - trivial solution. So 4 = 0 is an eigenvalue.

Therefore we take uy(x) = 1 as a normalized function.i.e.
(g (1), g (1) = J;, g (x). up (¥)dx = [ 1dx =1
ii.  Gy(x, t) as a function of ‘x’ satisfies the D Equation
:—;GM(x, t) = uy(x)uy(t) =1 ineach of theinterval 0 < x < t and
t < x < 1 thereforewe have G y(x,t) =1=> G y(x,t) =x+ A

2
:GMu¢y=%+Ax+B

2
x7+Ax+B 0<x<t

ﬁGM(x,t)z xz
?+A%+B’ t<x<1

iii.  Gpy(x,t) satisfies the BC’si.e. = Gy(0,t) =Gy(1,t) >4 ' =4-1

and = G'y(0,t) =6'y(1,t) > B'=B -4 +%

2
%+Ax+B 0<x<t
thus = Gy (x,t) =4 ,

X

Z+(A-Dx+B-A+; t<x<1

Iv.  Gy(x,t) is continuous function of ‘x’ in the interval [0, 1 ] and
particularly atx =ti.e.

lim, .+ Gy(x,t) =lim,_,- Gy(x,t)
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2 2
lim,_+ (3 + (A—Dx+B—A+5) =lim, 6'y (5 +Ax + B)

1

2 2
SHA-Dt+B-A+ ="+At+B=>A=—t

thus

x2 1

?+(E—t)x+B ;0<x<t
x2 1 1 1
S+(G-t-1)x+B-(5-t)+, t<x<1

2
x?+(%—t)x+B 0<x<t
ﬁGM(x,t): 2

x?—(%+t)x+t+B t<x<1

d . . . . .
G'y(x,t) = EGM(x, t) exists and will be discontinuous as x — t i.e.

lim,_+ G'y(x,t) # lim,_ . G y(x,t)

But lilnx—ﬂf+ G,M(x' t) - limx—>t‘ G,M(xr t) = %

i (3 -0) -t (£ 00) =

t+o—t—t+ +t=1=1=1
Thus the discontinuity condition does not help to determining the

unknown constant B. so we will use orthogonality condition.
Using orthogonality condition fol Gy(x,t). usg(x)dx=0

fot Gy(x, t). up(x)dx + ftl Gy(x,t).ug(x)dx =0=20

f(f("z—z+(%—t)x+3)dx+ft1("2—z—(%+t)x+t+B)dx=O with

uy(x) =1

1
+

B= —
12

2 .
375 after solving

Hence our required Green’s function is as follows;
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2 2
Z+(G-t)x+T -5+ 5 0<x<t
_ 2 2 2 ' 12
= Gu(xt) = 2 (1 2 ot 1
SoGHt)x+t+S 242 t<x<1
x2 1 2 t 1
Z+(G-t)x+T-s+5 0<x<t
)2 2 2 2 ' 12
= Gu(xt) = 2 (1 2 ot 1
ZoGHt) xS+ t<x<1
EXAMPLE:

Construct Green’s function associated with the problem
u'’ + Au = 0 with the boundry conditions u(—1) = u(1) and u'(—-1) = u'(1)
Solution:  herep(x) =1 = p(t)

I. Put 4 = 0 in given equation

d?u d?u d?u
E+/1u—0=>@+(0)u—0=>ﬁ—0:>u(x)—Ax+B

Now using BC’s u(—1) =u(1) andu'(—1) = u'(1) wehave A = 0,B # 0

(i) = u(x) = B which is non - trivial solution. So 4 = 0 is an eigenvalue.
1

5 as a normalized function.i.e.

Therefore we take uy(x) =

(o (), g (X)) = [ (). up(W)dx = [1, = = dx =1

I. Gy (x,t) as a function of ‘x’ satisfies the D Equation
2
%GM(x, £) = uy(x)uo(t) = in each of the interval -1 < x < ¢t

and t < x < 1 therefore we have ¢" y(x, t) = % = G yxt) = %x + A

2
= Gy(x,t) =%+Ax+B
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Gy (x, t) satisfies the BC’s i.e.

= Gy(-1,8) =Gy(1L,) >B' =1+ B —2A
and= 6'y(-1,) =G (L) >4 =A4-1

Vi.

2

%+Ax+B —l<x<t

thus = Gy (x,t) =4 ,
~+@-Dx+1+B—-24 t<x<1

Gy (x, t) is continuous function of ‘x’ in the interval [—1,1 ] and
particularly atx =ti.e.

lim,_+ Gy(x,t) =lim,_,- Gy(x,t)
2 2
lim,_+ (5 + (A= Dx+1+B-24) =lim,_ 6y (5 +Ax + B)

t? t? 1-t
Z+(A—1)t+1+B—2A=Z+At+B=>A=T

e ";+($)x+3 —1<x<t

= t) =

T g () xrrem-2(5) e<xs1
= (2% +B —1<x<t

= Guxt) = 4x—z—((i—z)x+t+3 t<x<1
4 2 ’ -

d . N . .
G y(x,t) = ;GM(X, t) exists and will be discontinuous as x — t and

gives no information about unknown. So we will use orthogonality

condition.

Using orthogonality condition f_ll Gy(x,t).uy(x)dx=0
[t G 0.0 (®)dx + [ Gy (x,8). up(x)dx = 0 = 0
JLE+ () x+B)dx+ 1 (- () x+t+B)dx=0 with
uy(x) = \/—15 +0

t? 1 .
B=—_—-+ A after solving

N |~
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Hence our required Green’s function is as follows;

2
I+(12t)x+%—§+% ;—1<x<t
= GM(x, t) == xz 1+t tZ t 1
I—(T)x+t+z—z+g t<x<1
2 _ 2
"_+(ﬂ)x+t__£+l ;—1<x<t
= Gy t) =1 2 4 26
e x_z_(ﬁ) TGN S
4 2 x 4 2 6 ’ =
EXAMPLE:
Solve the problem — = f(x) with u(0) =, u(l) = g

SOLUTION: Let G (x, x') be a Green’s function for the associated

homogeneous equation or BVP. Then it satisfies the equation

2
e L CTE ) P (i) with G(0,x") = 0 = G(L x") therefore
—2(1-x) ;0<x<x
I} l
= G6(x,x") = Y

—=(l-x) ;x<x<l
Since from Lagrange’s identity

/ / b ..
ff[uL(v) —vL(w)]dx = |p(x)(u(x)v'(x) —u (x)v(x))|a ............ (i)
By comparing given equation with SL equation w get
p(x) =1,q(x) =0 and from BC’s a =0,b =1

And L =%{p(x)%}+q(x) =ix{1 }+ 0= :Zz

Then (ii) = | [u— — vZ—“] x = [1(u(x)v'(x) —u (x)v(x))|
Take v(x) = G(x,x")

= fy [u5 gl ]dx = | ()6 (x, %) — ' (16 (x,x))]

Since from (i) 2 = 8(x — ') and also given 75 = f(x) therefore
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= fol[wS(x —x") = Gf()]dx = |(u(x)G' (x,x") — u' (x)G'(x, x’))|i)
= (w6’ x) —u' (D61 x)) — (u(0)6'(0,x) —u'(0)6'(0,x)) ......... (iii)

—%(l—x’) ;0<x <X

Now using G(x,x") = { and u(0) =, u(l) = B

—XT(l—x) X' <x<l

= [\ [ud(x — x) — Gf(x)]dx

- (sC)-# (0]~ (< (D (Da-0)
= [ius(x—x) - 6f@]dx = B (%) + 21 - x)
= fol[ué'(x —x) - Gf(x)]dx = (B—oc)xT,+oc ......... (iv)

Now using property of dirac delta
[8(x —x"f(x)dx = f(x) = [ 8(x — xHu(x)dx = u(x")

(iv) = folu(x)S(x —x")dx — fol G(x,x")f(x)dx = (B—x) xT, +
= u(x’) — fol Gx, x")f(x)dx = (ﬁ—oc)xT,+oc
=>u(x) = fol G(x, x")f(x)dx + (ﬁ—oc)xT,+oc

= u(x) = fol G(x", x)f(x'")dx" + (B—x) % +

Where we replace x’, with x and x with x"”
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EXAMPLE: Determines the Green’s function for the exterior
dirichlet problem for a unitcircle V2u=0,r > L,u=f,r=1

Solution: Consider Green’s function assume the form

GEmxy)=fEmxy)+g9&nxy)

where f(&,1; x, y) known as free space Green’s function satisfies

V2f = §(§ — x,;m — y) in domain D and g(&,7; x, y) satisfies V2g = 0

so that by superposition G = f + g satisfies the equation

V2G = 8§(§ — x, — y) in domain D

Also G = 0 on boundries requires that g = —f on boundries.

Now for Laplace operator f must satisfies V2f = §(§ — x,n — y) in domain D then for

r = 1 we have

2p 10 (LOF) _ o _
Vof =-— (rar) = 0 and solution will be f = ¢4 + c;logr

Now applying the condition lim,_, fcf‘;—flds = 1 where n is outward normal to the circle

andC. = (§—x)2+ (m—y)* =€*Weget f = ilogr

Now if we introduce the polar coordinates p, 8, o, B by means of the equations
x = pCosO,y = pSinb,§ = oCosP,x = aSinf

We get g(o,B) = % + Y1 0™(a,Cosnpf + b,Sinnf)

Where g = ilog (1 + p? —2pCos(B — 0)) on boundry

p"Cosn(B—0)
n

Now by using the relation log (1 + p? —2pCos(B — 0)) =24 and equating

__p"Cosnd

the coefficients of Cosnf, Sinnp to determine a,, b,, we find a,, = v ,b, =

plSinn6

2nn

It therefor follows that g(p, 0,0, B) = izﬁzl (po)"Cosn(B—0)

9(p.0,0,8) = -log (1+ (po)* ~ 2paCos(B - 6))

Hence the required Green’s function is as follows;

G(p, 6;0,pB) = ﬁlog (p2 + 0% — 2paCos(B — 9)) _

ﬁlog (1 + (po)? — 2paCos(B — 0))
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VARIATIONAL METHODS

The subject of calculus of variation or variational method is similar to but
more general than the subject of maxima and minima in Calculus.
FUNCTIONAL.:

Let M be the set of functions defined over the interval [a,b]

i.e. M ={f | f:[a, b] » R} such that each function is integrable then a rule of
function I: M — R defined by I[f(x)] = JeR is called functional.
STATIONARY VALUE:

The maximum or minimum value of the function or functional is called
stationay value OR the point at which the 1% derivative of a function or
functional become zero is called Stationary value.

EXTERMAL.:

The curve y = f(x) along which the functional ‘I’ takes the stationary values

is called extermal. i.e. if SI[f(x)] = 0 then y = f(x) is extermal curve.

SOME EXAMPLES OF VARIATIONAL PROBLEMS:
Here we discuss some important problems whose attempted solutions have led
to the development of the subject of Calculus of Variation.
Historically there are three such problems;
I.  The problems of geodesics: i.e. to find the cuve of minimum length
joining two points on given surface.

ii.  The brachistochrone problems: i.e. to find the path of quickest
descent, joining two points in spacew, for a particle moving under
gravity.

iii. Dido’s problems: i.e. the problem of findind curve of given length

which encloses maximum area by itself or with a given straight line.
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GEOSDESICS PROBLEM:

Find the curve whose distance between two points is minimum.
EXPLANATION: Let y = y(x) be a curve C on the surface S which is
represented by z = z(x, y). Then suppose that A and B be the two points on

the curve C. then distance (length) between two points A and B is given by

I A L (i)

In the case of any surface ds = \/ (dx)? + (dy)? + (dz)?

Since curve lies in xy — plane therefore z = 0 then we get

ds = /(dx)2 + (dy)?2 = |1+ (%)2 dx = /1+ (y")2dx

(H)=>1= ff ds = fAB 1+ (y)2dx this is our required length.
BRACHISTOCHRONE PROBLEM:

A particle falls under gravity from A to B. determine the curve along which
the time taken by the particle will be minimum.

EXPLANATION: Consider a particle falls under gravity from A to B . then

instantaneous velocity is given by V = % and time taken between A and B is

B dt B 1 B1 .
fA Eds= AEdszfA -ds .......... (i)

dt

given by total time = f: dt =

Now using 3" equation of motion under gravity we get V = ./2gy

(i) = total time = J%—gf:%;\/ 1+ (y)%dx = J;—gff /1+(;')2 dx required.
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DIDO’s PROBLEM:
Find the closed curve of given length which enclosed maximum area.
EXPLANATION:

Suppose that y = y(x) is the curve which meet the x — axis at points x; and x,

and enclosed maximum area A = fxxlz ydx and and the length of the same

curvegivenas L= [ *ds = [ *y/1+ (y)2dx then the problem reduces to

that of maximizing the area in equation 4 = fxxlz ydx subject to the condition

giveninl = fxxlz ds = fxxf 1+ (y)%dx

(Remember)
Discuss 3 well known problmes, viz., geodesic, brachistochrone and dido’ and

formulate them as variational problems.

FUNDAMENTAL THEOREM ON VARIATIONAL CALCULUS:
If f(x) is continuous function in the interval (x4, x,) and the integral
f;‘f f(x)g(x)dx is identically zero. i.e. f;‘f f(x)g(x)dx = 0 where g(x)
satisfies the following conditions;

I. Itis an arbitrary function with continuous derivatives in the interval

(%1, x2)
. g(x) =g(x) =0
Then f(x) = 0 for all xe[x4, x5 ]

PROOF: We prove by contradiction. If possible let f(x) # 0 in (x4, x3). Then
there is at least one point x, in (x4, x;) such that f(x,) # 0. Then because of
continuity of f(x) in (x4, x3) there must exists an interval (xo — 8, x¢ + &)

where & > 0 surrounding x, such that f(x) > 0 for all xe[xy, — &, x¢ + J]
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Since g(x) is arbitrary, it can be taken as

g(x) = {(x —x0+ 8 (x—x9—6) if xe[xg— 6,x¢ + 8]
0 otherwise

It is clear that g(x) = 0 at the endpoints of the interval (xo, — 8, x¢ + 8) and
has continuous derivative inside the interval. Then integral f;lz f(x)g(x)dx
becomes fx’;"__;f(x)(x —x0+8)*(x—x9—8)*dx >0

This is contradiction, as fxxlzf(x)g(x)dx =0

Hence f(x) = 0 for all xe[x{, x;]

EULER LAGRANGE’s EQUATION:
Let] = fxxlz F(x,y,y")dx where y = y(x) is a continuous function having

continuous 1% and 2" order derivatives satisfying the following endpoint
condtions y; = y(x4) and y, = y(x3), also if F is supposed to be have
continuous 1% and 2" order derivatives w.r.to its arguments, then the function

y = y(x) will extremise the given integral if it satisfies the following DE
oF d (0F
3~z (5y) =0
PROOF: given that I = fxxlz F(x,y,y)dx
/ oF oF ’
81 = f:z 8F(x,y,y)dx = fxx: (a—6y + ;6‘y ) dx

51—]"2”5 dx + [ F(Syd f"za Sydx + [*=" 8 () dx

ay/ dx
61_f"2"F5 dx+ 72 2 (8y)dx
61—foan dx +[ —f"z(a (aF)dx]
yl
51 = aFSydx [(5y) (;’yF) x since 8y(x,) = 0 = 8y(xy)
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For extermal curve 81 = 0 then [ * Z—; ydx — [, *(8y) % (:—;) dx =0

o156 ayax=o

ay dy
daF d (O0F . .
- E(a_y') =0 8y # 0,dx # 0 being orbitrary values.

SPECIAL CASES:
I. When F is independent of ‘y"’

Then :—; = 0 then EL equation becomes as follows;

g—i = 0 this is an algebraic equation in ‘x’ and ‘y’. the solution may

not satisfy the given boundry conditions.

ii.  When F is independent of ‘y’

Then 3—5 = 0 then EL equation becomes as follows;

d (9F aF
—(=)=0=>—=
. (0y,) 0 2y Constant

iii.  When F is independent of ‘x’

Then ‘;—I; = 0 then EL equation becomes as follows;

oF d (aF) —0
ay dx\ay')

OF d (OF OF d (dF\dy _9F d [dF\ ,
5—=—(=)s—=—(=)=>—=—(—=
dy dx \ay' dy dy \ay'/ dx dy dy \ay'

> (5)dy=d(5)y s )
Since F = F(y,y') = dF = Z_:dy n :—;dy’
> dF =d(55)y +55dy by (i)
sdF=d(y ) =d(F-y2)=0

aF
>F—-y a constant
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iv.  Suppose ‘F’ is linear function in y'

ie. F(x,y,y)=M(x,y)+ N(x,y)y  ......... (i)

() = 2 = (x| My | (x| AN dy)
ay ax dy dy dy dxdy dydy
doF oM oN\ , .s
5 —=\— — Y ceececens
ay (ay) + (ay) y (ll)
. . dF
Again (i) = P N(x,y)
aN dx aN dy 6N oN ,
> — | — = -_— —_- —_— T Y eccccccee
(ay,) (N( )) ox dx 6y dx ~ ox + ay y (lll)
nOW&Sa—F—i(a—F) =0
dx \ay')
oM ON\ , ON 0N ,
= | — — _— —— vy =
(6y) + (6y)y Ox ayy 0
oM ON oM  oN
_—— = > — = —
dy Ox ady dx

= M, (x,y) = N,(x,y) thisis nota DE which may not satisfy the given

boundry conditions.

EULER’s LAGRANGE EQUATION IS SECOND ORDER DE
d (0F .
As we know that —y —— (—) =0 .ieeeennnnn >i)

dx \ay’
. aF :

Since F = F(x,y,y") then 2 5 and 3y are also functions of x, y and y'
Then by using chain rule
OF _ A (OF)_ 9 ()dx 0 (OFydy, O (OF)dy
ay dx \ay' dx \dy'/ dx ay\ay'/dx ~ ayr \ay'/ dx

dF _ @ (oF a (dF\ , @ (ap) "
=> _— — —_— —

dy  ox (ay’) + ay (ay’) y+ ay’ \ay' y

= F, =F,,,+F,,y +F,,y" whichis2" oder Differential equation.
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EXTENSION OF EULER LAGRANGE’s EQUATION WITH ONE
INDEPENDENT VARIABLE AND MANY DEPENDENT VARIABLES:

Let] = f:lz F(x,y,,yi)dx; k=1,2,3,......nwith the stationary condtions

vy, (x1) = constant and yk(xz) = constant, then Euler’s Lagrange’s

d ( OF
eguation can be written as a_yk —-— (ayk') =0

PROOF: giventhat I = fx F(x,y1, yi)dx

/ oF
ol = f:z (S'F(x,yk,yk )dx = fxl ( Syk + _ayk ) dx

Yk
Sl_fxz oF 6 dx _|_fo oF Syk'd = 6ykd +fxz aai/ (L:i};ck) dx
oF oF d
81 = f;‘:a Sy dx +f"2 ,dx( 8yi)dx
JaF
61 = fxz 6ykdx+ |_(6 - fxz( k)a(ay ,)

X2 dF

81=[* 2 Sydx — [[*(8y k)a( =) dx since 8y, (x1) = 0 = 8y, (xz)

Ay’

For extermal curve 61 = 0 then fxxz oF 8ykdx f 2(8y k)E(_) dx =0

S5 & G| oy =0

oF d (BF

Ay’

—— ) 0: k=1,23,.

6y, # 0,dx # 0 being orbitrary values.
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EXAMPLE: Let I = fxxlz F(x, @, @', ") dx with the stationary condtions
6p(xy) =0¢p(x,) = 0and 6y (x;) = Y (x,) = 0 then

o ag) =0l H-(p) =0

PROOF: given that I = fx"f F(x, @, ¥, ¢ P)dx

81=[26F(x, 09,9 W)dx = [* (380 + 2o 8% + 5 8¢ + - 69') dx
1 ! Y
61—fx26F8(pd +fzaF6<pd +f2 "~ Spdx +f"2”61pdx

Sl—fxz an(pd +fx2 oF (d(p)d +fxzap81[)d +fx2 JoF (—)dx

X2 oF X2 aF d

ald

X2 aF d

61—f 1 Oy dx

5, S0dx +f"2 , Swdx + [(220 - (S)dx + [P n - (8 dx

6I=fxzap&pd + [ 2—6¢d +[

[Ia,,,, ~ [ o) & () x]
81 = f"z o Spdx + [ 50 swdx — [2(69) 1 (5) dx — [7(6) 1 (5-) @
since 6@ (x1) = dp(xy) = 0and dY(xy) = 6Y(xy) =0

81 = [ (g—(‘; - % (aw)) Spdx + [ <"_F _ 4 (a:p:)) Spdx

For extermal curve 61 = 0 then

(2 £ (2))spax + 2 (% - £ (22)) swax =

g <§_: -4 (a¢,)> Spdx =0 and [ (— 4 (aw )) Spdx =

e e agr) =0 3055~ 52 () = ©

6@ + 0,dx + 0,5y # 0 being orbitrary values.

- 72603 () dx]
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EXTENSION OF EULER LAGRANGE’s EQUATION WITH ONE
INDEPENDENT VARIABLE AND ONE DEPENDENT VARIABLE WITH
ITS HIGHER ORDER DERIVATIVES:

Let] = f:lz F(x,y,9,y",y", ....y™)dx with the stationary condtions
y(x1) =y (x) =y"(x1) =+ eee oo = y™(x1) = constant and
y(x) =y (x5) = ¥ (x3) =+ euvo...= y™(x,) = constant, then Euler’s

Lagrange’s equation can be written as

1A (9F) L _1)2 _qyn 4L (L9F )\ _
ay + ( ) (0)") ( ) dx? ( y”) e + ( 1)" dx™ (0)’(")) =0
PROOF: given that I = fx12 F(x,y,9,9",5", ...y™)dx
81 = f:lz SF(x,y,¥,y",y", ... y™)dx
— (X2 or 17 JdF (n)
6I—fx1( 8y ++ 6‘y + 6y + - ...+ay(n)5yn)dx
81 = [*2 an dx + [~ Syd X+ [ 6y”dx+ ...... + fx?%&y(")dx
............... ()
. X2 dF ) _ xza_F ﬂ (X2 aF d
Consider fxl 5y Oy'dx = [ ayla(dx) dx = |, oy @ —(8y)dx
X2 JaF ] _ X2 _ X2 a (or
fxl a—y,Sy dx . f (6y) - (ay,)
[¥2oE y'dx = — [(8y) - ( ) X since 8y(x,) = 0 = 8y(xy)
X1 dy/ dy’ y(X1 MACY)
aF . ,
[ 8y'dx = (- [(8y) 3 (5) dx
X2 aF 17 _ xza_F ﬂ _rx2 dF i 7

Also f y''dx = fxl P S(dx) dx = e (6y)Hdx

x OF " X2 JoF
fxl ma f ( (6le) dx

x2 OF T} _ Xy ~ d [ OF . . .
fxl m&f dx = — fxl (6}')3(03:,/) dx since 6y(x1) = 0 = 8y(x,)
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AICHIN

X1

S o ®dx = =5

+ (-1 fxz( )dxz (ay”) dx

ayll

fxz 7 8y"dx = (—1)* fxz( y) dxzz (ay'f) dx

X1 aylr

oF
Similarly  [72-"5 §y®™dx = (-1)" [[*(8 )@(ay(n)) dx

Then equation (i) becomes

2 8ydx + (D! [y 5 (5) dx + (12 [[2(69) 13 (a ~) dx +

X2 dF

51 = [22

e () [2(EY) (5 (n)) dx

For extermal curve 61 = 0 then

f"“’pa dx + (-1)! [*(8y )—(—)dx+( 1)2 [7(8y) (‘;":’)dx+
e () [22(EY) (5 (n))dx—
[+ D (55) + (-1 2L (30) ++ + (D" 22 (555)| ydx = 0

T+ (D1 (5) + (1 2L (3) e + (—1)nd—;(ay(n)) =0
6y + 0,dx # 0 being orbitrary values.
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EULER LAGRANGE’s EQUATION WITH TWO INDEPENDENT
VARIABLES:

LetI= [ rF (x, Y, U, Uy, uy)dxdy then Euler’s Lagrange’s equation can be

written as a—F—i(a—F) _9(E)_p
du  0x \Odu, dy \du, a

PROOF: giventhat I = [f F(x,y,u,u,,u,)dxdy
8l = [[ . 6F(x,y,u,u,, uy)dxdy

ol = [f (a +—6 +— 6u>dxdy ........... )

Consider ;(—6 ) 0 (0ux)6 +a—Fi(6 )

du, ox

"—Fi(s ) = o (- 8u) — o (5:0) Su

Jdu, dx \Odu,

d [ F d [ F
6ux 6 = ox (aux 6“) " ox (a_ux) ou

. a [ aF F
Similarly 6—6 =3 (auy >__(a_)

(i):81=ffR(£ u+ :—x(a—pé'u)—— aux ai a—F ) ( )6u)dxdy

du,

=681 = [[ (—u — % (:up) 60y< )) dudxdy + | < ™ 6u>) dxdy
=é6l=1,+1, ... (ii)
. d ( OF d ( OF
Consider I = [f, <£ (a_ux Su) +2 (a_uy 6u)> dxdy
— 6 —(9F OF — ¢ (OF gy OF ,
Iz = ¢C (auy 6udx> + (aux Sudy) = ¢C (aux dy " d.X') ou by Green’s theorem

Since u is prescribed on the boundry therefore due to the closed curve du
must be zero.i.e. I, =0

(i) > 61 = [[, <£ - a((,;"j) a"y (a )) dudxdy

oF d ( oF d ( OF
= ff, (E — o (aux) % (a )) dudxdy = 0 for extermal curve 61 =

oF 0 ( dF 0 ( OF ;
=>£_£(a_ux)_5(a)_0 since du # 0,dx # 0,dy + 0

Hence required.
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EULER LAGRANGE’s EQUATION WITH THREE INDEPENDENT
VARIABLES:

Let] =[] f F (x Y, Z, U, Uy, Uy, uz)dxdydz then Euler’s Lagrange’s equation
aF d (dF a (oF a (dF

can be written as 5u  an (a_ux) ~ 3 (a_uy) — (a_uz) =0

PROOF:

given that I = [ff F(x,y,z,u,u,, uy,u,)dxdydz
o8I = [[f ,6F(x,y,z,u,u,,uy,u,)dxdydz

s1=JIf, ("_F B + Bty + Bty + o 8uz> dxdydz oo @)
Consider ai(:TFSu) = ;—x(;:) ou + a—Fi ~(6u)
a

0 o= ()2 ()

:—LSux = ai(:—ié‘u) —i(:—p) ‘u

a
oF _ 9 (oF d [ oF
Slmllarly o Suy ay<a Su) 0y<0uy) ou
doF
A 2, (2 ) ()
, oF d [ dF a ( oF a ( oF
(l)=>81 fff ( ( xé‘u)—a(a—%)8u+a—y(a—wdu>—£(a—w)8u+

% (::z Su) _ (auz) 6u) dxdydz
S 1= T, (a -2 (3 - 2 (2) - 2(25) ) audxay + I, (% (3 6u) +

a ad ( oF
p ( . Ot ) = ( - 8u)) dxdydz
S8I=I+1; e (i)

Consider I, = [ff, < (5o 0u) + ai(a_F 8u) + ai(:‘” 6u)> dxdydz

ou, 6uy
) dv

L=, (2i+2)+2k). (o
I, = [[f,V.Gdv

= I, = p G.7ids by divergence theorem.

Since u is prescribed on the boundry therefore due to the closed curve du must be zero. i.e.
12 =0

)= 81 = 1, (35~ 2 (50) - 3 (32) - 2 (35) ) duaxay

JOF d ([ OF ad ( OF
= [If, <£ - (aux) ~ 2 (auy) p ( auz)> dudxdy = 0 for extermal curve 61 = 0

oF @ (dF a (aF a (dF .
i ax(aux) ay(ﬁ>_£(auz)_0 sincedu # 0,dx # 0,dy # 0,dz # 0

Hence required.

For video lectures @ Youtube; visit out channel “Learning With Usman Hamid”



127

PLATEAU’S PROBLEM: (Problem of minimal surface)

In this problem we will find the surface of minimal area which is bounded by
a given closed curve.

EXPLANATION:

Consider a surface z = z(x,y) where x = x(u,v) and y = y(u,v) then 1%
fundamental form of given surface is

(ds)? = E(du)? + 2Fdudv + G(dv)?

Where = #,.7, = |¥,|?> , F =7,.7,, G = 7,.7, = |¥,|? are fundamental
quantities of the surface. If we take parameters (x,y) and putu =x,v=1y
then

=|1—;x|2 OxA_I_a_yA_|_ k| _|11—|—O]-I—Z k| (\/1+zx2'|)2
E=1+2z>

2
G=|?y|2 a’“+a—yA+ k| = |0i + 1j + z, k| ( |1+zy2|>
G=1+2z>°

= ay . ox ., 0y,  0z3Y\ A T A T
F=7.7,= ( P+ -j+ - k) (— i+ +5k) = (18 + z,k) (1 + z,k)
F=2zz,
Putv = constant then (ds{)? = E(du)? = ds = VEdu
Put u = constant then (ds,)? = G(dv)? = ds = VGdv

Thends = |ds; X ds,| = |ds||ds,|Sin6

ds = VEduJGdvSin® = ds = VEGdudvSiné ......... (i)
. _F_ P — > _ VEG-F?
if CosO = N and Sin0@ = V1 — Cos?0 = Y

(i) > ds =VEG — F?2dxdy
= s = [[[ VEG — F2dxdy
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=5 = I J(+2)(1+ 2,7) — (2,2,) dxdy

== fff\/1+z,,c2 + z,2dxdy

Now let F = F(x,y,z 2,,2,) = \/1 +2,% + 2,2

Then by using EL equation for two independent variables
aF d (9F a (oF
5__((32,{) 5(@) =0
2 2_0 (9 2 9 2
J1+z +z, ax(azx\/1+z +z, ) Oy(azy\/l-l_z +z, ) 0

i} Zy i} zy

ox /1+zx2+zy2 ay ’1+zx2+zy2

=>0-— =0

a Zy a Zy

ox\ [, 2.2 o\ T,
1+2z,2+2,2 Y\ [1+2,2+42,2
ZyZ
( ’1+zx2+zy2)zxx—%zx ( ’1+zx2+zy )zyy —X X 4,
/1+zxz+zyZ 1+zx2+zy
3 +
( /1+zx2+zy2) ( /1+zx2+zy )

N <(1+zx2+zy2)zxx—zxzzxx> n <(1+zx2+zy2)zyy—zyzzyy> —0

(1+zxz+zy2)3/2 (1+zxz+z},2)3/2

= =0

= (1+ 2,2+ 2)%)zy, — 2,°2,, + (1 + 2,2 + 2,%)z,, — 2,%2,, = 0

= (1+2,%)2z,, + (1 + 2,%)z,,, = 0 this is our required.
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CONSTRAIN EXTREMA OR PROBLEMS WITH CONSTRAINTS OR
VARIATIONAL PROBLEMS WITH SIDE CONDITIONS OR
ISOPERIMETRIC PROBLEMS:

To find the stationary value of a functional I = fxxlz F(x,y,,y'1)dx where the

argument of F are subjected to constraints or additional conditions such as
I. G(x,y,) = constant
ii.  G(x,y,Y'x) = constant

iii. fxxlz G(x, ¥, y'1)dx = constant

Then we construct a new function involving parameter Ai.e. H = F + AG

EULER LAGRANGE EQUATION FOR CONSTRAIN EXTREMA

The extermal curves y, = yr(x) ;k =1,2,3, ...........,n of the functional

I= fxxle(x, v, ¥'1)dx with constraints

Gi(x,yx) = constant ;j=1,2,..,n ............. @)
Then J = [ F(x, ¥, Y1 0dx + I 4 f; Gi(x, y)dx
J= [ (Fyey') + ZE1 4 Gi(x,y))) dx = [ Hdx

With F(x, y,, y'1) + X1 4; G;(x,y,) = H where 4; = 4;(x) are suitably

choosen multiplier. It is clear that the Euler Lagrange’s equation in this case

: OH d ( oH ..
willbe 24— E(ay,k) 0 k=123, e )Tl e (ii)
Then the curves y, = y(x); k=1,2,3, ... ... .....,nn can be obtained from

both equations.i.e. (i) and (ii)
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GEODESIC:

A geodesic is the curve of shortest length joining two points in space.
EXAMPLE:

Prove that a straight line is the shortest distance between two points in the
plane.

PROOF: Since this is the geodesic problem therefore we use the functional
. b AV H . ! _ N2

I=[ {1+ ¥)%dx with F=F(x,y,y) =1+ ()

Since F is not depend on ‘y’ therefore we use following EL equation;

oF d (dF

3y~ (3yr) = 0

oF d (0F
=>—=0and—(—) =0
ay dx \dy’

F
= 9F _ Constant = C
ay!

ia—(m)
W_C:y —C\/1+(y)2

= () =CA+ )% =C*+ Yy
> -CO)=C>01-C)Y) =

2 CZ . CZ
=) T 1-c2 =y = 1-C2

Cc2
1-C?

>y =—==a (say) where a =

zf%dxzfadx

=y =ax+c  which is straight line.
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The applications of the Calculus of Variations in Mechanics are based on
employing Principle of Least Action and Hamilton’s Principle;

stated as below;

PRINCIPLE OF LEAST ACTION

According to this principle:

Let a particle move in an external field of force which is conservative. If the

motion takes place in the interval of the time from t, to t, where t, > t; then
the actual path traced by the particle is the one along which I = fttlz Ldt is

minimum. Where L is the Lagrangian and for a conservative system

L =T -V = kinetic energy — potential energy

HAMILTON’s PRINCIPLE:

According to this principle:

The path of motion of a rigid body in the time interval t, — t; is such that the
integral 4 = fttlz Ldt has a stationary value, where L is the Lagrangian.
EXAMPLE:

Find the equation of the path in space down which a particle will fall from one
point to another in shortest possible time.

Solution:

This is the Brachistochrone problem, therefore we use the following functional

b 1 b 1+( /)Z . , 1 1+( ,)2
szadt=>1=\/7—gfa /Tydt with F=F(x,y,y):\/7_g ;’

Since F is not depend on ‘x’ therefore we use following EL equation;

y(OF\
F—y (a_y,) = constant

N 1 1+(}”)2 I 1
Jzg\ ¥ Y 29

ai (w/ 1+ (y’)z) = constant

ﬁ|~
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1 [ [on? yLe =\
:J@_ ” \/’a (w/1+(y) )] = constant

= 1 - o0t Ly = constant
J29 \] y y Sy 1+ o2

1+n2  (n?

[y

= = constant
V2g [N v Yy 1+(1)?
! 2 "2
= (Lo ) = ,/2g(constant) = a(say)

y \/y(1+(y )?)

2
- ’1+(y')2 _ O — a2
y Vy(1+(y"H?)

,2 \4 12 N2
G CICOLINNC) _2< o2 oY >= 2

y y(1+("?) ya+("H?)
1+(yn)? oH* 2(y")? 2
= — =
vy Tyarom Ty @
(1+(y')2) +)*-20")?(1+()?) 1 2 :
> ——— = fter solvin
ya+()?) =a' = s = @ after solving
Y 1 ! ] 1 1-a?
:'1=“2y<1+<y>2>:*aT=<1+<y>2):(y>2 =5-1=32

1ay

2 f\/ﬁdy fdx=x+c¢c

Put a?y = Sin*0 = a*dy = 2S5in0Cos0d0 > dy = %SinﬂCosGdO

f\% ;SmBCosedH =x+c=> %f “ZZZ.SinGCosGdO =x+c
znginZBdB=x+c=>%f1_coszod9=%f1—60520d0=x+c
= x = i(ze —Sin20)+b ......... i)
and y= ﬁ (2Sin%0) > y = ﬁ (1— Cos20) ......... (i)

(i) and (ii) are parametric equations of cycloid, where a’ ,’b’ are constants.

Thus the curve downwhich the particle takes the minimum time is cycloid.
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DIDO’s PROBLEM:
Find the closed curve of given length which enclosed maximum area.
EXPLANATION:

Y

I 2

o (<O . - (X?O)
Suppose that y = y(x) is the curve which meet the x — axis at points A(x4,0)

and B(x,,0) and encloses maximum area. Since area enclosed A = f;f ydx
therefore we have to extremized the functional [ = f;lz ds = fxxlz 1+ (y)%dx

Here F = y,G = /1 + (y')? and therefore we construct a new function

H=F+AG6=y+AJ1+ (y")?

Since there is no explicit dependence on ‘x’ so we use the special case of EL

equation.i.e. H —y’ g_:’ = cosntant

! ! a !
>y+AJ/1+ ()2 -y F(y+)“/1+(y)2)=c1
>y+Ay1+ ()2 - L c1

e

1+(y')%- (y)2> ( )_ _
:”1( J1+(")2 —y=4 Jronz) ATy

c1—-y 1 (c1-y)* 1 N2 A2
= = = = =
1 V1+(y")? A2 1+(y")? =1+0) (c1-y)?

! ! )‘2_ -y)? ! d A2— -y)?
=>(y)2= _1:(),)2: (c1-y) =>y=_y=\/ (c1—-y)

(c1—-y)? (c1—-y)? dx c1-y

c1—Yy _ z
M= A
=>Ef(/12 —z2)"V2 (=22)dz = x + c,

dz=[dx putc,—y=z
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>-L7) x4 -2) V2 =x+c, 22222 = (x+¢y)?

SA=(x+6) 2 +22=22%=(x+c)*+(y—c1)?

This is an equation of circular arc where the constants c4, ¢, can be
determined by using the given conditions y(x;) = 0 = y(x3)
INVERSE OF DIDO’s PROBLEM:

It can be stated as;

The extermal curves of the functional I[y(x)] = fxxlz F(x,y,y")dx with the

endpoint conditions y(x;) = y41,y(x3) = y, and subject to the constraint

Jlyl = fxxlz G(x,y,y)dx = constant are the same as the extermals of

funtioan J with the same endpoint conditions and subject to the constraint
J[y] = constant
PROOF:

Consider F = F(t,x,y,%y) = /&> + 3% and G = G(t,x,y, % ¥) = 5 (xy — xy)

Therefore H = F + AG = /&2 + 32 + > (xy — i)

: oH d (9H dH d (9H
As the EL equations are Pl (5) =0 and % @ (a_y) =0

In this problem these equations reduce to

. d x _ ._i x . _
Ay—a(w—ly>—0 and Ax dt(m Ax)—O

Which on simplification and integration yield

21y NE C, and 2Ax Foee C1
2
On eliminating x, y we obtain (x—cD?*+(y—cp)? = (%1)

r_a ’:C—Z
Where €1 =15, and c, )
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EXAMPLE:

Find the curve joining the points A(x4, y1) and B(x5,y,) which give the
minimum area of the surface of revolution around y — axis.

Solution:

This is a Dido Problem in xy — plane. We want to find a curve which gives the
minimum area of surface of revolution generated around y — axis.

Since curve revolve around y — axis therefore

Area = fAB 2nxds = 21 ff xJ1+ (y)2dx with F(x,y,y") = x/1 + (y')?

Since F is not depend on ‘y’ therefore we use following EL equation;
OF d (dF
3 s () = ©

aF d (aF

aF
> —=0and — —)=O:—=C0nstant
dy dx \dy' ay’

= % (xx/ 1+ (y’)z) = a (say) = J%y)z =a after solving
=xy' = a1+ ()% = () = a*(1+ () = o - a®)(Y)? = @
Sl =r sy == % o lay=["_4dx

x2-a? dx | [x2_q2 [x2—a2
= y = aCosh™! (f) +c required.
a
EXAMPLE:

Find the curve joining the points A(x4, y1) and B(x5,y,) which give the
minimum area of the surface of revolution around x — axis.

Solution:

This is a Dido Problem in xy — plane. We want to find a curve which gives the
minimum area of surface of revolution generated around x — axis.

Since curve revolve around x — axis therefore

Area = fAB 2myds = anAB yJ1+ (y)%2dx with F(x,y,y") = yJ/1 + ()2

Since F is not depend on °x’ therefore we use following EL equation;
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 (OFY _
F—-y (a_y,) = Constant
nNZ _ 2\ | =
yJ1+ @)% —y <ay/ (y 1+ () )) = Constant
= yJ1+ ()2 - ﬁy() T = a(say)

1 N2)— )2 ] ! !
_ X +(3;i(3”)3;(y) —a=y(1+ )% - (")) = a1+ ()2

>y=ay1+ () =>y*=a’(1+ ()% = a® +a*(y)’
>y - a? = a}(y')?

n2 _ yi-a? y _dy _ Jy*—a? _
=>(}’)2—7=>)’—a— a =>f/—2 asz’—fdx
_ -1 (¥ :
= x = aCosh (a) +c required.
EXAMPLE:

On what curves can the functional I = [2((y")* — y*)dx with condition
y(0) =0,y (g) = 1 be extremized.

Solution:

I=[2/(y)%—y*dx with F(x,y,y") = (y")? - y*

Since F is not depend on ‘y’ therefore we use following EL equation;
oF d (9F
3y~ (3yr) = 0
0 N2 2y _ 4 2 2y | —
> (O = yD) dx<ay,<(y> )) =0

= —Zy—d%(zy’) =0=>-2(y+y")=0=>y"+y=0
Then general solution will be y = Acosx + Bsinx
>y(0)=0=>A4=0 and =>y(§)=1=>3=1

Hence The general solution will be y = sinx
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EXAMPLE:

Find the extermal for I = f(;it((y’)2 + (2')? + 2yz)dx with condition
y(0)=0,y (g) =1;z(0) = O,Z(g) = —1 be extremized.

Solution:

We have I = f(?((y’)2 + (2)? + 2yz)dx with F = (y)? + (2))* + 2yz

since there are two unknown functions ‘y’, ‘z’ (extermal curves) there will be

a pair of EL equations;
Since F is not depend on °y’ therefore we use following EL equation;

‘;—5—%(;—;)=0 .......... () and ‘;—:—%(g)=o .......... (i)
(D = - (O + () +2y2) — (% (02 + () + 2yz)> =0
=>2z—%(2y’)=O=>2(z—y”)=0=>y”=z .......... (iii)

(i) = 2 ()2 + @) + 2y2) — 2 (5 ()2 + (2)2 +2y2) ) = 0
>2y-=(22)=022(y-2")=0=2"=y........ (iv)
Using (iii) in (iv) we get = y" —y = 0 .......... (V)

Then general solution of (v) willbe y = Ae* + Be™™ + Ccosx + Esinx
Andy"’ =z = Ae*+ Be™* — Ccosx — Esinx

>y(0)=0=>A+B+E=0....... (vi)

And =y (5)=1=4e:+Bez+E=1.... (vii)
Similarly=z(0)=0=>A4A+B—-C=0.......... (viii)

And =>z(§)=—1:>Aeg+Be_g—E=—1 .......... (ix)

Adding (v) and (vii) B = —A also subtraction from (v) and (vii) € = 0

Adding (vi) and (viii) Aez + Be z = 0 also subtraction from (vi) and (viii)
E = 1 then using the relation B = —AwegetA=0,B =0
Putting all values we get y = sinx,z = —sinx
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EXAMPLE:

Find the extermal for I = f(;it((y”)2 — y% + x?)dx with condition
y(0) = 1,y(§) =0;y'(0)=0,y (g) = 1 be extremized.
Solution:

We have I = f(?((y”)2 — y% + x®)dx

with F = F(X,y, yr,yu) — (yII)Z _ yZ + xZ
therefore the extermal curve y = y(x) is obtained by the solving EL equation

1) 4 _1\2 _ .

D () 4 (12 () = 0 )

(l) = —-2y+0 +E(Zy”) =0=-2y+2y"=0
>y —y=0.......... (i)

Then general solution of (v) will be y = Ae* + Be™ + Ccosx + Esinx
And y' = Ae* — Be ™™ + Ccosx — Esinx

5y(0)=1A+B+C=1........ (i)

And =y(5)=0=Ae:+Be 2 +E=0........ (iv)
Similarly=y'(0)=0>A—-B+E=0.......... v)

And =y (D) =1=4e2-Bez—C=—1... (vi)

Subtracting and simlifying (iv) and (v) (e§ ~1)A+ (e‘§ +1)B=0

Adding and simlifying (iii) and (vi) (e§ + 1)A - (e‘z - 1) B-2=0

N A _ B _ 1
2 (e_%+1) -2 (e%—1> - <eg—1>(e_%—1>—<eg+1><e_%+1>
N A _ B _ 1
2 (e_%+1) -2 eg—l)
:Azzl(e_g+1) and :Bz—l(eg—l)
(lu)=>21(e§+ )——(e2—1)+C—1=>C——(e2—e 2)

1
(v)=>l(e_2+1)+21(e2—1)+E=1:,~E=—21(e2+e 2)

= zl(e_f + 1) eX —— (ef — 1) e *+ Zl(ef — e_f) COSX — 21 (eE + e_E) sinx
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EXAMPLE:

Show that the EL equation for the functional I = f: F(x,y,2z,y',z)dx =0

admit the following 1% integrals;

i. :—:, = C if F does not contains ‘y’

. aF oF . .
ii. F—y — —2z'— = constant if F does not contains ‘x’
ay' 0z’

Solution: The corresponding EL equations are

() =0 and T (D) = 0 (i)

I. When F is independent of ‘y’

Then 3—5 = 0 then EL equation becomes as follows;

d [ dF aF
—(—) =0 >=>— = Constant
dx (6y’) ay’

ii.  When F is independent of ‘x’
SinceF =F(x,y,2,y',2")

aF aF oF , ,  OF , ,
: = — - - T WL 0 eeccccee
dF P dy + 3 dz + 3y dy’ + p dz (iii)
i .. oF d (OF oF d (OF
From (i) and (ii) Iy = (6_yl) and Pyl (5)
dF d (0F\d dF d (0F\ d
S5y we E-LE)
ady dy \dy' 0z dz \dz'/ dx
aF d (BF) / and aF d (aF) 7'
ay dy \adyr y az " dz \dzs
dF

oy = d( S)y'and > dz=d(5.)7
(iii):>dF=d(a—y,)y+d( ")z +—dy+ " dz

=>dF=d(%y')ﬂt(%z'):d(F—y'a—;,—z'%)=0

oF oF
> F — y’ — ’; = constant
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EXAMPLE: (BRACHISTOCHRONE PROBLEM):

A uniform cable is fixed at its ends at the same level in space and is allowed to
hang under gravity. Find the final shape of the cable.
SOLUTION:

(0,0) (a,0) X

ds

G(x

y
The final shape of the cable wil correspond to the state of a stable equilibrium

or minimum P.E. we choose the coordinate axis as shown in the figure. Let
(0,0) and (a,0) be the position of the end points of the cable. The P.E. of the
cable is given by V = mgy where y is the y — coordinate of centroid of the
cable. The minimum value of V corresponds to the minimum value of y
Now y — coordinate of centroid of the curve y = y(x) is given by

vV _mgy my _ f:Pde . f(;lyds

__ vV my 1a -
Y= ing = ‘g m_f(fpds_f(;‘ds_zfoy 1+ (y)dx

Where ‘| ° is the length of the curve.i.e | = foa ds = foa 1+ (y')%dx
Andweusep=?=>m=pl=pf0ads

Here F = y /1 + (¥)2,G = \/T(y’)z and therefore we construct a new
function H=F+ 1G = y\/T(y')2 + A\/T(y’)z

= H = (y+ D1+ ()2

Since there is no explicit dependence on ‘x’ so we use the special case of EL

. aH
equation. i.e. H —y' 3y cosntant

=>@+DV1+ )2 -y % (0 +DV1T+00) =
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=(y+z>\/1+<y>2 200" _

NEerena
> o :yc+1z1 (;C:;jz =T T 1O = (i:;z
ﬁfﬁdy=fdx=>—f\/#ﬁdz=fdx puty+A=z

= ¢;Cosh™! (Czl) =x+c, = Cosh™1 (Z) =% %2 _ cosh (x“Z)

€1 1 1 Cc1

+4 x+c
=L = Cosh( 2

1 1

) =y = c¢;Cosh (x:”) — A e @)

1

= y(0) =0 and y(a) =0 = A _ c,Cosh (C_Z) and * = ¢,Cosh (a+cz)
1 c1

C]_ C1

= c¢,Cosh (Z—i) = c¢,Cosh (— a::z) = z—i = — “:2 = cp = _g
Usingc, = — - and A= clcosh( > ) then using in (i) we get
1

=>y= chosh( __) —c1Cosh (%)
1

1
=>y=cC [osh (?) — Cosh (%)] This curve is called Catenary.
1 1

EXAMPLE:

Show that a solid of revolution which for a given surface area has maximum
volume is a sphere.

OR find the curve which generates a surface of revolution of a given area
which enclosed the maximum volume.

SOLUTION:

Let a curve y = y(x) with y(0) = 0 = y(a) be rotated about x — axis so as to
generate a surface of revolution. An element of the surface is . therefore total

area will be A=2m [ 'yds=2m [ y/1+(y)?dx  and the volume
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element or solid of revolution is wy*dx therefore total volume will be
— a_ 2
V=m[ y*dx
Here F = y%,G = y/1 + (¥")% and therefore we construct a new function

H=F+21G =y? + Ay\/1 + (y')?

Since there is no explicit dependence on ‘x’ so we use the special case of EL.

equation. i.e. H — y’% = cosntant
= y2 + yJ1+ ()2 - ( +Ay\/1+(y)2)—c
A /
= y? + A1+ ()2 - 22 —c=>y2+ly[\/1+(y)2 hf()y,)z =

J1+(yn?
1 N2 —(yn? I; o
:Ay[% =c—y2232y=(C— Y1+ )2 weeeuen.. (i)
Usingy(0)=0=>c¢c=0,{/1+(y)2+#0

(D=2y=—y*/1+ ()i’ =>A1= —y\/l + ()2 = A2 =y*[1+ (¥)?]

02 2002 2 _ A2-y? _dy
S -y =y 0 =2 ) == Y sy = > =i
= [ _Azy_yzdyzfdx:—w//lz—yz =x+a=>2*-y?=(x+a)?
s> (x+a)?+(y—0)?%2=2% this is an equation of circle centered

at (a, 0) having radius 4 and hence the surface of revolution is sphere.

EXAMPLE: Find eigenvalue and eigen function of the functional

— fos[(Zx +3)2(y")?% — y?ldx subjected to the endpoin conditions

¥(0) = 0 = y(3) and side condition [’ y*dx

SOLUTION:
Here F = (2x + 3)?(y")? — y?, G = y? and therefore we construct a new

function H = F + A6 = (2x + 3)%2(y")? — y? + Ay?
H=2x+3)20)%+ A —-1)y*

For video lectures @ Youtube; visit out channel “Learning With Usman Hamid”



143

: : O0H d (dH
Using EL equation i E(a_y') =0

ad ’ d i} /

5y (2x+3)°(y)* + (A - 1)y*) - ;(a—y, (2x+3)2°(¥)* + (A - 1)y2)> =0
> (A—1)2y — % ((2x +3)%2y") = 0

> 2| (@x+3)%y) - (A-Dy| =0 = (2x+3)%y) - (A- 1)y =0
= 2x+3)?%y"+2R2x+3)2y —-(A-1)y=0

=>4(x+;)2y”+8(x+%)y’+(1—A)y=0

Put 2x+3=e'=>InRx+3)=t

3\ o 3\2 5 2
And (x+E)D—A=>(x+E) D2=AA—-1)=A2—A
(i) >[40 —4A+8A+(1—D)]y=0
= 4A2 —4A+8A+(1—-2) =0 sincey # 0
=407 + 40+ (1- D) =0 A= —>+2V]

if A =0 and A > 0 We obtain trivial solution for the given problem

if A < 0 We obtain non — trivial solution for the given problem

if A = —u? then A= —%+ %ni
1
and general solution will be ~ y(x) = e [clcos%ut + cZSin%ut]

1
y(x) = (et)™2 [clcosgln(Zx +3)+ CZSingln(Zx + 3)]

1
yx)=2x+3) 2 [C1Cos§ln(2x +3)+ cZSingln(Zx + 3)] ceeeenneenn(ii)
Using y(0) = 0
clcosgln(B) + cZSingln(S) =0 ..oonennnn(iii)
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Also Using y(3) =0

clcosgln(9) + cZSin'Z—lln(9) =0

= c,Cosuln(3) + ¢, Sinuln(3) =0 veeeneennnn(iV)
For non — trivial solution

Cosgln(S) Singln(B) _

Cosuln(3) Sinuln(3)

= (Cos%ln(B)) (Sinuin(3)) — (Cosuin(3)) (Singln(S)) =

> Sin (uln(B) - gzn(s)) = 0= pin@3) - £1n(3) = Sin"(0)

= ;—‘ln(3) =nn n=1,23ccccuunnnnnn.
2nm 2nm _
ﬁﬂ—ﬁﬁﬂn—% n=123,....ccccceueen.

(iv) = clcosﬁln(B) + CZSln (3) “In(3)=0

= c;Cos2nm + ¢c,Sin2nt =0=¢4;(1) +¢c;,(0)=0=>¢; =0

But c, # 0 we take ¢, = ¢, then eigen solution will be as follows;

ya(x) = \/_Sm G ~_In(2x + 3)

GEODESIC:

A geodesic is the curve of shortest length joining two points in space.
EXAMPLE:

Find the curve of shortest length between the given points in a plane using

polar coordinates.

Solution:
Since we know that I = fAB ds e (i)
Also ds = /(dx)2 + (dY)? ceevrrrrrrnn (i)

Now usig x = rCos0,y = rSin@
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(dx)? = (dr)*Cos?*0 + r?’Sin?6(d0)? — 2rdrCos0Sind
(dy)? = (dr)?Sin?0 + r*Cos*0(d0)? + 2rdrCos6Siné

(ii) = ds = \/(dx)? + (dy)? = /(dr)? + r2(dB)? = /rZ + (2—;)2 do

=>ds =12+ (r')%deo
i)=>1= f:lzw/r2 + (r)2d0 subjected to r(8;) = ¢; and r(8,) = ¢,

Here F = /1% + (r')? Since there is no explicit dependence on ‘0’ so we use

the special case of EL equation. i.e. F —r % = cosntant

= Jr2 + ()% - r’% [\/r2 + (r’)z] =y
2 2 2
z 2 N2 _ ] T/ — +(7"’) (r,) — :> r =
NTe + (T') r \/m €1 = JTr2+(rn? ¢ Jr2+(rr)? ‘1

\/r2+(rr)2 2 T N2 r 2
=>w/r2+(r)2——=>r + (") =3 ) ==-r
r’(rf-a®) = ryri—c,?

C12 d0 C1

4_. 2
= (rI)Z — % = (rI)Z —

dr—fd9:>cl—5ec‘1( ) 0+ c, :Sec‘1(1)=9+cz

1 (&1

=€ fr\/rz cq2

= Ci = Sec(0 +c;) = =c¢q = ¢y =1C0s(0 + ;)
1

—r
Sec(0+c3)
= ¢; = r(CosBCosc, — Sin6Sinc,)

= ¢; = (rCos6.Cosc, — rSind.Sinc,)
= ¢ = (xCoscy — ySinc,)

= —xCosc, + ySinc, +¢4 =0

> -—xXx+By+y=0

Which represent the straight line.
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EXAMPLE:
Find the curve of shortest length on the surface of sphere.
Solution:

Let A and Bbe the two points on the sphere S. here the problem is to minimize

Since we know that I = fAB ds = fAB\/(dx)2 + (dy)? + (dz)? ......... (i)
Now usig x = rSinfCos¢,y = rSinfSing,z = rCos0

dx =r[Cos@dOCosep — Sin6Sinpdy]

dy = r[Cos0dOSing + SinBCospdp]

dz = —rSin6do

= ds = /(dx)? + (dy)? + (dz)? = Jrz [1 + Sm20 ]da

= ds = 1\/1 + Sin20(¢')2d0

D=>l=r f:f\/ 1+ Sin20(¢")2d@ subjected to 1(8,) = ¢; and 7(8,) = ¢,

Here F = /1 + Sin20(¢")? then corresponding EL equation will be

aF d(aF)_O
dp do\ag')

_ 4 (9F\ _ dF ) .
=~ 0-5 () = 0= 5= = (VI+5in20(9"?) =
Sin*6¢"  _ o, ______
= 1+Sin20(pN% C = Sin*0¢’ = C,/1+ Sin%6(¢")

= Sin*0(¢")? = C*(1 + Sin?0(¢")?) = Sin*0(¢')? = C* + CZSinZB((p’)2
= Sin*0(¢')? — C*Sin*0(¢")? = C* = Sin*0(Sin*0 — C*)(¢')? =

= (¢) = S =S
Sin20(Sin%20—C2) dé  sing+Sin%20-C?
- 0 = dp C _ C.Cosec?0 _ C.Cosec?0 _ C.Cosec?0
¢ do Sin20J1— cz J1-C2Cosec?9  J1-C2(1+Cot20)  \/1-C2—C2Cot%0
sin%9
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2 2
> [do = | = 0= o
—C%—C%Co
cj( 1262) —Cot20

=@ = Cose;:ze de

\/( IECZ> —Cot20
>¢=/ _thz dt with 1262 =a; Cotd =t ; —Cosec’0dO = dt

22—

= ¢ = Cos™1 (2) +x= ¢ = Cos™! (?) +x= @—ox= Cos™! (Cow)

a

= Cos(p—x) = % = Cos@Cos x +Sin@Sin x= 1 Coso

a’ Sin6

= raSinfCospCos X +raSinfSingpSin x=rCos0O

= a(rSinf@Cosp)Cos < +a(rSinfSing)Sin x= rCosO

s> aCosxx+aSinxy=z=>Ax+By =12z

This is an equation of the plane through center of sphere. Hence the curve of

shortest length joining A and B is the arc of great circle through A and B.

EXAMPLE:
Find the geodesic curve for the cylinder x? + y* = a?

Solution:

We have to minimize [ = fAB ds = fAB\/(dx)2 + (dy)? + (dz)?2 ......... i)
Now usig x = rCosO,y =rSin0,z =z for cylindrical coordinates
dx = —rSin0d0,dy = rCos0d0,dz = dz

= ds = /(dx)? + (dy)? + (dz)? = /rz + ((‘j—@)2 do

(i)=1= f:fvrz + (2')2dO subjectedto r(04) = c¢; and r(0,) = ¢,

Here F = /1% + (z")? then corresponding EL equation will be
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:0—%(6—F,) =0:%=Constant:%(\/m) =C

= ' — 2 Y N2 _ (2 (42 N2
:Jm C>1z C\Jr*+ (z)? = (Z) C:(r? + (2)?)
2..2
= () -C*(Z) =C*r*=>(1-C*(Z)*=C*1r*> (z)* = (f—zz)
r . Cr E_ _ . o iy
:z—m:de_oc(say):z—oce+c = 7—C =xTan (x)

_C[
= Tan (Z ) =2
< X

The intersection of this surface with given cylinder gives required extreme
curve.

EXAMPLE:

Find the shortest distance between the points A(1,—1,0) and B(2,1,—1) in
the plane 15x -7y +z—-22=0

Solution:

We have to minimize L = [, ds = [, /(dx)? + (dy)? + (dz)?

l=ff\/1+(%)2+(%)2dx=ff\/1+(y')2+(z’)2dx

= 1= [2J1+ ()% + (2)2dx

subjected to constraint 15x — 7y + z — 22

Here F =1+ ()2 + (2)2,6=15x— 7y + z — 22

and therefore we construct a new function

H=F+16 =1+ )2+ (2)2+2(15x — 7y + z — 22)

: : O0H d (0H
Using EL equation o E(a_y') =0
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;_y(‘/l + O+ (@) + 4152 — Ty + 2 - 22)) -

%(61)7’ (\/1 + )2+ (2)2+A(15x - Ty +z - 22))> =0

72 Y _ :
= —72 dx( 1+(y,)2+(z,)2) 0 e (i)
Also Using EL equation:—z — %(%) =0

%(\/1 + ()2 +(Z)2+A(A5x—Ty+z— 22)) —

d (0 7 ;
E(ﬁ(‘/l F (V)2 + (Z)2+A(15x — Ty + z — 22))) =0
:A—i( z )—o (i)
dx \/W T U  eeeeccccccccee
Multiplying (ii) with 7 then adding in (i)
Sy W S L T i
=\ oo TGt G e

Since 15x —7y+z—-22=0
The endpoint conditions satisfied by the functions y = y(x) and z = z(x) are
y(1) =-1,y(2) =1,2(1) = 0,2(2) = -1
=>15-7y'+z2 =0=2 =7y —15  diff. w.r.to ‘x’
y'+7(7y'-15) .
(tit) = JIFONZ+(7y-15)2 ¢

=y +49y — 105 = C/1+ (y)2 +49(y')% + 225 — 210y’

= 50y’ — 105 = €/50(y')%2 — 210y’ + 226

= [5(10y' — 21)]% = [cx/so(y')2 —210y + 226]2

= 25(10y' — 21)% = C2(50(y")? — 210y’ + 226)

= 25(100(y')? — 420y’ + 441) = C*(50(y')? — 210y’ + 226)

= (2500 — 50C?)(y')? + (210C? — 11000)y’ + (11025 —226C*) =0

This is the quadratic equation in y’
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Since C was arbitray, we can always choose it , so that the equation has real
roots. Let « be one such root then y’ =x= dy/dx

>y=xx+pf

Now using y(1) = —-1,y(2) =1,z(1) =0,z(2) = -1
XxX+p=-12x+=1 then x=2,,=-3

Then we get S>y=2x—-3=>y =2

Also for z’ wehave =2z =7y —15=-1

Then required least distance is = 1 = flz\/l + (y)?% + (2')2%dx

= 1= [VI+4+1dx =6|x|} =6

= I =+/6 isrequired least distance.

EXAMPLE:

Find the shortest distance between the points A(1,0,—1) and B(0,—1,1) in
theplane x+y+2z=0

Solution:

We have to minimize L = [, ds = [, /(dx)? + (dy)? + (dz)?

l=ff\/1+(%)2+(%)2dx=ff\/1+(y')2+(z’)2dx

= 1= [T+ 07+ @)%dx

subjected to constraint x +y + z

Here F=1+(y)2+(2)2,G6=x+y+z

and therefore we construct a new function

H=F+16=J1+®)?+ ()2 +Ax+y+2)

: : O0H d (0H
Using EL equation o E(a_y') =0
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aa—y(\/1+(yr)z+(z’)2+A(x+y+z=0))—%(6%,(\/1+(y1)2+(z')z+

/1(x+y+z=0))>=0

_4 Y _ :
=1 dx( 1+(y’)2+(z’)2> 0 cvevninennnn (i)
. . OH d (0H

Also Using EL equation— — E(@) =0

2 (VTF O+ @ +a@+y+2) - (e (VI+ 02 + @) +

A(x+y+z)))=0

d z' .
:A—;(W>—O .............. (i)
Subtracting (i) and (ii) we get

i( yor >=0=> Y2 € e (i)
Since x+y+z=0

The endpoint condition satisfied by the functions y = y(x) is
y(1)=0,y(0) = -1

>1+y +z2Z =0=>2=-1-y' diff. w.r.to ‘x’

y' +1+y’ .
V142 +(-1-y")?

=2y +1= C\/1+(y’)2+(y’)2+1+2y’

(iii) =

2
> [2y' + 112 = [¢2+20/)7 + 2y
= 1+4(y)%+4y =C*22 +2(y)?% +2y")
= 4-2C)@H)?+A@-2c)y+(1-2c)=0

This is the quadratic equation in y’
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Since C was arbitray, we can always choose it , so that the equation has real

roots. Let « be one such root then y’ =x= dy/dx
>y=xx+pf

Now using y(1) = 0,y(0) = —1
x+f=-1,x0)+p=-1 then x=1,,=-1
Then we get >y=x—-1=>y' =1

Also for z’ wehave =2z'=-1-y =-2

Then required least distance is = 1 = fOIJl + (y")?% + (2')2%dx

= 1= [[VI+1+4dx=6lx|}=6

= 1 =+/6 isrequired least distance.
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PERTURBATION TECHNIQUES

WHAT ARE PERTURBATION METHODS?

Many physical processes are described by equations which cannot be solved
analytically.Working in mathematical modelling, you would have to be
exceptionally lucky never tohave this happen to you!

There are two main approaches to dealing with these equations:

* numerical methods and

e analytic approximations.

The methods all rely on there being a parameter in the problem that is
relatively small: € « 1. The most common example you may have seen beforel
Is that of high-Reynolds number fluid mechanics, in which a viscous boundary
layer is found close to a solid surface. Note that in this case the standard
physical parameter Re is large: our small parameter is € = Re ™.

WHY USE PERTURBATION METHODS?

There are two major types of use for these methods. The first is in modeling
physical applications which, like high-Reynolds number flow, naturally supply
such a small parameter. This kind of application is fairly common, and this is
one of the reasons that perturbation methods are a cornerstone of applied
mathematics.

The second use of perturbation methods is coupled with numerical methods.
Although computed solutions to a problem can be very accurate, and
available for very complex systems, there are two major drawbacks to
numerical computation: and perturbation methods can help with both of

these.
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There is always a concern with numerical calculations about whether the code
Is correct.A helpful check can be to push one or more of the physical
parameters of the problem toextreme values and compare the numerical
results with a perturbation solution worked out when that parameter is small
(or large).

There are other ways of checking code, however; more importantly, a
numerical calculation does not often provide insight into the underlying
physics. Sometimes (surprisinglyoften in practice) the simplified problems
presented by taking a limiting case have a simplified physics which
nonetheless encapsulates some of the key mechanisms from the full

problem — and these mechanisms can then be better understood through

perturbation methods

2 Perturbation Theory

In this chapter, we wish to revise perturbation theory. We also focts on Singufer pertur-
bation theory amd reguler perturbetion theory. Perturbation theory leads to an expression
for the desired solution in terms of a forwal power seties in small parameter (e}, known
as petturbation seties that quantifies the deviation from the exactly solvable problem.
The leading tetm in this power series 18 the saltition of the exaectly solvable prablem and

furthet terms desctibe the deviation o the solution. Considet,
© =ty + ET + oy + .

Here, 2y be the known solution to the exactly salvable initial problem aod zy, 2s... are
the higler otder terms. For small e these ligher order terms are sueeessively smaller,
Ap approvimate “perinrbation sedutfon” 18 abtaised hy trtincating the seties, wsoally by

keeping only the first two tetins.
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2.1 Regular Perturbation Theory

Very ofter, a mathematieal prablem ean 1ot be solved exaetly ot, if the exact salntion 18
available it exhibits such an intricate dependency i the paranieters that it 18 batd to use
a3 sueh. It may e the case however, that & paraetet can be identiberd, say, e such that
the solution i available and reasovably swople for e = {) . Then one may wonder how
this salttion 18 altered for non zero but swall e . Perttithation theory pives & eysteniatic

answer to this question,

2.2 Singular Perturbation Theory

It concert the study of problems leaturing a paraweter for which the solition of the
ptoblem at & lumiting valie of the patameter are different 1 cliaracter from the Lt
of the sltition of the senetal problem. ot reular pertutbation problems, the selittion

of the general problem converse to the solution of the lmit problem as the parameter

approacties the Lot value,
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2.1 Perturbation methods for algebraic equations

Let us suppose our algebraic equations depend on & parameter ¢. Suppose the root can be found for
e = {l. We look for roots for small e. The procedure of repular perturbation are the follows:

» Expressz =g+ ez + €20y -0
» Plup this expresson into equation, make Taylor expansion of coefficients of the equation.
= Equating the coefficients with [ike power of ¢,

# Solve 2, 2y successively.

Example 1 Consider 2{z — 1) =e.
s Let o =2y 4 ex; +---. Plug this into equation, we get

(T +ery 4+ Mzp+exp+--—1) =g

= Equating the coefficients of like powers:
el aplap -1 =10,
el fagm —m = 1,

This [eads to two sets of solutions:

::E£1]={]—Eg .T'[f:'=1+e

The true solutict is

£ E{l = {1 + 2¢)).

which are consistent to the regular perturbation solutions.

Lo 1EVTFE 1
- =
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2

Example 2 Letusconsider the equation ° = £ You will see that

s The expansion @ = 25 + ex) 4+ - -+ does not work. You should iy o = /e
w Fore < (], the solution becomes imaginary.
So, we should try # = 2 + d{edaq + S{e)Zmp + -+ .
u Plug this ansatz, we pet
:rﬁ —+ Frndz + 52:1:? + 28% 0t + -0 - = E.
Bv comparing both sides, we see that we should have xp = (0. Then this gives
§rd 4o =¢

To equate both sides, we need 1o choose §2 = ¢. This give d = /fand x; = 1.

Example 3. Let us consider
e +arth=f

At e =3 1), there 18 anly one oot Thos, the pedurbation method ean not ceeaver the ather mot,
which geas oo as € =+ L 1M o = 1), thans i na oot 88 € =+ (), the redoesd equation 18 even
inconsistent al all. Thus, the above perlurbation method does nol wark (or Such cage.

Weverthaless, wa can try the following thing. We know the ather solulion goes to infimity as

- i i i
£ =+ [, we try = =, Plug (hit inta equanan, we aben

o2
T
il +e—4b=I.
£ £

Wy See that 7 sarisfas an enuation whers the regular pertechation meathod can handle. YWe wnte
I-=IE+ETI .I_aa.. .
Flug: this mio the above rescaled equation, we gel

:I:Ei,2 + ot =

Frprl 4ol 4+ = D0
These pquations give the o = =z and r} = e, lead ta the seeand solution of the enginal equation

b
=25
E ]

You may think how to handle the case whena = (1.
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Homewaork
I. Find the asymptone behaviars of the equations

(a) EIE-'-I—2=1-|:
(h) ez + ezt br=1=1

() ex” £ 2% = | =

2. There are infinue mools of tanx = . Find their asymplotic fomula.

11.1 Justification of regular perturbation methad for algebraic equations
Impliell Function Theatem

Theotem 33, Let F : B™ =t B™ be smoath. Suppase ap is o selution of F{zp,0) = 0

and sugpnse §F [82(zq. ) it non-singulor Then there is a smooth solutinn set {e) satisfying
Flz{e), €] = I fror smati e.

The proof of this 1hesrem 15 based on methad of sentraction map. We rewrle the above equation
25 & perlurblion equation: Jet us write oe) = g 4 gle], then gle) satishes

F F
T ey £ Slen Dl =0,

Hene

)= Pl 3= Pl ) = e = {00 =0+

Since J == F {r{zp, 1) 15 non-singular, we take its inversion md get

y=Ty=0" (-%E{Iﬂ:“]f- F[FJ) :

We: want 10 find & small number ey and anather number 7 such that o any [e] £ e, the mapping T
1t & stricd centraction mep from Jy| % g o itself. Then by the fixed point thearem, we can pbiein 2
fixed point y(e).

This process also 1el] us the construction of the pertucbed solution. The method breaks down
when the Jazobian J -= 2520, ] is singular, or when it has very small eigenvalue.
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2.2 Regular perturbation method for differential equations

Wi starl frovm Some examples.

A falling object with resistivity The model reads

- du
ot

We introduce the dimensionless variables y = v/ Vo, 7 = at/m, then the equation becomes

= —av + h?, v(0) = 5.

dy 2
— = —y+ ey,
s b+ ey,

where
bl
= <

€ < 1.

It means the resistivity (damping) is very large, as compared with Vg and & This equation has exact

solution
E—"]’

yir) = 1 +efleT—1)

which has the following Taylor expansion in e:
y=e T +eleTT —eT ) e e T2 LT =
The regular perturbation method introduces a Taylor expansion of i in terms of e:
y(7r€) = wol7) + etn (7) + ePypfr) + - - .
We plug this ansatz into the equation, equating the coefficients of like powers of e. We get

up = —uo,

7 — , ad
M = —i1 T Ug
vy = —yz + 2up.

Equating the initial conditions, we get
yo(0) = 1,1n{0) = =(0) =--- =1L
Solving these equations, we get
Ya=e T teleT —e )+ e e 4 -

We find this approach does work for this example.
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Consider a nonlinear oscillator

a2, d,
oY —ky — ay®, y{0) = A, d—l!i[“] = 0.

Monlinear oscillator

el
This is so-called hard spring. We rescale it by
- =X
mik’ A

Then we get the Duffing equation:
el % 1s

edt?
u() = 1,u'(0) = 0.

o= e =)

We perform regular perturbation method

w(t, e) = un(t) ~ enr () + S uplt) = -+,

Plugging this into equation and the initial conditions, we get

"i::'-ﬂ' - p = I--": ﬂ'ﬂ[“} = 1:-'1':'-[!":“:' = ﬂ._

fip 4 = —uf,ug(0) =0, (0) =0,

From the fistt equationm, we obtain
up(t) = cost.

The second equation becomes

1
iy~ = —cos't = —E{Scnst +cos 3t)

Solving this equation with initial condition, we get

u(t) = %{msﬁt — cost) - %tsin 1

The term tsint is a resonant term from cost. Such a term is called a secular erm. It will grow
linzarly and eventually to infinite as t — oc. However, by enetay method, one can show that the
solution is bounded. What wrong is that the expansion is only good for finite time. The estimate
Yalt,€) — ye(t, €)] = O(¢?) is only valid for ¢ € [0, T] for a finite T.
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Asymptotic Expansion First, we give some definitions of some notations.
» The notation (e} = o(g(e)) means that f/g — Dase = 0.
» If f and g are also function of ¢ in an interval I, the notation
fltel=olg(t.e))ase =0t ]

means that for every t € T, we have f(t,e)/g(t,e) = Dase — 0.

o If the above limit is uniform for t £ I, we say that (¢, €) = o{g(t,€)} as ¢ — 0 uniformly on
tel.

Definition 2.1.  » A sequence of gauge functions {gn(t,€)} is an asymptotic sequence ont € 1
ase —+ 0if
gne1{t €} = o(gn(t.€)) for everyt £ 1.

o Given a function y(t, €) and an asymptotic sequence {g,(t. €) on t £ I, the formal expansion
3o o tntn(t, €) is said to be an asymptotic expansion of y(t, e} ase = 0if

N
ylt e) — Z angnlt,€) = ogn(t,€)}, ase =0,

n=I(]

forany N. If the limits are uniform for t £ I, we say it is a uniform asymptotic expansion on
L

The expansion sequences are usually seperable such as
o €Myt

o e"up(z), where ay is a strictly increasing sequence.
o " ey ().

A riporous proof for regular perturbation method has been done. Basically, the highest order
term is elliptic operator on finite domain, the perturbation should be in the low orders and can be
controlled by the elliptic operator. For instance, consider

A= flu, Du,e)in {2,

u =1 on Ji.
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We assume the equation is solvable for ¢ = (1. We also assume f{u, Du, €) can be controlled by
A, This means that A~ f{w, D, ¢} is & compact smooth map from, say H Yto H'. Then we can

apply implicit function theorem to get the solution for small e, In peneral, the term Du is harder to
control, it relies on Sobolev embedding thearem.

If the undetlying operator is wave opertor, or Schrddinger, then it is even harder. There is no
such compactness property. Nash-Moser technique is introduced.

2.3 The Poincaré-Lindstedt Method

In the Duftin’s equation:
i+ u+eu® =0,u(0) =1,4(0) =10,

the regular perturbation method leds to a secular term, which is incorrect for large time. One way
to solve this problem is to introduce a change of time scale. Let

r=w(etw =1L Lefuy+---,

Then
P L+ en® = 0,u(0) = 1,¢/(0) = 0,

where ' = d/dr. We plug the expansion above for u and w into this equation, equating the coeffi-
cients of likely powers of ¢, we get

(14 2ewpy + -+ Yueh +eu] +-+) + (g + ey +-++ ) + et + Bewguy ++--) =D,
u(0) + euy (0) + -+ =1, up(0) = enf(0) = -+ =1,
up + g = 0,29(0) = L, u{0) = 0, -,

uf + 1 =~y — i, (0) = 14 (0) =0,
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This gives
ug(T) = cos .

3 1
N
uf £y =2 cost —cos T = (R —E}CDST—EEDSST.

If we choose wy = 3/8, then the secular term can be avoided. This leads

1

up{r) = 5

(cosdr — cosT).
Thus, we get the expansion

u(r) =037 + %[EDSST — COST) + e

Homework.
o pp. 10O1: &(a),

e pp. 102: 11, 13. 15.

2.4 Singular perturbation methods

24.1 Quter solutions, inner solutions and matched asymptotics

If the small parameter ¢ appears in the highest order term, then this term is unimportant in most of
the region except in a small region where the high order derivatives are important. Let us seg the
following example:

(g = Eltzg, 2 £ (0,1),
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u(0) =0,u(1) = 1.

Here, we assume o < (). Physically, € is the viscosity, a the advection velocity. In our present
situation, the advection direction is toward left. This equation can be solved easily. We integrate it
once to get

—at + ety = {7,
where (1 is a constant to be determined. Using method of separation of variable,

du i

Cr+au €

Integrate this again, we get

+ (.

1 x
- nfau + ) -

This gives
ar

ﬂ=(§',qexp( ) + (.

£

Putting the boundary conditions, we get

Cot Cy=0,Coee £ Oy = 1.

These gives
1 1

3= gofe _ l, A gafe _ 1'

Hence, the exact solution is
|- E&zl.fe

(2] = T

Next, we shall use perturbation method to find approximate solution. It consists of three steps:
(1) finding outer selution, (2) finding inner solution, (3) matching the outer and inner solution.
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Finding Outer solution Let us first solve this equation with e = ({0
ey = (.

This leads to u = econstant. From boundary conditions, they are two possible solutions, u = )
oru = 1. As we shall see later that the condition o = () leads to the fAlows move toward left and
hence we should use the boundary condition «{1) = 1. This implies u(z) = 1 for the unperturbed
equation. This also means that «{z) = 1 in the region where u is smooth (hence euz, is small. The
salution

ug(z) =1

is called owter solution.

Finding inner solution However, © cannot be smooth through out the whole region (0, 1) because
u(0) = 0. Therefore, we expect there is an abrupt change of « near z = (). This region is called
boundary layer. Let us suppose its thickness is 4(e). We rescale £ = z/4. The rescaled equation
becomes

e du  adu _ N
42 ds?  Adg
If we want to have these two terms to be equally important, then we should take
e 1
a2 4

In this case, 4 = &. The resulting equation is
Uge = (Thg

with boundary condition 1{0) = (0. Now, we get the same equation without . This gives
ue = au + .

The solution is

where 0 is to be determined. The solution
ﬂi[::;ﬂj -7 (E-ﬂzzl.-’e _ ]-:l

is called inner solution. This inner solution is an approximate in the region (0, €). To determine C,
we need to match w;(x) and us{zx) for 2 in some overlapping zone. A natural overlapping zone is
when 17 = z/,/e with y = ({1). In this case, let us fix i and we expect w.(/en) — ui{en) — 0
as € — (1. This implies

lim € (e*"?-” VE _ 1) =1
e—+0]
Since a < [, we get from the above limit that & = —1. Thus,

ui(z)=1— g2=/e
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Match inner and outer solutions We can define an approximate solution to be the sum of the
inner solution and outer solution minus the overlapping value. The overlapping value is 1. Thus,
we define

azfe

{2} =gz} +ui(z) —1=1—¢
We see that ug (0) = 0, 2, (1) = 1 — %/, In fact,

ue(2) — ualx) = (l - E‘II-’IE) (ﬁ - 1)

afe
E ()

_ (l _ Eaz,-"e)
1— EI'.'I.I."-E

Remark. Notice that the above approximate solution w,{zx} does not satisfy the boundary condi-
tion at x = 1, but has a small error. 1t does satisfy the equation and the boundary condition at r = (0.
Alternatively, we can choose different approximate solution. For instance, let w(x) be a weighted
function whichis 1 for 0 < 2 < 1/3 and 0 for 2/3 < » < 1 and smoothly and monotonely connect
1and 0 for 1/3 < x < 2/3. Using this weighted function, we define

gz} = w (E%) w; (o) + (1 — (E%)) ().

Here, 4 is any number between ) and 1. This approximate solution satisfies the boundary condition,
but does not satisfy the equation, with a small residual.

Example Thisexample iz taken from J. Cole’s book, Singular Perturbation, pp. 21. Consider
€lzy +/Tur —u =10,z £ (0,1),
wf0) =0, u(1) = &%
. Finding outer solution: just like regular perturbation method, we assume

w{z} = up{x) + ewy(x) + -

Plugging this into equation and the boundary conditions, equating the coefficients of the like

power terms of e, we get

VTug 2 = up, ug(l) = €7,

-'I.-Et‘[l,ﬂ: = 'i'.l'.n —_ HD,II? '1'1'.1[].} = ﬂ.

o(32))

This leads to the outer expansion:

ua{xj=eﬂﬁ(l_f(%_5_ﬁ__g>

The reason why we only use the boundary condition at # = 1 is because the advection
velocity is negative (—./x), which means that the upwind direction is right. By the method
of characteristics, the solution is determined by its upwind data, thus, from the right. Hence

the boundary condition for the outer solution is from & = 1.
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2. Finding inner solution: The boundary layer occurs near » = (). We rescale x by introducing
the layer variable

The boundary layer expansion is

= 1wy (&)rp(e) + wi (&) (e) =,

Plug this into the equation, we get

-E-f]- (E-"'n'wﬂ,ff — W g+ } + i-:'i\.-"f [i!-'nt!.'n,,f + iy e =+ - } —lpitp — Mty — 0 =

We choose §{e) =0 that

e e
42 &
This giwves
Gle) = 23,

The dominant boundary eguation becomes
woge + W Ewoe = 0, w0} = 0.
Its solution is

£
ol@ = G [[Cexp (=377 ac
LR =

Thus, the inner solution has the form:

a0
'lt-i':ﬂﬂ:l='zl_.‘n:‘_| (E —+ ===,

3. Matehing: Let the matching scale is
e
z, ==

r{e) is chosen so that, with fixed =, as e — (),

» the outer variable r = gz, — 0;

» the inner variable: £ = z/d = z,n/d — .

For instance, we can choose 7 = &? with 00 < § < 2/3. The outer and inner solution should

match in the overlapping zone where r is fixed. Ase — (),

» The outer solution ug(z) — 1, as x> — 0.

» The inner solution
oo LR
wp(g) — Co / exp (—?;“3*2) di, as £ — oc.
oy 1

To match these two limits, we should require
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([ en (5em) )
Lo = [ exp | —={ d .
Ja 3

This gives the complete description of inner solution. The approximate solution is then de-
fined to be
outer solution = inner solution — overlapped value

That is,

g (2) = u (x) + wy (Eﬂiﬂ) —1.

Remark. The next term is v (e) = &!/3. Check by yourself.

2.4.2 The boundary layvers, initial layers and interior layers

Initial layer Let us consider a damped spring-mass system:
mfi + ey + ky =,

with y{0} = 0 and mg{0) = I. This means that we apply an impulse at the mass at t = (). The
dimensions of these variables are

Im] =AM, [a] = MT ' [k] = MT 2, [{] = MLT L

Three possible time scales are

—

| =&

3 R‘=
corresponding to balancing inertia and damping, inertia and spring stiffness, damping and spring
stiffness. Possible length scales are

m./m
a’'\ k

k

]

B |~
3]

I ad
Ry kL)
We expect that the impulse will canse an abrupt change of the mass pasition in short time, then relax
to its equilibrium. The first time period is called an initial phase, the second is called an relaxation
phase. In the initial phase, the dominated terms should be the inertia term and the damping terms.

In the relaxation phase, it should be a halancing hetween damping and spring stiffness. Thus, for
the realxation phase, we intraduce the time scale

F t
- ﬂ[lr'luift
The equation becomes
2 g3 2
e d =
k2 dt koot

In the initial phase, the amptitude of the mass is related to [ and the damping, and the mass too.
However, from dimensional analysis, the mass A appears in both T and «. Thus, the amptitude
should he related only to 7 /a. Thus, in the relaxation phase, we rescale the length by

The rescaled equation becomes
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F(0) = 0, eF (0) = 1.

Here, the dimensionless parameter

frede
< 1.

[
a?

The outer solution is & solution of § + § = 0, this gives the outer solution
= -
Jolt) = Ce™.

During the initial phase, we rescale 7 = £/e and ¥ = §. Then

The conditions §{0) = 0, eg'{0) = 1 gives the inner solution

ﬂt[a = Y{ j] =1 _E—Elfel

m | o

Matching the outer solution and inner slution in an ovetlapping zone, (i.e. &, = £y/¢ is fixed), we
should require

(6 = (0
This leads to ' = 1 in the outer solution. Thus, the final approximate solution is
falt) = Zo(t) +&(t) —y_lggjﬁt'[ﬂ

= E—f ';E.

Il
m

In terms of the original variables, it reads
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Enzyme Kinetics Consider the following chemical reaction:
A-B=C—-P+B

Here, A (a substrate) and B {an enzyme) combine to form a melecule C. C breaks into a product P
and an orginal enzyme B. Let a, b, etc represent their concentration. The equations for the kinetics
are

& = —kab+ ke

b = —kab+ kye+ kae
¢ = Kkjab— koe — k3e
i o= ks

The initial concentrations are

a(0) = &, b(0) = b, (D) = 0, p(0) = 0.

It is easy to see that b+ ¢ = b, The first three equations do not invelve p. Thus, we have the reduced
equations

= —klﬂll:ﬁ - ﬂ:l + kgﬂ:
i o= F:la[ﬁ —¢) — (ko + k3)e.

The dimensions of each quantities are

o] =C.[d =C,[ka] = T71C7 [ka] = [ke] = T,

Ly

Here, (7 is the dimension of concentration. We can rescale a and e by @ = o/d and & = /b We
also rescale time by ¢ = t/T. The dimensionless equation becomes

— = —kiba(1 - &) + kybz,

b de - -
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To determine the time scale T, we notice that our interest is to study how A is converted to P
through the enzyme B. Thus, the decreasing time scale should be the time scale we should concern.
Thus, we should balance {?‘- and k;db in the equation for &. Thus, T is taken to be

1

T = —=
.i.'.'lf}

With this time scale, we obtain the dimensionless equations:

i
—_ = —fg - {a ME
= &+ {&—+ A)E
i

E% = A—(&-+pu)E

Here, )
b 2 ko =+ ka
. 1.4 = —, E
€e=z=s kT T

The initial conditions are
a(0) = 1,2(0) = 0.

The outer solution is obtained by setting ¢ = 0. From this, we obtain @ — (@ + )& = 0, which gives

=l

&= — )
@ fL
and the first equation becomes
di — p—A
dt 1+£

By separation of variable and integrating it, we get
a4+ plng=—(p+ A+ K.

Here, the constant /{7 will be determined from matiching with the inner solution. These two solutions
a and e are our outer solutions. We denote them by a, and ¢, respectively.
In the initial layer, we use the non-dimensional variables

t
rT=—A=0qC=c¢
£

The resulting equations

dA

F = eg[—A~+ {.—'1 -+ .}I.:IC]
di? .

_(_.i_l'f‘ = 4- {.—1 . ,H-}C

Setting ¢ = (), we obtain dA/dr = 0. From the initial condition @ = 1, we should take 4 = 1. Plug
this into the second equation, we get

dat?
dr

=1— {1+ u)C.

With the initial condition {0} = 0, we obtain
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1 — g—{u+l)7
=
L= 1

For matching, we should have the outer solution a,(0) = A(ee) and e,(0) = C'(ac). After some
calculation, we get i = 1 from matching condition. Thus, the final approximate solution is

aq(t) = ﬂ-ﬂ{ﬂ

talt) = eoff) > Clr) — —

u+1

Boundary layers and internal layers We have seen that the Sturm-Liouville system
gy — alz)uy — blzju=">0z < (0,1),

w0} = g, (1) = uy,

may have boundary layer. We will show that

o ifa{z) = 0forz £ {0, 1), then the boundary layer appears at z = 1;
o ifa(r) < 0forx £ (0, 1), then the boundary layer appears at = = ();

» if a{x) changes sign once in (0,1) with 2(0) > 0 and a(1) < 0, then an internal layer is
formed.

Shock wave Consider the Burgers' equation
Ully = €lUzg, Z £ {—1,1)
with u{—1}) = 1 and u{1} = —1. We can see that the outer solution is

_[1 —1 <1< xp
Ma(Z)=9 | L ir<1

The constant xg will be determined later.
For inner solution, we rescale it by F = {z — xp)/e. The equation becomes

We integrate it once to get

2
Applying matching condition {u{=oc) = F1), we obtain ' = 1/2. Using separation of variable,
we get

T 2,
E_u —_— T,
us — 1

Integrating

In i = F T
w— 1 o a

Here, £q is a constant. YWe can absorb Zg into . Thus, we take ZFq = (0. Then
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=1
w—1

e”.

This yields
1+ &F
u(F) = — = — tanh{F}.
1— &
The parameter xq is not unique. Any such interior layer solution with the outer selution forms an
approximate solution unless we impose an extra condition. Usually, we impose an excess mass

based on conservation of mass. This means that

-/:1 u{zx) — u{x)de=m

1

where m is called the excess mass. With this, Zq is determined by

Ty _ 1 _
/ — tanh (I In) —1,dx + [ — tanh (I In) +1,dr =m
J—1 £ R £

By taking € — (0, we can obtain an approximation for rq.

m
2

Ip =

+ O{e).

2.5 WKB method

The WHKB method is a perturbation method for solving problems of the followng form
—u” + glz)u =10

When g < (), we expect exponential decay solution. When ¢ > (), we expect oscillatory solution. In
both cases, we look solution of the form e®{=},

Nonoscillatory Case Consider

Eu' — klePu=0,z € (0,)
Let us try regular perturbation for laree . We write

1= ug + eu1 + e7us ~ O,
Plug into the equation, we get

—k g — ekPuy = e (uf — KPug) = - =10,
This leads to wp = 1) = uz = . = (). We get no information from regular perturbation for large

z. If we observe the equation more carefully, suppose k = 0, then we expect the solution decays
for large z. Thus, let us figure how it decays by trying the ansatz u = (%), Then

N 2 1
w' = we, u" = (u” +uw')e”,

and the equation becomes
(egfu.'" s ') — .3:2) e = .
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Thus, as long as w = —ac, we get

(" +u'’) — k(z)? =0,

Let us introduce v = e’ We have
ev' +v? — kz)* =0.
Apply the regular perturbation method

©=ig + ety + -

We get
lil._.."
1 - . _—_
wplz) = £k{x), v (z) ok
This gives
! k! z
=k — +
Eis {z) ST (e}
Or

(i f: k(e) de — %111 k(z) + r){efj) :

M| =

wlr) =

Thus, we get an expansion

u{zr) = f,':l:_m}exp (_J.:% ./: kE(g)ds + GI:E:I)

- f;(_m}exp (_J.:% l/:kr:g}df) (1= O(e)).

If we require u(oc) to be bounded, then we can only accept the exponential term. Suppose k& = (),
for instance, then

1 1 /=
u(x) = Gmexp (_E./; k(£) d.f) {1+ Hed)

is admissible.
For x ~ 0, we can rescale = by ' = x/e. Expand u(z") in Taylor series near 2 = (. We get

—2us — Gugr’ + (ko ~ k1’ + . ){wo + wmz + .. =0
This leads to

kn“i‘j.n—g'l:g =0

—bBug + kit - g = ﬂ,.
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We can determine ug from the boundary condition. We can determine u; from the matching with
the outer solution. In doing so, we find that the outer solution « = ¥ is also suitable for z ~ (.

Oscillatory cases  For the Schridinger equation
u’ + k(z) u =10,

where k > (I, we can approximate u by e™(=), Then

- Lok . b2 Tt
= fwfe™, w" = (™ — w’ ™,

and equation becomes
e (iw” — w'?) + k2 =0
If we introduce v+ = ew’, then
fev' — o + K2 =10
The ansatz for the regular perturbation v = v + ey + -+ - gives

a f

. T .
g = =k, 1 = 2;-;0 = i{ln +/va)".
L]

w(a) = ié jj k(£) dE + iln /TR(Z) = Ofe).

u{z) = exp (_J-._@' -/:; k(E) de‘_f) exp (— In V’ET@) (1=0(e)).
Thus,

uz) = V% exp (% .L.IHE} (EE) + f:fziiﬂfl exp (—Z— ./;HE} df) ;

2.5.1 Method of geometric oplics

In optics, the governing equation is
up = efz)? S

For waves with a fixed frequency w, the solution has the form: wu(r,2) = e ™!u(z) and u(z)
zatisfies the Helmholtz equation
2
At + ——u =0
o

(z)?

We are interested in the high frequency approximation of its solution.
Let us rewrite .o = 1/e. The ansatz is

u{e) = Az, )™= — (Ap(2) + Ay (z)e + - - - Jeiol=lie
where ¢ is a phase function, A the amptitude. We plug © into the Helmholtz equation o get

: iAd
Mm = fl:..-; Etd-..l"-s - ?ﬁ;‘zze

i e
i 1
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2 iA o
D= (ﬂ-l——TA Vo ——&@——|Ta|9) giefe

A i A
—|Val® {4 A 2V 4 - MA|+—— =
( g2’ a4 'E{ e+ ?)+ ) e2e{x)?

Expanding A4 in Ap + €4y + « -+ and equating the coefficients of e, we get

Ap A e+ 2VA - Va=I.

The first equation is called the eikonal equation. The second equation is called the transport equa-
tion. In the second equation, if we rename Ag = /g, then the transport equation becomes

_— —_ 1
VP A+ 2V e Vo= Ao+ —Vop Vo =1
VPO

Thus, thizs is equivalent to
AT {pn?ca} = [l

WEEB method for Schridinger equation Consider the Schridinger equation

jr-E
iRB) = — —— V25 + V{x).
2

We look solution of the form: 1 = &*/", We have
an = %a{ﬂf Erul"fh
1 .
Vir = —Vwes/h
i

1
T2 = ( TE«U_-T_ E [z, 1) )
Thus, we get

ifha = _ﬂ (ﬁ?ﬂu + Z[ﬂzkujzj

We write w = K + {5, real part and imaginaty part. Then
1
B4R +i8) = —— (AVZ(R +1iS) + |VE|* — VS + 2iVR - VS) + V.
m
Equating the real part and imaginary part, we get

B = - (AV°S + 2VR-VS),
2m
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1
—8:5 = ——— (AV2R + |VR|* — |VS]?) + V.
2m
[ISane [S] = ET = MLT-1, [VS] = MLT!, we can define p = V8, v = (VS)/m

Multiplying the first equation by -E!EH A we et

EEHI.'hafR — = [:ﬁEERI.'.’:-v,\—:.-ElS o EEER'”:?R . TS)
ier)

—_ _iv,:' . (E.ER"IIhv.S)
2

Next, we define p = e2B/h yge ¢ = V5[, then the first equation can be written as
Bip+ V- (pr) = 0.
This is the continuity equation.
IFor the second equation

1 1
L~ —|VS2 -V = —(|VR|* + iV?R
St 2 I+ 2-::1[' | ' )

We express the RHS in terms of p. We get

n? vip

Si+_|v5|2 V=
dm p

We take gradient of this equation to get

1|2 fi Ve
-nm'¢+m‘f-'(t| ) + %V = —?( ﬂ)
2 dm A

jr-E 1.:'2
Vv Ved VY =y [ L2
m 42 o

Multiplying p to this equation, we get

o Il V2p
. T pl - w
plyy v - Vo) - —% T ( p

The left-hand side is the pressureless momentum equation for the gas dynamics. The right-hand

side is a dispersion term. It regularizes the solution.

Thus, solving the outer solution based on the WKE approach for the Schrédinger equation is
equivalent to solve a pressureless Euler equation. Although it is also not an easy job, the WKB
approach provides us an insight of the macroscopic structure of the Schridinger equationm. It also

make a link between qnautum mechanics and classical mechanics.
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