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Introduction 

 We begin our study of algebraic structures by investigating sets associated with single 

operations that satisfy certain reasonable axioms; that is, we want to define an operation on a set in a 

way that will generalized familiar structures as the integers ℤ together with the single operation of 

adding or invertible 2×2 matrices together with the single operation of matrix multiplication. The 

integers and the 2×2 matrices, together with their respective single operations, are examples of 

algebraic structures known as groups. 

                                Group theory is a branch of pure mathematics. The theory of groups occupies a central 

position in mathematics. Modern group theory arose from an attempt to find the roots of polynomial in 

term of its coefficients. Groups now play a central role in such areas as coding theory, counting , and the 

study of symmetries; many areas of biology, chemistry and physics have benefited from group theory. 

1.1 Binary Operation 

       A binary operation ∗ on a set S is a function mapping S×S into S. For each (𝑎, 𝑏) ∈ 𝑆 × 𝑆, we will 

denote the element  ∗ ( 𝑎, 𝑏 ) of 𝑆 by 𝑎 ∗ 𝑏. 

1.1.1 Examples 

i. Our usual addition + is a binary operation on the set ℝ. Our usual multiplication is a different binary 

operation on ℝ. In this example, we could replace ℝ by any of the sets ℂ, ℤ, ℝ+ or ℤ+. 
ii. Let M(ℝ) be the set of all matrices with real entries. The usual matrix addition + is not a binary 

operation on the set since 𝐴 + 𝐵 is not defined for an ordered pair (𝐴, 𝐵) of matrices having 

different number of rows or of columns. 

iii. Let  ∗ be a binary on 𝑆 and let 𝐻 be a subset of 𝑆. The subset 𝐻 is closed under ∗ if for all 𝑎, 𝑏 ∈ 𝐻 

we also have  𝑎 ∗ 𝑏  ∈ 𝐻. In this case, the binary operation on 𝐻 given by restricting  ∗ to 𝐻 is the 

induced operation of  ∗ on H. 

Properties 

i. Identity element is unique. That is, a binary operation (𝑆,∗) has at most one identity element. 
ii. Inverse element is unique. 
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Note: Remember that in an attempt to define a binary operation ∗ on a set 𝑆 we must sure that 

i. Exactly one element is assigned to each possible ordered pair of element of 𝑆, 

ii. For each ordered pair of element of 𝑆, the element is assigned to it is again in 𝑆. 

Example 

i. Let 𝑆 be the set consisting of 20 people, no two of whom are of the same height. Define ∗ by 

𝑎 ∗ 𝑏 = 𝑐, where 𝑐 is the tallest person among the 20 in 𝑆. This is a perfectly good binary operation 

on the set, although not a particularly interesting one. 
ii. Let 𝑆 be the set consisting of 20 people, no two of whom are of the same height. Define ∗ by 

𝑎 ∗ 𝑏 = 𝑐, where 𝑐 is the shortest person in 𝑆 who is taller than both 𝑎 and 𝑏. This  ∗ is not 

everywhere defined, since if either 𝑎 or 𝑏 is the tallest person in the set, 𝑎 ∗ 𝑏 is not determined. 
iii. On ℤ+, let 𝑎 ∗ 𝑏 =

𝑎

𝑏
. Since for 1 ∗ 3 is not in ℤ+. That is, the element assigned is not again in ℤ+. 

Thus ∗ is not a binary operation on ℤ+, since ℤ+ is not closed under ∗. 

1.2 Groups 

 A pair (𝐺, ∗) where 𝐺 is a non-empty set and ‘∗` a binary operation in 𝐺 is a group if and 

only if: 

i. The binary operation  ∗ closed, i.e.,   

 𝑎 ∗ 𝑏 = 𝑏 ∗  a      ,∀𝑎, 𝑏 ∈ 𝐺 

ii. The binary operation ∗ is associative, i.e., 

 

   𝑎 ∗ 𝑏 ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) , ∀𝑎, 𝑏, 𝑐 ∈ 𝐺 

iii. There is an identity element 𝑒 ∈ 𝐺 such that for all 𝑎 ∈ 𝐺         

 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 

iv. For each 𝑎 ∈ 𝐺 there is an element 𝑎′ ∈ 𝐺 such that 

𝑎 ∗ 𝑎′ = 𝑎′ ∗ 𝑎 = 𝑒 

𝑎′ is called the inverse of 𝑎 in 𝐺 and iis denoted by 𝑎−1. 

Properties of a Group   Let 𝐺 be a group, then following are the some important properties of 

𝐺; 

a) Cancelation law holds in 𝐺. That is, 𝑎 ∗ 𝑏 = 𝑎 ∗ 𝑐 implies 𝑏 = 𝑐, and 𝑏 ∗ 𝑎 = 𝑐 ∗ 𝑎 implies 𝑏 = 𝑐 for 

all 𝑎, 𝑏, 𝑐 ∈ 𝐺. 

b) Identity element is unique. 

c) Inverse of an element is unique. 

d) (𝑎−1)−1 = 𝑎   , ∀  𝑎 ∈ 𝐺.                          e)  (𝑎𝑏)−1 = 𝑏−1𝑎−1 
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Note: The identity element and inverse of each element are unique in a group. 

 Historical Note 
There are three historical roots of the development  of abstract group theory evident in the mathematical 
literature of the nineteenth century: the theory of algebraic equations, number theory and geometry. All 
three of these areas used group theoretic methods of reasoning, although the methods were considerably 
more explicit in the first area than in the two. 
One of the central themes of geometry in the nineteenth century was the search of invariants under 
various types geometric transformations. Gradually attention became focused on the transformations 
themselves, which in many cases can be thought of as elements of groups. 
In number theory, already in the eighteenth century Leonhard Euler had considered the remainders on 
division of power 𝑎𝑛  by fixed prime 𝑝. These remainders have “group” properties. Similarly, Carl F. Gauss, 
in his Disquisitiones Arithmeticae (1800), dealt extensively with quadratic forms 𝑎𝑥2 + 2𝑏𝑥𝑦 + 𝑐𝑦2, and 
in particular showed that equivalence classes of these forms under composition possessed what amounted 
to group properties. 
Finally, the theory of algebraic equations provided the most explicit prefiguring of the group concept. 
Joseph-Louis Lagrange (1736 − 1813) in fact initiated the study of permutations of the roots of an 
equation as a tool for solving it. These permutations, of course, were ultimately considered as elements of 
a group. 
It was Walter von Dyck (1856 − 1934) and Heinrich Weber (1842 − 1913) who is 1882 were able 
independently to combine the three roots and give clear definitions of the notion of an abstract group. 

Torsion Free And Mixed Group 

 A group in which every element except the identity element 𝑒 has infinite order is 

known as torsion free (𝑎-periodic or locally infinite). A group having elements both of finite as well as 

infinite order is called a mixed group. 

Semigroup And Monoid 

 A set with an associative binary operation is called a semigroup. A semigroup that 

has an identity element for the binary operation is called monoid. 

Note that every group is both a semigroup and a monoid. 

Abelian Group 

 A group 𝐺 is abelian if its binary operation is commutative. That is,let (𝐺, ∗) be a 

group. Let , 𝑏 ∈ 𝐺 , then 𝐺 is called an abelian group iff  

𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 

1.2.1 Examples 

a. The familiar additive properties of integers and of  rationals, real and complex numbers show that 

ℤ, ℚ, ℝ and ℂ under addition abelian groups. 
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b. The set ℤ+ under addition is not a group. There is no identity element for + in ℤ+. 

c. The set ℤ+ under multiplication is not a group. There is an identity 1, but no inverse of 3. 

d. The familiar multiplicative properties of rational, real and complex numbers show that the sets ℚ+ 

and ℝ+ of positive numbers and the sets ℚ∗ , ℝ∗ and ℂ∗ of nonzero numbers under multiplication 

are abelian groups. 

e. The set𝑴𝒎×𝒏 ℝ  of all 𝑚 × 𝑛 matrices under addition is a group. The 𝑚 × 𝑛 matrix with all entries 

zero is the identity matrix. This group is abelian. 

f. The set 𝑴𝒏 ℝ  of all 𝑛 × 𝑛 matrices under matrix multiplication is not a group. The 𝑛 × 𝑛 matrix 

with all entries zero has no inverse. 

g. The set of all real-valued functions with domain ℝ under function addition is an abelian group. 

 Historical Note 
Commutative groups are called abelian in honor of the Norwegian mathematician Niels Henrik Abel 
(1802 − 1829). Abel was interested in the question of solvability of polynomial equations. In a paper 
written in 1828, he proved that if all the roots of such an equation can be expressed as rational 
functions 𝑓, 𝑔, … ,  of one of them, say 𝑥, and if for any two of these roots, 𝑓(𝑥) and 𝑔(𝑥), the relation 

𝑓 𝑔 𝑥  = 𝑔 𝑓 𝑥   always holds, then the equation is solvable by radicals. Abel showed that each of 

these functions in fact permutes the roots of the equation; hence, these functions are elements of the 
group of permutations of the roots. It was this property of commutativity in these permutation groups 
associated with solvable equations that led Camille Jordan in his 1870 treatise on algebra to name such 
groups abelian; the name since then has been applied to commutative groups in general. 

1.2.2 Example  Let ∗ be defined on ℚ+  by 𝑎 ∗ b =
𝑎𝑏

2
. Then   𝑎 ∗  b ∗  c =

𝑎𝑏

2
∗ 𝑐 =

𝑎𝑏𝑐

4
 , and 

likewise 𝑎 ∗  𝑏 ∗ 𝑐 = 𝑎 ∗
𝑎𝑏

2
=

𝑎𝑏𝑐

4
. 

SOLUTION    Let ∗ defined on ℚ+  by ∗ b =
𝑎𝑏

2
 . 

i. Closed property. 

      For 𝑎, 𝑏 ∈ ℚ+  , we have  𝑎 ∗ b =
𝑎𝑏

2
 

      Thus closed property holds. 

ii. Associative property. 

For 𝑎, 𝑏, 𝑐 ∈ ℚ+  , 

 𝑎 ∗ b ∗ 𝑐 =
𝑎𝑏

2
∗ 𝑐 =

𝑎𝑏𝑐

2
×

1

2
=

𝑎𝑏𝑐

4
 

𝑎 ∗  𝑏 ∗ 𝑐 = 𝑎 ∗
𝑏𝑐

2
=

1

2
×

𝑎𝑏𝑐

2
=

𝑎𝑏𝑐

4
 

             Thus associative law holds. 

iii. Identity. 

      Given that 𝑎 ∗ b =
𝑎𝑏

2
. 
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      Let  𝑒 ∈ ℚ+  , since 

𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 

 Now                                                               𝑎 ∗ 𝑒 =
𝑎𝑒

2
 

                                                                         ⇒ 𝑎 ∗ 2 =
𝑎×2

2
= 𝑎 

       Similarly                                                        2 ∗ 𝑎 =
2×𝑎

2
= 𝑎 

       Thus 𝑒 = 2 is the identity element. 

iv. Inverse. 

For 𝑎 ∈ ℚ+  ,since  

𝑎 ∗ 𝑎′ = 𝑎′ ∗ 𝑎 = 𝑒 

By computing 

𝑎 ∗ 𝑎′ =
𝑎𝑎′

2
 

𝑎 ∗
4

𝑎
=

𝑎 × 4

2 × 𝑎
= 2 

Similarly  
4

𝑎
∗ 𝑎 = 2 

⇒ 𝑎′ =
4

𝑎
 is the inverse of 𝑎. Hence inverse of each element exists. Thus (ℚ+  ,∗) is a group. 

1.2.3 Example Show that the subset S of 𝑴𝒏 ℝ  consisting of all invertible 𝑛 × 𝑛 matrices under 

matrix multiplication is a group. 

Solution we start by showing that S is closed under matrix multiplication. Let A and B in S so that 

both 𝐴−1 and 𝐵−1 exists such that 𝐴𝐴−1 = 𝐵𝐵−1 = 𝐼𝒏 , then  

(𝐴𝐵)(𝐴𝐵)−1 =  𝐴𝐵  𝐵−1 𝐴−1  = 𝐴 𝐵𝐵−1  𝐴−1 = 𝐴𝐼𝒏𝐴−1 = 𝐼𝒏 

So that AB is invertible, consequently is also in S. 

Since matrix multiplication is associative and 𝐼𝒏 acts as the identity element, since each element of S has 

an inverse (by definition). We see that S is indeed a group. This group is not commutative, it is our first 

example of non abelian group. 

Group of Mobius Transformation 

 Let ℂ ∪ {∞} be the extended complex plane. Consider the set 𝑀 of all 

mappings. 

                      𝜇 ∶ ℂ ∪ {∞} ⟶ ℂ ∪ {∞} defined by 
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𝜇 𝑧 =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
  , 𝑐𝑧 + 𝑑 ≠ 0  , 𝑧 ∈ ℂ ∪ {∞} 

and 𝑎, 𝑏, 𝑐, 𝑑 are themselves complex numbers. Multiplication of mappings in 𝑀 is their successive 

application. The mapping 

                       𝐼 ∶ ℂ ∪ {∞} ⟶ ℂ ∪ {∞} given by 

𝐼 𝑧 = 𝑧  ,∀ 𝑧 ∈  ℂ ∪ {∞} 

Is the identity element of 𝑀. Also for each 𝜇 in 𝑀, its inverse is the mapping   

𝜇′ ∶  ℂ ∪ {∞} ⟶ ℂ ∪ {∞} given by 

𝜇′ 𝑧 =
𝑑𝑧 − 𝑏

−𝑐𝑧 + 𝑎
 

Hence 𝑀 is called the group of mobius transformation. 

This group is closely related to the groups 

                                                   𝑀 =   
𝑎 𝑏
𝑐 𝑑

   𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ and 𝑎𝑑 − 𝑏𝑐 ≠ 0  

And                                          𝑀∗ =   
𝑎 𝑏
𝑐 𝑑

   𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ and 𝑎𝑑 − 𝑏𝑐 = 1 . 

Under matrix multiplication. 

1.3 Definitions 

Order of a Group 

 The number of elements in a group is called the order of a group and is 

denoted by |G|. 

Order of an element 

 Let 𝑎 be any element of a group G. A non-zero positive integer 𝑛 is called the 

order of 𝑎 if 𝑎𝑛  = 𝑒 and 𝑛 is the least such integer. 

Periodic Group 

 A group all of whose elements are of finite order is called a periodic group. A finite group 

is obviously periodic. 

Finite and Infinite Group 
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 A group G is said to be finite if G consists of the finite number of elements. A group G is 

said to be an infinite group if G consists of the infinite number of elements. 

1.3.1 Examples 

i. Let ℤ = {… , −3, −2, −1,0, +1, +2, +3, … } is a group under addition, then 
 ℤ = ∞ and for 2 ∈ ℤ,  2 = ∞ . 

ii. Let 𝐺 =  1, −1, 𝒾, −𝒾 , then |𝐺| = 4. 

1.3.2 Example  Prove that (ℤ𝒏,⊕) is a group. 

 Proof        Let          ℤ𝒏 = {0,1,2,3, … , 𝑛 − 1}. 

a)  Let  a, b ∈ ℤ𝒏 , then a + b ∈ ℤ𝒏 if 𝑎 + 𝑏 < 𝑛 and if 𝑎 + 𝑏 ≥ 𝑛 then after dividing 𝑎 + 𝑏 by 𝑛 the 

remainder is less than 𝑛 and so belongs to ℤ𝒏. i.e., the binary operation ⊕ is defined. 

b) The binary operation ⊕ is associative in general. 

c) 0 ∈ ℤ𝒏 is an identity element. 

d) For 𝑎 ∈ ℤ𝒏, 𝑛 − 𝑎 is the inverse of 𝑎. i.e., 

𝑎 + 𝑛 − 𝑎 = 𝑛 = 0 

All conditions are satisfied. Hence ℤ𝒏 under modulo addition ⊕ is a group. This group under 

modulo addition ⊕ is also an abelian group. 

Cayley Table: It is often convenient to describe a group in terms of an addition or multiplication 

table. Such a table is called cayley table. 

1.3.3 Example   Let 𝐺 =  1, −1, 𝒾, −𝒾  be a group under multiplication, then the cayley table is 

given by 

 

 

 

 

Klien’s Four-Group: The Klien four-group is group with four elements, in which each element is 

self-inverse. it was named Vierergruppe (four-group) by Felix Klien in 1884. It is also called the Klien 

group. it is dnoted by the letter 𝑉 or 𝐾4  and is given by 

𝐾4 =  𝑒, 𝑎, 𝑏, 𝑐 . 

Where 𝑎2 = 𝑏2 = 𝑐2 = (𝑎𝑏)2 = 𝑒, and 

×   1  -1 𝒾 -𝒾  

   1   1   -1 𝒾 - 𝒾 

  -1  -1    1  - 𝒾 𝒾 

𝒾 𝒾 - 𝒾   -1   1 

 - 𝒾 - 𝒾 𝒾    1  -1 
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𝑎. 𝑏 = 𝑐 = 𝑏. 𝑎 

𝑎. 𝑐 = 𝑏 = 𝑐. 𝑎 

𝑏. 𝑐 = 𝑎 = 𝑐. 𝑏 

The Klien four-group is not cyclic and it is an abelian group. The Cayley’s table for 𝐾4  is given by 

 

 

 

It can be described as the symmetric group of a non-square rectangle (with the three non-identity 

elements being horizontal and vertical reflection and 180- degree rotation). There are five subgroups of 

𝐾4  of order 1,2 and 4. These are 

𝐻1 =  𝑒  

𝐻2 =  𝑒, 𝑎           ,        𝐻4 =  𝑒, 𝑐  

                                                                𝐻3 = {𝑒, 𝑏}         ,         𝐻5 = 𝐾4  

Properties 

a) Every non-identity element is of order 2. 

b) Any two of the three non-identity element generates the third one. 

c) It is the smallest non-cyclic group. 

d) All proper subgroups of 𝐾4  are cyclic. 

Involution   An element 𝑥 of order 2 in a group 𝐺 is called an involution. 

1.3.4 Theorem   Every group of even order has at least one involution. 

Proof    Let 𝐺 be a group of order 2n. Let 

𝐴 =  𝑥 ∈ 𝐺 ∶  𝑥2 = 𝑒   , 𝐵 =  𝑦 ∈ 𝐺 ∶  𝑦2 ≠ 𝑒  . 

Then, we have 

𝐴 ∪ 𝐵 =  𝐺   and   𝐴 ∩ 𝐵 = ∅ 

If 𝐵 = ∅ then 𝐺 = 𝐴. So 𝐺 contains an involution. Now let 𝐵 ≠ ∅ and let 𝑦 ∈ 𝐵. Then, as 

𝑦2 ≠ 𝑒 ,  𝑦−1 ≠ 𝑦 

×    𝑒   𝑎 𝑏 𝑐  

    𝑒    𝑒   𝑎 𝑏 𝑐  

   𝑎    𝑎   𝑒 𝑐 𝑏  

𝑏    𝑏   𝑐 𝑒 𝑎 

 𝑐    𝑐   𝑏 𝑎 𝑒  
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But  since  (𝑦−1)2 ≠ 𝑒 so that 𝑦−1 ∈ 𝐵. So for each 𝑦 ∈ 𝐵 there exists 𝑦−1 ∈ 𝐵. Thus the number of 

elements in 𝐵 is even. Since the order of 𝐺 is even and 

 𝐺 =  𝐴 + |𝐵| 

So the number of elements in 𝐴 is also even. Since 𝑒2 = 𝑒 , 𝑒 ∈ 𝐴 , 𝐴 ≠ ∅. Hence  𝐴 ≥ 2. Thus 𝐴 and 

also 𝐺 contains an involution. 

1.3.5 Theorem  In a group if every non-identity element is of order 2, then prove that the group 

is abelian. 

Proof   Let 𝐺 be a group and 𝑎 ∈ 𝐺, 𝑎 ≠ 𝑒 such that 

𝑎2 = 𝑒  ⇒ 𝑎 = 𝑎−1 

Let , 𝑦 ∈ 𝐺 , then 𝑥𝑦 = (𝑥𝑦)−1 = 𝑦−1𝑥−1 = 𝑦𝑥. 

So 𝐺 is abelian. 

1.4 Subgroup 

 If a subset 𝐻 of a group 𝐺 is closed under the binary operation defined on 𝐺 and if 𝐻 

with the induced operation of 𝐺 is itself a group, then 𝐻 is called a subgroup of 𝐺 and is denoted 

by 𝐻 ≼ 𝐺 or 𝐺 ≽ 𝐻. 

OR 

A subset 𝐻 of a group 𝐺 is called a subgroup of 𝐺 if and only if 𝐻 is itself a group under the same binary 

operation defined on 𝐺. 

1.4.1 Remark Every group 𝐺 has a subgroup 𝐺 itself and the identity {𝑒}, where 𝑒 is the identity 

element. The subgroup 𝐺 itself is the proper subgroup and the identity element 𝑒 is called trivial 

subgroup of 𝐺. All other subgroup of 𝐺 are called the non-trivial subgroup of 𝐺. 

1.4.2 Examples 

i. (ℤ, +) is a subgroup of  ℚ , +  and  ℚ , +  is a subgroup of  ℝ , + . 

ii. The set ℚ+ under multiplication is a subgroup of ℝ+ under the algebraic operation multiplication. 

iii. The 𝑛𝑡 root of unity in ℂ𝑛  form a subgroup 𝑈𝑛  of the group ℂ∗ of non-zero complex numbers under 

the algebraic operation multiplication. 

1.4.3 Theorem  A non-empty subset 𝐻 of a group 𝐺 is a subgroup of 𝐺 if and only if for any pair 

of 𝑎, 𝑏 ∈ 𝐻  , 𝑎𝑏−1  ∈ 𝐻 ; 𝑎 ≠ 𝑏 ≠ 𝑒 . 
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Proof  Suppose that 𝐻 is a subgroup of a group 𝐺, then (𝐻,∗) is a group. 

 Therefore if 𝑏 ∈ 𝐻  , 𝑏−1  ∈ 𝐻 ⇒ 𝑎, 𝑏−1 ∈ 𝐻 and 𝑎𝑏−1 ∈ 𝐻       (closed property) 

Conversely , suppose that for 𝑎, 𝑏 ∈ 𝐻 , 𝑎𝑏−1 ∈ 𝐻.  

To prove 𝐻 is a subgroup, put 𝑏 = 𝑎 ⇒ 𝑎, 𝑎 ∈ 𝐻 ⇒ 𝑎𝑎−1 ∈ 𝐻 ⇒ 𝑒 ∈ 𝐻. 

⇒ identity element exists. 

Now , let  𝑒, 𝑏 ∈ 𝐻 ⇒ 𝑒, 𝑏−1 ∈ 𝐻 ⇒ 𝑒𝑏−1 ∈ 𝐻 ⇒ 𝑏−1  ∈ 𝐻. 

⇒ inverse of each element exists in 𝐻. 

 Again,  let 𝑎, 𝑏 ∈ 𝐻  ⇒  𝑎, 𝑏−1 ∈ 𝐻 

        ⇒         𝑎(𝑏−1)−1 ∈ 𝐻 

⇒             𝑎𝑏 ∈ 𝐻 

Thus 𝐻 is closed under the induced algebraic operation. The associative law holds in 𝐻 as it holds in 𝐺. 

Therefore 𝐻 is a subgroup. 

1.4.4 Theorem   Prove that the intersection of family of subgroups of a group 𝐺 is a subgroup of 

𝐺. 

Proof   Let {𝐻𝛼 }𝛼∈𝐼  be a family of subgroups of 𝐺. we have to show that 𝐻 =  𝐻𝛼𝛼∈𝐼  is a subgroup of 

𝐺. 

Let 𝑎, 𝑏 ∈ 𝐻, then 𝑎, 𝑏 ∈ 𝐻𝛼  for each 𝛼 ∈ 𝐼. Since 𝐻𝛼  is a subgroup of 𝐺, so 𝑎𝑏−1 ∈ 𝐻𝛼  for each 𝛼 ∈ 𝐼. 

Therefore, 

𝑎𝑏−1 ∈  𝐻𝛼 = 𝐻

𝛼∈𝐼

 

⇒ 𝐻 is a subgroup of 𝐺. Hence the intersection of family of subgroups of 𝐺 is a subgroup of 𝐺. 

1.4.5 Theorem   The union 𝐻 ∪ 𝐾 of two subgroups 𝐻, 𝐾 of a group 𝐺 is a subgroup of 𝐺 if and 

only if either 𝐻 ⊆ 𝐾 or 𝐾 ⊆ 𝐻. 

Proof   Suppose that either 𝐻 ⊆ 𝐾 or 𝐾 ⊆ 𝐻. We have to show that 𝐻 ∪ 𝐾 is a subgroup of 𝐺. 

Now,   𝐻 ∪ 𝐾 = 𝐻  ∵  𝐾 ⊆ 𝐻 

𝐻 ∪ 𝐾 = 𝐾   ∵  𝐻 ⊆ 𝐾 
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Thus 𝐻 ∪ 𝐾 is a subgroup of 𝐺 as 𝐻, 𝐾 are subgroups of 𝐺. 

Conversely, suppose that 𝐻 ∪ 𝐾 is a subgroup of 𝐺. To prove either 𝐻 ⊆ 𝐾 or 𝐾 ⊆ 𝐻, suppose on 

contrary that  

𝐻 ⊈ 𝐾 , 𝐾 ⊈ 𝐻 

Let  𝑎 ∈ 𝐻\𝐾 , 𝑏 ∈ 𝐾\𝐻. Since , 𝑏 ∈  𝐻 ∪ 𝐾 , therefore 

𝑎𝑏 ∈ 𝐻 ∪ 𝐾    ∵  𝐻 ∪ 𝐾 is a subgroup 

 

⇒either 𝑎𝑏 ∈ 𝐻 or 𝑎𝑏 ∈ 𝐾. Suppose that 𝑏 ∈ 𝐻, then 

𝑏 = 𝑎−1(𝑎𝑏) ∈ 𝐻  ∵  𝐻 is a subgroup 

Similarly, suppose 𝑏 ∈ 𝐾, then 

𝑎 = (𝑎𝑏)𝑏−1 ∈ 𝐾 ∵  𝐾  is a subgroup 

This is contradiction to our supposition so either 𝐻 ⊆ 𝐾 or 𝐾 ⊆ 𝐻. 

1.4.6 Theorem  Show that ℤ𝑃  has no proper subgroup if 𝑃 is a prime number. 

Proof   As number of subgroups of ℤ𝑃  is the same as the number of distinct divisors of 𝑃  which are 1 

and 𝑃 itself. Hence the number of distinct subgroups of  ℤ𝑃  are two  1  and ℤ𝑃  itself. Thus the number 

of proper subgroups is zero (no proper subgroup), as we can say that ℤ𝑃  has no proper subgroup. 

1.4.7 Theorem  Let 𝐺 be an abelian group and 𝐻 be the set consisting of the elements of finite 

order in 𝐺. Then 𝐻 is a subgroup of 𝐺. 

Proof   Let 𝑎, 𝑏 ∈ 𝐻, then there exist integers 𝑚, 𝑛 such that 

𝑎𝑚 = 𝑏𝑛 = 𝑒 , (𝑒 is the identity of 𝐻) 

So (𝑎𝑏)𝑚𝑛 = 𝑎𝑏. 𝑎𝑏. 𝑎𝑏 … 𝑎𝑏   (𝑚𝑛 times) 

 = 𝑎𝑚𝑛 . 𝑏𝑚𝑛  

                 = (𝑎𝑚 )𝑛 . (𝑏𝑛)𝑚 = 𝑒𝑛 . 𝑒𝑚  

 = 𝑒 

⇒ 𝑎𝑏 has finite order, so 𝑎𝑏 ∈ 𝐻. 

Also, if 𝑏 ∈ 𝐻 and 𝑏𝑛 = 𝑒, then 
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(𝑏−1)𝑛 = 𝑏−1. 𝑏−1. 𝑏−1 … 𝑏−1   (n times) 

      = 𝑏−𝑛 = (𝑏𝑛)−1 = (𝑒)−1 = 𝑒 

⇒ 𝑏−1 ∈ 𝐻. Hence 𝐻 is a subgroup of 𝐺. 

1.5 Cyclic Group 

 A group 𝐺 is said to be cyclic if and only qAQWD if it generates by a single 

element. i.e., a group 𝐺 is cyclic if there is some element 𝑎 ∈  𝐺 that generates 𝐺. If 𝐺 is finite cyclic 

group of order n, then 

𝐺 =< 𝑎 ∶  𝑎𝑛 = 𝑒 >. 

If an element of 𝐺 is the generator of 𝐺 then its inverse is also the generator of 𝐺. 

1.5.1 Examples   

i. A group 𝐺 =  1, −1, 𝒾, −𝒾  is cyclic group as < 𝒾 > is its generator. 

ii. A group ℤ5 = {0,1,2,3,4} under modulo addition is cyclic group. Since every element of ℤ5 is in the 

power of a single element that is 1. Therefore 1 is the generator of ℤ5. 

iii. A set  1, −1  is a cyclic group under multiplication. 

iv. The group ℤ under addition is a cyclic group. Both 1 and −1 are generators of this group, and they 

are the only generators. Also, for 𝑛 ∈ ℤ+, the group ℤ𝑛  under addition modulo 𝑛 is cyclic. If 𝑛 > 1, 

then both 1 and 𝑛 − 1 are generators, but there may be others. 

1.5.2 Theorem   Every cyclic group is abelian. 

Proof    Let 𝐺 be a cyclic group and let 𝑎 be a generator of 𝐺.  

Let , 𝑦 ∈ 𝐺 , then there exist integers 𝑚 and 𝑛 such that 

𝑥 = 𝑎𝑚      , 𝑦 = 𝑎𝑛   

Now                                𝑥𝑦 = 𝑎𝑚 𝑎𝑛 = 𝑎𝑚+𝑛 = 𝑎𝑛+𝑚 = 𝑎𝑛𝑎𝑚 = 𝑦𝑥 

So 𝐺 is abelian. 

1.5.3 Theorem  Every subgroup of a cyclic group is cyclic. 

Proof   Let 𝐺 be cyclic group generated by 𝑎. Let 𝐻 be a subgroup of 𝐺 and 𝑘 be the least positive 

integer such that 𝑎𝑘 ∈ 𝐻. We have to prove that 𝐻 is generated by 𝑎𝑘 . 

For this, let = 𝑎𝑚 ∈ 𝐻 ,∀ 𝑚 > 𝑘 , then there exist integers 𝑞 and 𝑟 such that 
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𝑚 = 𝑘𝑞 + 𝑟 , 0 ≤ 𝑟 ≤ 𝑘 

                                                           ⇒       𝑎𝑚 = 𝑎𝑘𝑞 + 𝑎𝑟  

  = (𝑎𝑘)𝑞 . 𝑎𝑟  

 ⇒ 𝑎𝑚 . (𝑎𝑘)−𝑞 = 𝑎𝑟  

Sine 𝑎𝑚  and (𝑎𝑘)−𝑞  are in 𝐻. Therefore, 𝑎𝑟 ∈ 𝐻. But since 𝑘 is the smallest integer for which 𝑎𝑘 ∈ 𝐻 

and 𝑟 < 𝑘, so 𝑎𝑘 ∈ 𝐻 is possible only if 𝑟 = 0. But if 𝑟 = 0, then 

        𝑚 = 𝑞𝑘  

 ⇒       𝑎𝑚 = 𝑎𝑘𝑞  

 ⇒       𝑎𝑚 = (𝑎𝑘)𝑞 ∈ 𝐻 

                                                          ⇒ 𝑎𝑘  is the generator of 𝐻. 

Hence 𝐻 is cyclic subgroup of 𝐺. 

Division algorithm for ℤ  If 𝑚 is a positive integer and 𝑛 is any integer such that 𝑛 > 𝑚, then there 

exist unique integer 𝑞 and 𝑟 such that 
𝑛 = 𝑚𝑞 + 𝑟     , 0 ≤ 𝑟 ≤ 𝑚 

Where 𝑞 is the quotient and 𝑟 is the remainder when 𝑛 divided by 𝑚. 

1.5.4 Corollary The subgroups of ℤ under addition are precisely the groups 𝑛ℤ under addition for 

𝑛 ∈ ℤ. This corollary gives the greatest common divisors of two positive integers 𝑟 and 𝑠. 

Greatest Common Divisor Let 𝑟 and 𝑠 be two positive integers. The positive generator 𝑑 of the 

cyclic group 𝐺 =  𝑛𝑟 + 𝑚𝑠   𝑛, 𝑚 ∈ ℤ} under addition is the greatest common divisor of 𝑟 and 𝑠. We write 
𝑑 = gcd(𝑟, 𝑠). If two positive integers are relatively prime then their greatest common divisor is 1. 

Note: If 𝑟 and 𝑠 are relatively prime and if 𝑟 divides 𝑚𝑠, then 𝑟 must divide 𝑚. 

Question Find the greatest common divisor of 42 and 72. 

Solution The positive divisors of 42 are 1,2,3,6,7,21,42. The positive divisors of 72 are 

1,2,3,4,6,8,9,12,18,24,36,72. This implies that the greatest common divisor of 42 and 72 is 6. 

i.e., gcd 42,72 = 6. 

 d = nr + ms 

 6 =  72  6 +  42 (−5) 

                                                                    ⇒ n = 6  , m = −5 
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1.5.5 Theorem Let 𝐺 be a cyclic group of order 𝑛. Then 𝐺 contains one and only one subgroup of 

order 𝑑 if and only if 𝑑|𝑛. 

Proof Let 𝐺 be a cyclic group generated by 𝑎 ∈ 𝐺 such that 𝑎𝑛 = 𝑒. Suppose that 𝑑 > 0 divides 𝑛, 

then 𝑛 = 𝑘𝑑 for some integer 𝑘. So 

                                                                               𝑎𝑛 = 𝑎𝑘𝑑 = (𝑎𝑘)𝑑 ∈ 𝐻 

⇒ 𝐻 = {𝑎𝑘 ∶ 𝑘 =
𝑛

𝑑
} 

is a subgroup of order 𝑑. To prove 𝐻 is unique subgroup of order 𝑑 in 𝐺, let 𝐾 be another subgroup of 

order 𝑑 in 𝐺 and generated by 𝑎𝑙 , 𝑙 > 0. then 

(𝑎𝑙)𝑑 =  𝑎𝑙𝑑 = 𝑒 

So  𝑛 divides  𝑙𝑑. Thus  𝑙𝑑 = 𝑟𝑛 for some integer  𝑟. But  𝑛 = 𝑘𝑑. 

                                                                                   ⇒ 𝑙𝑑 = 𝑟𝑘𝑑 

       ⇒    𝑙 = 𝑟𝑘 

                         ⇒ 𝑎𝑙 = 𝑎𝑟𝑘 = (𝑎𝑘)𝑟 ∈ 𝐻 

Therefore 𝐾 ⊆ 𝐻. Since 𝐻 and 𝐾 are subgroups of 𝐺 having same order, so 𝐻 = 𝐾. 

⇒there is one and only one subgroup of order 𝑑 in 𝐺. 

Conversely, suppose that 𝐻 is a subgroup of order 𝑑. Then 𝑑 being the order of subgroup divides the 

order of group 𝐺 i.e., 𝑑|𝑛. 

1.5.6 Theorem Let 𝐺 be a cyclic group of generated by 𝑎, 

a) If 𝐺 is of finite order 𝑛 then an element 𝑎𝑘 ∈ 𝐺 is a generator of 𝐺 if and only if 𝑘 and 𝑛 are 

relatively prime. 

b) If 𝐺 is of infinite order, then 𝑎 and 𝑎−1 are the only generator of 𝐺. 

Proof 

a) Let 𝐺 =< 𝑎 ∶  𝑎𝑛 = 𝑒 > be  a finite cyclic group. Consider 𝑘 and 𝑛 are relatively prime, then there 

exist integers 𝑝 and  𝑞 such that 
                     𝑘𝑝 + 𝑛𝑞 = 1     ⟶(A) 

Let 𝐻 be a subgroup generated by 𝑎𝑘 . Now will prove that 𝐻 = 𝐺. 

From (A), we have 

                 𝑎𝑘𝑝 +𝑛𝑞 = 𝑎1 



15 
 

⇒         𝑎𝑘𝑝 . 𝑎𝑛𝑞 = 𝑎 

⇒ (𝑎𝑘)𝑝 . (𝑎𝑛)𝑞 = 𝑎 

⇒   (𝑎𝑘)𝑝 . (𝑒)𝑞 = 𝑎 

⇒             (𝑎𝑘)𝑝 = 𝑎 

Since (𝑎𝑘)𝑝  is an element of 𝐻. So 𝑎 ∈ 𝐻 

Also 𝑎 ∈ 𝐺, therefore 𝐻 = 𝐺. 

⇒ 𝐺 is generated by 𝑎𝑘 . 

Conversely, suppose 𝑎𝑘  is the generator of 𝐺, so for some integer 𝑝 we have 

(𝑎𝑘)𝑝 = 𝑎 

       𝑎𝑘𝑝 = 𝑎 

                                                                              ⇒  𝑎𝑘𝑝−1 = 𝑒 

So 𝑛|𝑘𝑝 − 1, because 𝑛 is the least such integer. So there exist integer 𝑞 such that 

                                                                              ⇒    𝑘𝑝 − 1 = 𝑛𝑞 

                                                                              ⇒ 𝑘𝑝 − 𝑛𝑞 = 1 

⇒ 𝑘 and 𝑛 are relatively prime. 

b) Let 𝐺 =< 𝑎 > be an infinite cyclic group. Let 𝑎𝑘  is also the generator of 𝐺. Then, there exist an 

integer 𝑝 such that  

(𝑎𝑘)𝑝 = 𝑎 

⇒  𝑎𝑘𝑝−1 = 𝑒 

⇒ 𝑘𝑝 − 1 = 0 or 𝑘𝑝 − 1 ≠ 0.  

If 𝑘𝑝 − 1 ≠ 0, then order of 𝐺 is finite, which is contradiction. Therefore 𝑘𝑝 − 1 = 0 

⇒      𝑘𝑝 = 1 

Since 𝑘 and 𝑝 are integers. Therefore, either 𝑘 = 𝑝 = 1 or 𝑘 = 𝑝 = −1 ie., 𝑎 and 𝑎−1 are the only 

generators. 

Exponent Let 𝐺 be a group of order 𝑛. If the order of its generator is 𝑛 then 𝐺 has exponent  𝑛. i.e., 𝑎𝑛 = 𝑒 

for some 𝑎 ∈ 𝐺. 

1.5.7 Theorem An abelian group 𝐺 of order 𝑛 is cyclic if and only if it has exponent 𝑛. 



16 
 

Proof Let 𝐺 =< 𝑎 ∶  𝑎𝑛 = 𝑒 > be a cyclic group, then clearly 𝐺 has an exponent 𝑛. 

Conversely, suppose that  𝐺 is an abelian group of order 𝑛 and has exponent 𝑛. We have to show that 𝐺 

is cyclic. 

First we show that for any 𝑎, 𝑏 ∈ 𝐺 of order 𝑝 and 𝑞 respectively with  𝑝, 𝑞 = 1, the order or 𝑎𝑏 is 𝑝𝑞. 

Let the order of 𝑎𝑏 is 𝑘, then we have 

(𝑎𝑏)𝑘 = 𝑒 = 𝑎𝑘 . 𝑏𝑘  

⇒   𝑎𝑘 = 𝑏−𝑘 = 𝑐   (say) 

Let 𝑚 be the order of 𝑐. Then 𝑚 divides the order of 𝑎 and 𝑏. 

So 𝑚| 𝑝, 𝑞 . since  𝑝, 𝑞 = 1 , 𝑚 = 1. Hence 𝑐 = 𝑒 so that 

𝑎𝑘 = 𝑏𝑘 = 𝑒 

But then 𝑝|𝑘 , 𝑞|𝑘. Hence 𝑝𝑞|𝑘. Also  

(𝑎𝑏)𝑝𝑞 = (𝑎𝑝)𝑞 . (𝑏𝑞 )𝑝 = 𝑒 

Hence 𝑘|𝑝𝑞. thus 

                             𝑘 = 𝑝𝑞                       ∵ (𝑎𝑏)𝑘 = 𝑒 

⇒ the order of 𝑎𝑏 is 𝑝𝑞. 

Next let 𝑥 be an element of maximal order in 𝐺 so that 

                                                                            𝑥𝑚 = 𝑒 

We show that for each 𝑦 ∈ 𝐺, 𝑦𝑚 = 𝑒. 

Since 𝐺 is finite, let 𝑘 be the order of 𝑦, and 

𝑘 = 𝑝1
𝛼1𝑝2

𝛼2 … 𝑝𝑟
𝛼𝑟     ,    𝑚 = 𝑝1

𝛽1𝑝2
𝛽2 … 𝑝𝑠

𝛽𝑠  

Where 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0, 1 ≤ 𝑖 ≤ 𝑟 , 1 ≤ 𝑗 ≤ 𝑠. If 𝑦𝑚 ≠ 𝑒 then 𝑘 does not divide 𝑚. So for some 𝑖,𝛼𝑖 > 𝛽𝑖 . 

suppose that 𝑖 = 1, so that 𝛼1 > 𝛽1. 

Take  

𝑥′ = 𝑥𝑝1
𝛽1

 , 𝑦′ = 𝑦𝑝2
𝛼2…𝑝𝑟

𝛼𝑟
 

Then                                                                 (𝑥′ )𝑝2
𝛽2…𝑝𝑠

𝛽𝑠
= 𝑥𝑚 = 𝑒 
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and                                                        (𝑦′ )𝑝1
𝛼1

= 𝑦𝑝1
𝛼1𝑝2

𝛼2…𝑝𝑟
𝛼𝑟

= 𝑦𝑘 = 𝑒 

Since   p1
α1 , p2

β2 … ps
βs  = 1, 

x′ y′  has order p1
α1  p2

β2 … ps
βs > 𝑚. This contradicts our choice of 𝑥. Hence 𝑦𝑚 = 𝑒, so that 𝑚 is the 

exponent of 𝐺. But then 𝑚 = 𝑛. Thus 𝑥 has order n in 𝐺 which also has order 𝑛. Hence 𝐺 is cyclic group 

generated by 𝑥. 

1.5.8 Proposition Let 𝐺 be a cyclic group of order 𝑛 and suppose that 𝑎 is a generator 

for 𝐺. Then 𝑎𝑘 = 𝑒 if and only if 𝑛 divides 𝑘. 

Proof First suppose that 𝑎𝑘 = 𝑒. By the division algorithm,𝑘 = 𝑛𝑞 + 𝑟 where 0 ≤ 𝑟 < 𝑛. Hence, 

 𝑎𝑘 = 𝑎𝑛𝑞 +𝑟 = (𝑎𝑘)𝑞 . 𝑎𝑟 = 𝑒. 𝑎𝑟 = 𝑎𝑟  

𝑎𝑟 = 𝑒     ∵ 𝑎𝑘 = 𝑒  

Since 𝑛 is the least such integer for which 𝑎𝑛 = 𝑒, 𝑟 < 𝑛. So it is possible only if 𝑟 = 0. 

⇒ 𝑘 = 𝑛𝑞 

This implies that 𝑛|𝑘. 

Conversely, if 𝑛 divides 𝑘, then 𝑘 = 𝑛𝑞 for some integer 𝑞. Consequently, we have 

                                 𝑎𝑘 = 𝑎𝑛𝑞 = (𝑎𝑛)𝑞 = 𝑒 

⇒ 𝑎𝑘 = 𝑒. 

Corollary  If a is a generator of a finite cyclic group G of order n, then the other generators of G are the 

elements of the form ar , where r is relatively prime to n. 

1.5.9 Example   Find all the subgroups of ℤ18 =  0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 . 

Solution  The number 2 is the generates a subgroup consists of 9 number of elements. 

< 2 > = {0,2,4,6,8,10,12,14,16} 

by using previous corollary the elements 1,5,7,11,13,17 are all the generators of ℤ18  and 

 h = 1,2,4,5,7,8 are all those elements which are relatively prime to 9, so h2 = 2,4,8,10,14,16. 

The element 6 of < 2 > generates a subgroup {0,6,12} and 12 also is the generator of this subgroup. 

We have thus found all subgroups generated by 0,1,2,4,5,6,7,8,10,11,12,13,14,16,17. this leaves just 

3,9 and 15. 
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Since the element 3 generates a subgroup consisting of 6 elements, 

< 3 > = {0,3,6,9,12,15} 

Therefore, 15 = 5.3 also generates a subgroup of order 6, as 5 and 6 are relatively prime. 

Finally, < 9 > = {0,9}. 

1.5.10 Theorem Every non-identity element in an infinite cyclic group is of infinite order. 

Proof Let 𝐺 =< 𝑎 > be an infinite cyclic group. Let 𝑎𝑘 ∈ 𝐺, 𝑚 ≠ 0 such that |𝑎𝑘 | is finite. 

i.e (𝑎𝑘)𝑚 = 𝑒 for some integer 𝑚. 

⇒ 𝑎𝑘𝑚 = 𝑒 

This implies |𝑎| is finite, which is contradiction to that 𝐺 is infinite. Hence order of 𝑎 is infinite. 

1.5.11 Theorem A non-trivial subgroup of an infinite cyclic group is an infinite cyclic. 

Proof Let 𝐺 =< 𝑎 > be an infinite cyclic group and 𝐻 be a non-trivial subgroup of 𝐺. 

Since 𝐻 is cyclic, so that 𝐻 =< 𝑎𝑘 > for some integer 𝑘 > 0 (the subgroup of an infinite cyclic group is 

cyclic). By theorem (every non-identity element of an infinite cyclic group is of infinite order) |𝑎𝑘 | is 

infinite. Hence 𝐻 is an infinite cyclic subgroup of 𝐺. 

Definition Let 𝐺 be a group and let 𝑎𝑖 ∈ 𝐺 for 𝑖 ∈ 𝐼. The smallest subgroup of 𝐺 containing {𝑎𝑖 ∶  𝑖 ∈ 𝐼} is 

the subgroup generated by {𝑎𝑖 ∶  𝑖 ∈ 𝐼}. If this subgroup is all of 𝐺, then {𝑎𝑖 ∶  𝑖 ∈ 𝐼} generates 𝐺 and the 
𝑎𝑖  are generators of 𝐺. If there is a finite set {𝑎𝑖 ∶  𝑖 ∈ 𝐼} that generates 𝐺, then 𝐺 is finitely generated. 

Question Find the generators of a finite cyclic group of order 12. 

Solution Let 𝐺 =< 𝑎 > be a cyclic group of order 12, then 

𝐺 = {𝑎, 𝑎2, 𝑎3, … , 𝑎12 = 𝑒} 

To find the generators of 𝐺, the smallest subgroup of 𝐺 generated by 𝑎𝑘  , 𝑘 ∈∪  12 . Where 

∪  12 = {1,5,7, ,11}, i.e 𝑎, 𝑎5, 𝑎7, 𝑎11 . 

But since 1,5,7, ,11 are relatively prime to 12. Therefore 𝑎, 𝑎5, 𝑎7, 𝑎11  are the generators of 𝐺. 

1.6 Cosets 

 Let 𝐻 be a subgroup of a group 𝐺 which may be finite or infinite. We exhibit two 

partitions of 𝐺 by two equivalence relation (left ∼𝐿  and right  ∼𝑅) on 𝐺. 
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Let 𝐻 be a subgroup of a group 𝐺 then the subset 𝑎𝐻 = {𝑎 ∶  ∈ 𝐻, 𝑎 ∈ 𝐺} of 𝐺 is the left cosets of 𝐻 

containing 𝑎, while the subset 𝐻𝑎 = {𝑎 ∶  ∈ 𝐻, 𝑎 ∈ 𝐺} is the right cosets of 𝐻 containing 𝑎. 

1.6.1 Example  Exhibit the left and right cosets 3ℤ of ℤ. 

Solution    Let ℤ = {… , −3, −2, −1,0,1,2,3, … } be a group. Since 3ℤ is a subgroup of ℤ and 

3ℤ = {… , −9, −6, −3,0,3,6,9, … } 

Now the left cosets 3ℤ are 

0 + 3ℤ = {… , −9, −6, −3,0,3,6,9, … } 

                                                            1 + 3ℤ = {… , −8, −5, −2,1,4,7,10, … } 

                                                            2 + 3ℤ = {… , −7, −4, −1,2,5,8,11, … } 

3 + 3ℤ = {… , −9, −6, −3,0,3,6,9, … } 

                                                       ⇒ 3 + 3ℤ = 3ℤ 

It is clear that there are three left cosets we are found do exhaust. So they constitute the partition of ℤ 

into the left cosets of 3ℤ. Since ℤ is abelian, therefore there left cosets 3 + 3ℤ and the right cosets 

3ℤ + 3 are the same. Since the partition of ℤ into the right cosets of 3ℤ is the same. 

Equivalence Relation: 
a) Reflexive:    Let 𝑎 ∈ G then 𝑎𝑎−1 = 𝑒 , 𝑒 ∈ H. since 𝐻 is a subgroup thus 𝑎 ∼𝐿 𝑎. 
b) Symmetric: Suppose 𝑎 ∼𝐿 𝑏 then 𝑎−1𝑏 ∈ 𝐻. Since 𝐻 is a subgroup of 𝐺, therefore (𝑎−1𝑏)−1 is in 𝐻 and 

hence 𝑏 ∼𝐿 𝑎. 
c) Transitive: Let 𝑎 ∼𝐿 𝑏 and 𝑏 ∼𝐿 𝑐 then 𝑎−1𝑏 ∈ 𝐻 and 𝑏−1𝑐 ∈ 𝐻. Since 𝐻 is a subgroup, therefore  

(𝑎−1𝑏) 𝑏−1𝑐 = 𝑎−1 𝑏𝑏−1 𝑐 = 𝑎−1𝑐 ∈ 𝐻 
Hence 𝑎 ∼𝐿 𝑐. 
The equivalence relation is used for the partition of a group. 

Note Every left and right cosets of a subgroup 𝐻 of a group 𝐺 has the same number of elements. 

1.6.2 Theorem A non-empty subset 𝐻 of a group 𝐺 is a subgroup of 𝐺 if and only if 𝐻𝐻−1 ⊆ 𝐻. 

Proof Suppose that 𝐻 is a subgroup. Then  

𝐻𝐻−1 = {𝑎𝑏−1 ∶ 𝑎, 𝑏 ∈ 𝐻} ⊆ 𝐻  (by closure law) 

⇒  𝐻𝐻−1 ⊆ 𝐻. 

Conversely, suppose that 𝐻𝐻−1 = {𝑎𝑏−1 ∶ 𝑎, 𝑏 ∈ 𝐻} ⊆ 𝐻, then 𝑎𝑏−1 ∈ 𝐻. So by theorem ( a non-

empty subset 𝐻 of a group 𝐺 is a subgroup of 𝐺 if and only if, for any pair 𝑎, 𝑏 ∈ 𝐻 , 𝑎𝑏−1 ∈ 𝐻 ) 𝐻 is a 

subgroup. 
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Permutable The two subgroups 𝐻 and 𝐾 of a group 𝐺 are said to be permutable if and only if for any 

𝑥 ∈ 𝐻 and 𝑦 ∈ 𝐾 there exist 𝑥′ ∈ 𝐻 and 𝑦′ ∈ 𝐻 such that 
𝑥𝑦 = 𝑦′  𝑥′  . i.e., 𝐻𝐾 = 𝐾𝐻 

1.6.3 Theorem  Let 𝐻 and 𝐾 be subgroups of a group 𝐺. The product 𝐻𝐾 of 𝐻 and 𝐾 is a 

subgroup of 𝐺 if amd only if 𝐻 and 𝐾 are permutable. 

Proof  Let 𝐻 and 𝐾 be permutable. Then, for any  ∈ 𝐻 and 𝑘 ∈ 𝐾, there exist ′ ∈ 𝐻 and 𝑘′ ∈ 𝐾 

such that 

𝑘 = 𝑘′ ′  

To prove 𝐻𝐾 is a subgroup, let 𝑥, 𝑦 ∈ 𝐻𝐾 and = 𝑘, 𝑦 = 1𝑘1. Then  

𝑥𝑦−1 = 𝑘. (1𝑘1)−1 

= 𝑘𝑘1
−11

−1  

                                                               = 𝑘21
−1     ,  𝑘𝑘1

−1 = 𝑘2 ∈ 𝐾 ∵ 𝐾 is a subgroup 

 = ′𝑘2
′         ,                        ∵ 𝐻𝐾 = 𝐾𝐻 

 = 2
′𝑘2

′         , ′ = 2
′ ∈ 𝐻 ∵ 𝐻 is a subgroup.  

Hence 𝑥𝑦−1 ∈ 𝐻𝐾 and 𝐻𝐾 is a subgroup. 

Conversely, suppose that 𝐻𝐾 is a subgroup. To prove 𝐻𝐾 = 𝐾𝐻, let 𝑘 ∈ 𝐻𝐾,  ∈ 𝐻, 𝑘 ∈ 𝐾. Then 

                                                 (𝑘)−1 ∈ 𝐻𝐾                                             ∵ 𝐻𝐾 is a subgroup 

Now                              (𝑘)−1 = 𝑘−1−1 = 𝑘′′ ∈ 𝐾𝐻 , 𝑘′ = 𝑘−1 ∈ 𝐾, ′ = −1 ∈ 𝐻 

Hence 𝐻𝐾 ⊆ 𝐾𝐻. 

 Also for any 𝑘 ∈ 𝐾𝐻 being the product of two elements 𝑒𝑘 and 𝑒 of  the subgroup 𝐻𝐾, is in 𝐻𝐾, so 

that 𝐾𝐻 ⊆ 𝐻𝐾. 

By combining the two inclusion relation we have 

𝐻𝐾 = 𝐾𝐻. 

Index of subgroup: The number of distinct left or right cosets of a subgroup 𝐻 of a group 𝐺 is 

called the index of a subgroup and is denoted by  𝐺: 𝐻 . 

1.7 Lagrange’s Theorem 

Let 𝐻 be a subgroup of a finite group 𝐺. Then the order and index of 𝐻 divides the order of 𝐺. 
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Proof   Let 𝐺 be a group of order 𝑛 and 𝐻 be a subgroup of order 𝑚 in 𝐺. Let Ω be the collection of all 

left cosets of 𝐻 in 𝐺. i.e., 

Ω = 𝑎1𝐻 ∪ 𝑎2𝐻 ∪ … ∪ 𝑎k𝐻   (𝑘 is the index of subgroup) 

 =  𝑎𝑖𝐻
k
𝑖=1  

First we will show that Ω is a partition of 𝐺. 

Let 𝑎𝑖 ∈ 𝐺, then                                     𝑎𝑖 = 𝑎𝑖𝑒 ∈ 𝑎𝑖𝐻,   ∵  𝑒 ∈ 𝐻 

⇒ 𝑎𝑖 ∈  𝑎𝑖𝐻

k

𝑖=1

 

                                                                                ⇒   𝐺 ⊆  Ω 

Also each 𝑎𝑖𝐻 is a subset of 𝐺, therefore 

 𝑎𝑖𝐻

k

𝑖=1

⊆ 𝐺 

                                                                                ⇒     Ω ⊆ 𝐺 

By combining the two inclusion we get 

𝐺 = Ω 

Now, let 𝑎𝐻 and 𝑏𝐻 are distinct left cosets and 𝑥 ∈ 𝑎𝐻 𝑏𝐻, then 

𝑥 = 𝑎1 = 𝑏2 for some 1, 2 ∈ 𝐻 

⇒ 𝑎 = 𝑏21
−1 = 𝑏3, 3 = 21

−1 ∈ 𝐻 

Now let 𝑎 ∈ 𝑎𝐻, then 

𝑎 = 𝑏3 ∈ 𝑏𝐻 

                                  ⇒  𝑎𝐻 ⊆ 𝑏𝐻                         (1)  

Similarly, 

⇒ 𝑏 = 𝑏12
−1 = 𝑏′ , ′ = 21

−1 ∈ 𝐻 

Now let 𝑏 ∈ 𝑏𝐻, then 

𝑏 = 𝑎′ ∈ 𝑏𝐻 

                                  ⇒  𝑏𝐻 ⊆ 𝑎𝐻                         (2)  
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From (1) and (2), we have  

                                                                                          𝑎𝐻 = 𝑏𝐻 

Contradicting the fact that 𝑎𝐻 and 𝑏𝐻 are distinct left cosets. Thus 𝑎𝐻 𝑏𝐻 = ∅. This implies that Ω 

defines a partition of 𝐺. 

       ⇒  𝐺 = |𝑎1𝐻| +  𝑎2𝐻 + ⋯ + |𝑎k𝐻|      (A) 

To find the number of elements in each coset we define a mapping  𝜑: 𝐻 ⟶ 𝑎𝑖𝐻 by 

𝜑  = 𝑎𝑖  ,   ∈ 𝐻 

For  1, 2 ∈ 𝐻 

𝜑  1 = 𝜑  2  

                                                                              ⇒ 𝑎𝑖1 = 𝑎𝑖2 

                                                                              ⇒     1 = 2 

⇒  𝜑 is one one. 

Also for each 𝑎𝑖 ∈ 𝑎𝑖𝐻 there exist  ∈ 𝐻 such that 𝜑  = 𝑎𝑖. So 𝜑 is onto. 

Hence the number of elements in 𝐻 and 𝑎𝑖𝐻 is the same for = 1,2, … , 𝑘. 

Since 𝐻 has 𝑚 elements, therefore 𝑎𝑖𝐻 has 𝑚 elements. 

So from equ. (A), we have 

𝑛 = 𝑚 + 𝑚 + ⋯ + 𝑚   (𝑘 times) 

  ⇒ 𝑛 = 𝑘𝑚 

⇒ 𝑘|𝑛 and 𝑚|𝑛. That is, the order and index of a subgroup divides the order of group. 

Corollary 
a) Two left or right cosets of a subgroup 𝐻 in a group 𝐺 are either identical or disjoint. 

b) Every element of 𝐺 belong to one and only one left or right coset of 𝐻. 

1.7.1 Theorem   Every group whose order is prime number is necessarily cyclic. 

Proof   Let 𝐺 be a group of order 𝑝 where 𝑝 is a prime number and 𝑎 ∈ 𝐺 be a non-identity element. 

Then the order 𝑚 of the cyclic group 𝐻 generated by 𝑎 is a factor of 𝑝. As ≠ 𝑒 , 𝑚 ≠ 1 and so 𝑚 = 𝑝. 

Thus 𝐻 coincides with 𝐺. Therefore 𝐺 is cyclic. 
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RELATIONS BETWEEN GROUPS 

 

2.1 Definitions 

Normalizers 

 Let 𝑋 be an arbitrary subset of a group 𝐺. The set of those elements of 𝐺 which permute 

with 𝑋 is called normalizer of 𝑋 in 𝐺 and is denoted by 𝑁𝐺 𝑋 . That is : 

𝑁𝐺 𝑋 = { 𝑎 ∈ 𝐺 ∶ 𝑎𝑋 = 𝑋𝑎} . 

Centralizers 

 The centralizers of a subset 𝑋 in a group 𝐺 is the set of those elements of 𝐺 which are 

permutable with every element of 𝑋. It is denoted by 𝐶𝐺 𝑋 . That is: 

𝐶𝐺 𝑋 = { 𝑎 ∈ 𝐺 ∶ 𝑎𝑥 = 𝑥𝑎, ∀𝑥 ∈ 𝑋}. 

The centralizer of the whole group 𝐺 is called the centre of 𝐺. 

Centre Of A Group 

  The centre of a group 𝐺 is the set of those elements of 𝐺 which commute with 

every element of 𝐺. the centre of 𝐺 is denote by 𝜁(𝐺). That is: 

𝜁(𝐺) = {𝑎 ∈ 𝐺 ∶ 𝑎𝑔 = 𝑔𝑎, ∀ 𝑔 ∈ 𝐺}. 

The centre of a group 𝐺 is its subgroup. 

Examples 

a) The centre of the quaternion group 𝑄8 = {±1, ±𝑖, ±𝑗, ±𝑘} is ±1. 

b) The centre of the groups ℤ, ℚ, ℝ and ℂ of integers, rational, real and of complex numbers under 
their usual addition are the corresponding groups themselves. 

2.1.1 Theorem   The normalizer 𝑁𝐺 𝑋  of a subset 𝑋 of a group 𝐺 is a subgroup of 𝐺. 

Proof   Let 𝑎, 𝑏 ∈ 𝑁𝐺 𝑋 . Then 

𝑎𝑋 = 𝑋𝑎 and 𝑏𝑋 = 𝑋𝑏 
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Now 

                                                                                 𝑏𝑋 = 𝑋𝑏 

⇒ 𝑏−1𝑏𝑋𝑏−1 = 𝑏−1𝑋𝑏𝑏−1 = 𝑏−1𝑋 

                                                             ⇒           𝑏−1𝑋 = 𝑋𝑏−1  

⇒ 𝑏−1 ∈ 𝑁𝐺 𝑋 . Hence 

 𝑎𝑏−1 𝑋 = 𝑎 𝑏−1𝑋 = 𝑎 𝑋𝑏−1 =  𝑎𝑋 𝑏−1 = 𝑋(𝑎𝑏−1) 

Therefore 𝑎𝑏−1 ∈ 𝑁𝐺 𝑋 . So 𝑁𝐺 𝑋  is a subgroup. 

2.1.2 Theorem   The centralizer 𝐶𝐺 𝑋  of a subset 𝑋 in a group 𝐺 is a subgroup of 𝐺. 

Proof   Let 𝑎, 𝑏 ∈ 𝐶𝐺 𝑋 . Then 

𝑎𝑥 = 𝑥𝑎 and 𝑏𝑥 = 𝑥𝑏 

Now 

⇒ 𝑏−1𝑏𝑥𝑏−1 = 𝑏−1𝑥𝑏𝑏−1 = 𝑏−1𝑥 

                                                              ⇒           𝑏−1𝑥 = 𝑥𝑏−1 

⇒ 𝑏−1 ∈ 𝐶𝐺 𝑋 . Hence 

 𝑎𝑏−1 𝑥 = 𝑎 𝑏−1𝑥 = 𝑎 𝑥𝑏−1 =  𝑎𝑥 𝑏−1 = 𝑥(𝑎𝑏−1) 

Therefore 𝑎𝑏−1 ∈ 𝐶𝐺 𝑋 . So 𝐶 𝐺 𝑋  is a subgroup. 

2.1.3 Theorem Let 𝐺 be a group and 𝑋 be a non-empty subset of 𝐺. Then prove that 

𝜁 𝐺 ⊆ 𝐶𝐺 𝑋 ⊆ 𝑁𝐺 𝑋 ⊆ 𝐺. 

Proof   As we have already prove that 

                                         𝜁 𝐺 ⊆ 𝐺, 𝐶𝐺 𝑋 ⊆ 𝐺, 𝑁𝐺 𝑋 ⊆ 𝐺                              (A) 

Now it is sufficient to prove that  

𝜁 𝐺 ⊆ 𝐶𝐺 𝑋 ⊆ 𝑁𝐺 𝑋  

Let 𝑦 ∈ 𝜁 𝐺 , then 

𝑦𝑥 = 𝑥𝑦  , ∀ 𝑥, 𝑦 ∈ 𝐺 
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         ⇒ 𝑦𝑥 = 𝑥𝑦  , ∀ 𝑥 ∈ 𝑋   ∵ 𝑋 ⊆ 𝐺 

                                                                      ⇒    𝑦 ∈ 𝐶𝐺 𝑋  

                                      ⇒ 𝜁 𝐺 ⊆ 𝐶𝐺 𝑋                                               (i) 

Now, let 𝑦 ∈ 𝐶𝐺 𝑋 . Then 

𝑦𝑥 = 𝑥𝑦  , ∀ 𝑥 ∈ 𝑋 

As  𝑦𝑋 = {𝑦𝑥 ∶  𝑥 ∈ 𝑋} 

  = {𝑥𝑦 ∶  𝑥 ∈ 𝑋}  

                = 𝑋𝑦 

                                                                         ⇒    𝑦 ∈ 𝑁𝐺 𝑋  

                                                                         ⇒ 𝐶𝐺 𝑋 ⊆ 𝑁𝐺 𝑋                                             (ii) 

From (i) and (ii), we have 

𝜁 𝐺 ⊆ 𝐶𝐺 𝑋 ⊆ 𝑁𝐺 𝑋  

By equ. (A), we have 

𝜁 𝐺 ⊆ 𝐶𝐺 𝑋 ⊆ 𝑁𝐺 𝑋 ⊆ 𝐺. 

2.1.4 Question   Let 𝐺 =< 𝑎, 𝑏: 𝑎4 = 𝑏2 = (𝑎𝑏)2 = 1 > be the dihedral group of order 8. Its 

elements are {1, 𝑎, 𝑎2, 𝑎3, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏}. The two non-empty sets of 𝐺 are given below 

i. 𝑋1 = {1, 𝑎2} 

ii. 𝑋2 = {1, 𝑎, 𝑎2, 𝑎3}. 

Find the 𝜁 𝐺 , centralizers of 𝑋1, 𝑋2 and normalizers of 𝑋1, 𝑋2 in 𝐺. 

Solution   Given that 

(𝑎𝑏)2 = 1 

       ⇒  𝑎𝑏 = (𝑎𝑏)−1  

        ⇒     𝑎𝑏 = 𝑏−1𝑎−1 

∵ 𝑎4 = 1 ∴ 𝑎−1 = 𝑎3 

And                                                                    ∵ 𝑏2 = 1 ∴ 𝑏−1 = 𝑏 

⇒ 𝑎𝑏 = 𝑏𝑎3 
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Moreover 

𝑎𝑏𝑎 = 𝑏 , 𝑏𝑎2 = 𝑎2𝑏, 𝑏𝑎 = 𝑎3𝑏. 

i. Now let 𝑋1 = {1, 𝑎2}. Then  

𝜁 𝐺 =  1  

Because there is only the identity element  1  of 𝐺 which commute with every element of 𝐺. 

Now we are to find the 𝐶𝐺 𝑋1 . Since 

                                                                                  1𝑎2 = 𝑎21   ⇒ 𝑎2 = 𝑎2 

                    𝑎𝑎2 = 𝑎2𝑎    ⇒ 𝑎3 = 𝑎3 

                                                                                𝑎2𝑎2 = 𝑎2𝑎2  ⇒ 𝑎4 = 𝑎4 = 1 

                                                                                𝑎3𝑎2 = 𝑎2𝑎3  ⇒ 𝑎 = 𝑎 

                                                                                  𝑏𝑎2 = 𝑎2𝑏   ⇒ 𝑏𝑎2 = 𝑏𝑎2 

                                                                               𝑎𝑏𝑎2 = 𝑎2𝑎𝑏 ⇒ 𝑎3𝑏 = 𝑎3𝑏 

                                                                             𝑎2𝑏𝑎2 = 𝑎2𝑎2𝑏 ⇒ 𝑏 = 𝑏 

                                                                             𝑎3𝑏𝑎2 = 𝑎2𝑎3𝑏 ⇒ 𝑎𝑏 = 𝑎𝑏. 

Hence 𝐶𝐺 𝑋1 = {1, 𝑎, 𝑎2, 𝑎3, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏}. 

Now we are to find 𝑁𝐺 𝑋1 . Since 

1𝑋1 = 𝑋11 ⇒ 𝑋1 = 𝑋1 

𝑎𝑋1 =  𝑎, 𝑎3 = 𝑋1𝑎 

𝑎2𝑋1 =  𝑎2, 1 = 𝑋1𝑎2 

𝑎3𝑋1 =  𝑎3, 𝑎 = 𝑋1𝑎3 

                                                                           𝑏𝑋1 =  𝑏, 𝑏𝑎2 =  𝑏, 𝑎2𝑏 = 𝑋1𝑏 

Similarly 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏 permute with 𝑋1. So 

𝑁𝐺 𝑋1 = {1, 𝑎, 𝑎2, 𝑎3, 𝑏, 𝑎𝑏, 𝑎2𝑏, 𝑎3𝑏}. 

⇒ 𝐶𝐺 𝑋1 = 𝑁𝐺 𝑋1 = 𝐺. 

ii. 𝑋2 = {1, 𝑎, 𝑎2, 𝑎3}. 

Solution Do it by yourself. 
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2.2 Homomorphism 

 Let (𝐺 , ∙) and (𝐻 ,∗) be two groups. A mapping 𝜑 ∶ 𝐺 ⟶ 𝐻 is said to be 

homomorphism if  

𝜑 𝑥 ∙ 𝑦 = 𝜑 𝑥 ∗ 𝜑(𝑦) 

for 𝑥, 𝑦 ∈ 𝐺. The range of 𝜑 in 𝐻 is called the homomorphic image of 𝜑. 

Endomorphism: Let (𝐺 ,∗) be a group. A homomorphism 𝜑 ∶ 𝐺 ⟶ 𝐺 is called endomorphism. 

2.2.1 Example  Let (ℝ, +) and (ℝ′ , ∙) be two groups and 𝜑 ∶ ℝ ⟶ ℝ′  be a mapping defined by 

𝜑 𝑥 = 𝑒𝑥   , 𝑥 ∈ ℝ. Show that 𝜑 is homomorphism. 

Solution  Let 𝑥, 𝑦 ∈ ℝ , then 

𝜑 𝑥 + 𝑦 = 𝑒𝑥+𝑦  

                      = 𝑒𝑥 ∙ 𝑒𝑦  

                               = 𝜑 𝑥 ∙ 𝜑 𝑦  

⇒  𝜑 is homomorphism. 

2.2.2 Theorem The homomorphic image of a cyclic group is cyclic. 

Proof   Let 𝐺 be a cyclic group generated by 𝑎 ∈ 𝐺. Let 𝜑(𝐺) be a homomorphic image of 𝐺 under a 

homomorphism of 𝜑. 

We show that 𝜑(𝐺) is cyclic. Take,  𝜑 𝑥 = 𝑏 

Let ∈  𝜑(𝐺) , then there is an element 𝑎𝑘 ∈ 𝐺 such that 

 𝑥 = 𝜑(𝑎𝑘) 

                                                      = 𝜑(𝑎. 𝑎 … 𝑎)                        (𝑘 times) 

                                                                        = 𝜑 𝑎 . 𝜑 𝑎 … 𝜑(𝑎)    ∵ 𝜑 is homomorphism 

        = 𝑏. 𝑏 … 𝑏                               (𝑘 times) 

    𝑥 = 𝑏𝑘  

So 𝜑(𝐺) is generated by 𝑏. Therefore the homomorphic image of a cyclic group is cyclic. 

2.2.3 Corollary Let 𝜑 ∶ 𝐺 ⟶ 𝐺 ′  be a homomorphism of 𝐺 into 𝐺 ′ , where 𝐺 and 𝐺 ′  are groups. Then 
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i. The image of the identity of 𝐺 is the identity element in 𝜑(𝐺). 

ii. The image of the inverse 𝑔−1 of 𝑔 ∈ 𝐺 is the inverse of the image. That is, 𝜑 𝑔−1 = [𝜑 𝑔 ]−1 . 

2.3 Monomorphism 

 Let (𝐺 , ∙) and (𝐻 ,∗) be two groups. A mapping 𝜑 ∶ 𝐺 ⟶ 𝐻 is said to be 

monomorphism if  

a) 𝜑 is homomorphism. 

b) 𝜑 is injective. 

2.4 Epimorphism 

 Let (𝐺 , ∙) and (𝐻 ,∗) be two groups. A mapping 𝜑 ∶ 𝐺 ⟶ 𝐻 is said to be 

epimorphism if  

a) 𝜑 is homomorphism. 

b) 𝜑 is surjective. i.e., for all 𝑏 ∈ 𝐻, there is an element 𝑎 ∈ 𝐺 such that 𝜑 𝑎 = 𝑏. 

2.4.1 Example  Let  ℤ , +  and ({1, −1} ,∙) be two groups. Define a mapping 𝜑 ∶ ℤ ⟶ {1, −1} by 

𝜑 𝑥 = 1  , if 𝑛 is even 

 𝜑 𝑥 = −1  , if 𝑛 is odd 

Prove that 𝜑 is homomorphism and hence epimorphism. 

Proof   There are two cases. 

Case-1. When 𝑛 is even. 

Let 𝑥, 𝑦 ∈ ℤ, then 

𝜑 𝑥 ∗ 𝑦 = 𝜑 𝑥 + 𝑦  

   = 1 

        = 1 ⋅ 1 

                     = 𝜑 𝑥 ⋅ 𝜑 𝑦  

⇒ 𝜑 is homomorphism. 

Case-2.  When 𝑛 is odd. 

𝜑 𝑥 ∗ 𝑦 = 𝜑 𝑥 + 𝑦  
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   = 1 

               = −1 ⋅ −1 

                     = 𝜑 𝑥 ⋅ 𝜑 𝑦  

⇒ 𝜑 is homomorphism. 

𝜑 is surjective:  since for every 𝑦 ∈ {1, −1} there exist a pre-image 𝜑 𝑦 ∈  ℤ such that 𝜑 𝑦 = 𝑦. 

Hence 𝜑 is epimorphism. 

Endomorphism 

 Let (𝐺 ,∗) be a group. A homomorphism 𝜑 ∶ 𝐺 ⟶ 𝐺 is called endomorphism. 

2.5 Isomorphism 

 Let (𝐺 , ∙) and (𝐻 ,∗) be two groups. A mapping 𝜑 ∶ 𝐺 ⟶ 𝐻 is said to be 

isomorphism if  

a) 𝜑 is homomorphism. 

b) 𝜑 is injective. 

c) 𝜑 is surjective. 

The isomorphism between two groups is denoted by " ≅ ".i.e., the isomorphism between 𝐺 and 𝐻 is 

denoted by 𝐺 ≅ 𝐻. 

2.5.1 Example  Let (ℤ , +) and (𝐸 , +) be two groups under addition. Then the mapping 

𝜑 ∶ ℤ ⟶ 𝐸 defined by 𝜑 𝑛 = 2𝑛 is isomorphism. 

Solution   Let 𝑛1, 𝑛2 ∈ ℤ, then 

𝜑 𝑛1 + 𝑛2 = 2(𝑛1 + 𝑛2) 

                     = 2𝑛1 + 2𝑛2  

                              = 𝜑(𝑛1) + 𝜑(𝑛2) 

⇒ 𝜑 is homomorphism. 

Now we prove 𝜑 is injective. 

Let  𝜑 𝑛1 = 𝜑(𝑛2) ,    ∀ 𝑛1, 𝑛2 ∈ ℤ 

                                                                              ⇒             2𝑛1 = 2𝑛2 

⇒ 2𝑛1 − 2𝑛2 = 0 
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⇒ 2(𝑛1 − 𝑛2) = 0 

But since 2 ≠ 0 , so 𝑛1 − 𝑛2 = 0 

                                                                             ⇒                 𝑛1 = 𝑛2  

⇒  𝜑 is injective. 

Also 𝜑 is surjective (onto), for 2𝑛 ∈ 𝐸 , there exist a pre-image 𝑛 ∈ ℤ such that 𝜑 𝑛 = 2𝑛. Hence 𝜑 is 

isomorphism. 

2.5.2 Example  Let  (ℝ+,∙) and (ℝ , +) be two groups, then the mapping 𝜑 ∶ ℝ+ ⟶  ℝ defined by 

𝜑 𝑥 = log𝑥 is isomorphism. 

Solution   Let 𝑥, 𝑦 ∈ ℝ+, then 

𝜑 𝑥 ∙ 𝑦 = log(𝑥𝑦) 

                                                                                            = log 𝑥 + log 𝑦 

                                                                                            = 𝜑 𝑥 + 𝜑(𝑦) 

⇒ 𝜑 is homomorphism. 

Now we prove 𝜑 is injective. Let 

                                 𝜑 𝑥 = 𝜑 𝑦   ,  ∀ 𝑥, 𝑦 ∈ ℝ+ 

 ⇒ log𝑥 = log𝑦 

By taking anti-log both sides, we get 

     𝑥 = 𝑦 

⇒  𝜑 is injective. 

Also 𝜑 is surjective (onto), for log𝑥 ∈ ℝ there exist a pre-image 𝑥 ∈ ℝ+ such that 𝜑 𝑥 = log𝑥. Hence 

𝜑 is isomorphism. That is ℝ+ ≅ ℝ. 

Kernel of 𝝋   Let (𝐺 , ∙) and (𝐻 ,∗) be two groups. Let 𝜑 ∶ 𝐺 ⟶ 𝐻 be a homomorphism of group. 

The set of those elements of 𝐺 which are mapped on the identity 𝑒 of 𝐻 is called the kernel of 𝜑 and is 

denoted by 𝑲𝒆𝒓 𝝋. Thus 

𝐾𝑒𝑟 𝜑 = {𝑘 ∈ 𝐺 ∶   𝜑 𝑘 = 𝑒}. 

Embedding: An embedding of a group 𝐺 into a group 𝐺 ′  is simply a monomorphism of 𝐺 into 𝐺 ′ . in other 

words, if 𝐺 is embedded in a group 𝐺 ′  then 𝐺 ′  contains a subgroup 𝐻′  isomorphic to 𝐺. 
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Cayley’s Theorem 

Statement: Any group 𝐺 can be embedded in a group of bijective mappings of a certain set. 

Proof: Let 𝐺 be a group. For each 𝑔 ∈ 𝐺, define a mapping 𝜑𝑔 : 𝐺 ⟶ 𝐺 by 

𝜑𝑔 𝑥 = 𝑔𝑥  , ∀ 𝑥 ∈ 𝐺. 

To prove 𝜑𝑔  is a bijective mapping, let  

𝜑𝑔 𝑥 = 𝜑𝑔(𝑦) 

                                                        ⇒ 𝑔𝑥 = 𝑔𝑦  (left cancelation law) 

                                                                                ⇒    𝑥 = 𝑦 

⇒ 𝜑𝑔  is one-one. 

Also 𝜑𝑔  is onto because each 𝑦 ∈ 𝐺 is the image of  𝑔−1𝑦 ∈ 𝐺. 

⇒ 𝜑𝑔  is a bejective mapping. 

Now, put 

Φ𝐺 = {𝜑𝑔 ∶ 𝑔 ∈ 𝐺} 

Let 𝜑𝑔 , 𝜑𝑔 ′ ∈ Φ𝑔 .  Then for any 𝑥 ∈ 𝐺 

(𝜑𝑔𝜑𝑔 ′ ) 𝑥 = 𝜑𝑔  𝜑𝑔 ′  𝑥  = 𝜑𝑔 𝑔′𝑥 = 𝑔𝑔′𝑥 = 𝜑𝑔𝑔 ′  𝑥  , ∀ 𝑔, 𝑔′ ∈ 𝐺. 

Hence 

𝜑𝑔 . 𝜑𝑔 ′ = 𝜑𝑔𝑔 ′ ∈ Φ𝐺 . 

Implies that, Φ𝐺  is a subgroup of the group of all bijective mappings of the set 𝐺, as 𝜑𝑒  for 𝑒 ∈ 𝐺 is the 

identity element and for each 𝑔 ∈ 𝐺, 𝜑𝑔−1  is the inverse of 𝜑𝑔 ∈ Φ𝐺 . 

Now we show that 𝐺 is isomorphic to Φ𝐺 . For this, define a mapping 𝜓: 𝐺 ⟶ Φ𝐺  by 

                               𝜓 𝑔 = 𝜑𝑔   , ∀ 𝑔 ∈ 𝐺. 

To prove 𝜓 is one-one, let 

                                                                                         𝜓 𝑔1 = 𝜓(𝑔2)  , 𝑔1, 𝑔2 ∈ 𝐺 

                                                                             ⇒             𝜑𝑔1
= 𝜑𝑔2
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⇒ 𝜑𝑔1
. 𝜑𝑔2

−1 = 𝜑𝑒  

                             ⇒      𝜑𝑔1𝑔2
−1 = 𝜑𝑒   , (Φ𝐺  is closed) 

                                                                             ⇒       𝑔1𝑔2−1 = 𝑒 

                                                                             ⇒                𝑔1 = 𝑔2  

⇒  𝜓 is one-one. 

Also 𝜓 is onto because each 𝜑𝑔 ∈ Φ𝐺  is the image of 𝑔 ∈ 𝐺. 

Moreover if 𝑔1 , 𝑔2 ∈ 𝐺, then 

𝜓 𝑔1𝑔2 = 𝜑𝑔1𝑔2
 

                                                                                               = 𝜑𝑔1
. 𝜑𝑔2

 

                                                                                               =  𝜓 𝑔1 . 𝜓 𝑔2  

So that 𝜓 is homomorphism. 

Hence 𝐺 is isomorphic to Φ𝐺 . Therefore 𝐺 is embedded in a group of all bijective mappings of a set 

namely 𝐺. 

Corollary:   Every finite group of order 𝑛 can be embedded in a group of bijective mappings of a set 

consisting of 𝑛 elements. 

2.6 Conjugacy Relation In Groups 

 Let 𝐺 be a group. For any 𝑎 ∈ 𝐺, the element 𝑔𝑎𝑔−1, 𝑔 ∈ 𝐺 is called the conjugate 

or transform of 𝑎 by 𝑔. 

Two elements 𝑎, 𝑏 ∈ 𝐺 are said to be conjugate if and only if there exists an element 𝑔 ∈ 𝐺 such that 

𝑏 = 𝑔𝑎𝑔−1 

2.6.1 Theorem The relation of conjugacy between elements of a group is an equivalence relation. 

Proof  Let us denote the relation of conjugacy between elements of a group by 𝑅. then 

i. Reflexive: 𝑅 is reflexive i.e 𝑎𝑅𝑎 because the identity element 𝑒 ∈ 𝐺 and 

𝑒𝑎𝑒−1 = 𝑎. 

ii. Symmetric: 𝑅 is symmetric because if 𝑎𝑅𝑏 for 𝑎, 𝑏 ∈ 𝐺, then there exists 𝑔 ∈ 𝐺 such that 

𝑏 = 𝑔𝑎𝑔−1 

⇒ 𝑎 =  𝑔−1 𝑏(𝑔−1)−1 

So that 𝑏𝑅𝑎. 
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iii. Transitive: Let 𝑎𝑅𝑏 and 𝑏𝑅𝑐, then there exists 𝑔, 𝑔′ ∈ 𝐺 such that 

𝑏 = 𝑔𝑎𝑔−1 , 𝑐 = 𝑔′𝑏𝑔′ −1
 

Now 

𝑐 = 𝑔′𝑏𝑔′ −1
= 𝑔′𝑔𝑎𝑔−1𝑔′ −1

=  𝑔′𝑔 𝑎(𝑔′𝑔)−1 

Thus  𝑎𝑅𝑐, so 𝑅 is transitive. 

Hence 𝑅 is an equivalence relation in 𝐺. 

Conjugacy Class 

 An equivalence class determined by the conjugacy relation between elements in 𝐺 

is called conjugacy class. A conjugacy class consisting of elements conjugate to an element 𝑎 of 𝐺 is 

denoted by 𝐶𝑎 . 

Self Conjugate 

                An element 𝑎 ∈ 𝐺 is called self conjugate if for any 𝑔 ∈ 𝐺, 𝑎 = 𝑔𝑎𝑔−1. This element is also 

called a central element. 

2.6.2 Theorem  The number of elements in a conjugacy class 𝐶𝑎  of an element 𝑎 in a group 𝐺 is 

equal to the index of its normalizer in 𝐺. Thus 

|𝐶𝑎 | = |𝐺 ∶  𝑁𝑎 𝑥 |. 

Proof  Let 𝐺 be group and 𝑎 ∈ 𝐺. Let 𝐶𝑎  be the conjugacy class of 𝐺 containing 𝑎. Let 𝑁 = 𝑁𝐺 𝑎  i.e 

the normalizer of 𝑎 in 𝐺. Let Ω be the collection of right cosets of normalizer. 

We have to show that number of elements in Ω is equal to the number of elements in 𝐶𝑎 . 

Define a mapping 𝜑: Ω ⟶ 𝐶𝑎  by  

𝜑 𝑁𝑔 = 𝑔−1𝑎𝑔 , 𝑔 ∈ 𝐺. 

i. 𝜑 is well defined. 

       Let 

                     𝑁𝑔 = 𝑁𝑔′        ,   𝑔, 𝑔′ ∈ 𝐺  

                                                                    ⇒            𝑁 = 𝑁𝑔′𝑔−1 

                                                                    ⇒    𝑔′𝑔−1 ∈ 𝑁                    ∵ if 𝑎 ∈ 𝐻 then 𝑎𝐻 = 𝐻 

                                                                    ⇒    𝑔′𝑔−1 = 𝑛                        (𝑠𝑎𝑦 𝑛 ∈ 𝑁) 

                                                                    ⇒           𝑔′ = 𝑛𝑔 
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      Now  

𝑔′ −1
𝑎𝑔′ = (𝑛𝑔)−1𝑎(𝑛𝑔) 

                     = (𝑔−1𝑛−1)𝑎(𝑛𝑔) 

                 = 𝑔−1 𝑛−1𝑎𝑛 𝑔 

                                          = 𝑔−1𝑎𝑔              ∵ 𝑛−1𝑎𝑛 = 𝑎 

                                                                  ⇒  𝜑 𝑁𝑔′ = 𝜑 𝑁𝑔  

  ⇒ 𝜑 is well defined. 

ii. 𝜑 is one-one. 

Let  

                                                                                     𝜑 𝑁𝑔′ = 𝜑 𝑁𝑔  

                                                          ⇒                       𝑔′ −1
𝑎𝑔′ = 𝑔−1𝑎𝑔 

                                                          ⇒         𝑔(𝑔′ −1
𝑎𝑔′ )𝑔−1 = 𝑎 

                                                          ⇒ (𝑔′𝑔−1)−1𝑎 𝑔′𝑔−1 = 𝑎 

                                                                             ⇒ 𝑔′𝑔−1 ∈ 𝑁 

                                                                             ⇒    𝑔′ ∈ 𝑁𝑔 

But 𝑔′ ∈ 𝑁𝑔′ . 

                                                                             ⇒  𝑁𝑔′ ⊆ 𝑁𝑔 

Similarly 

𝑁𝑔 ⊆ 𝑁𝑔′  

Thus 𝑁𝑔 =  𝑁𝑔′ . So 𝜑 is one-one. 

iii. Also 𝜑 is onto because each 𝑔−1𝑎𝑔 ∈ 𝐶𝑎  is the image of a right coset 𝑁𝑔. 

Hence 𝜑 is bijective. 

Consequently the sets Ω and 𝐶𝑎  have the same number of elements. Therefore the number of elements 

in 𝐶𝑎  is equal to the index of the normalize of 𝑎. That is 

|𝐶𝑎 | = |𝐺 ∶ 𝑁𝑎 𝑥 |. 
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Corollary: 

 Let 𝐺 be a finite group and 𝑎 ∈ 𝐺. Then the number elements in the conjugacy class 𝐶𝑎  divides the order of 
𝐺. 

 The number of elements in a conjugacy class of an element in a group is finite if and only if the index of the 
normalizer of that element is finite. 

Conjugate Subgroup 

    Let 𝐺 be a group and 𝐻 be a subgroup of 𝐺. Then for each 𝑔 ∈ 𝐺, the 

set 

𝐾 = 𝑔𝐻𝑔−1 = {𝑔𝑔−1:  ∈ 𝐻} 

is a subgroup of 𝐺 and it is called a conjugate subgroup of 𝐺. 

A conjugacy class of a subgroup 𝐻 is a collection of all subgroups of 𝐺 which are conjugate to 𝐻. 

2.6.3 Theorem Any two conjugate subgroups of a group 𝐺 are isomorphic. 

Proof Let 𝐻, 𝐾 are two conjugate subgroups of 𝐺. Then for some 𝑔 ∈ 𝐺 

𝐾 = 𝑔𝐻𝑔−1. 

The mapping 𝜑: 𝐻 ⟶ 𝐾 is given by 𝜑  =  𝑔𝑔−1 ∈ 𝐾. Then  

𝜑 is obviously well-defined. 

i. 𝜑 is one-one. 

Let  

                      𝜑 1 = 𝜑(2) ,   1, 2 ∈ 𝐻 

⇒ 𝑔1𝑔−1 = 𝑔2𝑔−1 

                                                                          ⇒           1 = 2 

ii. Also 𝜑 is onto because each 𝑔𝑔−1 ∈ 𝐾 is the image of  ∈ 𝐻. 

So 𝜑 is bijective. Now we will show that 𝜑 is homomorphism. 

Let 1, 2 ∈ 𝐻, then 

𝜑 12 = 𝑔12𝑔−1 

                                                                                           = 𝑔1𝑔−1𝑔2𝑔−1 
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 ⇒  𝜑 12 = 𝜑 1  . 𝜑 2 . 

Hence 𝐻 and 𝐾 are isomorphic. 

Note: Two conjugate subgroups of a group have the same order. 

2.7 Double cosets 

 Let 𝐻, 𝐾 be two subgroups of a group 𝐺 and 𝑎 be an arbitrary element of 𝐺. Then the set 

𝐻𝑎𝐾 = {𝑎𝑘 ∶  ∈ 𝐻, 𝑘 ∈ 𝐾} 

is called a double coset in 𝐺 modulo (𝐻, 𝐾) determine by 𝑎. 

2.7.1 Theorem Let 𝐻, 𝐾 be two subgroups of a group 𝐺. Then the collection Ω of all double cosets 

𝐻𝑎𝐾, 𝑎 ∈ 𝐺 is a partition of 𝐺. 

Proof Let 𝐻, 𝐾 be two subgroups of a group 𝐺 and Ω be the collection of all double cosets 𝑎𝐾, 𝑎 ∈ 𝐺. 

We have to show that Ω defines a partition of 𝐺. For this we will show that 

i.  𝐻𝑎𝐾 = 𝐺𝑎∈𝐺  

ii. 𝐻𝑎𝐾 ∩ 𝐻𝑏𝐾 = ∅. 

First we will prove  𝐻𝑎𝐾 = 𝐺𝑎∈𝐺 . Let 𝑎 ∈ 𝐺, then 

                                                                                   𝑎 = 𝑒𝑎𝑒 ∈ 𝐻𝑎𝐾 

                                                                              ⇒ 𝑎 ∈ 𝐻𝑎𝐾 

                                                                              ⇒ 𝑎 ∈  𝐻𝑎𝐾𝑎∈𝐺  

  ⇒ 𝐺 ⊆  𝐻𝑎𝐾𝑎∈𝐺   (i) 

But  

   𝐻𝑎𝐾𝑎∈𝐺 ⊆ 𝐺   (ii) 

From (i) and (ii), we have 

 𝐻𝑎𝐾𝑎∈𝐺 = 𝐺. 

Now we will prove that 𝐻𝑎𝐾 ∩ 𝐻𝑏𝐾 = ∅. Let 𝐻𝑎𝐾 and 𝐻𝑏𝐾 be distinct double cosets in 𝐺 and suppose 

that 𝑥 ∈ 𝐻𝑎𝐾 ∩ 𝐻𝑏𝐾 ≠ ∅. 

                                                                    ⇒    𝑥 ∈ 𝐻𝑎𝐾   ,   𝑥 ∈ 𝐻𝑏𝐾 

⇒ 𝑥 = 1𝑎𝑘1    ,   𝑥 = 2𝑏𝑘2   
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Where 1, 2 ∈ 𝐻  , 𝑘1, 𝑘2 ∈ 𝐾 𝑎𝑛𝑑 𝑎, 𝑏 ∈ 𝐺. 

⇒ 1𝑎𝑘1 = 2𝑏𝑘2  

                                                   ⇒          𝑎 = 1
−12𝑏𝑘2𝑘1

−1  (iii) 

Now, let 𝑦 ∈ 𝐻𝑎𝐾. 

                                 ⇒          𝑦 = 3𝑎𝑘3   , 3 ∈ 𝐻  , 𝑘3 ∈ 𝐾 

From equ. (iii), we have 

                                                                                          𝑦 = 31
−12𝑏𝑘2𝑘1

−1𝑘3  

                                                                            ⇒          𝑦 = 4𝑏𝑘4 

Where 4 = 31
−12 ∈ 𝐻 and 𝑘4 = 𝑘2𝑘1

−1𝑘3 ∈ 𝐾. 

                                                                            ⇒           𝑦 ∈ 𝐻𝑏𝐾 

                                          ⇒     𝐻𝑎𝐾 ⊆ 𝐻𝑏𝐾   (A) 

Similarly 

                                                   𝐻𝑏𝐾 ⊆ 𝐻𝑎𝐾   (B) 

From (A) and (B), we have 

𝐻𝑎𝐾 = 𝐻𝑏𝐾 

This is contradiction to our supposition. Hence 𝐻𝑎𝐾 and 𝐻𝑏𝐾 are disjoint i.e 𝐻𝑎𝐾 ∩ 𝐻𝑏𝐾 = ∅. 

Therefore the double cosets of 𝐺 modulo (𝐻, 𝐾) define a partition of 𝐺. 

Complexes In A Group: An arbitrary subset 𝑋 of a group 𝐺 is called a complex in 𝐺. For two 

complexes 𝑋 and 𝑌 in 𝐺 we define their product as a complex 𝑋𝑌 given by 
𝑋𝑌 = {𝑥𝑦 ∶ 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}. 

2.7.2 Theorem let 𝐴 and 𝐵 be finite subgroups of a group 𝐺. Then the complex 𝐴𝐵 contains 

exactly 𝑚𝑛 𝑞 , where 𝑚, 𝑛 and 𝑞 are respectively the orders of 𝐴, 𝐵 and 𝑄 = 𝐴 ∩ 𝐵. 

Proof Since 𝑄 is the intersection of the subgroups 𝐴 and 𝐵 of a group 𝐺. Therefore 𝑄 is also a 

subgroup of 𝐺. 

Since 𝐴 and 𝐵 are finite subgroups of 𝐺, therefore the order 𝑞 of 𝑄 and the index 𝑟 = 𝑛 𝑞  in 𝐵 is finite. 

Let 𝐵 =  𝑄𝑏𝑖
𝑟
𝑖=1  be a right coset decomposition of 𝐵. Then only one 𝑏𝑖 = 𝑒 and 𝑏𝑖 ∉ 𝑄 for 𝑖 > 1 so 

that the set 𝑄𝑏𝑖 ≠ 𝑄. Also  
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𝐴𝐵 = 𝐴  𝑄𝑏𝑖

𝑟

𝑖=1

 

                               =  𝐴𝑄𝑏𝑖
𝑟
𝑖=1   (A) 

Since 𝑄 is the subgroup of 𝐴. Therefore  

                                                                               𝐴𝑄 =  𝐴𝑥 ∶ 𝑥 ∈ 𝑄 = 𝐴. 

So equ. (A) becomes 

                                                                               𝐴𝐵 =  𝐴𝑏𝑖
𝑟
𝑖=1  

As 𝑏𝑖 ∈ 𝐵 and 𝑏𝑖 ∉ 𝑄, which shows that 𝑏𝑖 ∉ 𝐴 for 𝑖 > 1, the cosets 𝐴𝑏𝑖 , 𝑖 = 1,2, … , 𝑟, are all distinct. 

Each of these cosets contains exactly 𝑚 elements and there are 𝑟 such cosets. 

                                                                         ⇒  𝐴𝐵 =  |𝐴𝑏𝑖 |
𝑟
𝑖=1  

                                                                                        =  𝐴𝑏1 +  𝐴𝑏2 + ⋯ + |𝐴𝑏𝑟| 

= 𝑟|𝐴| 

=
𝑛

𝑞
𝑚 

                                                                          ⇒ |𝐴𝐵| =
𝑚𝑛

𝑞
. 

Hence the complex 𝐴𝐵 contains exactly 
𝑚𝑛

𝑞
  elements. 
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Normal Subgroups And Factor Groups 

 

3.1 Normal Subgroups 

 A subgroup 𝐻 of a group 𝐺 is said to be normal if it coincides with all its conjugate subgroups in 

𝐺. Thus 𝐻 is normal in 𝐺 if and only if  

𝑔𝐻𝑔−1 = 𝐻  , ∀ 𝑔 ∈ 𝐺. 

It is denoted by 𝐻 ⊵ 𝐺. 

Every group 𝐺 has at least two normal subgroups namely the identity {𝑒} and the group 𝐺 itself. The 

normal subgroups which are different from these two subgroups are called proper normal subgroups. 

All the subgroups of an abelian group are normal. The non-abelian groups all of whose subgroups are 

normal are called Hamiltonian Groups. 

3.1.1 Examples 

a) The group 𝑄 = {±1, ±𝑖, ±𝑗, ±𝑘} of quaternions is such that it is non-abelian but every subgroup of 

𝑄 is normal. 

b) The centre of any group is normal. Since 𝜁(𝐺) = {𝑎 ∈ 𝐺 ∶ 𝑎𝑔 = 𝑔𝑎, ∀ 𝑔 ∈ 𝐺}, therefore 

𝑔𝜁(𝐺)𝑔−1 = {𝑎 ∈ 𝐺 ∶ 𝑔𝑎𝑔−1 = 𝑎, ∀ 𝑔 ∈ 𝐺}. 

 Historical Note 
Normal subgroups were introduced by Evarsite Galois in 1831 as a tool for deciding whether a given 
polynomial equation was solvable by radicals. Galois noted that a subgroup 𝐻 of a group 𝐺 of permutations 
induced two decompositions of 𝐺 into what we call left cosets and right cosets. If the two decompositions 
coincide, that is, if left cosets are the same as the right cosets, Galois called the decomposition proper. 
Thus a subgroup giving a proper decomposition is what we call normal subgroup. Galois stated that if the 
group of permutations of the roots of an equation has a proper decomposition, then one can solve the 
given equation if one can first solve an equation corresponding to the subgroup 𝐻 and then an equation 
corresponding to the cosets. 
One of the main and fundamental properties of normal subgroups is that the give rise to quotient groups. 
Groups which have no proper normal subgroups are known as simple groups. Finite simple groups have 
now been all classified. All the finite simple groups are now known their determination was completed in 
1980′ s. This classification is one of the greatest achievements in mathematics. 
The classification of finite simple groups ahs two aspects. One is the listing of all such groups and the other 
is the verification that every finite simple group is included in the list. 

3.1.2 Theorem  If 𝐻 is the subgroup of a group 𝐺, then the following statements are equivalent; 

a) 𝐻 is a normal subgroup of 𝐺. 
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b) The normalizer of 𝐻 in 𝐺 is the whole 𝐺. That is, 𝑁𝐺 𝐻 = 𝐺. 

c) 𝑔𝐻 = 𝐻𝑔  , ∀ 𝑔 ∈ 𝐺. 

d) 𝑔𝑔−1 ∈ 𝐻  ,  ∈ 𝐻 , 𝑔 ∈ 𝐺. 

Proof  (a) implies (b). 

Assume that 𝐻 is normal subgroup of 𝐺. Then  

                                                          𝑔𝐻𝑔−1 = 𝐻  , ∀ 𝑔 ∈ 𝐺. 

                                                                   ⇒         𝑔𝐻 = 𝐻𝑔  , ∀ 𝑔 ∈ 𝐺 

                                                                   ⇒            𝑔 ∈ 𝑁𝐺 𝐻  

                                                                   ⇒            𝐺 ⊆ 𝑁𝐺 𝐻    (i) 

But                                                                           𝑁𝐺 𝐻 ⊆ 𝐺                 (ii) 

From (i) and (ii), we have 

𝑁𝐺 𝐻 = 𝐺. 

(b) implies (c). 

Suppose that 𝑁𝐺 𝐻 = 𝐺. Then  

                                                                         𝑁𝐺 𝐻 = {𝑔𝐻 = 𝐻𝑔 ∶ 𝑔 ∈ 𝐺} 

                                                                 ⇒          𝑔𝐻 = 𝐻𝑔  , ∀ 𝑔 ∈ 𝐺. 

(c) implies (d). 

Suppose that 𝑔𝐻 = 𝐻𝑔  , ∀ 𝑔 ∈ 𝐺. Then, for given any  ∈ 𝐻 there exists ′ ∈ 𝐻 such that 

                                                                                𝑔 = ′𝑔  , ∀ 𝑔 ∈ 𝐺 

                                                                ⇒     𝑔𝑔−1 = ′ ∈ 𝐻. 

                                                                ⇒     𝑔𝑔−1 ∈ 𝐻. 

(d) implies (a). 

Suppose that 𝑔𝑔−1 ∈ 𝐻  ,  ∈ 𝐻, 𝑔 ∈ 𝐺. Then 

𝑔𝑔−1 = ′ ∈ 𝐻. 

Hence 𝑔𝐻𝑔−1 = {𝑔𝑔−1:  ∈ 𝐻} ⊆ 𝐻 for all 𝑔 ∈ 𝐺. Also for any  ∈ 𝐻 

    =  𝑔𝑔−1 (𝑔𝑔−1) 
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  = 𝑔(𝑔−1𝑔)𝑔−1  

                                                         = 𝑔′𝑔−1 ∈  𝑔𝐻𝑔−1              ∵ 𝑔−1𝑔 = ′ ∈ 𝐻 

                                                                           𝐻 ⊆ 𝑔𝐻𝑔−1 

Therefore 𝑔𝐻𝑔−1 = 𝐻. Hence 𝐻 is normal subgroup. 

3.1.3 Theorem  let 𝑎 be an element of order 2 in a group 𝐺. Then  

𝐻 =< 𝑎 ∶  𝑎2 = 1 > 

is normal in 𝐺 if and only if 𝑎 ∈ 𝜁(𝐺). 

Proof  As we know that 𝐻 is normal if and only if for any 𝑔 ∈ 𝐺, 

                                                                                        𝑔𝐻 = 𝐻𝑔 

⇒ 𝑔 𝑒, 𝑎 =  𝑒, 𝑎 𝑔 

⇒  𝑔, 𝑔𝑎 = {𝑔, 𝑎𝑔} 

                                                                           ⇒          𝑔𝑎 = 𝑎𝑔  , ∀ 𝑔 ∈ 𝐺 

So 𝑎 ∈ 𝜁(𝐺). 

3.1.4 Theorem Let 𝐺 and 𝐻 are two groups and 𝜑: 𝐺 ⟶ 𝐻 is a homomorphism. Then 𝑘𝑒𝑟𝜑 is a 

normal subgroup. 

Proof Let 𝑎, 𝑏 ∈ 𝑘𝑒𝑟𝜑, then 

𝜑 𝑎 = 𝐼𝐻        , 𝜑 𝑏 = 𝐼𝐻  

To prove 𝑘𝑒𝑟𝜑 is a subgroup we show that 𝑎𝑏−1 ∈ 𝑘𝑒𝑟𝜑. Now 

                                              𝜑 𝑎𝑏−1 = 𝜑 𝑎 𝜑 𝑏−1                              ∵ 𝜑 is homomorphism 

                                                                             = 𝜑 𝑎 (𝜑 𝑏 )−1     ∵  𝜑 𝑏−1 = (𝜑 𝑏 )−1 

                                                                             = 𝐼𝐻(𝐼𝐻)−1   

                                                                             = 𝐼𝐻  

⇒  𝑎𝑏−1 ∈ 𝑘𝑒𝑟𝜑. So 𝑘𝑒𝑟𝜑 is a subgroup. 

Now we have to show that 𝑘𝑒𝑟𝜑 is a normal subgroup. Let 𝑘 ∈ 𝑘𝑒𝑟𝜑. To prove 𝑔−1𝑘𝑔 ∈ 𝑘𝑒𝑟𝜑 , 𝑔 ∈ 𝐺 

𝜑 𝑔−1𝑘𝑔 = 𝜑 𝑔−1 𝜑 𝑘 𝜑 𝑔  
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                                                                                     = (𝜑(𝑔))−1𝐼𝐻  𝜑 𝑔  

                                                                                     = (𝜑(𝑔))−1𝜑 𝑔  

                                                                         = 𝜑(𝑔𝑔−1)                             ∵ 𝜑 is homomorphism 

                                                                                     = 𝜑 𝑒  

                                                                                     = 𝐼𝐻  

Hence 𝑔−1𝑘𝑔 ∈ 𝑘𝑒𝑟𝜑 , 𝑔 ∈ 𝐺. Thus 𝑘𝑒𝑟𝜑 is a normal subgroup. 

3.1.5 Theorem If 𝐻, 𝐾 are normal subgroups of a group 𝐺 with 𝐻 ∩ 𝐾 = {𝑒}. Show that every 

element of 𝐻 commute with every element of 𝐾. i.e, 𝑘 = 𝑘 ,  ∈ 𝐻 , 𝑘 ∈ 𝐾. 

Proof For each  ∈ 𝐻 , 𝑘 ∈ 𝐾 we have to show that 𝑘 = 𝑘. 

For this consider an element 𝑘−1𝑘−1 . Since 𝐻 is a normal subgroup of 𝐺. Therefore 

𝑘−1𝑘−1 ∈ 𝐻  , −1 ∈ 𝐻 , 𝑘 ∈ 𝐾 ⊆ 𝐺 

                                                      ⇒   𝑘−1𝑘−1 ∈ 𝐻 , , −1 ∈ 𝐻                    ∵ 𝐻 is a subgroup. 

                                                      ⇒  𝑘−1𝑘−1 ∈ 𝐻.       (i) 

Also 𝐾 is a normal subgroup of 𝐺. Therefore  

                                                            𝑘−1 ∈ 𝐾  , 𝑘 ∈ 𝐾 ,  ∈ 𝐻 ⊆ 𝐺 

                                                      ⇒  𝑘−1 𝑘−1 ∈ 𝐾 , 𝑘, 𝑘−1 ∈ 𝐾     ∵ 𝐾 is a subgroup 

                                                      ⇒  𝑘−1𝑘−1 ∈ 𝐾.      (ii) 

From (i) and (ii), we have 

                                                           𝑘−1𝑘−1 ∈ 𝐻 ∩ 𝐾 

But since 𝐻 ∩ 𝐾 = {𝑒}. 

                                                     ⇒  𝑘−1𝑘−1 = 𝑒 

                                                     ⇒                𝑘 = 𝑘. 

Hence every element of 𝐻 commute with every element of 𝐾. 

3.1.5 Theorem Let 𝐺 be an abelian group. Then each subgroup of 𝐺 is normal in 𝐺. 

Proof Let 𝐻 be a subgroup of 𝐺. We have to show that 𝐻 is normal in 𝐺. 
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Since 𝐺 is abelian. So 𝑎𝑏 = 𝑏𝑎  , ∀ 𝑎, 𝑏 ∈ 𝐺. 

⇒     𝑎 = 𝑎  , ∀  ∈ 𝐻 , 𝑔 ∈ 𝐺 

                                                                  ⇒        = 𝑎−1𝑎 ∈ 𝐻 

                                                                  ⇒       𝑎−1𝑎 ∈ 𝐻 

Hence 𝐻 is a normal subgroup of 𝐺. 

3.1.6 Theorem Every subgroup of index 2  in a group 𝐺 is a normal subgroup. 

OR 

Let 𝐺 be a group and 𝐻 be a subgroup of index 2. Then 𝐻 is a normal subgroup of 𝐺. 

Proof Let 𝐻 be a subgroup of index 2. Then 𝐻 has two distinct left and right cosets in 𝐺. 

One of the left coset is 𝐻 = 𝑒𝐻 , 𝑒 ∈ 𝐺 and the other left coset is 𝑎𝐻 , 𝑎 ∈ 𝐺. Similarly one of the right 

coset is 𝐻 = 𝐻𝑒 and the other right coset is 𝐻𝑎 , 𝑎 ∈ 𝐺. 

By Lagrange’s theorem (all the left and right cosets defines a partition). 

𝐺 = 𝑒𝐻 ∪ 𝑎𝐻 = 𝐻𝑒 ∪ 𝐻𝑎 

And                                                                        𝑒𝐻 ∩ 𝑎𝐻 = 𝐻𝑒 ∩ 𝐻𝑎 = ∅ 

                                                                          ⇒            𝑎𝐻 = 𝐻𝑎 

                                                                          ⇒             𝑎 = ′𝑎  , , ′ ∈ 𝐻 

                                                                          ⇒                = 𝑎−1′𝑎 ∈ 𝐻 

Hence 𝑎−1′𝑎 ∈ 𝐻 , ′ ∈ 𝐻 , 𝑎 ∈ 𝐺. Thus 𝐻 is normal in 𝐺. 

Corollary: If 𝐻, 𝐾 are normal subgroups of 𝐺. Then 𝐻𝐾 is a normal subgroup of 𝐺. 

3.2 Factor Group OR Quotient Group 

 Let 𝐻 be a normal subgroup of a group 𝐺 and consider the collection 𝑄 of all left 

cosets of 𝑎𝐻 of 𝐻, 𝑎 ∈ 𝐺. 

i.e 𝑄 =
𝐺

𝐻
= {𝑎𝐻 ∶  𝑎 ∈ 𝐺}. 

is called a factor group of 𝐺 by 𝐻. Define a multiplication in 𝑄 by 

𝑎𝐻. 𝑏𝐻 = 𝑎𝑏𝐻, For 𝑎𝐻, 𝑏𝐻 ∈ 𝑄 
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3.2.1 Theorem Prove that a factor group 𝑄 =
𝐺

𝐻
= {𝑎𝐻 ∶  𝑎 ∈ 𝐺} form a group. 

Proof Since the factor group is 𝑄 =
𝐺

𝐻
= {𝑎𝐻 ∶  𝑎 ∈ 𝐺}. We define a multiplication in 𝑄 by  

                                                           𝑎𝐻. 𝑏𝐻 = 𝑎𝑏𝐻 , 𝑎𝐻, 𝑏𝐻 ∈ 𝑄 𝑎𝑛𝑑 𝑎, 𝑏 ∈ 𝐺. 

First we check the multiplication is well-defined. For 𝑎1 ∈ 𝑎𝐻 , 𝑏2 ∈ 𝑏𝐻, we have 

                                                         𝑎1 𝑏2 = 𝑎(1 𝑏) 2 

                                                        = 𝑎(𝑏3)2    ∵ 𝐻 is normal ∴ 𝑎𝐻 = 𝐻𝑎  , 3 ∈ 𝐻 

                                                                         = 𝑎𝑏32 

                                                                         = 𝑎𝑏4 ∈ 𝑎𝑏𝐻   ,    where 4 = 32 ∈ 𝐻 

⇒ 𝑎𝐻. 𝑏𝐻 = 𝑎𝑏𝐻. Hence multiplication is well-defined. 

Now we have to show that 𝑄 forms a group. 

a) 𝑄 is closed because 𝑎𝐻. 𝑏𝐻 = 𝑎𝑏𝐻 ∈ 𝑄. 

b) 𝑄 is associative because 

 𝑎𝐻. 𝑏𝐻 . 𝑐𝐻 = 𝑎𝑏𝐻. 𝑐𝐻 

                   = 𝑎𝑏𝑐𝐻 

                       = 𝑎𝐻. 𝑏𝑐𝐻 

                                = 𝑎𝐻. (𝑏𝐻. 𝑐𝐻). 

c) 𝐻 is the identity of 𝑄 because 

𝑎𝐻. 𝐻 = 𝑎𝐻. 𝑒𝐻 = 𝑎𝑒𝐻 = 𝑎𝐻 

And  𝐻. 𝑎𝐻 = 𝑒𝐻. 𝑎𝐻 = 𝑒𝑎𝐻 = 𝑎𝐻. 

d) Since 𝐺 is group, therefore for each 𝑎 ∈ 𝐺 there exists 𝑎−1 ∈ 𝐺 such that 

𝑎𝐻. 𝑎−1𝐻 = 𝑎𝑎−1𝐻 = 𝑒𝐻 = 𝐻 

And  𝑎−1𝐻. 𝑎𝐻 = 𝑎𝑎−1𝐻 = 𝑒𝐻 = 𝐻. 

So 𝑄 contains inverse of each left coset. Hence  𝑄 =
𝐺

𝐻
= {𝑎𝐻 ∶  𝑎 ∈ 𝐺} form a group. 

3.2.2 Theorem Let 𝐻 be a normal subgroup of a group 𝐺 and 𝜑: 𝐺 ⟶
𝐺

𝐻
 is a mapping given by 

𝜑 𝑎 = 𝑎𝐻 , ∀ 𝑎 ∈ 𝐺. Then 𝜑 is epimorphism and 𝑘𝑒𝑟𝜑 = 𝐻. 
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Proof  The mapping 𝜑: 𝐺 ⟶
𝐺

𝐻
  is defined by 

                                                                                   𝜑 𝑎 = 𝑎𝐻 , ∀ 𝑎 ∈ 𝐺 

First we will show that 𝜑 is well-defined. Let 

                                                                                          𝑎 = 𝑏 

                                                                              ⇒     𝑎𝐻 = 𝑏𝐻 

                                                                              ⇒  𝜑 𝑎 = 𝜑(𝑏) 

Implies that 𝜑 is well-defined. 

Now we have to show that 𝜑 is epimorphism. For this we have to show that 𝜑 is homomorphism and 

surjective. 

𝜑 is surjective because for each 𝐻 ∈
𝐺

𝐻
 is the image of 𝑎 ∈ 𝐺. Also for 𝑎, 𝑏 ∈ 𝐺 

𝜑 𝑎 . 𝜑 𝑏 = 𝑎𝐻. 𝑏𝐻 

                                                                                                = 𝑎𝑏𝐻 

                                                                                                =  𝜑(𝑎𝑏) 

Implies that 𝜑 is homomorphism. Hence 𝜑 is epimorphism. 

To prove 𝑘𝑒𝑟𝜑 = 𝐻, let 𝑎 ∈ 𝐻 ⊆ 𝐺. Then 

                                                                                      𝜑 𝑎 = 𝑎𝐻 

                                                                                         = 𝐻       ∵ 𝐻 is a subgroup and 𝑎 ∈ 𝐻, 𝑎𝐻 = 𝐻 

Since 𝐻 is the identity of quotient group 
𝐺

𝐻
. Therefore 𝑎 ∈ 𝑘𝑒𝑟𝜑. 

                                     ⇒          𝐻 ⊆ 𝑘𝑒𝑟𝜑                                     (i) 

Let 𝑎 ∈ 𝑘𝑒𝑟𝜑, then 

𝜑 𝑎 = 𝐻 

                                                                            ⇒        𝑎𝐻 = 𝐻 

                                                                            ⇒           𝑎 ∈ 𝐻        (𝐻 is a subgroup) 

                                                                            ⇒    𝑘𝑒𝑟𝜑 ⊆ 𝐻                                        (ii) 

From (i) and (ii), we have 
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                                                                                    𝑘𝑒𝑟𝜑 = 𝐻. 

Quaternion Group: The quaternion group 𝑄8 is a non-abelian group of order 8, isomorphic to 

the certain eight elements subset of the quaternions under multiplication. It is given by 

𝑄8 = {±1, ±𝑖, ±𝑗, ±𝑘}. 

Where 𝑖2 = 𝑗2 = 𝑘2 = −1, and 

𝑖. 𝑗 = 𝑘 = −𝑗. 𝑖  

 𝑗. 𝑘 = 𝑖 = −𝑘. 𝑗  

𝑘. 𝑖 = 𝑗 = −𝑖. 𝑘. 

Since 𝑖. 𝑗 ≠ 𝑗. 𝑖, therefore it is non-abelian. There are 6 subgroups of 𝑄8 of order 1,2,4 and 8. These are 

                                                    𝐻1 =  1                    ,       𝐻4 =  ±1, ±𝑗  

                                                    𝐻2 =  1, −1            ,        𝐻5 =  ±1, ±𝑘  

                                                    𝐻3 = {±1, ±𝑖}         ,        𝐻6 =  ±1, ±𝑖, ±𝑗, ±𝑘 = 𝑄8 

All these subgroups are cyclic and abelian. The Cayley’s table for 𝑄8 is given by 

 

Properties 

a) The quaternion group 𝑄8 has the same order as the dihedral group  

𝐷4 =< 𝑎, 𝑏: 𝑎4 = 𝑏2 = (𝑎𝑏)2 = 1 >. 

b) Every subgroup of 𝑄8 is a normal subgroup. 

c) The center and the commutator subgroup of 𝑄8 is the subgroup {1, −1}. 

d) The factor group 
𝑄8

{1,−1}
 is isomorphic to the Klien four group 𝐾4 . 

 

 

 

 

× 1 −1 𝑖 −𝑖 𝑗 −𝑗 𝑘 −𝑘 
1 1 −1 𝑖 −𝑖 𝑗 −𝑗 𝑘 −𝑘 

−1 −1 1 −𝑖 𝑖 −𝑗 𝑗 −𝑘 𝑘 
𝑖 𝑖 −𝑖 −1 1 𝑘 −𝑘 −𝑗 𝑗 

−𝑖 −𝑖 𝑖 1 −1 −𝑘 𝑘 𝑗 −𝑗 
𝑗 𝑗 −𝑗 −𝑘 𝑘 −1 1 𝑖 −𝑖 

−𝑗 −𝑗 𝑗 𝑘 −𝑘 1 −1 −𝑖 𝑖 

𝑘 𝑘 −𝑘 𝑗 −𝑗 −𝑖 𝑖 −1 1 
−𝑘 −𝑘 𝑘 −𝑗 𝑗 𝑖 −𝑖 1 −1 
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3.3 The Isomorphism Theorems 

 Although it is not evident at first, factor groups correspond exactly to 

homomorphic images, and we can use factor group to study homomorphism. We already know that 

every group homomorphism 𝜑: 𝐺 ⟶ 𝐻 we can associate a normal subgroup of 𝐺, 𝑘𝑒𝑟𝜑. The converse is 

also true; that is, every normal subgroup of a group 𝐺 gives rise to homomorphism of groups. 

The following theorems describe the relationship between homomorphisms, normal subgroups and the 

factor groups. 

3.3.1 First Isomorphism Theorem 

Let 𝜑: 𝐺 ⟶ 𝐺 ′  be an epimorphism from 𝐺 to 𝐺 ′ . Then: 

a) The 𝐾 = 𝑘𝑒𝑟𝜑 is a normal subgroup of 𝐺. 

b) The factor group 
𝐺

𝐾
 is isomorphic to 𝐺 ′ . 

c) A subgroup 𝐻′  of 𝐺 ′  is normal in 𝐺 ′  if and only if its inverse image 𝐻 = 𝜑−1(𝐻′ ) is normal in  𝐺. 

d) There is one-one correspondence between the subgroups of 𝐺 ′  and those subgroups of 𝐺 which 

contain 𝑘𝑒𝑟𝜑. 

Proof  The mapping 𝜑: 𝐺 ⟶ 𝐺 ′  is given by 

   𝜑 𝑔 = 𝑔′  , For all ∈ 𝐺 , 𝑔′ ∈ 𝐺 ′  

a) If 𝐾 is the kernel of 𝜑 and 𝑘1, 𝑘2 ∈ 𝐾 then 

𝜑 𝑘1 = 𝜑 𝑘2 = 𝑒′  and 𝜑(𝑘2
−1) = (𝜑(𝑘2))−1 = 𝑒′  

Now  

                                                   𝜑 𝑘1𝑘2
−1 = 𝜑 𝑘1 . 𝜑 𝑘2

−1   ∵  𝜑 is homomorphism 

                          =  𝜑 𝑘1 . (𝜑(𝑘2))−1 

  = 𝑒′ . 𝑒′  

                                                                                        = 𝑒′  

⇒ 𝑘1𝑘2
−1 ∈ 𝐾. So 𝐾 is a subgroup. 

Now we have to show that 𝐾 is a normal subgroup of 𝐺. Since for each 𝑘 ∈ 𝐾 and 𝑔 ∈ 𝐺 we have 

                                                                   𝜑 𝑔𝑘𝑔−1 = 𝜑 𝑔 𝜑 𝑘 𝜑(𝑔−1)  ∵  𝜑 is homomorphism 

                                                                                        =  𝜑 𝑔 . 𝑒′ . (𝜑 𝑔 )−1 
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                                                                                        = 𝜑 𝑔 . (𝜑 𝑔 )−1 

                                                                                        = 𝑒′  

Thus 𝑔𝑘𝑔−1 ∈ 𝐾 for each 𝑘 ∈ 𝐾 and 𝑔 ∈ 𝐺. Hence 𝐾 is a normal subgroup of 𝐺. 

b) Define a mapping 𝜓 ∶  
𝐺

𝐾
⟶ 𝐺 ′  by  

                                 𝜓 𝑔𝐾 = 𝑔′ = 𝜑 𝑔    , 𝑔𝐾 ∈
𝐺

𝐾
 , 𝑔′ ∈ 𝐺 ′ . 

To prove 𝜓 is isomorphism, first we will prove that 𝜓 is well-defined. 

For 𝑔1𝐾, 𝑔2𝐾 ∈
𝐺

𝐾
 and 𝑔1, 𝑔2 ∈ 𝐺. Let 

                                                                                        𝑔1𝐾 = 𝑔2𝐾 

                                                          ⇒                               𝐾 = 𝑔1
−1𝑔2𝐾 

                                                          ⇒                    𝑔1
−1𝑔2 ∈ 𝐾 

                                                          ⇒             𝜑 𝑔1
−1𝑔2 = 𝑒′                   ∵ 𝐾 is kernel of 𝜑 

                                                          ⇒     𝜑 𝑔1
−1 . 𝜑 𝑔2 = 𝑒′                  ∵  𝜑 is homomorphism 

                                                          ⇒ (𝜑 𝑔1 )−1 . 𝜑 𝑔2 = 𝑒′  

                                                          ⇒                       𝜑 𝑔1 = 𝜑 𝑔2  

                                                          ⇒                    𝜓(𝑔1𝐾) = 𝜓(𝑔2𝐾). 

Hence 𝜓 is well-defined. 

For each 𝑔1𝐾, 𝑔2𝐾 ∈
𝐺

𝐾
. Let 

       𝜓(𝑔1𝐾) = 𝜓(𝑔2𝐾) 

                                                          ⇒                       𝜑 𝑔1 = 𝜑 𝑔2  

                                                          ⇒ (𝜑 𝑔1 )−1 . 𝜑 𝑔2 = 𝑒′  

                                                          ⇒     𝜑 𝑔1
−1 . 𝜑 𝑔2 = 𝑒′  

                                                           ⇒             𝜑 𝑔1
−1𝑔2 = 𝑒′                        ∵  𝜑 is homomorphism 

                                                           ⇒                    𝑔1
−1𝑔2 ∈ 𝐾                        ∵ 𝐾 is kernel of 𝜑 

                                                           ⇒                               𝐾 = 𝑔1
−1𝑔2𝐾 

                                                           ⇒                          𝑔1𝐾 = 𝑔2𝐾. 
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Therefore 𝜓 is one-one (injective). 

Also 𝜓 is onto (surjective) because each 𝑔′ = 𝜑(𝑔) ∈ 𝐺 ′  is the image of 𝑔𝐾 ∈
𝐺

𝐾
. 

Now, to prove 𝜓 is homomorphism, let 𝑔1𝐾, 𝑔2𝐾 ∈
𝐺

𝐾
. Then 

𝜓 𝑔1𝐾𝑔2𝐾 = 𝜓(𝑔1𝑔2𝐾) 

                                                                                              = 𝜑(𝑔1𝑔2) 

=  𝜑 𝑔1 . 𝜑(𝑔2)      ∵  𝜑 is homomorphism 

                                                                                              = 𝜓 𝑔1𝐾 . 𝜓(𝑔2𝐾) 

⇒ 𝜓 is homomorphism. 

Hence 𝜓 is an isomorphism between  
𝐺

𝐾
  and 𝐺 ′ . 

c) Suppose that 𝐻′  is a normal subgroup of 𝐺 ′  and  

                     𝐻 = 𝜑−1 𝐻′ = { 𝜑  = ′ ∶  ∈ 𝐺, ′ ∈ 𝐻′ }. 

To prove 𝐻 is normal in 𝐺, Consider an element 𝑔𝑔−1, for  ∈ 𝐻 and 𝑔 ∈ 𝐺. Now  

𝜑 𝑔𝑔−1 = 𝜑 𝑔 . 𝜑  . 𝜑 𝑔−1  

                                                                                    =  𝜑 𝑔 . 𝜑  . (𝜑(𝑔))−1 ∈ 𝐻′  

                                                          ⇒ 𝜑 𝑔𝑔−1 ∈ 𝐻′                                            ∵ 𝐻′  is normal subgroup 

Hence 𝑔𝑔−1 ∈ 𝐻 for each 𝑔 ∈ 𝐺,  ∈ 𝐻 and so 𝐻 is normal subgroup of 𝐺. 

Conversely, suppose that 𝐻 = 𝜑−1 𝐻′  is normal in 𝐺. To prove 𝐻′  is normal in 𝐺 ′ , consider an element 

𝑔′′𝑔′ −1
, for ′ ∈ 𝐻′  and 𝑔′ ∈ 𝐺 ′ . 

Since 𝜑 𝐻 = 𝐻′ , let 𝑔 ∈ 𝐺 ,  ∈ 𝐻 are the pre-images of ′ ∈ 𝐻′  , 𝑔′ ∈ 𝐺 ′ . Then  

𝑔′′𝑔′ −1
=  𝜑 𝑔 . 𝜑  . ( 𝜑(𝑔))−1 

                                                                                = 𝜑 𝑔 . 𝜑  . 𝜑(𝑔−1) 

                                                                                =  𝜑(𝑔𝑔−1) 

Since 𝐻 is normal in 𝐺, 𝑔𝑔−1 ∈ 𝐻. Therefore  

                                                                             𝜑 𝑔𝑔−1 ∈ 𝜑 𝐻 = 𝐻′  

                                                                         ⇒  𝜑 𝑔𝑔−1 ∈ 𝐻′  
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Hence 𝐻′  is normal in 𝐺 ′ . 

d) Let Ω be the collection of subgroups of 𝐺 containing 𝐾 and 𝜔 be the collection of all subgroups of 

𝐺 ′ . 

Define a mapping 𝛼 ∶  Ω ⟶ 𝜔 by 

𝛼 𝐻 = 𝐻′ = 𝜑 𝐻   , where 𝐻 ∈ Ω and 𝐻′ = 𝜑 𝐻 ∈ 𝜔. 

Now, for 𝐻1 , 𝐻2 ∈ Ω, let 

𝛼 𝐻1 = 𝛼(𝐻2) 

                                                                          ⇒  𝜑 𝐻1 = 𝜑(𝐻2). 

Let 𝐻1 = 𝜑−1 𝐻′  , then 𝐻1 ⊆ 𝐻 because 𝐻 = 𝜑−1 𝐻′ . Next let  ∈ H, then 

 = 𝜑−1 ′  

                                                                       ⇒ 𝜑  = ′ = 𝜑(1)                   ∵  𝛼 𝐻 = 𝐻′ = 𝜑 𝐻1  

                                                                       ⇒ 𝜑  = 𝜑(1) 

                                                                       ⇒  𝜑 1
−1 = 𝑒 

                                                                       ⇒ 1
−1 ∈ 𝐾 ⊆ 𝐻1  

                                                                       ⇒      ∈ 1𝐾 ⊆ 𝐻1  

                                                                       ⇒        𝐻 ⊆ 𝐻1 

                                                                       ⇒        𝐻 = 𝐻1 . 

Similarly 𝐻 = 𝐻2. Hence 𝛼 is injective. 

Also 𝛼 is surjective because each 𝐻′ ∈ 𝜔 is the image of 𝐻 ∈ Ω and therefore 𝛼 bijective. Hence there is 

a one-one correspondence between the subgroups of 𝐺 containing 𝐾 and the subgroups of  𝐺 ′ . 

Define the natural or canonical homomorphism 𝜇 ∶ 𝐺 ⟶
𝐺

𝐾
 by 

 
𝜇 𝑔 = 𝑔𝐾  , 𝑔 ∈ 𝐺. 

Then 𝜇 is an epimorphism of 𝐺 to 
𝐺

𝐾
. Moreover the mapping 𝜓 ∶  

𝐺

𝐾
 ⟶ 𝐺 ′  defined by  

𝜓 𝑔𝐾 = 𝑔′ = 𝜑 𝑔   , 𝑔′ ∈ 𝐺 ′  

is a homomorphism. Since the product of two homomorphisms is again a homomorphism, we have 

𝜑 =  𝜓𝜇. 
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Mathematician often use diagrams called commutative diagrams to describe such relations. The 

following diagram “commutes” since 𝜑 =  𝜓𝜇                                                                                                                                                                 

𝐺         
𝜑
          𝐺 ′  

                                                                                  𝜇                𝜓  

                                                                                           
𝐺

𝐾
 

Note: There is a one-one correspondence between the normal subgroup of a group and the number of 

homomorphisms of that group. 

Example let 𝐺 be a cyclic group with generator 𝑔. Define a mapping 𝜑 ∶  ℤ ⟶ 𝐺 by 

𝜑 𝑛 = 𝑔𝑛  , 𝑛 ∈ ℤ , 𝑔 ∈ 𝐺. 
Then 𝜑 is surjective and homomorphism since for 𝑚, 𝑛 ∈ ℤ 

𝜑 𝑚 + 𝑛 = 𝑔𝑚+𝑛 = 𝑔𝑚 . 𝑔𝑛 = 𝜑 𝑚 . 𝜑 𝑛  
Clearly 𝜑 is onto because each 𝑔𝑛 ∈ 𝐺 is the image of 𝑛 ∈ ℤ. if  𝑔 = 𝑚, then 𝑔𝑚 = 𝑒. 
Hence 𝑘𝑒𝑟𝜑 =m ℤ and 

ℤ

𝑘𝑒𝑟𝜑
=

ℤ

𝑚ℤ
≅ 𝐺 

On the other hand if the order of 𝑔 is infinite, then 𝑘𝑒𝑟𝜑 = 0 and 𝜑 is an isomorphism of 𝐺 and ℤ. 
Hence, two cyclic groups are isomorphic exactly when they have the same order. Up to isomorphism, 
the only cyclic groups are ℤ and ℤ𝑛 . 

3.3.2 Second Isomorphism Theorem 

Let 𝐻 be a subgroup and 𝐾 be a normal subgroup of a group 𝐺, then; 

a) 𝐻𝐾 is a subgroup of 𝐺, 

b) 𝐻 ∩ 𝐾 is normal in 𝐻, and 

c) 
𝐻𝐾

𝐾
≅

𝐻

𝐻∩𝐾
. 

Proof  

a) To prove 𝐻𝐾 is a subgroup of 𝐺. Let 𝑥1, 𝑥2 ∈ 𝐻𝐾, then 

       𝑥1 = 1𝑘1   ,   𝑥2 = 2𝑘2  for 1, 2 ∈ 𝐻 and 𝑘1, 𝑘2 ∈ 𝐾. 

Now                                                        𝑥1𝑥2
−1 =  1𝑘1 (2𝑘2)−1 

= 1𝑘1𝑘2
−12

−1 

                                                                            = 1𝑘32
−1                         ∵ 𝑘1𝑘2

−1 = 𝑘3 ∈ 𝐾 is a subgroup 

         = 1(2
−12) 𝑘32

−1 

                         =  12
−1 (2 𝑘32

−1) ∈ 𝐻𝐾 
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because 12
−1 ∈ 𝐻 and 2 𝑘32

−1 ∈ 𝐾 (𝐾 is normal subgroup of 𝐺). 

⇒ 𝑥1𝑥2
−1 ∈ 𝐻𝐾 

Hence 𝐻𝐾 is a subgroup of 𝐺. 

b) To prove 𝐻 ∩ 𝐾 is normal in 𝐻, let 𝑥 ∈ 𝐻 ∩ 𝐾 𝑖. 𝑒(𝑥 ∈ 𝐻, 𝑥 ∈ 𝐾) and  ∈ 𝐻. Then  

                                                                             ⇒ 𝑥−1 ∈ 𝐾      ∵ 𝐾 is a normal subgroup and  ∈ 𝐻 ⊆ 𝐺 

Also   𝑥−1 ∈ 𝐻      ∵ 𝐻 is a subgroup and 𝑥,  ∈ 𝐻. 

⇒ 𝑥−1 ∈ 𝐻 ∩ 𝐾 

Hence 𝐻 ∩ 𝐾 is a normal subgroup of 𝐻. 

c) To prove 
𝐻𝐾

𝐾
≅

𝐻

𝐻∩𝐾
, define a mapping 𝜑 ∶ 𝐻 ⟶

𝐻𝐾

𝐾
 by 

                                                                                     𝜑  = 𝑘𝐾  ,  ∈ 𝐻, 𝑘 ∈ 𝐾 

                                                                                               = 𝐾   ∵ 𝐾 is a subgroup  and 𝑘𝐾 = 𝐾, 𝑘 ∈ 𝐾 

Then 𝜑 is obviously well-defined. Also 𝜑 is onto because each 𝐾 ∈
𝐻𝐾

𝐾
 is the image of  ∈ 𝐻. Moreover, 

𝜑 12 = 12𝐾 

                                                                                              = 1𝐾. 2𝐾 

                                                                                              =  𝜑 1 . 𝜑 2  

⇒ 𝜑 is homomorphism. 

Hence 𝜑 is an epimorphism. 

Now, by first isomorphism theorem 

𝐻𝐾

𝐾
≅

𝐻

𝑘𝑒𝑟𝜑
 

To prove 𝑘𝑒𝑟𝜑 = 𝐻 ∩ 𝐾, let  ∈ 𝑘𝑒𝑟𝜑, then 

                                                                                      𝜑  = 𝐾  , where 𝐾 is the identity of quotient group 

⇒ 𝐾 = 𝐾 

                                                                                    ⇒  ∈ 𝐾 ,  ∈ 𝐻 

                                                                                    ⇒  ∈ 𝐻 ∩ 𝐾  , ⇒ 𝑘𝑒𝑟𝜑 ⊆ 𝐻 ∩ 𝐾 
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Conversely, let 𝑥 ∈ 𝐻 ∩ 𝐾 

                                                                              ⇒  𝑥 ∈ 𝐻 , 𝑥 ∈ 𝐾 

Since     𝜑 𝑥 = 𝑥𝐾 

                                                                              ⇒  𝜑 𝑥 = 𝐾 

                                                                              ⇒         𝑥 ∈ 𝑘𝑒𝑟𝜑       ∵ 𝐾 is the identity of quotient group. 

⇒ 𝐻 ∩ 𝐾 ⊆ 𝑘𝑒𝑟𝜑 

                                                                              ⇒ 𝐻 ∩ 𝐾 =  𝑘𝑒𝑟𝜑 

Hence  
𝐻𝐾

𝐾
≅

𝐻

𝐻∩𝐾
. 

3.3.3 Third Isomorphism Theorem 

Let 𝐻,𝐾 be normal subgroups of a group 𝐺 and 𝐻 ⊆ 𝐾. Then  

(𝐺 𝐻) (𝐾 𝐻)  ≅ 𝐺 𝐾 . 

Proof Since 𝐻, 𝐾 are normal subgroups of 𝐺 and 𝐻 ⊆ 𝐾. Therefore 𝐻 is normal in 𝐾. 

To prove 
𝐾

𝐻
 is normal in 

𝐺

𝐻
, consider the element  𝑔𝐻 𝑘𝐻(𝑔𝐻)−1, for 𝑔𝐻 ∈

𝐺

𝐻
  and 𝑘𝐻 ∈

𝐾

𝐻
. 

Now                                                     𝑔𝐻 𝑘𝐻(𝑔𝐻)−1 = 𝑔𝐻𝑘𝐻(𝑔−1𝐻) 

                                                                                           = 𝑔𝑘𝐻𝑔−1𝐻 

                                                                                           = 𝑔𝑘𝑔−1𝐻  (by multiplication of quotient group) 

                                                        ⇒               𝑔𝑘𝑔−1𝐻 ∈
𝐾

𝐻
                ∵ 𝐾 is normal in 𝐺 

⇒
𝐾

𝐻
⊵ 

𝐺

𝐻
. That is, 

𝐾

𝐻
 is normal in 

𝐺

𝐻
. 

To prove (𝐺 𝐻) (𝐾 𝐻)  ≅ 𝐺 𝐾 . Define a mapping 𝜑 ∶
𝐺

𝐻
⟶

𝐺

𝐾
 by 

           𝜑 𝑔𝐻 = 𝑔𝐾 , 𝑔 ∈ 𝐺. 

Then 𝜑 is obviously well-defined. Also 𝜑 is surjective because each 𝑔𝐾 ∈
𝐺

𝐾
 is the image of 𝑔𝐻 ∈

𝐺

𝐻
. 

Moreover, for 𝑔1𝐻, 𝑔2𝐻 ∈
𝐺

𝐻
 

𝜑 𝑔1𝐻𝑔2𝐻 = 𝜑 𝑔1𝑔2𝐻  

                                                                                              = 𝑔1𝑔2𝐾 
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                                                                                              = 𝑔1𝐾. 𝑔2𝐾 

                                                                                              = 𝜑 𝑔1𝐻 . 𝜑 𝑔2𝐻  

⇒ 𝜑 is homomorphism. Hence 𝜑 is an epimorphism. 

Now, by first isomorphism theorem 

                                                                    (𝐺 𝐻) 𝑘𝑒𝑟𝜑 ≅ 𝐺 𝐾 . 

To prove 𝑘𝑒𝑟𝜑 =
𝐾

𝐻
, let 𝑔𝐻 ∈ 𝑘𝑒𝑟𝜑 then 

                                                                         𝜑 𝑔𝐻 = 𝐾  , where 𝐾 is the identity of quotient group. 

                                                                                ⇒   𝑔𝐾 = 𝐾 

                                                                                ⇒     𝑔 ∈ 𝐾 

                                                                                ⇒  𝑔𝐻 ∈
𝐾

𝐻
 

                                                                                ⇒ 𝑘𝑒𝑟𝜑 ⊆
𝐾

𝐻
  (i) 

Conversely, let 𝑘𝐻 ∈
𝐾

𝐻
 then 

                                                                                  𝜑 𝑘𝐻 = 𝑘𝐾 

                                                                                                = 𝐾         ∵ 𝑘 ∈ 𝐾 is a subgroup 

                                                                               ⇒     𝑘𝐻 ∈ 𝑘𝑒𝑟𝜑    ∵ 𝐾 is the identity of quotient group. 

                                                                               ⇒       
𝐾

𝐻
⊆  𝑘𝑒𝑟𝜑  (ii) 

From (i) and (ii), we have 

          
𝐾

𝐻
= 𝑘𝑒𝑟𝜑. 

Hence 

(𝐺 𝐻) (𝐾 𝐻)  ≅ 𝐺 𝐾 . 

3.4 Automorphism 

                        Let 𝐺 be a group. Then a mapping 𝛼 ∶ 𝐺 ⟶ 𝐺 is called an automorphism if and only if 

a) 𝛼 is bijective, 

b) 𝛼 𝑔1𝑔2 = 𝛼 𝑔1 . 𝛼 𝑔2  , ∀ 𝑔1 , 𝑔2 ∈ 𝐺. 
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The set of all automorphism of 𝐺 is usually denoted by 𝐴(𝐺) or 𝐴𝑢𝑡(𝐺). 

3.4.1 Theorem The set 𝐴 𝐺  of all automorphism of 𝐺 form a group. 

Proof Let 𝐺 be group and 𝐴(𝐺) be the set of all automorphism of 𝐺. We have to show that 𝐴(𝐺) 

forms a group. 

i. Let 𝛼, 𝛽 ∈ 𝐴(𝐺). Then the product 𝛽𝛼 of bijective mapping 𝛼 and 𝛽 is also bijective. Moreover, for 

𝑔1 , 𝑔2 ∈ 𝐺 

                                                              𝛽𝛼 𝑔1𝑔2 = 𝛽(𝛼 𝑔1𝑔2 ) 

                                                            =  𝛽(𝛼 𝑔1 . 𝛼 𝑔2 )       ∵ 𝛼 is an automorphism 

                                                                                  =  𝛽(𝛼 𝑔1 . 𝛽(𝛼 𝑔2           ∵ 𝛽 is an automorphism 

                                                                                  =  𝛽𝛼  𝑔1 . (𝛽𝛼) 𝑔2  , ∀ 𝑔1, 𝑔2 ∈ 𝐺 

⇒ 𝛽𝛼 ∈ 𝐴(𝐺). 

Thus 𝐴(𝐺) is closed under the usual multiplication of mappings. 

ii. Also the associative law holds in 𝐴(𝐺). It follows from the associativity of mappings of a set. 

iii. The identity mapping 𝐼: 𝐺 ⟶ 𝐺 is defined by 

𝐼 𝑔 = 𝑔  , 𝑔 ∈ 𝐺 

is bijective. Moreover, for 𝑔1 , 𝑔2 ∈ 𝐺 

                                                                        𝐼 𝑔1𝑔2 = 𝑔1𝑔2  

                                                                                        = 𝐼 𝑔1 . 𝐼(𝑔2). 

       ⇒ 𝐼 is homomorphism. 

       Also                                                              𝛼𝐼 𝑔 = 𝛼𝑜𝐼 𝑔 = 𝛼 𝐼 𝑔  = 𝛼(𝑔) 

        and                                                              𝐼𝛼 𝑔 = 𝐼𝑜𝛼 𝑔 = 𝐼 𝛼 𝑔  = 𝛼(𝑔) 

        Hence 𝐼 is the identity in 𝐴(𝐺). 

iv. Now we have to show that for each 𝛼 ∈ 𝐴(𝐺) there exist 𝛼−1 ∈ 𝐴(𝐺). Since 𝛼 bijective, so 𝛼−1 is 

also bijective (inverse of bijective mappings is also bijective). Also for all 𝑔1, 𝑔2 ∈ 𝐺 

                                                   𝛼−1 𝑔1𝑔2 = 𝛼−1(𝐼 𝑔1𝑔2 ) 

= 𝛼−1 𝐼 𝑔1 . 𝐼 𝑔2   

                                                                        = 𝛼−1(𝛼𝛼−1 𝑔1 . 𝛼𝛼−1 𝑔2 ) 

                                                                        = 𝛼−1(𝛼 𝛼−1 𝑔1 . 𝛼−1 𝑔2  )       ∵ 𝛼 is an homomorphism 
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                                                                        =  𝛼−1𝛼  𝛼−1 𝑔1 . 𝛼−1 𝑔2   

                                                                        = 𝛼−1 𝑔1 . 𝛼−1 𝑔2  

Hence 𝛼−1 is homomorphism. Thus 𝛼−1 ∈ 𝐴(𝐺). 

Therefore 𝐴(𝐺) forms a group. 

3.4.2 Inner And Outer Automorphism 

Let 𝑎 be a fixed element of 𝐺 then the mapping 𝐼𝑎 : 𝐺 ⟶ 𝐺 given by 

   𝐼𝑎 𝑔 = 𝑎𝑔𝑎−1  , 𝑔 ∈ 𝐺 

is called an inner automorphism of 𝐺. The set of all inner automorphism of 𝐺 is denoted by 𝐼 𝐺 . For 

𝑎, 𝑏 ∈ 𝐺 

𝐼𝑎 . 𝐼𝑏 = 𝐼𝑎 [ 𝑏𝑔𝑏−1 ] 

                                                                                      = 𝑎(𝑏𝑔𝑏−1)𝑎−1 

                                                                                      =  𝑎𝑏 𝑔(𝑎𝑏)−1 

                                                                            𝐼𝑎 . 𝐼𝑏 = 𝐼𝑎𝑏 . 

An automorphism of 𝐺 which is not an inner automorphism is called an oiter automorphism of 𝐺. Every 

automorphism of an abelian group except the identity automorphism is an outer automorphism. 

3.4.3 Theorem Let 𝐺 be a group. The mapping 𝜑 ∶ 𝐺 ⟶ 𝐺 defined by 

𝜑 𝑔 = 𝑔−1   , 𝑔 ∈ 𝐺 

is an automorphism if and only if 𝐺 is abelian. 

Proof Suppose that 𝐺 is abelian. Then, for 𝑔1 , 𝑔2 ∈ 𝐺 

𝑔1𝑔2 = 𝑔2𝑔1. 

Define a mapping 𝜑 ∶ 𝐺 ⟶ 𝐺 by  

              𝜑 𝑔 = 𝑔−1   , 𝑔 ∈ 𝐺. 

Then                                                        𝜑 𝑔1 = 𝑔1
−1  , 𝜑 𝑔2 = 𝑔2

−1 

Now  𝜑 𝑔1𝑔2 = (𝑔1𝑔2)−1  

                                                                                   = 𝑔2
−1𝑔1

−1 

                                                                                   = 𝑔1
−1𝑔2

−1                  ∵ 𝐺 is abelian 

                                                                                   = 𝜑 𝑔1 . 𝜑 𝑔2  
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⇒ 𝜑 is homomorphism. Also 𝜑 is bijective (Do it). 

Hence 𝜑 is an automorphism. 

Conversely, let 𝜑 ∶ 𝐺 ⟶ 𝐺 given by 

𝜑 𝑔 = 𝑔−1   , 𝑔 ∈ 𝐺 

be an automorphism. Then, for 𝑔1, 𝑔2 ∈ 𝐺 

𝜑 𝑔1𝑔2 = (𝑔1𝑔2)−1 

                                                                                            = 𝑔2
−1𝑔1

−1   (i) 

Also                                                                    𝜑 𝑔1𝑔2 = 𝜑 𝑔1 . 𝜑 𝑔2        ∵ 𝜑 is homomorphism 

                                                                                             = 𝑔1
−1𝑔2

−1   (ii) 

From (i) and (ii), we have 

𝑔2
−1𝑔1

−1 = 𝑔1
−1𝑔2

−1 

                                                                     ⇒ (𝑔1𝑔2)−1 = (𝑔2𝑔1)−1   or  𝑔1𝑔2 = 𝑔2𝑔1  , 𝑔1 , 𝑔2 ∈ 𝐺 

Hence 𝐺 is abelian. 

3.4.4 Theorem The set 𝐼(𝐺) of all inner automorphism of a group 𝐺 is a normal subgroup of 

𝐴(𝐺). 

Proof First we will show that 𝐼(𝐺) is a subgroup of 𝐴(𝐺). Let 𝐼𝑎 , 𝐼𝑏 ∈ 𝐼(𝐺), then 

𝐼𝑎  𝑔 = 𝑎𝑔𝑎−1  , 𝐼𝑏  𝑔 = 𝑏𝑔𝑏−1   for all 𝑔 ∈ 𝐺 

And                                                                         𝐼𝑏−1 𝑔 = 𝑏−1𝑔𝑏 

Also                                                   

                                                                       𝐼𝑏 . 𝐼𝑏−1 𝑔 = 𝐼𝑏 (𝑏−1𝑔𝑏) 

                                                                                            = 𝑏𝑏−1𝑔𝑏𝑏−1 = 𝑔 

                                                                                            = 𝐼𝑒 𝑔  

                                                                              ⇒ 𝐼𝑏−1 = (𝐼𝑏 )−1 

Now                                                               𝐼𝑎 . 𝐼𝑏−1 𝑔 = 𝐼𝑎 (𝑏−1𝑔𝑏) 

                                                                                            = 𝑎(𝑏−1𝑔𝑏) 𝑎−1 
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                                                                                            =  𝑎𝑏−1 𝑔 𝑏𝑎−1  

                                                                                            =  𝑎𝑏−1 𝑔(𝑎𝑏−1)−1 

                                                                                            = 𝐼𝑎𝑏 −1 𝑔 ∈ 𝐼(𝐺)  , for all 𝑔 ∈ 𝐺. 

Hence 𝐼(𝐺) is a subgroup of 𝐴(𝐺). 

To prove 𝐼(𝐺) is a normal subgroup of 𝐴(𝐺). Let 𝐼𝑎 ∈ 𝐼(𝐺) and 𝛼 ∈ 𝐴(𝐺), then 

                                                        𝛼𝐼𝑎𝛼−1  𝑔 = 𝛼𝐼𝑎 (𝛼−1 𝑔 ) 

                                                                                = 𝛼(𝑎(𝛼−1 𝑔 𝑎−1) 

                                                                                =  𝛼 𝑎 . 𝛼 𝛼−1 𝑔  . 𝛼(𝑎−1)            ∵ 𝛼 is homomorphism 

                                                                                = 𝛼 𝑎 . 𝛼𝛼−1 𝑔 . (𝛼(𝑎))−1  

                                                                                = 𝛼 𝑎 𝑔(𝛼(𝑎))−1 

                                                                                = 𝐼𝛼 𝑎 (𝑔) ∈ 𝐼(𝐺)  ,  ∀ 𝑔 ∈ 𝐺 

Therefore 𝐼(𝐺) is a normal subgroup of 𝐴(𝐺). 

3.4.5 Theorem Let 𝜁 𝐺  be the centre and 𝐼(𝐺) be the inner automorphism of a group 𝐺. Then 

𝐺

𝜁 𝐺 
≅ 𝐼(𝐺). 

Proof  Define a mapping 𝜑 ∶ 𝐺 ⟶ 𝐼(𝐺) by 

   𝜑 𝑎 = 𝐼𝑎   , 𝑎 ∈ 𝐺. 

First we will show that 𝜑 is well-defined. For 𝑎, 𝑏 ∈ 𝐺, let 

                                                                         𝑎 = 𝑏  ⇒    𝑏−1 = 𝑎−1 

                                                                    ⇒        𝑎𝑔 = 𝑏𝑔 

                                                                    ⇒ 𝑎𝑔𝑎−1 = 𝑏𝑔𝑎−1 

                                                                    ⇒ 𝑎𝑔𝑎−1 = 𝑏𝑔𝑏−1  

                                                                    ⇒          𝐼𝑎 = 𝐼𝑏  

Then 𝜑 is surjective because each 𝐼𝑎 ∈ 𝐼(𝐺) is the image of 𝑎 ∈ 𝐺. Moreover, for 𝑎, 𝑏 ∈ 𝐺 

                                                                         𝜑 𝑎𝑏 = 𝐼𝑎𝑏  

                                                                                      = 𝐼𝑎 . 𝐼𝑏  
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                                                                                      =  𝜑 𝑎 . 𝜑 𝑏  

Hence 𝜑 is homomorphism. Thus 𝜑 is epimorphism. 

By First Isomorphism Theorem 

𝐺

𝑘𝑒𝑟𝜑
≅ 𝐼(𝐺) 

Now we have to show that  

𝜁 𝐺 = 𝑘𝑒𝑟𝜑 

Let 𝑧 ∈ 𝑘𝑒𝑟𝜑, then 

                                     𝜑 𝑧 = 𝐼𝑧        ,   by definition of 𝜑 

                                                                  = 𝐼𝑒        , by assumption that 𝑧 ∈ 𝑘𝑒𝑟𝜑 

                                                                           ⇒  𝐼𝑧 𝑔 = 𝐼𝑒 (𝑔) 

                                                                          ⇒ 𝑧𝑔𝑧−1 = 𝑔 

                                                                          ⇒        𝑧𝑔 = 𝑔𝑧 

                                                                          ⇒           𝑧 ∈  𝜁 𝐺  

                      ⇒  𝑘𝑒𝑟𝜑 ⊆ 𝜁 𝐺                             (i) 

Conversely, let 𝑧 ∈ 𝜁 𝐺 . Then 

                                   𝜑 𝑧 = 𝐼𝑧     ,   by definition of 𝜑 

                                                        = 𝑧𝑔𝑧−1 = 𝑔𝑧𝑧−1 = 𝑔 = 𝐼𝑒(𝑔)    

                                                         ⇒  𝐼𝑧 𝑔 = 𝐼𝑒(𝑔)                    ∵ 𝑧 ∈ 𝜁 𝐺   ∴ 𝑧𝑔 = 𝑔𝑧 

                                                                            ⇒         𝑧 ∈ 𝑘𝑒𝑟𝜑 

                           ⇒  𝜁 𝐺 ⊆ 𝑘𝑒𝑟𝜑                            (ii) 

From (i) and (ii), we have 𝜁 𝐺 = 𝑘𝑒𝑟𝜑. 

Hence 
𝐺

𝜁 𝐺 
≅ 𝐼(𝐺). 

Complete Group: if the centre 𝜁 𝐺  of a group 𝐺 is trevial and very automorphism of 𝐺 is an inner 

automorphism, 𝐺 is called a complete group. 
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3.4.6 Conjugation as an Automorphism 

Let 𝐺 be a group, 𝑎 ∈ 𝐺. Define a mapping 𝐼𝑎 ∶ 𝐺 ⟶ 𝐺 by  

𝐼𝑎 𝑔 =  𝑎𝑔𝑎−1  ,  for all 𝑔 ∈ 𝐺. 

Then 𝐼𝑎  is an automorphism. 

Proof First we will show that 𝐼𝑎  is bijective. For 𝑔1, 𝑔2 ∈ 𝐺, let  

𝐼𝑎 𝑔1 =  𝐼𝑎 (𝑔2) 

                                                                       ⇒  𝑎𝑔1𝑎−1 = 𝑎𝑔2𝑎−1 

                                                                       ⇒            𝑔1 = 𝑎−1𝑎𝑔2𝑎−1𝑎 

                                                                       ⇒            𝑔1 = 𝑔2  

⇒ 𝐼𝑎  is one-one. 

Also 𝐼𝑎  is onto because each 𝑎−1𝑔𝑎 ∈ 𝐺 is the image of 𝑔 ∈ 𝐺 under 𝐼𝑎 . 

i.e,  𝐼𝑎  𝑎−1𝑔𝑎 = 𝑎 𝑎−1𝑔𝑎 𝑎 =  𝑎𝑎−1 𝑔 𝑎𝑎−1 = 𝑔. 

Hence 𝐼𝑎  is bijective. 

Now we have to show that 𝐼𝑎  is homomorphism. For 𝑔1 , 𝑔2 ∈ 𝐺, let 

𝐼𝑎  𝑔1𝑔2 = 𝑎𝑔1𝑔2𝑎−1 

                           = 𝑎𝑔1𝑎−1𝑎𝑔2𝑎−1  

                                  = (𝑎𝑔1𝑎−1)(𝑎𝑔2𝑎−1) 

                        = 𝐼𝑎 𝑔1 . 𝐼𝑎 𝑔2  

⇒ 𝐼𝑎  is an homomorphism. 

Thus 𝐼𝑎 ∈ 𝐴(𝐺). That is, 𝐼𝑎  is an automorphism. 

3.5 Commutator 

Let 𝐺 be a group and 𝑎, 𝑏 ∈ 𝐺. Then the element 

𝑥 = 𝑎𝑏𝑎−1𝑏−1 

Is called the commutator of 𝑎, 𝑏 and it is denoted by [𝑎, 𝑏]. 
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3.5.1 Theorem Let 𝐺 be a group. Then for 𝑎, 𝑏, 𝑐 ∈ 𝐺, the following commutator identities hold in 

𝐺; 

a)  𝑏, 𝑎 = [𝑎, 𝑏]−1 

b)  𝑎𝑏, 𝑐 = [𝑏, 𝑐]𝑎 [𝑎, 𝑐] 

c)  𝑎, 𝑏𝑐 =  𝑎, 𝑏  𝑎, 𝑐 𝑏  

d)  𝑎, 𝑏−1 = [𝑏, 𝑎]𝑏−1
 𝑎𝑛𝑑  𝑎−1, 𝑏 = [𝑏, 𝑎]𝑎−1

. 

Proof 

a) Since  𝑏, 𝑎 = 𝑏𝑎𝑏−1𝑎−1. Now  

 𝑎, 𝑏  𝑏, 𝑎 =  𝑎𝑏𝑎−1𝑏−1 (𝑏𝑎𝑏−1𝑎−1) 

                                                                            =  𝑎𝑏𝑎−1  𝑏−1𝑏 (𝑎𝑏−1𝑎−1) 

                                                                            =  𝑎𝑏  𝑎−1𝑎 (𝑏−1𝑎−1) 

                                                                            =  𝑎𝑏 (𝑎𝑏)−1 

                                                                            = 𝑒 

                                                                   ⇒  𝑏, 𝑎 = [𝑎, 𝑏]−1. 

b) For 𝑎, 𝑏, 𝑐 ∈ 𝐺,  

                                                                𝑎𝑏, 𝑐 = 𝑎𝑏𝑐(𝑎𝑏)−1𝑐−1 

                                                                            = 𝑎𝑏𝑐𝑏−1𝑎−1𝑐−1 

                                                                            = 𝑎𝑏𝑐𝑏−1(𝑐−1𝑐)𝑎−1𝑐−1 

                                                                   = 𝑎 𝑏𝑐𝑏−1𝑐−1 𝑎−1(𝑎𝑐𝑎−1𝑐−1) 

                                                                   = 𝑎 𝑏, 𝑐 𝑎−1[𝑎, 𝑐] 

                                                 ⇒ [𝑎𝑏, 𝑐] = [𝑏, 𝑐]𝑎 [𝑎, 𝑐]. 

c)                            

                                                       𝑎, 𝑏𝑐 = 𝑎𝑏𝑐𝑎−1(𝑏𝑐)−1 

                                                                          = 𝑎𝑏𝑐𝑎−1𝑐−1𝑏−1 

                                                                          = 𝑎𝑏𝑎−1𝑎𝑐𝑎−1𝑐−1𝑏−1  

                                                                          = (𝑎𝑏𝑎−1𝑏−1)𝑏(𝑎𝑐𝑎−1𝑐−1)𝑏−1 

                                                        ⇒ [𝑎, 𝑏𝑐] = [𝑎, 𝑏][𝑎, 𝑐]𝑏 . 

d)      

                                                     𝑎, 𝑏−1 = 𝑎𝑏−1𝑎−1(𝑏−1)−1  

                                                                   = 𝑎𝑏−1𝑎−1𝑏 

                                                                   = 𝑏−1(𝑏𝑎𝑏−1𝑎−1)𝑏 

                                                                   = 𝑏−1 𝑏, 𝑎 (𝑏−1)−1 

                                              ⇒   𝑎, 𝑏−1 = [𝑏, 𝑎]𝑏−1
. 

and  𝑎−1, 𝑏 = [𝑏, 𝑎]𝑎−1
. (do it yourself). 
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Note:  

a. A group 𝐺 abelian if and only if for any two elements 𝑎, 𝑏 ∈ 𝐺,  𝑎, 𝑏 = 𝑒. 
b. The product of two commutators may not b a commutator. 

Derived Group OR Commutator Subgroup: Let 𝐺 be a group and 𝐺 ′  be a subgroup 

of 𝐺. Then 𝐺 ′  is said to be a commutator subgroup, if it is generated by a set of commutators of 𝐺. 

3.5.2 Theorem let 𝐺 be a group. Then 

a) the derived group 𝐺 ′  is normal subgroup of 𝐺, 

b) the factor group 
𝐺

 𝐺 ′  is abelian, 

c) if  𝐾 is a normal subgroup of  𝐺 such that 
𝐺

 𝐾
 is abelian then 𝐺 ′ ⊆ 𝐾. 

Proof  

a) Since 𝐺 ′  is generated by the commutators  𝑎, 𝑏 , 𝑎, 𝑏 ∈ 𝐺. To prove 𝐺 ′  is normal in 𝐺, consider 

                      𝑔 𝑎, 𝑏 𝑔−1 = 𝑔(𝑎𝑏𝑎−1𝑏−1)𝑔−1        ,           for  𝑎, 𝑏 ∈ 𝐺 ′  and 𝑔 ∈ 𝐺 

         = 𝑔𝑎𝑔−1. 𝑔𝑏𝑔−1. 𝑔𝑎−1𝑔−1. 𝑔𝑏−1𝑔−1 

        =  𝑔𝑎𝑔−1. 𝑔𝑏𝑔−1. (𝑔𝑎𝑔)−1. (𝑔𝑏𝑔)−1 

                                                            = 𝑎𝑔𝑏𝑔(𝑎𝑔)−1(𝑏𝑔)−1             ∵ 𝑎𝑔 = 𝑔𝑎𝑔−1 is the conjugate of 𝑎 

                                                                    = [𝑎𝑔 , 𝑏𝑔]  ∈ 𝐺 ′      , for all 𝑔 ∈ 𝐺 

                                         ⇒  𝑔 𝑎, 𝑏 𝑔−1 ∈ 𝐺 ′   

Hence 𝐺 ′  is a normal subgroup of 𝐺. 

b) Let 𝑎𝐺 ′ , 𝑏𝐺 ′ ∈
𝐺

 𝐺 ′  , 𝑎, 𝑏 ∈ 𝐺, then 

                                           𝑎𝐺 ′ , 𝑏𝐺 ′  = 𝑎𝐺 ′𝑏𝐺 ′ (𝑎𝐺 ′ )−1(𝑏𝐺 ′ )−1 

                                                              = 𝑎𝐺 ′𝑏𝐺 ′𝑎−1𝐺 ′𝑏−1𝐺 ′  

                                               = (𝑎𝑏𝑎−1𝑏−1)𝐺 ′                        (by quotient multiplication) 

                                                              = 𝐺 ′                                              ∵  𝑎, 𝑏 ∈ 𝐺 ′  

                                                              =identity of factor group. 

       Hence the factor group 
𝐺

 𝐺 ′  is abelian. 

c) Let 𝐾 be a normal subgroup of 𝐺 such that 
𝐺

 𝐾
 is abelian and 𝐾, 𝑏𝐾 ∈ 

𝐺

 𝐾
. Then 

                                               𝑎𝑘, 𝑏𝐾 = 𝑎𝐾𝑏𝐾(𝑎𝐾)−1(𝑏𝐾)−1  

                                                               = 𝑎𝐾𝑏𝐾𝑎−1𝐾𝑏−1𝐾 

                                                               = (𝑎𝑏𝑎−1𝑏−1)𝐾 

                                                               =  𝑎, 𝑏 𝐾 = 𝐾                              ∵  
𝐺

 𝐾
 is abelian 

Hence [𝑎, 𝑏]  ∈ 𝐾. But since [𝑎, 𝑏]  ∈ 𝐺 ′ . Therefore 𝐺 ′ ⊆ 𝐾. 
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Product Of Groups 

 

4.1 Direct Product 

 If 𝐺 and 𝐻 are two groups (finite or infinite). Then the direct product of 𝐺 and 𝐻 is a 

new group, denoted by 𝐺 × 𝐻 and is defined by 

𝐺 × 𝐻 =   𝑥, 𝑦  𝑥 ∈ 𝐺, 𝑦 ∈ 𝐻}. 

The group operation defined is multiplication. Let 𝑎, 𝑏 ∈ 𝐺 and 𝑥, 𝑦 ∈ 𝐻, then 

 𝑎, 𝑏 .  𝑥, 𝑦 = (𝑎. 𝑥, 𝑏. 𝑦). 

It is also called the external direct product. 

Properties 

a) Identity: The direct product 𝐺 × 𝐻 has an identity element, namely {𝑒1, 𝑒2}, where 𝑒1 ∈ 𝐺 and  

𝑒2 ∈ 𝐻. 

b) Inverse: The inverse of each element (𝑥, 𝑦) ∈ 𝐺 × 𝐻 is (𝑥−1, 𝑦−1), where 𝑥−1 ∈ 𝐺 and 𝑦−1 ∈ 𝐻. 

c) Associativity: The associative law holds in 𝐺 × 𝐻. That is, for  𝑥1, 𝑦1 ,  𝑥2, 𝑦2 , (𝑥3, 𝑦3) ∈ 𝐺 × 𝐻 

( 𝑥1, 𝑦1 .  𝑥2, 𝑦2 ).  𝑥3, 𝑦3 =  𝑥1, 𝑦1 . ( 𝑥2, 𝑦2 . (𝑥3, 𝑦3)). 

4.1.1 Example 

Let 𝐺 = ℤ under addition, 𝐻 = {±1, ±𝑖} under multiplication be two groups. Then the direct product of  

𝐺 and 𝐻 is 

𝐺 × 𝐻 =   𝑥, 𝑦  𝑥 ∈ ℤ, 𝑦 = ±1 𝑜𝑟 ± 𝑖}. 

Now to identify the group operation, let  6, −1 , (−3, 𝑖) ∈ 𝐺 × 𝐻. Then 

 6, −1 .  −3, 𝑖 = (6 − 3, −1. 𝑖) 

(because ℤ under addition is a group and {±1, ±𝑖} under multiplication is a group) 

                                                                                              = (3, −𝑖). 

The identity element is (0,1), because 

                                                                     7, −𝑖 .  0,1 =  7 + 0, −𝑖. 1      , (7, −𝑖) ∈ 𝐺 × 𝐻 

                                                                                             =  7, −𝑖 =  0,1 . (7, −𝑖) 
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Let (13, −𝑖) ∈ 𝐺 × 𝐻, then 

 13, −𝑖 .  −13, 𝑖 =  13 − 13, −𝑖. 𝑖  

                                                                                              =  0,1 =  −13, 𝑖 .  13, −𝑖  

⇒ (−13, 𝑖) ∈ 𝐺 × 𝐻 is an inverse. Hence inverse of each element of 𝐺 × 𝐻 exists. 

Also, for  6, −1 ,  −3, 𝑖 , (12,1) ∈ 𝐺 × 𝐻 

 6, −1 .   −3, 𝑖 .  12,1  =  6, −1 . (−3 + 12, 𝑖. 1) 

                                                                                              =  6, −1 . (9, 𝑖) 

                                                                                              =  6 + 9, −1. 𝑖  

                                                                                              = (15, −𝑖) 

and    6, −1 .  −3, 𝑖  .  12,1 =  6 − 3, −1. 𝑖 .  12,1  

                                                                                              =  3, −𝑖 . (12,1) 

                                                                                              =  3 + 12, −𝑖. 1  

                                                                                              = (15, −𝑖) 

                                          ⇒  6, −1 .   −3, 𝑖 .  12,1  =   6, −1 .  −3, 𝑖  .  12,1  

Hence the associative law holds in 𝐺 × 𝐻. 

Internal Direct Product: let 𝐺 be group and 𝐻, 𝐾 be two subgroups of 𝐺. Then 𝐺 is said to be 

internal direct product of 𝐻, 𝐾 if and only if 

a) 𝐺 is generated by 𝐻, 𝐾, 

b) 𝐻, 𝐾 are normal subgroups of 𝐺, 

c) 𝐻 ∩ 𝐾 = {𝑒} is the identity in 𝐺. 

Note: We can take the direct product of finitely or infinitely many groups. For example, if 𝐺1, 𝐺2 , … , 𝐺𝑛  are 𝑛 

groups. Then the direct product 

 𝐺𝑖

𝑛

𝑖=1

= 𝐺1 × 𝐺2 × … × 𝐺𝑛  

is finite. But if 𝐺𝑖  for all 𝑖 = 1,2, … is infinite, then the direct product is also infinite. 

4.1.2 Theorem Let 𝐺 be a direct product of its two normal subgroups 𝐻, 𝐾 with 𝐻 ∩ 𝐾 = {𝑒} and 

𝐺 = 𝐻𝐾. Then 

i. Each element of 𝐻 is permutable with every element of 𝐾. i.e, 𝑘 = 𝑘 , for all  ∈ 𝐻, 𝑘 ∈ 𝐾 
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ii. Every element of 𝐺 is uniquely expressible as 𝑔 = 𝑘, for all  ∈ 𝐻, 𝑘 ∈ 𝐾 

iii. 𝐺 ≅ 𝐻 × 𝐾. 

Proof 

i. Let  ∈ 𝐻, 𝑘 ∈ 𝐾 and consider the commutator 𝑘−1𝑘−1 . Then 

                                                  𝑘−1𝑘−1 = (𝑘−1)𝑘−1 ∈ 𝐾   (𝐾 is normal in 𝐺) 

                                                                                          =  (𝑘−1𝑘−1) ∈ 𝐻        (𝐻 is normsl in 𝐺) 

                                                                 ⇒ 𝑘−1𝑘−1 ∈ 𝐻 ∩ 𝐾 

       But since 𝐻 ∩ 𝐾 = {𝑒}. 

                                                                 ⇒ 𝑘−1𝑘−1 = 𝑒 

                                                                 ⇒               𝑘 = 𝑘 

       Hence each element of 𝐻 is permutable with every element of 𝐾. 

ii. Since 𝐺 is generated by its subgroups 𝐻, 𝐾. Let 

                             𝑔 = 1𝑘1   , 𝑔 = 2𝑘2  for 1, 2 ∈ 𝐻, 𝑘1 , 𝑘2 ∈ 𝐾 

                                                                 ⇒      1𝑘1 = 2𝑘2  

                                                                 ⇒  2
−11 = 𝑘2𝑘1

−1 ∈ 𝐻, 𝐾 

                                                          ⇒  2
−11 ∈ 𝐻 ∩ 𝐾  

                                                          ⇒  2
−11 = 𝑒 

                                                          ⇒           1 = 2 =  ∈ 𝐻 (𝑠𝑎𝑦) 

Also   𝑘2𝑘1
−1 ∈ 𝐻 ∩ 𝐾 

                                                                 ⇒  𝑘2𝑘1
−1 = 𝑒   

                                                                 ⇒           𝑘1 = 𝑘2 = 𝑘 ∈ 𝐾 (𝑠𝑎𝑦) 

                                                                 ⇒       1𝑘1 = 2𝑘2 = 𝑘 

Hence every 𝑔 ∈ 𝐺 is uniquely expressible as 𝑔 = 𝑘, for all  ∈ 𝐻, 𝑘 ∈ 𝐾. 

iii. To prove 𝐺 ≅ 𝐻 × 𝐾. Define a mapping 𝜑 ∶ 𝐺 ⟶ 𝐻 × 𝐾 by  

                     𝜑 𝑔 = (, 𝑘)  , 𝑔 ∈ 𝐺 , (, 𝑘) ∈ 𝐻 × 𝐾. 

First we will show that 𝜑 is well-defined. For 𝑔1 , 𝑔2 ∈ 𝐺, let 

𝑔1 = 𝑔2  

                       ⇒ 1𝑘1 = 2𝑘2         ∵ 𝐺 = 𝐻𝐾 

                                                                                 ⇒     1 = 2    , 𝑘1 = 𝑘2 
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⇒ (1, 𝑘1) = (2, 𝑘2) 

                                                                          ⇒    𝜑(𝑔1) = 𝜑(𝑔2) 

⇒ 𝜑 is well-defined. 

For one-one, let  

𝜑 𝑔1 = 𝜑 𝑔2  

                                                                        ⇒ (1, 𝑘1) = (2, 𝑘2) 

                                                                        ⇒ 1 = 2    , 𝑘1 = 𝑘2  

                                                                        ⇒      1𝑘1 = 2𝑘2 

                                                                        ⇒          𝑔1 = 𝑔2                  ∵ 𝐺 = 𝐻𝐾 

⇒ 𝜑 is one-one. 

Also 𝜑 is onto because each (, 𝑘) ∈ 𝐻 × 𝐾 is the image of 𝑔 ∈ 𝐺 under 𝜑. 

Now for 𝑔1 , 𝑔2 ∈ 𝐺 

𝜑 𝑔1 . 𝑔2 = 𝜑 1𝑘1. 2𝑘2  

                                                                                        =  𝜑 1(𝑘12)𝑘2  

                                                                                        = 𝜑 12. 𝑘1𝑘2                   ∵ 𝑘 = 𝑘 

                                                                                        =  12, 𝑘1𝑘2  

                                                                                        =  1, 𝑘1 .  2, 𝑘2  

                                                                                        =  𝜑 𝑔1 . 𝜑 𝑔2  

Hence 𝜑 is homomorphism. Thus 𝐺 ≅ 𝐻 × 𝐾. 

4.1.3 Theorem If 𝐺 = 𝐻 × 𝐾 and 𝜁 𝐺 , 𝜁 𝐻 , 𝜁 𝐾  are the centre of 𝐺, 𝐻 and 𝐾 respectively, 

then 

𝜁 𝐺 = 𝜁 𝐻 × 𝜁 𝐾 . 

Proof  To prove 𝜁 𝐺 = 𝜁 𝐻 × 𝜁 𝐾 . Let 𝑥 ∈ 𝜁 𝐻 × 𝜁 𝐾 , then 

𝑥 = 𝑧1𝑧2 , where 𝑧1 ∈ 𝜁 𝐻  and 𝑧2 ∈ 𝜁 𝐾  

Let 𝑔 ∈ 𝐺, then 𝑔 = 𝑘, for  ∈ 𝐻 , 𝑘 ∈ 𝐾 (by theorem 4.1.2(ii)). Now  

                                                                            𝑥𝑔 = 𝑧1𝑧2𝑘 
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                                                                                  = 𝑧1 𝑧2 𝑘                       ∵ 𝑘 = 𝑘 

                                                                                  =  𝑧1 (𝑧2𝑘) 

                                                                                  = (𝑧1𝑘)𝑧2 = 𝑘𝑧1𝑧2 

                                                                       ⇒ 𝑥𝑔 = 𝑔𝑥 

                                                                       ⇒    𝑥 ∈ 𝜁 𝐺  

                                                                       ⇒  𝜁 𝐻 × 𝜁 𝐾 ⊆ 𝜁 𝐺                                         (i) 

Now, let 𝑎 ∈ 𝜁 𝐺 , then 

𝑎𝑔 = 𝑔𝑎 , for 𝑔 ∈ 𝐺 

                                                                       ⇒ 𝑎 = 𝑎 ,  ∈ 𝐻 ⊆ 𝐺 

And                                                                     𝑎𝑘 = 𝑘𝑎, 𝑘 ∈ 𝐾 ⊆ 𝐺 

Let 𝑎 = ′𝑘′  , ′ ∈ 𝐻, 𝑘′ ∈ 𝐾. Then 

                                                         𝑎 = ′𝑘′ = ′ 𝑘′ = ′𝑘′                 ∵ 𝑘 = 𝑘 

And                                                                     𝑎 = ′𝑘′  

but  since 𝑎 = 𝑎 

                                                                 ⇒ ′𝑘′ = ′𝑘′  

                                        ⇒     ′ = ′                                (right cancelation law) 

                                                                  ⇒       ′ ∈ 𝜁 𝐻 . 

Also  𝑎𝑘 = ′𝑘′𝑘 

and 𝑘𝑎 = 𝑘′𝑘′ =  𝑘′ 𝑘′ = ′𝑘𝑘′                 ∵ 𝑘 = 𝑘 

                                                                 ⇒ ′𝑘′𝑘 = ′𝑘𝑘′                                                     ∵ 𝑎𝑘 = 𝑘𝑎 

                                        ⇒     𝑘′ 𝑘 = 𝑘𝑘′                              (left cancelation law) 

                                                                 ⇒       𝑘′ ∈ 𝜁 𝐾  

                                                                 ⇒   ′𝑘′ ∈ 𝜁 𝐻 × 𝜁 𝐾  

                                                                 ⇒         𝑎 ∈ 𝜁 𝐻 × 𝜁 𝐾  

                                                                 ⇒ 𝜁 𝐺 ⊆ 𝜁 𝐻 × 𝜁 𝐾                                      (ii) 

From (i) and (ii), we have 𝜁 𝐺 = 𝜁 𝐻 × 𝜁 𝐾 . 
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4.1.4 Theorem Let 𝐺 = 𝐻 × 𝐾. Then the factor group 
𝐺

𝐾
≅ 𝐻. 

Proof The factor group 

 
𝐺

𝐾
= {𝑔𝐾 ∶ 𝑔 ∈ 𝐺} 

                                               
𝐺

𝐾
= {𝑘𝐾 = 𝐾,  ∈ 𝐻}                 ∵ 𝑔 = 𝑘 

To prove  
𝐺

𝐾
≅ 𝐻. Define a mapping 𝜑 ∶

𝐺

𝐾
⟶ 𝐻 by 

                                                                    𝜑 𝑔𝐾 = 𝜑 𝐾 = . 

First we will show that 𝜑 is well-defined. For 𝑔1𝐾, 𝑔2𝐾 ∈
𝐺

𝐾
, let 

𝑔1𝐾 = 𝑔2𝐾 

                                                                      ⇒          1𝐾 = 2𝐾 

                                                                      ⇒ 2
−11𝐾 = 𝐾 

                                                                      ⇒    2
−11 ∈ 𝐾 

But also 2
−11 ∈ 𝐻. 

                                                                     ⇒ 2
−11 ∈ 𝐻 ∩ 𝐾 

                                         ⇒  2
−11 = 𝑒                                     ∵ 𝐻 ∩ 𝐾 = {𝑒} 

                                                                     ⇒           1 = 2 

                                                                     ⇒ 𝜑(1𝐾) = 𝜑(2𝐾) 

⇒ 𝜑 is well-defined. 

For one-one, let  

𝜑 1𝐾 = 𝜑 2𝐾  

                                                                      ⇒             1 = 2 

                                                                      ⇒          1𝐾 = 2𝐾 

⇒ 𝜑 is one-one. 

Also 𝜑 is onto because each  ∈ 𝐻 is the image of 𝑔𝐾 ∈
𝐺

𝐾
. Moreover, for 𝑔1𝐾, 𝑔2𝐾 ∈

𝐺

𝐾
 

𝜑 𝑔1𝐾𝑔2𝐾 = 𝜑(1𝐾2𝐾) 
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                                                                                            =  𝜑(12𝐾) 

                                                                                            = 12 

                                                                                            = 𝜑 1𝐾 . 𝜑(2𝐾) 

Hence 𝜑 is homomorphism. Thus  
𝐺

𝐾
≅ 𝐻. 

4.1.5 Theorem Let  𝐺 = 𝐻 × 𝐾 and 𝐻1  be a normal subgroup of 𝐻. Then 𝐻1  is normal in 𝐺. 

Proof Since 𝐺 = 𝐻 × 𝐾, therefore for each 𝑔 ∈ 𝐺 

                                                                                   𝑔 = 𝑘. 

To prove 𝐻1  is normal in 𝐺. Consider an element 𝑔1𝑔−1, for each 1 ∈ 𝐻1, 𝑔 ∈ 𝐺. Then 

𝑔1𝑔−1 =  𝑘 1(𝑘)−1 

                                                                                      = 𝑘1𝑘−1−1 

                                                          = (𝑘1)𝑘−1−1                       ∵ 𝑘 = 𝑘 

                                                                                      = 1(𝑘𝑘−1)−1 

                                                                                      = 1−1 ∈ 𝐻1                         ∵ 𝐻1  is normal in 𝐻 

                                                                 ⇒ 𝑔1𝑔−1 ∈ 𝐻1 . 

Hence 𝐻1  is normal in 𝐺. 

4.1.6 Theorem Let 𝐻, 𝐾 be cyclic groups of order 𝑚, 𝑛 respectively, where 𝑚, 𝑛 are relatively 

prime. Then 𝐻 × 𝐾 is a cyclic group of order 𝑚𝑛. 

Proof Let =< 𝑎 ∶ 𝑎𝑚 = 𝑒 > , 𝐾 =< 𝑏 ∶ 𝑏𝑛 = 𝑒 >. Let 𝐺 = 𝐻 × 𝐾, then 𝑎𝑏 is an element of 𝐻 × 𝐾. 

Also (𝑎𝑏)𝑘 = 𝑎𝑘𝑏𝑘 = 𝑒 if and only if 𝑚 𝑘, 𝑛 𝑘. But since (𝑚, 𝑛) = 1, therefore 𝑚𝑛|𝑘. Moreover 

(𝑎𝑏)𝑚𝑛 = 𝑎𝑚𝑛 𝑏𝑚𝑛 =  𝑎𝑚  𝑛 𝑏𝑛 𝑚 = 𝑒. 𝑒 = 𝑒 

Hence 𝑎𝑏 has order 𝑚𝑛. As 𝐻 × 𝐾 has 𝑚𝑛 elements. 

⇒ 𝐺 =< 𝑎, 𝑏 ∶ (𝑎𝑏)𝑚𝑛 = 𝑒 > 

Hence 𝐺 is cyclic group of order 𝑚𝑛. 


