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METRIC SPACES

Functional analysis is an abstract branch of mathematics that originated
from classical analysis. It deals with analysis of functional (functions of
functions). It concerned with infinite dimensional vector spaces (mainly function
space) and mappings between them. It deals with abstract spaces and different
operators define on these spaces. Its development started about eighty years ago,
and nowadays functional analytic methods and results are important in
various fields of mathematics and its applications. The impetus came from
linear algebra, linear ordinary and partial differential equations, calculus of
variations, approximation theory and, in particular, linear integral equations,
whose theory had the greatest effect on the development and promotion of
the modern ideas.

Metric space, Metric

A metric space is a pair (X, d), where X is a non-empty set and d is a metric on X
(or distance function on X), that is, A function d: X x X — R™ is said to be metric
on X # ¢ such that for all x,y,z € X we have:

(M1) d is real-valued, finite and nonnegative. i.e. d(x,y) = 0;Vx,y € X
(M2) d(x,y) =0ifandonlyifx =y

(M3) d(x,y) =d(y,x) ;Vx,y €X (Symmetry)

(M4) d(x,y) <d(x, z) +d(z,y) (Triangle Inequality).

If (X, d) is metric space then X is called underlying set. Its elements are called
points.

Induced Metric

A subspace (Y,d) of (X,d) is obtained if we take a subset Y c X and
restrict d to Y x Y; thus the metricon Y is the restrictiond = d lyyy iS
called the metric induced on Y by d.

For video lectures @ You tube visit “Learning with Usman Hamid”

Avai |l able at MathCity.org



What is the use of Metric Space in daily life?

In mathematics a metric space is a set where a distance (called metric) is defined
between elements of the set. Metric Space methods have been employed for
decades in various applications, for example in internet search engines, image
classification, or protein classification.

Can a Metric Space be empty?

A metric space is formally defined as a pair. The empty set is not such a pair, so it
IS not a metric space in itself.

What is the difference between normed space and a metric space?

A metric provides us a notion of the distance between points in a space, a norm
gives us a notion of the length of an individual vector. A norm can only be defined
on a vector space, while a metric can be defined on any set.
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Examples

Real line R: This is the set of all real numbers, taken with the usual
metric defined by d(x,y) = |x — y| thisis also called usual metric space.
Euclidean plane R?: The metric space R?, called the Euclidean plane, is
obtained if we take the set of ordered pairs of real numbers, written

x = (&,&),y = (n,n,), etc., and the Euclidean metric defined by

d(x,y) =~/ (& —n1)? + (& — )2

Or d(x,y) =1& —nql + 1& —n,| this is also called the taxicab metric.
Three-dimensional Euclidean space R3

This metric space consists of the set of ordered triples of real numbers
x = (£1,¢,,&3),y = (m,m2,n3), etc., and the Euclidean metric defined

by d(x,y) = (& —1m)?+ (& —12)% + (&3 — 13)?

Euclidean space R"

This space is obtained if we take the set of all ordered n-tuples of real
numbers, written x = (&;,¢5,...,6,), vy = (1,12, ..., Ny,) €tc., and the
Euclidean metric defined by

d(x,y) =/ (& =12+ (€ —n)? + -+ (&, — 1)?

Unitary Space C", complex plane C

This space is obtained if we take the set of all ordered n-tuples of
complex numbers, written x = (&,&,,...,¢,),y = (14,15, ..., m,,) €tc., and
the Euclidean metric defined by

d(x,y) =16 —ml? + & —nal? + - + &y — 7|2

(C" is sometimes called complex Euclidean n-space.)

When n =1 this is the complex plane C with the usual metric defined
by d(x,y) =[x -yl

Sequence space [~ This space X (say) is a set of all bounded
sequences of complex numbers; thatis, every element of X is a
complex sequence (&;,¢,,...) briefly x = (&;) such that for all

j = 1,2,..we have |;| < c, where ¢, is a real number which may
depend on x, but does not depend on j. This space is a metric space with
defined metric d(x,y) = SuijN|€j - nj|
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» Function space C[a, b]: This space X (say) is a set of all real-valued
functions X, y, which are functions of an independent real variable t
and are defined and continuous on a given closed interval J = [a, b]. This
space is a metric space with defined metric d (x,y) = max,¢;|x(t) — y(t)|

= Discrete metric space or Trivial Metric space: A space (X, d) is called
discrete metric space, if we define the following metric on it
d(x,x) = 0, d(x,y) =1 (x #y).

1 ;x+#
or d(x,y)={0 RN

Problem: Show that the real line is a metric space.

Or Show that the set of all real numbers, taken with the usual metric defined
by d(x,y) = |x—y| isametric space.

Solution  Define a metric d(x,y) =[x — y| for X =R

(M1) Obviously d(x,y) =0;Vx,y €X

(M2) Letx =ythend(x,y) =|x—y|=|x—x|=0=>d(x,y) =0
If dlx,y)=0=>|x—y|=0=2x—-y=0=>x=y

Thus d(x,y) =0ifandonlyifx =y

(M3) dlx,y) = |x—yl =y —x| =d(y,x)

Thus d(x,y) =d(y,x) ;Vx,y €X

(M4) dix,z) =Ix—z|=lx—y+y—zl|<Ix -yl + |y -z

Thus d(x,z) <d(x, y)+d(y,z)

Hence d is a metric on R and is called usual metric on R and (R, d) is called usual
metric space on real line.
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Problem: Show that the Euclidean Plane is a metric space.
Or  Show that the set of ordered pairs of real numbers, written

x = (§,&),y = (11,1,), etc., defined d: R? X R? - R by the following metric
IS @ metric space.

d(x,y) = \/(51 —1n1)% + (& — 1)

Solution  Define a metric d(x,y) = /(& —11)% + (&, — n,)? for X = R?

(M1) Obviously d(x,y) =20;Vx,y € X
(M2) Let x = y then (&1, ;) = (1,7m2) and

S dxy) = -§)?+ (-2 =0edxy) =0

Thus d(x,y) =0ifandonlyifx =y

(M3) d(x,y) = (1 =12+ (€ —12)? =/ (1 — &2+ (2 — €)% = d(¥, %)
Thus d(x,y) =d(y,x) ;Vx,y € X

(M4) Letx = (£1,82),y = (M,1m2),2 = (¥1,72) then
d(x,z) = \/(51 —y1)?+ (&2 —72)?

If points Xx,y,z are non collinear then they form vertices of triangle therefore

Thus d(x,y) <d(x, z) +d(z,y)

But if points x,y,z are collinear then d(x,y) = d(x, z) + d(z,y)

Thus d(x,y) <d(x, z) +d(z,y)

Hence d is a usual metric on R?. Euclidean Metric also called Usual metric.

This is also called the taxicab metric. Taxicab Geometry gets its name from the
fact that taxis can only drive along streets, rather than moving as the crow flies.
Euclidian Distance between two sets as the taxi driving. It is known as Taxicab
metric as it measures the distance a taxi would travel from a point to some other
point if there were no one way streets.
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Problem

Consider X = R? with d: R? x R? - R defined by

d(x,y) =& —ml+ & —n2l With x = (§,&),y = (n1,12) € R?

Show that d is a metric on R2.

Solution  Define a metric d(x,y) = |&; — 1| + |&; — 15| for X = R?
(M1) Obviously |& —ni| + & —n2] =2 0=>d(x,y) =0;Vx,y €X
(M2) Letd(x,y) =[S —ml+ [ —ml =08 =n,8 =n,
S Gué)=Mmun)ex=y
Thus d(x,y) =0ifandonlyifx =y
(M3) d,y) =1& —ml+ 18 —n2l = Iny — &l + 02 — &2 = d(y, %)
Thus d(x,y) =d(y,x) ;Vx,y € X
(M4) Letd(x,y) = |§1 —ml + 1§z — 2l
dx,y) =18 —vi+vi—ml+ 1 —v2+v2 —na2l
dx,y) < & —val +lya =ml + &2 = val + lva — 12l
dx,y) < (& = vl +1& = v2D + (ye —=ml + ly2 = m20)
Thus d(x,y) <d(x, z) +d(z,y) Henced isametric on R?
Question  Show that non — negativity of a metric using (M2) and (M4).
Solution
(M4) d(x,z) <d(x, y)+d(y,2)
Z=X = d(x,x) <d(x,y) +d(y,x) = d(x,x) < 2d(x,y)

using (M2) we have d(x,x) = 0= 0 < 2d(x,y)

= d(x,y) =0
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Example

Let X be any non-empty set and d is a metric defined over X. Let m be any natural
number so that we define d,,,(x, y) = md(x, y) for any x, y € X. We are to show
that d,,,(.,.) is also a metric. The new metric spaces {(X,d,,):m = 1,2,...}are
thus obtained from (XX, d).

Solution
() dp(x,y) =md(x,y) =0 VX, yeX
(i) d,(x,y) =0 md(x,y) =0dx,y)=0x=y
(iii) d,p, (x, v) = d,, (v, x) since d(x,y) = d(y, x)
(iv) Foranyx,y, z € X we have
dm(x,y) =md(x,y) <m(d(x,z) +d(z,y))
dn(x,y) <md(x,z) + md(z,y)
dyp(x,y) <d,(x,2) +d,(z,y)
Hence d,,,(.,.) is a metric space. This metric is called dilation metric.
Remark

The choice of m being a natural number has no specific advantage. However for
m > 1, a ‘dilation’ and for 0 < m < 1, a ‘contraction’ of distance occurs.
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Example-19: Show that d(x, y)—, ad - y ] is a metric on
|1+«J1+x 1+ 1+y2|

reafl line R.
Solution: M.} Since the modulus of the difference of any real numbers

is always nonnegative, so

| x v se
dixy}_|1+1f‘l+x 1+-J1+y '

| y
Mel d(x,y]—0<:>]1+m 1+ 1+y |_D

y
<> =0
1+v’1+x 1+J1+y

o - = 14

1T+414+x%7 141+ 42
Since the left hand side and the right hand side of last expression are
identical which is only possible if x = y, so

d{x,y)=0
S X=y
M.'!l d(xry:’: X — 4 l: — 4 —_ X
1+ 41+ x2 1+J1+y2| 1+,f‘l+y2 1+ V14 X5
y X
= e = dly,
1+~J1+y2 1+ V14 %2 )
My dixz)=|—% %
4 1+¥1+x* 144142
lx _ _y .y z
1eVIe 2 1afley? degley? 144142
< 2 - + 4 - -
1ed1e X Aaqiey?| [1eftey? 164142
=d(x,z)<d(x,y)+d(y,2)

Hence d is a metric on real line R.
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Problem
Does d (x,y) = (x — y)? define a metric on the set of all real numbers?
Or

Show that d: R X R — R is not a metric, where R is the set of real numbers and d
is defined by d(x,y) = (x—y)?

Solution  Define ametricd (x,y) = (x —y)? for X=R

(M1) Obviously (x—y)?2=d(x,y)=0;Vx,y€X

(M2) Letd(x,y) =(x—y)?=0ox—y=0Sx=y

Thus d(x,y) =0ifandonlyifx =y

(M3) d(x,y) = (x —¥)* = (y —x)* =d(y,x)

Thus d(x,y) =d(y,x) ;Vx,y €X

(M4) Suppose triangular inequality holds in Vx,y,z € X = R then
d(x,z) <d(x,y) +d(v,z) = (x —2)> < (x —y)* + (y — 2)*
(0-2)2<(0-1)*+(1-2)2 v x,v,Z€ER ~0,1,2€R
4<2

This is not true, so triangular inequality not holds. Hence d is not a metric on R

Problem  Prove General Triangular inequality.

Solution  We will prove it by using mathematical inducation.

Forn =3 d(x;,x3) <d(xq,x,)+d(x,,x3) inductionistrue. ....... (1)
Suppose forn = k d(xy, x,) < d(xq,x5) +d(xy,x3) + -+ d(xp_1, Xx)
Supposeforn =k +1  d(xy, xp41) < d(xq,x5) + d(xp, Xje41)

= d(xy, Xp41) < d(xy,x2) +d(xg,x3) + -+ + d(xp—1, %) + d (g, Xge41) Using 1
= d(xg, x,) < d(xg,x1) +d(xq,x5) + -+ d(x,,_1,x,) proved
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Problem  Discrete Space is infact a metric space.

Let X be a non —empty set. Define a function d: R X R — R by

1 ; . .
d(x,y) = {0 i i ;’ Vx,y € X then show that d is a metric on X.
) . . 1 ;
Solution  Define a metric d(x,y) = {0 ;C j z Vx,y € X

(M2) d(x,y) = 0ifand only if x = y
(M3) d(x,y) = d(y,x);Vx,y € X

(M4) fx=y,y=2zx=2zVx,y,z€ Xthend(x,y) =d(x, z) =d(z,y) =0
then d(x,z)=0=04+0=d(x,y)+d(y,2)

d(x,z) = d(x,y) + d(y,2)

Ifx+y,y#z,x+zVx,y,z€ Xthend(x,y) =d(x, z) =d(z,y) = 1then
d(x,z) =1<1+1=d(x,y)+d(y,z) implies d(x,z) <d(x,y) + d(y,2)

Thus d(x,z) <d(x,y)+d(y,2)

Hence d is a metric on X and (X,d) is called discrete or trivial metric space.

Question

If (X, d) is a metric space then show that |d(x,a) — d(y,b)| < d(x,y) + d(a, b).

Solution  Suppose that d(x,a) <d(x,y)+d(y,b) +d(b,a)

=>d(x,a) —d(y,b) <d(x,y) +d(a,b) ......... (1) since d metric space
Also d(y,b) <d(y,x) +d(x,a) + d(a,b)

= d(y,b) —d(x,a) < d(x,y) +d(a,b)

= —[d(x,a) —d(y,b)] <d(x,y) +d(a,b)  ......... (2) since d metric space
Combining (1) and (2) |d(x,a) —d(y,b)| < d(x,y) + d(a,b).
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Question

If (X, d) is a metric space then show that |d(x,z) — d(y,z)| = d(x,y).
Solution  Since d metric space therefore by triangular inequality

d(x,z) <d(x,y) +d(y,z) =2d(x,z) —d(y,z) <d(x,y) ......... (1)

Also d(y,z) <d(y,x)+d(x,z) > —d(x,y) <d(x,z) —d(y,z) ......... ()
Combining (1) and (2) = —d(x,y) <d(x,z) —d(y,z) <d(x,z)

= |d(x,z) — d(y,2)| = d(x,y)

. ) ) _ 2dxy) .
Question If (X, d) is a metric space then show that d(x,y) = Tezdtes) isalso a
metric on X.
. . . _ 2d(xy)
Solution  Define a metric d(x,y) = -~ i)
(M1) Obviously 2d6y) d(x,y) =20;Vx,y € X
1+2d(x,y) TS
_2dxy)
(M2) Let d(x,y) = Tzdiey) -
©2dxy)=0dxy)=0ox=y
Thus d(x,y) =0ifandonlyifx =y
_ 2d(xy) _ 2d@ax)  _
(M3) d(x’ y) T 1+2 d(x,y) T 1+2 d(y,x) o d(y' x)
Thus d(x,y) =d(y,x) ;Vx,y €X
_2dxy) 2 [d(x,z)+d(z,y)]
(M4) Let d(x’ y) T 1+42d(xy) = 1+2 [d(x,2)+d(z,y)]
2d(x,2) 2d(zy)
d(x,y) < 142 [d(x,2)+d(z,y)]  1+2[d(x,2)+d(z,y)]
2d(xz) 2d(y.z)
d(x’ y) = 1+2 d(x,z) 1+2d(y,z)
Thus d(x,y) <d(x, z) +d(z,y) Henced is a usual metric on X.
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Question  Show that d(x, y) = y' -forall x,y € R is a metric on R.
) . . _ lx=yl

Solution  Define a metric d(x,y) = Tt
(M1) Obviously |x—y| =0 = 1'+’“| = d(x,y) = 0
(M2) Let d(x,y) = 1+|x yI =0 |x—yl=0

©x—y=0ex=y Thus d(x,y)=0ifandonlyifx =y

o x=yl  fy=x| _
(M3) d(x,y) = Ty = il d(y,x) Thus d(x,y)=d(y x)
_ x=yl _ Ix—z+z-y| |x—z|+|z—y|
(M4) Let d(x y) 1+|x—y|  1+|x—z+z—y| = 1+|x—z|+|z-y]|
_x=yl |x—z| |z—y|
d(x' y) - 1+|x—y| = 1+|x—z|+|z-y]| t 1+|x—z|+|z-y|
_ lx=yl |x—z| |z—y]

d(x' y) T 1+|x—y| = 1+|x—z| t 1+|z—y|
Thus d(x,y) <d(x, z) +d(z,y) Henced is a usual metric on R.
Question
If (X,d) is a metric space then show that d(x,y) = % IS not a metric on X.

. - - _ 1- d(x:Y)
Solution  Define a metric d(x,y) = T dtey)
. 1-d(xy) _

(Ml) ObVIOUSly m = d(x, y) >0
(M2) Let d(x,y) = %ﬁ’“” 01— dxy)=0=dxy) =1

Butd(x,y) =0

_1-dxy) . ]
Hence d(x,y) = ity is not a metric on X.
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Question Ifx = (&,&,,...,&,) € R™ then show that

d(e,y) =Xl& —mil =V (& =12+ & —n)2 + -+ (& —np)?  isa
metric on R".

Solution  Define a metric d(x,y) = > ;1& —n;| for X = R"
(M1) Obviously  |§; —n;| = 0= XiL,1& —mil =d(x,y) =0;Vx,y €X
(M2) Letd(x,y) =XLl&—mil =0 =nox=y

Thus d(x,y) =0ifandonlyifx =y

(M3) d(x,y) = Xicil& —mil = Xizqm — &l = d(y, x)
Thus d(x,y) =d(y,x) ;Vx,y €X

(M4) Letd(x,y) = Xiqlé —mil = Xizal&i —vi +vi — il
d(x,y) = Xisalé — il < Xisql& —vil + Xisalye — mil

Thus d(x,y) <d(x, z) +d(z y) Hence d is a metric on R"

Question

Let d(x,y) = max(|x|, |y|) forall x,y € R then show that it is not a metric on R.
Solution  Define a metric d(x,y) = max(|x|, |y|) for X =R
(M1) Obviously max(|x|,|y]) =d(x,y) =0
(M2) Letd(x,y) = max(|x|,|y]) =0 x=0y=0x=y
Butif x =1,y = 1 then max(|x|,|y]) =1
A contradiction to d(x,y) = max(|x|,|y]) =0

Thus d is not a metric on R.
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Problem:

Let X be a non empty set and d: X x X - R* be a metric space on X. then
d':X x X > R* defined by d'(x,y) = min(1,d(x,y)) is a metric space.

Solution

Define a metric d'(x, y) = min(1,d(x, y)) for X.

(M1) Obviously  d'(x,y) = min(1,d(x,¥)) =0 =~ 1=0andd(x,y) =0
(M2) Letd'(x,y) =0 & min(l,d(x, y)) =0edx,y)=0=x=y
(M3)d'(x,y) = min(l,d(x, y)) = min(l,d(y, x)) =d'(y,x)

Thus d(x,y) =d(y,x) ;Vx,y € X

(M4) Letd'(x,z) = min(1,d(x,z)) then

d'(x,z) <1 or d'(x,z) <d(x,z)

We want to show that d'(x,z) < d'(x,y) + d'(y, 2)

For this consider d(x,z) 2 1,d(x,y) =1,d(y,z) = 1

Then d'(x,z) =1,d'(x,y) =1,d'(y,z) = 1

=>d'(x,z) <d (x,y) +d'(y,2) v1<1+1

Again consider d(x,z) < 1,d(x,y) <1,d(y,z) <1

Then d'(x,z) =d(x,z),d (x,y) = d(x,y),d (y,z) = d(y, z)

Then d(x,z) <d(x,y) +d(y,2) ~ d is metric on X
=>d'(x,z) <d(x,y) +d'(y,2)

Hence proved d'(x,y) = min(1,d(x,y)) is a metric on X.
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Question
If (X, d) is a metric space then show that d'(x,y) = % Is also a metric on X.
- - H ! - d(x,y)
Solution  Define a metric d'(x,y) = ity
H d(x,y) _ ! .
(Ml) ObVIOUSly m =d (X, y) >0; Vx,y € X
! — d(xJ/) —
(M2) Let d'(x,y) = ity =
cdx,y)=0=x=y
Thus d'(x,y)=0ifandonlyifx =y
! - d(x,y) — d(y,X) — !
(M3) d(xy) = 1+d(xy)  1+d(vx) 4(,x)
Thus d'(x,y) =d'(y,x) ;Vx,y€X
(M4) Since d is metric on X therefore d(x,y) < d(x, z) + d(z,y)
/ _ _adxy) d(x,z)+d(zy)
Let d (X, Y) T 1+d(x,y) = 1+ [d(x,2)+d(z,y)]
d’(x, y) < d(x,z) d(z,y)

1+ [d(x,2)+d(z,y)] 1+ [d(x,2)+d(z,y)]

d(x,z) a(y.z)
1+d(x,z) 1+d(y,z)

d'(x,y) <

Thus d'(x,y) <d'(x,z) +d'(z,y) Henced’isausual metric on X.
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Example

Solution

(M1)

(M2)

17

Show that d(x,y) = /d;(x;,¥1)% + d, (x5, y,)? is a metric.

Define a metric d(x,y) = /d;(x1, ¥1)? + dy(x2, v,)?
The sum of two real valued, finite and non negative functions is non

negative and real. = d(x,y) =0

dix,y) =0 \/d1(x1»}’1)2 +d,(x3,¥,)2 =0

A d1(x1:ZV1)2 + dz(xz,)’z)z =0e d1(x1;)’1)2 = dz(xz')’z)z =0

edixp,y)=00x =y, and & d(x,y,) =0 x, =y, @x =y

(M3)

(M4)

d(x,y) = di(x1, y1)? + dy(x,y2)?

d(x,y) = di(y1, %)% + dy (72, %2)% = d(y, %)
Let x = (X, y1),y = (x2,¥2), 2 = (x3,¥3)
d(xq,y1) < d(xq,2z) +d(zy,y71)

d(x,,y,) < d(x,,2,) +d(z,,y,)

Squaring above both

d1(x1»Y1)2 < d1(x1;Z1)2 + d1(Z1;y1)2 + 2d41(x1,21)d1(21,y1)

dz(xz»}’z)z < dz(xz»zz)z + dz(zz;yz)z + 2d,(x3,23)d, (23, ¥2)

Adding above both

d(x,y)z < d(x,Z)z + d(Z,y)Z + 22?:1 d](X],Z])dJ(Z],y])

d(X, }I)Z < d(X, Z)2 + d(Z, y)z + 2\/Z?=1 dj(Xj,Zj)Z \/2?21 dj(Zj,yj)Z Schawarz

d(x,y)? <d(x,2)? +d(z,y)* + 2d(x,2)d(z,y) = [d(x,2)? + d(z,v)?]?

=>d(x,y) <d(x,z) +d(z,y)
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18

Define a metric d(x,y) = d,(x1,y,1) + dy(x5,¥5)

The sum of two real valued, finite and non negative functions is non
negative and real. = d(x,y) =0

d(x,y) =0 dy(x,y1) +dy(x2,¥,) =0

& dy(x1,y1) = dy(x2,¥,) =0

odi(x,y))=0x;, =y, and © d,(x5,7,) =0 x, =y,
Sx=y

d(x,y) = dy(x1,y1) + dz(x2,¥7)

d(x,y) = di(y1, 1) + d2(y2, x2) = d(y, %)

Let x = (x1,¥1),y = (x2,¥2), 2 = (x3,¥3)

d(xy,y1) < d(xq,2z) +d(zy,y71)

d(x,,v,) < d(xy,2,) +d(z,,y5)

d(x,y) = dy(x1,31) + da(x2,¥2)

d(x,y) <d(xy,z1) +d(z1,y1) +di(x1,y1) +dy (x5, ¥,)
=>d(x,y) <d(x,z)+d(zy)
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Example
Show that d(x,y) = max[d;(xq, Y1), d2(x5,y,)] IS a metric.
Solution
Define a metric d(x,y) = max[d,(x1,y1),d, (x5, y,)]
(M1) The maximum of two real valued, finite and non negative functions is
non negativeandreal. = d(x,y) =0
(M2) d(x,y) = 0 © max[d,(x1,y1),d2(x2,¥2)] = 0
& dy(xg,y1) = da(x2,¥,) = 0
Sdi(x,y) =0 x, =y, and ©d,(x,,y,) =05 x, =y,
X =Yy
(M3) d(x,y) = max[d;(x1,y1), d2(x2,¥,)]
d(x,y) = max[d,(y1,x1), dy (2, x2)] = d(y, x)
(M4) Let x = (x1,31),y = (x2,¥2), 2 = (x3,¥3)

d(xy,y1) < d(xy,21) +d(z1, 1)
d(xz, ;) < d(x3,2,) + d(23,7,)
max[d; (1, y1), d2 (x2, ¥2)]
< max[{d(xy, 2,) + d(21,y1)}{d (%2, 22) + d(22,¥2)}]
max[d (x1, y1), d2 (x2, ¥2)]
< max[d(x;, z1), d (%, 22)] + max[d(zy, y1), d(25,¥5)]
= d(x,y) < d(x,2) + d(z,y)
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Sequence Space s.

This space consists of the set of all (bounded or unbounded) sequences of complex
numbers and the metric d defined by

_ v 1§yl _ oz o

d(x,y) = Zi=1zj rpar— Where x = (&) and y = (7).
Solution  Define a metric d(x,y) = %2, — £=n)

,}/) _Zj:12j1+|€'_77'|

] ]
o 1 |&—nj
(M1) |€j_77j|20$2j=1§%20$d(3€,y>ZO;VX,yEX
[e'e) 1 E'_ j

M2) Ay = IR, s Al — 0 g —ny| = 0

=120 14|¢j-n)

e E)=(n)ex=y

v 15l e 1 mimEl
(M3) d(x;Y) - Zj:l 2] 1+|E]_77]| - Zj=1 2j 1+|n]_€]| - d(ylx)
. t rren 1
(M4) Define f(t) = ;then ') = L >0
= f is monotonically increasing ~t; <t, = f(t;) < f(t,)

Hence using the result |a + b| < |a| + |b|

jatbl _ _lal+Ib]
1+|a+b| = 1+|al+|b|

= f(la+ b)) < f(la| + [b]) =

jatbl _ __lal 1b| jatbl _ _lal__ _Ibl
1+|a+b| = 1+|a|+[b| = 1+|al+]|b] 1+|la+b| = 1+|al = 1+|b]

Sl o _[Eieil lej—njl

Usinga=¢; —e;andb =e; —n; = <
ga=s-¢ T g T Tl T Tlesm)]

1 |§-njl 1 [§-el 1 |ej-nyl

2 1+[g-nj| T 20 1+[§—ej| * 2J 1+]ej—nj]

Il i 1+|g ;| = SIEE 2 4|g ey T AT 2  14]ejn)

y 1M<Zoo 1 [§—ej g0 1 lej—nj]

= d(x,y) <d(x,z) + d(z,y) = d is metric on given Space.
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Question

. 1 pa— . . .
For a sequence space ‘s’ d(x,y) < X724 5% defines a metric on the
J=j

sequence s. show tha we can obtain another metric by replacing 2—1] with u/ > 0

such that 3172 u’ converges.

. . w . j 1§l

= L J 2L

Solution  Define d(x,y) = X2 u EAT—
w i 15l
. — 1 ? ] .
(M1) 6=l 2 0= B w S5 2 0=d(xy) 205V y €X
R 1) j |E'_77'| _ —

M2 dGy) = I =0 g | =0

e E)=(n)ex=y

w i |§-nl w i In=§l
—yo o BT g0 o TSI
(M3) d(x;Y) Z}:lu 1+|€]_n1| Z}:lu 1+|n]_€]| d(ylx)
. t rpey 1
(M4) Define f(t) = Ethen ') = L >0
= f is monotonically increasing ~t; <t, = f(t;) < f(t,)

Hence using the result |a + b| < |a| + |b|

latbl _ _lal+Ib]
1+|a+b| = 1+|al+|b|

= f(la+b]) < f(la| + b)) =

latbl _ _ lal |B| latb| _ _lal |b|
1+|a+b| = 1+|al+|b| = 1+|al|+|b] 1+|la+b| = 1+4|al  1+|b|

Sl o _[Ei=eil lej—njl
1+|&-nj| T 1+[§—ej| T 1+|ej-myl

Usinga=¢;—ejandb =¢; —n; =

j &=l i Si-ei] j _lej=nil

Su <
1+|&j-n] 1+[¢j—ej] 1+|ej-nj|

i |E]'_77j| oo  1€i=e)l I i lej=myl
2j=1 1+[¢j-mj] 2j=1 1+|¢j-ej] 2j=1 1+|ej—n;j

= d(x,y) <d(x,z) + d(z,y) = d is metric on given Space.
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Space B(A) of bounded functions

Consider the space B(A) of all function defined and bounded on a given set A,
and the metric d is defined by d(x,y) = supiea |x(t) — y(t)| then show that
given space is a metric space.

Solution  Define a metric d(x,y) = sup;e, |x(t) — y(t)|

(M1) [x() = y(©)] = 0 = supieq |x(t) —y(@©)] =20 =d(x,y) =0

(M2) d(x,y) = supeea [x(@) —y (O] =0 e |[x(@) -y =0
Sx@) -y =0ex@®)=y(t)eox=y

(M3) d(x,y) = supeea |x(@) —y(@®)| = supea ly(@) —x(@®)| = d(y,x)

(M4) Let x,y,z € B(A) then

Ix(®) =y = |x(t) — z(t) + z(t) — y(0)|
= [x(@) =y < [x(©) = z(O] + |z(t) — y(®)]

= suprealx(t) — y(O)| < suprealx(t) — z(O)| + suprealz(t) — y(0)|
=>d(x,y) <dXx,z)+d(zy)

= d is metric on given Space.
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Function Space C[a, b]

This space is a set of all real — valued continuous functions X, y, ... which are
functions of an independent real variable t and are defined and continuous on a
given closed interval J =[a, b]. Show that this space is a metric space with
defined metric d(x,y) = max.¢;|x(t) — y(t)|

Solution  Define a metric d(x,y) = max.;|x(t) — y(t)|

(M1) |x(®) = y()| 2 0 = maxie; [x(t) —y(©)] 2 0= d(x,y) 20

(M2) d(x,y) = maxees |x(t) —y()| =0 [x() —y(®)| =0
Sx@) -y =0ex@®)=y(t)ox=y

(M3) d(x,y) = maxee; [x(t) — y(O)| = maxee; ly(t) — x(t)| = d(y, x)

(M4) Let x,y,z € C[a, b] then

[x(t) =y (O] = [x() — z(t) + z(t) — y(0)
= [x(@©) =y (O] < [x(©) — z(O] + |z(¢) — y(®)]

= maxee;|x(t) — y(O)| < maxee;|x () — z(O] + max,e;|2(t) — y (0|
= d(x,y) <d(x,z) +d(z,y) = d is metric on given Space.

This metric d is called the sup metric/ max metirc on CJa, b], where CJ[a, b] be
the set of all real-valued continuous functions over [a, b].

In example, the so called supmetric or uniform metric geometrically presents
maximum pointwise separation between two continuous functions f and g defined
over [a, b].

h
A
N3
)

-
&

2]

i

]
/_ f
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Integral Metric Define d on C[a,b] by d(x,y) = f:lx(t) — y(t)| dt then show
that d is metric on given Space.

Solution  Define a metric d(x,y) = f(flx(t) —y()|dt Vt€[a,b]l,a<b

(M1) x(t) =y 2 0= [|x(t) — y(©)|dt = 0 = d(x,y) 2 0

(M2)  dxy) = [ lx(®) —y©®ldt =0 & |x(t) —y(®)| =0
ox(t)—yt) =0 x(t)=y(t) ®@x=y Vte€E|a,b]

(M3) d(x,y) = [L1x(t) —y(®l dt = [ ly(®) — x| dt = d(y,x)
(M4)  Letx,y,z € C[a b] then |x(t) — y(®)| = |x(t) — z(t) + z(t) — y(©)|

= () — y(©)] < 1x(0) — 2(D)] + |2(E) — y(©)|
b b b
= j X(0) — y(D)] dt < f (D) — 2(0)] dt + j 12(6) — y(©)] dt

= d(x,y) <d(x,z) +d(z,y) = d is metric on given Space.

Pseudometric Let X be a non-empty set. A function d: X x X - R* is said to
be pseudometric if and only if

. dl,x)=0;VxeX
. d(x,y)=d(y,x) ;Vx,y e X (Symmetry)
. d(x,y) <d(x, z)+d(z,y) (Triangle Inequality).

Or

A pseudometric satisfies all axioms of a metric except d(x,x) = 0 may not imply
X =y but x =y implies d(x,x) = 0.

Example: d(x,y) = |x; — y;| is a pseudometric on R?,
Withx = (2,3),y=(2,5) =>d(x,y)=1|2—-2|=0butx =y

Note: Every metric is a Pseudometric, but pseudometric is not metric.
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Question
Find all metrices on a set X consisting of two points, consisting of one point.
Solution
For two points (say) x,y € X
(M1) Obviously d(x,y) =0;Vx,y €X
(M2)d(x,y) =0ifandonly if x =y
(M3) d(x,y) =d(y,x);Vx,y €X
(M4) This point is the consequence of (M1) to (M3).
Thus any two points of X, satisfying (M1) to (M3) is a metric on X.
If X has only one point then (M3) to (M4) are trivial. i.e.

d(x,y) = d(x,x) = 0. Thus any non — negative function is a metric on X.
Question
Let d be a metric on X, determine all constants ‘k’ such that

I. kd ii. k+d
Metric on X.
Solution

If X has more than one point then zero function is not metric, this implies k # 0.
Hence generally show that for any positive real number k, lead to kd being a
metric on X. i.e.

Let d be a metric on X then

I. Fork >0
(M1) Obviously kd(x,y) =20;Vx,y € X sinced(x,y) =0
(M2) kd(x,y) =0 d(x,y)=0=x=y
(M3) kd(x,y) = kd(y,x);Vx,y € X since d is metric.
(M4) Since d is metric for all x,y,z € X then
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d(x,z) <d(x,y) +d(y,2)
kd(x,z) < kd(x,y) + kd(y, 2)
Hence kd is a metric for all k > 0 on X.

Fork <0
Obviously kd(x,y) <0;Vx,y € X sinced(x,y) =0

Hence kd is not a metric for all k < 0 on X.

i. To find all constant k such that k + d is a metric.
Fork >0
(M1) Obviously k +d(x,y) >0;Vx,y € X sinced(x,y) =0
(M2)ifx=yed(x,y)=0butk+d(x,y) #0fork >0

Hence k + d is not a metric for all kK > 0 on X.
Fork <O

Since d(x,y) = 0 but we may not sure about k + d(x,y) be non — negative for
k < 0. Hence k + d is not a metric for all k < 0 on X.

Fork=0

k + d is a metric because actually k + d = d and d is a metric on X.
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P Space
Let p > 1 be a fixed real number. Then the space of all sequences
x = (Ej)io = (&, &,,...) of numbers such that2f|fj|p = &P + |&,P + -+

converges is called the [P space. i.e. [P = {x = (Ej)f:2ﬁ1|§j|p < oo}

: . i - p\1/P
The metric d defined on [P spaceis d(x,y) = (X524]&; —n;])

Where x = (Ej)zo,y = (le)io and $241/¢;]" < o0, 2524[m;]” < co.

Remember: In Mathematics [P spaces are function spaces define using a natural
generalization of the p — norm for finite dimensional vector spaces. They are
sometime called Lebesgue Space named after Henry Lebesgue.

Real and Complex IP Space

If we take only real sequences ¢, (satisfying Z‘]?°:1|f j|p < ), we get the real
I? space, and if we take complex sequences ¢;,¢ (satisfying Z;?°=1|E j|p < ),

we get the complex IP space.

I? Space/ Hilbert Sequence Space

Let p = 2 be a fixed real number. Then the space of all sequences such that
X = (5]-);0 = (&,&,, ...) of numbers such '[hatZ‘;°|E]-|2 converges is called the 12

space.ie. %= {x = (Ej):o:z;f"=1|€j|2 < oo}
a\1/2
The metric d defined on [? space is d(x,y) = (2‘]?';1|§j -7 )

Where x = (fj)io,y = (T]j)io and Z(}i1|€j|2 < OO,Z;O=1|771'|2 < .

This space was introduced and studied by D. Hilbert (1912) in connection with
integral equations and is the earliest example of what is now called a Hilbert space.
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Example

0 . 1/
Show that [P = {x = (), 22qE] < oo} with d(x,y) = (Z324]¢; = n,]") ’
IS @ metric space.

Where x = (§,).,y = (n;), and Z2,]&[° < 00, 5524 n;]" < 0.

Solution  Define a metric d(x,y) = (724]¢; — r;j|p)1/p

M) |-y 2 0= (E2E -m) T 20 dey) 2 0;v;

M) deoy) = (E2lg -n") T =0 g -l =0
e@)=()Vviex=y

M) deoy) = (E2g -0l = (Sl - &) = a0

(M4) Let x,y,z € [P then

d(x,y) = (X240 — 77j|p)1/p = (X724l —¢ +e - ’71|p)1/p

d(x,y) = (X240 — 77j|p)1/p < (B4l — o) + (B5ales - ’Ij|p)1/p

= d(x,y) <d(x,z) +d(z,y) = d is metric on given Space.
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Example

(e 0] - /
show that 12 = {x = (£,)7: 2524]¢|” < oo} with d(x,) = (E24]¢; —n,-lz)1 2

IS a metric space on X = R™.
Where x = (§,).,y = (n;), and 2085 < o0, B2alny|” < oo

Solution  Define a metric d(x,y) = (Z;?‘;1|€j — 77]-|2)1/2
1/2
M) g -z 0= (BRlg-nlY) T 20=d@y) 205y

/
M2) ey = (g -ml?) =0 g -ml=0

eE)=(n)viex=y

1/

M3 deoy) = (SRals -nl) = (S - 6F) = dow

(M4) Let x,y,z € 12 then

1/2

d(x,y) = (Zﬁ1|fj ~ 771‘|2)1/2 = (Z}’-"=1|E,- —e e — ’71|2)

d(x,y) = (27 - 771'|2)1/2 < (Zale — el ) + (Zale —nil")

= d(x,y) <d(x,z) +d(z,y) = d is metric on given Space.

1/2
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Example

Let [* denote the set of all sequences x = (Ej)zo in R where Y52, |¢;| converges.

0o
1

Define d: ' x I* > R by d(x,y) = $52,¢; —nj| forallx = (&) ,y = (1),
then show that d is a metric space on 1 .

Where x = (§;).",y = (1), and Y& < 0, 220" < .

Solution  Define a metric d(x,y) = ¥72,|¢; — n;]

(M1)

(M2)

(M3)

(M4)

& —n;|=0= Z;O=1|€j —nj|=0=d(xy)=0;V)
d(x,y) = X8 —nl =0 [§—n =0
eG)=(n) viex=y
d(x,y) = X524|& —nj| = ZjZaln; — & = d(, %)
Let x,y,z € [* then

d(x,y) = L2408 =i = Zi24lE5 — ¢ + e

dCx,y) = X518 —nj| S Tj2alé — | + Zi2ale; — nj

= d(x,y) <d(x,z) +d(z,y) = d is metric on given Space.
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Example
Let 1 = {x = (&;): Sup,|¢;| < oo}. Define d(x,y) = Sup;|&; — n;| for all
x = (&), .y = (n;), then show that d is a metric space on [
Solution  Define a metric d(x,y) = ¥724|¢; — n;|
(M1) 1€, —nj| = 0= Sup;|¢; —nj| = 0=d(x,y) = 0;Vj
(M2) d(x,y) = Sup;|¢; —n;| =0 |¢—n;| =0
cE)=(m)viex=y
(M3) d(x,y) = Sup;|¢; —ny| = Supj|n; — & = A, x)
(M4) Let x = (¢;),y = (n;).z= (%)
& =il =18 =4+ 4 =y <[5 - 4]+ 4 —ny
= Sup;|§; —n;| < Sup;|§; — 4| + Sup;{n; — 4|
=>d(x,y) <d(x,z)+d(zy)
= Sup;|¢; — n;| satisfy (M4) for [*.
Question

If A is a subspace of [* consisting of all sequences of zeros and ones. What is
induced metric on A?

Answer

For any distinct x, y € A we have d(x,y) = 1 because there are sequences of zeros
and ones, also d(x,y) = 0 which are not distinct. Thus induced metric on A is
discrete metric.

Conjugate Index

Let p be a real number (p > 1). A real number q is said to be conjugate index of
. 1 1 . . 1 1 .
p if 5+3_ l.ieifp = 2then5+;— 1 gives q = 2.
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Auxiliary Inequality

Let «, 8 be any positive real numbers. And let p > 1 define g such that 1 + 1 =1

ﬁq

p and q are then called conjugate exponents then prove that o< 8 <= + o

Proof:Wehave%+$=1thenp+q=pqsothat1+%=qthen

A-pA-@=12F-D@-D=1=-"=q-1

Consider the functionu =t?~1 ;0 <t < o

1
S>t=ur-1=t=yd!

Consider the following figure

u = P w = P!
s >/ B />/
f © T f —@ﬁ/
00 ﬂ ‘ 1 o 00 o

[ I —t

Let < and S be any positive numbers. Since « f is the area of the rectangle in
Figure, we thus obtain by integration the inequality

B

° 2w f P B 04
B < jtl’ 1dt+juq ldu = |—| +|— =(___) <___)
Pl qly p P q 9
0 0
ocP q
xXf<—+ ’8—
p q
L1 % B
We may use another form as P ﬁqg;+;
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Question

. 14 q .- . .
Using < 8 < % + % (Auxiliary Inequality) show that geometric mean does not

exceed arithmetic mean.
. p q
Solution: We have < § < % + %then choosep =q=25s0 % = é = %then

ﬁz

2
:ocﬁSoc?+7=>20c,8Socz+ﬁ2=>20<ﬁ+20c,8§oc2+,82+20c,8

<+

2
>4 f (x4 vxf<(5F) =B <7

>GM<AM

Some people are afraid
of heights.

Not me,

I'm afraid of widths.

Steven Wright
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The Holder Inequality

Let x = (Ej)io EP,y= (nj)zo € 19 wherep > 1 and%+$ = 1 then prove that

Yi2a|Emi] < CRealéel PP Eomzilm| D4

This inequality was given by O. Holder (1889).

Proof:

Let x = (E_j)io €lP,y= (ﬁj)io € 19 such that Zj?°21|f_j|p =1and Zj?":1|r7j|q =1,
and if we let |¢;| =oc and |77;| = B then by auxiliary inequality

P _q
Yz 1|SCJ| Zj=1|77j|
q

LT

OC:B<_+ = 5|7 < 5 T

= X724 [¢m;] <
= N4 |§] < %+% =1=3%,E7;] <1 (1)

Letx = (&) € P,y = (7;)" € 1% then define x = (&,)” € 7,y = (#;)] € 19
3 .
m and 7, = (T 1|'7 |9)1/a then Z} 1|'>;]| = 1and

= 1 then applying (1) to both (¢ ]) and (9 ]) we get

such that fj =
ZOO
Zﬁ1|$jﬁj| =1

¢j y nj
(522, 1&6P) P T Cpealnml D

oo © 1/p o 1/q
D E (ka) (Z |nm|q)
j=1 k=1 m=1

<1
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The Minkowski Inequality
Letx = (fj)zo,y = (nj)zo € [P where p > 1 then prove that
o 1/p o 1 o 1
(Bl + i) < CRaléelP)? + Srealnm PP
For finite sums this inequality was given by H. Minkowski (1896).

Proof:

Let p = 1 then given inequality is trivially true, since |€j + 77,-| < |Ej| + |77j|
therefore 352, |&; + 1j| < iz &kl + Ximealniml

If p > 1 then suppose that w; = ¢; + n; then

P ={w | = willw T = 1 gl < g w P gl w

|Wj
-1 -1
wil” < & wi " + [mj] [y
;l=1|Wj|p < Z7=1|E]||W]|p_1 + Z;l=1|7’]]||W]|p_1 ............... (1)

Where ‘n’ 1s fixed arbitrarily

Now consider I = 3™, |¢;||w;|” ™" then obviously (&), er

We claim that (|wj|p_1) € 19, to see this we consider
1

14 (p-1)
Bl ) = T[T = S <0 e ieien
p—1\®
Then by Holder’s Inequality we get
1
- 1 - P
gl w” T < Crolad?ye ( n ] 1)")" ............... )
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Similarly

1

- 1 - -
w7 S Gt PP (Sialwy] )T e 3)
Putting (2),(3) in (1)
p n e (-Da\a n = (vn (r-1a\a
" lwil” < CrolgdP) (Balwil TP+ Ea P (S fwi| )
1

nlwyl” < | Rl + Sl PP | (i |7

1

o wi|? < [(ERosl€elP)P + sl PP | (B |wy|7)?

(Z?=1|Wj|p)1_a =< (ZLllfklp)% + (an=1lnmlp)%

2 1 1

o wi* )P < Eroal&elP)? + ChylnmlP)?
Py 1 1
1imyy o0 (E 1 [ W] )P < im0 (BRoq 165 PP + 1My oo (B [11[P)P

(Z;’illelp); = (2120:1|fk|p)% + (Z%:1|nm|P)%

/p
<

1 1 1
DI+l (Ewkv’) . (2 mmv’)
j=1 k=1 m=1

Cauchy — Schwarz Inequality from the Holder Inequality

Let x = (fj)io €lP,y= (nj)io € 19 where p = 2,q = 2 then
YZalEmi] < Gzl DY Emzilnml Y2

or  (Z2|Emi]) < Zealéel? Smalnm?
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Question

By using Cauchy — Schwarz Inequality show that

(& + &+ -+ &D? <n(&12 + 1861 + -+ [6a1°)

Solution

By Cauchy — Schwarz Inequality we have

M| < Ceel&D Y2 (RS 1)

Forn; = 1

224185 1] < (Cial&l D Y2 (il 112)1/2
2241&] < Crealél 2 (Tina, D2
(B2 < CRal&lDA+ 1+ +1)
(E2406D)? < Crléd® ()
T8 < CraadHm

2] < nEialad®

(& + &+ -+ &D? <n(&12 + 18617+ + [6,1°)

Hence proved.

37
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Example-23: Let X be a set of alf 2x2 matrices. If for any A = [E EE]
8y ay

4 n=1

b 4 '
B:[ ' ?]E}f, d{A.B)=_1%(a, -b_,,Jz , then show that d is a metric

on X,
Solution: M, d{A,B)= Z{a,, L 20

=1

.%deﬁhﬂﬂJZﬁ;
n=1

& (8, =0, +(2 ~ b, + (3, - by + (8, - by =0
e>(a - b ) +(a, - b)) +{a; - by P +(a, -0, =0
‘ﬂ{ai_b1)2=ﬂ-{az_b2}2={):{53—b3)2=u,{a4—b¢}z=u
=a-b=0a-b5=03a-b=03a-b=0
‘551:@-52:’52'-532-{’;+31=ﬂ4
& a| (b b

{:-La EJ_I-ba DJ
<> A=8

M;): d(AB)= \{E{a ~b,f = J

=1

(b—af=mam

E.M““

F -5

M): d(AC) ‘/Z{a -c,F —JZ{E,, b, +b, ¢,

Let x,, = 8n —bp. ¥ = by - ¢, , then the last equation takes the form

Ji{xﬂyn}z

fi=1

d(AC)= (1)

Using Minku_ski's inequality, we have

Ji (X +¥n) < Jan Jn}:yﬁ'

=
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l"\llll.'\luuu- ——_ -

+Zy

‘ S (%, +Ya) | S

Using this in (1), we have ‘
2|+
d(AC) \ Z(x,,+y,, ‘ nZﬂXn

n=1

A
:»d(A,C)s\ i(a,,—b,,)2 +] (by —Cn)

n=t
- d(A,C)<d(AB)+ d(B,C)
This shows that d is a metric on X

For video lectures @ You tube visit “Learning with Usman Hamid”



40

Bounded Metric: A metric d on X is said to be bounded melric on x'u
there exists a positive number M such that d(x,y)<M for every pair of

points x and y of X. In this case, the melric space X is said to be a
bounded space.

If the metric d is not bounded, it is called an unbounded metric and
the metric space is said to be an unbounded space.

The discrete metric is an example of a bounded metric, because
d(x, y)<1 for all pairs of points x and y of dis >rete metric space.

Example-20: If (X,d) is a metric space, and k >0 then show that
kd
dy(xy) = —AXY)

T+kd(xy) Is a bounded metric on X.
. _ kd(x.y)
Solution: M.):d = — X
Solution: M, ):d,(x.y) 17 kd(xy) 20 “k>0d(xy)=0
kd(x.y)
Mt d(xy)=0c ——LL_
2} d{xy) 1+ kd(xy)
<> kd(xy)=0
< dxy)=0 k20
Sx=y - dis ametric
kd(x.y) kd(yx)
M.,)d Xy)= = ETrY i :
3 Fdy(xy) Trkd(xy) T kd(yx) - d is amelric
M, } Since d is a metric on X, so for allxyze X,
d(xz)<d(xy)+d(yz)

= kd(x2)<kd(xy)+kd(y.z) -k >0
= 1+ kd(x,2) <1+ kd(x,y) + kd(y.z)
1 1

= <

T+kd(xy)+ kd(y,z) 1+ kd(x,z)

1 1
= - 5=
T+kd(xz)  1+kd(xy)+ kd(y,z)
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=>1- Sl :
1+ka(x2) 1+ kd(xy)+ kd(y z)
_,_kd(xz) < _kd(xy)+kd(y,z)
1+kd(x2) " 1+kd(xy) +kd(y.2)
_, _kd(x2) 2 kd(X.Y) ,
tekd(x2) "1 ke(xy)+ kdlyz) * Tk
< _kd(xy) ,_kdly.z)
1+kd(xy) 1+kd(y,z)
= di(x,z)<d(x, y)+dy(y,2), Vxyze X -
This shows that 4, is also a metric on X

_kd(xy) 1+k
dyxy)=—24)_ Ttkd(xy)
T+kd(xy) “1+kd(xy) =4 Yoy ex
| = d(xy)<1, VX, ye X
So d, is bounded on X

kd(y,z)
Xy)+kd(y,z)
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Distance between sets

Let (X,d) beametric space and , A,B c X . The distance between A and
B denoted d (4, B) is defined as d(A4,B) = inf{d(a,b):a € A,b € B}
If A = {x }isasingleton subset of X, then d(A4, B) is written as d(x,B) and is
called distance of point x from the set B.

Theorem

If (X, d) is a metric space then show that |d(x,A) — d(y, A)| < d(x,y).
Solution  Let z € A then d(x,z) <d(x,y) +d(y,z)

= infread(x,z) < d(x,y) + infread(y, 2)

=>d(x,A) <d(x,y)+d(yA) =dx,A)—dyA) <d(xy) ... (1)
d(y,z) <d(y,x) +d(x,z)

= infread(y,z) < d(y,x) + infread(x, 2)

=>d(y,4) <d(x,y) +d(x,A) = —(d(x,A) —dy,A)) <dxy) ......... (2)
Combining (1) and (2) |d(x,A) —d(y,A)| < d(x,y).

Diameter of a set

The diameter d(A) of a nonempty set A c X in a metric space (X, d) is defined to
be d(4) = Supyyes d(x,7).

Note: For an empty set ¢ , following convention are adopted

(i) d(p) = —oo Some authors take d(¢) also as 0.

(ii) d(p,p) = o i.e. distance of a point p from empty set is co.

(iii) d(A, @) = oo, where A is any non-empty set.

Bounded Set

Let (X, d) be a metric space and A c X be a non-empty set. ‘A’ is said to be

bounded if diameter of A is finite. i.e. d(4) < o
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Theorem  Show that the union of two bounded sets A and B in a metric space is
a bounded set.

Proof Let (X, d) be a metric space and A, B © X be a non-empty set. We
wish to prove A U B is bounded.

Letx,y € AU B thenclearlyx,y € Aorx,y € B

If x, y € A then since A is bounded therefore d(x,y) < o

And hence d(A U B) = Supyyeaup d(x,y) < o Implies A U B is bounded.
Similarly if x,y € B then A U B is bounded.

Now if x € Aand y € B then

d(x,y) <d(x,a)+d(a,b)+d(b,y) wherea € Aand b € B

Since d(x,a),d(a, b),d(b, y) are finite therefore d(x,y) < . And hence AU B
Is bounded.

Theorem  Show that d(A4) = 0 iff A consists of single point.

Proof For this consider

d(A) =0 Supyyead(x,y) =0 dx,y) =0 x=y€EA {x}=A
Hence d(A) = 0 iff A consists of single point.

Question If AN B # ¢ then d(4, B) = 0. What about converse?

Proof For this consider A N B #+ ¢ and

Letx e AnBthenclearlyx € Aand x € B

Ifx e Aand x € Bthend(x,x) =0 sinced(x,y) =0 x=y

Then Supxea d(x,x) =0=d(4,B) =0

XEB

Conversly suppose that d(4,B) = 0 = Supxea d(x,y) =0
YEB

< d(x,y) = 0 may or may not exists. So converse may or may not exists.
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Example-24: Show with the help of an example that the distance

nonempty disjoint sefs may be zero.
betonn I b PU, 2014 (BS Math); PU, 2003 (M.5c.

i ath]

Solution; Let (R,d) be the metric space.
Let A={n: neNj}, the set of natural numbers

5:1n—1ZHEZﬂEN}
n

Then B has no natural numbers, so AnB =¢ . Now
d(AB)=infld(ab):ac AbeB]

=inf: d(nrn -1ﬂ
~ n

Fiis

=0 =085 N
n

44
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Question  Show that distance does not define a metric on power set of X.

Proof For this consider d(A, B) = infaea d(a, b)
beEB

And X ={1,2,3}alsolet A = {1}, B = {1,2} be subsets of X.

Let d(A,B) = infaea d(a,b) = infaea {d(1,1),d(1,2)} = inf {0,1} =0
bEB bEB

But A # B, M2 fails here. Thys (X,d) is not a metric on X.
Question
Show that x € A iff d(x, A) = 0 here A is non — empty subset of X.
Proof Suppose x € A then x € A or x € A%
If x € Athen inf,c, d(x,y) is obtained at y = x implies d(x,A) = 0

If x € A% then each neighbourhood B, (x) of x contains at least one point y € A
distinct from x with d(x,y) < e.

Suppose € = 0 then d(x,y) = 0 implies d(x,A) = 0.
Conversely suppose that d(x, A) = 0 then inf,c, d(x,y) =0
If infimum is obtained thenx € A € A

Hence x € A.

Theorem

The diameter of a closed ball B(g; ) in a metric space (X, d) is

22r
Proof
Let x,y € Bla;r). Thend(x,a) Sr,d(y,a) Sr.
Hence dix,y) <dix,a) + dia,y)
<2r
Thus S3(Ba; ) = ”Esg.:]:m dix,y) < 2r.
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Open Ball Let (X, d) be a metric. An open ball in (X, d) is denoted by
B(xy;r) ={x € X:d(x,x5) <71}

Where x, is called center of ball and r is called radius of ball and r > 0.
Closed Ball Let (X, d) be a metric. A closed ball in (X, d) is denoted by
B(xg;7r) = {x € X:d(x,x,) <7}

Where x, is called center of ball and r is called radius of ball and » > 0.
Sphere Let (X, d) be a metric. A sphere in (X, d) is denoted by
Sxg;r) ={x € X:d(x,x,) =71}

Where x, is called center of ball and r is called radius of ball and r > 0.

Keep inmind:  S(xq;7) = B(xy;7) — B(xy;7)

Examples Consider the set of real numbers with usual metric
d(x,y) = |x —y| Vx,y € R then

B(xg;r) ={x e Rid(x,x0) <r}={x € R:|x — xo| <71}

e, xp—r<x<x+r=@y,—1xy+71)

I.e. open ball is the real line with usual metric is an open interval.

B(xg;r) ={x € Rid(x,x) <7} ={x ER:|x — x| <7}

e, xo—r<x<x+4+r=[xy—1x+7]

I.e. closed ball in areal line is a closed interval.

Sxg;r) ={x eR:d(x,xy) =1} ={xg —1,x0 + 7}

I.e. two points x, — r and x, + r are only.
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Examples

1 ;x+y

0 ;xzythen

Consider a discrete metric space (X, d) where d(x,y) = {
B(x0;1) = {x € X:d(x,%0) <1} = {x0}

B(xg;1) ={x € X:d(x,xy) <1} = X — {x,}

Sxg;r) ={x€eX:d(x,xy) =r}=¢ ifr+1

Open set

Let (X, d) be a metric. A subset ‘A’ of a metric space X is said to be open if it
contains a ball about each of its points. i.e. for every x € A there exists an
openball B(x;r) cA=>x€B(x;r)c A

Theorem An open ball in metric space X is open set.

Proof Let B(x,; r) be an open ball with center x, and radius r in a metric
space (X,d). And let y € B(x,;r) and definer;, = r — d(xy, y)

(x,d)

We claim that B(y; ;) € B(xo; 1)

To see this let z € B(y; ;) then

d(z,xy) <d(z,y)+dy,xg) <nrn+(@r—r)=r
d(z,xy) <r =2z € B(xy;r) = B(y;1) € B(xo;7)

Hence B(x,; ) is an open set.
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Question
What is an open ball in R and in C? Also in C[a,b].
Answer

= Anopen ball in R is an open interval (x, — r,xy + 7).

= AnopenballinCisanopendisk D ={z € C:|z — x| < 1}

= An open ball in C[a,b] is any continuous function satisfying
Sup|x(t) — x,(t)] < 1

Question

Consider €[0,2m] and determine the smallest r such that y € B(x;r) where
x(t) = Sint and y(t) = Cost.

Solution
Metric defined on Cla,b]is  d(x,y) = max.e;|x(t) — y(t)|
Let z(t) = Cost — Sint then z'(t) = —=Sint — Cost

Putz'(t) = 0 then —Sint — Cost =0

Sint 3m 7

= Sint = —Cost = =—1=>Tant=—-1=>t==—,— putinz(t)
Cost 4 4

20 = Cost  ine = Cos () 5in () = Cos (£+5) =55+

z(t) = Cost — Sint = —Sin (%) — Cos (E) =———-—==—2

4
Also

z(t) = Cost — Sint = Cos (%T) — Sin (%ﬂ) = Cos (3n +E) — Sin (3—n+ E)
z(t) = Cost — Sint = Sin (g) + Cos (g) = % + % =42

Thus he smallest r such that y € B(x; r) is V2
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Question If A € Bthen 6(4) < §(B).

Solution: Given that A € B. Then we know that for x,a € A and y, b € B we have
d(x,a) < d(y,b) = Supygeqd(x,a) < Supy,bEBd(y, b) = 6(4) < 6(B)
Theorem (a) Let (X, d) be a metric space then X and ¢ are open sets.

Proof It follows by noting that ¢ is open since ¢ has no elements and,
obviously, X is open.

Theorem (b)
Let (X, d) be a metric space then Union of any number of open sets is open.

Proof Any point ‘x’ of the union U of open sets belongs to (at least) one of
these sets, call it M, and M contains a ball B about x since M is open. Then B c U,
by the definition of a union. This proves the result.

Theorem (c)

Let (X, d) be a metric space then Intersection of a finite number of open sets is
open.

Proof If ‘y’ is any point of the intersection of open sets M,, ... , M,, then
each M; contains a ball about ‘y’ and a smallest of these balls is contained in
that intersection. This proves the result.

Limit point of a set

Let (X, d) be a metric space and A c X , then x € X is called a limit point or
accumulation point of A if for every open ball B(x;r) with centre X,

B(x;r) N {A — {x}} # ¢ i.e. every open ball contain a point of A other than x.

Or Let (X,d) be ametric space and A c X, then x € X is called a limit point
or accumulation point of A if every neighbourhood B, of x contains at least one
element of A other than ‘x”i.e. B, N{A/{x}} # ¢
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Theorem

Let (X, d) be a metric space and x be a limit point of a subset A
but not in A. Then every open ball B(x; r) contains an infinite number of
points of A.

Proof
Let x be a limit point of A but not in A.
Suppose that, for an open ball B (x ; r),
Blx;r) NA = {x),xo, ..., X,}
Putd(x, x;) = r;and r* = min (ry, ry, ..., 1y)-

Then B(x; r*) = {y : d(y, x) < r*} has no point common with A
T'hat is, B(x; r") M A = @. So x is not a limit point of A, a contradiction.
Hence B(x; r) N A is infinite. .
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Theorem Let (X, d)be a metric space and A c X. If x € X is a limit point of A.
then every open ball B (x; ) with centre x contain an infinite numbers of point of
A.

Proof Suppose B(x;r) contain only a finite number of points of A. Let
a,,a,, as, ...a, be those points. Andletd(x,a;) =r; ;i =1,2,...,n.

Also consider r' = min(ry, 15, ..., 7). Then the open ball B(x;r")contain no point
of A other than x. then x is not limit point of A. This is a contradiction therefore
B (x; r) must contain infinite numbers of point of A.

Closed Set

A subset A of metric space X is closed if it contains every limit point of itself. The
set of all limit points of A is called the derived set of A and denoted by A€, A" .

Or A subset A of a metric space X is said to be open if itcontains a ball
about each of its points. A subset A of X is said to be closed if its complement
(in X) is open, that is, A = X — A s open.

Theorem
A subset A of a metric space is closed if and only if its complement A€ is open
Proof

Suppose A is closed, we prove A€ is open. For this let x € A€ then x € A. Then it
means ‘x’ is not a limit point of A. Then by definition of a limit there exists an
open ball B(x;r) suchthat B(x;r) N A = o.

This implies that B(x; r) < A€. Since x is an arbitrary point of A°. So A€ is open.

Conversely, assume that A€ is an open then we prove A is closed. i.e. A contain
all of its limit points.

Let x be an accumulation point of A. and suppose x € A€ then there exists an open
ball B(x;r) c A€ impliesB(x;r)NA = ¢

This shows that x is not a limit point of A. this is a contradiction to our assumption.
Hence x € A. Accordingly A is closed. The proof is complete.
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Theorem: A closed ball is a closed set.
Proof:
Let B(x;7) be a closed ball. We have to prove B¢(x;r) = C is an open ball.

Lety € Cthend(x,y) >r.Letd(x,y) =r, >randtaker, =r, —r

Consider the open ball B (y, ) and we are to prove that B (y, ) cC

Letz € B (y, ) then d(z,y) <

By using Triangular Inequality d(x,y) < d(x,z) + d(z,y)
= d(x,y) <d(z,x) +d(z,y) = d(x,y) —d(z,y) < d(zx)

>n-2<d(zx) 22 <d(z,x) > 2 < d(z,x)
r+r
=>—<d(zx)=>r<d(zx) ry=r—1r>0=>1r>r

=>d(z,x)>r=>z¢&B(x;7) =>ZEB(y;%2) c C = B°(x;r) = C is open set.

Consequently B(x;7) is closed set.
Closure of a Set

Let (X,d) be ametric space and M c X. Then closure of M is denoted by
M = M U M’ where M’ is the set of all limit points of M. It is the smallest closed
superset of M.

Dense Set
Let (X, d)be a metric space the aset M c X is called dense in X if M = X .
Countable Set

A set A is countable if it is finite or there exists a function f: A — Nwhich is one-
one and onto, where N is the set of natural numbers. e.g. N, Q and Z are countable
sets . The set of real numbers, the set of irrational numbers and any interval are not
countable sets.
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Remark

If M is dense in X, then every open ball in X, no matter how small, will contains
point of M

In other words, there does not point x € X which has a neighborhood that
does not contain point of M.

Theorem

Let (X, d) be a metric space M c X is dense if and only if M has non-empty
intersection with any open subset of X.

Proof

Assume that M is dense in X. Then M = X. Suppose there is an open set G < X
suchthat M N G = ¢. Then if x € G then M n (G/{x}) = ¢ which show that x is
not a limit point of M.

This implies x ¢ M' but x € X thus M # X. This is a contradiction.
Consequently M n G # ¢ for any open G c X.

Conversely suppose that M N G # ¢ for any open G < X. We prove M = X.
For thisletx € X. If x e Mthenx € M UM’ = M then M = X.

If x € M then let {G;} be the family of all the open subset of X such that x € G;for
every i. Then by hypothesis M N G; # ¢ for any i. i.e. G; contain point of M other
than x.

This implies that x is an accumulation point of M. i.e. x € M’

Accordingly x € M U M’ = M then M = X. The proof is complete.

Separable Space

A metric space (X, d) is said to be separable if it contains a countable dense
subsets.
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Examples: The real line R is separable.
Proof: The set Q of all rational numbers is countable and is dense in R.
Examples: The complex plane C = {x + iy: x,y € R} is separable.

Proof: Consider M = {p + iq:p,q € Q} c C. As Q is countable then M is
countable. Since Q is dense in R therefore M = C. So C is separable.

Examples: A discrete metric space X is separable if and only if X is countable.

1 ;x+y

Proof: Let (X, d) be a discrete metric space then d(x,y) = {0 x =y

Suppose that X is separable. Let M c X and x € X/M then for any m € M we
have d(x,m) = 1 because x # m. If we draw an open ball with centre x and

radius § then it will not intersect with M. This means that no proper subset of X is

dense in X. Since X is separable, the only dense set in X itself. So X is countable.
Conversely suppose that X is countable. Then X = X and hence X is separable.

Examples: The space [ is not separable.

Proof: Since we know that [* = {x = (&), Sup;|g;| < oo}

With d(x,y) = Sup;[¢; —n;| Where x = (§,) ",y = (n;), €1%

Let y = (11,M2,73,... ) be asequence of zeros and ones. i.e.n; = 0orn; = 1.
Then since Supjlr]j| < oo therefore y € [*. With this y construct a real number y
whose binary representation is § = T + 2 + L 4 ... € [0,1]

We now use the facts that there is one — to — one correspondence between [0,1]
and the sequences of 0’s and 1’s in [* and the set of points in the interval

[0,1] is uncountable, each § € [0,1] has a binary representation, and different
¥'s have different binary representations. Hence there are uncountably many
sequences of zeros and ones. The metric on [* shows that any two of them which
are not equal must be of distance 1 apart. If we let each of these sequences be the
center of a small ball, say, of radius 1/3, these balls do not intersect and we have
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uncountably many of them. If M is any dense set in [, each of these
nonintersecting balls must contain an element of M. Hence M cannot be
countable. Since M was an arbitrary dense set, this shows that [* cannot have
dense subsets which are countable. Consequently, [* is not separable.

Examples: The space [P with 1 < p < oo is separable.

Proof: Since we know that (¥ = {x = (fj):ozz;?":1|fj|p < oo}

. 1/ @ @
Withd(x,y) = (Z‘}lﬂfj - 77j|p) * Where x = (fj)l Yy = (771')1 €lP

To prove [P is separable, we have to establish the existence of a set in [P which is
countable and dense in [P.

Let M be the set of all sequences y of the form y = (4,15, ...,1,,0,0, ... )

where n is any positive integer and the n;, are rational. M is countable.
Because Q is countable. We show that M is dense in [P.

le. M= {y = MwuM2 M 0,0,...):7m; € Q} clP

Let x = (é’j)io € [P be arbitrary. Then for every €> 0 there is an n (depending on
w p _ €

€) such that Yiaeléi] <5

Since the rationals are dense in R, for each ¢; there is a rational n; close to it.

Hence we can find y € M satisfying Y7_,|¢; — ni|” < ez_P

14 14
It follows that [d(x, WP = X74|¢; — 77j|p + Xiinlé) — 0|p < E? t E?

[d(x,y)]P < €P=d(x,y) <€

M is dense in [P. This proves [P is separable.
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Boundary: A boundary point x of a setA c (X,d) is a point of X (which
may or may not belong to A) such that every neighborhood of x contains points of
A as well as points not belonging to A; and the boundary (or frontier) of A
is the set of all boundary points of A.

Convergence of a sequence, Limit of Sequence:

A sequence (x,,) in a metric space (X, d) is said to converge or to be
convergent if there is an x € X such that lim,,_,.,(x,,x) =0

ie. d(x,x)»0asn—->oc or x,—>xasn— o

‘X’ is called the limit of (x,) and we write lim,,_,,(x,,) = x

This means that for all €> 0 there exists n, € N such that d(x,, x) <€ ;Vn > n,
I.e. x,,s mustbe closed to ‘x’ for sufficiently larger ‘n’.

We say that (x,) converges to x or has the limit x. If (x,,) is not convergent,
it is said to be divergent.

Remember:
The limit ‘x’ of a convergent sequence (x,,) is a metric space (X, d) must be a

point of X. For example consider X = (0,1] with d(x,y) = [x — y| if (x,) = (1)

n

then although lim,,,., d(x,,,0) = lim |x,, — 0| butx,, » 0as0 ¢ X
n—oo

Theorem

If (x,) is converges then limit of (x;,,) is unique.

Proof:

Suppose x,, > a,x, > basn — o

Then 0 < d(a,b) <d(a,x,) +d(x,,b) >0+ 0asn - o
=>d(a,b)=0=>a=5»b

Hence the limit is unique.
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Question
Find a sequence which converges to 0 but is not in any space I[P where 1 < p < co.

Solution

Consider a, = m

1

] 1 1 1 1 P 1 1 1 p
Since In(n + 1) <n» then 1)~ =z = (ln(n+1)) ZRT S (ln(n+1))

Sequence % —-0asn - o
But ). 1>0s02¢gl”
n=0n n

Question

Find a sequence x € [P withp > 1 but x ¢ 1.

Solution

We know that x = (n—lz) IS a convergent sequence with p > 1.

ANd Y5~ <= x€ElP.

If p = 1thenx & (1.

Question

Show that Sup;|¢; — n;| satisfy (M4) for [

Solution  Let x = (¢;),x = (n;),x = (%)
(5 =il =18 =4+ 4 =i < [& = 4] + |2 =)
= Sup;|§; — ;| < Sup;|§; — 4| + Sup;|n; — %
=>d(x,y) <d(x,z)+d(zy)

= Sup;|¢; — n;]| satisfy (M4) for [*.
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Bounded Set

Let (X, d) be a metric space then a nonempty subset M c X a bounded set if its
diameter d(M) = Sup, ey d(x,y) is finite.

If M is bounded, then M c B(x,,r), where x, € X isany pointand r is a
(sufficiently large) real number, and vice versa.

Bounded Sequence

Let (X, d) be a metric space then a sequence (x,,) in X is bounded if there exists M
and a point x € X such that d(x,,x) <M ;Vn > n,

Lemma

Let (X, d) be a metric space then a convergent sequence in X is bounded and its
limit is unique.

Proof:

Suppose that (x;,) is convergent sequence in X and let x,, = x as n — oo where
x € X. Then for all €> 0 there exists n, € N such that d(x,,,x) <€ ;Vn > n,.

In particular for €= 1 there exists n; € N such that d(x,,,x) <1 ;Vn > n,.
Define 1 = max{l, d(xqy,x),d(xy, %), ..., d(xnl,x)} and K = max{€, 1}
Then by using triangular inequality for arbitrary x;, x; € (x,,) we have
0<d(x;x) <d(x;,x)+d(x,x)<K+K=M (say)

Then obviously d(x,,,x) < M ;V¥n > n, and hence (x,,) is bounded.

To prove uniqueness of limit; Suppose x,, = a,x,, > basn - o

Then 0 < d(a,b) <d(a,x,) +d(x,,b) > 0+0asn - o

i.e.d(a,b) <0butd(a,b) =0

=>d(a,b)=0=>a=5»

Hence the limit is unique.
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Remember:

Converse of above theorem is not true. i.e. a bounded sequence needs not to be
convergent. For example (x,,) = (—1)" = —1,1,—1,1, ... is bounded but not
convergent.

Lemma

Let (X, d) be a metric space then if x,, = x and y,, = y in X,

Then d(x,,y,,) = d(x,y)

Proof:

By using triangular inequality d(x,, y,,) < d(x,,x) +d(x,y) +d(y, y,)
=>d0, ) —dx,y) <d(,,x) +dV,y) e (1)

Similarly using triangular inequality d(x,y) < d(x,x,) + d(x,, Yn) + A, y)
= d(x,y) —d(n yn) < dp,x) +d(Vny)

= —(d(xn, ) — d(x, y)) <d(x,x)+d,Y) i (i1)

From (i) and (ii) |d(Cxp,yn) —dCGy)| S d,, x) +dVnY) coeeeeienn. (iii)

Since x,, = x as n — oo then for all €> 0 there exists n; € N such that
d(x,,x) < S ;Vn > ny.

Also since y,, —» y as n — oo then for all €> 0 there exists n, € N such that
€
d(y,,y) < S Vn>mn,.

Let n, = max{n,,n,} then from (iii) we obtain
3) = |d(x, yn) —d(x, y)| < §+§ =€ ;Vn>n,
= d(Xn, Yn) = d(x,y) asn > o

e, lim,e d(x,, y,) = d(x,y)
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Cauchy Sequence

A sequence (x,,) inametric space (X, d) is said to Cauchy sequence if for any
€> 0 there exists n, € N such that d(x,,, x,,) <€ ;Vm,n > n,

ie. d(x,,x,) —»0asmmn-— oo

Remember Let (x,) be a sequence in the discrete space (X, d). If (x,) be a
Cauchy sequence, then for e= % there is a natural number n, depending on € such

that d(x,,, x,) < % ;vm,n > ny,

Since in discrete space d is either 0 or 1 therefore d(x,,, x,,) = 0 implies x,,, = x,,
(say). Thus a Cauchy sequence in (X,d) become constant after a finite number of
terms, i.e. (x,) = (x1, x5, X3, cers Xy X5 X, Xy oen)

Theorem

Let (X, d) be a metric space then every convergent sequence in (X, d) is a Cauchy
sequence but converse not holds (a Cauchy sequence may not be convergent).

Proof

Suppose that (x;,,) is convergent sequence in X and let x,, - x as n — oo where
x € X. Then for all €> 0 there exists n, € N such that d(x,, x) < % ;Vn > n,.

And using triangular inequality for all m,n > n, we have
d(xm, Xn) < d(xn, x) + d(xm’x) < % _|_§

= d(x, x,) <E ;Vm,n > n,

Hence (x,,) is a Cauchy sequence.

Conversely A Cauchy sequence may not be convergent. For this consider
X = (0,1]with d(x,y) = |x — y| then (x,,) = (%) is a Cauchy sequence because

1 1 1 1 1 1
dom %) = bim =l = [T =] <[]+ B =55+ 52 0 asmin s o0

Obviously x,, — 0 but 0 ¢ X. So that (x,,) is not a convergent sequence.
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Subsequence

Let (a4, a,, as,...) be asequence in (X,d) and let (iy, i,, i3, ... ) be a sequence of
positive integers such that i; < i, <iz <---then (a;,a;,,a;,,...) is called
subsequence of (a,:n € N).

Theorem

Let (x,,) be a Cauchy sequence in(X, d), then (x,,) converges to a point x € X if
and only if (x,,) has a convergent subsequence (xnk) which converges to x € X.

Proof
Suppose x,, = x € X then (x,,) itself is a subsequence which converges to x € X.

Conversely, assume that (xnk) Is a subsequence of (x,,) which converges to x.
Then for any €> 0 there is ny € N such that d(x,,,x) < % Vg, > ny.

Furthermore (x,,) is Cauchy sequence Then for the €> 0 there is n; € N such that

d(xy, x,) < % ;vm,n > ny

Suppose n, = max(ny, n,) then by using the triangular inequality we have
(S €

d(xy, %) = d(xp, %, ) + (%, x) < ~t+- Vnn>n

d(x,, x) <€ and this shows that x,, - x

Theorem Let (x,,) be a Cauchy sequence in(X,d), and If (x,,)
converges to x € X , then every subsequence (xnk) also converges to x € X.

Proof Suppose x,, = x then for any €> 0 there is n, € N such that
d(x,,x) <€.Thenin particular d(x,,, x) <€ ;Vn; > n,.

Hence x,, > x € X

Example LetX = (0,1) then (x,) = (x1,x3,X3,...) = (
sequence in X. Then x,, = 0 but 0 is not a point of X.

,..)isa

) )

N |-

1
3

AN
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Theorem

Let M be a nonempty subset of a metric space (X, d) and M its closure. Then
x € M if and only if there is a sequence (x,,) in M such that x,, - x.

Proof Let x € M thenx € M U M¢
Case — I: If x € M then the sequence (x, x, x, ...) lies in M and converges to x.
Case — II: If x € M then x € M? that is ‘X’ is a limit point of M and hence for

eachn = 1,2,3, ... the open ball B (x %) contain infinite number of point of M.

We choose x,, € M for each B (x %) Thus we obtain a sequence (x,,) of points of

. 1
Mandsmce;—>OaSn—>oo,thenxn—>ann—>oo.

Conversely suppose that there exists a sequence (x,,) in M such that x,, — x.
Then we are to prove that x € M.

Case—l:IfxeMthenx e MUM%andx € Mas M = M U M¢

Case — Il If x ¢ M then every neighbourhood of x contain infinite number of
terms of (x,,). Then x is a limit pointof M. i.e. x e MPand xe MUM?* =M

Hence from both cases x € M.
Theorem

Let M be a nonempty subset of a metric space (X,d) and M its closure. Then M is
closed if and only if the situation x,, € M, x,, = x implies that x € M.

Proof Suppose that M is closed. i.e. M = M and let x,, € M also x,, > x
then by theorem

“x € M if and only if there is a sequence (x,,) in M such that x,, - x”
We have x € M = M implies x € M.

Conversely If (x,) isin Mand x,, » x ,then x € M then by hypothesis
M = M, then M is closed.
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Remember

A sequence (x,,) of real or complex numbers converges on the real line R or in the
complex plane C, respectively, if and only if it satisfies the Cauchy
convergence criterion, that is, if and only if for every given €> 0 there is an
ny, = ny(€) such that |x,, — x,| <€ ;Vm,n > n,

Here |x,, — x,| is the distance d(x,,, x,) from x,, to x, on the real line R or
in the complex plane C. Hence we can write the inequality of the Cauchy criterion
in the form d(x,,,, x,) <€ ;Vm,n > n,.

And if a sequence (x,,) satisfies the condition of the Cauchy criterion, we may call
it a Cauchy sequence. Then the Cauchy criterion simply says that a sequence of
real or complex numbers converges on R or in C if and only if it is a Cauchy
sequence. This refers to the situation in R or C. Unfortunately, in more general
spaces the situation may be more complicated, and there may be Cauchy sequences
which do not converge. Such a space is then lacking a property which is so
Important that it deserves a name, namely, completeness. This consideration
motivates the following definition, which was first given by M. Frechet (1906).

Complete Metric Space, Completeness

A metric space (X, d) is said to be complete if every Cauchy sequence in X
converges in X (that is, has a limit which is an element of X).

Remember

The real line and the complex plane are complete metric spaces by Cauchy
Convergence Criterian.

Complete Space (Examples)

I.  The discrete space is complete.
Since in discrete space a Cauchy sequence becomes constant after finite
terms i.e. (x,,) is Cauchy in discrete space if it is of the form
(x1,%5,%3,...X, = b, b, b, ...)
li. Theset Z ={0,%+1,42, ...} of integers with usual metric is complete.
Ii.  The set of rational numbers with usual metric is not complete.
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Subspace

Let (X,d) be a metric space and M c X then M is called subspace if M is itself a
metric space under the metric d.

Theorem

A subspace M of a complete metric space (X, d) is itself complete if and only if the
set M is closed in X.

Proof

Assume that M is complete we prove M is closed. i.e. M = M
Obviously M € M

Now let x € M then there is a sequence (x,,) in M such that x,, —» x
Since convergent sequence is a Cauchy and M is complete then x,, - x € M
Since x was arbitrary point of M this implies M € M

Therefore M = M and Consequently M is closed.

Conversely

Suppose M is closed. i.e. M = M and (x,,) is a Cauchy sequence in M.
Then (x,,) is Cauchy in X and since X is complete so x,, » x € X
AlsoxeM and M cX.

Since M is closedi.e. M = M. Thenx, > x €M

Therefore x € M.

Hence M is complete.
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Construction of Completeness Proofs

In various applications a set X is given (for instance, a set of sequences or a set of
functions), and X is made into a metric space. This we do by choosing a metric

d on X. The remaining task is then to find out whether (X, d) has the desirable
property of being complete. To prove completeness, we take an arbitrary Cauchy
sequence (x,,) in X and show that it converges in X. For different spaces, such
proofs may vary in complexity, but they have approximately the same general
pattern:

I.  Construct an element ‘X’ (to be used as a limit).
Ii.  Prove that X’ is in the space considered.
Iii.  Prove convergence x,, — x (in the sense of the metric).

We will use the facts R and C are complete.

Theorem  The Real Line is Complete.
Proof Let (x,) be any Cauchy sequence of real numbers.

We first prove that (x,,) is bounded. For this let e=1 > 0 then there exists
ny € N such that d(x,,, x,) = %, — x| <1 ;Vm,n > n,.

In particular for m > n, we have |x,, —x,| <1=x, —1<x, <x, +1
Let a = max{xy, x5, X3, ..., X, + 1} and f = min{x,, x5, x3, ..., x,, — 1} then

B < x,, < a forall n. This shows that (x,,) is bounded with 8 as lower bound and
a as upper bound.

Secondly we prove (x,,) has convergent subsequence(xni).

If the range of the sequence is {x,} = {x;, x5, x3, ... } is finite, then one of the term
is the sequence say ‘b’ will repeat infinitely i.e. b, b, b, .... Then (b, b, b, ...) isa
convergent subsequence which converges to ‘b’.

If the range is infinite then by the Bolzano Weirestrass theorem, the bounded
infinite set {x,,} has a limit point, say ‘b’.
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Then each of the open interval S; = (b —1,b + 1),S, = (b — % b + %)

S; = (b — é b+ é) ... has an infinite numbers of points of the set {x,,}. i.e. there

are infinite numbers of terms of the sequence (x,,) in every open interval S,,. We
choose a point x; from S;, then we choose a point x;, from S, such that i; < i,.

i.e. the terms x; comes after x; in the original sequence(x,). Then we choose a
term x;, such that i, < i3, continuing in this manner we obtain a subsequence

(xin) = (xil,xiz,xig, )

It is always possible to choose a term because every interval contain an infinite
numbers of terms of the sequence (x;,).

. 1 1
Since b — ~ = band b + ~ = b as n — oo. Hence we have convergent

subsequence (x; ) whose limit is ‘b’.
Lastly we prove that x,, > b € R

Since (x,,) is a Cauchy therefore for any €> 0 there is an n, € N such that

|x, — x5 <§ ;Vm,n > n,,.

Also since x; — b there is a natural number i, such that i,,, > n, then for all
m,n, i, > n, we have

d(xy,b) = |x, = bl = |xp —x; +x; —b| < |x, —x; |+ |x;, — b
d(xy, b) <= +==€= d(xp, b) = |x, — b| <€
Hencex, - b €R

Thus Real Line is complete.
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Example Euclidean space R™ is complete.

Proof

Let (x,,,) be a Cauchy sequence in R™ where (x,,,) = (51<m>,§§m>,§§m>, ,(lm))
therefore for any €> 0 there is an n, € N such that

1

~
)2 <E;Vm,r>ng. .....o...... (1)

ACom, %) = (S 6™ - 67

>y |g(m)—g<’")2<e2 ym,r>ng = 3, |6 - £ <€ ;vj =123
j=1 ] ] )] ] 0 j=1 ] ] /] ] ey Iy

= 5}’") is a Cauchy sequence of real numbers for every j = 1,2,3,..in R.

Since R is complete therefore E}m) - ¢ ER.

Using the n limits we define (x) = (&, &5, ..., &,) then clearly x € R"

1

2
Asr — oo in (1) we have d(x,,, x) = < = |€]§m) — €j| )2 <E ;Vm >n,

= d(x,,x) <E;Yym>ny, = x, > x €ER"

This proves that Euclidean space R™ is complete.

Example  Unitary space C" is complete.

Proof In the above theorem if we take n = 2 then we see complex plane
C = R? is complete. Moreover the unitary space C" is complete.

Example  The space [* = {x = (§;): Sup;|¢;| < oo} is complete.

Proof Let (x,,,) be a Cauchy sequence in [* where x,,, = (f}m)) then for
1

any €> 0 there is an ny € N such that

d (X, %,) = Sup; |§}m) — &Pl <€ ;vm,r > ng. e, (1)

m) _ £
= [ - ¢

<€ ;Vm,r >nyVj=123,.
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= f}m) is a Cauchy sequence of real/complex numbers for every j = 1,2,3,..in R
or C. And since R is complete therefore f}m) - ¢ ER

Using the n limits we define x = (fj)io = (§,&,...).

AsT - 00 in (1) we have d(xp, x) = Sup; [§™ — &| <€ ;¥m > ng

= d(Xy,,x) <E;Vm>ny = x, > X

Now we prove that ‘x’ is bounded and is from [*.

Since x,,, = (E}m))l € L™ then there exists a real number k,, such that for all ‘j’
|€]§m)| < k,,, then using triangular inequality

&5 = & —&™ + 67| < & = &™) + 67| <€+ = Sup; g < oo
This proves that x,,, - x € ™.

And hence [* = {x = (&;): Sup;|¢;| < oo} is complete.

Example The space ‘c’ consists of all convergent sequences x = (Ej)io of

complex numbers, with the metric induced from the space [* then the space
‘c’ Is complete.

0o
1

Or  Showthat ¢ = {x =(§;), :xis convergent} is a complete metric space.

Proof Since every convergent sequence is bounded therefore ¢ € [*. Since ‘¢’ is
subspace of complete metric space [, to show that ‘¢’ is complete it is sufficient
to prove that ‘c’ is closed. i.e. ¢ = C.

Obviouslyccc¢ ............. (1)

Let x = (fj)io € ¢ then there exists a sequence x,, = (f}")) in ‘¢’ such that

1
X, — x asn — oo, Then for any €> 0 there is an n, € N such that
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d(xp, x) = Sup; |€]§n) — €j| < E ;Vn > n,
6 —g| <S svn>me )
Then in particular for n = n, and Vj we have
d(xp,, x) = Sup; |§]§n°) — €j| <§ VN,
|67 — | << svmg. 3)

[e 0]
Now as x,,, = (5}"")) is a convergent sequence and since every convergent
1

sequence is Cauchy sequence therefore there exists n, € N such that

|€]§no) _ lEnO)

<§ sVik>ng. 4)

Then by using triangular inequality we have

|Ej . Ek| _ |€] _ f}nO) n S;]gno) . lEcnO) n s;;EnO) _ €k|

+ |€](n0) _ IEnO)

& = el < [&; =& Fler -] <S+5+3
& —&| <€ ;Vjik>n

Hence x is Cauchy in [* and x is convergent.

Therefore x € c and cCCSc ....... (5)

Hence from (1) and (5) c=c¢C

i.e. Cisclosedin [ and [ is complete.

Since we know that a subspace of complete space is complete if and only if it is
closed in the space. Consequently c is complete.

Remark: A metric space X may be complete under one metric but by changing
the metric on X, it may happen that the metric space is no longer a complete a
complete metric space. This is illustrated in following example.
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Example

Consider Cla, b] = {x: x is continuous on [a, b]} and introduce two metric on it
b
by dy(x,y) = maxeepaplx(t) —y(@®)| and d,(x,y) = [ 1x(t) — y(t)| dt

Then show that (C[a, b],d,) is complete but (C[a, b], d,) is not complete.
Example (a)

Consider C[a, b] = {x: x is continuous on [a, b]} and introduce metric on it by
d,(x,y) = max,epq pylx(t) — y(¢)| then show that (C[a, b], d,) is complete.

Proof To show that (C[a, b], d,) is complete let (x,,,) be a Cauchy sequence
in Cla, b] then for any €> 0 there is an n, € N such that

dy (X, ) = Maxeerg plxm (t) — x,.(O)| <€ ;Vm,r >ny ... (1)
Then there exists t, € [a, b] at which maximum attained so that we have
maxe efa,p]|Xm (to) — X (to)| <€ ;¥Vm,r > nyg

| (o) — x,-(tp)| <E ;VMr>ny ... (2)

= x,,(ty) is a Cauchy sequence of real/complex numbers for every m = 1,2,3,..
in R or C. And since R is complete therefore x,,, (t,) = x(t;) € R.

In this way we can associate with each t € [a, b],a unique real number x(t). This
define a function x: [a, b] = R.

Using 7 — oo in (1) get maxe(qpylxm (£) —x(®)| <€ ;Vm >ny,  ............. 3)
And for all t € [a, b] we have |x,,(t) — x(t)| <€ ;Vm > n,
= X, — x uniformly on [a, b] (Since it does not depends upon ‘t”)

Since (x,,,) is a sequence of continuous functions on [a, b] and the convergence is
uniform, therefore the limit function ‘x’ is continuous .i.e. x € C[a, b]

(With reference: If a sequence of continuous function on a closed interval
converges uniformly, then the limit function is continuous)
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From (3) we have d; (x;, x) = maxeerq pylxm (t) — x(t)| <€ ;Vm > n,
i.e. = x, = x € Cla,b] under metricd, asm — oo

Hence (C[a, b],d,) is complete

Example (b)

Consider Cla, b] = {x: x is continuous on [a, b]} and introduce metric on it by
d,(x,y) = f:lx(t) — y(t)| dt then show that (C[a, b], d,) is not complete.

Proof

Let [a, b] = [0,1] and consider the function x,,, as show in figure below;

-H—\“ o T T m¥*n
m>n
e

: ' +—- 1 1
o Y, W X% 2 Xm = =+—
U S s m 2 'm

1 1 . 1 1

Let m > n so that — < = then consider Xs > =+=
m n 2 5

dy (o, 20) = [ 12 (£) — %, () dt

dy () %) = félxm(t) — x, ()| dt + f1%+%lxm(t) — xp ()] dt

1,1
+ 2 Tlm(®) — x, (D] dt + Ji, 1% (8) — X, (D) dt
2 m 2 n

1.1 1 1

d2 (xm: xn) = ff mlxm(t) - xn(t)l dt + ff_l_lnlxm(t) - xn(t)l dt
2 2'm
1.1 1.1
Here [ ™lxn (t) — 2 (O] dt + J22 T (£) = x,(0)| dE - 0@ m,n > oo
2 2'm

= (x,,) is a Cauchy sequence in C[a, b]
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Suppose there exists x € C[a, b] such that x,,, = x under metric d, asm — o
ie. d,(x,,,x) > 0asm — oothen

dy (X, ) = [ 12 () — x(O)] dt

1 1

By (s 1) = 21 (8) = X(O] dt + [7 ™, (6) — x(0)] dlt

+ i 1l (8) — x(D)] dt

1 1

dy (%) = 0+ [2 ™| (£) — x(6)| dt + 1
2

Here [? ™[x,,(t) —x(t)|dt - 0asm,n — oo .

2 i o] '»'/;_
| _ 0;0<t<: .
This happens if ~ x(t) = ) 2 -h
1 '3 <t<l1

Implies x & C[a, b] a contradiction. Hence (C|[a, b], d,) is not complete.

Example The space [P is complete; here p isfixedand 1 < p < co.

oo

Proof Let (x,,,) be a Cauchy sequence in [P where x,,, = (E}m)) then for
1

any €> 0 there is an ny € N such that

1

Sk
cu%m%)=(zﬁlkﬁ0_§ﬁ))p<e;anc>n& ............ (1)

m) ()
= |€j $j

<€ ;Vm,r >nyVj=123,.

= f}m) is a Cauchy sequence of real/complex numbers for every j = 1,2,3,..in R
or C. And since R is complete therefore E}m) - ¢ ER

0o
1

Using the n limits we define x = (§;). = (§1,&,, ...).
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1

.
AsT - oo in (1) we have d(x,, 1) = (I, [§™ = & ) <€ svm > n, ..(2)

p :
= Yie1 |§]§m) — €j| <€P ;V¥Ym > n, thisshows that x,, — x € [P but x,,, € [P

=X, — (, —x)EIP =x€lP
From (2) we have d(x,,,x) <€ ;Ym >ngie. x, —>x

This proves that x,,, = x € [P.

And hence P = {x = (Ej)T:Z?:1|€j|p < oo} is complete

Example  The function space C[a,b] is complete; here [a, b] is any given
closed interval on R.

Proof Let (x,,,) be a Cauchy sequence in C[a, b] then for any €> 0 there is
an n, € N such that

d(Xpm, Xn) = maxee;|xy, (t) — x,(t)| <€ ;Vm,n >n,. ... (1) where ] = [a, b]
Then forany t = t, € ] we have = |x,,,(t,) — x,,(ty)| <€ ;VYm,n > n,

= x,,(ty) isa Cauchy sequence of real/complex numbers for every in R or C. And
since R is complete therefore x,,, (t,) = x(t,) € R.

In this way for every t € J, we can associate a unique real number x(t) with
X, (t). This defines a function x(t) on J.

We prove that x(t) € C[a, b] and x,,(t) = x(t) asm — oo
From (1) we see that |, (t) — x, ()| <€ ;Vm,n >n, forevery t €]
Asn — oo we have |x,,(t) — x(t)] <€ ;Ym > n,

Since the convergence is uniform and the x,,,; are continuous, the limit function
x(t) is continuous, as it is well known from the calculus. Then x(t) is continuous.

Hence x(t) € C[a, b], also |x,,(t) — x(t)| <€ asm — o
Therefore x,,,(t) = x(t) € C[a, b] and the proof is complete.
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Example If (X,d,) and (Y, d,) are complete then X x Y is complete.

Where the metric defined is as d(x, y) = max[d,(&,&5),d,(n4,1n,)] with
x=(nm)y=CEun)and &y, & €X, ny,m, €Y.

Proof Let (x,,,) be a Cauchy sequence in X x Y then for any €> 0 there is
an ny € N such that

d(x,, x,) = max[dl(f(m),f(")), d, (n(m),n(”))] <€ ;Vm,n > n,
= d, (§M, ™) <€ and d,(n'™,n™) <€

= &M s a Cauchy sequence in X and n™ is a Cauchy sequence in Y . And since
X and Y are complete therefore ™ — & € X andn™ - n €Y.

Letx = (,n)thenx € X X Y.
Also d(x,,,x) = max[dl(f(m),f),dz(n(m),n)] <€E ;Vm > ny,
= d(xp, x) = max[d,(§™,€),d,(n™,7)] > 0 asm -

Hence x,,(t) = x(t) € X x Y and the proof is complete.

Theorem (Just Read): Convergence x,,, — x in the space C[a, b] is uniform
convergence, that is, (x,,) converges uniformly on [a, b] to x. Hence the
metric on C[a, b] describes uniform convergence on [a, b]and, for this
reason, is sometimes called the uniform metric.

Examples of Incomplete Metric Spaces

= Space Q: This is the set of all rational numbers with the usual metric
given by d(x,y) = |x —y|, where x,y € Q, and is called the rational
line. Q is not complete.

» Polynomials: Let X Dbe the set of all polynomials considered as functions
of t on some finite closed interval J=[a, b] and define a metric d on
X by d(x,y) = max.;|x(t) —y(t)|. This metric space (X, d) is not
complete. In fact, an example of a Cauchy sequence without limit in X
is given by any sequence of polynomials which converges uniformly onJ
to a continuous function, not a polynomial.
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Nested Sequence
A sequence sets A, A,, As, ... is called nested if A; © A, D A, ...
Cantor’s Intersection Theorem (Nested Interval Property)

A metric space (X,d) iscomplete if and only if every nested sequence of non-
empty closed subset of X, whose diameter tends to zero, has a non-empty
Intersection.

Proof Suppose (X, d) is complete and let A; o A, D A3, ... be a nested
sequence of closed subsets of X.

Since A; is non-empty we choose a point x,, from each A,,. And then we will prove
(x1,%5,%x5,...) is Cauchy in X,

Let €> 0 be given, since lim,,_,, d(A,) = 0 then there is n, € N such that
d(An,) <€. Then for m,n > n, we have d(x,,, x,) <€

This shows that (x;,,) is Cauchy in X. Since X is complete so x,, = p € X (Say)

We prove p € N, A,,. For this contrarily suppose that p € n,, 4,, then there exists
k € Nsuchthatp ¢ A,.

Since Ay, is closed therefore d(p, A;) = § > 0.
Consider the open ball B (p; g) then A, and B (p; g) are disjoint.

NOW Xy, Xk 41, Xx4+2 ,-- all belong to A, then all these points do not belong to
B (p; g) This is a contradiction as p is the limit point of (x,,).
Hence pen, 4,

Conversely, assume that every nested sequence of closed subset of X has a non-
empty intersection. Let (x,) be Cauchy in X, where (x;,) = (xq,x5,x3,...).
Then consider the sets

A1 - {xl,xz,X3,...},A2 ES {xz,X3,x4,...},...,Ak - {xn:n 2 k}

Then we have A; D A, D A3, ...
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We prove lim,,_,,, d(4,) =0

Since (x,,) is a Cauchy Sequence then for any €> 0 there is n, € N such that for
all m,n > n, we have d(x,,, x,,) <€.ie. lim,_,,d(4,) =0

Now d(4,,) = d(4,,) then lim,_ d(4,) =lim, ., d(4,) =0

Also 4; © A, D A, ... then by hypothesis N, 4, # ¢. And letp € n,, 4,
We are to prove x,, = p € X.

Since lim,, ., d(4,) = 0 therefore k, € N such that d(4,,) <€

Then for n > k, we have x,,,p € A, Implies d(x,,p) <€ foralln > k,.

This proves that x,, —» p € X and we are done.

€ —Neighborhood of x:

An open ball B(xy; €) of radius €> 0 is often called an € —Neighborhood
of x,.

Neighbourhood of a Point

Let (X, d) be a metric space and x, € X and asubset N c X is called a
neighbourhood of x,, if there exists an open ball B(x,; €) with centre x,, such that

Or By a neighborhood of x, we mean any subset of X which contains an
€ —neighborhood of x-

Shortly “neighbourhood” is written as “nhood”.
Interior Point

Let (X, d) be a metric space and A c X, a point x, € X is called an interior point
of A if there is an open ball B(x,; r) with centre x, such that B(x,;r) C A

Or  Wecall x4 an interior point of aset A ¢ X if A is a neighborhood of x,,.
The set of all interior points of A is called interior of A and is denoted by int(A) or
A°. It is the largest open set contain in A.i.e. A° c A.
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Continuity

Let X = (X,d) and Y = (Y, d) be metric spaces. A mapping (function) T: X — Y
Is said to be continuous ata point x, € X if for every €> 0 there is a
8 > 0 such that d(Tx,Tx,) <€ forall x satisfying d(x,x,) < 6.

T is said to be continuous if it is continuous at every point of X.

Alternative:

T:X - Y iscontinuous at x, € X if forany €> 0, thereisa > 0 such that
X0 € B(xy,8) = Txy € B(Tx,€) or T(B(xy,8)) S B(Txy, €)

Remark

In calculus we usually write y = f(x). A corresponding notation for the image of
‘x”under T would be T(x). However, to simplify formulas in functional
analysis, it is customary to omit the parentheses and write Tx.
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Theorem (Continuous mapping)

A mapping T of a metric space X into a metric space Y is continuous if and
only if the inverse image of any open subset of Y is an open subset of X.

Or A mapping T: X — Y is continuous at x, € X if and only if T~1(0) is open
in X. Where O isopenin.

Proof

Suppose that T is continuous. Let O be an open subset of Y, we have to show that
T-1(0) is open in X.

Let x € T~1(0) then Tx € O and since O is open therefore there exists €> 0 such
that B(Tx, €) € 0. Also since T is continuous there exists § > 0 such that

T(B(x,8)) < B(Tx,€) € 0. Then B(x,§) € T~1(0).
So that T~1(0) is open.

Conversely, assume that the inverse image of every open set in Y is an
open set in X.i.e. T~1(0) is open where O is open subset of Y. We have to show
that T is continuous. For this let x € X and let €> 0 then Tx € Y and let B(Tx, €)

be an open ball in Y, then by hypothesis T~*(B(Tx, €)) is open in X.
Since x € X then there exists § > 0 such that B(x,§) S T‘l(B(Tx, e))
Implies T(B(x,8)) € B(Tx, €)

Hence T is continuous at x € X. Since x € X is an arbitrary number therefore T is
continuous at every point of X.
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Continuous mapping Theorem

A mapping T: X — Y of a metric space (X, d) into a metric space (Y, d) is
continuous ata point x, € X ifand only if x,, — x, implies Tx,, = Tx,

Proof Suppose that T is continuous at x, € X. Then for all €> 0, there is a
8§ >0 suchthat d(x,xy) <8 = d(Tx,Txp) <€  covvevinnn.. (1)

Suppose that x,, = x, then there exists n, € N such that d(x,,, x,) < § ;Vn > n,
By (1) d(Tx,,Tx,) <€ ;Vn>n,

Implies Tx, — Tx,

Conversely Suppose that x,, = x, implies Tx,, = Tx,

To prove T is continuous at x, suppose on contrary T is not continuous at x, then
forall e> 0, thereisa d > 0 such that d(x,x,) < 8 = d(Tx,Tx,) =€

In particular § = %there is an x,, such that d(x,,x,) < 8 = d(Tx,, Tx,) =€

= x, > X, > I'x,, » Txy,asn — co acontradiction.

Hence T is continuous at x, € X

Isometry/Isometric mapping, Isometric Spaces
LetX = (X,d) andY = (Y,d") be metric spaces. Then:

(@) A mapping T of X into Y is said to be isometric or anisometry if
T preserves distances, that is, if for all x,y € X, we have
d'(Tx,Ty) = d(x,y), where Tx and Ty are the images of x and vy,
respectively.

(b) The space X is said to be isometric with the space Y if there exists a
bijective isometry of X onto Y. The spaces X and Y are then called isometric
spaces.

Hence isometric spaces may differ at most by the nature of their points but are
indistinguishable from the viewpoint of metric. And in any study in which the
nature of the points does not matter, we may regard the two spaces as
identical as two copies of the same "abstract” space.
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Theorem (Completion)

For a metric space X = (X, d) there exists a complete metric space X = (X, d)
which has a subspace W that is isometric with X and is dense in X. This space X is
unique except for isometries, that is, if X is any complete metric space having a
dense subspace W isometric with X, then X and X are isometric.

Proof

The proof is somewhat lengthy, but straightforward. We subdivide it into four
steps (a) to (d). We construct:

a) £ =(%,d)

b) Anisometry T of X onto W, where W = X
c) Completeness of X

d) Uniqueness of X, except for isometries.

Construction of X = (X,d)

Let (x,,) and (x,") be Cauchy sequences in X. Define (x,) to be equivalent to
(x, "), written (x,)~(x,"), if lim, d(x,,x,) =0

Let X be the set of all equivalence classes %, 7, ... of Cauchy sequences thus
obtained. We write (x,,) € X to mean that (x,,) is a member of X (a
representative of the class X).

We now set d (X, $) = lim,_,o, d(x,,, ) Where (x,) € £ and (y,) € 9. We
show that this limit exists. We have

d(xXn, Yn) < d(xp, X)) + d (X Yin) + d (Y Yn)

= d(Xpn, Yn) = d(Xm, Ym) < d(Xn, X)) + d (Vi Yn)

And a similar inequality with ‘m’ and ‘n” interchanged. Together,
= —[d(xn, xm) + AW, Yn)] < A, Yn) — d (X, Vi)

Hence |d Cen, yn) = dGn, Ym)| < d (X)) + d (Y Yn)
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Since (x,,) and (y;,,) are Cauchy, we can make the right side as small as we please.
This implies that the limit d(£, §) = lim,,_,o, d(x,,, ) exists because R is
complete.

We must also show that the limit d(%,9) = lim,_ d(x,, y,) is independent
of the particular choice of representatives. In fact, if (x,)~(x,") and
(v)~0"), then by lim,,_,, d(x,, x,,") = 0, we have

|d (e, yn) — d (', yn ) < d Oy %) + d (Y, yn) = 08 1> 0,
Which implies the assertion lim,,_, o, d(x,,, V) = lim,,_,o, d(x,,", y,")

We prove that d in d (%, ) = lim,,_, d(x,, y,,) is a metric on X. Obviously, d
satisfies d(%,9) = 0 aswell as d(%,%) = 0 and d(%,9) = d(J, %)

Furthermore, d(%,9)=0= (x,)~() =>%=9

Gives d(%,9) = 0ifandonlyif£ =y ,and d(%,9) < d(®,2) +d(2,9) ford
follows from d(x,, y,) < d(x,,z,) + d(z,,y,) by letting n — co.

An isometry T of X onto W, where W = X
Define amapping T: X - W c XbyTh=0b

We see that T is an isometry since d (%, §) = lim,,_,, d(x,,, ¥,,) becomes simply
d(b,¢) = d(b,c). Here ¢ is the class of (y,) where y, = ¢ forall ‘n’.

Any isometry is injective, and T: X — W is surjective since T(X) = W. Hence
W and X are isometric.

We show that W is dense in X. We consider any £ € X. Let (x,,) € £. For every
€> 0 thereisan ng such that  d(x,, x,, ) < S (ny > N).

Let (xp,, X, - ) € £, then X, € W then
(%, 2n,) = 1Moo d (X, Xp,) < = <€

This shows that every € - neighborhood of the arbitrary £ € X contains an element
of W. Hence W is dense in X.

For video lectures @ You tube visit “Learning with Usman Hamid”



82

Completeness of X

Let (%,,) be any Cauchy sequence in X. Since W is dense in X, for every £,, there
isaz, € W suchthat d(®,,2,) < %

Hence by the triangle inequality,
i A YA A~ 57 A ~ VPN 1 N ~ 1
d(Zm; Zn) < d(Zm; xm) + d(xm; xn) + d(xn:zn) < ; + d(xm; xn) + ;

and this is less than any given €> 0 for sufficiently large m and n because
(%,,) is Cauchy. Hence (Z,,) is Cauchy. Since T: X — W is isometric and
2., € W, the sequence (z,,), where z,, = T~1Z,,, is Cauchy in X.

Let £ € X be the class to which (z,,) belongs. We show that ‘%’ is the limit of (%).
Now using triangular inequality

A8, %) <A@ 20) + A2, 8) <=+ A2, 2) (1)

Since (z,,) € X (see right before) and z,, € W, so that (z,, z,, ...) € Z, the
inequality (1) becomes

A%, %) <=+ lim d(z,, Zp)
n m—oo

and the right side is smaller than any given € >0 for sufficiently large ‘n’.
Hence the arbitrary Cauchy sequence (£,,) in X has the limit £ € X, and X is
complete.

Uniqueness of X except for isometries

If (X,d) is another complete metric space with a subspace W dense in X and
isometric with X, then for any %,y € X we have sequences (%,), (¥,) in W such
that %, » % and , - #; hence d(&,¥) = lim, e d(&,, J,)

Follows from |d(%,7) — d(%,, 5,)| < d(%,%,) + d(F,, 7) > 0 as n - oo,

Since W is isometric with W < X and W = X, the distances on X and X must be
the same. Hence X and X are isometric.
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Rare (or nowhere dense in X)

Let X be a metric, a subset M € X is called rare (or nowhere dense in X) if M has
no interior point i.e. int(M ) = ¢.

Meager (or of the first category)

Let X be a metric, a subset M < X is called meager (or of the first category) if M
can be expressed as a union of countably many rare subset of X.

Non-meager (or of the second category)

Let X be a metric, a subset M < X is called non-meager (or of the second category)
If it is not meager (of the first category) in X.

Or Let X be ametric, asubset M € X is called non-meager (or of the second
category) if M cannot be expressed as a union of countably many rare subset of X.

Example

Consider the set Q of rationales as a subset of a real line R. Let g € Q, then

{q} = {q} because R — {q} = (—o0,q) U (g, ) is open. Clearly {q} contain no
open ball. Hence Q is nowhere dense in R as well as in Q. Also since Q is
countable, it is the countable union of subsets {g}: q € Q.

Thus Q is of the first category.
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Bair’s Category Theorem

If X # ¢ is complete then it is non-meager in itself.

Or A complete metric space is of second category.

Proof Suppose that X is meager in itself then X =U7® M;, where each M is
rare in X. Since M, is rare then int(M; ) = ¢ i.e. M; has no non-empty open
subset but X has a non-empty open subset (i.e. X itself) then M; # X

This implies M~ = X — M; is a non-empty and open.
We choose a point p; € M;" and an open ball B, = B(p;,€,) € M, where €,< %

Now M_ZC IS non-empty and open then there exists a point p, € WZC and open ball
—— €
B, = B(p,,€;,) SM; nB (P1'71)

(M, has no non-empty open subset then M,“ N B (pl,%) IS non-empty and open.)

So we have chosen a point p, from the set M, N B (pl,%) and an open ball

B(p,, €,) around it, where €,< % < %% < %then €,< %
Proceeding in this way we obtain a sequence of balls B, such that

B,,1 €B (pk,%) C By where B, = B(py, €x) then the sequence of centers py, is

1

e 0 ask > oo

such that form > n then d(py, pr-1) < % <

Hence the sequence (py) is Cauchy. Since X is complete therefore p, > p € X

Also d(pg,p) < d(Pk, Pk-1) + d(Pk-1,P)

d(pip) < =+ d(Pr-1,P) <Ex+ d(Pie—1, ) 2E+0 ask —1 > oo

=>pEB, ;Vk ie. pE€ M_kC since By, = M_kc N B (Pk—p ekz—l)

=B, CM, ;Vk=>B,NMy,=¢ ;Vk=>peéM, ;Vk=>peX ;Vk
This is a contradiction. And hence the theorem.

For video lectures @ You tube visit “Learning with Usman Hamid”



85

NORMED SPACES, BANACH SPACES

Particularly useful and important metric spaces are obtained if we take a vector
space and define on it a metric by means of a norm. The resulting space is
called a normed space. Ifit is a complete metric space, it is called a Banach
space. The theory of normed spaces, in particular Banach spaces, and the
theory of linear operators defined on them are the most highly developed parts
of functional analysis. The present chapter is devoted to the basic ideas of those
theories.

Remark

A normed space is a vector space with a metric defined by a norm; the latter
generalizes the length of a vector in the plane or in three-dimensional space.
A Banach space is a normed space which is a complete metric space.
A normed space has a completion which is a Banach space. In a normed
space we can also define and use infinite series.

A mapping from a normed space X into a normed space Y is called
an operator.

A mapping from X into the scalar field R or C iscalled a functional.
Of particular importance are so-called bounded linear operators and
bounded linear functionals since they are continuous and take
advantage of the vector space structure.

It is basic that the set of all bounded linear operators from a given normed
space X into a given normed space Y can be made into a normed
space, which is denoted by B(X, Y). Similarly, the set of all bounded
linear functionals on X becomes a normed space, which is called the
dual space X' of X.

In analysis, infinite dimensional normed spaces are more important than
finite dimensional ones. The latter are simpler and operators on them can be
represented by matrices.

We denote spaces by X and Y, operators by capital letters (preferably
T), the image of an x under T by Tx (without parentheses),
functionals by lowercase letters (preferably f) and the value of fat an ‘x’
by f(x) (with parentheses). This is a widely used practice.

For video lectures @ You tube visit “Learning with Usman Hamid”



86

We know that in many cases a vector space X may at the same time be a metric
space because a metric d is defined on X. However, if there is no relation between
the algebraic structure and the metric, we cannot expect a useful and
applicable theory that combines algebraic and metric concepts. To guarantee such
a relation between "algebraic" and "geometric" properties of X we define on
X ametricd in aspecial way as follows. We first introduce an auxiliary
concept, the norm (definition below), which uses the algebraic operations of
vector space. Then we employ the norm to obtain a metric d that is of the
desired kind. This idea leads to the concept of a normed space. It turns out that
normed spaces are special enough to provide a basis for a rich and interesting
theory, but general enough to include many concrete models of practical
importance. In fact, a large number of metric spaces in analysis can be
regarded as normed spaces, so that a normed space is probably the most important
kind of space in functional analysis, at least from the viewpoint of present
day applications.

Normed Space

A normed space X is a vector space with a norm defined on it, (Also called
a normed vector space or normed linear space. The definition was given
(independently) by S. Banach (1922), H. Hahn (1922) and N. Wiener (1922). The
theory developed rapidly, as can be seen from the treatise by S. Banach (1932)
published only ten years later.)

Let X be a vector space. A real valued function ||. ||: X — R is called a norm on X
if it satisfies the following axioms;

. x]|=0 ;vxeX
ii. Jxl]l=0ex=0 ;VxeX
. ||< x|| = |«]||x]| ;Vx € X and all scalars «c€ R or <& C
iv. Jlx+yll <lxll+lyll ;vx,y€X (Triangle inequality);

Here ‘X’ and ‘y’ are arbitrary vectors in X and o is any scalar.

The pair (X, ||.]]) Is called normed space.
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e-1: Show that every normed space X is @ metric space with the

Exampl /
metric d: Xx X = R defined by

dixy)=|x-v| vxyeX
PU, 2016 (BS Math); PU, 2015 (M.Sc. iy

we check all the axioms of metric.
vxyeX

Solution: In the following
M,): dxy)=|X-Y >0,
M,): d(x.y)=0<:>||x—y“=0¢:>x—y=0¢>x=y
e): dx)=[x-y]=|-r-0l=lly x| =y -xl=db
My): dixd)=|-z]=|x-yy-zl<lx-yI#ly =2l

 >d(xz)<d(xy)+d(y,z) vx,y,zeX
This shows that X is also a metric space.

. Example-2: Show that ||P||=|x|+|y| is a norm on R?, where

P=(xy) x.yeR.

Solution: N,Y||P|=|x|+[¥z0. P(x,y)eR"
N3 |P[[=0 = x| +[v]=0
<lx|-0. =0
< x=0,y=0
< (xy)=(0,0)
< P=0

Ny} || aP | = | atxy) | =N (@x o) =[ax + o]
= a| x| +[a] [y | =ledd x| + ¥ ]
= [eP|=l=llP} VPeR?
N4)"P1 +P2||:|X1 +X2|"‘|Y1 +}’2|S|X1|+\X2|+|y1|+|y2l
= [Py +Pol < [l il el +lval
= [P +P| <[Pl + [Pl VPP, eR?

This shows that ||P| =|x|+|y| is a norm on R?.
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Ce .
Example-3: Let X(x,X;,..X,)€R" , then show tha Ix] = I§1|x,-| is a norm

onR". n
Solution: N1)||_)g||=i§1|x,-|20 | %20, 1<i<n

Nxl=0e Epel=0e ] =0 1isn ‘

& x=01<i<n

&x=0

n n
wifor]= SJor|-Jf3) -l veer,acr

Nyl = 2 +vl= Zhe )

<Z|X| |y,[] Z|X|+Z|y,l
el -

Hence ||1|| = le,-l isanormon R",
i=1
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Example-4: Let P(x,y)e R, then show that || P = max{|x}|y}} is a norm
on R.
' Solution: N,}||P | =max{x||y[}=0
N[ P =0 < max{x ||y [} =0 |x|=0]y|=0
o X=0 y=0
< (xy)=(0,0)
< P=0
NsX| aP || = max(|ax| ay]) = max(a] x| o]y |
=lajmax( x|y ) =[a]|P|
N4)" F+P, " = max(lx1 + X2|»|Y1 + }’2|) S max({|x1| t Ile}: {IY1| L |Y2|})
<maxixydmaly)
>[R+R|<|R]+|R] APeR?

Hence || P || = max{|x} |y}} is a norm on R?.

- Example-5: Show that the function |.|:R" - R defined as
| x| =max{x|1<i <n}
| Sanomon R, where x = (X,X,y...x,)e R,
Solutinn. .
n:'“&-. N.} Since maqu,’, 1<i<n}, being the maximum of n
Honnegative Quantities, is nonnegative, therefore,
N | x|=max{x}1<i<n20, vxeR”
2)"5"= 0o max{jxil, 1<i<n}=0

@l' .|= —
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¢£’Xj=0;
& (X4 Xgreees X ) =0
ox=0
NyX || ax = max{]ax,-|, 1<i<n}= max{]a”x,-“ <i<n)
~|gjmax{x|1<i<n}=la]x} VxeR".aeF
N4)||5+Z_“=max{|x;+y,-|,1si5n}5max{lxj]+lyf|,1$i5n}
<max{|x;|1<i <n}+max{y} 1<i <n}
=|xry|<lxl+|y] vy eR”

This shows that | x || =max{|x;| 1<i<n} is a norm on R".

Example-6: If (X |-|) is a normed space, then show that

[Ixl=Ix1[<lx-A

forall x,yeX.

Solution: For any x,y € X, we have :
[xI=x-y+y]<|x-A+1¥]
= x|-ly [<]x-| (1)
and [y1=y-x+x[<]y-x]+|x|
' 2[vlshe-yl+lxl: ly-x]=]x-y|
= x=y]<|x]-[+] 2)

Combining (1) and (2), we have
“[x=ylsIxI-Iy<]x-y]
=>{|x]-1xl|<[x-y
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Example-7: If (X[ .' |} is a normed space, then show that
be=2-ly-2l[<fx-y}  vxyzex
Solution: Since |.|| is a norm on X; so by the triangle inequality
[x =2 <fx -yl ]Iy - 4

- 2lx= -y =A<y (1)
Similarly, ly -2 < ly - x| +[|x - Z|
=y -2 <=yl +lx-2 oy -x]=|x-y]
= -y <lx-2-y-4 - (2)
.-

Combining (1) and (2), we have
=Ax-vlslx -2 -y -4 sx-

=|lx-2-lly- | |x -y vayze x

Example-8: If (X, I-1) is a normed space, then show that
lIx-all-lly - 6l <lx - v] + |]a- b} va.b.x,y.ze x
Solution: Since .|| is a norm on X; so by the triangle inequality

-2l <l =yl + [y~ + o -4
=[xl sfx-yl+ly -5 +|a-5] [o-2]=Ja-t]
=[xl -y - b < |x -] +[}a - 1] (1)
Again using the triangle inequality, we have
= ll<lly = [}l + |a o]
=y -t <x-y+|x-al +fa-b] fy-xf=[x-4
= |x-y]-la-b <[l -2] - |y - o]
= {Je-yl+la-b] < -2l -y -] (2)
Combining (1) and (2), we have
~[lx-yl+la -l s x-al -y - o] <[~ y] +|a - 1]
=|llx -~y - ]| < [x -y + - 1]

For video lectures @ You tube visit “Learning with Usman Hamid”



92

Example-9: For all x,y,z in a normed space X, show that
dix+zy+2z)=d(x,y)

Solution: d(x +z,y +2)=(x+2)-(y + )
=[r+z-y-2=[x-y=dxy)

Example-10: For all x,y,z in a normed space X, show that

dx+y+ay+a+z)=d(xz)
Solution; dxty+ay+a+z)=|x+y+a)-(y+a+z)
:HX+y+a-y—a—z||=||x-2||=d(X.2)

EMM: Let X be a normed linear space over a field F, then for all
YeX aeF, show that d(q xay)=lodxy).

Sl o0 1,0) o - g = o -] - 1)
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Example-14: Let (X (X ||x and X || || ) be two normed linear. sp:

Let P(xy)c—XxY XEXer Show that ||P|| \/" ||x+||y||y
normon XxY.

solution: Ny¥|P[|= | x [}, + ¥ |} 20

NHPI=0 & X Iy [E =0 | x [ +]y |t =0
o x|} =0y =0 x|, =0y, =0
& x=0y=0 |- [ly-| - ||, are norms

&0 y)=0
< P=0

NHaP]=lax| +[ay [ =laflx[ +le[ly |2
“lalIx [+ [ =l ]IP]

N,XLet P, =(x,,y,) € X x Y. Since I-.-]I-|}, are norms, so
- x5y <[~ [+ % = %],

and ||Y1‘y3"y5,|y1"y2llv+||y2_y3""

t :
herefore - 1P -P, ||= ‘/" Xy = X3 ”i +yi-ys "f’

:>||p1+p||=‘/||x1+x2||§+||y,+y2||§

<l % nxf vl +1vb f

<[l arenorms

= 2, Minkoski's inequality )
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b.)? £ a2+ 43 b
k2=j1(ak+ k) kg k ‘/kﬂ k

reduces to \Ra, +b,) +(a +b,f < ,/;+ a? +yb? + b3 (2)
Putting a=|xle - b=]xl

a =yl L=lyaly
in (2), we have

2 2
T el Pl + Db F sl ol lf + el el

Combining this with (1), we have

1P+ Pl <l e P + Ul 2 2
<Y+l + Il +1v2 1

=|P+R|<|A]+| 7|

This shows that | P || = | x ||§< +[|y ||i isanormon XxY.

94
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Banach Space

A Banach space is a complete normed space (complete in the metric defined by
the norm).

Metric Induced By the Norm
A metric d on a norm X can be defines by using the norm ||. || on X as

d(x,y) = llx =yl

Then this metric is called the matric induced by the norm. It has the following
properties;

B d@e,y)=llx—yll=0
i, dxy)=llx—-yll=0x-y=0x=y

. dx,y)=lx—yl=Ily—x|l=dl,x)
iv. dxy)=llx—yll=lx—z+z-yll=|x—2z[ +|z-yll
=d(x,y) <d(x,z)+d(z,y)

Remember that every normed space is a metric space but the converse is not true
in general. i.e. Metric space needs not to be normed space.

Examples

= Euclidean space R™ and unitary space C": These are Banach spaces

. . 2 >
with norm defined by llxll = (Z}il&°)* = VIGE + &R+ + 162
in fact here norm induced the metric

dix,y) =llx —yll = \/|f1 — M2+ & —nal? + -+ & —1al?

= Space IP: It is a Banach space with norm given by ||x|| = (Zj?';l|§‘j|p)5

1
In fact, this norm induces the metric d(x,y) = |lx —yll = (X724|¢; — nj|p)”

= Space I*: Thisis a Banach space obtained from the norm defined by

llx|l = Sup; ;]
= Space C[a, b]: This is a Banach space with norm given by
x|l = max;e;|x(¢)| where J = [a, b].
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2. The spaces R™ and C" are Banach spaces. Here we prove that R"
is complete. The proof for completeness of C? is similar.

Let {x} be a Cauchy sequence in R”,

I-rrlr : {-EI[;FI1 ‘1-3[I’:II .‘Ir .r‘ririr}r !} : ]f 2I W

Then, given iy £ > 0, there is a natural number n such that

i
"!ilfl ‘f ]rj- q - ”'” ::-' ”x{”: - XWJH - \/ E LTlrji] — ]}[{ﬂiﬂ ,.: E

Hence

Vp,qpg2 o= i_-,;l.(Pl “-fitq” < ||x®@ ~x49)] <&
So, for each I, {x;’} is a Cauchy sequence of real numbers. Since R is
complete, {x;®)} converges to a real number x;, say i = 1, 2; ..., n. But
this implies thaj: for the € already chosen,. there is a natural number p;
such that ' '

Vpip 2p; = |5 - x| < e/ > (1)

Take x = (x), x,, .., x,), where x; = lim x;%), Then x € R™. We show

that lim X" = x. Let pg = max (g, ph - py)
F =

¥ n
Y p; pppg 2 ng = ||xP) - x|| = '\/Z 2P - x;|% <&

i=1

by (1). Hence {xP} converges to x € R", s required. Thus R s
complete and hence is a Banach space,
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¥ 3. The Space [=. Recall that This space consists of all bounded
sequences x = {x;} of real or complex numbers with addition and scalar
multiplication defined by:

x+y={x;+y}

The norm in [* is defined by:
o
lIxll = Sup x|

We show that [* is a Banach space. ‘
Let {x?'} be any Cauchy sequence in I=, x? = {x;?)}. Then,
given any € > 0, there is a natural number n, such that:

Yp, gip, q 2 ng = ||xP) - x@|| = sﬁi; 5,0 —x, @] <€
iI=

So, for each i =11, 2, ...,
Vp,gip, g2 ng= |2 - 5@ < [|xP - x| < &

Hence {x;P’} is a Cauchy sequence of real (or complex) numbers. Since
R (or C) is complete, {x-'li’]} converges to x;, say, for each i = 1, 2, ...

" Take x = {x,}. We show that x € {" and hm i = x.
Since x;'?) — x;, there is a natural numher ny such that

Vpsp2n, = [P —x) <€/2,i=1,2, ... 1)
That is, | |

) .
Vp,p2n,= ||x®P -x|| = Sup |x;P) —x;| Sg/2 <€
i=m

Hence xP) — x. Also, from (1),
;] = |x; = %% + %@
< |xi*—xf-p]'| + lem:ll _
<g/2 + kp

Now €/2 + k, is a finite number, independent of i. Hence
x={x;} €l=. This proves the completeness of I,
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Sequence Space ‘s’ is a metric space but not a normed space

This space consists of the set of all (bounded or unbounded) sequences of complex
numbers i.e. s = {x: x is bounded or unbounded} and the metric d defined by

o 1 |f'_77'| _ _
d(x,Y) = Zj=1;1+|]fj—]77j| Where x = (S;]) and y = (le)-
. . : _ v 1§yl
Solution  Define a metric d(x,y) = X572, 2 T ]

We have already shown that it is a metric space. We just show that it is normed
space or not. For this suppose that d is induced by norm ||. || on s. Then

dCe,y) =lx—yll=dx0) =|x]|Z0=|x|][ =0

1 [gl
2/ 1+[¢]

= |lx|l = d(x,0) = X7,

o 1 |x&j| - 7 1 |«l|g]]

gy * gy # 1ol = flec xl # feclx]

= flcx|l =X

Hence s cannot be a normed space.

Euclidean space R™ and unitary space C*: These are Banach spaces with norm

1

defined by Ilxll = (27-4]¢;|")* = VIE I + [&I2 + ~ + [&a? in fact here norm
induced the metric
d,y) = llx —yll = VI& —m 2+ 1& =22 + -+ & — nal?

Proof

We have already shown that these are complete metric spaces. We just show that
these are normed spaces. Let ||. || be a norm on R™ defined by

1

lxll = (S3=il&°)F where x = (&, &, .., &) € R™ then

1

. . 2\2
i Il 20 ;vxeR® since (Xi,]g|°)F = 0
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1
i xll = (Zg ) =0elgl=0ex=0 ;vxeRYi=12,.,n
1 1

e 2 - 2 —
i, loc xl| = (Zealoc §5]°)° = Vo (Shag])* = lecllixll 5 vx € R and all

scalars <€ R or «xe C

1 1

1 1 1
v, lx vl = (Rl + 00 < (Salgl) + (Sialn)
lx + vl < x|l + llyll  ;Vx,y €R" (Triangle inequality)

Here ‘X’ and ‘y’ are arbitrary vectors in R™ and « is any scalar. The pair (R™, ||.|)
Is normed space. And hence (R™, ||.||) Is Banach (complete metric + normed)
space.

Remark

By similar argument we can show that (C", ||.||) Is Banach (complete metric +
normed) space.

Space IP: The space [P with p > 1 is a Banach space with norm given by
1
lxll = (ZE2418]7)?

Solution  Let {x,} be a Cauchy Sequence in [P where {x,,} = {xj(")}oo then for
1

any € > 0 there exists nyeN such that

p P
lx, — x|l = \/Z‘f |xj(") - xj(m)| <€ vVm,n =ng

= |xj(n) — xj(m)| <gevVmn=ny,=> xj(") is a Cacuchy sequence in R and since R
is complete Therefore xj(”) — x; € R then |xj(”) — xj| — 0 for each j

1

Next suppose that x = {xj} then ||x,, — x|| = (Z‘f |xj(") — x]-ro)5 — 0 Since

|xj(n) — xj| - 0foreachj= x,, - x

Now x = x,, — (x,, — x) € [P then x,, - x € [P. This shows that {x,,} converges in
[P. Hence [? is a Hilbert space.
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Space Cla, bj]: This is a Banach space with norm given by
x|l = max.c;|x(t)| where J = [a, b]

Proof

We have already shown that it is complete metric space. We just show that this is
normed spaces. Let || || be a norm on C[a, b] defined by ||x|| = max¢;|x(t)| then

I |lxll =0 since max;e;|x(t)| =0
i x|l = maxeejlx(®)]| =0 [x(®)|=0x=0
i, [loc x| = maxyej|oc x(O)] = |«|maxqe;|x(@®)] = [o|||x]]
iv. lx + yll = maxeex(€) + y(O)] < maxye;|x(®)] + maxe;|y ()]
llx + yll < x|l + Nyl (Triangle inequality)

Hence (C[a,b],||.]]) Is Banach (complete metric + normed) space.

Space C[a, b]:
This is not a Banach space with norm given by ||x|| = fflx(t)l dt

Proof

We have already shown that it is not complete metric space. We just show that this
is normed spaces. Let ||. || be a norm on C[a, b] defined by ||x|| = fflx(t)l dt then

i, llxll =0 since [ x(t)|dt > 0
i, lxll =[] lx(®)dt =0 a=bor |x(t)| =0 e x =0
i, Jloc x| = []loc x(8)] dt = |oc] [7]x(t)] dt = |oc]||x]|

v. N+l = L@ +y®lde < [Clx@lde + [y dt
llx + vl < x|l + Iyl (Triangle inequality)
Hence (C[a,b],]|.]]) Is not a Banach (metric + normed) space.

Remark: Since R is a Banach space and Q is subspace of R such that Q is not
closed, so Q is not a Banach space.
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/11,6 QUOTIENT SPACES
Let N be a normed space and S a subspace of N. For any x-E N,
the set ' _ .
x+S={x+s5:5 €8}
is called a co.éer of S determined bj' xora ﬁunslate of S by x. The set

{xr+S:xeN }
of all cosets of S in N is a linear space under addltmn and scalar

multiplication defined by: _
x+S+y+S=x+y+8S,x,yEN

and _a(x+S)=ax+SxeNae'F

This set of cosets of S in N is called the quotient space of N by S and is

- denoted by N/S.
For any subspace S of a Imear space N, the dlmenslon of N/S is

called the deficiency of S.
As a special case, a subspace of N having deficiency 1 is called a

hyperplane in N. Its cosets are also hyperplanes.
We can make N/S a normed linear space as follows:

Let ||.|| be the norm in N. Foranx + S € N/S, put
llx + Sll; = Inf llx + s]| = d(x, S) (D
seS

where d is the metric induced by the norm {|.[[ on N.

v~ 11.6.1 Theorem

If Sis a closed subspace of a normed space (N, |l H} then N/S is
also a normed- space under the norm defined by

llx + Sll; = Inf |[x + slf = dex, S) @
" Proof
| N,: Clearly
e+ Sll;20
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Also [lx + Sll; = 0if and only if Inf llx + s|l = 0, so that, by the
prOperty of infimum, there is a sequence {s }in S such that

llx + s, | >0asn —

But then:c + s —> O thatis s, > —x as n —)00 SmceSlsacIosed
subspace, x e 'S. Hence '
x + 8 = 8, the zeroelement of N/S.

No.Letx + S,y + S€ N/S,x,y € N. Then
x+S+y+S=x+y+SeN/S

By definition of |.||, in N/S, there are sequences {x,} and .} in S
such that

Jim Il + 5,1l = llx + Slly, Jim ly + 3,1l = lly + S,
‘ Hence, for any x, y in N and the definition of infimum,
lx+ S +y+Sily=llx+y+sl, Sllx+y+x, +y,ll

<l + x,ll + lly.+ y,ll

Taking limit as n — 00, we have:

L lx+S+y+ S|, = lx+y+ 8,
| <lim [lx +.x,0l + lim lly+y,/l
<llx+ slly + lly + sl

so that N; is satisfied.
Nj. For any scalar @ and x +Se N/S, consider the element
aix+8)=0x+S ‘

If a=0,then
lloie + S)lI; = llox + Sl = lISIl; = 0= || |lx + Sl
Solet o # 0. Then
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lax+ S|, = Inf lax+ s ||
seS

Inf Jlox + as'l|
s'eS

|a| Inf [Jx + s']|
5'eS

= |a] [lx + sil;

We now discuss the structure of N/S, S a closed subspac'e of N, in
relation to that of N. That is, we discuss the question of completeness of
N/S if N is complete. To this énd we prove:

v 11.6.2 Theorem

. Let S.be a closed subspace of a Banach space N. Then N/ §,
with the norm defined by (1), is also a Banach space. :

Proof _ .

To prove that N/S is a Banach space, we have to prove that every
Cauchy sequence in N/S converges to a point of N/S. Since a Cauchy
sequence is convergent if and only if it has a convergent subsequence, we

shall show that every. Cauchy sequence in N/S contains a convergent
subsequence.

Let {x, + S}, x, € N be a Cauchy sequence in N/S. Then, given
any € > 0, there is a natural number n, such that:

Vm,n;m,n2n; = ||x,,+S—(x,+8)l; = llx,,—x,+Sll, < €
Takee = 1/2andm =ny;,n =n; + 1. Then
lx,  + S=(x 41+ 8) = llx, ~x, 41 + Sll; <172

If we choose € = 1/4, then thére isa nai:ural number n, such that ]
x Xp, + 8= (p, 1 + S, = |lxn —Xp, 41+ Sll, < 1/4

Continuing in this way, we see that, in general, there is a natural
number ny such that
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: : i . 1
. " x"k +8- (xnk+l + S) ”] : ” 'xuk — xnk-l-l vy S " < 2_.1'

Ineachx, + S and Xn,+1 + S, select vectors yp, ¥, respectively such
that -t

lyr = ypeall < 1/2%
Then, for any k' > &,

”J’k_J’k-” = "J’.& Y+l T Yhs1 " Yps2 b - T Y _J’k-"

Sy zieall + lygsr sl +t Iyl
g L [ AL
< §5+§§+—1+ sees F E‘F
1
< = kl__l ‘_1) 0 as k _'} m-
- 12 :
1-3

Thus {y;} is' a Cauchy sequence in N. Since N is complete {7}
converges to a point y of N. Hence

- llx,, +S- (y-l-S)[!lS”y;,-J'”-—)Gask—-}m
so that the subsequence.
X, +S—2>y+ S eN/S
But thenx, + § >y + S by Theorem 5.1.4. Hence N/S is complete.

Reference

5.1.4 Theorem

In a metric space (X, d), every convergent sequence is a Cauchy
sequence.
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Can every metric on a vector space be obtained from a norm? The answer is no. A
counterexample is the space s. In fact, s is a vector space, but its metric d defined

by d(x,y) = 2?21%% cannot be obtained from a norm. This may

immediately be seen from the following lemma which states two basic properties
of a metric d obtained from a norm. The first property, as expressed by (i), is
called the translation invariance of d.

Lemma (Translation invariance)
A metric d induced by a norm on a normed space X satisfies.

i. dix+ay+a)=d(x,y)
iil.  d(xx,ocy) =|x|d(x,y)

Forall x,y,a € X and every scalar «.
Proof We have
dx+ay+ta)=lx+ta-+all=Ilx-yll=dxy)

d(xx,cy) = |lxx—ocy|l = |x|llx = yll = |oc| d(x,¥)

= Unit sphere The sphere S(0;1) = {x € X : |[x|| = 1} in a normed
space X is called the unit sphere.
= Bounded set A subset M in a normed space X is bounded if and only

if there is a positive number ¢ such that ||x|| < cfor every x € M.

= Closed subspace a subspace Y of a normed space X is a subspace of X
considered as a vector space, with the norm obtained by restricting the norm
on X to the subset Y. This norm on Y is said to be induced by the norm on
X. If Yisclosed in X, then Y is called a closed subspace of X.

» Subspace of a Banach space asubspace Y of a Banach space X is a
subspace of X considered as a normed space.

» Theorem (Subspace of a Banach space) A subspace Y of a Banach
space X is complete if and only if the set Y is closed in X.
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Theorem (Subspace of a Banach space)

A subspace Y ofa Banach space X is complete if and only if the set Y is
closed in X.

Proof

Suppose that Y is complete then we have to show that Y is closed. i.e. Y =Y
Obviously Y<SVY ... (1)

Let y € Y then there exists a sequence (y,,)5 in Y such that y,, — y, then (y,)){
being a convergent sequence is a Cauchy Sequence in Y. And since Y is complete
therefore y,, > y € Y.ie.y €Y then YCY ...l (2)

From (1) and (2) we have Y=Y Hence Y is closed.

Conversely suppose that Y is closed. i.e. Y = Y then we are to show that Y is
complete. For this let (y,,)7° be an arbitrary Cauchy Sequence in Y then (y,,)7 will
be a Cauchy Sequence in X. And as X is complete then y,, = y € X (X is Banach)
Theny € Y (- yislimitpointof Yie.y €Y% Theny€ey Y=Y

Sothaty,, = y € Y. Hence Y is complete.

Useful Definitions

= A sequence (x,,) in a normed space (X,]|.]|) is convergent if X
contains an x such thatlim,,_,||x, —x|| =0
Then we write x,, = x and call ‘X’ the limit of (x,,).

= A sequence (x,) ina normed space X is Cauchy if for every € >0
there is ann, such that ||x,, — x,|| <€ forall m, n>n,

= If (x) is a sequence in a normed space X, then }.{° x, is a series in X.
we can associate with (x;) the sequence (s,,) of partial sums
Sp, =X; +Xx, +-+x, Wheren = 1,2,... If (s,) isconvergent, say,
lim,,_,, s, = s then we say that the series }.{° x;, is convergent and we write
27 x, = s and if X3°||x, || converses then the series ).7° x;, is said to be
absolutely convergent. However, we warn the reader that in a normed
space X, absolute convergence implies convergence if and only if X is
complete.
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Note

= |n case of R and C we have absolute convergence implies convergence. i.e.
27 |xk| <00 = YT x < oo

= But in normed space in general we have absolute convergence does not
implies convergence. i.e. 2. 3°[|xxl] < 00 # Y x, < o0

Example
Consider [* = {x = (fj)zo: ¢jis Real (Complex)&Supj|fj| < 00} with
llx|| = Sup;|¢;| and the induced metric on [* is given by

d(x,y) = llx — yll = Sup;|&; — n;| and we clearly know that (1%, ||.]|) Is Banach
Space. Let Y be the set of all sequences with only finitely many non — zero terms.

ey = {y = (nj)zo:nj =0;Vj> n} thenY € 1% as Sup;|n;| < o».

T = (1§§ %00 ) lies in Y but
' w_(q11 1 1 1 -
lim, ()7 = (1, S T T ) ¢ Y then Y is not closed and

therefore is not complete. Now we will show that absolute convergence does not
implies convergence.

© 1 i
Define (y,)¥ = (n§”))1 where 77;”) = {nz T=M then

0 ;j#n
y, = r]](.l) = (1—12,0,0, )

o =17 = (o,ziz,o,o, )

Yo =1 =(00,..,5,00,...)

1 1 1
= ”yl” :1_2 ) “yZ” =2_2'"" ) ”yn” :;

1 1 1
=Xl =5+ 5+ =275 <o
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= Y7y |l < oo i.e. sequence is absolutely convergent.
7 nip converges if p > 1)

0 1 1 1 1 1 ) c o o .
===, .= cl®=>

But 21 y‘l’l (12J22J nz'(n+1)2'(n+2)2' € Y l Zl yn IS nOt

convergent. Hence in a normed space absolute convergence does not implies

convergence.

Remember

= A subspace of a vector space X is a nonempty subset Y of X such that for all
v1,Y2 €Y and all scalars «, 8 we have < y; + By, € Y. Hence Y is itself
a vector space, the two algebraic operations being those induced from
X. A special subspace of X is the improper subspace Y = X. Every
other subspace of X { {0}} is called proper.

= Another special subspace of any vector space X isY = {0}.

= A linear combination of vectors x;, x,, ..., x,,, Of a vector space X is an
expression of the form «; x; +, x, + -+ +,,, x,,, Where the coefficients
4, X5, ..., X, are any scalars.

= For any nonempty subset M € X the set of all linear combinations of vectors
of M is called the span of M, written spanM.
Obviously, this is a subspace Yof X, and we say that Y is spanned or
generated by M.

= Linear independence, linear dependence: Linear independence
and dependence of a given set M of vectors xq,x,,...,x,, (m=1) in a
vector space X are defined by means of the equation
Xq X +Xy Xg + oo+, X, =0
where «;,,,...,%,, are scalars. Clearly, equation (above) holds for
o, =, = -+ =X,,,= 0. Ifthis is the only m — tuple of scalars for which
equation holds, the set M is said to be linearly independent. M is said to be
linearly dependent if M is not linearly independent, that is, if equation also
holds for some m — tuple of scalars, not all zero.

= An arbitrary subset M of X is said to be linearly independent if every
nonempty finite subset of M is linearly independent. M is said to the
linearly dependent if M is not linearly independent.
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Schauder basis (or basis)

If a normed space (X, ||.||) containsa sequence (e,) with the property that for
every x € X thereis a unique sequence of scalars (e,,) such that

llx — (¢q e +¢; €5 + -+, )| > 0 asn — o
Then (e,,) is called a Schauder basis (or basis) for X.

The series ).1° «; e, which has the sum X is then called the expansion of x
with respect to (e,), and we write x = Y3° o, e,

Theorem
Show that if a normed space (X, ||. ||) has a Schauder basis, it is separable.
Proof

Case — I: Suppose that (X, ||.||) Is a real normed space. Let (e,,)7" be a Schauder
basis for X. Let M = {x:x =o¢; e; +¢; €, + -+, e, ; € Q}.

Since Q is countable therefore is countable M.

Now suppose z € X, since (e,,)7" is a Schauder basis for X, therefore there exists a
sequence of scalars (real numbers) (oc,,)7° such that

|z — (o¢; €3 +¢; €3 + - 40, €p)|| > 0 asn — oo

Then for all €> 0 there exists n, € N such that ||z — X1 o; ¢;|| <€ ; vn >n,
>z=)Xje asn— o

If oc;€ Qthen Y7 s e, EM

>zZEM=>zeEMUMY=>zeM

If oc; ¢ Q then we can approximate o; by rationals so that we can find
corresponding combination o<} e; +o; e, + -+ +;, e,, Where o<;€ Q which will
approximate z. i.e. ||z — X7 «; ¢;|| <€
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Since z and € were arbitrary, so we conclude that every ball with center z and
radius € contains an element of M implies z € M@

>zZEMUM?=>zeM
So M is dense and Hence X is separable.

Case — I1: Suppose that (X, ||.]]) Is a Complex normed space. Let (e,)7" be a
Schauder basis for X. Let M = {x: x =x; e; +%, e, + -+ +<,, e, } where
Re x;,Img «;€ Q then Since Q is countable therefore is countable M.

By similar argument as above we can show that M = X
So M is dense and Hence X is separable.
Conversely, does every separable Banach space have a Schauder basis?

This is a famous question raised by Banach himself about forty years ago. Almost
all known separable Banach spaces had been shown to possess a Schauder basis.
Nevertheless, the surprising answer to the question is no. It was given only quite
recently, by P. Enflo (1973) who was able to construct a separable Banach
space which has no Schauder basis.

Theorem (No need to Prove)

Let X = (X, ]|.]) be anormed space. Then there is a Banach space X and an
isometry A from X onto a subspace W of X which is dense in X. The space X
IS unique, except for isometries.

Theorem (Banach’s Criterion)

A normed vector space X is complete if andonly if every absolutely convergent
series in X is convergent.
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Finite Dimensional Normed Spaces and Subspaces

Avre finite dimensional normed spaces simpler than infinite dimensional ones? In
what respect? These questions are rather natural. They are important since finite
dimensional spaces and subspaces play a role in various considerations (for
Instance, in approximation theory and spectral theory). Quite a number of
interesting things can be said in this connection. Hence it is worthwhile to collect
some relevant facts, for their own sake and as tools for our further work.

A source for results of the desired type is the following lemma. Very
roughly speaking it states that in the case of linear independence of vectors we
cannot find a linear combination that involves large scalars but represents a
small vector.

Lemma

Let {xq,x5,... ,x,} be a linearly independent set of vectors in a normed
space X (of any dimension). Then there is a number ¢ >0 such that for

every choice of scalars o<, %,,... ,«, we have
llocy 2 +0¢; x4+, x,0| = c(focy | + |ocy| + -+ |, ) (€>0). ...... (1)
Proof

We write s = |o¢q| + [o¢p| + -+ [oc,|. If s =0, all «; are zero, so that
llocy xq +0¢; x+... 4+, X, = c(J¢q| + |, | + -+ + |o<,,|) holds for any c.

Let s > 0. Then (1) is equivalent to the inequality which we obtain from (1)
by dividing by s and writing 8; = <, that is,

IB1x1 + By Xot. .. +Bpxpll = @ ;ZHBi|l=1

Hence it suffices to prove the existence of a ¢ >0 such that (2) holds for
every n-tuple of scalars g, B, , ..., B, With X| ;| = 1.

Suppose that this is false. Then there exists a sequence (y,,) of vectors

Ym = Bx; 4+ B xy+.. 48 x,, such that ||y, |l = 0 asm — oo

n
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Now we reason as follows.

Since .1 |ﬂj(m)| = 1, we have |ﬂj(m)| < 1. Hence for each fixed ‘J’ the sequence

(3}?’")) = (ﬁl(m),ﬂz(m) (m)) is bounded. Consequently, by the Bolzano-

n

Weierstrass theorem, ( 1("‘)) has a convergent subsequence. Let 8, denote the

limit of that subsequence, and let (y, ,,,) denote the corresponding subsequence of

(¥m)- By the same argument, (y,,,) has a subsequence (y,,,) for which the

corresponding subsequence of scalars ( Z(m)) converges; let 8, denote the limit.

Continuing in this way, after n steps we obtain a subsequence

nm) = O1m Y2mo---) of () whose terms are of the form y,, ,,, = X7 yj(m)xj

)

and Y7 |yj(m)| = 1 with scalars yj(m) satisfying yj(m — B; as m — oo. Hence,

as m — oo we have y,, =y = X1 B;x;

where Y1|B;| =1, so thatnot all B; can be zero. Since {x;,x,,... ,x,} isa
linearly independent set, we thus have y # 0.

On the other hand, ¥, ,, = ¥ implies ||yn.m|| = llvll, by the continuity of
the norm. Since ||y, || — 0 by assumption and (y,, ,) is a subsequence of (y,,,), we
must have ||y, || = 0. Hence |ly|l = 0, so that y = 0 by norm property.

This contradicts y # 0, and the lemma is proved.
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Theorem-15: Let {x,,X,...,X,} be a linearly independent set of vectors in

a normed space X (of any dimension). Then there is a-number ¢ > 0 Such
that for every choice of scalars a,,a,,...,a,, we have

s + @, + .. + @, |2 (e + || + .. +]a)

PU, 1987 (M.Sc. Math)

|| Xy + Xy + ... + X, " > C(]a1| flazl s, +|a,,|)
is satisfied for every value of ¢ and there is nothing to prove, so let
|| +[aa + .. +]ara| 2 0 A1)
Then a; #0 for some 1sj5n.

Next suppose that 4 =y +]ay| + . + ||

Proof: If |ay| +|t,| + ... +|a,| =0, then the inequality

a.
Then —ﬂ!—io for some 1< j<n.
Since {x,, X2, Xp} is linearly independent set, so
@
— X+ ==X, + ... +—ﬁix,, #0

Since the norm of nonzero number is always positive, so we can find a
number ¢ >0 such that '

= ;H" aXy + Xy + o+ Xy | 2

:>| Xy + Xy + .t apX, ”2 CI'BI

:>, GX+ Xy + .+ apX, "2 c“a,|+la2|+ +|a,,||

:>|| Xy + QpXy + ... +apX,, || 2 C(l%l s lazl oot |a,,|)
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Theorem

Every finite dimensional subspace Y of a normed space X = (X, ||.||]) is complete.
In particular, every finite dimensional normed space is complete.

Proof

Let (X, [|.]]) Be anorm space and Y is subspace of (X, ||.||) with dim(Y) = n and
let {e,, e,,... ,e,} be abasis forY.

Let (y,,) be a Cauchy sequence in Y then for all €> 0 there exists n, € N such
that [y, — wll <€ ; Ym,n >n,

Since y,,, € Y ; vm therefore y,, =ocgm) e +0<§m) ez+---+°<§lm) €n

Now using ||v,, — yll <€ ; Vm,n > n, we have
”( o™ — (n)) e, + (OCE"‘)—OCE")) e, +.. +( o™ _ (n)) en” <€ ;Vm,n>n,

Now using the result ||o<; x; +o¢; xy4... 4+, X, || = c(|ocq | + || + -+ + o, )
we have c(|o¢q | + |Xo| + -+ |, ) < ||o¢q %3 +¢; x5+...+, x,|| and hence

(Zn|°<(m) (n)|)< ”( o™ _ (n)) 1+(ocgm)—ocg")) e, +.. _|_( o™ _

(n))en” <E ; Vmn>n,
C (Z’f |o<l§m)—o<§n)|) <€E ; Vm,n>n,
27 o™ —oc™| < £ 5 ¥m,n > ng and for all i

Hence for each i; (oc( )) is a Cauchy sequence in R or C and since R or C are

(m)

complete therefore ;" —oc;€ R (may take C)

Implies since Y is linear combination of a basis of Y therefore

(m)

Vi =™ e, +0<(m)

(m)

ert...+x;, e, >y =X e; +X, e, +...+X, e, EY

Now we check whether this convergence is under the norm or not.
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For this we consider

lym = Il = || 23 (o™=, ) e;

< 37 o™ —oc;| e

IV — VIl < kXE |oc§m)—ocl- Where k = max|le|l ;1<i<n

(m)

i

lym — ¥l SkZ’f|0<§m)—0<i —0as m—> oo («"V>x;as m — o)

Implies y,,, — y under ||.||. And hence (Y, ||.]|) Is complete.

We have already prove that “A subspace Y of a Banach Space (X, ||.||) Is complete
if and only if it is closed”

From this result and previous result it is follows that
Theorem Every finite dimensional subspace Y of a normal space X is closed in X.

We shall need this theorem at several occasions in our further work.

Note that infinite dimensional subspaces need not be closed. (Above Theorem not
Applicable)

Example: Let X = C[0,1] be a normed space and Y = span(x,, x1,':+), where
xi(t) = t/, so that Y is the setof all polynomials. Y is not closed in X.

Example: Let X = C|[a, b] be a normed space with
x|l = max,epqpilx(®)]. We know that (C[a, b], [|. ||) Is complete (i.e. a Banach
Space) and Y = span(1,t,t?,--),so that Y is the setof all polynomials.

Then Y € Cla, b] (Since every polynomial is continuous function)

Obviously Y is infinite dimensional space.

tn

n!

Let (y,,) be asequenceinY definedbyy, =1+t + tz—zl + -+

2 n
Then limy e Y = liMyey (14 £+ S+ + =) =ef g ¥

Implies Y is not closed. Hence Y is not complete.
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Another interesting property of a finite dimensional vector space X is that all
norms on X lead to the same topology for X, that is, the open subsets of X are the
same, regardless of the particular choice of a norm on X. The details are as
follows.

Equivalent norms

Anorm ||.||; on a vector space X is said to be equivalent to a norm ||. ||, on
X if there are positive numbers a and 8 such that for all x € X we have

allxlly < llxll1 < Bllx]l,

This concept is motivated by the fact that Equivalent norms on X define the same
topology for X.

Example Let X = R? with norm ||x||; = |&]| + |&] ;x = (&, &,) € R? and

llxllz = (BF18:12)Y2 = 1112 + |€2]? then show that [|x||; and [|x||, are
equivalent norms.

Solution
xlly = &1 + 1861 = X3ET = XD < CHDA)Y2 (16122
lxlly < V2lxll,

1
5”36”1 < |lxll; .eoririnna. (1)

Now [lxllz = (E3&IDY2 = VG2 + 1617 < 18] + 18] = lIxlly
lxlly < llxlly e, 2)

From (1) and (2) %lelll < |lxllz = (Dlxlly

Implies ||x||; and ||x]||, are equivalent norms.
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Theorem

The relation of ‘being equivalent to’ among the norms that can be defined on a
linear space N is an equivalence relation.

Proof

Reflexive: For any norm ||.|| on N and for x € N
allx|l < [lx[l < Bllxl

Is satisfied for « = = 1. Hence ||. || ~ |]. ||

Symmetric: If ||.||; ~ ||. ||, then there are positive numbers a and 8 such that for
all x e N we have «allx|l, < |lxll; < Bllxll,

1 1
= 2 llxlly < llxllz < 7 llclly

Hence [|. |l ~ II. [l1

Transitive: If ||.[l; ~ |I. ]I, and ||. ||, ~ |I- |l then there are positive numbers
a, 5, a; and B, such that for all x € N we have

allxlly < llxlly < Bllxll; and aylxlls < [lxll2 < Billx]l3
< <1 <k < B
> allxlls < llxlly < < llxlly < Zlxll, < 2. By llxlls
1 B
= aqllxllz; < —llxlly < = Billxlls = aaqllxll; < llxlls < BB1llxll3
Since a, 8, a4, B1 > 0 therefore aa;, 55, > 0

Hence |[. [[; ~ []. ]l

Consequently the relation of ‘being equivalent to’ among the norms that can be
defined on a linear space N is an equivalence relation.
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Theorem (Every norm generate a topology)

Any two equivalent norms on a linear space N define (induced) the same topology
on N.

Proof: Let ||.||; ~ II- |l then there are positive numbers a and b such that for
all x e N wehave allx||, < ||x|l; < bl|x]|,

We show that every basic open ball in (N, ||.|[;) isopenin (N, ||.||,) and
conversely.

Foran x € N let B(x; r) be an open ball in (N, ||. ||,), then we show that it is open
ball in (N, ||.,).

Forthislety € B(x;r)then||x —y|l, =r, <7

r-rg

Consider B;(y; ") in (N, ||.||,) where r’ =

Then for any z € B, (y; ") we have ||z — y||, < r' then
lz=xlly =llz=y+y—xli <llz=ylly + lly —xll,

lz=xlls < bllz=yll, +n, since || [l; ~ [l.lz and [fx = yll; =7 <7

r—r
b

||z—x||1<br’+r1=b( )+r1=r:>||z—x||1<r

Hence z € B(x;r) implies z € B, (y;r") € B(x;r). Hence B(x;r) is open ball in
(N, []. l5). Similarly we can conversely show that every basic open ball in

(N, |I-1I,) is open in (N, |. ||;). Hence Any two equivalent norms on a linear space
N define (induced) the same topology on N.
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This theorem shows that equivalent norms preserve the Cauchy property of
sequence.
Theorem

Let ||.||; and ||. ||, be equivalent norms on a linear space N, then every Cauchy
sequence in (N, ||.[|;) is also Cauchy sequence in (N, ||. ||;) and conversely.

Proof: Let (x,,) Cauchy sequence in (N, |.||;) then for given any €> 0 there
exists n, € N such that

1%, — x,1l1 <€ ;Vm,n > n,

= allz < 2 1 = xalls <5 5Vm,n > g since [I. 1y ~ Il Il
Xy, — x40, <€ ;VmM,n > n,

Hence (x,,) Cauchy sequence in (N, ||.||,). Converse is similar.

Theorem

Let ||.||; and ||. ||, be equivalent norms on a linear space N, then every Convergent
sequence in (N, ||. ||;) is also Convergent sequence in (N, ||.|[,) and conversely.

Proof: Let (x,,) Convergent sequence in (N, ||.||;) then for given any €> 0
there exists n, € N such that

|x,, — x||; <€ ;Vn >n,

1 € .
lxm = xllz < =l —xlls <= ;Vn>ng since [ [l ~ I 1l
llx,, — x|, <€ ;V¥n>n,

Hence (x,,) Convergent sequence in (N, ||.[|,). Converse is similar.

Zeroth Norm

The equation [|x||, = Supi|x;| ;x;€ Field defines a norm on a normed space X
and is said to be zeroth norm.
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Theorem

Suppose ||.||l; and ||. ||, are equivalent norms defined on X. Let N be a finite
dimensional subspace of (X, ||.||;) then N is complete as subspace of (X,]||.[l1). In
particular (N, ||.||,) is complete.

Proof: Let ||.||; ~ |I- Il then there are positive numbers a and b such that for
all x € X wehave allx|, <l|lx|l; <bllx|ll,  .covieniiiil (1)

Let N be a finite dimensional subspace of (X, ||.||;) and {e,, e,, ..., e, } be a basis
for N. Then each y € N has a unique representation y = ».T «; e;.

Suppose (y,,) be a Cauchy sequence in N then for all €> 0 there exists n, € N
such that ||y, — w1 <€ ; Ym,n > n,

= Zrll (m) Zn (n)

<€ ; Vm,n >n,
1
= |2 (ocgm)—ocgn)) eifl, <€ ; vm,n > n,
( o™ _ (n))
el

= (|37 (ocgm)—ocgn)) eifl, < S ; vm,n > n,

= |2 (ocgm)—ocgn)) e;

S
<-,;,Vmn>n,
1 a

= Supl ”oc(m) (”) || - ;Vvmn>n, = ( o™ )) is a Cauchy sequence in F.

since F being Real (Compex) Is complete therefore forany i = 1,2, ...,n

|oc(m) ai| — 0 asm — oo. Then fory = ¥ «; e; € N we have

1y = Yl = || 23 (o™=, ) e;

<27 o™ i leills

1ym = ylly < K37 o™= g where K = Sup?'le;ll;

= [y —yll1 20 asm - o

Thus (y,,,) converges to (y) in N. Hence N is complete as subspace of (X, ||.||1).
In particular (N, ||.||,) is complete.
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Theorem (Any two norms on a finite dimensional linear space are equivalent)

On a finite dimensional vector space X, any norm ||.|| is equivalent to any other
norm ||. |[o
Proof

Let X be a finite dimensional normed space. And let dim(X) = n also
{e,, e,, ..., e, } be a basis for X. Then each x € X has a unique representation
X =%, e; +%, e, + -+, e, then

x|l = [y eq +¢; e; + -+, e, || = c(XT]ox;|)
1
= |lxll 2 cX3fo D) = GfogD < —flxll (1)
K
= KQ T ) < = x|l )

Now |[x|[q = [[e¢; €5 +o¢; ey + -+ 40, eyl

= llxllo < Te<qllleqllo + localllezllo + -+ + locnlllenllo

= [[xllo < KT i) where K = max|lejll, ;1 <i<n

= llxllo < K = Ilx] using (1)

> lxllo < Xl () with oc= g
Similarly if K' = max||e;|| ;1 <i<nthen|x|| < K'CH<;) ..ccvvnen... 4)

And Qo)) < %lell0 and with respect to this we get

= K' M) < %IIxII0 where K' = max|le;]| ;1<i<n

! - K
= K'Qte) < Blxlle (5) with g = —
Hence x| < K'Qte ) < Blxlle ceeenenins (6) using (4) and (5)
> ||x|[o < x|l < Bllxllo using (3) and (6)
Hence ||. || and ||. ||, are equivalent norms.
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Compactness

A metric space X is said to be compact (or more precisely sequentially
compact) if every sequence in X has a convergent subsequence. A subset M
of X is said to be compact if M is compact considered as a subspace of X,
that is, if every sequence in M has a convergent subsequence whose limit is
an element of M.

Remark

There are three ways of defining the concept of compactness in a general
Topological Space.

I.  Every open cover has a finite subcover.
Ii.  Every countable cover has a finite subcover.
ii.  Every sequence has a convergent subsequence.

Lemma

A compact subset M of a metric (X, d) space is closed and bounded.
Proof

Suppose that M is compact. We are to show that M is closed. i.e. M = M
Obviously M € M

Now let x € M then there exists a sequence (x,,) in M such that x,, - x

Since M is compact, (x,,) has a convergent subsequence which converges to x, so
x € M (By definition of convergence) and we have M € M

SoM = M (i.e. M is closed)

Now we are to show that M is bounded. For this suppose M is compact but
contrarily not bounded. Then there is an unbounded sequence (y,,) in M then
d(yn, b) > ny where b is fixed element of M. Then (y,,) cannot have convergent
subsequence, which is a contradiction to the fact that M is compact. Our
supposition was wrong and hence M is bounded.
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Remark: The converse of this lemma is in general false.

Proof Let X =[® then dim(X) = oo. If x = (fj)zo € 1~ then ||x|| = Sup;|¢;|.

Let M = {e; = (1,0,0,...),e, = (0,1,0, ...), ...} then |les|| = |le]| = 1. So M is
bounded. Since M is a point set, as no limit point is there, so we can suppose that
all limit points lies in M, so M is closed. But M is not compact because the
subsequence e, es, €100, €520 NOt cOnverges to limit point.

Theorem

In a finite dimensional normed space X, any subset M € X is compact
(sequentially compact) if and only if M is closed and bounded.

Proof

Suppose that M is compact. We are to show that M is closed. i.e. M = M
Obviously M € M

Now let x € M then there exists a sequence (x,,) in M such that x,, - x

Since M is compact, (x,,) has a convergent subsequence which converges to x, so
x € M (By definition of convergence) and we have M € M

SoM = M (i.e. M is closed)

Now we are to show that M is bounded. For this suppose M is compact but
contrarily not bounded. Then there is an unbounded sequence (y,,) in M then
d(y,, b) > ny where b is fixed element of M. Then (y,,) cannot have convergent
subsequence, which is a contradiction to the fact that M is compact. Our
supposition was wrong and hence M is bounded.

Conversely

Let M be closed and bounded. We are to show that M is compact. Let dim(X) = n

and {e;, e,, ..., e,,} abasis for X. Let (x,,,) be an arbitrary sequence in X then

X =™ e, +oc™ e, 4. +x™ ¢, forallm € N

Since M is bounded therefore (x,,) is bounded then there exists ‘k > 0’ such that
x| <k ;VYmeN then
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k = ”ocgm) e, +ocgm) ey+... +oc™ en” > C(Z’f |oc§m)|) ;Vm € N
C(er|0<§m)|) <k ;YmeN
Sile™|<% svmen (1)

This means that for all i = 1,2, ..., n the sequence (ocgm)) is bounded. Then

by Bolzano-Weierstrass Theorem, it has a convergent subsequence which
converges to «;, then (x,,,) has a convergent subsequence (z,,) which converges
to z = Y1 &;e;. Since M is closed, therefore z € M. This shows that the arbitrary

sequence (x,,) in M has a subsequence which converges in M. Hence M is
compact.

Theorem

Let N be a normed space in which every closed and bounded subset is compact.
Then N is a Banach Space.

Proof

Let N be a normed space in which every closed and bounded subset is compact.
Then every sequence in such a set has convergent subsequence. Let (x,,) be a
Cauchy sequence in N and A = (x4, x,, ..., x,,) as a Cauchy Sequence is bounded.
Let A be the closure of A then by our assumption A4 is compact. So the sequence
(x,,) in A has a convergent subsequence (x,, ).

Suppose that x,,, - x then x € A.
Moreover (x,,) also convergent to x.
Hencex € A € N.

Thus N is a Banach Space.
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F. Riesz's Lemma

Let Y and Z be subspaces of a normed space X (of any dimension), and
suppose that Y is closed and is a proper subset of Z. Then for every real
number 6 in the interval (0,1) there is az € Z such that

lzl=1, |lz —y|| =6 forallyeyY,.
Proof

We consider any v € Z —Y and denote its distance fromY by a, that isin
the figure we have a = inf,cy|lv — yll = 0. Then clearly a > 0 since Y is closed
and Y contains all of its limit points.

(. )

~
a™

— W,

X

Choose 6€(0,1), then by definition of infimum, we can find a y, € Y such that
aslv-yll<5 (1)

Note that% >a since0<f <1

1

Letz = c(v —y,) where ¢ = m— then

zIl = llc( =yl = [clllv = yoll = =—=llv —yoll = llz]l = 1
lv—yoll

Now we show that ||z — y|| = @ forally eY.

Iz = yll = llc@ = yo) =¥l = ¢ | (v = y0) = 2|
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lz —yll=c ”v - (yo + %y)” >c.a Since (yo + %y) € Y by definition
1 6 :
—yllz2——.a="-.
lz —yl| = o 2 e using (1) and a > 0

Hence ||z —y|| = 6 forally €Y.
F. Riesz's Lemma (Another Form)

Let M be a proper closed subspace of a normed space N and a be any real number
in the interval (0,1). Then there isan x, € N such that ||x,]| = 1, ||x — x4]| = a
forall x € M.

Proof

Since M is proper closed subspace of normed space N, then there exists x; € N/M.
Putd = inf,eyllx — x;]| = 0. Then clearly d > 0 for otherewise x; E M = M. A
contradiction since M is closed and M contains all of its limit points.

Choose ae(0,1), then by definition of infimum, we can find a x, € M such that

d 1 1 a
d<l|lxqa—x || <=-=2>=> had
Note that ¢ > 2 Where ¢ =
d lxg—x41l
Let x, = c(x; — x,) then
lxgll = llc(xy — x) Il = lclllx; — x0ll = lx1 — xoll = llxgll =1

10—l

Now we show that |[x — x,|| = a forall x € M.

X - X
b = xall = llx = cCry = x)ll = ¢ ||+ x0 — 2, || = cllz = 2,1l with z =+ x,
lx = x4l =cllz—=x4]|| = cd Since z € M by definition

= a

a
— > —
lx = xgll = d.5

Hence ||[x — x4|| = a  forall x € M.
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In a finite dimensional normed space the closed unit ball is compact.
Conversely, Riesz's lemma gives the following useful and remarkable theorem.
Theorem
If a normed space X has the property that the closed unit ball
M = {x:||x|| < 1} is compact, then X is finite dimensional.
Proof

We assume that M is compact but dim X = oo, and show that this leads to a
contradiction. We choose any x; of norm 1. This x; generates a one dimensional
subspace X; of X, which is closed and is a proper subspace of X since
dim X = co. By Riesz's lemma there is an x, € X of norm 1 such that

1
e =l 26 =

The elements x;, x, generate a two dimensional proper closed sub-space X, of X.
By Riesz's lemma there is an x; of norm 1 such that for all x € X, we have

llx; — x|l =

N |-

In particular, ||x; — x| = %and x5 — x5 =

N|R

Proceeding by induction, we obtain a sequence (x,,) of elements x,, € M such that

%, — x,|| = %With m#n

Obviously, (x,,) cannot have a convergent subsequence. This contradicts the
compactness of M. Hence our assumption dim X = oo is false, and dim X < oo,
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Compact sets are important since they are "well-behaved": they have several
basic properties similar to those of finite sets and not shared by noncompact
sets. In connection with continuous mappings a fundamental property is that
compact sets have compact images, as follows.

Theorem

Let X and Y be metric spaces and T: X — Ya continuous mapping. Then the image
of a compact subset M of X under T is compact.

Proof

By the definition of compactness it suffices to show that every
sequence (y,) in the image T(M) c Y contains a subsequence which
converges in T(M).

Since y,, € T(M), we have y,, = Tx,, For some x,, € M. Since M is compact, (x,,)
contains a subsequence (x,, ) which converges in M. The image of (x,, ) is a

subsequence of (y,,) which converges in T (M) by

“A mapping T: X - Y of a metric space (X, d) into a metric space (Y, d)
IS continuous ata point xo € X ifand only if x,, = x, implies Tx,, - Tx,”
because T is continuous.

Hence T (M) is compact.

From this theorem we conclude that the following property, well-
known from calculus for continuous functions, carries over to metric spaces.
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Corollary (Maximum and minimum)

A continuous mapping T of a compact subset M of a metric space X into R
assumes a maximum and a minimum at some points of M.

Proof
T(M) c R is compact by Theorem

“Let X and Y be metric spaces and T: X — Ya continuous mapping. Then the
Image of a compact subset M of X under T is compact.”

And closed and bounded by Lemma [applied to T(M)],
“A compact subset M of a metric space is closed and bounded.”

So that infT(M) € T(M), supT(M) € T(M), and the inverse images of these two
points consist of points of M at which Tx is minimum or maximum,
respectively.

Local compactness: A metric space X is said to be locally compact if every
point of X has a compact neighborhood. For example R and C and, more generally,
R™ and C™ are locally compact.

Linear Operators

In calculus we consider the real line R and real-valued functions on R (or on a
subset of R). Obviously, any such function is a mapping of its domain into R. In
functional analysis we consider more general spaces, such as metric spaces and
normed spaces, and mappings of these spaces.

In the case of vector spaces and, in particular, normed spaces, a mapping is
called an operator.

Of special interest are operators which "preserve” the two algebraic operations of
vector space, in the sense of the following definition.
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Linear operator
A linear operator T is an operator such that

(i)  The domain D(T) of T is a vector space and the range R(T) lies
in a vector space over the same field

(i) for all x,y € D(T) and scalars o, we have
T(x+y) =Tx + Ty
T(xx)=xTx

l.e. forall x,y € D(T) and scalars «, 5, we have
T(xx+ py) =x Tx + BTy

Observe the notation; we write Tx instead of T'(x); this simplification is
standard in functional analysis. Furthermore, for the remainder of the book we
shall use the following notations.

D(T) denotes the domain of T.
R(T) denotes the range of T.
N (T) denotes the null space of T.

By definition, the null space of a linear operator T is the set of all x € D(T)such
that Tx = 0.i.e. N(T) ={x €e D(T): Tx = 0}

(Another word for null space is "kernel” We shall not adopt this term since we
must reserve the word "kernel" for another purpose in the theory of integral
equations.)

Examples of different Operators

= |dentity operator: The identity operator I: X — X is defined by I(x) = x
for all x € X. We also write simply Ix for I; thus, Ix = x. This s linear
operator, since I(< x + fy) =x x + By =« Ix + Bly

= Zero operator: The zero operator 0: X — Y is defined by 0x = 0 for all
x € X. This is linear operator, since 0(«< x + fy) =0 =x 0x + S 0y

» Differentiation: Let X be the vector space of all polynomials on [a, b]. We
may define a linear operator T on X by setting Tx(t) = x'(t) for every
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x = x(t) = ag + a;t + a,t? + --- + a,t™ € X, where the prime denotes
differentiation with respect to t. This operator T maps X onto itself. This is
linear operator, since

T(o x(t) + By(t)) = (x x(t) + By(t)) =< x'(t) + By'(t)

T(o< x(t) + By(t)) =x T(x()) + BT (¥ (1))

Integration: A linear operator T: [a,b] = R defined by Tx = f: xdt.
Linear in the sense as follows;

T(ox + By) = [ (cc x + By)dt =« [ xdt + B [ ydt =« Tx + B Ty
Multiplication by t: Another linear operator from C[ a, b] into itself is
defined by Tx(t) = tx(t). T plays a role in physics (quantum theory)
Elementary vector algebra: The cross product with one factor kept

fixed defines a linear operator T; : R3 —» R3. Similarly, the dot product
with one fixed factor defines a linear operator T, : R3 - R,

say, Tox = x.a = §1a; + &,a, + §3a3 where a = (o) € R is fixed.
Matrices: A real matrix A = () with r rows and n columns
defines an operator T : R™ = R" by means of y = Ax where x = (S j) has
n components and y = (n;) has r components and both vectors are

written as column vectors because of the usual convention of matrix
multiplication; writing y = Ax out, we have

”"ﬂlﬁ )y, w2 o aml | &

2 a1 Q2 =t lap 62

\—T’r—l L Oy Qo " amJ

L&

T is linear because matrix multiplication is a linear operation. If A were
complex, it would define a linear operator from C™ into C".
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In these examples we can easily verify that the ranges and null spaces of the
linear operators are vector spaces. This fact is typical. Let us prove it, thereby
observing how the linearity is used in simple proofs. The theorem itself will
have various applications in our further work.

Theorem: Let T be a linear operator. Then:

I. Therange R(T) is a vector space.
. Ifdim®(T) =n < oo, then dimR(T) < n.
iii.  The null space V' (T) is a vector space.

Proof

(a) Lety;,y, € R(T) then there exists x;, x, € D(T) such that
y1 =Tx1,y, =Tx;
We know that D(T) is a vector space therefore « x; + fx, € D(T)
Then T (< x; + fx,) =x Txy + fTx, =< y; + By, € R(T)
Hence R(T) is a vector space.

(b) Consider dim D(T) = n < oo and choose y,, Vo, ..., Vi, Vn+1 from R(T)
then there exists xq, x5, ..., X5, Xp41 from D(T) such that
Y1 =Tx1,y2 =Txz oo, Yn = TXp, Y41 = TXnq
Since dim D(T) = n therefore the set {x;, x5, ..., X, X 41} IS linearly
dependent. And hence
X Xg +Ky Xy + o +X 11 Xpp1 =0 VX, #F0
T(¢q xq +0¢, x5 + -+ 1 X)) =TO0) =0 ;V;,#0
< Tx; +¢, Txy + oo+ Txpy1 =0 VG, # 0
Y+ Yo+ F X Yper =00 5 VX# 0
This shows that {y;, v5, ..., ¥, Yn+1 1 1S a linearly dependent set because the
o, are not all zero. Then R(T) has no linearly independent subset of
n + 1 or more elements. By the definition this means that dim R(T) < n.
This result tells that linear operators preserve linear dependence.

(c) Letxy,x, e N(T)thenTx; =Tx, =0
Then T(«x x; + fx,) =x Tx; + BTx, =0
X x1 + fx, € N(T)
Hence V' (T) is a vector space.
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Injective or one-to-one Mapping

A mapping T: D(T) — Y is said to be injective or one-to-one if different points in
the domain have different images, that is, if for any x,, x, € D(T)

Xy Fxy, = Tx; #Txy Equivalently, Tx;, =Tx, = x; =x,

In this case there exists the mapping T~1: R(T) —» D(T) which maps every
Yo € R(T) onto that x, € D(T) for which Tx, = y,. The mapping is called the
inverse of T.

P (1) T %MD

/_\ y(] = Txo
X

X Y

Remark

= T 1Tx = x for all x € D(T)
= T 1Ty =yfor all y € R(T)

In connection with linear operators on vector spaces the situation is as follows.
The inverse of a linear operator exists if and only if the null space of the
operator consists of the zero vector only. More precisely, we have the
following useful criterion which we shall apply quite often.

Theorem

Let X, Y be vector spaces, both real or both complex. Let T: ©(T) — Y be a linear
operator with domain ©(T) c X and range R(T) c Y. Then:

a) Theinverse T~1: R(T) - D(T) exists if and only if Tx = 0 implies x = 0.
b) If T~ exists, it is a linear operator.
¢) If dimD(T) = n < o and T exists, then dim D(T) = dim R(T)
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Proof

a) Let T~1:R(T) — D(T) exists then T is one — to — one and Suppose that
Tx = 0.
Since T is one —to — one, therefore Tx; = Tx, implies x; = x,
Choose x, = 0and x; = x
So that Tx = 0 implies x = 0.

Conversly suppose that Tx = 0 implies x = 0. Then we have to prove that
T~ R(T) - D(T) exists. For this we only need to prove T is one — to — one.

Let x,,x, € D(T) suchthat Tx; =Tx, =2 Tx; —Tx, =0=>T(x; —x,) =0
X —X,=0=>x; =x, Since T is linear.
Hence T is one —to —one and T~ 1: R(T) - D(T) exists

b) We assume that T~ exists and show that 7~1 is linear.
Let y;,y, € R(T) = D(T 1) then there exists x;, x, € D(T) such that
Vi =Txy,y, =Tx,
=T 'y, = x,;,T 'y, = x, then
X y; + By, =x Tx; + BTx, = T(x x; + fx,) as Tis linear
T~ (< y; + By,) = x5 + Bx, =x T~y + Ty,
Hence T~ 1 is linear.

c) Suppose that dim D(T) = n < o and T 1 exists, also we know that if T is

linear then dimR(T) < dimD(T) .............. (1)
Since T~ is linear therefore dim R(T~1) < dimD(T1) then
dimD(T) < dimR(T) .oooeevennn )

From (1) and (2) we have
dim D(T) = dim R(T)
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Lemma (Inverse of product)

LetT: X - Y and S:Y — Z be bijective linear operators, where X, Y, Z are
vector spaces (see Fig.). Then the inverse (ST)™1: Z - X of the product (the
composite) ST exists. And (ST)"t =T-1571

Proof:

The operator ST: X — Z is bijective, so that (ST) ™! exists. We thus have
ST(ST)™ ' =1,

Where I, is the identity operator on Z.

Applying S~1 and using S~1S = I, (the identity operator on Y), we obtain
STIST(ST)™ ' = T(ST) ' = §~1I, = §~1

Applying T~t and using T~1T = I, , we obtain the desired result
TIT(ST)™! = (ST)™! = T~15"!

Hence (ST) ! =T"1s"1
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Bounded and Continuous Linear Operators

The reader may have noticed that in the whole last section we did not make any
use of norms. We shall now again take norms into account, in the following basic
definition.

Bounded Linear Operator

Let X and Y be normed spaces and T: ©(T) — Y a linear operator, where

D(T) € X. The operator T is said to be bounded if there is a real number c

such that for all x € D(T), [|Tx|| < cl|x|| or we can write ”” ”” <c

Formula ||Tx]|| < c||x]|| shows that a bounded linear operator maps bounded sets in
D(T) onto bounded sets in Y. This motivates the term "bounded operator."
Warning: Note that our present use of the word "bounded” is different from that
in calculus. Where a bounded function is one whose range is a bounded set.
Unfortunately, both terms are standard. But there is little danger of confusion.

What is the smallest possible ¢ (minimum of ¢) such that ||Tx|| < c||x||
still holds for all nonzero x € D(T)? [We can leave out x= 0 since
Tx= 0 for x= 0]

Il
llxll —
as the supremum of the expression on the left taken over D(T) — {0}.

ITx|l T
Implies Supxenr) — o < c. i.e. ¢ = Supxepvm)

x+0 x#0
question is that the smallest possible ¢ in ||Tx|| < c||x]|| is that supremum.

This quantity is denoted by ||T||; thus

By division, ; |lx]| # 0 and this shows that ¢ must be at least as big

I ”” Hence the answer to our

Norm of the Operator

P ” Lis called the norm of the operator.

The quantity ||T|| = Supxe:o(r)

x+0

And for a bounded linear operator T we can define it as ||T|| = Supxeom) || Tx||
llx|l=1

Also remember that if ¢ = ||T|| then ||Tx]|| < c||x]|| becomes ||Tx]|| < ||T]|||[x]|

If D(T) = {0} then ||T|| = 0 inthiscase T = 0 since TO = 0
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Lemma: Let T be a bounded linear operator. Then an alternative formula for

the norm of T is [|T|| = Supxenr)||Tx||
llx|l=1

Proof: Let x € D(T) be an arbitrary element and let ||x|| = a. Define
y = =x where x # 0. Then [|y|| = 1.

Consider [|T|| = Supxen(r) ||||7;cxll||
x#0
ITx| ! :
= ||T| = SupxetD(T)— = SUpxed(T) ||5Tx|| = Supxen(r) ”T(;x)“
x£0 x#0 x#0

= ||T|| = Supyesn) ITYIl = ITIl = Supxesn |ITxl
y#0 llxll=1

Lemma: Let T be a bounded linear operator. Then the norm defined by
IT||

T satisfies all properties of Norm.

Tl = Supxenr) ~—=r

x#0
Proof:
: Since ”” 2 > 0 therefore Supxenm) ””Tx”” = ||T|| = 0 forall x € D(T)
x%0
Ny: IT]| = Supxenm ””T"”” =0 Tx=0VxeDT) & x=0 Vx D)
x#0
|| (e<T)x|| ||o<Tx|| [ITx||
N3: [[< T|| = Supxenm) ”x”x = Supxen(r) i IT |o<|Supxen(r) ” x”
x#0 x#0 x+0
= |l T|| = [«]|||T]]
N . ||T + T || — S ”(T1+T2)x” — S ”T1x+T2x”
FRRIRE] 21l = quei)(T)T = uprD(T)T
x#0 x#0
|7y x| |7 x|
= ||Ty + Tol| < Supxen(T) ”1” + Supxen(r) Iljc)ICI
x#0 x#0

= |ITy + Tl < [IT1l + [Tl
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Before we consider general properties of bounded linear operators, let us take a
look at some typical examples, so that we get a better feeling for the concept of a
bounded linear operator.

Examples

Identity operator: The identity operator I: X — X on a normed space
X + {0} defined by I(x) = x is linear and bounded and has norm||I|| = 1.

Proof: Since ||Ix]|| = ||x]|| < 1||x]|
_ ||| _ [lxll _
= |[I]| = Supxen(r) T Supxen(r) T
x+0 x+0

Zero operator: The zero operator 0: X —» Y defined by 0(x) =0on a
normed space X is linear and bounded and has norm ||0]| = 0.

Proof: Since [|0x]|| = ||0]|| = 0 < ||0]]]|x]|

llox|] ol
= ||0]| = Supxenm) —”xx” = SUPxed(T) =l 0
x#0 #0

Differentiation operator: Let X be the normed space of all
polynomials on J= [0, 1] with norm given ||x| = max|x(t)|, t€]. A
differentiation operator T is defined on X by Tx(t) = x'(t). Where the
prime denotes differentiation with respect to ‘t’. This operator is linear but
not bounded.

Proof: Consider the sequence (x,,) defined by x,, = t™

Then |, [| = maxiefo,171% (O] = maxeepo,[t"| =1

= ITx,ll = llxnll = Int™ 7l = maxeepoqyInt™ ™| = [n1"7* =n
ITxall _n _
heall 1

Since n € N is arbitrary, we are unable to find a fixed number ‘¢’ such that
ITx, ]l < cllxnll

Hence T is not bounded.

Integral operator: We can define an integral operator

T:C[0,1] » C[0,1]by Tx =y = folk(t,T)x(T)dT. Here k is a given
function, which is called the kernel of T and is assumed to be
continuous on the closed square G = JxJ in the tt —plane, where

J =0, 1]. This operator is linear. T is bounded.
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Proof: This is linear operator as already proved

T(xx+By) = f01 k(t,7)(«< x(t) + By(r))dt =xTx + B Ty
Note that k(t, ) being continuous on the closed square [0,1] x [0,1] is
bounded then there exists k, such that |k(t,1)| < kq; V(t,7) € [0,1] X [0,1]

1
We have [|Tx|| = [[yll = maxeejo x|y ()] = maxeeon |f; k(6 Dx(D)dz|
1 1
ITxI] < maxeeqo ) fy Ik (e, DIX(DIdT < komaxeepon f 1x(r)ld

1
ITx|| < ko fo maxte[o’l]lx(rﬂdr = kollx||
ITx]|| < kollx]| implies that T is bounded.

Matrix: Areal matrix A = (a;j)mxn defines an operator T: R* — R™

$1 M
definesby y = Tx where x = {2 and y = 772 are column vectors
En Nm

with n and r components, respectively.
Now y = Tx gives n; = 2r—; %ix €. Then T is linear and bounded.
Proof: Consider

ITx|? = llyll* = X0}
ITx|I* = X7 (ER=1 Xk §i)*
2

1 1
7112 < St (B B )* s §20%) = (B4 Do o)l
7217 < K221
721l < Kilx|
Thus T is bounded.
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Boundedness is typical; it is an essential simplification which we always have in
the finite dimensional case, as follows.

Theorem: If a normed space X is finite dimensional, then every linear
operator on X is bounded.

Or every linear operator on a finite dimensional norm space is bounded.

Proof: Letdim X =nand {e,,e,,...,e,} abasis for X. Then every x € X
can be expressed as x = Y.i-; ; e;

=>Tx=TQL, x; ) =X, «; Te; Since T is linear

= |ITx|| = [IXiz1 «; Tell

= ||Tx]l < XiZilollITe;ll = ITx|| < K XLl 5 K = maxi<inllTell
= |ITx|| < KXM ol (1)

Now since x = Y}, «; e; and {eq, e,, ..., e, } is linearly independent therefore
Il = 1Z%y o egll 2 Xy o =T <= )
Using (2) in (1) = ||Tx]| < fllxll

= [|Tx|| < M||x|| where M = % . Thus T is bounded.

We shall now consider important general properties of bounded linear operators.

= QOperators are mappings, so that the definition of continuity applies to them.
It is a fundamental fact that for a linear operator, continuity and boundedness
become equivalent concepts.

= T is continuous if T is continuous at every point.

Theorem Let T:D(T) — Y be a linear operator, where D(T) c X and X, Y
are normed spaces. Then:

a) T is continuous if and only if T is bounded.
b) If T is continuous at a single point, it is continuous.
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Theorem Let T:D(T) — Y be a linear operator, where D(T) c X and X, Y
are normed spaces. Then T is continuous if and only if T is bounded.
Proof: If T = 0 then the statement is trivially true.

Let T # 0 then [|T|| # 0. Assume that T is bounded, we are to prove that T is
continuous.

For this let x,, x € D(T) and € > 0, also define § = and let |[x — xoll < &

Then by linearity and boundedness of T we have ||[Tx — Tx,|| = ||T(x — xo) ]|

ITx = Txoll < IITHHIx = xoll < ITNS = Tl =

ITx — Tx,|l < € implies that T is continuous.

Conversly suppose that T is continuous, then we are to show that T is bounded.
Since T is continuous, then it is continuous at any arbitrary point x, € D(T) then
for all € > 0 there exists § > 0 such that

ITx — Txo|l <€ whenever ||x — x|l <8 ... (1)

Now choose any 0 = y € D(T) and set x = x, + y then ||x — x|l = 6

()2 ITx =Txoll S €= ITx—x)|| < € = ”T(”y” y)| <e

> STyl < e = ITyl <5yl 5vy =0

> |ITyll < cliyll vy #0,c=5
Hence T is bounded.
Warning

Unfortunately, continuous linear operators are called "linear operators" by some
authors. We shall not adopt this terminology; in fact, there are linear operators of
practical importance which are not continuous.
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Theorem Let T:D(T) — Y be a linear operator, where D(T) c X and X, Y
are normed spaces. Then if T is continuous at a single point, it is continuous.

Proof:  Suppose that T is continuous at a single point in D(T') then by theorem
“T is continuous if and only if T is bounded” using second part of theorem we have
T is bounded and hence continuous on D(T) by using first part of this theorem.

Corollary: Let T be a bounded linear operator. Then:

a) x, = x implies Tx,, - Tx where x,,x € X
b) The null space V' (T) is closed.

Proof:

a) Consider x,, » x then ||x, —x|| > 0asn — o
= ||Tx, — Tx|[ = [IT (e — 2| < ITl|2¢, — x]| = 0
= ||Tx,, — Tx|| > 0asn — oo implies Tx,, » Tx asn — oo

b) We are to prove N (T) = N (T)
Already know that N (T) S N(T)  evevvnnenn, (1)
Let x € V(T) then there is a sequence (x,,) in V(T such that x,, = x then
by theorem “for a bounded linear operator x,, = x implies Tx,, = Tx” we
have Tx,, = Tx

SinceTx, =0 ;Vn€eN (asx, e N(T) ;VvneN)
Therefore Tx = 0.i.e. x € N(T)
Sothat ¥(T) € N(T) ... (2)

From (1) and (2) we have NV (T) = N (T)
Hence the null space N (T) is closed

It is worth noting that the range of a bounded linear operator may not be closed.

For video lectures @ You tube visit “Learning with Usman Hamid”



143

Theorem

Let T: M — N be a linear operator, Then T is continuous on N if and only if it is
continuous at 0 € N.

Proof:

Suppose T is continuous on N then it is continuous at 0 € N.

Conversly

Suppose is continuous at 0 € N then we have to prove T is continuous on N.

For thislet x, = 0 € N and € > 0 there exists § > 0 such that for all x € N we
have [|x — xoll = [lx||

= |[Tx — Txoll = |ITx]|| < €

Hence for any x, € N we have ||x — x,|| < 6

= |ITx — Txoll = IT(x —x0)ll <€

Implies that T is continuous at x, and therefore also on N.
Theorem

Let T: M — N be a linear operator, and T is continuous on N then ker T is closed
inN.

Proof:

Suppose T is continuous on N and x be a limit point of ker T. Then there is a
sequence (x;,) in ker T such that lim,,_,,, x,, = x

Then by continuity of T we have 0 = lim,,_,o, Tx,, = Tx

Hence x € ker T and ker T is closed in N.
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Composition (Product) of Mappings (Operators)

LetT:X - Yand U:Y — Z be two mappings (Operators) then their composition is
definedas UT:X - Z by UT(x) = U(Tx)

Result

If T:X - Yand U:Y — Z are bounded linear operators then their composition
UT: X — Z is also linear and bounded, moreover ||UT|| < ||U]||IT||

Or

If T,:X - YandT,:Y — Z are bounded linear operators then their composition
T,T,: X — Z is also linear and bounded, moreover ||T,T1 || < [T, [ T4 |l

Proof

Linearity: T,T;(x x + By) = Tz(Tl(oc X+ ﬁy))

T,T;(x x + By) = T, (¢ Tyx + BT,y) Since Ty is linear
T,T;(x x + By) = T, (T x) + BT,(Tyy) Since T, is linear
T,T;(¢ x + By) =x T,T;x + BT,T,y Hence T,T; is linear
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Boundedness: T, T, ()| = I, (Tyx) || < ¢, ||(Tyx)||  Since T, is bounded
T, T ()| < ciellx]| Since Ty is bounded
| T, T, ()| < kllx|| Hence T, T, is bounded

T, Tl < IT2I|T 4]l

| T, Ty || 1T (Ty )|l 1T 1Ty x|
T, T || = Squei)(Tle) —ﬁxlu = Sque:'o(Tle) —2”;” < SupxeD(Tle) —lex”l
x#0 x#0 x#£0
Ty x|
T2 Tyl < IITolISuprencry) o = IT2T4ll < T2 IHIT4l

Il

x+0

Remember

= Two operators T; and T, are defined to be equal, written if they have the
same domain D(T;) = D(T,) and if Tyx = Tyx
forall x € D(Ty) = D(T,)

= The restriction of an operator T:D(T) - Y to a subset B € D(T) is
denoted by T Iz and is the operator definedby T 153:B - Y,asT Igx = Tx
for all x € B.

= An extension of an operator T: D(T) —» Y toaset M > D(T) is an operator
T:M - YsuchthatT Iy =T, that is, Tx = Tx for all x € D(T).
[Hence T is the restriction of T to D(T)].

If D(T) is a proper subset of M, then a given T has many extensions.
Of practical interest are usually those extensions which preserve some basic
property, for instance linearity (if T happens to be linear) or boundedness (if
D(T) lies inanormed space and T is bounded).

The following important theorem is typical in that respect. It concerns an
extension of a bounded linear operator T to the closure D(T) of the domain
such that the extended operator is again bounded and linear, and even has the
same norm. This includes the case of anextension from a dense set in a
normed space X to all of X. Italso includes the case of an extension from
a normed space X to its completion.
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Theorem (Bounded linear extension, Principle of Extension by Continuity)

Let T: D(T) — Y be a bounded linear operator, where D(T) lies in a normed space
X and Y is a Banach space. Then T has an extension T: D(T) — Y where T is a
bounded linear operator of norm ||T|| = IIT|I.

Proof: First we show the existence of T. i.e. we justify that such a T exists.

Let x € D(T) then there exists a sequence (x,,) in D(T) such that x,, — x then
using the fact, T is linear we have

”Txn - Txm” = ”T(xn - xm)“ < “T“”xn - xm“ - 0asm,n — o
(Actually we use the fact; x,, being convergent sequence in Cauchy sequence.)

This implies that Tx,, is a Cauchy sequence in Y. Since Y is complete therefore
Tx, —» y €Y. Thismeansthatlim,_,, Tx, =y

We define T by Tx = y = lim,,_,., Tx,, then Clearly Tx = Tx ;Vx € D(T)

We now show that this definition of T is independent of the particular choice of a
sequence in D(T) converging to x.

Suppose that x,, —» x and z,, - x. Then v,, = x, where (v,,) IS the sequence

(Xl, Z1,X2,2Z9, )

Hence (Tv,,) converges by (x,, = x implies Tx,, —» Tx), and the two subsequences
(Tx,) and (Tz,) of (Tv,,) must have the same limit.

This proves that T is uniquely defined at every x € D(T).

T is linear

T(x x, + By,) =x Tx, + Ty, suchthatx, - xandy, =y
lim,, o T(x x,, + By,) = lim,, o, Tx,, + Blim,_,o Ty,

T(xx+ By) =xTx + BTy
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T is Bounded
Let (x,,) be a sequence such that x,, — x then using the fact T is bounded we have
ITx 1l < [ITIxnl

= im0 [T || < T Timg 00|l

= || 1im T, | < 171 || tim x|
n—oo

n—oo
= ||Tx|| < ITl|x]|

= T is Bounded

|7 = i

since || Tx|| < IT|l]lx]

T2 \iT|l svx 20

llxll —

ITx||
= SUPxzo o = IT|l ;vx+#0

ST <ITH e (1)

Also ITIN<||T]| -oiiieeeeeen (2)  Since D(T) € D(T)
Combining (1) and (2) we have

IT|l =17l
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LINEAR FUNCTIONALS

A functional is an operator whose range lies on the real line R or in the complex
plane C. And functional analysis was initially the analysis of functionals. The latter
appear so frequently that special notations are used. We denote functionals by
lowercase letters f, g, h, ..., the domain of | by D(f), the range by R(f) and the
value of f at an x € D(f) by f(x), with parentheses.

Functionals are operators, so that previous definitions apply. We shall need in
particular the following two definitions because most of the 'functionals’ to be
considered will be linear and bounded.

Functional (Function of Functions)
Let M = {f: f is vector space} then I: M — R is called functional.
Linear functional

A linear functional f is a linear operator with domain in a vector space X and
range in the scalar field K of X; thus, f: D(f) — K where K = R if X is real and
K = C if X is complex.

Bounded linear functional

A bounded linear functional f is a bounded linear operator with range in the scalar
field of the normed space X in which the domain D(f) lies.

Thus there exists a real number ‘¢’ such that for all x € D(f), |f(x)| < c||x||

Furthermore, the norm of £ is [If | = Supxenqn T OF IIfll = Subxenis|f ()]
x*0 x=1

Also remember that [ ()| < |If]1IIx]|

Remark: The result that we proved for bounded linear operator continue to hold
true for bounded linear functional. i.e.

A linear functional f with domain D(f) in a normed space is continuous if and
only if f is bounded.
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Examples

Norm: The norm ||.]|: X — R on a normed space (X, ||.||) is a functional
on X which is not linear (Since [|x + y|| < ||x]| + [|¥l
Dot product: The familiar dot product with one factor kept fixed defines a
functional f: R3 > Rby means of f(x) = x.a = & o+ &, «,+ &3 K
where a = (o¢;, o5, x3) = (o;) € R3 is fixed. Then f is linear. f is
bounded. Also ||| = |lal|
Solution

» Linearity:
flex+By) =(xx+py)a=xxa+pya=xf(x)+Bf(y)

» Boundedness:

If ()| = Ix.a| = |llx|l[|al|CosB| < [Ix]|||all ~ Cosf <1
IOl < llxlllall
> If1l = llall
Since [f(x)| < llx|lllall then '1]5373' <llall ;vx#0
Supxso T2 < llall 3V # 0
Il <llall o (1)
F@I _ If@] _ laal _ llal?

o > — — —
Now IIfll = Supx=o T 2 T = Jar = ar = el
WAl = Nall e )
From (1) and (2) F I = llall

Definite integral

The definite integral is a number if we consider it for a single
function, as we do in calculus most of the time. However, the situation
changes completely if we consider that integral for all functions in a certain
function space. Then the integral becomes a functional on that space, call it
f. As a space let us choose C[a, b];

f:Cla,b] » Rby f(x) = ffx(t)dt where x € C[a, b] then £ is linear and
bounded functional and ||f|| = b — a

Solution
» Linearity:

flocx + By) = [ (< x + By)dt =o [7 xdt + B [ ydt = f(x) + Bf ()
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» Boundedness:
We have ||x|| = max,e[q p1|x(t)] then

FEl = [} x(®dt| < [J1x(D]dt < (b — QYmaxeepes|x(t)]
F@I < (b - )llx]

> IfIl = Tlall
Since |f(x)| < (b — @)||x|| then % <(b-a) ;Vx#0
Supxio%s (b—a) ;Vx#0
Ifl<-a) .. (1)
Now choose x = x5 = 1
b
F@I o If o)l |J2 %o(Dat] b-a
= > = = = —
“f” Supxio lxll = ”xoll ”maxte[a,b]lxo(t)l” 1 b a
Ifll=b—a ... 2)
From (1) and (2) Ifll=b—a

Space C[a, b]: Another practically important functional on C[a, b] is
obtained if we choose a fixed t, € ] = [a, b] and set
f1(x) = x(ty) ;x € C[a, b] then f; is linear and bounded functional and

IAll =1

Space I?>: We can obtain a linear functional f on the Hilbert space [? by
choosing a fixed a = (c;) € I* and setting f(x) = Yiz1&; «; where
a = (§;) € I*. This series converges absolutely and f is bounded.
Solution
» Linearity:
fle<x + By) = Z;o=1(afj + ﬁn,-) oG=a )1 §; Kt YN X
flecx + By) = f(x) + Bf(¥)

» Boundedness:
F@1 = 52§ o] < T8 o] < (Seale ) (Sl )
F@l<cllxll  where llxll = (Z2,06°) 5 ¢ = (S2alo]*)?
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Algebraic dual space (Conjugate Space)

Let X be a vector space then the set of all linear functionals defined on X can
itself be made into a vector space. This space is denoted by X* and is called the
algebraic dual space of X

e. X* = {f(x): f is linear ;Vx € X}

(Note that this definition does not involve a norm. The so-called dual space X'
consisting of all bounded linear functionals on X). Its algebraic operations of
vector space are defined in a natural way as follows (i.e. it satisfies the algebraic
operation of a vector space).

" S =(fit+flx=fi(x) + f(x)
" P(x) = (x flx = f(x)

Second Algebraic dual space

Let X* be a vector space then the set of all linear functionals defined on X* can
itself be made into a vector space. This space is denoted by X** and is called the
algebraic dual space of X*.

Le. X ={f(x):f is linear ;Vx € X"}
Dual Space

The set of all continuous or bounded linear functionals on X becomes a
normed space, which is called the dual space X' of X.

Remark: Dual space of a normed space also a dual space with defined norm.
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Theorem (Dimension of X*)

For a finite dimensional normed space X show that dim X = dim X*

Or Let X be n—dimensional norm space then its dual also n — dimensional.

Or Let X be an n — dimensional vector space and E = {e,, e, ..., e,} abasis for
X. Then E* = {fi, f2, ..., fn} givenby f;(e;) = 6;; = {(1) i jj IS a basis for
the algebraic dual X* of X, and dim X = dimX* = n.

Proof

Suppose E = {e4, e,, ..., e, } be a basis for X then x € X could be written as
— n
X = j=1 ajej .

0 G LFE]
1 ;L=

Define a linear functional f;: E — F by f;(e;) = §;; = {
Also f;(x) = fi(Xj-1 aj¢;) = Eja aifj(e) = g

We are to show that E* = {f1, f5, ..., f} IS a basis for X*.

Step — I: Linear Independence

Let Zj-;lﬁjfj = 0 then

0=0(x) = (X7 Bif;)x = Xjo1 Bif; () = X7y Bifie) = Xy B; i

= B; = 0. This shows that E* = {f}, f5, ..., f} is linearly independent.

Step—-I1l: E* ={f1,f>, ..., fn} Qenerate X*

Let f € X* then forany x = }7_; a;e; € X we have

f@) = f(Ej-1a5¢) = Ljm1 aif (¢7) = Ljoa ayyy = jea v (0 = (Zjea vif)x
= f = Xi-17;fj- Thisshows that E* = {f3, f5, ..., fn} span X*.

Hence E* = {f, f>, ..., fn} 1S abasis of X*.

Implies that dim X = dimX* =n
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Theorem (Dimension of X**)

A finite dimensional normed (linear) space X is isomorphic to its second dual. i.e.
X=X

Proof Let X be finite dimensional normed (linear) space and X** be its
second dual. Then define p: X - X™ asp(x) = g, ;x € X where g,: X* > F

defined as g, (f) = f(x) ;f € X".
Step — I: ¢ is Linear
p(xx+ By) = Yox+py = .gocx+,b’y(f) = f(xx + By) =x f(x) + Bf(¥)

= @(x x + By) =x g,(f) + Bg,(f) ;f€X"
= @(x x + By) =x p(x) + Bo(y)

Step — I1: ¢ is Injective

Letx,y € X and f € X" then take ¢(x) = ¢(y)

= 0x=9y = (9= 9y)f =02 g:(f) —g,(f) = 0= f(x) = f(») = 0
>f(x—y)=0=>x—-y=0=x =1y = @isInjective

Also ¢ is onto and hence ¢ is bijective. So X = ¢(X)

Also @ (X) is subspace of X™**.

Since X has finite dimension so dim X = dim X* = dim X** then ¢(X) = X™*

Implies X = X**

Lemma Let X be a finite dimensional vector space. If x, € X has the property
that f(x,) = 0 forall f € X*, then x, = 0.

Proof Let {e, e;, ..., ex} be abasis for X and x, = }j_; aje;. Then
fxo) = f(Zj=1a5¢)) = s aif (e))
By assumption this is zero for every f € X*.i.e. f(xy) = X7-; a;f(e;) =0

=>f(x0)= 7=1ajf(ej)=aj=0=>x0= ?zlajej=0=>x0=0
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Reflexive Space

A normed space X is said to be reflexive if there is an isometric isomorphism
between X and X** (second dual)

Canonical Mapping

To each x € X there corresponds a g,, € X**. This defines a mapping C: X - X™*
by C(x) = g, this mapping is linear and is called the canonical mapping of X into
X**_C is linear since its domain is a vector space. C is also called the canonical
embedding of X into X**,

Theorem (Algebraic Reflexivity).
A finite dimensional vector space is algebraically reflexive.
Proof

Let the canonical mapping C: X — X** is linear. Cx, = 0 means that for all
feEX wehave (Cxy)f = (gxo)f = f(xo) by the definition of C. This

implies x, = 0 by Lemma “Let X be a finite dimensional vector space. If x, € X
has the property that f(x,) = 0 forall f € X*, then x, = 0.”.

As we know that the mapping C has an inverse C~1: R(C) — X, where R(C) is
the range of C. We also have dimR(C) = dim X.

Now as we know that, dim X = dim X* = dim X**.
Together, dimR(C) = dim X**

Hence R(C) = X** because R(C) is a vector space and a proper subspace of X**
has dimension less than dim X™*.

By the definition, this proves algebraic reflexivity.

Space B(X,Y)

Let X and Y be normed spaces over the same field. The vector space of all
bounded linear operators from X into Y is called B(X,Y) space. i.e.

B(X,Y) ={T:X - Y:T is bounded and linear}
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Theorem

The vector space B(X,Y) of all bounded linear operators from a normed space X
Iinto a normed space Y is itself a normed space with norm defined by

ITx]|

ITIl = Supxex 2

= Supxex||Tx||
x=1

Proof

Ny |IT| = Su xex“lf"”"zo

M) Tl = 0 & Suprex ”“T"”” 0o |[Tx| =0 T =0
N lcTx|| l|ITx]| [ITx]|
3) |l T = Supxex = OUPxeX = ||Sup xex = |o|||T]|
x=z0 lxll x=z0 lxll [l
N,) T + S|l = Supxex I(T+S)x]| = Supxex [ITx+Sx|| < Supxex (1T [ +]1Sx]|
XXl o SRTP | XX T
|| | X20 || Il

IT + SII < [IT] + 1IS]]

Theorem (Completeness)
If Y is a Banach space, then B(X,Y) is a Banach space.
Proof

Let {T;,}7° be a Cauchy sequence in B(X,Y) then for all €> 0 there exists n, € N
such that ||T,, — T,ull <€; ;Ym,n =n,

Now consider for any x € X and m,n = n,

ITox — Tpxll = (T, — T x|l < Ty — Tullllxll <€y llx|l = [[Tx — Trnx|l <€
Implies {T,,x}7° is a Cauchy sequence in Y.

Since Y is a Banach space (Complete metric + norm) therefore T,x - y €Y

Clearly the limit y € Y depends upon the choice of x € X
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This defines an operator T: X — Y, where y = Tx = lim,,_,,, Tj, x.
The operator T is Linear

T(xx+ By) =1lim, L T, (¢ x+ By) =lim,,(x T, x + BT,y)
T(xx+ py) =x AL@OTnx + ﬁ%irgoTny =x Tx + BTy

The operator T is Bounded

Since for any x € X and m,n = n, we have ||T,,x — T,,x|| <€

| T, x — Tx|| <€ letting m — oo

= |[(T,, — T)x|| <€ ;VYn=ny,= T, — T isbounded.
>T,-TEBX,Y)=>T=T,—(T,—T) €B(X,Y)=>T € B(X,Y)
ToproveT,—>T

Since we have ||T,x — Tx|| <€, ||Ix|| = II(T;, — T)x|| <€, |Ix||

I (T —T)x||

<€E ;Vn=2n
]| 1 0

I (T =TIl

= Supx:tO ”x”

<€, ;vnz=2ny=>|T,—-T| <€, ;Vn=n,

=T, » T with||.||
Hence B(X,Y) is a Banach space.

This theorem has an important consequence with respect to the dual space X' of X,
which is defined as follows.

Definition (Dual space X")

Let X be a normed space. Then the set of all bounded linear functionals on X
constitutes a normed space with norm defined by

IfIl = Supsex L&
X

#0 x=1

which is called the dual space of X and is denoted by X' .
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Theorem
The dual space X' of a normed space X is a Banach space (whether or not X is).
Proof

Let f: X — Y be alinear functional then the set X' = B(X,Y) consisting of all

linear functionals f: X — Y such that ||f]| = SupxexM is finite, is itself a

xz0 %Il
normed space of linear functional. Because the following axioms are satisfied;

N IfIl = Suprex LT > 0

ool =

N Ifll = 0 Supxex L2

¥y Il

0o |f@|=0sf=0

No) Nl £l = Suprex “LEN = supyex BV o spyprex L9 = (o £

xz0 Il x=zo0 x=o0
N4) ||f + g” _ SupxeX |[(f+g9)x| = Subrex |f ()+g(x)] < Subrex [f ) |+1g ()|
x=zo0 X20 [[x]| X£0 [1x]|
If + gll < Supxex L2 4 Supyey 4&)
X el Xl

If +gll < IIFI+ gl

Since X' itself is a normed space and hence a topological space, the topology on X’
is called the strong topology in X’. Since Y is R or C, which are complete. So X' as
the space of all bounded linear functionals defined on X, is also complete and
hence is a Banach Space. This is true even if X is not a Banach Space.
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It is a fundamental principle of functional analysis that investigations of spaces are
often combined with those of the dual spaces. For this reason it is worthwhile to
consider some of the more frequently occurring spaces and find out what their
duals look like. In this connection the concept of an isomorphism will be helpful
in understanding the present discussion.

Isometric Isomorphism of a Normed Space

An isomorphism of a normed space X onto a normed space Y is a bijective linear
operator T: X — Y which preserves the norm, that is, forall x € X, ||Tx|| = ||x||
(Hence T is isometric.) X is then called isomorphic with Y, and X and Y are
called isomorphic normed spaces.

From an abstract point of view, X and Y are then identical, the isomorphism
merely amounting to renaming of the elements (attaching a "tag" T to each point).

Or Let Xand Y be normed spaces. A function T: X — Y is said to be an
isometric isomorphism if

= T is bijective
= Tis linear
= T preserves norm. i.e. forany x € X, ||Tx|| = ||x]|

Example  Show that The dual space (Conjugate Space) of R" is R™.
Or Show that The dual space of R™ is isomorphic with R™.
Proof.

Let R™ be the dual space of R™ then we have to show that R™* is isomorphic to
R™. For this we define a function T: R™* —» R™ as T(f) = ¢

Where f € R™ and B = {e,, e,, ..., 5} be a basis of R™ and for each x € R™ we
have x = Y1 x;e; aswell as f(x) = f(O.T x;e;) = X1 x;f(e;) = X1 x;c; where we
take ¢; = f(e;) and ¢ = (¢q, ¢y, ..., ¢y) € R™

We are to show that T is an isomorphism.
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T is bijective (Injective + Surjective)

Let f, f' € R™ then ¢; = f(e;),c; = f'(e;) then consider fori = 1,2, ...,n
T(f)=T({") = cr =cp = (c1,62,0s¢n) = (1,63, 000, Cp) D ¢ = ¢

= fle) =f"(e)=fle)—f'(e)=0=(—f)(e)=0

> —fx=Xix(f—fle=0 since x = X7 x;¢;
=>f—f"=0=f=f"=Tisinjective.

Now let b = (by, by, ..., b,,) € R™ then for any x = )T x;e; € R™ define a function
g: R" - Rby g(x) = XTx;b;. This g is linear and, because R" is finite
dimensional, g is bounded, so g € R™*. We putthen T(g) = b € R™.

So that T is surjective.T is bijective.

T is linear

Letf,f € R"™and e, ' € R then

T(e f+0'f1) = Capparpr = (¢, €5, rc) = ¢ = (o f4oc 'f)(e;)
T(x f+oc'f) = f(e;) + f'(e;) = ¢;+x ‘c; = cp+oc ‘¢,
T(ex f+oc ') =ec T(f) +o¢ T(f)

Hence T is linear.

T is norm preserving

IFCOl S IFGOl _ 1f (el

Let for any x € R™ we have ||f]| = Sup,;i;é el 2 1el = Tel = |l sx =0
A= el (1)

Also for all x € R™ we have |f(x)]| = |2} x;c;i| < \/Z?Ixilz \/2711|Ci|2 Holder Inequality
= 17601 < Il = 52 < ] = Suppes 221 < [ |

IF<llell 0 2)
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Combining (1) and (2) 11 = |lee |l = ITOI
This show that T: R™* — R™ is the isometric isomorphism between R™* and R".

Hence R™ = R".i.e. dual space (Conjugate Space) of R™ is R™.

I — space: This space consists of all sequences x = {x;} with ||x|| = X5 |x;| < oo

[* — space: This space consists all sequences x = {x;} with ||x]|| = Sup;’|x;| < o

Example  Show that The dual space (Conjugate Space) of 11 is [*.
Or Show that The dual space of {* is isomorphic with [,
Proof

Let [** be the dual space of ! then we have to show that [** is isomorphic to [*.
For this we define a function T: [** - [® as T(f) = Cr

Where f € [** and B = {e,, e,, ..., e,} be a basis of [ and for each x € [* we
have x = ).’ x;e; aswell as f(x) = f(Q T x;e;) = X7 xif(e;) = X7 x;¢; where
we take {c;} = f(e;) = c; and fistly we show that c; € [.

lcil = [f el < MIf el < NIFN 5 vi

= |lef|| = SupPlel < NFIl sVi= ¢ €1

We are to show that T is an isomorphism.

T is bijective (Injective + Surjective)

Let f, f' € I** then ¢; = f(e;), ¢; = f'(e;) then consider fori = 1,2, ...,n
T(f)=T(f") = cr=cp = (€1, s ) = (€1, s Cp) D ¢ = ¢
=>fle)=f(e)=>fle)—f'(e)=0=>(—f)(e)=0

= = fx=27x—-fe =0 since x = X.1° x;e;
=>f—f" =0= f = f"=Tisinjective.
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Now let b = (bq, by, ..., b,) € [® then for any x = }.7° x;e; € [* define a function

g: 1t > F by g(x) = X7 x;b;. This g is linear. Also for any x € [*;

lg | = |23 x:b;| < X7°|x;b;| < Supy®|by| X5°|x; | < ||l []xl

I I
IO \1p| = llgll < 1Bl

9G] < lIblllxll = &2 <
So g € I**. We putthen T(g) = b € [®.

So that T is surjective.T is bijective.

T is linear

Let f,f' € and o, ' € F then

T(X f+e " f) = Capuorps = (€1, €5, i) = ¢f' = (< f4oc 'f) (e)
T(x f+oc'f') = f(e;) + f'(e;) = ¢;+x ‘c; = cp+o< ‘¢,
T(ox f+oc ') =oc T(f) +o' T(f)

Hence T is linear.

T is norm preserving

Let for any x € I* we have

F@ = 157 xicil < I lxicil < Sup?led B2 1) < [le[lllxll = L2 < lef|
A< el s (1)

Also for all x € 1** we have |c;| = |f(e)| < lIflllle;ll < IIf]l; Vi

> |l = suplad < IFI svis lIfl = el @)
Combining (1) and (2) £ = llegll = 1Tl

This show that T: [** — [* is the isometric isomorphism between [1* and [*.
Hence ['* = [®. i.e. dual space (Conjugate Space) of 11 is [®.

This shows that {* is not reflexive. As ! is separable but [* = [® is not.
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[P — space

1

This space consists of all sequences x = {x;} with [[x||,, = CPx; [P <

Example Forany p > 1, show that the dual space of [P is [9. Where q is
conjugate exponent of p. Hence [P is reflexive.

Or The dual space of [P is19; here, 1 < P < 4+oco0 and q is the conjugate
of p, that is, =+~ = 1.

p q
Proof

Let [P* be the dual space of [P then we have to show that [P* is isomorphic to 4.
For this we define a function T: [P* - [9 as T (f) = ¢

Where f € [P* and B = {ey, e,, ..., e, } be a basis of [P and for each x € [ we have
x =27 xe; aswell as f(x) = f(XT xie;) = X7 x;f (&) = X1 x;¢; Where we
take {c;} = f(e;) = ¢ where c; € 19.

We are to show that T is an isomorphism.

T is bijective (Injective + Surjective)

Let f, f' € IP* then ¢; = f(e;),c; = f'(e;) then consider fori = 1,2,...,n
T(f)=T{") = cr =cp = (cy,¢2 s ¢n) = (1,63, 00, Cp) D¢ = ¢
=>fle)=f"(e)=>f(e)—f(e)=0=>(f—f)(e) =0

> —fx=X"x(—-fe=0 since x = X7 x;e;
=>f—f'"=0=f=f"=Tisinjective.

Now let b = (by, by, ..., b,) € 19 then for any x = ),7° x;e; € 19 define a function
g: 1P - Fby g(x) =X x;b;. This g is linear. Also using Holder Inequality;

lg ()| = X7 x:b;| < (Z‘flxilp)%(Z?Ibil")% < llxllilIbllg = llgll < lIbllq

So g € IP*. We putthen T(g) = b € 1. Sothat T is surjective.T is bijective.
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T is linear

Letf,f € [P*and c,x ' € F then

T(x f+'f) = Cuprorfr = (1,655 ercy)) = ¢ = (o f+'f)(e;)
T(o fHoc'f') =oc f(e) +o' f'(e;) =0 ¢+ '¢] = cptoc ey,
T( f+oc 'f') = T(f) +o T(f")

Hence T is linear.

T is norm preserving

Let for all x € [** we have

1 1
FOOl = IZ7 xicil < EPlxicl < B lP)r G lel D7 < lxllp ||l

SU e, svisl<llel, (1)

”x”p

To show ||f]| = ||Cf||q

loc|
For any € F define Signum function of <= sgn <= {? jo# 0

0 ;x=0
It is clear that |[sgn «| = 1 and «x sgn <= || for all «,

lc;|97  sgne; i<k

(k) — (k) p (k)
Take a sequence ¢ {Ci } in [P such that c; {0 >k

Then for i < k, using the definition of signum function |ci(k)| = |c;]971

p
Also from%+% =1= (g Dp =qwehave |c| = ¢|@ D = ||

1
= [c®] = (zk |c§">|p)p = (S (A)

= f(c®) =32 cPf(e) = 32 My = T¥| 197 6| = XKy |9
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= f(e®)=3Kclr (B)

Again using % +§ =1= (q—1)p = q we have

)] < Iele®]l, = 1F(e)] < ri (2 || )

= [f(c®)] < IIfII(Z'{‘ICin)% using (A)  eeeveieneinnn. (©)
= |F(c%)] = SHe ] < ||f||(z'f|ci|q)% using (B) and (C)
WALk K SN
S <ifll = (Zw) <lifll = (ZW) <Iifl
(Slcil0)? T

1

> Sl < IFl = (Pl < I
||cf||q <IfFl () = €ld
Combining (1) and (2) A= llerll, = IOl

This show that T: [P* — [4 is the isometric isomorphism between [P* and [9.

Hence [P* = [4. i.e. dual space (Conjugate Space) of [P is [9. By similar method,
the dual space of [ is [P. Hence the second dual of [? is [P. Therefore [P is
reflexive.

What is the significance of these and similar examples?

In applications it is frequently quite useful to know the general form of bounded
linear functionals on spaces of practical importance, and many spaces have been
investigated in that respect. Our examples give general representations of
bounded linear functionals on R", [! and [P withp > 1.
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INNER PRODUCT SPACES

In a normed space we can add vectors and multiply vectors by scalars, just as in
elementary vector algebra. Furthermore, the norm on such a space generalizes
the elementary concept of the length of a vector. However, what is still
missing in a general normed space, and what we would like to have if possible,
is an analogue of the familiar dot product u.v = u;v; + u,v, + - + u, v,

and resulting formulas, notably || = V4.4 and the condition for
orthogonality (perpendicularity) #. v = 0 which are important tools in many
applications. Hence the question arises whether the dot product and orthogonality
can be generalized to arbitrary vector spaces. In fact, this can be done and
leads to inner product spaces and complete inner product spaces, called
Hilbert spaces.

Inner product spaces are special normed spaces, as we shall see. Historically
they are older than general normed spaces. Their theory is richer and retains many
features of Euclidean space, a central concept being orthogonality. In fact, inner
product spaces are probably the most natural generalization of Euclidean space,
and the reader should note the great harmony and beauty of the concepts and
proofs in this field. The whole theory was initiated by the work of D. Hilbert
(1912) on integral equations. The currently used geometrical notation and
terminology is analogous to that of Euclidean geometry and was coined by
E. Schmidt (1908), who followed a suggestion of G. Kowalewski. These
spaces have been, up to now, the most useful spaces in practical applications
of functional analysis.

Important concepts, brief orientation about main content

An inner product space X is a vector space with an inner product (x, y) defined
on it. The latter generalizes the dot product of vectors in three dimensional space
and is used to define

i a norm |||l by [lx|| = v/{x, x)
1. orthogonality by (x,y) = 0.
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A Hilbert space H is a complete inner product space. The theory of inner
product ap.d Hilbert spaces is richer than that of general normed and Banach
spaces. Distinguishing features are

(i)  Representations of H as a direct sum of a closed subspace and its
orthogonal complement.

(i)  Orthonormal sets and sequences and corresponding representations of
elements of H.

(ili) the Riesz representation of bounded linear functionals by inner
products.

(iv) The Hilbert-adjoint operator T* of a bounded linear operator T.

Orthonormal sets and sequences are truly interesting only if they are total.
Hilbert-adjoint operators can be used to define classes of operators (self-
adjoint, unitary, normal,which are of great imporance in applications.

Inner Product Space (Sesquilinear Space or 1% time linear Space)

An inner product space (or pre-Hilbert space) is a vector space X with an
inner product defined on X. It is amappingof (.,.) : X X X - F into the
scalar field F of X; that is, with every pair of vectors x and y there is associated
a scalar which is written (x, y) and is called the inner product of x andy, such
that for all vectors X, y, z and scalars o« we have

(Additivity Axiom): (x + y,z) = (x,z) + (y, 2).

(Symmetry Axiom): (x,y) = (y, x) for real field.

And (x,y) = (y, x) for complex field

. (Homogeneity Axiom): {(« x, y) =« (x,y) .

. (Positivity Axiom): (x,x) = 0; and (x,x) = 0 ifand only if x = 0.

Norm on an Inner Product Space: An inner product on X defines a norm on
X given by ||lx|| = +/{x, x). If ||x]| = 1 then x is a normalized or unit vector.

Metric on an Inner Product Space: An inner product on X defines a metric on

X given by d(x,y) = llx = yll = y{(x —y,x — y)
Hence inner product spaces are normed spaces, and Hilbert spaces are Banach
spaces.
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Example: Let (V,(.,.)) be an inner product space over a field F then show that
(x,0) =0=(0,x) ;x €V

Solution:  (0,x) =(0.y,x) =0(y,x)=0 ;x €V

Similarly (x,0) =(0,x) =(0.y,x) =0(y,x) =0 ;x €V

Example: Let (V,(.,.)) be an inner product space over a field F then show that
(x,xy) =X (x,y) ;x,y €V ,xEF

Solution: (x,x y) =(x y,x) =X (y,x) =X (y,x) =X (x,y) ;x,y EV ,xE F

Example: Let (V,(.,.)) be an inner product space over a field F then show that
(x,z)=(y,z)>x=y ;x,y,z€V

Solution: (x,z)=(y,z)=(x,z)—(y,2)=0=>(x—y,2)=0=>x—y =0
>x=y

Example: Show that the Euclidean space R? is an inner product defined by
(X,¥) = X171 — X1Y2 — X201 + 2%

Solution (x,x) =0

(X,X) = X%, — X1X5 — XpX1 + 2%,%, = (x; —x,)2 +x2 >0

= (x,x) =0 & xyx; — XX, — X1 + 2x,x, =0
S (—x)2+x5=0 (x; —%,)2=0,x=0
Sx—x=0x=0x=x=0x=0

" (x+y2z2)=(x2)+(y2)
(x+y,2) = (X1 +y1)21 — (X1 +¥2)2, — (X2 + ¥2)21 + 2(x3 + y2) 2,
(X +Y,2) = X121 + V121 — X123 — Y223 — XpZ1 — Y221 + 2X22, +
2Y,2y = X171 — X123 — XpZ1 + 2X325 + Y171 — YoZy — Y221 + 2,27,
(x+y,z)=(x,2) +(y,2)

. (x,y) = (y,x)
(X,¥) = X171 — X1Y2 — X2¥1 + 2X3Y, = Y1X1 — Y1Xp — Yo X1 +
2y,%; = (Y, X)

" (xxy) = (y,x)
(X X,y) =X X1 Y1 =X XY, —X X1 + 2 X XY, =X (X1Y1 — X1, —
X2¥1 + 2x5y7) = (X x,y) =X (x,y)
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Theorem

Let H be an inner product space then H is a normed space with defined norm
x|l = +/{x, x)

Proof

N v {xx)=0=/(rx)=0= x| =0

N lxll=0eJxx)=0 (xx)=0x=0
N3) lloc x| = y/{oc x, o x) = yJox {x, & x) = /& (x, x)

lloc x| = y/1ec|?(x, x) = loc|y/{x, %) = |ec|[|x ]|

Ng)  llx+yll < flxll + Iyl

lx +ylI> ={x+y,x+y) = (,x+y) +(y,x +y)

llx + ylI7 = (x,x) + {6, ¥) + (y, x) + (¥, ) = (6, %) + (6, y) + (6, 9) +(y,¥)
llx + ylI? = (x,x) + 2(x, ¥) + (¥, »)

llx + ylI? < {x,x) + 216, y) + (v, y) < Hlxll? + 2[lxHly [+ Nyl

lx + 11> < lxll + lyID? = llx + vl < llxll + Iyl

This shows that an inner product space is a normed space.
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Theorem

An inner product is a metric space with metric defined by

dx,y) = llx—yll =J/(x—y,x—y)

Proof

M1) d(x,y) =J(x—y,x=y)=llx—yll 20=d(x,y) 20;Vx,y € X

(M2)d(x,y) ={x—yx—y)=|lx—yl|l=0x—-y=0x=y
= d(x,y) =0ifandonlyifx =y

M) d(x,y) =Jlx—y,x—y)=llx—yll =lly—xll =y —x,y — x)

=>d(x,y)=d(y,x) ;Vx,y e X (Symmetry)

(M4) d(x,y) = J(x—y,x—y)=llx—yll = llx —z+z -yl
dx,y) <llx =zl + llz =yl
d(x,y) <d(x, z) +d(z,y) (Triangle Inequality).

Thus d(x,y) = \/(x — y,x — y) satisfies all the properties of a metric and hence a
metric space.
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Inner Product Space Satisfies Parallelogram Equality
llx + ylIZ + llx = ylI> = 2(lIx]1* + [lylI*)

I.e. the sum of squares of the length of diagonals of parallelogram is equal to the
sum of the squares of the lengths of sides of parallelogram.

Proof

L.H.S=|lx+ylI*+ llx — yll’

=(x+yx+y)+{x—y,x—y)
=xx+y)+yx+y)+xx—y)—(y,x—y)

= (x,x) + ) + (1, x) + W, y) +xx) = (6 y) = v, x) + (v, y)

= (x,x) + (v, y) + {x,x) + (v, y)

= 2(x,x) + 2(y,y) = 2(¢x, x) + (¥, ¥)) = 2(llx|1* + llylI*) = R.H.S

This name is suggested by elementary geometry, as we see from Figure if
we remember that the norm generalizes the elementary concept of the length of
a vector. It is quite remarkable that such an equation continues to hold in our
present much more general setting.

x Y

%

X

We conclude that if a norm does not satisfy Parallelogram Equality, it

cannot be obtained from an inner product by the use of ||x|| = /{x, x). Such
norms do exist. Without risking misunderstandings we may thus say:

Every inner product space is normed but Not all normed spaces are inner
product spaces
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Question
Every norm space is not an inner product space. Prove!
Proof

We will prove it by using an example.

Consider C [0%] I.e. A space of all continuous real valued functions on interval

[0, g] Then define the following norm;

1€ [0.5] = Fwith IIf1] = Sup, o1/ (o)l

. |IfIl=0 Since Supxe[og]lf(x)l >0
i Ifl =0 Sup, foqfC =0 |f@)] =0 f=0
il fll = Sup, ozl F GOl = |eclSup, 1 I = |lIf
V. f + gl = Sup, o mIf () + GCOI S Sup,fo 1 |f OOl + Sup, g )]
If+gll < lfll+llgll

Hence (C [0, %] . ||) IS a normed space.

Now let If | = Sup, ., 1f (x)] and choose f. g € C |0, such that

f(x) =Sinx and g(x) = Cosx where x € [O,%] then

fll = Supxe[og]lSinxl =1 aswell as ||g|l = Supxe[og]lCosxl =1
1 1 .
If + gl = Sup o mlf () + 90| = Z+ 5 = V2 using x ==
If —gll = Supxe[oz]lf(x) —g@)|=1+0=1 using x = ~and x = 0
'2

If+gll? +11f —gll* = 2(If11* + lIglI*) = 3 # 4

Hence C [0, g] IS not an inner product space.
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Triangular Inequality for Vectors
i + 2l < [l + 1]l
Proof
(
14+ V)|? = (U, d) + (U, D) + (D, u) + (¥, ) = (U, u) + (U, V) + (U, D) + (B, V)
I + 9l1* < (@, d) + 2|, D) + (7, ¥) = [[dll* + 2]|llI7]] + [19]]?
@+ 117 < (12l + 191D? = 1ld + 31| < [l + (I]]
Remember: When does Equality Holds?
i + 21l = [lull + [I7]]
o [l + 117 = [lldll + 151117
o [l + )17 = [ld)l* + 2[lllIZ] + [I¥]1?
(U, u) + (U, v) + (U, v) + (v, ) = (W, u) + 2||u|l||?7]| + (¥, D)

& (U, v) + (v, u) = 2|[ulllvll

& (U, V) + (U, v) = 2|[ulllvll

& 2Re(u, v) = 2||ull||7]|

= Re(u,v) = |[ulllIV|l = (&, V)]  .eeneena (1)
But Re(u,v) < |(u,?)] ...l (2)
From (1) and (2) Re(u, v) = |(u, v)|

= |[dll[I¥]l = {d, V)]

Su=0v=0o0ru=cvforanyc=0
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Cauchy-Schwarz Inequality

If 2 and ¥ are vectors in a real inner product space V, then
W, 0)* < (@, u)Xv,7)* or (@) < [Vl

Proof

—

For any real number ‘t’ consider (tu — ¥, tU — ¥) = 0
=t(u,tu—v)— D, tu—v)=t{tu — v, U) —(tu —v,v) = 0
= t{t(u, u) — 1V, u)} — {t(u, ) — 1(v,¥)} = 0

= t2(U,u) — t(V,U) — (U, V) + 1B, V)= 0

= t?|[ull* - 2¢(u, D) + 151> = 0

(ﬁj}) — - - - (ﬁ,ﬁ)z =112 (ﬁ,ﬁ) - 2112
Let t = —— then tu —v,tu —v) == —2—(u,v)+ ||v|]|[-=0
= D 16112 = 0> —E 4 152 > 05 1312 > 2
2112 lI2i]12 - lI2]12 - -l

= [[El?I1911* = @, 9)* = (4, 9)* < [[ull*[I1V]|?

= @0 < Dl or (U, v)* < (U, u)*(V, V)?
Remember:
I(u, v)| = Ul 7]

o ||tu—7]| =0
Stu=7v

& {u, v} are L.Independent.
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Appolonius Inequality

lz =l + llz =yl = 2lx =2 + 2 |z =2+ )|
Proof:

Ix + ¥l = +yx+y) = (x+y) +{(nx+y)

Ix + ylI> = (x2) + {x ) + (v, %) + (3, %)

I+ ylIZ = 112 + 260 9) + IVI1Z e (1)
Ix=ylI* =(x—yx—y) =(xx—y) = (y.x - y)

lx = ylI> = (xx) = (x,y) = (v, x) + (v, 9)

lx —ylI? = lIxl|? = 2{x,y) + Y12 (2)
Adding (1) and (2) we have

lx + Yl + llx = yI1? = llxlI* + 2¢x y) + [IyII* + 1x]1? = 2¢x, y) + [IyI?
lx + ylI? + llx — ylI? = 2|lxI? + 2llyll? oo (3)
Putx =z—x,y=2z—-1yin(3)

lz—x+z-yll* +llz—x—z+yl|* =2llz = x||* + 2|z — ylI?

122 = e + DI + ll=x + I = 2llz = %12 + 211z = yII?
1 2 2 2 2
4|z=3G+»| +l-x+yI? =2z —xlI* + 2llz -
1 2 1 2 2 2
2||z =5 G+ +5lx =17 = llz = xI2 + Il =y
Hence we get

lz =%l + llz = y1I? = 2lix = yl2 + 2|7 =2 e+ )|
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Polarization Inequality (U, v) = %(llﬁ + 7|12 — ||u — 7]|?)

Proof: Consider |1 + 9||? — ||u — V||
=U+,U+V)—U—D,U—-V)=UU+ D)+ (U, U+ D) —(UU— D)+ (VU — D)
= (U, u) + (U, v) + (¥, u) — W, u) + U, v) + (¥,d) — (D, V)

= |[d@ll* + 2(4, ) + |D]|* — |[dll* + 2(u, ¥) — ||F]|* = 4(u, V)

- > 1 — - — -
(@, 7) = 7 (Id + 7II* — |l - ¥I*)

Theorem: Let V be an inner product space, V also a normed space if following
axioms are true;

= li]|=0 ; |ld]l=02u=0
= ||kZ| = |k|||E|| ;Vk € F
= lu+ 9 < 1]+ I

Proof
= ||u]|=0 ; |[ull=0=2u=0
Let i = 0 then ||Z|| = /@, d) > 0= ||E[| > 0
If % =0then @]l =/@u)=0=|El=0
> lull 20 ; lull=0e#=0
= ||kull = |k||[dll ;Vk € F
Let || k|12 = (kT, ki) = kk(@, @) = k2|72 = k@l = |k|||E] ; Yk € F
= |+l < |lull + |7l
i+ 9|2 =@+ 0,U+ V)= UU+V)+BuU+D)
T + B2 = (@, 0) + (U, B) + (B, 0) + (B, D) = @, °0) + @, D) + (U, ) + (B, D)
I + l1* < (4, d) + 2|, D) + (7, ¥) = [[dll* + 2]|lI5]] + [19]]?
I + 3117 < (2l + 191D = 11d + 31 < [l + (I]]
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Hilbert Space: A complete inner product spac is called Hilbert space. Or an
inner product space in which every Cauchy sequence converges is said to be
Hilbert Space.
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Example: Show that the Euclidean space R" is a Hilbert space with inner product

defined by (x, x) = ||x||* = XT|x;|*.

Solution  Let {x,,} be a Cauchy Sequence in R" where {x,} = { (")} then for

any € > 0 there exists nyeN such that

”xn _xm“ = \/(xn — Xm» Xn _xm) <€ ;Vmnz=n,

=>\/Z’1‘x xi(m)|2<e ;vm,n = n,

= |x xi(m)|<e ;vm,n = n,

= xi(") is a Cacuchy sequence in R and since R is complete

therefore x™ — x; € R

then there exists a natural number n;eN such that |xi(") - xi| < 5—5 ;Vn > n;

= |x£n)—x1| <\7—5 ;Vn >n,y

€
|(")—x2| — ;Vn=>n,

VP

€
|x,(ln)—xn|<— ;Vvn=2n,

VP
If x = (x4, x5, ..., X,,) then xeR™.

Let n' = max{n,,n,, ..., n, } then for the above expression we have

2
™ _y,

I, -1l = 57
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= |lx, — x|l <€ ;n=>n" = J(x, —x,x, —x) <€ ;n=>n
This shows that {x,,} converges in R". Hence R" is a Hilbert space.

Similary we can show that C" is a Hilbert space with complex sequence.

Theorem: The space [P withp = 1 of all sequecnes x = {x;} is a Hilbert

space with inner product defined as /(x, x) = ||x|| = & 7|x;|?)?

Solution  Let {x,} be a Cauchy Sequence in [P where {x,,} = {xi(")} then for
1

any € > 0 there exists nyeN such that

”xn_xm”:\/(xn_xm:xn_xm)<E ;Vmn 2 n,

=[5

xi(n) —xi(m)| <e ;Vmn=n,

x™ —

P
; xl.(m)| <e ;Vmn=n,

=

)

=>Xl

is a Cacuchy sequence in R and since R is complete

(n)

Therefore x; — x; € R then |xi(”) - xi| — 0 for each i

Next suppose that x = {x;} then

1

P\p _ .
lx, — x| = (Z‘f’ |xi(") — xi| )p — 0 Since |xi(") — xil — 0 for each i
=X, > X

Now x = x,, — (x, —x) € [P thenx,, > x € [P

This shows that {x,,} converges in [P. Hence [P is a Hilbert space.
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Theorem

The space [P withp # 2 is notan inner product space, hence not a Hilbert
space.

Proof

We know that in an inner product space Parallelogram law holds. We check this
law for give space [P of all sequecnes x = {x;}.

Letx = (1,1,0,0,...),y = (1,—1,0,0, ...) € [P then we are to prove

llx + ylII2 + llx = ylI? = 2(Ixl1? + llyll*)

1 1

1
Ixll = B2 1x:1P)P = (1P + [1]P + |0[P + [O]P + ---)» = 2P

1 1

Iyll = L1yl = (1LIP + [=1P + (0P + [0[P + )7 = 2p
lx + yll = 1(1,1,0,0, ...) + (1,—1,0,0, .. )] = [1(2,0,0,0, ..)]| = 2
Il — Il = 1(1,1,0,0, ..) = (1,=1,0,0,..)]| = 11(0,2,0,0,..)|| = 2
e+ yl12 = [lx — yII? = 4

= llx + ylI? + llx = ylI* = 2(llxl1* + lly1*)
E 1
=>44+4=2 (210 + Zp) =>8=4 (21’) this is only possible when p # 2.

= [P does not satisfy the parallelogram law with p # 2.

Hence The space [P with p # 2 is notan inner product space, hence not a
Hilbert space.
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The space [ of all b ounded sequecnes is a Hilbert space with inner product

defined as /(x, x) = ||x]|| = Sup;en|x;| where x = {x;} € [®

Solution  Let {x,} be a Cauchy Sequence in [* where {x,} = { .(")} then for

any € > 0 there exists nyeN such that

”xn _xm” = \/(xn — Xm» Xn _xm) <e ;Vmn=ny
= Supien |xi(n) - xi(m)| <€ ;Vmnz=n,

= |x

xi(m)| <e ;VYmmn=n,

= xi(n) is a Cacuchy sequence in R and since R is complete

Therefore x(n)

- x; ER
then there exists a natural number n;eN such that |xi(") — xi| < EE ;Vn > ny

€
|(n)—x1| ~ vnzmn

|(n)—x2| % ;Vn > n,
|x,(ln)—xn|<% ;Vn = n,

If x = (x4, x5, ..., X,,) then xeR™.
Let n' = max{ny,n,, ...,n, } then for the above expression we have

m)

|xn—x|=|xi —xi|<% ;vn>n'

9
l

= ||lx, — x|| = Sup;en |x;7 — x; <6; ;vn=>n'

= ||lx, —x|| <€ ;n=n"=J{x,—x,x, —x) <€ ;n=n
n n n
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This shows that {x,,} converges in [~.

xi(n) —x; — xi(n)| < |xi(n) — xl-| + |xi(n)|

Now [x| = |x;| =

x| <€+

O 1)

Since {x,,} = {xl(n)}io € [® being a bounded sequence could be written as for any
real K; |xi(”)| <K

(1) = |x| £ € +K this show that x = {x;} € [* is a bounded sequence.

Then x,, = x € [ and Hence [* is a Hilbert space

Theorem

The space CJa, b] is not an inner product space, hence not a Hilbert space.
Proof

We know that in an inner product space Parallelogram law holds. We check this
law for give space C[a, b] with defined norm ||x|| = max,¢;|x(t)| ;] = [a,b]

Letx =x(t) =1,y =y(t) = e e C|a, b] then we are to prove
b

—-a

llx + ylIZ + llx — ylI> = 2(lIx]1* + [lylI*)
llxll = llyll = 1

t—a t-a
x+y=x(t)+y) = 1+E andx —y =x(t) —y(t) = 1_E
Ix+yll=2and [[x -yl =1
= [lx + 1% + llx — ylI? = 2dIx11? + NIyl
>5=2(1+1)=>8#%5
= C[a, b] does not satisfy the parallelogram law.

Hence the space C[a, b] is not an inner product space, hence not a Hilbert space.
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Theorem

The space C(X,R) isa Hilbert space with inner product defined as
V)Y = IfIl = Supsex|f ()]

Solution  Let {f;,(x)} be a Cauchy Sequence in C(X, R)then for any € > 0 there
exists nyeN such that

Ifo = finll <€ 5VMn =ng = Supyexlfu(x) = fn( <e ;Vmnzng
= |fu(x) — )| <€e ;Ymn=n,

= f,,(x) is a Cacuchy sequence in R and since R is complete

Therefore f,,(x) = f(x) € R where f(x) is function f: X - R

Next we show that f(x) € C(X,R) for this it is enoght to show that f is
continuous. Lete > 0 and x, € X.

Since f,,(x) € C(X, R) then being continuous on X it will be continuous on x, € X.
= [fu(¥) = fulxo)| <5 whenever ||lx — xolly <

Since f,,(x) = f(x) so we have n; € N such that

S 1@ - f@I<S ¥nzn,

Since £, (x,) = f(x,) SO We have n, € N such that

> fult) = f)l <S svnzm,

Now we are to show that f(x) = f(x,) for this let

[f () = fxo)| = 1f (%) = fu () + fu (%) = f(x0) + f(x0) — f (o)

1f () = fxo)| < 1fu(0) = FOO| + 1 () = falxo) | + £ (x0) = f(x0)]

|f () = fxo)| < Eg + 1 fu () = fa(xo)l +6g

() = f o)l < T+ 1 (x) — fo o)
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f () = f(xo)| < Z€ + =€ whenever [|x — xolly <&
|f(x) — f(xo)| < € whenever ||x — xyllxy < &
This shows that f is continuous at x,, S0 f is continuous on X, so f(x) € C(X,R).
This shows that f,,(x) - f(x) € C(X,R).
Hence € C(X, R)is a Hilbert space
Other Examples
= Space L*[a,b] is a Hilbert space with (x, y) = f:x(t)y(t) dt
= Hilbert sequence space I? is a Hilbert space with (x, y) = Yie1 Xjyj itis

the prototype of a Hilbert space. It was introduced and investigated by
D. Hilbert (1912) in his work on integral equations.

Theorem

Show that the space c¢ consisting of all convergent sequecnes x = {x,,} of real
number (or complex numbers) with inner product defined as

V{x, x) = ||x|| = Sup,enlxy,| is a Hilbert Space.

Solution  Since a convergent sequence is bounded and the space [ consists of
bounded sequences, so the space c is subspace of [*. Since [ is Hilbert Space, so
to show that c is Hilbert space it is enough to show that c is closed. For this we will
have to show ¢ = c.

We already knowthat c<Sc¢ ............ (1)
Let x = {x,} € ¢ then there must exists a sequence {xP} € ¢ such that x® — x
Hence then for any € > 0 there exists nyeN such that

||x(p) - x|| <§ ;Vp = ng

= SUpnen |x,§p) — xn| < § ;Vp = ng
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€
=>|x,gp)—xn|<§ ;Vp=2ng (2)

Similarly for each fixed n € N and p = n, we have

=>|x,gn°)—xn|<§ ;Vp=mny .l (3)
=>|x7(r?°)—xm|<§ VP =79 e, @)

Since x(™) € ¢, so x(M0) = {x,(ln(’)} is the convergent sequence of real numbers.

Since every convergent sequence is Cauchy sequence, then for any € > 0 there
exists n, eN such that

= |x1(r7110) _ xr(an)

<§ ;Vmn=2ng ...l (5)

Now using (2), (3), and (4) we have

1(:0) _ xr(r:lo) + xr(LnO) _ xr(an) _

|xm_xn| = |xm+x xn|

|xr(rrll0) _ xr(LnO)

|, — x| < |x,(,7:°)—xm|+ +|x,(ln°)—xn|

€ € €
IXm—XnI <§+§+§
= Xy —x,1 <€ ;Vmn=ng

This shows that x = {x,,} is a Cauchy Sequence of real numbers. Since the set of
real numbers is complete, so this Cauchy sequence converges. i.e. x = {x,} is
convergent sequence. Then x = {x,,} € ¢

Then CSCc (6)

Hence ¢ = ¢ and this shows that c is closed, so c is Hilbert Space.
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Theorem

Show that the space c consisting of all sequecnes x = {x,,} of real number (or
complex numbers) converging to zero with inner product defined as

(x,x) = ||x||? = (Sup,enlx,|)? is a Hilbert Space.

Solution  Since a convergent sequence is bounded and the space [ consists of
bounded sequences, so the space c is subspace of (. Since [* is Hilbert Space, so
to show that c is Hilbert space it is enough to show that c is closed. For this we will
have to show ¢ = c.

We already knowthat ccc¢

Let x = {x,} € ¢ then there must exists a sequence {xP’} € ¢ such that x® - x
Since the space ¢ consists of those sequences which converges to zero so x® — 0
Since a sequence can converge at most one pointso x = 0 i.e. x = {x,} = 0,0,0, ...
This shows that x,, > 0i.e.x € c

Then cCc

Hence ¢ = ¢ and this shows that c is closed, so c is Hilbert Space.
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Orthogonality

An element x of an inner product space X is said to be orthogonal to an
element y € X if (x,y) = 0.

We also say that x and y are orthogonal, and we write x L y. Similarly, for
subsets A, B € X wewritex L A ifx Lafor all ae A,andA L B ifa L b for
all ae A and all b € B.

Orthogonal Set

Aset S = {x;:i € I} of vectors of an inner product space X is said to be an
orthogonal set if distinct vectors of X are orthogonal, i.e.

(x;,yi)=0;i#jand x;,y; € X.

Theorem of Pythagoras

If x and y are orthogonal vectors in a real inner product space then

lx + ylI? = llxII> + lIyll?

Proof: Since x and y are orthogonal therefore (x,y) = 0

lx +ylI> =(x+y,x+y)=(,x+y)+(y,x +y)

lx + ¥l = ¢, x) + (6, 9) + (v, %) + (v, ) = (6, x) + (0, 9) + (6, 9) + (v, y)

lx + ¥l = (6, x) + 200, y) + () = x> +lIylI> = (xy)=0
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Generalized Pythagoras Theorem

If x,, x5, x5, ..., x, are piecewise orthogonal vectors in a real inner product space
then 127 x> = sy llxll?

Proof

120, %117 = Xy % }1:1 xj) = ?:1Z?=1<xi»xj)
Xy xill? = Xiealo, x) = (xpx) =050 #
127y xill? = (T 2, Xig x;)

1270 %17 = X llxll?

Lemma (Continuity of inner product)
If in an inner product space, x,, —» x and y,, = y, then (x,,y,) = (x,y).
Proof:

Subtracting and adding a term, using the triangle inequality for numbers and,
finally, the Schwarz inequality, we obtain

|Cn, Yn) = €6 W = [n, ¥n) — (n, ¥) + (i, ) — (x,9))

(X, Yn) = O < otn, v = W+ [ = 2, )

|Cen, yn) = (o M < Nxnllllyn = w1l + 1, — x]lllyll - 0as n — oo
[(x, y) — {x,y)| > 0asn - o«

Hence (Xn, yn) = (x,y)asn —» o
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Remember

= Theorem (Completion). For any inner product space X there exists a
Hilbert space H and an isomorphism A from X onto a dense subspace
W c H. The space H is unique except for isomorphisms.

= A subspace Y of an inner product space X is defined to be a vector
subspace of X taken with the inner product on X restricted to Y x Y.

= Theorem (Subspace): LetY be a subspace of a Hilbert space H, Then;

a) Y is complete ifand only if Y is closed in H.

b) IfY is finite dimensional, then Y is complete.

c) IfH is separable, so is Y. More generally, every subset of a
separable inner product space is separable.

Interesting to Remember

In a metric space X, the distance § from an element x € X to a nonempty
subset M c X is defined to be § = inf,eyd(x,y) ;M * @

Ina normed space this becomes § = infyeyllx —yll M # ¢

A simple illustrative example is shown in the following figure.
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The segment joining two given elements x and y of a vector space X is defined
to be the setof all z € X of the form

z=xx+ (1-x)y ;(x€R,0<x<1).

In fact for any e [0,1], the point z =« x + (1—)y is always the point of the
segment with ends x and y.

A subset M of X is said to be convex if forevery x,y € M the segment joining X
and y is contained in M. In other words, a subset M of X is said to be convex if
for any point x, y € M, the closed segment with end points x and y is contained in
M.

For instance, every subspace Y of X is convex, and the intersection of
convex sets is a convex set. The empty set and the singleton sets are always
CoNnvecx sets.

Convex Not Convex
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¥'11.5.1 Examples
1. Any subspace of a linear space N is convex,

- 2. For any subspace S of N and x € N, the set
x+8S={x+s;5€8}

is convex.

Proof
~ Letu,u'€x+ S.Thenu=x+s,u =x+s,fors, s €8. So,
for any a. € [0, 1], | 1l g | |
oau+(l-au =ox+(1-x+as+(1-a)s'
sx+os+(l-a)s
=z+s5,s"=as+(1-)s €85,
isinx + S. iR
3. Intersection of any class of conyex subsets of N is convex.

4. Let T: N = N' be a linear transformation and C a convex subset
of N. Then T(C) is also convex. -

Proof
| Here, for &', u" € T(C), there aré ¢, ¢’ '€ C such that
u=Te),u = TE)
so that, for any o € [0, 1],
CTau+ Q-ou =al)+ Q- TE)
=Tle+(1-a)e') , Tis Iil_leaf
=Tc"),c"€C

\s an element of T(C). -
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5. For any convex subsets K and L of a linear space N, the set
K+L={x+y:xecKyeclL}

is convex.

Proof
Here forany u, u’ € K + L, therearex, x' € K,y,y' € L such that

usx+yu =x"+y
so that, for any o € [0, 1]
oau+(l-ayu’ =ox+ (l;a)x' + oy + 1-oy
=x"+y" 2" €K,y elL
isin K + L. Hence K + L is convex, |

6. Let C be a convex subset of N, ’I‘hen for any scalar a, aC is also
convex.

Proof -
For if u, u’ € aC then there arec, ¢’ in C such that
u=oacu =ac.
Hence far any v € [0, 1],
7u+(1 7) ' =::x(7c+ a- y)c}
=ac’,c""€C

.isin aC.
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7. For any normed space N, the open and closed balls
Blxgpr)={xeN:|lx-xll <r}

Blxgir) = {x e N: [[x = x|l <7}

are convex. In particular the open and closed unit balls with centre at
the origin are convex.

Proof

Let x, x' € Blxg; r). Then ||x — x4/l < r, |lx' = x4ll < r and for
a € [0, 1), - '

loax + Q- z' —x5ll = |lox + (1 - ) 2’ = oxg — (1-01) x|
= llatx —xp) + (1 — ) &' —xp)l
< allx—xgll + @ =) [l = xoll
<@+ 1-a)r
<r _ -

Hence ox + (1 —a) x' € B(xy; r) so thé.t B(xq, r) is convek. Si'n'lilarly
B(x,, r) is convex.
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11.5.2 Theorem

For any convex set C in a linear space N and for any scalars o, f3,
az20p20,

aC+BC=(+P)C

Proof

If a=0orf =0, then the equation holds trivially. Hence we

suppose thata > 0, 3 > 0. Let z € (o + ) C. Then thereisac € C such
that

z=(@+PB)e=ac+ Pe
sothatz € aC + BC. Hence (a + ) C < aC + BC.
Conversely, let u € aC + BC. Then there arec, d € C such that

u-ac+ﬁd=(a+B)(a B d)

c+
a+Bf a+P

=+ Bw

= +—B-—d

a+B. a+P

B

o+ f a+f

where w=

Since

and C is convex, w € C. Hence u € (o + ) C so that aC + BC c (o +
B) C. Consequently

ac + BC = (@ + BIC,
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11.5.'4 Theorem
The closure of a convex subset of a normed space is a convex set.

Proof

Let C be a convex subset of 2 normed space Nand x, y € C, the
closure of C. Then there are sequences {x,} and {y,} in C such that

Xy —>.r,yn > y. Foranya € [0 1]
oax, + (1-a)y, €C.

Since addition and scalar multiplication in N are continuous,
ox, +(1-a)y, > 0ox+(1-a)y

so that ox +_(1 — o) y, being a limit pomt of {cu: + (1 -0 yn} isin C.
Hence C is convex.
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Minimizing Vector Theorem

Let X be an inner product space and M + ¢ a convex subset which is complete (in
the metric induced by the inner product).Then for every given x € X there exists a
unique y € M such that & = infjeyllx — ¥l = [lx — yl|

Proof

Existence: we have § = infjey|lx — ¥l then by the definition of an infimum
there is a sequence (y,,) in M such that

&, = 6 asn — oo where §,, = |[x — y,||

We show that (y,,) is Cauchy.

Letv, =x —y, then|lv,|| =6,  ....coeeniits (1)

Now [|vy, + vipll = [lx = yn + X = yill = 112 = G + ¥l

I+ vl = 2 [ =5 0n + 3w = 2 [Jx = Gy + (1= 3) 3m)|
Since M is convex therefore % W+ Ym) = %yn + (1 - %) Ym EM

v, +vpll =26 ool () by definition of §

Now by the parallelogram equality;

10 = Ymll? = llx = v = (¢ = vl = Vg — V12 = llvn — v |I?
10 = Ymll? = =llvn + vll? + 20w l1? + llvm1?)

0 = ymll? < —(26)% + 2(67 + 67)

v, — Vll? < =462 + 2(62 4+ 62) > 0 asm,n - o

implies that (y,)is Cauchy. Since M is complete, therefore 3y € M such that
y, =y € M. Since y € M, we have ||x — y|| = §. Also,

lx =yl = llx =y, + ¥y = VIl < llx =0l + Iy, — ¥l
lx =yl <6, +lyn—yll=>6+0
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Uniqueness:

195

We assume thaty € M and y, € M both satisfy |[|[x — y|| = 6 i.e.

6 = |lx —yl|l = llx — yoll and we will show that then y = y,.

By using the parallelogram equality,

Iy —x) = (vo — 0)II?

=1y = x) = o — VI + 2(lly — x> + llyo — x[I?)
—ll=2x + v + ¥l + 2(6% + 6?)

ly — woll> = —4 ”x— (%y+ (1 —%)yo)”Z + 462

Since M is convex therefore %y + (1 — %) Yo EM

ly —yoll> < —48% + 462 =0

= |ly = yoll = 0
=Y =Y =0

=Y =Y
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Turning from arbitrary convex sets to subspaces, we obtain a lemma which

generalizes the familiar idea of elementary geometry that the unique point y ina
given subspace Y closest to agiven x is found by "dropping a perpendicular
from x to Y."

Lemma

Let (X,(.,.)) be an inner product space and let Y be a complete subspace of X
and x € X fixed. Then z = x — y isorthogonal toY.

Proof

Suppose that z L Y is not true then there exists y; € Y such that (z,y,) =8 # 0
Clearly, y; # 0 since otherwise (z,y;) = 0.

Furthermore, for any scalar o« consider

lz— Y1117 = (z—x y1, 2= y;) = (2,2—X ;)= (y;, Z—X y;)

lz— ;|17 = (2, 2) =& (2, 1)~ (y;, )= (y1, Y1)

lz—oc y, 112 = (2, 2)— (y1, 2) +& [ (y1,y1) — (z,71)]

Consider oc= 222 then
(y1.y1)

< ) — [{zy1)
lz—e y1 12 = (2,2) = 225 (yn, 2) +& [ 22 3, 31) = (2,7

lz—ot 1112 = (2,2) = 222 (1, 2) = (2,2) = 2 (2, 1) = (,2) =

B

1!y1>
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lz—oc yy |2 = [1z]|? — L
1 FAE
Since ||z|| = ||x — yl| = 6 therefore

llz—oc y4I? < &2

But this is impossible because we have

lz—oc sl = [lx = y—c ys |l = lIx = (y+oxc y)l = 6
lz—o¢ y4 I = 67

Hence (z,y,) = # 0 cannot hold, hence z L Y and the lemma is proved.

Sum

The sum of two subspace Y and Z of a vector space X is denoted by Y + Z and is
definedtobeasetY+Z={y+z ;y€eY,zeZ}

Direct Sum

Let Y and Z be two subspace of a vector space X and if Y N Z = {0}, thenY + Z
Is called the direct sum of Y and Z and is denoted by Y @ Z.

Remember

A vector space X is said to be the direct sum of two subs paces Y and Z
of X, written X =Y @ Z,

If each x € X has a unique representation x =y+z ;y€eY,z€Z.

Then Z is called an algebraic complement of Y in X and vice versa, and
Y, Z is called a complementary pair of subspaces in X

For example,

Y = R is a subspace of the Euclidean plane R? Clearly, Y has infinitely
many algebraic complements in R? each of which is a real line. But most
convenient is a complement that is perpendicular. We make use of this fact
when we choose a Cartesian coordinate system. In R® the situation is the
same in principle.
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Remember

» Theorem: Leta linear space X be the sum of two subspace Y and Z, so
that X=Y +ZthenX =Y @ Zifandonlyif Y nZ = {0}. i.e. Y and Z are
disjoint.

= The condition in this theorem that the subspace Y and Z have only the origin
in common, is often called disjointness of Y and Z.

Theorem

If M and N are linear closed subspace of a a Hilbert Space H, suchthat M L N,
then the linear subspace M + N is also closed.

Proof

For any subspace M and N their sum M + N is also a subspace. We have to show it
Is a closed subpsce. We need to show that all the limit points of M + N are in
M+ N.

Let (z,) be asequence in M + N converging to a limit point ‘z’ i.e. z,, — z.
It is enough to showthatz e M + N.i.e.z, > z€ M + N.

Since M L N, so we see that M N N = {0}. i.e. M and N are disjoint. Then using
the theorem “Let a linear space X be the sum of two subspace M and N, so that
X =M+NthenX=M@ N ifandonlyif M n N = {0}. i.e. M and N are
disjoint.”

The sum M + N can be strengthen to the direct sum M & N and thus each z, can
be expressed uniquely in the form z,, = x,, + y,, where x,, € M,y,, € N.

Then we have;

|z, — Zm”2 = |Cen + ym) — (e + ym)llz
|z, — Zm”2 = |Cen — 2xm) + (U — ym)llz
Now using pythagorian theorem

“if x L yin IPS then ||lx + y||? = |Ix|I? + lIy||>”
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We have the following result

1Zn = Zml1? = 12 — X 12 + 117 — Vi I2

Now since (z,,) is a Cauchy sequence then

|z, —zy,ll <€ ;mn=n,

|z, — zy,ll> <€? ;mn=n,

10 = X lI? + 1y — ymll> < € smmn=n,

lx, — x> < €2 ;mmn=ngand |y, — yll? <€? ;mmn=n,
lx, —xpll <€ smn=ngand ||y, —ynll <€ ;mn=n,

So (x;,) and (y,,) are Cauchy sequences in M and N respectively. Also M and N
are closed subspace of a Hilbert space H, therefore M and N are complete. So by
completeness there exist vectors x and y in M and N such that;

X, 2> xandy, =y

Sincex + yisin M + N, we have

z =1lim, o 2z, = limy, (X, + V) = lim, 0 X, + im0 Yy,
zZ=x+Yy

This shows that zisalsoin M + N

Hence M + N is closed.
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Orthogonal Compliment

If Y is any subset of a Hilbert space H, then orthogonal compliment of Y is
denoted by Y and is defined by the formula

Yt={x€H:(x,y)=0VyeY}={x€H:x LY}
Which is the set of all vectors orthogonal to Y.
Annihilator

Let Y be a subset of a Hilbert space H, then the set of all vectors of H which are
orthogonal to Y is called the annihilator of Y and is denoted by Y. i.e.

Yl={xeH:x1Y}
Remember

= The annihilator of Y+ and is denoted by Y*+.ie. Yttt ={x € H:x L Y}
= {03 ={xeH:x1{0}}=HandH' ={x € H:x L H} = {0}

Theorem

Let Y be asubset of a Hilbert space H. Then Y € Y1+

Proof

Letx € Y then(x,y) =0 forally € Y*
>x1lYt=sxeytHtsycytt

Theorem

Let A and B be subset of a Hilbert space H. And A € B Then B+ c At
Proof

Let AC Band x € B then (x,y) =0forally € B

=>(x,y)=0forallye A=>x e At = Bt c Al
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Theorem

Let A and B be subset of a Hilbert space H. Then (4 U B)* = At n B+,
Proof

SinceAcAuBandB < AUuBthen(AUuB)t c Atand (AU B)* c B
s (AuB)tcAtnBt (1)

Let x € A+ N B+ this means that x € A and x € B then by definition
(x,uy=0forallue Aand (x,v) =0forallve B

Hence (x, v) = 0 for every v € A U B and so by definition x € (A U B)+

>A*nNnBtc(AuB)t (2)
From (1) and (2) (AuB)t=AtnB?
Theorem

Let A and B be subset of a Hilbert space H. Then At U B+ € (4 n B)L.
Proof

SinceANBcAandANnB c BthenAt € (AnB)tand Bt € (An B)?
> A'UBtc(4AnB)*

Theorem

Let A be asubset of a Hilbert space H. Then At = A+,

Proof

Since A € At then (A1)t € AL = AL c 4t

Also AL c (AL)HL = AL c Attt

Hence At = At+4
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Theorem

Let Y be asubset of a Hilbert space H. ThenY nY+ < {0}.

Proof

IfY nYL = ¢ thenclearly Y n Y1 = ¢ < {0} so the condition is true.

IfYnYyt#gthenletx €Y nYLimpliesx € Yandx € Y+ and so (x,x) = 0 i.e.
Ix[|?=0=>x=0€{0}=>x€{0}=>YnY*c{0}

Theorem

Let Y be asubset of a Hilbert space H. Then Y+ is closed linear subspace of H.
Proof

Let x,y € Y+ and «, B € F then we have to show that & x + fy € Y+

Since x,y € Y+ therefore (x,u) = 0 and (y,u) = 0 for every u € Y then

(< x + By,u) =x{(x,u)+B{(y,u)=0>xx+py LY > x+ By €Y',

This shows that Y+ is linear subspace of H. Now we have to show that Y+ is
closed. For this we just show Y+ = Y.

We already knowthat Y+cyYLl ... (1)
Now let x € Y then there exists a sequence (x,,) in Y+ such that x,, - x
Now by using continuity of inner producsts for any u € Y we have

(x,u) = (lim, o, X, ,u) = lim{x,,u) =0=>x 1LY >xeY*
n—>00

Implies that Yyicyt 2)

Then Y+ =YL and Y+ is closed subspace of H.
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Theorem

Let Y be a closed linear subspace of a Hilbert space H. Then Y n Y+ = {0}.
Proof

Since we know that if Y be a subset of a Hilbert space H. Then
Ynytc{o} ... (1)

Given that Y is closed linear subspace of H and we also know that Y+ is closed
linear subspace of H. Let x € Y n Y+ impliesx € Y and x € Y+ and so (x,x) = 0
e x]?°=0=>x=0=>0€Yand0eYt=0eyYny?

>{0jcynyt )

Combining (1) and (2) we get Yynyt={0}

Projection Theorem

Let Y be any closed subspace of a Hilbert space H. Then H=Y @ Y?
Proof

Suppose Y + Y+ is proper subspace of H then there is a non — zero vector z € H
suchthatz L (Y +Y1).ie.ze (Y +YH)t

NowY € (Y + Y1) implies (Y + Y1)t c v+

Also we know Y+ € (Y + Y1) implies (Y + YH)t c vyt

Thenze (Y + YY)t c Yyt nytt = {0} = z = 0 a contradiction.
Hence Y + Y1 isthe wholeof H.i.e. H= Y + YtsinceY n Y+ = {0}

ThusH=Y @Y+

For video lectures @ You tube visit “Learning with Usman Hamid”



204

Theorem

Let Y be aclosed subset of a Hilbert space H. Then Y =Y+t

Proof

Let x € Y then (x,y) =0 forally e Y+

>x1lYt=>xeytt=sycytt

Now let x € Y1+ and Y be a closed subset Halso H = Y @ Y+ so;
Foreachx e Y CH; x=y+z:yeY,zeY?

ButY c Yt thereforey € Y4+

>z=x—yeY¥tt=z1vd
ButzeYt=z1lz=2z=0=>z=x—-y=0>x=y=>xeY=>vicy
Hence from both cases Y = Y++,

Theorem

For any complete subspace Y of an inner product space V, Prove that Y = Y1+,
Proof

Letx € Y then(x,y) =0 forally € Y*

>x1lYt=sxeytHtsycytt

Now let x € Y+ and Y be a complete subspace of ValsoV = Y @ Y+ so;
Foreachx eY*t cV, x=y+zzyevcyvytltzevt
>z=x—-yeYtt=z1vt
ButzeYt=z1lz2z=02z=x—-y=0>x=y=2>x€eY=>Yicy

Hence from both cases Y = Y+t.
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Theorem

Let A be proper complete subspace of an inner product space V, then Prove that
V=A0pAt

Proof

Let V be an inner product space and A # ¢ and being a subspace is convex subset.
Then for every given x € V there exists a unique y € A such that

lx = yll = infyeallx — ¥l

Foreachx e V/A=A'putz=x—y

Thenz LA=>z€AtCV=z=x—y

>x=y+z;y€EAzEA

To see this expression is unique, suppose also x = y; +z; ;y; € A4,z; € At
=>X:y+Z=y1+Zl

>y—y,=z—2 € AN At ={0}
>y—y,=z2—2€{0}=2y—y,=0,z—2,=0

= Y=YuZ=2

ThusV = A@ A+

Lemma (Keep in Mind)

The orthogonal complement Y+ of aclosed subspace Y of a Hilbert space H is
the null space, V' (P) of the orthogonal projection P of Honto Y.
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Lemma

For any subset M #+ ¢ of a Hilbert space H, the span of M is dense in H if and
only if M+ = {0}.

i.e. The set of all linear combiniations of vectors of M is dense in H iff M+ = {0}.
Proof

Let x € Mt and assume V = span M to be dense in H.

Then x eV = H.

Then By Theorem (x € M & (x,) in M : x,, — x) there is a sequence (x,,) in
V such that x,, — x.

Since x € M+ and M L V, we have (x,,, x) = 0.

The continuity of the inner product implies that (x,,, x) = (x,x) asn — oo,
Thus {(x, x) = [|x||? = 0, so that x = 0.

Since x € M+ was arbitrary, this shows that M+ = {0}.

Conversely,

Suppose that M+ = {0} and V = span M.

If x LV, thenx L M,sothat x € M+ and x = 0.

Hence V+ = {0}.

Since Vis asubspace of H,thenH = V@ VV+

We thus obtain ¥V = H.i.e. V is dense in H.
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Orthonormal Vectors

Let X be an inner product space, the vectors x, y € X are said to be orthonoram if
(x,y)=0and [[x]|| =1 = [|yll.

Orthonormal Sets and Sequences

An orthogonal set M in an inner product space X is a subset M € X whose
elements are pairwise orthogonal. An orthonormal set M € X is an
orthogonal set in X whose elements have norm 1, that is, for all x,y € M,

(0 sx#y
(x’Y)_{l X =Y

If an orthogonal or orthonormal set M is countable, we can arrange it in a
sequence (x,) and call it an orthogonal or orthonormal sequence,
respectively.

Orthonormal Basis

In an inner product space, a basis consisting of orthogonal vectors is called an
orthogonal basis, and a basis consisting of orthonormal vectors is called an
orthonormal basis. A familiar example of the orthonormal basis is the standard
basis {(1,0,0), (0,1,0), (0,0,1)} for R® with the Eucledian inner product.

Lemma

An orthonormal set is linearly independent.

Proof

Let {e,, e,,...,e,} beorthonormal and consider the equation
x; e, +<; e;+...+x, e, =0

Consider (x; e; +x; e;+...+x, ey, e;) =0

= (X Xk ek, ) = 0= Yy x4 (e, e) =x; (e, ) =x;=0

This shows that orthonormal set {e,, e,, ..., e,} is linearly independent.
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Examples

= Euclidean space R®: In the space R®, the three unit vectors (1, 0, 0),
(0,1,0), (0,0,1) in the direction of the three axes of arectangular
coordinate system form an orthonormal set.

= Space I%: In the space [?, an orthonormal sequence is (e,), where
en = (6,;) has the nth element 1 and all others zero.

= Continuous functions: Let X be the inner product space of all real-valued
continuous functions on [0, 27z] with inner product defined by

2
(x,y) = [ x(©)y(t)dt
An orthogonal sequence in X is (u,), where u,(t) = cosnt ;n =20,1,...
Another orthogonal sequence in X is (v,,), where v,,(t) = Sinnt ;n = 0,1, ...

Advantage

A great advantage of orthonormal sequences over arbitrary linearly
ladependent sequences is the following. If we know that a given x can be
represented as a linear combination of some elements of an orthonormal
sequence, then the orthonormality makes the actual determination of the
coefficients very easy.

Fourier Coefficients

The inner products (X, ek) are called the Fourier coefficients of x with
respect to the orthonormal sequence (ey).

Geometrical Interpreatation of the Bessel Inequality (.77 g

A Geometrical Interpreatation of the Bessel Inequality is that the sum of the
squares of the projections of a vector x onto a set of mutually perpendicular
directions can not exceed the square of the length of the vector itself.
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Bessel Inequality

Let (e;) be anorthonormal sequence in an inner product space X. Then for every
x € Xwehave  YpLil(x, e}l < [lx]|?

Proof
Let Y,, = span{e, e,, ..., e, } then for every y € Y,, we can express
Y =Xk=1 %X €k ;%= (Y, e)

We claim that for a particular choice of ;. i.e. <, = (x,e;) : x EXbutx ¢ Y,
then we can obtain y € Y, such that z = (x — y) L y (will show this)

We first note that

V117 =y, ¥) = (k=1 Xk e, Zim=1 Xm €m) = (Zi=1{x, ex)er, Xm=1(x, emdem)

Y117 = Xk=1(x, ex) (e, Zm=1{X, em)em) = Xi=1(x, ex) Xin=1(X, en) (ex, €m)
Y112 = Zho1(x, e) Tm=1(x, €m) (ex, em)

IylI? = TR (x, ey X0_.(x, ex) {er, )  takingm = k

IylI? = Ziecalx, ex) (x, e ) (1)

Iyll2 = Spoilx e)l2 = Siol(x el e (1)

Now consider

(z,y) = (x = y,9) = (x,¥) = (1, ¥) = (x, Zk=1 %k &) — Yl

(z,y) = (x, Tioalx exder) — 1yl12 = Xio1(x, ) (x, exc) — Tiemq [(x, €2
(z,y) = Z=1m (x, e) — Li=1l{x, ex)? = Tz l{x, exd)? — Tz lx, ex)]?
(z,y) =0 Impliesz L y

Now z = x — y then using Pyhtagorian Theorem ||z]|? = ||x||? = ||y|I?

0 < IzII? = llxII* = XR=1l{x, e = Tk=1l{x, e)1* < lIx]I?

= Y=al{x, e * < lx]|? if n — 0. Hence proved.
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Bessel Inequality (Another Form)

Suppose {e;, e,, ..., ;. } is an orthonormal set of vectors in an inner product space
X. Let x € X be any arbitrary vector and c; be the fourier coefficients of vector x
with respect to e, then Y%_, ¢/ < ||x]|?

Proof

Consider (x — X1 Cx€x,X — Xp=1Cke€r) =0

(2, x) = (2, Xk=1 Cxex) — (Xk=1 Cker » X) + (Xk=1 Ckex » k=1 Cx€x) = 0
llxl1? = 2¢x, Xz crew) + Tie=1 cic (e ) = 0

%117 — 2 Xfoq ci (X, €x) + X Cit (eps k) = 0

(xe)
x> — 2 Xkzq Ck torer) £ +Zk 1CF =0

Ix||? = 2 Xfoy cf 4+ XhorcF =0
Ix|12 = Xko1c2 =0

=1 Ccr < |lx||? Hence proved.

Series Related to Orthonormal Sequences and Sets

There are some facts and questions that arise in connection with the Bessel
inequality. In this section we first motivate the term "Fourier coefficients,"
then consider infinite series related to orthonormal sequences, and finally
take a first look at orthonormal sets which are uncountable.

Fourier series
A trigonometric series is a series of the form
ao + Yp=q1(aiCoskt) + b, Sinkt

1 2 1 ,2 1 02 .
Where a, = Efo "x(t)dt,a;, = ;fo " x(t)Cosktdt , by, = ;fo " x(t)Sinktdt
These coefficients are called the Fourier coefficients of x.
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Theorem Let (e,) be an orthonormal sequence in a Hilbert space H. Then:

a) The series Y., &, e, converges (in the norm on H) if and only if the
following series converges: Y5 ;| o<, |?

b) If Y;7-; <, e, converges, then the coefficients a, are the Fourier
coefficients (x, e ), where x denotes the sum of };°_, %, ej; hence in this
case, Yp—1 X, €, canbe written x = Y- (x, ex)ex

c) For any x € H, the series Y., X e, With a; = (x, e;) converges (in
the norm of H).

Proof

(@) Lets, =x; e; +X, e, + -+, e, and o, = |o¢q|? + [, |% + -+ + |oc, |2
Then, because of the orthonormality, for any m and n > m,

lIsn — smll®> = [1(x¢q 1 +0¢; €5 + -+, ) — (X1 €3 +¢; e + -+, ) |2
Isn = Smll* = i1 Emar <5 €5 + - F0, eI

lsn = smll? = [omia]? + [Xpgal? + o + [y > = 0 — 03y

Hence (s,,) is Cauchy inH if and only if (g;,) is Cauchyin R. Since H and R
are complete, the first statement of the theorem follows. i.e.The series

Yireq X; e, converges (in the norm on H) if and only if the following series
converges: Y| o<, |

(b) Let Y%, ; e; convergesinH.Thenx = ¥, «; ¢;
So that (x,ex) = (Xjz1 % €, ex) fork =1,2,..
(x,er) = XjL; % {ej, ex) =y since ey, e,, ..., e, are orthonormal.

(c) Letthereisanelement x € H such that ¢, = (x,e;) ;k = 1,2,3,... then by
Bessel inequality; Yo (x, e))? < lxI? < oo

i.e. Yo {x, ex)|? < oo implies for any x € H, the series Y, &, e, With
o, = (x, ex) converges (in the norm of H).

This complete the proof.
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Riesz and Fischer Theorem

Let {e,, e, ...,e,} be an orthonormal setin a Hilbert space H.Then for any
sequence (c) of scalar the following statements are equivalent;

a) (c) €7
b) Yr—qcrex convergesin H.
c) Thereisanelement x € H suchthat ¢, = (x,e;) ; k=123, ..

Proof

(@) Let (¢) € 12 then X7 |ckl|? < o

For n=1,23,..lets, = XYr_;crex

Then, because of the orthonormality, for any m and n > m,

sn = smll” = ll(crer + czez + -+ + cpen) — (creq + cze; + -+ + cme) I
lIsn = smll* = llcns1€nss + 282 + - + creyl®

Isp — Smll? = X msilckl> = 0 asm,n - o  since (¢;) € [% convergent
IS, — spll> > 0 asm,n - o

Hence (s,) is Cauchy in H. Since H is complete, therefores,, - x € H.
Hence };°-; cxe, converges in H.

(b) Let Y52, cje; convergesinH.Then x = ¥72, cje;

So that (x,ex) = (Xjz1¢i€), ex) fork =1,2, ...

(x,ex) = X1 cilej,ex) = cx since ey, e,, ..., e, are orthonormal.

(c) Letthereisanelement x € H such that ¢, = (x,e;) ;k = 1,2,3,... then by
Bessel inequality; Yo ilekl? = X l{x, ep))? < x| < oo

i.e. Yo |ck|? < oo implies (¢i) € I2.

This complete the proof.
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Representation of Functionals on Hilbert Spaces

Itis of practical importance to know the general form of bounded linear
functionals on various spaces. For general Banach spaces such formulas and their
derivation can sometimes be complicated. However, for a Hilbert space the
situation is surprisingly simple:

Riesz's Representation Theorem

Every bounded linear functional f ona Hilbert space H can be represented in
terms of the inner product, namely, f(x) = (x,z) where z depends on f,is
uniquely determined by f and has norm ||z|| = ||f]|

Proof We prove that

(@) f has a representation f(x) = (x, z).
(b) z in f(x) = (x,z)is unique.
(c) formula [|z|| = ||f]l holds.

(@) If f =0, then f(x) = (x,z)hold if we take z = 0.

Let f + 0. To motivate the idea of the proof, lets investigate what properties z
must have if a representation f(x) = (x,z) exists. First of all, z # 0 since
otherwise f = 0. Second, if f(x) = (x,z) = 0 for some x € H thenx € N (f)
and z L V' (f). Hence z € V' (f)+. This suggests that we consider M (f) and its
orthogonal complement V" (f)+*.

Since NV (f) is a vector space and closed therefore H = N (f) @ N (f)*
Furthermore, f # 0 implies V' (f) # H, so that M (f)* # {0} by the projection
theorem.

Choose 0 # z, € M (f)* and let v = f(x)z, — f(2,)x Where x € H is arbitrary.

Applying f, we obtain f(v) = f(x)f(zy) — f(zo)f(x) = 0 since f is linear.
This show that v € N (f).

Since z, € N (f)*, we have (v,z,) = 0
(f(X)zo — f(20)x,29) = 0
f(){zo,29) — f(20)(x,29) = 0
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= F0) = L2, 20) = L0, 20) = (, T80 )

f(zo)

l1zolI?

= f(x) = (x,2) where z = Z

Since x € H was arbitrary, f has a representation f(x) = (x, z).
(b) We prove that z in f(x) = (x, z) is unique. Suppose that for all x € H we have
f(x) =(x,z;) = (x, 2,)

=>(x,z;) —(x,2,) =0=>(x,z2y —2z,) =0 ;Vx€H

Choosing x = z; — z, we get

=(2,— 23,2, —2,) =02 ||z = 2,||? =0 =2 ||z, — 2,]| = 0
Hence z; — z, = 0, so that z; = z,, the uniqueness.

(c) We finally prove ||z]| = |If]l.

If f =0, thenz=0and ||z|]| = ||f]l holds.

Let f # 0. Thenz # 0. From f(x) = (x, z) with x = z we obtain
f(2) =(z2) = |z’

= zII* = f(2) < If @] < If izl

=S Nzl < HFL e, (1)

Now |f(x)| = {x, 2)| < llx]l||z]| by Schawarz Inequality
T < lzll = Supeso G < izl

SNzl e, )

From (1) and (2) 11l = izl
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Lemma

If (v;,w) = (v,,w) for all win an inner product space X, then v; = v,. In
particular, (v,w) =0 for all w € X impliesv = 0.

Proof Let, for all w,

(v, W) = (v, W) = (v, w) — (U, w) = 0= (v —v,w) =0
Choosing w = v; — v, we get

= (v =V — V) =02 |lv; —1,|IP =0 = [[v; —v,]| =0
Hence v, — v, = 0, so that v; = v,.

Let, for all w, we have (v,w) = 0 and Choosing w = v we get

>{wv)=0=|v|I?=0 =2|v|=0=>v=0

The practical usefulness of bounded linear functionals on Hilbert spaces results to
a large extent from the simplicity of the Riesz representation f(x) = (x, z).
Furthermore, f(x) = (x,z) is quite important in the theory of operators on
Hilbert spaces. In particular, this refers to the Hilbert-adjoint operator T* of a
bounded linear operator T which we shall define in the next section. For this
purpose we need a preparation which is of general interest, too. We begin with
the following definition.

Sesquilinear Form Let X and Y be vector spaces over the same field
K (=R or C).Then a sesquilinear form (or sesquilinear functional) h on X XY is
amapping h:X XY — K such that for all x,,x,,x, € X and y,,y;,y, €Y and
all scalars «, 3,

(@) h(xy +x3,¥) = h(xy,y) + h(x,,¥)
(b) h(x,y1 +y2) = h(x,y1) + h(x,y,)
() h(x x,y) =o h(x,y)

(d) h(x, By) = Bh(x,y)

Hence h is linear in the first argument and conjugate linear in the second
one. If X and Yare real (K= R), then h(x,By) = Bh(x,y) is simplyand h is
called bilinear since it is linear in both arguments.
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Bounded Sesquilinear Function

If X and Yare normed spaces and if there is a real number ¢ such that for all

x € X,y € Ywehave |h(x,y)| < cllx||||y]l, then h is said to be bounded

sesquilinear, and the number ||h|| = Suprex—(0) I”f;(”xﬁy)ul = Supyx=1|h(x, )| is
yer—fo3 llyll=1

called the norm of h. Also we have |h(x,y)| < [|RlllIx]IlIy]l.

Hilbert Adjoint Operator T*

Let T: H, — H, be a bounded linear operator, where H; and H, are Hilbert spaces.
Then the Hilbert-adjoint operator T* of T is the operator T*: H, — H; such that
forall x € H; and y € H,, we have (Tx,y) = (x,T"y)

Theorem (Riesz Representation)

Let H, and H, be Hilbert spacesand h: H, X H; — K isa bounded sesquilinear
form. Then h has a representation h(x,y) = (Sx,y) where S:H; - H, IS a
bourrded linear operator. S is uniquely determined by h and has norm

IS1I = IRl

Proof

We consider h(x, y). Thisis linear iny, because of the bar. And x is fixed. Then
h(x,y) = (y,2) By Riesz Theorem

= h(x,y) =(z,y) .. (1)

Here let z € H, is unique but, of course, depends on our fixed x € H,. It
follows that (1) with variable x defines an operator S: H; —» H, by z = Sx.

(1) = h(x,y) = (Sx,y) which is required. using z = Sx

Now S is linear. In fact, its domain is the vector space H,. And we have from
h(x,y) = (Sx, y) the following result

(S(ax; + Bxy),y) = h(ax, + Bxz,y)
(S(ax; + Bx3),y) = ah(xy,y) + Bh(x,,y)
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(S(Q’Xl + ,sz);y> = a(le, y) + ,B(SXZ, y)
(S(axy + Bx3),y) = (aSx; + BSx3,y)
= S(ax; + Bx,) = aSx; + BSx,

Now S is bounded linear operator, then

|h(x,y)| [{Sx,¥)|
[R]] = Supx=o = Supx=o
y=o Xyl y=o Xyl

Choose y > Sx

hll = Sup x=o x#0
IRl Sx¢0 lxllsxll p5x¢o lxllllsxll

lall = IS )

Now by definition

] = Supxso 2O = o W 01y

y¢0 I| iy 1l y=o Ixlliyll =
IRl < IS (3)
Hence from (2) and (3) |h]| = [|S]]

For Uniqueness

[(Sx,Sx) _ lisxl®>

217

Isx|
— S
px:#O ”X” || ||
IsxIlly lIsxIl
=S ===
%o Iyl ex0 g = IS

Let another operator S: H; — H, for which h(x,y) = (Tx, y) but h(x,y) = (Sx, y)

for S: H; —» H, then in this case
(Tx,y) = (Sx,y)
Tx = Sx

T=S and hence S is unique.
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Theorem (Existence)

The Hilbert-adjoint operator T* of T: H;, —» H, where H, and H, are Hilbert

spaces exists, is unique and is a bounded linear operator with norm ||T*|| = ||T |
Proof
Consider h: H, x H; = K define by the formula h(y,x) = (y,Tx) ........... (1)

and this defines a sesquilinear form on H, X H, because the inner product is
sesquilinear (linear in first argument and conjugate linear in second argument) and
T is linear.

We claim that h is boubnded by Schwarz inequality. To see this consider;
|h(y, 2} = [{y, T)| < llylllITxIl < [ITIxHyll

Ry, ) < TN -..e.eee (2) implies h is boubnded.

By Riesz representation theorem for h; writing T* for S, replace by T* we have
hiy,x) =(T"y,x) ... 3)

where T*: H, — H, is a uniquely determined bounded linear operator with
norm [|h]| = IT*|]  ........... 4)

comparing (1) and (3) (y,Tx) =(T"y,x)

= (y,Tx) = (T*y,x) = (Tx,y) = (x,T*y) = T~ is Hilbert Adjoint Operator.

Now we prove ||T*|| = ||T]]
Ih(yx)l
From (2) we have TR < |IT||
Ih(yx)l
= Su px:#O— ITII = lrIl < ITII e (5)

y=o Iyl

Now [|A|| = Supxxo 22X
y#0 Il

(7)] (Tx7)] ITx|12 T
= ||h Su x#0 = U — = 0U — =25U r—
IRl = Supszo | ipn = SUPeso g = S¥Px#0 fjirsy = SUPx20
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SR =TI e (6)
From (5) and (6) IRl =TI e 7)
From (4) and (7) 7] =TIl

Lemma (Zero operator)

Let X and Y be inner product spacesand Q: X —» Y a bounded linear
operator. Then:

(@ Q=0 ifand only if (Qx,y) =0 for all xe X andy €Y.
(b) If Q: X - X, where X is complex, and (Qx,x) =0 for all x € X, then

Q =0.
Proof. (@) Q =0=>Qx =0=(Qx,y) =(0,y) =0(w,y) =0
Conversely, (Qx,y)=0=>Qx=0= Q =0 for all x and v.

(b) By assumption, (Quv,v) =0 for every v =ax +y € X, that is,

0 =(Q(ax +y),ax +y) = |al*(Qx,x) + (Qy,¥) + a(Qx,y) + a&(Qy, x)
The first two terms on the right are zero by assumption. a= 1 gives
(Qx,y) +(Qy,x) =0anda = igives a = —iand (Qx,y) — (Qy,x) =0
By addition, (Qx,y) = 0,and Q = 0 follows from (a).

In part (b) of this lemma, it is essential that X be complex. Indeed, the
conclusion may not hold if X is real. A counterexample is a rotation Q of the
plane R* through a right angle. Q is linear, and Qx L x, hence (Qx, x) = 0 for all
x € R?, but Q # 0.
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Self-Adjoint Operator

A bounded linear operator T: H — H on a Hilbert space H is said to be Self —
adjoint or Hermitian if the T*=T,

Where the T* is the Hilber adjoint operator of T.
Unitary Operator

A bounded linear operator T: H — H on a Hilbert space H is said to be Unitary
if T is bijectiveand T* = T~1

Where the T* is the Hilber adjoint operator of T.
Normal Operator

A bounded linear operator T: H — H on a Hilbert space H is said to be Normal
if TT* =TT

Where the T* is the Hilber adjoint operator of T.
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Theorem The Gram-Schmidt Orthogonalisation Process

If H is a Hilbert space over K and {x,,}7° is a linearly independent set in H, then we
can find an orthonormal set {y,,}7° in H so that

span{xy, X5, ..., Xx } = span{y;, y,, ..., ¥i} forall k > 1.
This procedure is used to find orthogonal basis and orthonormal basis set.
The Gram-Schmidt Orthogonalisation Process

Suppose {x;, x,, ..., x,,} forms a basis set for inner product space V.One can use to
construct an orthogonal basis {y;, 5, ..., ¥, } as follows;

Y1 =X
(X2,51)
= X, —
Y2 2 (¥1.¥1) 1
_ x3.y1) . (X3.)2)
Y3 =X T Yt T v V2
(x4,y1) (X4,Y2) (x3,93)
= X4 —
Ya = X4 m i <yz,yz>y2 Vays) )3
(Xn,y1) (xn Va2) (Xn,Yn-1)
= x —_——_— . —_— _
In n (y1.¥1) (¥2,y2) 2 (3’n—1;3’n—1)yn 1

In need for orthonormal set find the norms of {y,, y,, ..., V& }.

Example
x = (1,1,1,1),x, = (1,2,4,5)
Y1 =X1 = (111;111)

Yy = Xy — E;Zf; yi = (1245 -2 (1,1,11) = (-2,-1,1,2)

For orthonormal

U =2 =~(1,1,1,1)

lly 1|I
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FUNDAMENTAL THEOREMS FOR NORMED AND BANACH SPACES

This chapter contains, roughly speaking, the basis of the more advanced
theory of normed and Banach spaces without which the usefulness of these spaces
and their applications would be rather limited. The four important theorems in the
chapter are the Hahn-Banach theorem, the uniform bounded ness theorem, the
open mapping theorem, and the closed graph theorem. These are the
cornerstones of the theory of Banach spaces. (The first theorem holds for any
normed space.)

Brief orientation about main content

Hahn-Banach theorem

This is an extension theorem for linear functionals on vector spaces. It
guarantees thata normed space is richly supplied with linear
functionals, so that one obtains an adequate theory of dual spaces as
well as a satisfactory theory of adjoint operators.

Uniform boundedness theorem by Banach and Steinhaus.

This theorem gives conditions sufficient for (||T;,|]) to be bounded,
where the T, are bounded linear operators from a Banach into a
normed space. It has various (simple and deeper) applications in
analysis, for instance in connection with Fourier series, weak convergence,
summability of sequences, numerical integration, etc.

Open mapping theorem

This theorem states that a bounded linear operator T from a Banach
space onto a Banach space is an open mapping, that is, maps open sets onto
open sets. Hence if T is bijective, T~1 is continuous ("bounded inverse
theorem ").

Closed graph theorem

This theorem gives conditions under which a closed linear operator is
bounded. Closed linear operators are of importance in physical and other
applications.
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Definitions

= A partially ordered set is a set M on which there is defined a partial
ordering, thatis, a binary relation which is written < and satisfies the

conditions

a<a for every a € M. (Reflexivity)
Ifa<bandb < a, then a=bh. (Antisymmetry)
Ifa< bandb < c, then a< c. (Transitivity)

"Partially"emphasizes that M may contain elements a and b for which neither
a<b nor b <a holds. Then a and b are called incomparable elements. In
contrast, two elements a and b are called comparable elements if they
satisfy a<bor b< a (or both).

= A totally ordered set or chain is a partially ordered set such that
every two elements of the set are comparable. In other words, a chain is
a partially ordered set that has no incomparable elements.

= An upper bound of a subset W of a partially ordered set M is an
element u € M such that x < u forevery x € W.

Finite Functional

Let V be a linear space, a functional p: V — F is said to be finite if p(x) is finite
forallx e V.

Convex Functional

Let V be a linear space, a functional p: V — F is said to be convex (or Semi norm)
if

= p(x)=0forallx eV
= p(ax) =ap(x)forallx e Vandreala =0

» p(x+y)<plx)+ply forallx,y eV

Zorn's Lemma

Let M # ¢ be a partially ordered set. Suppose that every chain C € M has
an upper bound. Then M has at least one maximal element.
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Hahn-Banach Theorem

The Hahn-Banach theorem is an extension theorem for linear functionals. It
guarantees that a normed space is richly supplied with bounded linear
functionals and makes possible an adequate theory of dual spaces, which is
an essential part of the general theory of normed spaces. In this way the Hahn-
Banach theorem becomes one of the most important theorems in connection
with bounded linear operators. Furthermore, our discussion will show that the
theorem also characterizes the extent to which values of a linear functional
can be preassigned. The theorem was discovered by H. Hahn (1927),
rediscovered in its present more general form (Theorem 4.2-1) by S. Banach
(1929) and generalized to complex vector spaces by H. F. Bohnenblust and A.

Hahn — Banach Theorem for Real Spaces (Extension of linear functionals)

Let X bea real vector space and p a sub — linear (convex) functional on X.
Furthermore, let f be a linear functional which is defined ona subspace Z of
X and satisfies f(x) < p(x) forall x € Z. Then f has a linear extension f
from Z to X satisfying f(x) < p(x) forall x € X.

That is, f isa linear functional on X, satisfies f(x) < p(x) on X
And f(x) = f(x) for every x € Z.

Proof

We can suppose that Z + X otherwise the theorem is trivial.
Step -1

In this part we shall prove that f can be extended onto a larger subspace without
violating condition f(x) < p(x) forall x € Z.

Letz € X/Z and putV = {x+« z: x € Z,x€ R} then VV is subspace of X and
contains Z properly.

Define a function f":V - R by f'(x+x z) = f(x)+x f'(2) = f(x)+ ¢ where
c = f'(2).

Clearly f" is a linear functional on V.
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We show that it is possible to choose a real number c such that the ‘majorisation’
condition f'(x+« z) < p(x+x z) is satisfied.
That is there exists a real number c such that

f(x)+x c < p(x+o 2)

=>f(§)+c§p(§+z)
=>c§p(§+z)—f(§) if<>0
And

=72 ez (-D)perren

=>f(§)+c2—p(—§—z)

[>¢

:cz—p(—f—z)—f(g) Ifx< 0

Now for any arbitrary points y’, y" of Z we have
fON=fON)=f0"=y)<p(" -y"
fON=fO)<p(y" +z- ' +2)
fON-fON<p(y"+z+(-y' - 2)

fON-fO) <=pO"+2)+p(-y —2)

Hence —fO) —p(=y' —2) <p(y" +2) - f(y)
Supyez{—f") —p(=y' — 2} < infyuelp" +2) - )} (Say)
c'<c” Say for any arbitrary y’, y"’

Now choose c suchthat ¢’ <c¢ < c”

Then for this value of ¢ the linear functional ' define on V by

fl(x+xz)=f(x)+xc
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Satisfies the condition that f'(x) < p(x) forallx € V.
Because conditions ¢ < p (g + z) —f (g) and ¢ > —p (—g — z) —f (g) are
satisfied.

Hence f' is an extension of f to a subspace V containing Z properly and satisfying
condition f(x) < p(x) forall x € Z.

Step - 11

Now suppose that X as a linear space, is generated by a countable set of elements
X1, X9, X3, ..., Xn, ... IN X, Then we construct a linear functional on X by induction
on n. that is we construct a sequence of subspaces

Vi=(x1,Z) SV, =(x3,V5) © - EVpy = (x, Vi)

This process extend the functional f onto the whole space X, since every x in X is
in some subspace V/,.

Step — 111

For the general case, that is, when no countable set generates X, the theorem is
proved by applying Zorn’s Lemma as follows;

Let F be the class of all possible extensions f of f satisfying the condition
f(x) < p(x) forallx € D(f) and f(x) = f(x) for every x € D(f).
Then F is non — empty because f constructed above is in F.

We partially order F as follows;

For f*,g € F we say that f* < g if and only if g is an extension of f~.
ThatisD(f*) € D(g) and g(x) = f*(x) forevery x € D(f").

Now let C be a chain in F. Define a linear functional f as follows;

i Domain of f =U e D(g)
ii. f(x)=g(x) forevery x e D(f),x €D(g); g€ C
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It is clear that £ is a linear extension of f and f(x) < p(x) for all x € D(f).

So f € F and is an upper bound for C.

By Zorn’s Lemma, F has a maximal element f* which is an extension of f and
f*(x) < p(x) forall x € D(f).

We claim that D(f*) = X. For otherwise, let z € X/D(f*) then as in step I, there
is an extension f’ of f* to (D(f*), z), contradicting the maximality of f~.

Hence f* is the required extension of f and this prove the theorem completely.

Hahn — Banach Theorem for Real Spaces (Dr. AbdulMajeed)

Let p be a finite convex functional defined on a real linear space

V and let U be: a subspace of V. Let f: UU:—> R be a linear functional
such that '

fo®) <p(x) forallx € U I B (1
Then f, can be extended to a linear functional f defined on V such that
f&x) <p(x)forallx € V
Proof

" We can suppose that U # V, for otherwise the theorem is trivial.

Step I:

We shall first prove that f, can.__b.e,- extended onto a larger
subspace without violating condition (1).

Let z € WU and put
-V1-={x+az:xéU,uE_R}. _
- Then V) is a subspace of V.and contains U properly.
Define a function f”: V; = R by; ' |
e an) =fo + afe).
N =fo@ +ace=f. - (@
Then f’is a linear functional onVy.
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. We show that it is possible to choose a real number ¢ such that
the ‘majorisation’ condition

Fla + 02) Splx + a2) e
is satisfied. That is, there exists a real number ¢ such that

fox) + ac Splx + 02)
ie. fo( )+c5p(x/a +z)
‘i.~e. ""'cSp(x/a+z)-'-fo(x/a) RPT T 2 (8)- v
if @>0,and | a4
e P fo(x/a)+ cz—(—-—)p(x+az)°-—p(—x/a z)

R - Z—p(-x/a z) - fo(x/a) | @)
ifa < 0.
" Now, for any twoarbitrary pqintsA y',y" of U, we have:
fo0") = f60") = /0" =¥) <pG" -y") |
SpGy' +z-( +2)
_.S"p(y""+ 24 (' -2)
_ <pG” +2)+p(y -2
Hence
=fo¢") —p(=y' =2) SpG”’ + 2) - o) (5)
Put . ¢ = %tl% {'-fo(y') -pl=y' - 2)}

C’".= Inf {P(}'" +2)-f0(}'")} 5
y'eU - il
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Then ' g
by (5) and the fact that y', y"’ are arh:trary
- Now choose a ¢ ¥ such that '

¢'Scsge”

Then, for this value of ¢, the linear funchnnal f’ def‘ ned on Vl by (2)
satisfies the condition that '

fx)<p(x) forallx € ?1 . (6}

because conditions (3) and (4) are satisfied. Hence f”is an extension of f
to a subspace V, containing U praperly and satisfying condition (1).

Step I _
Now suppose that V, as a linear space, is generated by a

countable set of elements x,, x,, ..., X,,, ..., in ¥V, Then we construct a
linear functional on V by mductmn on n, That is, we construct a

sequence of subspaces o | | .
V= <2, U>, Vg = <xp, V2, 0y
V = {x,,, Vn—l:" .es : o
each contained in the next. This process extends the functional fn onto
the whole space V, since every x in V is in some subspace V,,. e
Step III o o _ _
- For the geperal case, that is, when no countable set generates V,
the theorem is proved by applying Zorn’s lemma as follows:

Let F be the class of all pusmhle extensions f* of f, satisfying the
condition.

f*(x) <p(x) for all x € D(f*)
and  f'(x) = fo(x) for all x € D(f).

Here D(fy) denotes the domain of f,. Then F is non-empty because f
constructed above is in F, We partially order F as follows:
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Let F be the class of all posmble extensions 1 of f, satisfying the
condition. : _ _

f*(x) < p(x) for all x € D(f*)
and  f'(x) = fy(x) for all x € D(fy).

Here D(f,) denotes the domain of f;,. Then F is non-empty because f'
constructed above is in F. We partially order F as follows:

For f, g € F, we say that

f<g
if and only if g is an extension of f, that is

D@20

and g(x) = flx) for all x € D(f).
Now let C be a chain in F. Define a linear functional 7 as follows:

(i) Domain of 7 = l.J D(g),
geC

(if) for x'E DD,
| ~ fo)=gkx)forallx € D@g), g€ C
It is clear that 7 is a linear extension of f, and
. fe S

forallx € D(7). So f € F and is an upper bound for C. By Zorn’s lemma,
F has a maximal element f which is an extension of f; and

f(x) < p(x)

for all x € D(f). We claim that D() = V, for otherwise, let z € V\D().

Then, as in step I, there is an extension ' of f to <D{), z>,
contradicting the maximality of f. Hence f is the required extension of f;.
This proves the theorem completely. .
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Hahn-Banach Theorem (Generalized) for Real Vector Spaces

The Hahn-Banach theorem concerns real vector spaces. A generalization that
includes complex vector spaces was obtained by H.F.Bohnenblust and A.Sobczyk
(1938):

Statement

Let X be a real vector space and p a real-valued functional on X which is
subadditive, that is,

for all x,ye X, p(x+y) <pkx)+p)
and for every scalar a satisfies p(ax) = |a|p(x).

Furthermore, let f be a linear functional which is defined on a subspace Z of X
and satisfies |f(x)| < p(x) forall x € Z. Then f hasa linear extension f
from Z to X satisfying |f(x)| < p(x) forall x € X,

Proof
If X is real, the situation is simple.
Then |f(x)| < p(x) forall x € Z implies f(x) < p(x) forall x € Z,

Hence by the Hahn-Banach theorem there is a linear extension f from Z to X
such that

f)<px)forallxeX.  .......... (1)
From this and p(ax) = |a|p(x) we obtain
—f(0) = f(=x) < p(=x) = |-1|p(x) = p(x)
S F) = -p(x) e )
From (1) and (2) —p(x) < f(x) < p(x)

Hence |f(x)| < p(x) forallx € X.
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Hahn-Banach Theorem (Generalized) for Complex Vector Spaces

The Hahn-Banach theorem concerns real vector spaces. A generalization that
includes complex vector spaces was obtained by H.F.Bohnenblust and A.Sobczyk
(1938):

Statement

Let X be a complex vector space and p a real-valued functional on X which is
subadditive, that is,

for all x,ye X, p(x+y) <pkx)+p)

and for every scalar a satisfies p(ax) = |a|p(x).

Furthermore, let f be a linear functional which is defined on a subspace Z of X
and satisfies |f(x)| < p(x) forall x € Z. Then f hasa linear extension f
from Z to X satisfying |f(x)| < p(x) forall x € X,

Proof

Let X be complex. Then Z isa complex vector space, too. Hence f is
complex-valued, and we canwrite f(x) = f;(x) +if,(x) for x € X where f;
and f, are real-valued. For a moment we regard X and Z as real vector spaces
and denote them by X, and Z,, respectively; this simply means that we
restrict multiplication by scalars to real numbers (instead of complex numbers).
Since f is linearonZ and f; and f, are real-valued, linear functionals on Z,,
Also f;(x) < |f(x)| because the real part of a complex number cannot exceed the
absolute value.Hence by |f(x)| < p(x) for all x € Z, we have

filx) < p(x)forall x € Z,

By the Hahn-Banach theorem there is a linear extension f; of f; from Z, to X,
such that f;(x) < p(x) forall x € X,

This takes care of f; and we now turn to f,. Returning to Zand using f = f; + if,
we have for everyx € Z

i[f1(x) +if2(x)] = if (x) = fi(ix) + if>(ix)
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The real parts on both sides must be equal: £, (x) = —f;(ix) forx € Z
Hence if for all x € X we set f(x) = f;(x) —if,(ix) forx € X
We see from f£,(x) = —f;(ix) that f(x) = f(x) on Z.

This shows that f is an extension of f from Z to X. Our remaining task is to
prove that

. fis a linear functional on the complex vector space X
ii.  fsatisfies |f(x)| < p(x)on X,

That (i) holds can be seen from the following calculation which uses
f(x) = f1(x) - if1(ix)

and the linearity of f; on the real vector space X,; here a + ib with real a and b is
any complex scalar:

f((a+ib)x) = fi((a+ib)x) —ify(i(a + ib)x)
f((a+ib)x) = af, (x) + bfy(ix) — i[afy (ix) — bf; (x)]
f((a+ib)x) = (a+ib)[fi(x) — ifi(ix)]

f((a+ib)x) = (a+ib)f(x)

We prove (ii). For any x such that f(x) = 0 this holds since p(x) = 0 by
p(x +y) <p(x) +p(y) and p(ax) = |alp(x).

Let x be such that f(x) # 0, Then we can write, using the polar form of
complex quantities, f(x) = |f(x)|e® thus |f(x)| = f(x)e™ = f(e¥x).
Since |f(x)| is real, the last expression is real and thus equal to its real part.
Hence by p(ax) = |a|p(x) we have

[f(0)] = f(e™x) = fi(e™x) < p(e™x) = |e™|p(x) = p(x)

This completes the proof.
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Hahn-Banach Theorem for Complex Vector Spaces (Dr.AbdulMajeed)

~ Letp bg a finite convex fi:'m”&ﬁ:al defined on a complex linear
space V and let U be a subspace of V. Let f;; be a linear functional defined
on U satisfying the condition:

|fo®)| Spx) forallx € U o 1)
Then f;, can be extended to a linear functional fon Vsuch that

Ifx)| <plx) for all z eV

Proof , _
“Since V is a complex linear space, for each v € V and

a =, +icy € C, aw € V. If we restrict the scalars to real numbers
only then V is a real linear space. Denote this space by Vz(=V) and the
corresponding subspace by Ug(=U). Clearly p is a finite convex

functional defined on V g while £, given by:

f ‘(x) = real part of fy(x), x € Uy

is a real linear gunctiona] on Ug. Hence, by the Hahn-Banach theorem
for real spaces, there is & linear extension f, defined on all of Vg
satisfying the conditions:

fi(x) <p(x) for all x € Vi (=V) ‘ (2)
and ' fy(x) = f,(x) for all x € Up (=1)

Also, —f1(0) = fy(~x) Sp(—x) = |~1] p(x) = p(x)

Thus fi(x) 2~p(x) forallx € Vg (3
so that, from (2) and (3) one gets:
’ Ifi(x)| Spx) forallx € Vg (4)

Now we coﬁsider fo as a linear functional on the complex space U. So
folx) = f,(x) + i f, &) (5)

Since fj is linear on U,
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ifyle) = fg(ix) - £ + if; i) | ()
and also, multiplying (5) by i :, o

o) = 1, ”’“}’ ® M.
' . -'{-
§0 that, comparmg (6) and {7), we have
fo(n-—-fﬂn;) S
Huee  f@=f-ife @

If f1 denotes the linear extension of fy to the whole of V,as'a
real linear space, then put

fix) = f(x) =i f(ix) " 9)

We show that the function f defined by (9) is the required linear
extension of f; to V and satisfies the given condition.

Obviously f is an extension of f; to the whole of V. Also
fx +y)=filx + y) = if)liCx + y)
= 1) + f10) =i fy(ix + iy)
= 116) + f1,0) = i fy(ix) — if Giy)
=) +fy) (10)
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Finally we show that
|fx)| Sp@) forallx € V.
Suppose, on the contrary, that [ftxg)| > plxp) for some x, € V.
Then, writing
flxo) = pei®, p > 0,
if we put
yo = e-i’ xo

h 1)

then y, € V and, using |flx,)| = p, we have
f109) = Reflyy) = Re (7% f(x,)) .
=P > plxg) = plyy)
which contradicts (4). Hence
lﬂx)l <p(x) forallx € V

This complete the proof of theorem.
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Hahn-Banach Theorem (Normed Spaces).

Let f be a bounded linear functional on a subspace Z of a normed space X. Then
there exists a bounded linear functional £ on X which is an extension of f to X
and has the same norm, i.e. ||f||X = Ifll,

Where [|f]], = Sup”xﬁx1|f(x)| and ||fllz = Sup”xez |f (0l
x||=

x||=1
(and ||fll; = 0 in the trivial case Z = {0}).
Proof: If Z = {0}, then f = 0, and the extension is f = 0.

Let Z # {0}. We want to use Hahn-Banach Theorem (Generalized). Hence we
must first discover a suitable p.

Forall x € Zwe have |[f(x)| < |Ifllzllxll
Comparing with |f(x)| < p(x) we have  p(x) = || fl|zllx]l
We see that p is defined on all of X.

Furthermore, p satisfies p(x + y) < p(x) + p(y) on X since by the triangle
inequality,

p(x+y) = lIflizllx + yll < lIfllz0lx + yID) < px) +p(y)

Also p(ax) = |alp(x) because p(ax) = |Ifllzllax]l = lalllfllzllx]l = lalp(x)

Hence we can now apply Hahn-Banach Theorem (Generalized) and conclude
that there exists a linear functional f on X which is an extension of f and satisfies

1| < p@) = lIfllllxll

Taking the supremum over all x € X of norm 1, we obtain the inequality

I71l, = Sup xex IF | < 1I£ll

x|[=1
Since under an extension the norm cannot decrease, we also have

I7]l,, = Ifllz. Together we obtain ||f|| = lIfll; and the theorem is proved.
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Hahn-Banach Theorem for Normed Spaces (Dr. AbdulMajeed).

Let V be a normed space and U be a subspace of V. Let f; be a
bounded linear functional on U with norm ||fyll. Then f, has a
continuous linear extension f defined on V such that

Il = lifl

Proof
- Since f is a bounded linear functional, ||, || is finite. Put

p@) = ||f,ll |lz]] forallxe V.
We show that p is a convex functional defined on V.

Clearly p(x) 2 0. Alse for any o € F,
" pla) = lIfll lloxll = Jaf Mifll llxll = Jouf ptx), x € V.
Moreover, forx,y € V, |
px +y) = lIfll llx + yll
< lifpll cll=ll + flylD
S Ml Nell + MMy
<p(x) + p(y).
Also  |fy®] < lIfl =]l
<),
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Thus, by the complex version of the Hahn-Banach Theorem, there is a
linear functional f defined on V-such that

Ifee) Sp) = [Ifoll llxll forallx € V

and  flx) = flx) forallz€ U.. . (1)
From (1) we have: . g |
lifll < Ilfnll . @
Ao il = s Jﬁlasug J{ﬁ’l Il @
Hence, from (2) and (3) |
Al = il

This complet:es the proof of the theorem for normed spaces.

239
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Corrollary

Let N be a non-trivial normed space and xg # O be any point of N,
Then there is a continuous (and so bounded) linear functional f defined
on N such that

Ifll = 1 and fixp) = |z, |

Proof

" Let 0 # xy € N. Consider the subspace M .generated by xo. An

- arbitrary element of M is of the form axy, a € F. Define a functional
fo: M = Fby:

- o) = folaxg =allxoll, y=axoeMacF - Q)

Then fo is linear because for y and y' = a'x; in M and a, &’ in F,
‘we have:

folay + &y’) = fol(aa + a'a’) xp)
| = (0a + a'a’) [|xgll by (1)

= aa |x5]] + a'a’ [lxl

= 0f0) + o)
" o !Z!l'_' el el :
- Also Iu'n“ = Sup Sup 1, y= 0sothata =0,
e yeo 017 S el =5 T RSO TERAE
' yeM )

So f; is & bounded linear functionel deﬁned on M. By the Hahn-Banach
Theorem for normed spaces, there is-a linear extension f of fi to N such
that

llAll = lifoll = 1, f) = £30) = allxoll, 5 = axg e M
Thus ||f]l =1 and flxg) = Hlzo |
as required.
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Theorem (Bounded linear functionals)

Let X be anormed space and let x, # 0 be any element of X. Then there exists
a bounded linear functional fon Xsuchthat  ||f|| = 1;f(xo) = llxoll

Proof

We consider the subspace Z of X consisting of all elements x = ax, where a
Is ascalar.

On Z we define a linear functional f by f(x) = f(ax,) = allx,ll
f is bounded and has norm [|f|| = 1 because
|f (Ol = 1f (axo)| = lalllxo|l = [[axo|l = [[x]|

Then Hahn-Banach Theorem (Normed Spaces) implies that f has a linear
extension f from Z to X, of norm |If|l = ||f| = 1.

Then From f(x) = f(axy) = al|xy|| we see that; fxo) = fxo) = |l

Corollary (Norm, zero vector)

|f ()

For every x in a normed space X we have [|x|| = Supgex I

f#0
Hence if x, is such that f(x,) = 0 for all f € X', then x, = 0.

Proof

From Theorem (Bounded linear functionals) we have, writing x for x,,
lFCl o [FG| _ lixll
Il Vol 12

Suprex’

o [V Vil 1
el _
and from |fCl < [IfllxIl we obtain  Suprey === < llxll
f#0
Hence Ixll = Sup ey L
fo
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Uniform Boundedness Theorem/ Uniform Boundedness Principle

The uniform boundedness theorem (or uniform boundedness principle) by S.
Banach and H. Steinhaus (1927) is of great importance. In fact, throughout
analysis there are many instances of results related to this theorem, the
earliest being an investigation by H. Lebesgue (1909).

The uniform boundedness theorem is often regarded as one of the
corner stones of functional analysis in normed spaces, the others being the
Hahn-Banach theorem, the open mapping theorem and the closed graph
theorem. Unlike the Hahn-Banach theorem, the other three of these four theorems
require completeness. Indeed, they characterize some of tlle most important
properties of Banach spaces which normed spaces in general may not have.

It is quite interesting to note that we shall obtain all three theorems from a
common source. More precisely, we shall prove the so-called Baire's category
theorem and derive from it the uniform boundedness theorem as well as the
open mapping theorem. The latter will then readily entail the closed graph
theorem.

Baire's category theorem has various other applications in functional- analysis
and is the main reason why category enters into numerous proofs; for instance,

the more advanced books by R. E. Edwards (1965) and J. L. Kelley and 1.

Namioka (1963).

Definition (Category). A subset M of a metric space X is said to be

(a) Rare (or nowhere dense) in X if its closure M has no interior points

(b) Meager (or of the first category) in X if M is the union of
countably many sets each of which is rare in X,

(c) Nonmeager (or of the second category) in X if M is not meager in X.

Bair’s Category Theorem
If X # ¢ is complete then it is non-meager in itself.

Or A complete metric space is of second category.
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From Baire's theorem we shall now readily obtain the desired uniform
boundedness theorem. This theorem states that if X is a Banach space and a
sequence of operators T, € (X,Y) is bounded at every point x € X, then the
sequence is uniformly bounded. In other words, pointwise boundedness
implies boundedness in some stronger sense, namely, uniform boundedness.

Uniform Boundedness Theorem (Banach Steinhaus Theorem)

Let (T,) be a sequence of bounded linear operators T,,: X — Y from a Banach
space X into a normed space Y such that (||T;,,x||) is bounded for every x € X,
say,

”Tnx” S Cx n= 1J2)...

where c,, is a real number. Then the sequence of the norms ||T,|| is bounded,
that is, there is a ¢ such that

Tl < c n=1.2,""

Proof

Forevery k € N, let A, € X be the setof all x such that
IToxll < k for all n.

A; is closed.

Indeed, for any x € 4, there is a sequence (xj) in A converging to x.

This means that for every fixed n we have ||T,x;|| < k and obtain || T,x|| < k
because T, is continuous and so is the norm.

Hence x € A;, and A, is closed.
By ||T,x|| < c,, each x € X belongs to some A;.

Hence X =Ug-, Ag
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Since X is complete, Baire's theorem implies that some A, contains an open ball,
say,
B, = B(x,; 1) C Ako

Let 0 #+ x € X be arbitrary. We set

- T
Z=x,+yx with Y = sim0

Then ||z —x,|| <7,s0 that z € B,. By (B, = B(x,; 1) € Ag,) and from the
definition of 4, _we thus have ||T,,z|| < k, for all n.

Also ||T,x, || <k, since x, € B,.

From (z = x, + yx) we obtain x = %(z — X,)

1
= ITuxll = 21T (z — xo)l

1 4 .
= ITuxll = 2 Tzl + ITwxo 1D < 2 llxllk, with y = o=
Hence for all n, T, 1l = Supjyy=11Txll < %ko
= ||T,|l <c n=12,-

Where ¢ = %ko
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Applications of Uniform Boundedness Theorem

= Space of polynomials. The normed space X of all polynomials with
norm defined by [|x|| = max;|o;| is not complete.
(<q, 4, ... the coefficients of x)

Proof: We construct a sequence of bounded linear operators on X which
satisfies (||T,x|| < c,) butnot (||T;|| < c), so that X cannot be complete.

We may write a polynomial x # 0 of degree N, in the form
x(t) = Xi, o t] (cc;= 0 for j > N,)

As a sequence of operators on X we take the sequence of functionals
T, = f, defined by T,,0 = £,(0) = 0 and T,,x = f,,(x) =g+0¢; + =+ +X,,_4

f, is linear. f; is bounded since |o;| < [lx|| by (llx|l = max;|e),
So that |£,(x)| < nllx|l.

Furthermore, for each fixed x € X the sequence (|f,,(x)|) satisfies (||T,x|| < cy)
because a polynomial x of degree N, has N,.,, coefficients, so that by

T,0 = fn(o) = 0 and Thx = fn(x) =X +Xg+ -+,
we have [f,(x)| < Nyejqllx|
Which is of the form (||T,x|| < c,).

We now show that (f,,) does not satisfy (||T,|| < c), that is, there is no ¢
such that ||T,,|| = ||f,]| < c for all n. Thiswe do by choosing particularly
disadvantageous polynomials. For f,, we choose x defined by

x()=1+t+t?>+--+t"
Then ||x|| = 1 by ||x|| = maxj|ocj| and f,(x) =1+4+14+--+1=n=n|x|

IfnCOl _

Hence ||f,,|| = = T SO that (||f,.]) is unbounded.
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= Fourier series: There exist real-valued continuous functions whose
Fourier series diverge ata given point t,.

Proof: Let X be the normed space of all real-valued continuous
functions of period 2w with norm defined by ||x|| = max|x(t)].

X is a Banach space with a=0and b = 2. We may take t, = 0, without
restricting generality. To prove our statement, we shall apply the uniform
boundedness theorem to T,, = f,, where f,,(x) is the value at t = 0 of the
nth partial sum of the Fourier series of x. Since for t= 0 the sine terms are zero
and the cosine is one,

We see from the followings that

the Fourier series of a given periodic function x of period 2m is of the form
fn(x) = % + Y m=1(a,, cos mt + b,, sin mt)

With

ap, = %f_nnf(x)dx , Ay = %foznx(t)Cosmtdt , by, = %foznx(t)Sinmtdt

1
That fn(x) = an + Z?n=1 am

fa(x) = %foznx(t) E + Xm=1 Cosmt] dt

We want to determine the function represented by the sum under the integral
sign. For this purpose we calculate

ZSin%tZ%zl Cosmt = Y4 ZSin% tCosmt

.1 : 1 . 1
251n5t2$=1 Cosmt = Y1 _, [—Sm (m - E) t+ Sin (m + E) t]
ZSin%tZ%zl Cosmt = —Sin%t + Sin (n +%) t

where the last expression follows by noting that most of the terms drop out in
pairs. Dividing this by Sin%t and adding 1 on both sides, we have
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Sin(n+1)t
1+2Y%_,Cosmt = ——2

1
szt

Consequently, the formula for f,,(x) can be written in the simple form

1 p2m Sin(n+§)t
fu(x) = gfo x(t)sT%tdt

1 c2m . _Sin(n+%)t
@) =52 ly xOan(®)dt with g,(6) = —

Using this, we can show that the linear functional f,, is bounded. In fact, by
(Ilxll = maxlx(6)]) and (£, (x) = o f;" x(O)qn(e)dt),

From this we see that f,, is bounded. Furthermore, by taking the supremum
over all x of norm one we obtain

1 2@

”fn” < _fo |Qn(t)|dt

2T
The equality sign holds, when |q,,(t)| = y(t)q,(t)
where y(t) = +1 at every tat which q,(t) = 0and y(t) = —1 elsewhere. y is

not continuous, but for any given € > 0 it may be modified to a continuous
x ofnorm 1 and

full = — [ lan(®)]dt

This sequence is unbounded, so that (||T,,|| < c¢) does not hold. Since X is
complete, this implies that (||T;,x|| < c,) cannot hold for all x. Hence there
must be an x € X such that (|f,,(x)|) is unbounded. But by the definition of
the f,,,; this means that the Fourier series of that x diverges at t = 0.
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Open Mapping Theorem

We have discussed the Hahn-Banach theorem and the uniform boundedness
theorem and shall now approach the third "big" theorem in this chapter, the open
mapping theorem. It will be concerned with open mappings. These are
mappings such that the image of every open set is an open set (definition below).
Remembering our discussion of the importance of open sets, we understand
that open mappings are of general interest.

More specifically, the open mapping theorem states conditions under which a
bounded linear operator is an open mapping. As in the uniform boundedness
theorem we again need completeness, and the present theorem exhibits another
reason why Banach spaces are more satisfactory than incomplete normed
spaces.

The theorem also gives conditions under which the inverse of a
hounded linear operator is bounded. The proof of the open mapping theorem
will be based on Baire's category theorem.

Let us begin by introducing the concept of an open mapping.
Definition (Open mapping)

Let X and Y be metric spaces. Then T:D(T) — Y with domain D(T) c X is
called an open mapping if for every open set in D(T) the image is an open
setin Y.

Lemma (Open unit ball)

A bounded linear operator T from a Banach space X onto a Banach space Y has
the property that the image T(B,) of the open unitball B, = B(0;1) c X
contains an open ball about 0 €Y.
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The Open Mapping Theorem (Dr.AbdulMajeed)

| Let N and M be Banach spaces and T :N—>Mbea surjective
- continuous linear operator. Then T is an open mapping.

Pruot‘

To show that T : N — M is an open mapping, we have to pro?e-
that, for each open set U, T(U) is open in M. For tlus lety € T(U). Then
there is an x € U such that

y=Tzx

Since U is open Emd x € U, there is an open ball B(x; r) < U. If now
B, = B(0; 1),

Bx;r)=x+rB,cU

by lemma 13.2.2, For the open ball B, in N.' there is an open baﬁ B(l)
. with center at the origin in M such that LE | E -

BV c T(B)) Cr T(B,) = T(B)

- Hence B 1) =y + B:n‘;y +T(B,)=Tx + T( "
= T(x + B )C T,
Hence T(U)is open. - =

13.2.2 Lemma

Let T be a surjective continuous linear operator from a Banach
space N to a Banach space M. Then, for each open ball B(0; 1), the i image —-
. T(B(0; 1)) contains an open ball in M with center at the origin.

/
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Open Mapping Theorem, Bounded Inverse Theorem.

A bounded linear operator T from a Banach space X onto a Banach space Y is
an open mapping. Hence if T is bijective, T~1is continuous and thus
bounded.

Proof:

We prove that for every open set A c X the image T(A) is open in Y. This
we do by showing that for every y = Tx € T(A) the set T(A) contains an open
ball about y = Tx.

Let y=Tx € T(A).

Since A is open, it contains an open ball with center x. Hence A — X contains
an open ball with center O.

Let the radius of the ball be r and set k = % so that r = %

Then k(A — x) contains the open unit ball B(0;1).
Using Lemma

“A bounded linear operator T from a Banach space X onto a Banach space Y
has the property that the image T(B,) of the open unitball B, = B(0;1) c X
contains an open ball about 0 € Y. ”

Now implies that T[k(A — x)] = k[T (A) — Tx] contains an open ball about 0,
and so does T(A) — Tx.

Hence T(A) contains an open ball about Tx = y. Since y = Tx € T(A) was
arbitrary, T(A) is open.

Finally, if T~1:Y — X exists, it is continuous because T is open. Also since T~1 is
linear, it is bounded.

Hence the result.
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Closed Graph Theorem

Not all linear operators of practical importance are bounded. For instance,
the differential operator in 2.7-5 is unbounded, and in quantum mechanics
and other applications one needs unbounded operators quite frequently.
However, practically all of the linear operators which the analyst is likely to
use are so-called closed linear operators. This makes it worthwhile to give an
introduction to these operators. In this section we define closed linear
operators on normed spaces and consider some of their properties, in particular
In connection with the important closed graph theorem which states
sufficient conditions under which a closed linear operator on a Banach space is
bounded.

Definition (Closed Linear operator).

Let X and Y be normed spaces and T:D(T) — Y is a linear operator with
domain D(T) < X.Then T is called a closed linear operator if its graph

Gg(T) ={(x,y):x € D(T),y = Tx}

Is closed in the normed space X x Y, where the two algebraic operations of a
vector space in X x Y are defined as usual, that is

(e, y1) + (2, ¥2) = (X1 + x5, 71 +32)

< (x,y) = (< x,xXy)

(< ascalar) and the normon X x Y is defined by

1 Ce, I = llxll + Iyl
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Closed Graph Theorem (Dr.AbdulMajeed)

Let N and M be Banach spaces and T : N — M be a linear
operator. Then T is continuous if and only if the graph of Tisa closed

subspace of N x M.

Proof .

Suppose that T : N — M is a continuous linear operator. We
show that the graph

= {(x, Tx):x € N} -
'is closed in N x M. For this, let (x, y) € G r- Then there are sequences
{x,} and {y,}in Nand M respectxvely such that
Xp 2% Yy Y
Since T is continuous and y, = Tx,,
, .x,, x> Tx, > Tx=y.
Hence (x,y) = (x, Tx) € Gp Thus Gy is closed.

Conversely suppose that, for a linear operator T : N = M, Gy is closed.
Then Gy is a subspace of N x M. Since N and M are Banach spaces and
Gr is a closed subspace of the Banach space N x M, Gy itself is complete
and hence is a Banach space.

. Consider the mapping f: G —> N deﬁnéd by:
fix, Tx) = x forallx € N.
Then f is injective and linear. Also, since

lIfee, To)ll = ll=ll < llex, Tl

by definition of the product norm, f is continuous. By the open mapping
theorem, f-1 is continuous and so bounded. Moreover

ITxll < lice, Tl = llF-2eoll < [l-21 <]l
Hence T is bounded and so is continuous as required.

Another Statement: A closed linear operator forms a banach space X into a
Banach space Y is continuous.
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Closed Graph Theorem

Let X and Y be Banach spaces and T:D(T) — Y aclosed linear operator,
where D(T) c X. Then if D(T) is closed in X, the operator T is bounded.

Proof

We first show that X x Y with norm defined by ||(x, y)|| = |Ix]| + ||yl is
complete. Let (z,) be Cauchy inX x Y, where z,, = (x,,, y,,). Then for every
€> 0 there is an n, such that

”Zn - Zm” = ”xn - xm“ + ”yn - ym” <€ (m,n > nO)

Hence (x,,) and (y,,) are Cauchy in X and Y, respectively, and converge, say,
X, = x andy, = y, because X and Y are complete.

Since ||z, — z |l <€ (m,n > ngy)

Therefore ||z, — z|| <€ (n>ny) asm — oo

This implies that z, - z = (x,y)

Since the Cauchy sequence (z,) was arbitrary, X X Y is complete.

By assumption, G(T) = {(x,y):x € D(T),y = Tx} isclosed in X X Y and D(T)
is closed in X,

Hence G(T) and D(T) are complete. By Theorem

“A subspace M of a complete metric space X is itself complete if and only if
the set M is closed in X.”

We now consider the mapping P:G(T) — D(T) defined by (x, Tx) = x then P
is linear. P is bounded because

IPCx, T) || = lIxIl < llx|l + ITx|| = l|(x, Tl
P is bijective; in fact the inverse mapping is

P~1:D(T) - G(T) defined by x ~ (x, Tx)
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Since G(T) and D(T) are complete, we can apply the bounded inverse theorem
and see that P! is bounded, say,

||(x, Tx)|| < b||x|| forsome b and all x € D(T).

Hence T is bounded because

ITx|| < (ITx|| + [[x|[ = [ICe, TX)|| < bllx]|| for all x € D(T).
Interesting to Know

» Theorem (Closed linear operator)
Let T: D(T) — Y be a linear operator, where D(T) c X and X and Yare
normed spaces. Then T is closed if and only if it has the following
property.
If x,, » x, where x,, € D(T),and Tx, — y, then x € D(T) and Tx = y.

= Example (Ditlerential operator): LetX = C[0,1] and T: D(T) = X
defined by x ~ x’ where the prime denotes differentiation and D(T) is
the subspace of functions x € X which have a continuous derivative.
Then T is not bounded, but is closed.

» Closed ness does not imply boundedness of a linear operator.
Conversely, boundedness does not imply closedness.

= Lemma(Closed operator): Let T: D(T) — Y be a bounded linear operator
with domain D(T) c X, where X and Y are normed spaces. Then:
(@) IfD(T) is aclosed subset of X, then T is closed.
(b) If T is closed and Y is complete, then D(T) is a closed subset of X.
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BANACH FIXED POINT THEOREM

The Banach fixed point theorem is important as a source of existence and
uniqueness theorems in different branches of analysis. In this way the theorem
provides an impressive illustration of the unifying power of functional analytic
methods and of the usefulness of fixed point theorems in analysis.

The Banach fixed point theorem or contraction theorem concerns
certain mappings of a complete metric space into itself. It states conditions
sufficient for the existence and uniqueness of a fixed point (point that is
mapped onto itself). The theorem also gives an iterative process by which
we can obtain approximations to the fixed point and error bounds. We
consider three important fields of application of the theorem, namely, linear
algebraic equations, ordinary differential equations, integral equations.

Fixed Point A fixed point of a mapping T: X — X of a set X into
itself is an x € X which is mapped onto itself (is "kept fixed" by T), that is,
Tx = x, the image Tx coincides with x.

For example, a translation has no fixed points, a rotation of the plane has a
single fixed point (the center of rotation), the mapping x —» x2 of R into

itself has two fixed points (0 and 1) and the projection (&,&,) = & of R?
onto the & —axis has infinitely many fixed points (all points of the &; —axis).

Contraction Let X = (X,d) be a metric space. Amapping T:X — X is
called a contraction on X if there is a positive real number a < 1 such that
for all x,y € X wehave d(Tx,Ty) <ad(x,y) ;a<l1

Geometrically this means that any points x and y have images that are
d(Tx,Ty)

closer together than those points x and y; more precisely, the ratio P

does not exceed a constanta which is strictly less than 1.
Iteration: By definition, this is a method such that we choose an arbitrary x,
in a given set and calculate recursively a sequence x,, x5, x3, ... from a relation

of the form x,,., = Tx,,. that is, we choose an arbitrary x, and determine
successively x; = Txgy, x;, = Txq,x3 = Txy, ...
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Theorem 7.1 (Banach Contraction Theorem). Let (X,d) be a complete metric
space and T : X — X be a contraction mapping. Then T has a unique fixed point.

Proof. We construct a sequence {x, } by the following iterative method.
Choose any arbitrary point xo € X. Then xg # T (xy), otherwise xy is a fixed point
of T and there is nothing to prove. So, we define

n=T(x)xn=T),x=T),...xa=T(x-) forallneN.

We claim that this sequence {x,} of points of X is a Cauchy sequence.
Since T is a contraction mapping with Lipschitz constant 0 < a < 1, for all p =
1,2,..., we have

d(xp41,%p) = d (T (xp), T (xp-1)) < 0d (xp,%p-1)
= ad Tty T (1p-2)) < 0 (i1 5p-)

- (1) o) < i 0)

Let m and n be any positive integers with n < m. Then by the triangle inequality, we
have

d(xm,xu) d(xmaxm— )+d(xm 1yXm— 2)+ +d(xn+l,xn)
(™! +a™ 24+ a")d (1, m0)
a

(am—n—l 4 am—n-2 +od 1) d (xlaxO)

all
1- ad(xl,xo).

IA INA A

I
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Since lim a" = 0 and d(x;,xp) is fixed, the right hand side of the above inequality

n—%

approaches to () as n tends to ®, It follows that {x, } is a Cauchy sequence in X Since
X is complete, there exists ¥ € X such that x, — £. We show that this limit point £ is
a fixed point of T.

Since T is a contraction mapping, from the triangle inequality, we have

d (% T (%)) < d(£xn) +d (xa, T (%))
= d (%) +d (T (xp-1), T (%))
<d(%xn) +0d (xy-1,%) = 0 asn— o,

Hence d (¥, T (%)) = 0 and so T'(X) = %.

Now we show that the fixed point of T' is unique. Suppose to the contrary that x
and y are two distinct fixed points of 7. Then T'(x) =x and T(y) =y. Since T is a
contraction mapping, we have

d(x,y) =d(T(x),T(y)) < ad(x,y) <d(x,y)

a contradiction. Hence x = y.
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Banach Fixed Point Theorem (Contraction Theorem). Another proof

Consider a metric space X = (X,d), where X # ¢. Suppose that X is
complete and let T: X — X be a contraction on X. Then T has precisely one
fixed point.

Proof

We construct a sequence (x,, ) and show that it is Cauchy, so that it converges
in the complete space X, and then we prove that its limit x is a fixed pointof T
and T has no further fixed points. This is the idea of the proof.

We choose any x, € X and define the "iterative sequence” (x,) by
xo, X1 = TXO, Xy = Tx1 == TZXO, ...,xn == Txn_l = Tnxo,

Clearly, this is the sequence of the images of x, under repeated application
of T. We show that (x,,) is Cauchy. For this consider;

d(Xmi1)Xm) = A(Txp, TX 1)

d(Xms1, Xm) < ad (X, Xm—1) v d(Tx, Ty) < ad(x,y)
d(Xms1,Xm) < ad(Txpy—1, TXp_2)

d(Xms1, Xm) < a?d (X1, Xm—2) v d(Tx, Ty) < ad(x,y)
Continuing in this manner we get

d(Xms1, Xm) < a™d (x4, %)

Hence by the triangle inequality and the formula for the sum of a geometric
progression we obtain for n > m

d(xml xn) < d(xm» xm+1) + d(xm+1»xm+2) + et d(xn—lixn)

d(x,, x,) < (@™ 4+ a™t + -+ a™ Dd(xy, x1)

1—qt—m
A, %) < a™ 2 o, 2)

1
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Since 0 < a <1, in the numerator we have 1 — a™™ ™ < 1. Consequently,
d(xmlxn) = f__ad(Xlel) ;n>m

On the right, 0 < a < 1and d(xg, x;) is fixed, so that we can make the right-
hand side as small as we please by taking m sufficiently large (and n > m). This
proves that (x,,,) i1s Cauchy. Since X is complete, (x,,,) converges, say, x,, — X.
We show that this limit Xis a fixed point of the mapping T.

From the triangle inequality and d(Tx,Ty) < ad(x,y) we have
d(x, Tx) < d(x,x,,) + d(x,,, Tx)
d(x,Tx) < d(x,x,,) +ad(x;,_q1,x)

and can make the sum in the second line smaller than any preassigned €> 0
because x,,, — x. We conclude that d(x, Tx) = 0, so that x = Tx by (M2).

This shows that x is a fixed point of T.

x is the only fixed point of T because from Tx = x and TX = X we obtain by
d(Tx,Ty) < ad(x,y)

d(x, %) =d(Tx,T %) < ad(x, %)
which implies d(x,%) = 0 since a < 1.

Hence x,xX by (M2) and the theorem is proved.
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Corollary (Iteration, error bounds).

Under the conditions of Banach Fixed Point Theorem (Contraction Theorem)
the iterative sequence x,,x; = Txg, X, = T?xg, ..., X, = T™xy, ... With arbitrary
Xo € X converges to the unique fixed pointx of T. Error estimates are the

prior estimate d(x,,,x) < f_—ad(xo,xl)

And the posterior estimate d(x,,, x) < la_—ad(xm_l,xm)

Proof

The first statement is obvious from the previous proof.
Since d(x,,,, x,) < %d(xo,xl) ;n>m
Then letting n — oo we get d(x,,, x) < %d(xo,xl)

Now We derive d(x,,,x) < %d(xm_l,xm)

Since d(x,,, x) < gd(xo,xl)

Taking m=1 and writing y, for x, and y; for x;, we have;

d(y;,x) < f__ad()’o» Y1)

Setting y, = x,,—, We have y; = Ty, = x,,, and obtain

d (X, %) < 2= d (o, %)
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Theorem (Contraction on a ball).

Let T be a mapping of a complete metric space X = (X, d) into itself.
Suppose T is a contraction on a closed ball Y = {x:d(x,x,) <}, that is, T
satisfies d(Tx, Ty) < ad(x,y) forall x,y € Y. Moreover, assume that

d(xy, T xy) < (1 —a)r

Then the iterative sequence x,,x; = Txg, X, = T?Xg, .., Xy = T"Xy, ...
converges to an x € Y. This x is a fixed point of T and is the only fixed
pointof T in Y.

Proof

We merely have to show that all x,,’s as well as x lie in Y.

We putm =0 in d(x,,, x,) < gd(xo,xl), change n to m and use
d(xy, T xy) < (1 —a)r to get d(xy, x,,) < ﬁd(xo,xl) <r

Hence all x,,’s are in Y. Also x € Y since x,, » x and Y is closed.
The assertion of the theorem now follows from the proof of Banach's theorem.
Lemma (Continuity)

A contraction T on a metric space X is a continuous mapping.
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Application of Banach's Theorem to Linear Equations

Banach's fixed point theorem has important applications to iteration methods
for solving systems of linear algebraic equations and yields sufficient
conditions for convergence and error bounds.

To understand the situation, we first remember that for solving such a
system there are various direct methods (methods that would yield the exact
solution after finitely many arithmetical operations if the precision-the word
length of our computer-were unlimited); a familiar example is Gauss'
elimination method (roughly, a systematic version of the elimination taught in
school). However, an iteration, or indirect method, may be more efficient if
the system is special, forinstance, if itis sparse, thatis, if it consists of many
equations but has only a small number of nonzero coefficients. (Vibrational
problems, networks and difference approximations of partial differential
equations often lead to sparse systems.) Moreover, the usual direct methods
require about n3 /3 arithmetical operations (n = number of equations = number of
unknowns), and for large n, rounding errors may become quite large, whereas
in an iteration, errors due to roundoff (or even blunders) may be damped out
eventually. In fact, iteration methods are frequently used to improve "solutions”
obtained by direct methods.
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Application of Banach's Theorem to Linear Equations

In this subsection, we present an application of Banach contraction theorem to find
the solution of the following system of n linear equations with » unknowns:

apxy1+apxz+- - +apxs =by
azixi1+azxz+ -+ axmky =b2 (7 2)
A X1+ n2Xxy + - - - + AppXn = by,

This system can be written as

3

x1 = (1—ay)x1 —apxz— - —apxa+ b
x3 = —anxy + (1 —ax)xs —apx3— - —ayx.+ by
x3 = —ayx1 —apx2+(1—aus)x3 — - —asXa+bs (7.3)

------------------------------------------------

Xn = —@p1X1 — A2 — @p3X3 — -+ (1 — Gnn)Xn + by |

By lelting Qij = —ajj -+ (5,'1', where

& = 1 fori=j
F10 fori#f

system (7.3) is equivalent to the following system:
n
xfzza;jxj+bi i=1,2,3,...,n. (7.4)
=1

x = (x1,x2,...,%,} € R" and

fx = (x1,x2,...,%,} € R" and
a1 @12+ A1n
az1 a2 -+ A
ac|
Anl Gn2 *+* Qun
and b = (b1,b2,...,b,) € R”, then the system (7.4) is equivalent to
x=Ax+b. (7.5)

In other words, the problem is to find the fixed point of the transformation T : R" — R”
defined by
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T(x) =Ax+b. (7.6)

If T is a contraction mapping, then we can use Banach Contraction Theorem 7.1 and
obtain the unique solution of T (x) = x by the method of successive approximation.

The conditions under which T is a contraction mapping depend on the choice of
the metric on X = R". Here we discuss one case and left two others for exercise.

Theorem 7.5. Let X = R” be a metric space with the metric dx(x,y) = Tax |x, yil-
if
n
2|a,-,-|5a<1 foralli=12....,n, (7.7
J=1

then the linear system (7.2) of n linear equations in n unknowns has a unigue solution.

Proof. Since X =R" with respect to the metric dw is complete, it is sufficient to prove
that the mapping T defined by (7.6) is a contraction.

dw(T (x),T(y)) = max

1<i<n

1<¢(n;|ﬂu| [ej =il

< max (;gfg,, i = yfl) ;1 o]

- s 3 et

< adw(x,y).

2 i (xj = yj)

Thus T is a contraction mapping. By Banach Contraction Theorem 7.1, the linear
systems (7.2) has a unique solution.
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n
Exercise 7.8. Let X = R” be a metric space with the metric d (x,y) = Ei |xi — yil. If
=

n
Z\aﬁ\ <a<1 forall j=1,2,...,n, (7.8)

then prove that the linear system (7.2) of n linear equations in n unknowns has a
unique solution.
Hint:

(T (),T(y)) = Z}

/2 aij (xj—yj)
=1

|au| |x; — }’J!

IA
M=
M=

1]
M I
M::

-,
Il
ol

|a‘ul |xj— J’J!

s
Il
—
-
Il
—

< max Zlﬂu!dl x,y)

1<j<n

< ad (x,y).
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1/
Exercise 7.9. Let X = R" be a metric space with the metric dy(x, y) (2 Ixi = yi )

If
R n 7
¥ ¥ laf <, 09
i=1 j=1
then prove that the linear system (7.2) of n linear equations in n unknowns has :
unique solution.
Hint:

" 2

BT TON = 3|3 0y (5i-3)

=1|j=1
[ :
Z|“ff| |x.f-}’:|)
(w Sk

.f_

(VAN
‘M“‘

I\

M::r

1

...
il

So,
R R
(T E):| ‘flzdz(x,y)iazdz(x,y)-
=1 =]
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Application of Banach's Theorem to Differential Equations

The most interesting applications of Banach's fixed point theorem arise in
connection with function spaces. The theorem then yields existence and
uniqueness theorems for differential and integral equations, as we shall see.

In fact, in this section let us consider an explicit ordinary differential
equation of the first order x" = f(t, x)

An initial value problem for such an equation consists of the equation and an
initial condition x(t,) = x, where t, and x, are given real numbers.

We shall use Banach's theorem to prove the famous Picard's theorem which,
while not the strongest of its type that is known, plays a vital role in the theory
of ordinary differential equations. The idea of approach is quite simple: ODE
(given above) with x(t,) = x, will be converted to an integral equation, which
defines a mapping T, and the conditions of the theorem will imply that T is
a contraction such that its fixed point becomes the solution of our problem.

We give an application of Bandch contraction theorem to prove the existence and
uniqueness of the following ordinary differential equation with an initial condition:

dy

—=1x3), y0) = (7.10

Theorem 7.6 (Picard Theorem). Let f(x,y) be a continuous function of two vari-
ables defined on a rectangle A = {{x,y) : a <x £ b,c <y < d} and satisfy the fol-
lowing Lipschitz condition in the second variable:

fey)= [l <aly-51 forallyj€lcd) (711)

Further, let (xy,yy) be an interior point of A, Then the differential equation (7.10)
with the given initial condition has @ unique solution,
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Proof. First of all, we show that the problem of determining the solution of differen-
tial equation (7.10) is equivalent to the problem of finding the solution of an integral
equation. If y = g(x) satisfies the differential equation (7.10) and has the property that
g(xo) = yp, then integrating differential equation (7.10) from xy to x, we obtain

g(x) —glxo) = fl f(t,g(t))dt ‘
Yo | (.12

8) =+ [ £t glt)dt.

x }

Thus a unique solution of the differential equation (7.10) with the given initial condi-
tion is equivalent to a unique solution of (7.12). We apply Banach contraction theorem
to determine the solution of (7.12).

By (7.11), there exists a constant g > 0 such that

fOey) = fleya)l <qlyi-yal-

Since f(x,y) is continuous on a compact subset A of RZ, it is bounded and so there
exists a positive constant m such that |f(x,y)| < m for all (x,y) € A.

Choose a positive constant p such that pg < 1 and the rectangle B = {(x,y) : —p+
% <x<p+xy, —pm+yy <y < pm+yp} is contained in A.

Let X be the set of all real-valued continuous functions y = g(x) defined on [-p+
%0, p+xo| such that d(g(x),yo) < mp. The set X is a closed subset of the metric space
Clxo = p,xo + p) with sup metric. Since Clxg — p,xo+ p] is complete, X is complete.

Consider the transformation T : X — X defined by

268
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T(g)=h where h(x)=yo+ fm f(t,8(0))dt.

Since

d(h(x),yo) = sup <m(x—xp) <mp,

[ 1)
0

h(x) € X, and so, T is well defined. For all g,g; € X, we have

d(T(g,T(g1)) = d(h,h;) =sup

fx: [£(2,8(t)) — f(£,81(2))] dt
< /xsuplf{t’g(‘)}—f(f,gl(r))|d¢
X0

<q [ ls) - gi@)de
*0
< qpd(g:81),

that is,
d(T(g),T(g1)) < ad(g,g1)

where0 < a=¢gp <1.

Hence T is a contraction mapping on X into itself. By Banach Contraction Theo-
rem 7.1, T has a unique fixed point g* € X. This unique fixed point g* is the unique
solution of the differential equation (7.10) and satisfies the given initial condition.

Picard's Existence and Uniqueness Theorem (ODE) /another form
Let f be continuous on a rectangle (Fig.1)

R ={{(t,x):|t —ty] < a,|x —x,| < b} and thus bounded on R, say (Fig. 2)
If(t,x)| <c ;V(tx) ER

Suppose that f satisfies a Lipschitz condition on R with respect to its
second argument, that is, there is a constant k (Lipschitz constant) such that
for (t,x),(t,v) € Rwehave |f(t,x) — f(t,v)| < k|x —v| Then the initial
value problem x' = f(t, x) with (x(t,) = x,) has a unique solution. This

. . . . b
solution exists on an interval [t, — 8, t, + £], where f < min {a,;,%}
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Fig. 54. Geometric illustration of inequality (2) for (A) relatively small ¢, (B) relatively
large c. The solution curve must remain in the shaded region bounded by straight lines
with slopes *c.

Fig 2
Proof

Let C(J) be the metric space of all real-valued continuous functions on the
interval | = [ty — B, t, + B] with metric d defined by

d(x,y) = maxee;|x(t) — y(t)]

Where C(J) is complete. Let C be the subspace of C(J) consisting of all those
functions x € C(J) that satisfy |x(t) — x| < cp.

It is not difficult to see that C is closed in C(J), so that C is complete. By
integration we see that x" = f(t,x) with x(t,) = x, can be written x = Tx,

where T: ¢ - C is defined by Tx(t) = x, + ffo f(z,x()) dr
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Indeed, T is defined for all x € C, because ¢ < b by B < min {a,g,%}, o)

that if x € C, thent €] and (7,x(t)) € R, and the integral above exists since f
is continuous on R. To see that T maps C into itself, we can use

Tx(t) = xy + ftif(r,x(r)) dt and |f(t,x)| < c, obtaining

ITx(t) = x0l = | + [ f(x.x(D)) dr = xo| = |} f(zx(@)) dr| < clt — ]
ITx(t) = xo| < cB

We show that T is a contraction on C. By the Lipschitz condition,

ITx(t) = Tv(®)] = |[} [f(z.x(D) — f(x.v(x))] dr|
|Tx(t) — Tv(t)| < [t — tolmax,¢;K|x(t) — v(t)|

Since the last expression does not depend on t, we can take the maximum
on the left and have

d(Tx,Tv) < ad(x,v) where a = kf.

From g < min {a,g,%} we see that a = kB <1, so that T is indeed a

contraction on C. Implies that T has a unique fixed point x € C, thatis, a
continuous function x onJ satisfying x = Tx. Writing x = Tx out, we have

by Tx(t) = x, + fttof(r,x(r)) drt
x(t) = xy + fttof(r,x(r)) drt

Since (t,x(t)) € R where fis continuous, x(t) = x, + ft’;f(r,x(r)) dt may
be differentiated.

Hence x is even differentiable and satisfies x' = f(t, x) with (x(t,) = x,).
Conversely, every solution of x" = f(t,x) with (x(t,) = x,) must satisfy

x(t) = xo + fttof(r,x(r)) dt.
This completes the proof.
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Application of Banach's Theorem to Integral Equations

The most interesting applications of fixed point theorems arise when the underlying
metric space is a function space. Here we discuss the existence and uniqueness of the
Volterra integral equation by using Theorem 7.3, |

Let K be a continuous function on a, bj  [a, b| and let ¢ be a continuous function
on [a,b]. Consider the equation

fix)=9(x)+A /E JCI((ng) f(y)dy forallx€ [a,b] (1.13)

where A is a parameter. It is called the Volterra equation.

Theorem 7.7, For each A € R, the Volterra equation (7.13) has a unique solution f
that is continuous on [a,b).

Proof. Let X =Cla,b] the set of all continuous real-valued functions defined on [a, b
with the uniform metric. Since K is continuous, there exists a constant k > () such that
K(x,y)| < kforall x,y € |a,b|. Define the transformation T : f = T(f) on X by

176) =9+ Koy
Forall f,g € X, we have
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1(600) - Tlste)] = 1K) lf) =)y
< |Alk(x—a)d(f,g) forallx€ [a,b].

Since T%(f) — T*(g) =T (T(f) - T(g)), we have

IT2(f(x)) - T2(g(x))| = |A [:K(x,y)lr(f(y)) —r(g(ynldy\
< [ K A1k =) d(f, )y
< MR8 [ r-apdyd(f.g)

ALK (x—a)?
< MRG0l yip )

Continuing this iterative process, we obtain

(70) -7 < 2EE D ) forailxe o],

Hence,

() -T"(8)| < L i1,6).

Recalling that % — 0 asn — o for any r € R, we conclude that there exists n such that
[AlEGb-a)
' :

n!
By Theorem 7.3, there exists a unique solution f € X satisfying T'(f) = f. Obviously,
if T(f) = f, then f solves (7.13).

)< [|Alk(b—a
n!

T™ is a contraction mapping. Taking n sufficiently large to have
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Application of Banach's Theorem to Integral Equations

We finally consider the Banach fixed point theorem as a source of existence
and uniqueness theorems for integral equations. An integral equation of the
form

x(6) = p k(6D @A = v(t) e (1)

is called a Fredholm equation of the second kind. Here, [a, b] is agiven
interval. x is a function on [a, b] which is unknown. p is a parameter. The
kernel k of the equation is a given function on the square G = [a, b] X [a, b]
shown in Fig., and v is a given function on [a, b].

T

b—

a b t

Integral equations can be considered on various function spaces. In this
section we consider (1) on C[a, b], the space of all continuous functions
defined on the interval J= [a, b] with metric d given by

d(x,y) = max.e;|x(t) —v(t)].

For the proposed application of Banach's theorem it is important to note that
C[a, b] is complete.
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Theorem (Fredholm integral equation).

Suppose k and v inx(t) — u f: k(t,7)x(t)dt = v(t) to be continuous onj x J

and J = [a, b], respectively, and assume that u satisfies |u| < ﬁ with ¢

defined as |k(t,7)| < c. Then x(t) — u f: k(t,t) x(t)dt = v(t) hasa unique
solution x on J. This function x is the limit of the iterative sequence
(%9, X1, --- ), Where x, is any continuous function on J and for n = 0,1,... , and

b
Xna1 (6) = V() + [, k(t,7) xp (T)dT
The Volterra integral equation

An equation of the following form is called the Volterra integral equation

x(t) = f, k(t,7) x(1)dt = v(t)

The difference between

x(t) — uf(f k(t,7) x(t)dt = v(t) and x(t) — pu f;k(t, 1) x(7)dt = v(t)

Is that in first the upper limit of integration b is constant, whereas here in
second it is variable. This is essential.

Theorem (Volterra integral equation).

Suppose that v in x(t) —uf;k(t, 7) x(1)dt = v(t) is continuous on [a, b]
and the kernel k is continuous on the triangular region R in the tt — plane
given by a<t<t, a<t<b; seeFig. Then

x(t) = u [, k(t,7) x(D)dt = v(t)

has a unique solution x on [a, b] for every pu.
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| |
a b :T

Lemma (Fixed point)

Let T: X — X be a continuous mapping on a complete metric space X = (X, d),
and suppose that T™ is a contraction on X for some positive integer m. Then

T has aunique fixed point.
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