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Objectives of course:   

This course extends methods of linear algebra and analysis to spaces of functions, in which the 

interaction between algebra and analysis allows powerful methods to be developed. The course 

will be mathematically sophisticated and will use ideas both from linear algebra and analysis.  

Muhammad Usman Hamid 

University of Sargodha 

 Course Contents:   

 Metric Spaces: A quick review, completeness and convergence, completion,  

 Normed Spaces: linear spaces, normed spaces, difference between a metric and a 

normed space, Banach spaces, bounded and continuous linear operators and functionals, 

dual spaces, finite dimensional spaces, F. Riesz Lemma, the Hahn-Banach theorem, the 

HB theorem for complex spaces, The HB theorem for normed spaces, the open mapping 

theorem, the closed graph theorem, uniform boundedness principle and its applications.   

 Inner-Product Spaces: Inner-Product space, Hilbert Space, orthogonal and orthonormal 

sets, orthogonal complements, Gram-Schmidt orthogonalization process, representation 

of functionals, Reiz-representation theorem, and weak convergence.   

 Banach-Fixed-Point Theorem: Applications in differential and integral equations.  

Recommended Books:  

 Kreyszig E. Introductory Functional Analysis with Applications.  

 Dunford  N. and Schwartz  J.T. Linear Operators, Interscience publishers.  

 Curtain R.F., Pritchard A.J. Functional Analysis in Modern Applied Mathematics. 

 Friedman A. Foundations of Modern Analysis.  

 Rudin W. Functional Analysis. 

 Functional Analysis by Dr. Abdul Majeed. 

 Functional Analysis by Z. R. Bhatti. 

For video lectures 

@ You tube visit 

Learning with Usman Hamid 
visit facebook page “mathwath” 

or contact: 0323 – 6032785 
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METRIC SPACES  

Functional  analysis  is  an  abstract  branch  of mathematics  that  originated  

from  classical  analysis. It deals with analysis of functional (functions of 

functions). It concerned with infinite dimensional vector spaces (mainly function 

space) and mappings between them. It deals with abstract spaces and different 

operators define on these spaces. Its development started about eighty years ago, 

and  nowadays  functional  analytic methods  and  results  are  important  in  

various  fields  of mathematics  and  its  applications.  The impetus came from  

linear algebra, linear ordinary and partial differential  equations,  calculus  of  

variations,  approximation  theory  and,  in particular,  linear  integral  equations,  

whose  theory  had  the  greatest effect  on  the  development  and  promotion  of  

the  modern  ideas.  

Metric space, Metric 

A metric space is a pair      , where X is a non-empty set and    is a metric on X  

(or distance function on X), that is,  A function           is said to be metric 

on     such that for all          we have:  

(M1)     is real-valued, finite and nonnegative. i.e.                   

(M2)           if and only if      

(M3)                           (Symmetry) 

(M4)                          (Triangle Inequality).  

If       is metric space then X is called underlying set. Its elements are called 

points. 

Induced Metric 

A  subspace     ̃   of         is  obtained  if we  take  a  subset       and  

restrict     to     ;  thus  the metric on  Y  is  the  restriction  ̃        is  

called  the metric induced on  Y  by  d.  
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What is the use of Metric Space in daily life? 

In mathematics a metric space is a set where a distance (called metric) is defined 

between elements of the set. Metric Space methods have been employed for 

decades in various applications, for example in internet search engines, image 

classification, or protein classification. 

Can a Metric Space be empty? 

A metric space is formally defined as a pair. The empty set is not such a pair, so it 

is not a metric space in itself. 

What is the difference between normed space and a metric space? 

A metric provides us a notion of the distance between points in a space, a norm 

gives us a notion of the length of an individual vector. A norm can only be defined 

on a vector space, while a metric can be defined on any set. 
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Examples  

 Real line  :  This  is  the set of  all  real numbers,  taken with  the usual 

metric defined  by        |   |  this is also called usual metric space. 

 Euclidean plane   : The metric space   ,  called the Euclidean plane,  is  

obtained  if we  take  the set of ordered pairs of real numbers, written 

                      ,  etc.,  and  the  Euclidean  metric defined  by  

       √       
         

   

Or          |     |  |     | this is also called the taxicab metric. 

 Three-dimensional Euclidean space     

This metric space consists  of  the  set  of  ordered  triples  of  real  numbers  

                            ,  etc.,  and  the  Euclidean  metric defined  

by         √       
         

         
   

 Euclidean space    

This space is obtained  if we  take  the set of all  ordered  n-tuples of real  

numbers, written                                  etc.,  and  the  

Euclidean  metric  defined  by  

       √       
         

           
   

 Unitary Space  C
n
,  complex plane  C 

This space is obtained  if we  take  the set of all  ordered  n-tuples of 

complex numbers, written                                  etc.,  and  

the  Euclidean  metric  defined  by  

       √|     |
  |     |

    |     |
   

(C
n
 is sometimes called complex Euclidean n-space.)  

When  n = 1  this  is  the  complex  plane C with  the  usual metric defined 

by         |   |  

 Sequence space    : This space X (say)  is  a  set  of  all  bounded  

sequences  of  complex  numbers;  that is,  every element of X  is  a  

complex  sequence            briefly   (  ) such  that  for  all            

            we  have |  |     where      is  a  real  number  which  may  

depend  on  x,  but  does  not depend on  j.  This space is a metric space with 

defined metric              |     | 

 

Available at MathCity.org



5 
 

For video lectures @ You tube visit “Learning with Usman Hamid” 

 

 Function space C[a, b]:  This space X (say)  is  a  set  of  all real-valued  

functions  x,  y, which  are  functions  of  an  independent  real variable    

and are defined and continuous on a given closed interval  J  = [a, b]. This 

space is a metric space with defined metric              |         | 

 Discrete metric space or Trivial Metric space:  A  space         is called  

discrete  metric space, if we define the following metric on it  

                          .  

Or        {
        
        

 

Problem: Show that the real line is a metric space.  

Or Show that the set of all real numbers, taken with the usual metric defined   

by        |   |  is a metric space. 

Solution Define a metric        |   | for X =   

(M1) Obviously                    

(M2) Let     then        |   |  |   |             

If           |   |                

Thus             if and only if     

(M3)          |   |  |   |          

Thus                         

(M4)         |   |  |       |  |   |  |   | 

Thus                         

Hence d is a metric on   and is called usual metric on   and       is called usual 

metric space on real line. 
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Problem: Show that the Euclidean Plane is a metric space.  

Or Show that the set of ordered pairs of real numbers, written 

                      , etc., defined           by the following metric 

is a metric space. 

       √       
         

     

Solution Define a metric        √       
         

  for X =    

(M1) Obviously                    

(M2) Let     then                 and 

        √       
         

              

Thus            if and only if     

(M3)        √                  √                          

Thus                         

(M4) Let                                   then  

       √       
         

  

If points x,y,z are non collinear then they form vertices of triangle therefore 

Thus                         

But if points x,y,z are collinear then                        

Thus                          

Hence   is a usual metric on   . Euclidean Metric also called Usual metric. 

This is also called the taxicab metric. Taxicab Geometry gets its name from the 

fact that taxis can only drive along streets, rather than moving as the crow flies. 

Euclidian Distance between two sets as the taxi driving. It is known as Taxicab 

metric as it measures the distance a taxi would travel from a point to some other 

point if there were no one way streets. 
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Problem 

Consider      with           defined by 

       |     |  |     |   With                            

Show that   is a metric on   . 

Solution Define a metric        |     |  |     | for X =    

(M1)   Obviously  |     |  |     |                      

(M2)   Let        |     |  |     |                

                      

Thus            if and only if     

(M3)          |     |  |     |  |     |  |     |         

Thus                         

(M4)  Let        |     |  |     | 

       |           |  |           |  

       |     |  |     |  |     |  |     |  

        |     |  |     |   |     |  |     |   

Thus                           Hence   is a metric on    

Question Show that non – negativity of a metric using (M2) and (M4). 

 Solution  

(M4)                        

z = x                                           

using (M2) we have                       
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Example 

Let X be any non-empty set and   is a metric defined over X. Let   be any natural 

number so that we define                 for any x, y   X. We are to show 

that         is also a metric. The new metric spaces                      are 

thus obtained from (X, d). 

Solution   

(i)                        x, y   X 

(ii)                                   

(iii)                 since                

(iv)   For any x, y, z   X we have 

                                  

                         

                         

Hence         is a metric space. This metric is called  dilation metric. 

Remark  

The choice of   being a natural number has no specific advantage. However for 

   , a „dilation‟ and for      , a „contraction‟ of distance occurs. 
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Problem  

Does                 define a metric on the set of all real numbers?  

Or  

Show that         is not a metric, where   is the set of real numbers and   

is defined by                  

Solution Define a metric                 for X =   

(M1) Obviously                           

(M2) Let                            

Thus            if and only if     

(M3)                              

Thus                         

(M4) Suppose triangular inequality holds in            then 

                                             

                                        

      

This is not true, so triangular inequality not holds. Hence   is not a metric on   

Problem Prove General Triangular inequality. 

Solution We will prove it by using mathematical inducation. 

For                                induction is true.  …….(1) 

Suppose for                                               

Suppose for                                       

                                                       using 1 

                                           proved 
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Problem Discrete Space is infact a metric space. 

Let X be a non – empty set. Define a function         by 

        {
        
        

          then show that   is a metric on X. 

Solution Define a metric        {
        
        

           

(M1) Obviously                    

(M2)          if and only if     

(M3)                       

(M4) If                      then                        

then                                  

                      

If                      then                        then    

                             implies                        

Thus                         

Hence   is a metric on   and (X,d) is called discrete or trivial metric space. 

Question  

If       is a metric space then show that |             |                   

Solution  Suppose that                             

                             ………(1)         since   metric space 

Also                              

                              

  [             ]                        ………(2)  since   metric space 

Combining (1) and (2) |             |                 
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Question  

If       is a metric space then show that |              |             

Solution  Since   metric space therefore by triangular inequality 

                                            ………(1) 

Also                                             ………(2)   

Combining (1) and (2)                               

 |              |           

Question  If       is a metric space then show that        
        

          
  is also a 

metric on X. 

Solution Define a metric         
        

          
  

(M1)   Obviously  
        

          
                   

(M2)   Let         
        

          
   

                         

Thus            if and only if     

(M3)           
        

          
 

        

          
        

Thus                         

(M4)  Let         
        

          
 

  [             ]

    [             ]
  

       
        

    [             ]
 

        

    [             ]
  

       
        

          
 

        

         
  

Thus                          Hence   is a usual metric on X. 
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Question Show that        
|   |

  |   |
 for all       is a metric on  . 

Solution Define a metric        
|   |

  |   |
  

(M1)   Obviously  |   |    
|   |

  |   |
            

(M2)   Let         
|   |

  |   |
   |   |    

            Thus            if and only if     

(M3)           
|   |

  |   |
 

|   |

  |   |
            Thus                 

(M4)  Let        
|   |

  |   |
 

|       |

  |       |
 

|   | |   |

  |   | |   |
  

       
|   |

  |   |
 

|   |

  |   | |   |
 

|   |

  |   | |   |
  

       
|   |

  |   |
 

|   |

  |   |
 

|   |

  |   |
  

Thus                          Hence   is a usual metric on  . 

Question 

If       is a metric space then show that         
         

         
  is not a metric on X. 

Solution Define a metric         
         

         
  

(M1)   Obviously  
         

         
            

(M2)   Let         
         

         
                        

But           

Hence        
         

         
  is not a metric on X. 
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Question   If                     then show that   

       ∑ |     |
 
    √       

         
           

      is a 

metric on   . 

Solution Define a metric        ∑ |     |
 
    for X =    

(M1)   Obviously  |     |    ∑ |     |
 
                      

(M2)   Let        ∑ |     |
 
                

Thus            if and only if     

(M3)          ∑ |     |
 
    ∑ |     |

 
           

Thus                         

(M4)  Let        ∑ |     |
 
    ∑ |           |

 
    

       ∑ |     |
 
    ∑ |     |

 
    ∑ |     |

 
     

Thus                         Hence   is a metric on    

Question  

Let            | | | |  for all       then show that it is not a metric on  . 

Solution Define a metric            | | | |  for X =   

(M1)   Obviously      | | | |             

(M2)   Let            | | | |                

But if         then     | | | |    

A contradiction to            | | | |    

Thus   is not a metric on  . 
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Problem:  

Let X be a non empty set and          be a metric space on X. then 

          defined by            (        ) is a metric space. 

Solution  

Define a metric            (        ) for X. 

(M1) Obviously             (        )             and          

(M2) Let              (        )                 

(M3)            (        )     (        )          

Thus                         

(M4) Let            (        ) then  

             or                  

We want to show that                          

For this consider                             

Then                                

                                  

Again consider                             

Then                                               

Then                            is metric on X 

                           

Hence proved            (        ) is a metric on X. 
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Question   

If       is a metric space then show that         
       

         
  is also a metric on X. 

Solution Define a metric          
       

         
  

(M1)   Obviously  
       

        
                    

(M2)   Let          
       

        
   

               

Thus             if and only if     

(M3)            
      

        
 

      

        
         

Thus                           

(M4)  Since   is metric on X therefore                       

Let          
      

        
 

             

   [             ]
  

        
      

   [             ]
 

      

   [             ]
  

        
       

        
 

       

        
  

Thus                             Hence    is a usual metric on X. 
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Example  Show that         √         
           

  is a metric. 

Solution Define a metric         √         
           

  

(M1)   The sum of two real valued, finite and non negative functions is non  

negative and real.            

(M2)            √         
           

    

          
           

              
           

     

                    and                           

(M3)          √         
           

  

       √         
           

          

(M4)   Let                                 

                            

                            

Squaring above both 

         
           

           
                       

         
           

           
                       

Adding above both 

                         ∑   (     )  (     )
 
     

                         √∑   (     )
  

   
√∑   (     )

  
        Schawarz 

                                      [               ]   
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Example   

Show that                             is a metric. 

Solution  

Define a metric                             

(M1)   The sum of two real valued, finite and non negative functions is non  

negative and real.            

(M2)                                  

                        

                    and                      

      

(M3)                              

                                   

(M4)   Let                                 

                            

                            

                            

                                              

                       

 

 

 

 



19 
 

For video lectures @ You tube visit “Learning with Usman Hamid” 

 

Example   

Show that            [                   ] is a metric. 

Solution  

Define a metric            [                   ] 

(M1)   The maximum of two real valued, finite and non negative functions is 

non negative and real.            

(M2)               [                   ]    

                        

                    and                      

      

(M3)             [                   ] 

          [                   ]          

(M4)   Let                                 

                            

                            

   [                   ]  

    [                                       ]  

   [                   ]  

    [                 ]     [                 ]  
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Sequence Space s.   

This space consists of the set of all (bounded or unbounded) sequences of complex 

numbers and the metric   defined by  

       ∑
 

  
 
   

|     |

  |     |
  Where         and             

Solution Define a metric         ∑
 

  
 
   

|     |

  |     |
 

(M1)   |     |    ∑
 

  
 
   

|     |

  |     |
                    

(M2)          ∑
 

  
 
   

|     |

  |     |
   |     |    

 (  )  (   )       

(M3)          ∑
 

  
 
   

|     |

  |     |
 ∑

 

  
 
   

|     |

  |     |
        

(M4)   Define      
 

   
 then       

 

      
   

     is monotonically increasing                         

  Hence using the result |   |  | |  | | 

   |   |    | |  | |  
|   |

  |   |
 

| | | |

  | | | |
  

 
|   |

  |   |
 

| |

  | | | |
 

| |

  | | | |
  

|   |

  |   |
 

| |

  | |
 

| |

  | |
  

Using         and          
|     |

  |     |
 

|     |

  |     |
 

|     |

  |     |
  

 
 

  

|     |

  |     |
 

 

  

|     |

  |     |
 

 

  

|     |

  |     |
  

 ∑
 

  
 
   

|     |

  |     |
 ∑

 

  
 
   

|     |

  |     |
 ∑

 

  
 
   

|     |

  |     |
  

                         is metric on given Space. 
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Question 

For a sequence space „s‟        ∑
 

  
 
   

|     |

  |     |
  defines a metric on the 

sequence s. show tha we can obtain another metric by replacing 
 

  
 with      

such that ∑    
    converges. 

Solution Define         ∑    
   

|     |

  |     |
 

(M1)   |     |    ∑    
   

|     |

  |     |
                    

(M2)          ∑    
   

|     |

  |     |
   |     |    

 (  )  (   )       

(M3)          ∑    
   

|     |

  |     |
 ∑    

   

|     |

  |     |
        

(M4)   Define      
 

   
 then       

 

      
   

     is monotonically increasing                         

  Hence using the result |   |  | |  | | 

   |   |    | |  | |  
|   |

  |   |
 

| | | |

  | | | |
  

 
|   |

  |   |
 

| |

  | | | |
 

| |

  | | | |
  

|   |

  |   |
 

| |

  | |
 

| |

  | |
  

Using         and          
|     |

  |     |
 

|     |

  |     |
 

|     |

  |     |
  

   |     |

  |     |
   |     |

  |     |
   |     |

  |     |
  

 ∑    
   

|     |

  |     |
 ∑    

   

|     |

  |     |
 ∑    

   

|     |

  |     |
  

                         is metric on given Space. 
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Space B(A) of bounded functions   

Consider the space B(A) of all function defined  and bounded on a given  set A, 

and the metric    is defined  by               |         |  then show that 

given space is a metric space. 

Solution Define a metric                |         |  

(M1)   |         |           |         |               

(M2)                 |         |     |         |    

                            

(M3)                 |         |         |         |         

(M4)   Let            then  

|         |  |                   |  

   |         |  |         |  |         | 

       |         |        |         |        |         | 

                       

    is metric on given Space. 
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Function Space C[a, b]  

This space  is  a  set  of  all real – valued continuous functions  x,  y,  ... which  are  

functions  of  an  independent  real variable    and are defined and continuous on a 

given closed interval  J  = [a, b]. Show that this space is a metric space with 

defined metric              |         | 

Solution Define a metric               |         | 

(M1)   |         |           |         |               

(M2)                 |         |     |         |    

                            

(M3)                 |         |         |         |         

(M4)   Let        [   ] then  

|         |  |                   |  

   |         |  |         |  |         | 

       |         |        |         |        |         | 

                           is metric on given Space. 

This metric   is called the sup metric/ max metirc on C[a, b], where C[a, b] be 

the set of all real-valued continuous functions over  [a, b]. 

In example, the so called supmetric or uniform metric geometrically presents 

maximum pointwise separation between two continuous functions    and   defined 

over [a, b]. 
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Integral Metric  Define   on C[a,b] by        ∫ |         |
 

 
   then show 

that    is metric on given Space. 

Solution Define a metric         ∫ |         |
 

 
        [   ]      

(M1)   |         |    ∫ |         |
 

 
                

(M2)          ∫ |         |
 

 
      |         |    

                                  [   ]  

(M3)          ∫ |         |
 

 
   ∫ |         |

 

 
          

(M4)       Let        [   ] then  |         |  |                   |  

   |         |  |         |  |         | 

 ∫ |         |
 

 

   ∫ |         |
 

 

   ∫ |         |
 

 

   

                          is metric on given Space. 

Pseudometric Let X be a non-empty set. A function           is said to 

be pseudometric if and only if  

i.                   

ii.                          (Symmetry) 

iii.                         (Triangle Inequality).  

Or  

A pseudometric satisfies all axioms of a metric except            may not imply 

x = y but x = y implies          . 

Example:        |     | is a pseudometric on   .  

With                        |   |    but     

Note: Every metric is a Pseudometric, but pseudometric is not metric. 
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Question 

Find all metrices on a set X consisting of two points, consisting of one point. 

Solution 

For two points (say)         

(M1) Obviously                    

(M2)          if and only if     

(M3)                       

(M4) This point is the consequence of (M1) to (M3). 

Thus any two points of X, satisfying (M1) to (M3) is a metric on X. 

 If X has only one point then (M3) to (M4) are trivial. i.e.  

                . Thus any non – negative function is a metric on X. 

Question 

Let   be a metric on X, determine all constants „k‟ such that   

i.    ii.     

Metric on X. 

Solution 

If X has more than one point then zero function is not metric, this implies    . 

Hence generally show that for any positive real number  , lead to    being a 

metric on X. i.e. 

Let   be a metric on X then  

i. For     

(M1) Obviously                       since          

(M2)                        

(M3)                          since   is metric. 

(M4)  Since   is metric for all         then 
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Hence    is a metric for all     on X. 

For     

Obviously                       since          

Hence    is not a metric for all     on X. 

ii. To find all constant   such that     is a metric. 

For     

(M1) Obviously                        since          

(M2) if              but            for     

Hence     is not a metric for all     on X. 

For     

Since          but we may not sure about          be non – negative for 

   . Hence     is not a metric for all     on X. 

For     

    is a metric because actually       and   is a metric on X. 
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   Space   

   Let     be a fixed real number. Then the space of all sequences 

  (  ) 
 

           of numbers such that ∑ |  |
  

  |  |
  |  |

    

converges is called the    space. i.e.    ,  (  ) 
 
 ∑ |  |

  
     - 

The metric   defined on    space is         (∑ |     |
  

   )
   

 

Where   (  ) 
 
   (  ) 

 
  and  ∑ |  |

  
      ∑ |  |

  
     .   

Remember: In Mathematics    spaces are function spaces define using a natural 

generalization of the p – norm for finite dimensional vector spaces. They are 

sometime called Lebesgue Space named after Henry Lebesgue. 

 

Real and Complex    Space 

If we take only real sequences      (satisfying ∑ |  |
  

     ),  we  get  the  real  

   space,  and  if  we  take  complex  sequences      (satisfying ∑ |  |
  

     ),  

we get the  complex    space.  

 

   Space/ Hilbert Sequence Space   

Let     be a fixed real number. Then the space of all sequences such that   

  (  ) 
 

           of numbers such that ∑ |  |
  

  converges is called the    

space. i.e.    ,  (  ) 
 
 ∑ |  |

  
     - 

The metric   defined on    space is         (∑ |     |
  

   )
   

 

Where   (  ) 
 
   (  ) 

 
  and  ∑ |  |

  
      ∑ |  |

  
     .   

This space was introduced and studied by D. Hilbert (1912) in connection with 

integral equations and is the earliest example of what is now called a Hilbert space. 
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Example   

Show that    ,  (  ) 
 
 ∑ |  |

  
     - with        (∑ |     |

  
   )

   
 

is a metric space.  

Where   (  ) 
 
   (  ) 

 
 and  ∑ |  |

  
      ∑ |  |

  
     .   

Solution Define a metric         (∑ |     |
  

   )
   

 

(M1)   |     |    (∑ |     |
  

   )
   

                

(M2)          (∑ |     |
  

   )
   

   |     |    

 (  )  (   )           

(M3)          (∑ |     |
  

   )
   

 (∑ |     |
  

   )
   

        

(M4)   Let          then 

       (∑ |     |
  

   )
   

 (∑ |           |
  

   )
   

  

       (∑ |     |
  

   )
   

 (∑ |     |
  

   )
 

  (∑ |     |
  

   )
   

  

                         is metric on given Space. 
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Example   

Show that    ,  (  ) 
 
 ∑ |  |

  
     - with         (∑ |     |

  
   )

   
 

is a metric space on      .  

Where   (  ) 
 
   (  ) 

 
  and  ∑ |  |

  
      ∑ |  |

  
     .   

Solution Define a metric         (∑ |     |
  

   )
   

 

(M1)   |     |    (∑ |     |
  

   )
   

                

(M2)          (∑ |     |
  

   )
   

   |     |    

 (  )  (   )           

(M3)          (∑ |     |
  

   )
   

 (∑ |     |
  

   )
   

        

(M4)   Let          then 

       (∑ |     |
  

   )
   

 (∑ |           |
  

   )
   

  

       (∑ |     |
  

   )
   

 (∑ |     |
  

   )

 

 
 (∑ |     |

  
   )

   
  

                         is metric on given Space. 
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Example   

Let    denote the set of all sequences   (  ) 
 

 in   where ∑ |  |
 
    converges. 

Define            by         ∑ |     |
 
    for all   (  ) 

 
   (  ) 

 
 

then show that   is a metric space on    .  

Where   (  ) 
 
   (  ) 

 
  and  ∑ |  |

  
      ∑ |  |

  
     .   

Solution Define a metric         ∑ |     |
 
    

(M1)   |     |    ∑ |     |
 
                   

(M2)          ∑ |     |
 
      |     |    

 (  )  (   )           

(M3)          ∑ |     |
 
    ∑ |     |

 
           

(M4)   Let          then 

       ∑ |     |
 
    ∑ |          |

 
     

       ∑ |     |
 
    ∑ |     |

 
    ∑ |     |

 
     

                         is metric on given Space. 

 

 

 

 

 

 

 

 



31 
 

For video lectures @ You tube visit “Learning with Usman Hamid” 

 

Example   

Let    {  (  )     |  |   }. Define            |     | for all 

  (  ) 
 
   (  ) 

 
 then show that   is a metric space on    .  

Solution Define a metric         ∑ |     |
 
    

(M1)   |     |        |     |                 

(M2)              |     |    |     |    

 (  )  (   )           

(M3)              |     |      |     |         

(M4)   Let    (  )   (  )   (  )  

  |     |  |           |  |     |  |     | 

     |     |      |     |      |     |  

                       

     |     | satisfy (M4) for   . 

Question 

If A is a subspace of     consisting of all sequences of zeros and ones. What is 

induced metric on A? 

Answer 

For any distinct       we have          because there are sequences of zeros 

and ones, also          which are not distinct. Thus induced metric on A is 

discrete metric. 

Conjugate Index  

Let   be a real number      . A real number   is said to be conjugate index of  

  if  
 

 
 

 

 
  . i.e. if     then 

 

 
 

 

 
   gives    . 
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Auxiliary Inequality  

Let     be any positive real numbers. And let      define   such that  
 

 
 

 

 
   

p and q are then called conjugate exponents then prove that    
  

 
 

  

 
. 

Proof: We have 
 

 
 

 

 
   then        so that   

 

 
   then 

                          
 

   
      

Consider the function                

    
 

            

Consider the following figure  

 

Let   and   be any positive numbers.  Since     is the area of the rectangle in 

Figure, we thus obtain by integration the inequality 

   ∫       

 

 

 ∫       

 

 

 |
  

 
|
 

 

 |
  

 
|
 

 

 (
  

 
 

  

 
*  (

  

 
 

  

 
* 

   
  

 
 

  

 
 

We may use another form as   
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Question 

Using    
  

 
 

  

 
 (Auxiliary Inequality) show that geometric mean does not 

exceed arithmetic mean.  

Solution: We have    
  

 
 

  

 
 then choose       so  

 

 
 

 

 
 

 

 
 then 

    
  

 
 

  

 
                              

               (
   

 
)
 
 √   

   

 
  

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some people are afraid 

of heights.  

Not me,  

I'm afraid of widths. 

Steven Wright 
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The Holder Inequality 

Let   (  ) 
 

      (  ) 
 

    where     and 
 

 
 

 

 
   then prove that 

∑ |    |
 
     ∑ |  |

  
        ∑ |  |  

         

This inequality was given by O. Holder (1889). 

Proof:  

Let   (  ̅) 
 

      ( ̅ ) 
 

    such that  ∑ |  ̅|
  

      and ∑ | ̅ |
  

     , 

and if we let |  ̅|    and | ̅ |    then by auxiliary inequality 

   
  

 
 

  

 
 |  ̅|| ̅ |  

| ̅ |
 

 
 

| ̅ |
 

 
 ∑ |    |

 
    

∑ | ̅ |
  

   

 
 

∑ | ̅ |
  

   

 
  

 ∑ |  ̅ ̅ |
 
     

 

 
 

 

 
   ∑ |  ̅ ̅ |

 
        …………..(1) 

Let   (  ̅) 
 

      ( ̅ ) 
 

    then define   ( ̂ ) 
 

      ( ̂ ) 
 

    

such that  ̂  
  

(∑ |  |  
   )

    and  ̂  
  

 ∑ |  |  
       

 then ∑ | ̂ |
  

      and 

∑ | ̂ |
  

      then applying (1) to both ( ̂ ) 
 

 and ( ̂ ) 
 

 we get 

∑ | ̂  ̂ |
 
        

 ∑ |
  

(∑ |  |
  

   )
    

  

 ∑ |  |  
       |

 
        

 ∑|    |

 

   

 (∑|  |
 

 

   

+

   

(∑|  | 
 

   

+
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The Minkowski Inequality   

Let   (  ) 
 
   (  ) 

 
    where     then prove that 

(∑ |     |
  

   )
   

  ∑ |  |
  

    
 

   ∑ |  |  
    

 

   

For finite sums this inequality was given by H. Minkowski (1896). 

Proof:  

Let     then given inequality is trivially true, since |     |  |  |  |  | 

therefore  ∑ |     |
 
    ∑ |  |

 
    ∑ |  | 

    

If     then suppose that           then 

|  |
 
 |  |

     
 |  ||  |

   
 |     ||  |

   
 |  ||  |

   
 |  ||  |

   
  

|  |
 
 |  ||  |

   
 |  ||  |

   
  

∑ |  |
  

    ∑ |  ||  |
    

    ∑ |  ||  |
    

        ……………(1) 

Where „n‟ is fixed arbitrarily 

Now consider   ∑ |  ||  |
    

    then obviously (|  |) 
 

    

We claim that (|  |
   

)
 

 
   , to see this we consider  

(∑ |  |
    

   )
 
 ∑ |  |

       
    ∑ |  |

  
         

 

 
 

 

 
   

 (|  |
   

)
 

 
     

Then by Holder‟s Inequality we get 

∑ |  ||  |
    

     ∑ |  |
  

    
 

 (∑ |  |
       

   )

 

 
      ……………(2) 

 



36 
 

For video lectures @ You tube visit “Learning with Usman Hamid” 

 

Similarly   

∑ |  ||  |
    

     ∑ |  |  
    

 

 (∑ |  |
       

   )

 

 
    ……………(3) 

Putting (2),(3) in (1) 

∑ |  |
  

     ∑ |  |
  

    
 

 (∑ |  |
       

   )

 

 
  ∑ |  |  

    
 

 (∑ |  |
       

   )

 

 
  

∑ |  |
  

    [ ∑ |  |
  

    
 

   ∑ |  |  
    

 

 ] (∑ |  |
       

   )

 

 
  

∑ |  |
  

    [ ∑ |  |
  

    
 

   ∑ |  |  
    

 

 ] (∑ |  |
  

   )
 

        
 

 
 

 

 
   

(∑ |  |
  

   )
  

 

   ∑ |  |
  

    
 

   ∑ |  |  
    

 

   

(∑ |  |
  

   )
 

   ∑ |  |
  

    
 

   ∑ |  |  
    

 

   

      (∑ |  |
  

   )
 

         ∑ |  |
  

    
 

         ∑ |  |  
    

 

   

(∑ |  |
  

   )
 

   ∑ |  |
  

    
 

   ∑ |  |  
    

 

   

(∑|     |
 

 

   

)

   

 (∑|  |
 

 

   

+

 
 

 (∑|  | 
 

   

+

 
 

 

Cauchy – Schwarz Inequality from the Holder Inequality   

Let   (  ) 
 

      (  ) 
 

    where          then 

∑ |    |
 
     ∑ |  |

  
        ∑ |  |  

         

Or (∑ |    |
 
   )

 
 ∑ |  |

  
   ∑ |  |  
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Question 

By using Cauchy – Schwarz Inequality show that 

 |          | 
    |  |

  |  |
    |  |

    

Solution 

By Cauchy – Schwarz Inequality we have 

∑ |    |
 
     ∑ |  |

  
        ∑ |  |  

         

For      

∑ |    |
 
     ∑ |  |

  
        ∑ | |  

         

∑ |  |
 
     ∑ |  |

  
        ∑   

         

(∑ |  |
 
   )

 
  ∑ |  |

  
               

(∑ |  |
 
   )

 
  ∑ |  |

  
    (    )  

(∑ |  |
 
   )

 
  ∑ |  |

  
         

(∑ |  |
 
   )

 
   ∑ |  |

  
      

 |          | 
    |  |

  |  |
    |  |

    

Hence proved. 
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Distance between sets  

Let          be a metric space and  ,       . The distance between A and 

B denoted        is defined as                                     

If        is a singleton subset of X, then          is written as        and is 

called distance of point x from the set B. 

Theorem  

If       is a metric space then show that |             |            

Solution  Let     then                       

                                   

                                             ………(1)   

                      

                                   

                       (             )           ………(2)   

Combining (1) and (2) |             |           

Diameter of a set 

The diameter      of a nonempty set     in a metric space       is defined to 

be                      .  

Note: For an empty set   , following convention are adopted  

(i)          Some authors take        also as 0.  

(ii)           i.e. distance of a point   from empty set is  .  

(iii)          ,  where A is any non-empty set.  

Bounded Set 

Let       be a metric space and     be a non-empty set. „A‟ is said to be 

bounded if diameter of A is finite. i.e.        

Available at MathCity.org
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Theorem Show that the union of two bounded sets A and B in a metric space is 

a bounded set.   

Proof  Let       be a metric space and       be a non-empty set. We 

wish to prove     is bounded. 

Let         then clearly       or       

If       then since A is bounded therefore           

And hence                               Implies     is bounded. 

Similarly if       then     is bounded. 

Now if     and      then  

                             where     and      

Since                      are finite therefore         . And hence     

is bounded. 

Theorem Show that        iff A consists of single point. 

Proof  For this consider 

                                               

Hence        iff A consists of single point. 

Question If        then         . What about converse? 

Proof  For this consider       and  

Let       then clearly     and     

If     and      then           since              

Then        
   

                   

Conversly suppose that                
   

          

          may or may not exists. So converse may or may not exists. 



44 
 

For video lectures @ You tube visit “Learning with Usman Hamid” 
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Question Show that distance does not define a metric on power set of X. 

Proof  For this consider              
   

        

And            also let               be subsets of X. 

Let              
   

              
   

                             

But    , M2 fails here. Thys (X,d) is not a metric on X. 

Question  

Show that    ̅ iff          here A is non – empty subset of X. 

Proof  Suppose    ̅ then     or      

If     then               is obtained at     implies          

If      then each neighbourhood       of x contains at least one point     

distinct from x with         . 

Suppose     then          implies         . 

Conversely suppose that          then                 

If infimum is obtained then      ̅ 

Hence    ̅. 

Theorem 
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Open Ball  Let       be a metric. An open ball in       is denoted by  

                         

Where    is called center of ball and   is called radius of ball and    . 

Closed Ball  Let       be a metric. A closed ball in       is denoted by  

 ̃                        

Where    is called center of ball and   is called radius of ball and    . 

Sphere  Let       be a metric. A sphere in       is denoted by  

                         

Where    is called center of ball and   is called radius of ball and    . 

Keep in mind:          ̃               

Examples   Consider the set of real numbers with usual metric 

           |   |        then 

                             |    |      

i.e.                         

i.e. open ball is the real line with usual metric is an open interval. 

 ̃                            |    |      

i.e.             [         ] 

i.e. closed ball in a real line is a closed interval. 

                                     

i.e. two points      and      are only. 
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Examples    

Consider a discrete metric space       where        {
        
        

 then 

                              

 ̃                               

                           if     

Open set  

Let       be a metric. A subset „ ‟ of a metric space X  is  said  to  be  open  if  it 

contains  a  ball  about  each  of  its  points. i.e. for every       there exists an 

open ball                     

Theorem    An open ball in metric space X is open set. 

Proof  Let         be an open ball with center    and radius   in a metric 

space      . And let           and define              

 

We claim that                 

To see this let           then  

                                    

                                     

Hence         is an open set. 

 

Available at MathCity.org
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Question    

What is an open ball in R and in C? Also in C[a,b]. 

Answer 

 An open ball in R is an open interval            . 

 An open ball in C is an open disk        |    |     

 An open ball in C[a,b] is any continuous function satisfying 

    |          |    

Question 

Consider  [    ] and determine the smallest   such that          where 

          and          . 

Solution 

Metric defined on  [   ] is              |         | 

Let                  then                    

Put          then                

            
    

    
              

  

 
 
  

 
   put in      

                  (
  

 
)     (

  

 
)     (

 

 
 

 

 
)     (

 

 
 

 

 
)  

                   (
 

 
)     (

 

 
)   

 

√ 
 

 

√ 
  √   

Also 

                  (
  

 
)     (

  

 
)     (

  

 
 

 

 
)     (

  

 
 

 

 
)  

                  (
 

 
)     (

 

 
)  

 

√ 
 

 

√ 
 √   

Thus he smallest   such that          is √  
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Question  If     then          . 

Solution: Given that    . Then we know that for       and       we have 

                                                       

Theorem (a) Let       be a metric space then X and   are open sets.  

Proof  It follows by noting that   is open since   has no elements and, 

obviously, X is open.  

Theorem (b) 

Let       be a metric space then Union of any number of open sets is open.  

Proof  Any point „x‟ of the union     of open sets belongs to (at least) one of 

these sets, call it M, and M contains a ball B about x since M is open. Then    ,  

by  the definition of a union. This proves the result. 

Theorem (c) 

 Let       be a metric space then Intersection of a finite number of open sets is 

open.  

Proof  If  „y‟  is  any point of the intersection  of  open  sets           then  

each    contains  a  ball about  „y‟  and  a  smallest of  these balls  is  contained  in  

that intersection. This proves the result. 

Limit point of a set  

Let       be a metric space and      , then      is called a limit point or 

accumulation point of A if for every open ball         with centre x,  

       {     }      i.e. every open ball contain a point of A other than x.  

Or Let       be a metric space and      , then      is called a limit point 

or accumulation point of A if every neighbourhood    of x contains at least one 

element of A other than „x‟ i.e.     {     }     
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Theorem   
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Theorem  Let      be a metric space and    . If     is a limit point of A. 

then every open ball        with centre x contain an infinite numbers of point of 

A.  

Proof  Suppose        contain only a finite number of points of A. Let 

             be those points.  And let                       . 

Also consider                   . Then the open ball         contain no point 

of A other than x. then x is not limit point of A. This is a contradiction therefore 

       must contain infinite numbers of point of A. 

Closed Set 

A subset A of metric space X is closed if it contains every limit point of itself. The 

set of all limit points of A is called the derived set of A and denoted by       .  

Or A  subset    of a metric space X  is  said  to  be  open  if  it contains  a  ball  

about  each  of  its  points.  A subset   of X is said to be closed if its complement 

(in X) is open, that is,           is open.  

Theorem  

A subset A of a metric space is closed if and only if its complement    is open 

Proof 

Suppose A is closed, we prove    is open. For this let      then    . Then it 

means „x‟ is not a limit point of  . Then by definition of a limit there exists an 

open ball        such that           . 

This implies that          . Since x is an arbitrary point of    . So    is open. 

Conversely, assume that    is an open then we prove A is closed. i.e.  A contain 

all of its limit points.  

Let x be an accumulation point of A. and suppose      then there exists an open 

ball            implies            

This shows that x is not a limit point of A. this is a contradiction to our assumption. 

Hence    . Accordingly A is closed. The proof is complete. 
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Theorem:  A closed ball is a closed set.  

Proof:  

Let  ̅      be a closed ball. We have to prove  ̅         is an open ball. 

Let     then         . Let             and take         

Consider the open ball  (  
  

 
) and we are to prove that  (  

  

 
)    

Let    (  
  

 
) then        

  

 
 

By using Triangular Inequality                       

                                            

    
  

 
        

      

 
        

        

 
        

    

 
         

 
   

 
                                  

             ̅         (  
  

 
)     ̅         is open set. 

Consequently   ̅      is closed set. 

Closure of a Set  

Let        be a metric space and    . Then closure of M is denoted by 

 ̅       where     is the set of all limit points of M. It is the smallest closed 

superset of M.  

Dense Set  

Let      be a metric space the a set     is called dense in X if  ̅    .  

 Countable Set  

A set A is countable if it is finite or there exists a function      which is one-

one and onto, where   is the set of natural numbers. e.g.     and   are countable 

sets . The set of real numbers, the set of irrational numbers and any interval are not 

countable sets.  
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Remark 

If M is dense in X, then every open ball in X, no matter how small, will contains 

point of M 

 In other words, there does not point     which has a neighborhood that 

does not contain point of M. 

Theorem  

Let       be a metric space     is dense if and only if M has non-empty 

intersection with any open subset of X.  

Proof  

Assume that M is dense in X. Then  ̅   . Suppose there is an open set     

such that      . Then if       then             which show that x is 

not a limit point of M.  

This implies       but      thus  ̅   . This is a contradiction.  

Consequently        for any open    .  

Conversely suppose that       for any open    . We prove  ̅   .       

For this let    . If     then         ̅ then  ̅   . 

If      then let      be the family of all the open subset of X such that     for 

every i. Then by hypothesis        for any i. i.e.    contain point of M other 

than x.  

This implies that x is an accumulation point of M. i.e.       

Accordingly         ̅ then  ̅   . The proof is complete. 

Separable Space  

A metric space       is said to be separable if it contains a countable dense 

subsets. 
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Examples: The real line   is separable.  

Proof: The  set     of  all  rational  numbers  is  countable  and  is dense  in  .  

Examples: The complex plane                is separable. 

Proof:  Consider                 . As   is countable then   is 

countable. Since   is dense in   therefore  ̅   . So   is separable. 

Examples: A discrete metric space X is separable if and only if X is countable.  

Proof:  Let       be a discrete metric space then        {
        
        

 

Suppose that X is separable. Let     and       then for any     we 

have          because    . If we draw an open ball with centre   and 

radius 
 

 
, then it will not intersect with  . This means that no proper subset of X is 

dense in X. Since X is separable, the only dense set in X itself. So X is countable. 

Conversely suppose that X is countable. Then  ̅    and hence X is separable. 

Examples: The space    is not separable. 

Proof:  Since we know that     ,  (  ) 
 
     |  |   -  

With            |     | Where   (  ) 
 
   (  ) 

 
     

Let                    be a sequence of zeros and ones. i.e.      or     . 

Then since     |  |    therefore     . With this   construct a real number  ̂ 

whose binary representation is  ̂  
  

 
 

  

 
 

  

 
   [   ] 

We  now  use  the  facts  that there is one – to – one correspondence between [0,1] 

and the sequences of 0‟s and 1‟s in     and the  set  of  points  in  the  interval  

[0,1]  is uncountable,  each   ̂  [   ] has  a  binary  representation,  and different 

 ̂   have different binary representations. Hence there are uncountably many 

sequences of zeros and ones.  The metric on      shows that any two of them which 

are not equal must be of distance 1 apart.  If we  let each of these sequences be the 

center of a small ball, say, of radius 1/3, these balls do  not intersect and we have 
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uncountably many of them.  If  M  is  any  dense  set  in    ,  each  of  these  

nonintersecting  balls  must contain an element of M.  Hence M cannot be 

countable. Since M was an arbitrary dense set, this shows that    cannot have 

dense subsets which are countable. Consequently,     is not separable.  

Examples: The space    with       is separable. 

Proof:  Since we know that     ,  (  ) 
 
 ∑ |  |

  
     -  

With        (∑ |     |
  

   )
   

 Where   (  ) 
 
   (  ) 

 
     

To prove    is separable, we have to establish the existence of a set in    which is 

countable and dense in   . 

Let M  be  the  set of  all  sequences  y  of  the  form                         

where  n  is  any  positive  integer  and  the       are  rational. M is countable. 

Because   is countable. We show that M is dense in   .  

i.e.   {                           }     

Let   (  ) 
 

    be arbitrary. Then for every       there is an n (depending on  

 )  such  that  ∑ |  |
  

      
  

 
 

Since the rationals are dense in  , for each    there is  a rational    close  to it. 

Hence we can find      satisfying  ∑ |     |
  

    
  

 
 

It follows that  [      ]  ∑ |     |
  

    ∑ |    |
  

      
  

 
 

  

 
 

[      ]                

M  is  dense  in   . This proves    is separable. 
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Boundary:  A  boundary  point  x  of  a  set           is  a  point of X (which 

may or may not belong to A) such that every neighborhood of x contains  points  of 

A  as  well  as  points  not  belonging  to  A;  and  the boundary  (or  frontier)  of  A  

is  the  set  of  all  boundary  points  of  A.  

Convergence of a sequence, Limit of Sequence:  

A sequence       in  a metric space       is  said  to  converge  or  to  be  

convergent  if there  is  an       such  that                 

i.e.           as     or      as     

„x‟  is called  the  limit  of      and we write               

This means that for all     there exists      such that                    

i.e.        must be closed to „x‟ for sufficiently larger „n‟. 

We say  that       converges  to  x  or  has  the  limit  x.  If      is not convergent, 

it is said to be divergent. 

Remember:   

The limit „x‟ of a convergent sequence      is a metric space       must be a 

point of X. For example consider       ] with        |   | if      (
 

 
) 

then although                  
   

|    | but      as     

Theorem    

If        is converges then limit of       is unique.  

Proof: 

Suppose           as     

Then                              as       

               

Hence the limit is unique.  
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Question  

Find a sequence which converges to 0 but is not in any space    where      . 

Solution 

Consider    
 

       
 

Since          
 

   then 
 

       
 

 

 
 
 

 (
 

       
)
 

 
 

 
 

 

 
 (

 

       
)
 
  

Sequence 
 

 
   as         

But ∑
 

 
 
       so  

 

 
    

Question  

Find a sequence      with     but     . 

Solution  

We know that   (
 

  ) is a convergent sequence with    . 

And ∑
 

  
 
            .  

If     then     . 

Question  

Show that     |     | satisfy (M4) for   . 

Solution Let    (  )   (  )   (  )  

  |     |  |           |  |     |  |     | 

     |     |      |     |      |     |  

                       

     |     | satisfy (M4) for   . 
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Bounded Set  

Let       be a metric space then a nonempty subset      a bounded set if its 

diameter                        is finite.   

If  M  is  bounded,  then          ,  where        is any point and  r  is  a  

(sufficiently  large)  real  number,  and  vice versa.  

Bounded Sequence   

Let       be a metric space then a sequence      in X is bounded if there exists M 

and a point     such that                     

Lemma   

Let       be a metric space then a convergent sequence in X is bounded and its 

limit is unique. 

Proof:   

Suppose that      is convergent sequence in X and let      as     where 

   . Then for all     there exists      such that                   . 

In particular for     there exists      such that                   . 

Define      {                     (   
  )}  and            

Then by using triangular inequality for arbitrary             we have 

   (     )           (    )         (say) 

Then obviously                   and hence      is bounded. 

To prove uniqueness of limit; Suppose           as     

Then                              as       

i.e.          but          

               

Hence the limit is unique.  
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Remember:  

Converse of above theorem is not true. i.e. a bounded sequence needs not to be 

convergent. For example                        is bounded but not 

convergent. 

Lemma   

Let       be a metric space then if      and      in X,  

Then                 

Proof: 

By using triangular inequality                                 

                                  ……………..(i) 

Similarly using triangular inequality                                 

                                  

  (               )                   ……………..(ii) 

From (i) and (ii) |               |                  ……………..(iii) 

Since      as     then for all     there exists      such that  

        
 

 
        . 

Also since      as     then for all     there exists      such that  

        
 

 
        . 

Let               then from (iii) we obtain 

    |               |  
 

 
 

 

 
             

                  as     

i.e.                       
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Cauchy Sequence 

A sequence       in a metric space       is said to Cauchy sequence if for any 

    there exists      such that                       

i.e.             as       

Remember   Let      be a sequence in the discrete space      . If      be a 

Cauchy sequence, then for   
 

 
, there is a natural number    depending on   such 

that            
 

 
           

Since in discrete space   is either 0 or 1 therefore            implies       

(say). Thus a Cauchy sequence in        become constant after a finite number of 

terms,  i.e.                       
          

Theorem 

Let       be a metric space then every convergent sequence in       is a Cauchy 

sequence but converse not holds (a Cauchy sequence may not be convergent). 

Proof 

Suppose that      is convergent sequence in X and let      as     where 

   . Then for all     there exists      such that          
 

 
        . 

And using triangular inequality for all        we have 

                         
 

 
 

 

 
  

                       

Hence      is a Cauchy sequence. 

Conversely  A Cauchy sequence may not be convergent. For this consider 

      ] with        |   | then      (
 

 
) is a Cauchy sequence because 

         |     |  |
 

 
 

 

 
|  |

 

 
|  |

 

 
|  

 

 
 

 

 
    as       

Obviously      but    . So that      is not a convergent sequence. 
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Subsequence   

Let               be a sequence in       and let              be a sequence of 

positive integers such that            then                 is called 

subsequence of          . 

Theorem  

Let      be a Cauchy sequence in     , then      converges to a point     if 

and only if       has a convergent subsequence (   
) which converges to    . 

Proof 

Suppose        then      itself is a subsequence which converges to    . 

Conversely, assume that (   
) is a subsequence of      which converges to x. 

Then for any      there is      such that   (   
  )  

 

 
         .  

Furthermore      is Cauchy sequence Then for the      there is      such that  

         
 

 
           

Suppose               then by using the triangular inequality we have 

         (      
)   (   

  )  
 

 
 

 

 
               

           and this shows that      

Theorem    Let      be a Cauchy sequence in     , and If        

converges to     , then every subsequence (   
)  also converges to    . 

Proof  Suppose      then for any      there is      such that 

          . Then in particular  (   
  )            .  

Hence    
     

Example  Let           then                    
 

 
 
 

 
 
 

 
    is a 

sequence in X. Then       but 0 is not a point of X. 
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Theorem 

Let    be a nonempty subset of a metric space       and  ̅ its closure. Then 

   ̅  if and only if there is a sequence      in   such that     . 

Proof  Let    ̅ then        

Case – I: If     then the sequence           lies in M and converges to x. 

Case – II: If     then      that is „x‟ is a limit point of M and hence for 

each           the open ball  (  
 

 
) contain infinite number of point of M.  

We choose      for each  (  
 

 
). Thus we obtain a sequence      of points of 

M and since 
 

 
   as    , then      as    . 

Conversely suppose that there exists a sequence       in   such that     . 

Then we are to prove that    ̅. 

Case – I: If     then        and    ̅ as  ̅       

Case – II: If     then every neighbourhood of x contain infinite number of 

terms of     . Then x is a limit point of M. i.e.        and          ̅ 

Hence from both cases    ̅. 

Theorem 

Let    be a nonempty subset of a metric space       and  ̅ its closure. Then M is 

closed if and only if the situation     ,       implies that    . 

Proof  Suppose that M is closed. i.e.    ̅ and let      also      

then by theorem  

“   ̅  if and only if there is a sequence      in   such that     ” 

We have    ̅    implies    . 

Conversely  If        is in M and      , then    ̅   then by hypothesis 

   ̅, then M is closed. 
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Remember   

A sequence      of real or complex numbers converges on the real line   or in the 

complex plane  ,  respectively,  if  and  only  if  it  satisfies  the  Cauchy  

convergence criterion,  that  is,  if  and  only  if  for  every  given     there  is  an 

           such  that |     |              

Here  |     |  is the distance            from      to      on the real line   or 

in the complex plane  . Hence we can write the inequality of the Cauchy criterion 

in the form                     . 

And if a sequence       satisfies the condition of the Cauchy criterion, we may call 

it a Cauchy sequence.  Then the Cauchy criterion simply says that a sequence of 

real or complex numbers converges on   or in    if and only if it is a Cauchy 

sequence. This refers to the situation in   or  .  Unfortunately, in more general 

spaces the situation may be more complicated, and there may be Cauchy sequences 

which do not converge. Such a space is then lacking a property which is so 

important that it deserves a name, namely, completeness.  This consideration 

motivates the following definition, which was first given by M. Frechet (1906).  

Complete Metric Space, Completeness  

A metric space       is said to be complete if every Cauchy sequence in X 

converges in X (that is, has a limit which is an element of X). 

Remember    

The real line and the complex plane are complete metric spaces by Cauchy 

Convergence Criterian. 

Complete Space (Examples)  

i. The discrete space is complete.  

Since in discrete space a Cauchy sequence becomes constant after finite 

terms i.e.      is Cauchy in discrete space if it is of the form 

                       

ii. The set                of integers with usual metric is complete.  

iii. The set of rational numbers with usual metric is not complete. 
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Subspace  

Let        be a metric space and     then M is called subspace if M is itself a 

metric space under the metric  . 

Theorem 

A subspace M of a complete metric space       is itself complete if and only if the 

set M is closed in X.  

Proof   

Assume that M is complete we prove M is closed. i.e.     ̅ 

Obviously    ̅ 

Now let    ̅  then there is a sequence      in   such that        

Since convergent sequence is a Cauchy and M is complete then        

Since x was arbitrary point of M this implies  ̅    

Therefore    ̅ and Consequently M is closed.  

Conversely  

Suppose M is closed. i.e.     ̅ and       is a Cauchy sequence in M.  

Then      is Cauchy in X and since X is complete so         

Also    ̅    and      .  

Since M is closed i.e.     ̅. Then        

Therefore    .  

Hence M is complete.  
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Construction of Completeness Proofs  

In various applications a set X is given (for instance, a set of sequences or a set of 

functions), and X is made into a metric space. This we do by choosing a metric 

  on X.  The remaining task is then to find out whether       has the desirable 

property of being complete. To prove completeness, we take an arbitrary Cauchy 

sequence       in X and show that it converges in X.  For different spaces, such 

proofs may vary in complexity, but they have approximately the same general 

pattern:  

i. Construct an element „x‟ (to be used as a limit).  

ii. Prove that „x‟ is in the space considered.  

iii. Prove convergence      (in the sense of the metric).  

We will use the facts   and   are complete. 

Theorem The Real Line is Complete. 

Proof  Let      be any Cauchy sequence of real numbers.  

We first prove that      is bounded.  For this let        then there exists  

      such that          |     |             . 

In particular for      we have |   
   |       

         
   

Let                      
    and                     

    then   

        for all  . This shows that       is bounded with   as lower bound and 

  as upper bound.  

Secondly we prove      has convergent subsequence(   
). 

If the range of the sequence is                   is finite, then one of the term 

is the sequence say „b‟ will repeat infinitely i.e.         . Then             is a 

convergent subsequence which converges to „b‟.  

If the range is infinite then by the Bolzano Weirestrass theorem, the bounded 

infinite set       has a limit point, say „b‟.  
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Then each of the open interval                 (  
 

 
   

 

 
)           

   (  
 

 
   

 

 
)    has an infinite numbers of points of the set     . i.e. there 

are infinite numbers of terms of the sequence       in every open interval   . We 

choose a point    from   , then we choose a point     from    such that      . 

i.e. the terms    comes after     in the original sequence    . Then we choose a 

term     such that      , continuing in this manner we obtain a subsequence  

(   )  (             ). 

It is always possible to choose a term because every interval contain an infinite 

numbers of terms of the sequence     .  

Since   
 

 
   and   

 

 
   as    . Hence we have convergent 

subsequence (   ) whose limit is „b‟.  

Lastly we prove that         

Since      is a Cauchy therefore for any     there is an      such that 

|     |  
 

 
          . 

Also since       there is a natural number    such that       then for all 

          we have  

        |    |  |            |  |      |  |     |  

        
 

 
 

 

 
           |    |     

Hence         

Thus Real Line is complete. 
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Example  Euclidean space    is complete.  

Proof    

Let      be a Cauchy sequence in    where      (  
   

   
   

   
   

     
   

) 

therefore for any     there is an      such that 

         (∑ |  
   

   
   

|
 

 
   *

 

 

            . …………(1) 

 ∑ |  
   

   
   

|
 

 
                 ∑ |  

   
   

   
| 

                     

   
   

  is a Cauchy sequence of real numbers for every            in  . 

Since   is complete therefore   
   

     . 

Using the   limits we define                  then clearly      

As     in (1) we have         (∑ |  
   

   |
 

 
   *

 

 

           

                            

This proves that Euclidean space    is complete. 

Example  Unitary space    is complete.  

Proof   In the above theorem if we take       then we see complex plane 

     is complete. Moreover the unitary space    is complete.   

Example  The space    {  (  )     |  |   } is complete.  

Proof   Let      be a Cauchy sequence in    where    (  
   

)
 

 
 then for 

any     there is an      such that 

             |  
   

   
   

|             . …………(1) 

 |  
   

   
   

|                           
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  is a Cauchy sequence of real/complex numbers for every            in   

or  . And since   is complete therefore   
   

     . 

Using the   limits we define   (  ) 
 

          . 

As     in (1) we have             |  
   

   |            

                         

Now we prove that „x‟ is bounded and is from   . 

Since    (  
   

)
 

 
    then there exists a real number    such that for all „j‟ 

|  
   

|    , then using triangular inequality 

|  |  |     
   

   
   

|  |     
   

|  |  
   

|           |  |     

This proves that        . 

And hence    {  (  )     |  |   } is complete. 

Example  The  space  „c‟  consists  of  all  convergent sequences    (  ) 
 

  of  

complex  numbers, with  the metric  induced  from the  space    then the  space  

„c‟  is  complete.  

Or Show that   ,  (  ) 
 
                - is a complete metric space. 

Proof  Since every convergent sequence is bounded therefore     . Since „c‟ is 

subspace of complete metric space   , to show that „c‟ is complete it is sufficient 

to prove that „c‟ is closed. i.e.    ̅.  

Obviously    ̅ ………….(1) 

Let   (  ) 
 

  ̅ then there exists a sequence    (  
   

)
 

 
 in „c‟ such that 

     as    . Then for any     there is an      such that 
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            |  
   

   |  
 

 
          

|  
   

   |  
 

 
        . …………(2) 

Then in particular for      and    we have  

 (   
  )      |  

       |  
 

 
        

|  
       |  

 

 
      . …………(3) 

Now as    
 (  

    )
 

 
 is a convergent sequence and since every convergent 

sequence is Cauchy sequence therefore there exists      such that 

|  
       

    |  
 

 
          . …………(4) 

Then by using triangular inequality we have 

|     |  |     
       

       
       

       |  

|     |  |     
    |  |  

       
    |  |  

       |  
 

 
 

 

 
 

 

 
   

|     |                 

Hence x is Cauchy in    and x is convergent.  

Therefore      and   ̅     …….(5) 

Hence from (1) and (5)     ̅   

i.e.  C is closed in    and    is complete.  

Since we know that a subspace of complete space is complete if and only if it is 

closed in the space. Consequently   is complete. 

Remark: A metric space X may be complete under one metric but by changing 

the metric on X, it may happen that the metric space is no longer a complete a 

complete metric space. This is illustrated in following example. 
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Example  

Consider  [   ]                        [   ]  and introduce two metric on it 

by              [   ]|         | and         ∫ |         |
 

 
    

Then show that   [   ]     is complete but   [   ]     is not complete. 

Example (a)  

Consider  [   ]                        [   ]  and introduce metric on it by 

             [   ]|         | then show that   [   ]     is complete. 

Proof  To show that   [   ]     is complete let      be a Cauchy sequence 

in  [   ] then for any     there is an      such that 

               [   ]|           |               ………….(1) 

Then there exists    [   ] at which maximum attained so that we have 

      [   ]|             |               

|             |               ………….(2) 

         is a Cauchy sequence of real/complex numbers for every            

in   or  . And since   is complete therefore               . 

In this way we can associate with each   [   ],a unique real number     . This 

define a function   [   ]   . 

Using     in (1) get       [   ]|          |                ………….(3) 

And for all   [   ] we have |          |            

      uniformly on [   ]  (Since it does not depends upon „t‟) 

Since      is a sequence of continuous functions on [   ] and the convergence is 

uniform, therefore the limit function „x‟ is continuous .i.e.    [   ] 

(With reference: If a sequence of continuous function on a closed interval 

converges uniformly, then the limit function is continuous) 



71 
 

For video lectures @ You tube visit “Learning with Usman Hamid” 

 

From (3) we have               [   ]|          |            

i.e.        [   ] under metric    as     

Hence   [   ]     is complete 

Example (b)  

Consider  [   ]                        [   ]  and introduce metric on it by 

        ∫ |         |
 

 
   then show that   [   ]     is not complete. 

Proof 

Let [   ]  [   ] and consider the function    as show in figure below; 

 

Let     so that 
 

 
 

 

 
 then consider 

          ∫ |           |
 

 
    

          ∫ |           |
 

 
 

   ∫ |           |
 

 
 

 

 
 

 

    

 ∫ |           |
 

 
 

 

 
 

 
 

 

 

   ∫ |           |
 
 

 
 

 

 

     

          ∫ |           |
 

 
 

 

 
 

 

   ∫ |           |
 

 
 

 

 
 

 
 

 

 

    

Here   ∫ |           |
 

 
 

 

 
 

 

   ∫ |           |
 

 
 

 

 
 

 
 

 

 

     as       

      is a Cauchy sequence in  [   ]   

𝑚  𝑛 

𝑚  𝑛 

𝑚  𝑛 

𝑥𝑚  
 

 
 

 

𝑚
 

𝑥5  
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Suppose there exists    [   ] such that      under metric    as     

i.e.            as     then 

         ∫ |          |
 

 
    

         ∫ |          |
 

 
 

   ∫ |          |
 

 
 

 

 
 

 

    

 ∫ |          |
 
 

 
 

 

 

    

           ∫ |          |
 

 
 

 

 
 

 

      

Here   ∫ |          |
 

 
 

 

 
 

 

     as       

This happens if       {
         

 

 

     
 

 
    

 

Implies    [   ] a contradiction. Hence   [   ]     is not complete. 

Example  The space    is complete; here    is fixed and      .  

Proof   Let      be a Cauchy sequence in    where    (  
   

)
 

 
 then for 

any     there is an      such that 

         (∑ |  
   

   
   

|
 

 
   )

 

 
            . …………(1) 

 |  
   

   
   

|                           

   
   

  is a Cauchy sequence of real/complex numbers for every            in   

or  . And since   is complete therefore   
   

     . 

Using the   limits we define   (  ) 
 

          . 
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As     in (1) we have         (∑ |  
   

   |
 

 
   )

 

 
            …..(2) 

 ∑ |  
   

   |
 

 
                 this shows that         but       

                     

From (2) we have                    i.e.      

This proves that        .  

And hence    ,  (  ) 
 
 ∑ |  |

  
     - is complete 

Example  The  function  space   [   ]  is  complete;  here  [a, b]  is  any  given  

closed  interval  on  . 

Proof   Let      be a Cauchy sequence in  [   ] then for any     there is 

an      such that 

               |           |             . ……(1)  where   [   ] 

Then for any        we have  |             |               

         is a Cauchy sequence of real/complex numbers for every in   or  . And 

since   is complete therefore               . 

In this way for every    , we can associate a unique real number       with 

     . This defines a function      on J.  

We prove that       [   ] and            as     

From (1) we see that  |           |              for every     

As     we have |          |             

Since the convergence is uniform and the      are continuous, the limit function 

     is continuous, as it is well known from the calculus. Then      is continuous.  

Hence       [   ], also |          |            

Therefore             [   ] and the proof is complete. 
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Example  If        and        are complete then     is complete. 

Where the metric defined is as           [                   ] with 

                    and                . 

Proof   Let      be a Cauchy sequence in     then for any     there is 

an      such that 

            [  ( 
        )   ( 

        )]               

   ( 
        )     and    ( 

        )    

       is a Cauchy sequence in   and      is a Cauchy sequence in   . And since 

  and   are complete therefore          and         . 

Let         then      . 

Also             [  ( 
     )   ( 

     )]            

            [  ( 
     )   ( 

     )]            

Hence                 and the proof is complete. 

Theorem (Just Read):  Convergence       in the space C[a, b]  is  uniform 

convergence,  that  is,      converges  uniformly on  [a,  b]  to  x. Hence the 

metric  on  C[a, b]  describes  uniform  convergence  on [a,  b] and,  for  this  

reason,  is  sometimes called  the  uniform metric.  

Examples of Incomplete Metric Spaces  

 Space Q: This  is  the set of all  rational numbers with  the usual metric  

given  by         |   |,  where       ,  and  is  called  the rational  

line. Q is not complete. 

 Polynomials:  Let X  be the set of all polynomials considered as functions  

of  t  on  some  finite  closed  interval  J = [a, b]  and  define  a metric     on 

X  by               |         |. This metric space       is not 

complete.  In  fact,  an  example  of  a Cauchy sequence without limit in X  

is given by any sequence of polynomials which converges  uniformly on J  

to  a  continuous function,  not  a polynomial.  
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Nested Sequence 

A sequence sets             is called nested if            

Cantor‟s Intersection Theorem (Nested Interval Property) 

A metric space         is complete if and only if every nested sequence of non-

empty closed subset of X, whose diameter tends to zero, has a non-empty 

intersection.  

Proof  Suppose       is complete and let            be a nested 

sequence of closed subsets of X. 

Since    is non-empty we choose a point    from each   . And then we will prove 

                  is Cauchy in X. 

Let     be given, since               then there is      such that 

 (   
)   . Then for         we have            

This shows that       is Cauchy in X. Since X is complete so        (Say) 

We prove        . For this contrarily suppose that         then there exists 

    such that      . 

Since    is closed therefore            . 

Consider the open ball  (  
 

 
) then    and  (  

 

 
) are disjoint. 

Now                    all belong to    then all these points do not belong to 

 (  
 

 
). This is a contradiction as   is the limit point of     .  

Hence          

Conversely, assume that every nested sequence of closed subset of X has a non-

empty intersection. Let        be Cauchy in X, where                      . 

Then consider the sets 

                                                         

Then we have            
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We prove               

Since      is a Cauchy Sequence then for any     there is      such that for 

all        we have           . i.e.               

Now     
̅̅̅̅         then                        

̅̅̅̅     

Also   
̅̅ ̅    

̅̅ ̅    
̅̅ ̅   then by hypothesis     

̅̅̅̅   . And let        
̅̅̅̅  

We are to prove       . 

Since           
̅̅̅̅     therefore       such that  (   

̅̅ ̅̅̅)    

Then for      we have         
̅̅̅̅    Implies            for all     . 

This proves that        and we are done. 

  Neighborhood of   :  

An  open  ball           of  radius       is  often  called  an    Neighborhood 

of   . 

Neighbourhood of a Point  

Let       be a metric space and        and a subset      is called a 

neighbourhood of    if there exists an open ball         with centre    such that 

          

Or   By a neighborhood of     we mean any subset of X which contains an 

  neighborhood of   · 

Shortly “neighbourhood” is written as “nhood”.  

Interior Point  

Let       be a metric space and    , a point      is called an interior point 

of A if there is an open ball         with centre    such that            

Or We call    an interior point of a set     if A  is a neighborhood of   .  

The set of all interior points of A is called interior of A and is denoted by        or 

  . It is the largest open set contain in A. i.e.      . 
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Continuity  

Let         and       ̃  be metric spaces.  A mapping (function)           

is  said  to  be  continuous at a  point       if  for  every       there  is  a  

     such  that  ̃            for all x  satisfying           .  

T  is  said  to  be  continuous  if  it  is  continuous  at every point of X.  

 

Alternative:  

         is continuous at      if for any      , there is a      such that   

                          or   (       )           

………………………………………………………………… 

Remark 

In calculus we usually write           A corresponding notation for the image of 

„x‟ under  T  would  be         However,  to  simplify  formulas  in  functional  

analysis,  it  is customary to omit the parentheses and write   .  
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Theorem (Continuous mapping)  

A mapping    of a metric space X  into  a  metric  space  Y  is  continuous  if and  

only  if the  inverse image  of any open  subset of Y  is  an open subset of X. 

Or A mapping         is continuous at      if and only if        is open 

in X. Where   is open in Y. 

Proof 

Suppose that   is continuous. Let   be an open subset of  , we have to show that 

       is open in X. 

Let          then      and since   is open therefore there exists     such 

that          . Also since   is continuous there exists     such that 

 (      )           . Then              . 

So that        is open. 

Conversely,  assume  that  the  inverse  image  of  every open  set  in  Y  is  an  

open  set  in  X. i.e.        is open where   is open subset of Y. We have to show 

that   is continuous. For this let     and let     then      and let         

be an open ball in Y, then by hypothesis    (       ) is open in X. 

Since     then there exists     such that           (       ) 

Implies   (      )          

Hence   is continuous at    . Since     is an arbitrary number therefore   is 

continuous at every point of  . 

 

    

 

 

 



79 
 

For video lectures @ You tube visit “Learning with Usman Hamid” 

 

Continuous mapping Theorem 

A  mapping        of a metric  space  (X, d)  into  a  metric  space  (Y,  ̅)  is  

continuous  at a  point       if and only  if       implies         

Proof  Suppose that T is continuous at     . Then for all     , there is a 

     such that             ̅              ……………(1) 

Suppose that       then there exists      such that                    

By (1)  ̅                      

Implies         

Conversely Suppose that       implies         

To prove T is continuous at    suppose on contrary T is not continuous at    then 

for all     , there is a      such that             ̅              

In particular   
 

 
 there is an    such that              ̅              

               as     a contradiction. 

Hence T is continuous at      

Isometry/Isometric mapping, Isometric Spaces  

 Let          and           be metric spaces. Then:  

(a) A  mapping  T  of  X  into  Y  is  said  to  be  isometric  or  an isometry  if  

T  preserves  distances,  that  is,  if for  all       ,  we have 

                   , where  Tx  and  Ty  are  the  images  of  x  and  y,  

respectively.  

(b)   The space X is said to be isometric with the space Y if there exists a 

bijective isometry of X onto Y. The spaces X and Y are then called isometric 

spaces.   

Hence isometric spaces may differ at most by the nature of their points but are 

indistinguishable from the viewpoint of metric.  And  in any  study  in which  the 

nature  of  the  points does  not matter, we may regard  the  two  spaces  as  

identical as  two  copies  of  the  same  "abstract"  space.  
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Theorem (Completion) 

For a metric space           there exists a complete metric space  ̂    ̂  ̂  

which has a subspace W that is isometric with X and is dense in  ̂.  This space  ̂ is 

unique except for isometries, that is, if  ̃ is any complete metric space having a 

dense subspace  ̃  isometric with X, then  ̃ and  ̂ are isometric.  

Proof   

The proof is somewhat lengthy, but straightforward.  We subdivide it into four 

steps (a) to (d). We construct:  

a)  ̂  ( ̂  ̂) 

b) An isometry T of X onto W,  where   ̅    

c) Completeness  of  ̂ 

d) Uniqueness of  ̂,  except  for  isometries.  

Construction of   ̂  ( ̂  ̂) 

Let        and        be Cauchy sequences in X. Define        to be equivalent to 

     , written           ,  if                    

Let   ̂  be the set of all equivalence classes  ̂  ̂   of Cauchy sequences thus 

obtained.  We  write       ̂  to  mean  that      is  a member of  ̂ (a 

representative  of  the  class   ̂).  

We now set  ̂  ̂  ̂                 where        ̂  and        ̂.  We 

show that this limit exists. We have  

                                     

                                      

And a similar inequality with „m‟ and „n‟ interchanged. Together,  

  [                 ]                     

Hence  |                 |                     
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Since      and       are Cauchy, we can make the right side as small as we please.  

This implies that the limit  ̂  ̂  ̂                  exists because     is 

complete.  

We  must  also  show  that  the  limit   ̂  ̂  ̂                 is  independent  

of  the particular  choice  of  representatives.  In fact, if             and 

          ,  then by                  , we have 

|                   |                   
     as     ,   

Which implies the assertion                                  

We prove that  ̂ in  ̂  ̂  ̂                 is a metric on  ̂.  Obviously,  ̂ 

satisfies  ̂  ̂  ̂     as well as   ̂  ̂  ̂    and  ̂  ̂  ̂   ̂  ̂  ̂   

Furthermore,    ̂  ̂  ̂               ̂   ̂ 

Gives   ̂  ̂  ̂    if and only if  ̂   ̂ , and   ̂  ̂  ̂   ̂  ̂  ̂   ̂  ̂  ̂  for  ̂ 

follows  from                             by  letting     .  

An isometry T of X onto W, where   ̅̅̅    

Define a mapping          ̂ by     ̂ 

We see that T is an isometry since  ̂  ̂  ̂                 becomes simply 

 ̂( ̂  ̂)        .  Here  ̂  is the class of        where      for all „n‟.   

Any isometry is injective, and          is surjective since       .  Hence 

W and X are isometric.  

We show that W is dense in  ̂.  We consider any  ̂   ̂. Let       ̂. For every 

     there is an    such that     (      
)  

 

 
        . 

Let (   
    

  )   ̂  
 then  ̂  

   then  

 ̂( ̂  ̂  
)                

  
 

 
    

This shows that every   - neighborhood of the arbitrary  ̂   ̂ contains an element 

of W. Hence W is dense in  ̂.  
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Completeness of  ̂ 

Let   ̂   be any Cauchy sequence in  ̂. Since W is dense in  ̂, for every  ̂   there 

is a  ̂     such that  ̂  ̂   ̂   
 

 
 

Hence by the triangle inequality,   

 ̂  ̂   ̂    ̂  ̂   ̂    ̂  ̂   ̂    ̂  ̂   ̂   
 

 
  ̂  ̂   ̂   

 

 
  

and  this  is  less  than  any  given       for  sufficiently  large  m  and  n because  

  ̂    is  Cauchy. Hence    ̂    is Cauchy.  Since         is isometric and 

 ̂   ,  the sequence     , where        ̂ ,  is Cauchy in X.   

Let   ̂   ̂ be the class to which      belongs. We show that „ ̂‟ is the limit of ( ̂). 

Now using triangular inequality  

 ̂  ̂   ̂   ̂  ̂   ̂    ̂  ̂   ̂  
 

 
  ̂  ̂   ̂    …………(1) 

Since       ̂  (see right before) and  ̂   ,  so  that            ̂  the  

inequality (1) becomes  

 ̂  ̂   ̂  
 

 
    

   
          

and  the  right  side  is  smaller  than any given    > 0  for  sufficiently  large „n‟. 

Hence the arbitrary Cauchy sequence   ̂    in  ̂ has the limit  ̂   ̂, and  ̂  is 

complete.  

Uniqueness of  ̂  except for isometries 

If  ( ̃  ̃)  is another complete metric space with a subspace  ̃ dense in  ̃ and 

isometric with X,  then for  any   ̃  ̃   ̃ we have sequences ( ̃ ),  ( ̃ )  in  ̃ such  

that   ̃   ̃  and   ̃   ̃;  hence    ̃  ̃  ̃         ̃  ̃   ̃    

Follows from  | ̃  ̃  ̃   ̃  ̃   ̃  |   ̃  ̃  ̃    ̃  ̃   ̃    as     ,   

Since  ̃  is isometric with    ̂ and  ̅   ̂, the distances on  ̃ and  ̂ must be 

the same. Hence  ̃ and  ̂ are isometric.  

Available at MathCity.org
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Rare (or nowhere dense in X)  

Let X be a metric, a subset       is called rare (or nowhere dense in X) if  ̅ has 

no interior point i.e.      ̅    .  

Meager (or of the first category)  

Let X be a metric, a subset      is called meager (or of the first category) if M 

can be expressed as a union of countably many rare subset of X.  

Non-meager (or of the second category)  

Let X be a metric, a subset     is called non-meager (or of the second category) 

if it is not meager (of the first category) in X.  

Or Let X be a metric, a subset      is called non-meager (or of the second 

category) if M cannot be expressed as a union of countably many rare subset of X.  

Example 

Consider the set   of rationales as a subset of a real line  . Let    , then 

       ̅̅ ̅̅   because                      is open. Clearly     contain no 

open ball. Hence   is nowhere dense in   as well as in  . Also since   is 

countable, it is the countable union of subsets         .  

Thus   is of the first category. 
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Bair‟s Category Theorem 

If       is complete then it is non-meager in itself. 

Or  A complete metric space is of second category. 

Proof  Suppose that X is meager in itself then     
   , where each    is 

rare in X. Since    is rare then       
̅̅ ̅̅      i.e.   

̅̅ ̅̅  has no non-empty open 

subset but X has a non-empty open subset (i.e. X itself) then    
̅̅ ̅̅    

This implies   
̅̅ ̅̅  

     
̅̅ ̅̅  is a non-empty and open.  

We choose a point       
̅̅ ̅̅  

 and an open ball               
̅̅ ̅̅  

 where    
 

 
 

Now   
̅̅ ̅̅  

 is non-empty and open then there exists a point      
̅̅ ̅̅  

 and open ball 

              
̅̅ ̅̅  

  (   
  

 
) 

(  
̅̅ ̅̅  has no non-empty open subset then   

̅̅ ̅̅  
  (   

  

 
) is non-empty and open.) 

So we have chosen a point    from the set    
̅̅ ̅̅  

  (   
  

 
) and an open ball 

         around it, where     
  

 
 

 

 
 
 

 
 

 

 
 then    

 

 
. 

Proceeding in this way we obtain a sequence of balls    such that   

      (   
  

 
)     where             then the sequence of centers    is 

such that for      then              
  

 
 

 

    
    as     

Hence the sequence      is Cauchy. Since X is complete therefore          

Also                              

        
  

 
                              as       

             i.e.      
̅̅ ̅̅  

     since        
̅̅ ̅̅  

  (     
    

 
) 

       
̅̅ ̅̅  

               
̅̅ ̅̅                

̅̅ ̅̅                               

This is a contradiction. And hence the theorem. 
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NORMED SPACES, BANACH SPACES 

Particularly useful and important metric spaces are obtained if we  take a  vector 

space  and  define  on  it  a  metric  by means  of  a  norm.  The resulting space is 

called a normed space.  If it  is  a  complete  metric space,  it  is  called  a  Banach  

space.  The  theory  of  normed  spaces,  in particular Banach spaces, and the 

theory of linear operators defined on them  are  the most  highly developed  parts 

of  functional  analysis.  The present chapter is devoted to the basic ideas of those 

theories.  

Remark  

 A normed space is a vector space with a metric defined by a norm; the latter 

generalizes the length of a vector in the plane or in three-dimensional space.   

 A  Banach space is  a  normed  space  which  is  a  complete  metric  space.  

A normed space has a completion which is a Banach space. In a normed 

space we can also define and use infinite series. 

 A  mapping  from  a  normed  space  X  into  a  normed  space  Y  is called  

an  operator.   

 A mapping  from  X  into  the  scalar  field  R  or C  is called  a  functional.  

Of particular  importance  are  so-called  bounded linear  operators and  

bounded  linear  functionals  since  they  are  continuous  and  take  

advantage  of  the  vector space structure.   

 It  is basic that the set of all bounded linear operators from a given normed  

space  X  into  a  given  normed  space  Y  can  be made  into  a normed 

space, which is denoted by B(X, Y). Similarly, the set of  all  bounded  

linear  functionals  on X  becomes  a  normed  space, which  is  called  the  

dual  space X' of X. 

 In analysis, infinite dimensional normed spaces are more important than 

finite dimensional ones. The latter are simpler and operators on them can be 

represented by matrices. 

 We  denote  spaces  by  X  and  Y,  operators  by  capital  letters (preferably  

T),  the  image  of  an  x  under  T  by  Tx  (without  parentheses), 

functionals by lowercase letters (preferably f)  and the value of f at  an  „x‟ 

by  f(x)  (with parentheses). This is a widely used practice.  
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We know that in many cases a vector space X may at the same time be a metric 

space because a metric   is defined on X.  However, if there is no relation between 

the algebraic structure  and  the  metric,  we  cannot  expect  a  useful  and  

applicable theory that combines algebraic and metric concepts. To guarantee such 

a  relation  between  "algebraic"  and  "geometric"  properties  of X  we define on 

X a metric    in  a special way  as  follows. We first introduce an  auxiliary  

concept,  the  norm  (definition  below),  which  uses  the algebraic  operations  of  

vector  space.  Then we  employ  the  norm  to obtain  a  metric  d  that  is  of  the  

desired  kind.  This idea leads to the concept of a normed space.  It turns out that 

normed spaces are special enough to provide a basis for a rich and interesting 

theory, but general enough to include many concrete models of practical 

importance.  In fact,  a  large  number  of metric  spaces  in  analysis  can  be  

regarded  as normed spaces, so  that a normed space is probably the most important 

kind  of  space  in  functional  analysis,  at  least  from  the  viewpoint  of present 

day applications. 

Normed Space 

A  normed space X is  a  vector  space  with  a  norm  defined  on  it,  (Also called 

a normed vector space or normed linear space. The definition was given 

(independently) by S. Banach (1922), H. Hahn (1922) and N. Wiener (1922). The 

theory developed rapidly, as can be seen from the treatise by S. Banach (1932) 

published only ten years later.) 

Let X be a vector space. A real valued function ‖ ‖     is called a norm on X 

if it satisfies the following axioms; 

i. ‖ ‖                

ii. ‖ ‖                   

iii. ‖  ‖  | |‖ ‖         and all scalars     or     

iv. ‖   ‖  ‖ ‖  ‖ ‖                (Triangle inequality);  

Here „x‟ and „y‟ are arbitrary vectors in X and   is any scalar.  

The pair    ‖ ‖  Is called normed space. 
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Banach Space  

A  Banach space is a complete normed space (complete in the metric defined by 

the norm). 

Metric Induced By the Norm  

A metric   on a norm X can be defines by using the norm ‖ ‖ on X as  

       ‖   ‖  

Then this metric is called the matric induced by the norm. It has the following 

properties; 

i.          ‖   ‖     

ii.        ‖   ‖              

iii.        ‖   ‖  ‖   ‖         

iv.        ‖   ‖  ‖       ‖  ‖   ‖  ‖   ‖ 

                       

Remember that every normed space is a metric space but the converse is not true 

in general. i.e. Metric space needs not to be normed space. 

Examples  

 Euclidean space    and unitary  space    :  These are Banach spaces 

with  norm defined  by  ‖ ‖  (∑ |  |
  

   )

 

 
 √|  |

  |  |
    |  |

  

in fact here norm induced the metric 

       ‖   ‖  √|     |
  |     |

    |     |
  

 Space   :  It  is a Banach space with  norm  given  by  ‖ ‖  (∑ |  |
  

   )
 

  

In fact, this norm induces the metric         ‖   ‖  (∑ |     |
  

   )
 

  

 Space    :   This is a Banach space  obtained  from  the norm defined  by  

‖ ‖      |  | 

 Space C[a, b]:   This is a Banach space with  norm  given  by  

‖ ‖        |    |  where    [   ].   
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Sequence Space „s‟ is a metric space but not a normed space   

This space consists of the set of all (bounded or unbounded) sequences of complex 

numbers i.e.                                 and the metric   defined by  

       ∑
 

  
 
   

|     |

  |     |
  Where         and             

Solution Define a metric         ∑
 

  
 
   

|     |

  |     |
 

We have already shown that it is a metric space. We just show that it is normed 

space or not. For this suppose that   is induced by norm ‖ ‖ on s. Then 

       ‖   ‖         ‖ ‖    ‖ ‖     

 ‖ ‖         ∑
 

  
 
   

|  |

  |  |
  

 ‖  ‖  ∑
 

  
 
   

|   |

  |   |
 ∑

 

  
 
   

| ||  |

  | ||  |
 | |‖ ‖  ‖  ‖  | |‖ ‖  

Hence s cannot be a normed space. 

Euclidean space    and unitary space   :  These are Banach spaces with  norm 

defined  by  ‖ ‖  (∑ |  |
  

   )

 

 
 √|  |

  |  |
    |  |

  in fact here norm 

induced the metric 

       ‖   ‖  √|     |
  |     |

    |     |
  

Proof   

We have already shown that these are complete metric spaces. We just show that 

these are normed spaces. Let ‖ ‖ be a norm on    defined by 

‖ ‖  (∑ |  |
  

   )

 

 
  where                    then 

i. ‖ ‖                 since (∑ |  |
  

   )
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ii. ‖ ‖  (∑ |  |
  

   )

 

 
   |  |                              

iii. ‖  ‖  (∑ |   |
  

   )

 

 
 √  (∑ |  |

  
   )

 

 
 | |‖ ‖          and all 

scalars     or     

iv. ‖   ‖  (∑ |     |
  

   )

 

 
 (∑ |  |

  
   )

 

 
 (∑ |  |

  
   )

 

 
   

‖   ‖  ‖ ‖  ‖ ‖                (Triangle inequality)  

Here „x‟ and „y‟ are arbitrary vectors in    and   is any scalar. The pair     ‖ ‖  

Is normed space. And hence      ‖ ‖  Is Banach (complete metric + normed) 

space. 

Remark  

By similar argument we can show that     ‖ ‖  Is Banach (complete metric + 

normed) space. 

Space   :  The  space      with      is a Banach space with  norm  given  by  

‖ ‖  (∑ |  |
  

   )
 

  

Solution   Let      be a Cauchy Sequence in    where      ,  
   

-
 

 
 then for 

any     there exists      such that   

‖     ‖  √∑ |  
   

   
   

|
 

 
 

 

            

 |  
   

   
   

|               
   

  is a Cacuchy sequence in R and since R 

is complete Therefore   
   

      then  |  
   

   |    for each j 

Next suppose that   {  } then ‖    ‖  (∑ |  
   

   |
 

 
 )

 

 
    Since 

|  
   

   |    for each j        

Now                then        . This shows that      converges in 

  . Hence    is a Hilbert space. 
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Space C[a, b]:   This is a Banach space with  norm  given  by 

‖ ‖        |    |  where    [   ] 

Proof   

We have already shown that it is complete metric space. We just show that this is 

normed spaces. Let ‖ ‖ be a norm on C[a, b] defined by ‖ ‖        |    | then 

i. ‖ ‖       since       |    |    

ii. ‖ ‖        |    |    |    |        

iii. ‖  ‖        |     |  | |      |    |  | |‖ ‖  

iv. ‖   ‖        |         |        |    |        |    |   

‖   ‖  ‖ ‖  ‖ ‖     (Triangle inequality)  

Hence    [   ]  ‖ ‖  Is Banach (complete metric + normed) space. 

Space C[a, b]:    

This is not a Banach space with norm given by ‖ ‖  ∫ |    |
 

 
    

Proof   

We have already shown that it is not complete metric space. We just show that this 

is normed spaces. Let ‖ ‖ be a norm on C[a, b] defined by ‖ ‖  ∫ |    |
 

 
   then 

i. ‖ ‖       since ∫ |    |
 

 
     

ii. ‖ ‖  ∫ |    |
 

 
            |    |        

iii. ‖  ‖  ∫ |     |
 

 
   | | ∫ |    |

 

 
   | |‖ ‖  

iv. ‖   ‖  ∫ |         |
 

 
   ∫ |    |

 

 
   ∫ |    |

 

 
     

‖   ‖  ‖ ‖  ‖ ‖     (Triangle inequality)  

Hence    [   ]  ‖ ‖  Is not a Banach (metric + normed) space. 

Remark: Since R is a Banach space and Q is subspace of R such that Q is not 

closed, so Q is not a Banach space. 
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Can every metric on a vector space be obtained from a norm? The answer is no.  A 

counterexample is the space s. In fact, s is a vector space, but its metric   defined 

by         ∑
 

  
 
   

|     |

  |     |
 cannot be obtained from a norm. This may 

immediately be seen from the following lemma which states two basic properties 

of a metric    obtained from a norm. The first property, as expressed by (i), is 

called the translation invariance of  .  

Lemma (Translation invariance)   

A metric    induced by a norm on a normed space X satisfies.  

i.                     

ii.           | |         

For all           and every scalar  .  

Proof   We have  

           ‖         ‖  ‖   ‖           

            ‖      ‖    | |‖    ‖   | |         

 Unit sphere  The sphere              ‖ ‖     in a normed 

space X is called the unit sphere. 

 Bounded set A subset M in a normed space X  is bounded if and only  

if there  is  a  positive  number  c  such  that  ‖ ‖   for  every    . 

 Closed subspace  a subspace Y of a normed space X is a subspace of X 

considered as a vector space, with the norm obtained by restricting the norm 

on X to the subset Y. This norm on Y is said to be induced by the norm on 

X.  If Y is closed in X, then Y is called a closed subspace of X.  

 Subspace of a Banach space  a subspace Y of a Banach space X is a 

subspace of X considered as a normed space. 

 Theorem (Subspace of a Banach space) A  subspace  Y  of a  Banach  

space X  is  complete  if and only  if the  set  Y  is  closed  in X.  

 

 



106 
 

For video lectures @ You tube visit “Learning with Usman Hamid” 

 

Theorem (Subspace of a Banach space)  

A  subspace  Y  of a  Banach  space X  is  complete  if and only  if the  set  Y  is  

closed  in X.  

Proof  

Suppose that Y is complete then we have to show that Y is closed. i.e.    ̅   

Obviously     ̅    ………….(1) 

Let     ̅ then there exists a sequence      
  in Y such that     , then      

  

being a convergent sequence is a Cauchy Sequence in Y. And since Y is complete 

therefore       . i.e.      then   ̅       ………….(2) 

From (1) and (2) we have     ̅    Hence Y is closed. 

Conversely suppose that Y is closed. i.e.    ̅ then we are to show that Y is 

complete. For this let      
  be an arbitrary Cauchy Sequence in Y then      

  will 

be a Cauchy Sequence in X. And as X is complete then        (X is Banach) 

Then    ̅ (   is limit point of Y i.e.     )      Then        ̅    

So that       . Hence Y is complete. 

Useful Definitions 

 A  sequence       in  a  normed  space     ‖ ‖   is  convergent  if X 

contains  an  x  such  that       ‖    ‖    

Then we write        and call „x‟ the limit of     . 

 A  sequence       in a  normed space X  is  Cauchy  if for  every   > 0  

there  is  an     such  that ‖     ‖    for all m, n >     

 If       is  a  sequence  in  a  normed  space  X,  then ∑   
 
  is a series in X. 

we  can associate with        the  sequence      of  partial  sums  

              where              If        is convergent, say,  

           then we say that the series ∑   
 
  is convergent and we write 

∑   
 
    and if ∑ ‖  ‖

 
  converses then the series ∑   

 
  is said to be 

absolutely convergent.  However, we warn  the  reader  that  in  a  normed  

space X, absolute convergence  implies convergence if and only if X  is  

complete.  
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Note 

 In case of   and   we have absolute convergence implies convergence. i.e. 

∑ |  |
 
    ∑   

 
    

 But in normed space in general we have absolute convergence does not 

implies convergence. i.e. ∑ ‖  ‖
 
    ∑   

 
    

Example 

Consider    ,  (  ) 
 
                          |  |   - with 

‖ ‖      |  | and the induced metric on    is given by  

       ‖   ‖      |     | and we clearly know that     ‖ ‖  Is Banach 

Space. Let Y be the set of all sequences with only finitely many non – zero terms. 

i.e.   ,  (  ) 
 
            - then      as     |  |   .              

     
  (  

 

 
 
 

 
   

 

 
      ) lies in Y but 

           
  (  

 

 
 
 

 
   

 

 
 

 

   
 

 

   
  )    then Y is not closed and 

therefore is not complete. Now we will show that absolute convergence does not 

implies convergence. 

Define      
  (  

   
)
 

 
 where   

   
 {

 

  
        

           
  then 

     
   

 (
 

  
      )  

     
   

 (  
 

  
      )  

       

     
   

 (      
 

  
      )  

 ‖  ‖  
 

  
   ‖  ‖  

 

  
        ‖  ‖  

 

  
   

 ∑ ‖  ‖
 
  

 

  
 

 

  
   ∑
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 ∑ ‖  ‖
 
     i.e. sequence is absolutely convergent.  

(∑
 

  
 
  converges if    ) 

But  ∑   
 
  (

 

  
 
 

  
  

 

  
 

 

      
 

 

      
  )        ∑   

 
  is not 

convergent. Hence in a normed space absolute convergence does not implies 

convergence. 

Remember 

 A subspace of a vector space X is a nonempty subset Y of X such that for all 

         and all scalars      we have          .  Hence Y  is  itself  

a  vector  space,  the  two  algebraic  operations  being  those induced  from 

X.  A  special  subspace  of  X  is  the  improper  subspace  Y =  X.  Every 

other subspace of X {    }  is called proper.  

 Another special subspace of any vector space X is      . 

 A linear combination of vectors             of a vector space X is an 

expression of the form                  where the coefficients 

            are any scalars. 

 For any nonempty subset     the set of all linear combinations of vectors 

of M is called the span of M, written spanM.  

Obviously, this is a subspace Yof X, and we say that Y is spanned or 

generated by M. 

 Linear  independence,  linear  dependence:   Linear independence  

and  dependence of  a  given  set M  of vectors                    in  a 

vector space X  are defined by means of  the equation   

                    

where              are  scalars.  Clearly, equation  (above)  holds  for  

            .  If this is the only          of scalars for which 

equation holds, the set M is said to be linearly independent. M  is  said  to be  

linearly dependent if M  is not linearly independent, that is,  if equation also 

holds  for  some          of scalars, not all zero.  

 An  arbitrary  subset M  of X  is  said  to  be  linearly  independent  if every 

nonempty finite subset of M  is linearly independent. M is said to the 

linearly dependent if M is not linearly independent.  



109 
 

For video lectures @ You tube visit “Learning with Usman Hamid” 

 

Schauder basis (or basis)   

If a  normed space    ‖ ‖   contains a  sequence  (  )  with the property that for  

every      there is  a  unique sequence of scalars (  )  such  that   

‖                    ‖     as     

Then  (  )  is  called  a  Schauder basis  (or  basis)  for X.   

The series ∑     
 
  which  has  the  sum  X  is  then called  the  expansion  of  x  

with  respect  to (  ),  and we write    ∑     
 
  

Theorem 

Show that if a normed space    ‖ ‖  has a Schauder basis, it is separable.  

Proof 

Case – I:  Suppose that    ‖ ‖  Is a real normed space. Let      
  be a Schauder 

basis for X. Let   {                           }. 

Since    is countable therefore is countable  . 

Now suppose    , since       
  is a Schauder basis for X, therefore there exists a 

sequence of scalars (real numbers)      
  such that  

‖                    ‖     as     

Then for all     there exists      such that   ‖  ∑     
 
 ‖               

   ∑     
 
    as     

If      then ∑     
 
     

               ̅  

If      then we can approximate    by rationals so that we can find 

corresponding combination   
      

        
   , where   

    which will 

approximate  . i.e. ‖  ∑     
 
 ‖    
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Since   and   were arbitrary, so we conclude that every ball with center   and 

radius   contains an element of M implies      

           ̅  

So M is dense and Hence X is separable. 

Case – II:  Suppose that    ‖ ‖  Is a Complex normed space. Let      
  be a 

Schauder basis for X. Let                           where 

             then Since    is countable therefore is countable  . 

By similar argument as above we can show that  ̅    

So M is dense and Hence X is separable. 

Conversely, does every separable Banach space have a Schauder basis?   

This is a famous question raised by Banach himself about forty years ago. Almost 

all known separable Banach spaces had been shown to possess a Schauder basis.  

Nevertheless, the surprising answer to the question is no.  It was given only quite 

recently, by P. Enflo  (1973)  who  was  able  to  construct  a  separable  Banach  

space which  has  no  Schauder basis.  

Theorem (No need to Prove) 

Let      ‖ ‖   be a normed space. Then  there  is  a  Banach  space  ̂ and  an  

isometry  A  from  X  onto  a subspace W of  ̂ which is dense  in  ̂.  The space  ̂ 

is unique, except for isometries.  

Theorem (Banach‟s Criterion)  

A normed vector space X is complete if andonly if every absolutely convergent 

series in X is convergent. 
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Finite Dimensional Normed Spaces and Subspaces  

Are finite dimensional normed spaces simpler than infinite dimensional ones? In 

what respect?  These questions are rather natural.  They are important since finite 

dimensional spaces and subspaces play a role in various considerations (for 

instance, in approximation theory and spectral theory).  Quite a number of 

interesting things can be said in this connection. Hence  it  is worthwhile  to collect 

some  relevant facts, for  their  own  sake  and  as  tools  for  our  further  work.   

A  source  for  results  of  the  desired  type  is  the  following  lemma. Very 

roughly speaking it states that in the case of linear independence of  vectors  we  

cannot  find  a  linear  combination  that  involves  large scalars  but represents  a  

small vector.  

Lemma   

Let                    be  a  linearly independent  set  of vectors  in  a  normed  

space  X  (of any  dimension). Then  there  is  a  number    > 0  such  that  for  

every  choice  of  scalars                we  have  

‖                   ‖    |  |  |  |    |  |    (c > 0).  ……(1) 

Proof 

We write   |  |  |  |    |  |.  If     ,  all      are  zero,  so  that  

‖                   ‖    |  |  |  |    |  |  holds for any c.  

Let    .  Then (1) is equivalent  to  the inequality  which  we  obtain  from  (1) 

by  dividing  by  s  and  writing    
  

 
 ,  that  is,  

‖                   ‖     ………………. (2)   ; ∑ |  |
 
    

Hence  it suffices  to prove  the existence of  a  c > 0  such  that  (2)  holds for  

every n-tuple of scalars               with ∑|  |   .  

Suppose that this is false. Then there exists a sequence        of vectors  

     
   

     
   

          
   

    such that ‖  ‖    as     
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Now we reason as follows.  

Since ∑ |  
   

| 
   , we have |  

   
|   . Hence for each fixed „j‟ the sequence  

(  
   

)  (  
   

   
   

        
   

) is bounded. Consequently, by the Bolzano-

Weierstrass theorem, (  
   

) has a convergent subsequence.  Let    denote the 

limit of that subsequence, and let (    ) denote the corresponding subsequence of 

(  ). By the  same  argument,  (    )  has  a  subsequence  (    )  for  which  the 

corresponding subsequence of scalars (  
   

) converges; let    denote the limit.  

Continuing in this way, after n steps we obtain a subsequence  

                        of (  ) whose  terms are of the form       ∑   
   

  
 
  

and ∑ |  
   

| 
    with  scalars    

   
 satisfying    

   
     as     .  Hence, 

as      we have         ∑     
 
  

where  ∑ |  |
 
   ,  so  that not  all    can be zero.  Since                    is a 

linearly independent set, we thus have     .  

  On the other hand,         implies ‖    ‖  ‖ ‖,  by the continuity of 

the norm. Since ‖  ‖    by assumption and (    ) is a subsequence of (  ), we 

must have ‖    ‖   . Hence ‖ ‖   , so  that       by norm property.  

This contradicts    ,  and  the  lemma  is  proved.   
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Theorem  

Every finite dimensional subspace Y of a normed space      ‖ ‖  is complete.  

In particular, every finite dimensional normed space is complete.  

Proof  

Let    ‖ ‖   Be a norm space and Y is subspace of    ‖ ‖  with          and 

let                  be a basis for Y. 

Let      be a Cauchy sequence in Y then for all     there exists      such 

that  ‖     ‖                  

Since           therefore      
   

     
   

          
   

   

Now using ‖     ‖                  we have 

‖(  
   

   
   

)    (  
   

   
   

)        (  
   

   
   

)   ‖                 

Now using the result ‖                   ‖    |  |  |  |    |  |  

we have   |  |  |  |    |  |  ‖                   ‖ and hence 

 (∑ |  
   

   
   

| 
 )  ‖(  

   
   

   
)    (  

   
   

   
)        (  

   
 

  
   

)   ‖                 

 (∑ |  
   

   
   

| 
 )                 

∑ |  
   

   
   

| 
  

 

 
             and for all i 

Hence for each i;  (  
   

) is a Cauchy sequence in   or   and since   or   are 

complete therefore   
   

       (may take  ) 

Implies since Y is linear combination of a basis of Y therefore 

     
   

     
   

          
   

                            

Now we check whether this convergence is under the norm or not. 
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For this we consider 

‖    ‖  ‖∑ (  
   

   )   
 
 ‖  ∑ |  

   
   |

 
 ‖  ‖    

‖    ‖   ∑ |  
   

   |
 
     Where       ‖  ‖          

‖    ‖   ∑ |  
   

   |
 
    as        (  

   
    as     ) 

Implies      under ‖ ‖. And hence    ‖ ‖  Is complete. 

We have already prove that “A subspace Y of a Banach Space    ‖ ‖  Is complete 

if and only if it is closed” 

From this result and previous result it is follows that 

Theorem Every finite dimensional subspace Y of a normal space X is closed in X.  

We  shall  need  this  theorem  at  several  occasions  in  our  further work.  

Note that infinite dimensional subspaces need not be closed.  (Above Theorem not 

Applicable) 

Example:   Let     [   ]  be a normed space and                   , where  

        ,  so  that  Y  is  the  set of all  polynomials.  Y is not closed in X. 

Example:    Let    [   ] be a normed space with 

‖ ‖       [   ]|    |. We know that   [   ] ‖ ‖  Is complete (i.e. a Banach 

Space) and                    , so  that  Y  is  the  set of all  polynomials.  

Then     [   ]   (Since every polynomial is continuous function) 

Obviously Y is infinite dimensional space. 

Let      be a sequence in Y defined by        
  

  
   

  

  
 

Then                (    
  

  
   

  

  
)       

Implies Y is not closed. Hence Y is not complete. 
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Another interesting property of a finite dimensional vector space X is that all 

norms on X lead to the same topology for X, that is, the open subsets of X are the 

same, regardless of the particular choice of a norm on X. The details are as 

follows.  

Equivalent norms 

 A norm  ‖ ‖   on a vector space X  is  said  to  be  equivalent  to  a  norm  ‖ ‖  on 

X  if  there  are  positive numbers   and   such  that  for  all       we have  

 ‖ ‖  ‖ ‖   ‖ ‖   

This concept is motivated by the fact that Equivalent norms on X define the same 

topology for X.  

Example Let      with norm ‖ ‖  |  |  |  |                 and 

‖ ‖   ∑ |  |
  

      √|  |
  |  |

  then show that ‖ ‖  and ‖ ‖  are 

equivalent norms. 

Solution 

‖ ‖  |  |  |  |  ∑ |  |
 
  ∑    |  |

 
   ∑      

      ∑ |  |
  

       

‖ ‖  √ ‖ ‖   

 

√ 
‖ ‖  ‖ ‖   …………….(1) 

Now  ‖ ‖   ∑ |  |
  

      √|  |
  |  |

  |  |  |  |  ‖ ‖  

‖ ‖     ‖ ‖   …………….(2) 

From (1) and (2)  
 

√ 
‖ ‖  ‖ ‖     ‖ ‖  

Implies ‖ ‖  and ‖ ‖  are equivalent norms. 
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Theorem 

The relation of „being equivalent to‟ among the norms that can be defined on a 

linear space   is an equivalence relation. 

Proof 

Reflexive: For any norm ‖ ‖ on   and for     

 ‖ ‖  ‖ ‖   ‖ ‖  

Is satisfied for      . Hence ‖ ‖  ‖ ‖ 

Symmetric: If ‖ ‖  ‖ ‖  then there are positive numbers   and   such that for 

all       we have     ‖ ‖  ‖ ‖   ‖ ‖   

 
 

 
‖ ‖  ‖ ‖  

 

 
‖ ‖   

Hence ‖ ‖  ‖ ‖  

Transitive: If ‖ ‖  ‖ ‖  and ‖ ‖  ‖ ‖  then there are positive numbers 

       and    such that for all       we have     

 ‖ ‖  ‖ ‖   ‖ ‖   and    ‖ ‖  ‖ ‖    ‖ ‖  

   ‖ ‖  ‖ ‖  
 

 
‖ ‖  

 

 
‖ ‖  

 

 
   ‖ ‖   

   ‖ ‖  
 

 
‖ ‖  

 

 
   ‖ ‖     ‖ ‖  ‖ ‖     ‖ ‖   

Since             therefore           

Hence ‖ ‖  ‖ ‖ . 

Consequently the relation of „being equivalent to‟ among the norms that can be 

defined on a linear space   is an equivalence relation. 
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Theorem (Every norm generate a topology) 

Any two equivalent norms on a linear space   define (induced) the same topology 

on  . 

Proof: Let ‖ ‖  ‖ ‖  then there are positive numbers   and   such that for 

all       we have     ‖ ‖  ‖ ‖   ‖ ‖  

We show that every basic open ball in    ‖ ‖   is open in    ‖ ‖   and 

conversely. 

For an     let        be an open ball in    ‖ ‖  , then we show that it is open 

ball in    ‖ ‖  . 

For this let          then ‖   ‖       

Consider          in    ‖ ‖   where    
    

 
 

 

Then for any            we have ‖   ‖     then 

‖   ‖  ‖       ‖  ‖   ‖  ‖   ‖   

‖   ‖   ‖   ‖           since ‖ ‖  ‖ ‖  and ‖   ‖       

‖   ‖          (
    

 
)       ‖   ‖     

Hence          implies                  . Hence        is open ball in 

   ‖ ‖  . Similarly we can conversely show that every basic open ball in 

   ‖ ‖   is open in    ‖ ‖  . Hence Any two equivalent norms on a linear space 

  define (induced) the same topology on  . 
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This theorem shows that equivalent norms preserve the Cauchy property of 

sequence. 

Theorem 

Let ‖ ‖  and ‖ ‖  be equivalent norms on a linear space  , then every Cauchy 

sequence in    ‖ ‖   is also Cauchy sequence in    ‖ ‖   and conversely. 

Proof: Let      Cauchy sequence in    ‖ ‖   then for given any     there 

exists      such that  

‖     ‖                

‖     ‖  
 

 
‖     ‖  

 

 
                  since ‖ ‖  ‖ ‖   

‖     ‖                 

Hence      Cauchy sequence in    ‖ ‖  . Converse is similar. 

Theorem 

Let ‖ ‖  and ‖ ‖  be equivalent norms on a linear space  , then every Convergent 

sequence in    ‖ ‖   is also Convergent sequence in    ‖ ‖   and conversely. 

Proof: Let      Convergent sequence in    ‖ ‖   then for given any     

there exists      such that  

‖    ‖              

‖    ‖  
 

 
‖    ‖  

 

 
                since ‖ ‖  ‖ ‖   

‖    ‖               

Hence      Convergent sequence in    ‖ ‖  . Converse is similar. 

Zeroth Norm  

The equation ‖ ‖      
 |  |             defines a norm on a normed space X 

and is said to be zeroth norm. 
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Theorem 

Suppose ‖ ‖  and ‖ ‖  are equivalent norms defined on X. Let N be a finite 

dimensional subspace of    ‖ ‖   then N is complete as subspace of     ‖ ‖  . In 

particular    ‖ ‖   is complete. 

Proof: Let ‖ ‖  ‖ ‖  then there are positive numbers   and   such that for 

all       we have     ‖ ‖  ‖ ‖   ‖ ‖  ……………..(1) 

Let N be a finite dimensional subspace of    ‖ ‖   and              be a basis 

for N. Then each     has a unique representation   ∑     
 
 . 

Suppose      be a Cauchy sequence in N then for all     there exists      

such that  ‖     ‖                  

 ‖∑   
   

   ∑   
   

  
 
 

 
 ‖

 
                

 ‖∑ (  
   

   
   

)   
 
 ‖

 
                

 ‖∑ (  
   

   
   

)   
 
 ‖

 
 

 

 
‖∑ (  

   
   

   
)   

 
 ‖

 
 

 

 
               

 ‖∑ (  
   

   
   

)   
 
 ‖

 
 

 

 
              

     
 ‖  

   
   

   
‖

 
 

 

 
              (  

   
) is a Cauchy sequence in F. 

since F being Real (Compex) is complete therefore for any            

|  
   

   |     as    . Then for   ∑     
 
    we have 

‖    ‖  ‖∑ (  
   

   )   
 
 ‖

 
 ∑ |  

   
   |

 
 ‖  ‖   

‖    ‖   ∑ |  
   

   |
 
    where       

 ‖  ‖  

 ‖    ‖     as     

Thus      converges to     in N. Hence N is complete as subspace of     ‖ ‖  . 

In particular    ‖ ‖   is complete. 
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Theorem (Any two norms on a finite dimensional linear space are equivalent) 

On a finite dimensional vector space X, any norm ‖ ‖  is equivalent to any other 

norm ‖ ‖  

Proof 

Let X be a finite dimensional normed space. And let          also 

             be a basis for X. Then each     has a unique representation 

                   then 

‖ ‖   ‖                ‖    ∑ |  |
 
    

 ‖ ‖    ∑ |  |
 
    ∑ |  |

 
   

 

 
‖ ‖   ………….(1) 

   ∑ |  |
 
   

 

 
‖ ‖   ………….(2) 

Now  ‖ ‖  ‖                ‖  

 ‖ ‖  |  |‖  ‖  |  |‖  ‖    |  |‖  ‖  

 ‖ ‖    ∑ |  |
 
     where      ‖  ‖           

 ‖ ‖   
 

 
‖ ‖   using (1) 

  ‖ ‖  ‖ ‖      ………….(3)         with   
 

 
 

Similarly if       ‖  ‖          then ‖ ‖     ∑ |  |
 
     ………….(4) 

And   ∑ |  |
 
   

 

  
‖ ‖  and with respect to this we get 

    ∑ |  |
 
   

  

  
‖ ‖    where       ‖  ‖          

    ∑ |  |
 
    ‖ ‖       ………….(5)         with   

  

  
 

Hence  ‖ ‖     ∑ |  |
 
    ‖ ‖    ………….(6)  using (4) and (5) 

  ‖ ‖  ‖ ‖   ‖ ‖    using (3) and (6) 

Hence  ‖ ‖ and ‖ ‖  are equivalent norms. 
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Compactness 

A  metric  space  X  is  said  to  be compact (or more precisely sequentially 

compact) if  every  sequence  in  X  has  a  convergent  subsequence.  A subset M  

of X  is  said  to  be  compact  if M  is  compact considered  as  a subspace  of  X,  

that  is,  if every  sequence  in  M  has  a  convergent subsequence whose  limit  is  

an element of M.  

Remark  

There are three ways of defining the concept of compactness in a general 

Topological Space. 

i. Every open cover has a finite subcover. 

ii. Every countable cover has a finite subcover. 

iii. Every sequence has a convergent subsequence. 

Lemma  

A compact subset M of a metric       space is closed and bounded.  

Proof   

Suppose that M is compact. We are to show that M is closed. i.e.    ̅ 

Obviously     ̅ 

Now let    ̅ then there exists a sequence      in M such that      

Since M is compact,      has a convergent subsequence which converges to  , so 

    (By definition of convergence) and we have  ̅    

So    ̅ (i.e. M is closed) 

Now we are to show that M is bounded. For this suppose M is compact but 

contrarily not bounded. Then there is an unbounded sequence      in M then 

           where   is fixed element of M. Then      cannot have convergent 

subsequence, which is a contradiction to the fact that M is compact. Our 

supposition was wrong and hence M is bounded. 
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Remark: The converse of this lemma is in general false.  

Proof      Let       then         . If   (  ) 
 

    then ‖ ‖      |  |. 

Let                                 then ‖  ‖  ‖  ‖   . So M is 

bounded. Since M is a point set, as no limit point is there, so we can suppose that 

all limit points lies in M, so M is closed. But M is not compact because the 

subsequence     5       5   not converges to limit point. 

Theorem 

In a finite dimensional normed space X, any subset      is compact 

(sequentially compact) if and only if M is closed and bounded.  

Proof   

Suppose that M is compact. We are to show that M is closed. i.e.    ̅ 

Obviously     ̅ 

Now let    ̅ then there exists a sequence      in M such that      

Since M is compact,      has a convergent subsequence which converges to  , so 

    (By definition of convergence) and we have  ̅    

So    ̅ (i.e. M is closed) 

Now we are to show that M is bounded. For this suppose M is compact but 

contrarily not bounded. Then there is an unbounded sequence      in M then 

           where   is fixed element of M. Then      cannot have convergent 

subsequence, which is a contradiction to the fact that M is compact. Our 

supposition was wrong and hence M is bounded. 

Conversely  

Let M be closed and bounded. We are to show that M is compact. Let          

and               a basis for X. Let      be an arbitrary sequence in X then 

     
   

     
   

          
   

    for all     

Since M is bounded therefore      is bounded then there exists „   ‟ such that 

‖  ‖                then 
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  ‖  
   

     
   

          
   

  ‖   (∑ |  
   

| 
 )          

 (∑ |  
   

| 
 )              

∑ |  
   

| 
  

 

 
            …………….(1) 

This means that for all           the sequence (  
   

) is bounded. Then 

by Bolzano-Weierstrass Theorem, it has a convergent subsequence which 

converges to   , then      has a convergent subsequence      which converges 

to   ∑     
 
 . Since M is closed, therefore    . This shows that the arbitrary 

sequence       in M has a subsequence which converges in M. Hence M is 

compact.  

Theorem 

Let N be a normed space in which every closed and bounded subset is compact. 

Then N is a Banach Space. 

Proof 

Let N be a normed space in which every closed and bounded subset is compact. 

Then every sequence in such a set has convergent subsequence. Let      be a 

Cauchy sequence in N and                as a Cauchy Sequence is bounded. 

Let  ̅ be the closure of A then by our assumption  ̅ is compact. So the sequence 

     in  ̅ has a convergent subsequence (   
). 

Suppose that    
   then    ̅. 

Moreover      also convergent to  . 

Hence    ̅   . 

Thus N is a Banach Space. 
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F. Riesz's Lemma   

Let Y and Z  be  subspaces of a normed space X  (of  any  dimension),  and  

suppose  that  Y  is  closed  and  is  a  proper subset of Z.  Then for  every  real 

number   in  the  interval  (0,1)  there  is  a      such  that  

‖ ‖    ‖    ‖      for all    .  

Proof   

We  consider  any         and  denote  its  distance  from Y  by   ,  that  is in 

the figure we have          ‖   ‖   . Then clearly     since Y is closed 

and Y contains all of its limit points. 

 

Choose        , then by definition of infimum, we can find a      such that  

  ‖    ‖  
 

 
  …………………..(1) 

Note that 
 

 
    since       

Let           where   
 

‖    ‖
 then 

‖ ‖  ‖       ‖  | |‖    ‖  
 

‖    ‖
‖    ‖  ‖ ‖     

Now we show that ‖    ‖      for all    . 

‖    ‖  ‖         ‖   ‖       
 

 
 ‖  
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‖    ‖   ‖  (   
 

 
 )‖       Since (   

 

 
 )    by definition 

‖    ‖  
 

‖    ‖
   

 

 
     using (1) and     

Hence ‖    ‖      for all    . 

F. Riesz's Lemma (Another Form)   

Let M be a proper closed subspace of a normed space N and   be any real number 

in the interval  (0,1). Then there is an      such that ‖  ‖    ‖    ‖    

for all    .  

Proof   

Since M is proper closed subspace of normed space N, then there exists       . 

Put         ‖    ‖   . Then clearly     for otherewise     ̅   . A 

contradiction since M is closed and M contains all of its limit points. 

Choose        , then by definition of infimum, we can find a      such that  

  ‖     ‖  
 

 
 

 

 
 

 

‖     ‖
 

 

 
 

Note that   
 

 
  Where   

 

‖     ‖
 

Let             then 

‖  ‖  ‖        ‖  | |‖     ‖  
 

‖     ‖
‖     ‖  ‖  ‖     

Now we show that ‖    ‖      for all    . 

‖    ‖  ‖          ‖   ‖
 

 
      ‖   ‖    ‖  with   

 

 
    

‖    ‖   ‖    ‖      Since     by definition 

‖    ‖    
 

 
    

Hence ‖    ‖      for all    . 



127 
 

For video lectures @ You tube visit “Learning with Usman Hamid” 

 

In  a  finite  dimensional  normed  space  the  closed  unit  ball  is compact. 

Conversely, Riesz's lemma gives the following useful and remarkable theorem.  

Theorem   

If  a  normed  space  X  has  the property  that  the  closed  unit ball 

     ‖ ‖      is  compact,  then X  is finite  dimensional. 

Proof   

We assume that M is compact but       ,  and  show that this  leads to a 

contradiction. We choose any     of norm 1. This    generates  a  one  dimensional  

subspace      of  X,  which  is  closed  and  is  a  proper  subspace  of  X  since  

      .  By Riesz's lemma there is an       of norm 1 such that  

‖     ‖    
 

 
  

The elements        generate a two dimensional proper closed sub-space    of X. 

By Riesz's lemma there is an     of norm 1 such that for all        we have  

‖    ‖  
 

 
  

In particular,  ‖     ‖  
 

 
 and ‖     ‖  

 

 
 

Proceeding by induction, we obtain a sequence (  ) of elements      such that  

‖     ‖  
 

 
 with     

Obviously, (  ) cannot have a convergent subsequence.  This contradicts the 

compactness of M.  Hence our assumption        is false, and       . 
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Compact  sets  are  important  since  they  are  "well-behaved":  they have  several  

basic  properties  similar  to  those  of  finite  sets  and  not shared by noncompact 

sets.  In connection with continuous mappings a fundamental  property  is  that  

compact  sets  have  compact  images,  as follows.  

Theorem  

Let X and Y be metric spaces and        a continuous mapping. Then the image 

of a compact subset M of X under T is compact.  

Proof   

By  the  definition  of  compactness  it  suffices  to  show  that every  

sequence  (  )  in  the  image           contains  a  subsequence which 

converges  in T(M).  

Since         , we have         For some     . Since M is compact, (  ) 

contains a subsequence (   
) which converges in M.  The image of (   

) is a 

subsequence of (  ) which converges in      by  

“A  mapping        of a metric  space  (X, d)  into  a  metric  space  (Y,  ̅)  

is  continuous  at a  point       if and only  if       implies        ” 

because T is continuous.  

Hence       is compact. 

From  this  theorem  we  conclude  that  the  following  property, well-

known  from  calculus  for  continuous  functions,  carries  over  to metric spaces.  
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Corollary (Maximum and minimum)   

A continuous mapping T of a compact subset M of a metric space X into R 

assumes a maximum and a minimum at some points of M.  

Proof  

        is compact  by Theorem   

“Let X and Y be metric spaces and        a continuous mapping. Then the 

image of a compact subset M of X under T is compact.” 

And closed and bounded by Lemma [applied to T(M)], 

“A compact subset M of a metric space is closed and bounded.” 

 So that             ,             , and the inverse images of these two 

points consist of points of M  at which      is minimum  or maximum,  

respectively. 

Local compactness: A metric space X is said to be locally compact if every 

point of X has a compact neighborhood. For example   and   and, more generally, 

    and     are locally compact. 

Linear Operators  

In calculus we consider the real line    and real-valued functions on   (or on a 

subset of  ). Obviously, any such function is a mapping of its domain into  .  In 

functional analysis we consider more general spaces, such  as  metric  spaces  and  

normed  spaces,  and  mappings  of  these spaces.  

In  the  case  of vector  spaces  and,  in  particular,  normed  spaces,  a mapping  is  

called  an operator.  

Of special interest are operators which "preserve" the two algebraic operations of 

vector space, in the sense of the following definition.  
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Linear operator  

A linear operator T is an operator such that  

(i) The domain       of  T  is  a  vector  space  and  the  range       lies  

in  a  vector  space  over  the  same  field 

(ii) for  all            and scalars  , we have 

                   

           

i.e. for all            and scalars    , we have  

                       

Observe the notation; we write     instead of     ;  this simplification  is  

standard  in functional  analysis.  Furthermore, for the remainder of the book we 

shall use  the  following  notations.  

      denotes the domain of  T.  

     denotes the  range  of  T.  

     denotes the null  space of  T.  

By definition, the null space of a linear operator T is the set of all       such 

that       . i.e.                       

(Another word for null space is "kernel" We shall not adopt this term since we 

must reserve the word "kernel" for another purpose in the theory of integral 

equations.)  

Examples of different Operators 

 Identity operator:  The identity operator         is defined by          

for all    . We also write simply     for  ;  thus,       . This is linear 

operator, since                          

 Zero operator:  The zero operator         is defined by       for all 

   . This is linear operator, since                       

 Differentiation:  Let X be the vector space of all polynomials on [a, b]. We 

may define a linear operator T on X by setting             for every 
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   , where the prime denotes 

differentiation with respect to  .  This operator T maps X onto itself. This is 

linear operator, since  

 (           )  (           )                 

 (           )    (    )    (    )  

 Integration:  A linear operator   [   ]     defined by    ∫    
 

 
. 

Linear in the sense as follows; 

         ∫          
 

 
  ∫    

 

 
  ∫    

 

 
            

 Multiplication by  t:  Another  linear operator from  C[  a, b]  into itself  is  

defined  by            . T plays a role in physics (quantum theory) 

 Elementary vector  algebra:  The  cross  product with  one  factor kept  

fixed  defines  a  linear operator          .  Similarly,  the  dot product 

with one fixed  factor defines  a  linear operator         ,  

say,                        where    (  )     is  fixed.  

 Matrices:  A  real  matrix    (   )  with  r  rows  and  n  columns 

defines  an operator          by means of      where    (  )  has  

n  components  and          has r components and both  vectors are 

written  as  column  vectors  because of  the  usual convention of matrix 

multiplication; writing       out, we  have  

 
T is linear because matrix multiplication is a linear operation. If A were 

complex, it would define a linear operator from    into   . 
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In  these  examples  we  can  easily  verify  that  the  ranges  and  null spaces of the 

linear operators are vector spaces. This fact is typical. Let us  prove  it,  thereby  

observing  how  the  linearity  is  used  in  simple proofs. The theorem itself will 

have various applications in our further work.  

Theorem:  Let T be a linear operator. Then:  

i. The range      is a vector space.  

ii. If            ,  then          .  

iii. The null space      is a vector space.  

Proof   

(a) Let            then there exists            such that  

               

We know that      is a vector space therefore              

Then                                   

Hence      is a vector space. 

(b) Consider             and choose                 from      

then there exists                 from      such that  

                                   

Since           therefore the set                   is linearly 

dependent. And hence  

                                       

                                               

                                         

                                      

This shows that {               } is a linearly dependent set because the  

     are not all  zero. Then      has no linearly independent subset of 

       or more elements.  By the definition this means that          . 

This result tells that linear operators preserve linear dependence.  

(c) Let            then            

Then                        

              

Hence      is a vector space. 
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Injective or one-to-one Mapping  

A mapping           is said to be injective or one-to-one if different points in 

the domain have different images, that is, if for any            

                     Equivalently,                 

In this case there exists the mapping               which maps every 

        onto that         for which       .  The mapping is called the 

inverse of T.  

 

Remark 

         for  all         

         for  all         

In connection with linear operators on vector spaces the situation is as follows.  

The inverse of  a  linear operator exists  if  and only  if  the null  space  of  the  

operator  consists  of  the  zero  vector  only.  More precisely, we have the 

following useful criterion which we shall apply quite often.  

Theorem  

Let X, Y be vector spaces, both real or both complex. Let           be a linear 

operator with domain         and range       . Then:  

a) The inverse               exists if and only if      implies    .  

b) If     exists, it is a linear operator.  

c) If             and     exists, then                 



134 
 

For video lectures @ You tube visit “Learning with Usman Hamid” 

 

Proof 

a) Let               exists then   is one – to – one and Suppose that 

    .  

Since T is one – to – one, therefore         implies        

Choose      and      

So that      implies    . 

Conversly suppose that      implies    . Then we have to prove that  

              exists. For this we only need to prove   is one – to – one. 

Let            such that                               

                 Since T is linear. 

Hence   is one – to – one and                exists 

b) We assume that     exists and show that     is linear.  

Let                   then there exists            such that  

               

           
         then  

                                as T is linear 

                                   

Hence     is linear. 

 

c) Suppose that             and     exists, also we know that if T is 

linear then                 …………..(1) 

Since     is linear therefore                      then 

                  …………..(2) 

From (1) and (2) we have  
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Lemma (Inverse of product)   

Let         and       be  bijective  linear  operators,  where  X, Y, Z are  

vector  spaces  (see Fig.). Then the inverse              of the product (the 

composite) ST exists. And               

 

Proof:    

The operator         is bijective, so that        exists. We thus have  

             

Where    is the identity operator on Z.   

Applying     and using         (the identity operator on Y), we obtain  

                               

Applying     and using         , we  obtain the  desired  result  

                          

Hence                
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Bounded and Continuous Linear Operators  

The reader may have noticed that in the whole last section we did not make any 

use of norms. We shall now again take norms into account, in the following basic 

definition.  

Bounded Linear Operator 

Let X and Y be normed spaces and          a linear operator, where 

      .  The operator T  is  said  to be bounded  if  there  is  a  real number c  

such  that for  all        , ‖  ‖   ‖ ‖  or we can write 
‖  ‖

‖ ‖
                       

Formula ‖  ‖   ‖ ‖ shows that a bounded linear operator maps bounded sets in 

     onto bounded sets in Y.  This motivates the term  "bounded operator." 

Warning:  Note that our present use of the word "bounded" is different from that 

in calculus. Where a bounded function is one whose range is a bounded set. 

Unfortunately, both terms are standard.  But there is little danger of confusion.  

What  is  the  smallest  possible c  (minimum of c) such  that ‖  ‖   ‖ ‖  

still  holds  for  all nonzero        ?  [We  can  leave  out  x =  0  since           

Tx =  0  for  x =  0]  

By division, 
‖  ‖

‖ ‖
      ‖ ‖    and  this  shows  that c  must  be  at  least  as  big  

as  the  supremum of  the expression on  the  left  taken over         .              

Implies          
   

‖  ‖

‖ ‖
  .  i.e.            

   

‖  ‖

‖ ‖
. Hence the  answer  to our 

question  is  that  the  smallest  possible  c  in  ‖  ‖   ‖ ‖  is  that  supremum.  

This quantity is denoted by ‖ ‖;  thus  

Norm of the Operator 

The quantity ‖ ‖           
   

‖  ‖

‖ ‖
 is called the norm of the operator. 

And for a bounded linear operator T we can define it as ‖ ‖           
‖ ‖  

‖  ‖ 

Also remember that if   ‖ ‖ then ‖  ‖   ‖ ‖ becomes ‖  ‖  ‖ ‖‖ ‖ 

If          then ‖ ‖    in this case     since      
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Lemma: Let T be a bounded linear operator. Then an alternative formula for 

the norm of T is ‖ ‖           
‖ ‖  

‖  ‖ 

Proof: Let        be an arbitrary element and let ‖ ‖   . Define 

  
 

 
  where    . Then ‖ ‖   . 

Consider  ‖ ‖           
   

‖  ‖

‖ ‖
 

 ‖ ‖           
   

‖  ‖

 
          

   

‖
 

 
  ‖           

   

‖ (
 

 
 )‖  

 ‖ ‖           
   

‖  ‖  ‖ ‖           
‖ ‖  

‖  ‖  

Lemma: Let T be a bounded linear operator. Then the norm defined by  

‖ ‖           
   

‖  ‖

‖ ‖
 satisfies all properties of Norm. 

Proof:   

     Since 
‖  ‖

‖ ‖
   therefore          

   

‖  ‖

‖ ‖
 ‖ ‖    for all        

    ‖ ‖           
   

‖  ‖

‖ ‖
                               

    ‖  ‖           
   

‖     ‖

‖ ‖
          

   

‖   ‖

‖ ‖
 | |         

   

‖  ‖

‖ ‖
  

 ‖  ‖  | |‖ ‖  

    ‖     ‖           
   

‖        ‖

‖ ‖
          

   

‖       ‖

‖ ‖
  

 ‖     ‖           
   

‖   ‖

‖ ‖
          

   

‖   ‖

‖ ‖
  

 ‖     ‖  ‖  ‖  ‖  ‖  
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Before we consider general properties of bounded linear operators, let us take a 

look at some typical examples, so that we get a better feeling for the concept of a 

bounded linear operator.  

Examples  

 Identity operator:  The identity operator           on a normed space 

      defined by         is linear and bounded and has norm‖ ‖   .  

Proof: Since ‖  ‖  ‖ ‖   ‖ ‖ 

 ‖ ‖           
   

‖  ‖

‖ ‖
          

   

‖ ‖

‖ ‖
    

 Zero operator:  The  zero  operator           defined by        on  a  

normed space X  is  linear and bounded  and  has  norm ‖ ‖   . 

Proof: Since ‖  ‖  ‖ ‖    ‖ ‖‖ ‖ 

 ‖ ‖           
   

‖  ‖

‖ ‖
          

   

‖ ‖

‖ ‖
    

 Differentiation operator:  Let  X  be  the  normed  space  of  all 

polynomials  on  J =  [0, 1]  with  norm  given  ‖ ‖     |    |    .  A 

differentiation operator T is defined on X by            . Where the 

prime denotes differentiation with respect to „t‟.  This operator is linear but 

not bounded.   

Proof: Consider the sequence      defined by       

Then ‖  ‖       [   ]|     |       [   ]| 
 |    

 ‖   ‖  ‖  
 ‖  ‖     ‖       [   ]|     |  |     |     

 
‖   ‖

‖  ‖
 

 

 
    

Since     is arbitrary, we are unable to find a fixed number „c‟ such that  

‖   ‖   ‖  ‖ 

Hence T is not bounded. 

 Integral  operator:  We  can  define  an  integral  operator  

   [   ]   [   ] by        ∫             
 

 
.  Here  k  is  a  given  

function,  which  is  called  the  kernel  of  T  and  is assumed  to  be  

continuous  on  the  closed  square  G =  J x J  in  the    plane, where              

J = [0, 1]. This operator is linear. T is bounded.  
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Proof: This is linear operator as already proved  

         ∫                      
 

 
            

Note that        being continuous on the closed square [   ]  [   ] is 

bounded then there exists    such that |      |            [   ]  [   ] 

We have ‖  ‖  ‖ ‖       [   ]|    |       [   ] |∫             
 

 
| 

‖  ‖       [   ] ∫ |      ||    |  
 

 
        [   ] ∫ |    |  

 

 
  

‖  ‖    ∫      [   ]|    |  
 

 
   ‖ ‖  

‖  ‖    ‖ ‖  implies that T is bounded. 

 

 Matrix:  A real matrix              defines an operator          

defines by       where    (

  
  

 
  

,  and    (

  

  

 
  

,  are column vectors 

with n and r components, respectively.  

Now      gives    ∑      
 
   . Then T is linear and bounded. 

Proof: Consider  

‖  ‖  ‖ ‖  ∑   
  

   

‖  ‖  ∑  ∑      
 
      

   

‖  ‖  ∑ ((∑    
  

   )
 

  ∑   
  

    
 

 *
 

 
    (∑ ∑    

  
   

 
   )‖ ‖   

‖  ‖    ‖ ‖   

‖  ‖   ‖ ‖  

Thus T is bounded. 
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Boundedness is typical; it is an essential simplification which we always have in 

the finite dimensional case, as follows.  

Theorem: If  a  normed  space  X  is  finite dimensional,  then  every  linear 

operator on X  is  bounded.  

Or every  linear operator on a finite dimensional norm space is bounded. 

Proof:   Let          and              a basis for X. Then every     

can be expressed as   ∑     
 
    

      ∑     
 
     ∑      

 
      Since T is linear 

 ‖  ‖  ‖∑      
 
   ‖     

 ‖  ‖  ∑ |  |‖   ‖
 
    ‖  ‖   ∑ |  |

 
                ‖   ‖  

 ‖  ‖   ∑ |  |
 
      ……………(1) 

Now since   ∑     
 
    and              is linearly independent therefore  

‖ ‖  ‖∑     
 
   ‖   ∑   

 
          ∑   

 
    

‖ ‖

 
   ……………(2) 

Using (2) in (1)    ‖  ‖  
 

 
‖ ‖ 

 ‖  ‖   ‖ ‖    where   
 

 
 . Thus T is bounded. 

We shall now consider important general properties of bounded linear operators.  

 Operators are mappings, so that the definition of continuity applies to them.  

It is a fundamental fact that for a linear operator, continuity and boundedness 

become equivalent concepts.  

 T is continuous if T is continuous at every point. 

Theorem Let           be a linear operator, where          and X, Y 

are normed spaces. Then:  

a) T is continuous if and only if T is bounded.  

b) If T is continuous at a single point, it is continuous.  
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Theorem Let           be a linear operator, where          and X, Y 

are normed spaces. Then T is continuous if and only if T is bounded.  

Proof:  If     then the statement is trivially true.  

Let     then ‖ ‖   . Assume that T is bounded, we are to prove that T is 

continuous. 

For this let           and    , also define   
 

‖ ‖
 and let ‖    ‖    

Then by linearity and boundedness of T we have  ‖      ‖  ‖       ‖ 

‖      ‖  ‖ ‖‖    ‖  ‖ ‖  ‖ ‖
 

‖ ‖
    

‖      ‖     implies that T is continuous. 

Conversly suppose that T is continuous, then we are to show that T is bounded. 

Since T is continuous, then it is continuous at any arbitrary point         then 

for all     there exists     such that 

‖      ‖      whenever  ‖    ‖     …………..(1) 

Now choose any          and set      
 

‖ ‖
   then ‖    ‖    

    ‖      ‖    ‖       ‖    ‖ (
 

‖ ‖
 )‖     

 
 

‖ ‖
‖  ‖    ‖  ‖  

 

 
‖ ‖          

 ‖  ‖   ‖ ‖           
 

 
  

Hence T is bounded. 

Warning    

Unfortunately, continuous linear operators are called "linear operators" by some 

authors. We shall not adopt this terminology; in fact, there are linear operators of 

practical importance which are not continuous.  
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Theorem Let           be a linear operator, where          and X, Y 

are normed spaces. Then if T is continuous at a single point, it is continuous. 

Proof:       Suppose that T is continuous at a single point in      then by theorem 

“T is continuous if and only if T is bounded” using second part of theorem we have 

T is bounded and hence continuous on      by using first part of this theorem. 

Corollary: Let T be a bounded linear operator. Then: 

a)       implies         where        

b) The null space      is closed.  

Proof:  

a) Consider      then   ‖    ‖    as     

 ‖      ‖  ‖       ‖  ‖ ‖‖    ‖     

 ‖      ‖    as     implies        as     

b) We are to prove          ̅̅ ̅̅ ̅̅ ̅̅  

Already know that           ̅̅ ̅̅ ̅̅ ̅̅   …………..(1) 

Let       ̅̅ ̅̅ ̅̅ ̅̅  then there is a sequence      in      such that      then 

by theorem “for a bounded linear operator       implies       ” we 

have        

Since                (as                  ) 

Therefore     . i.e.         

So that     ̅̅ ̅̅ ̅̅ ̅̅        …………..(2) 

From (1) and (2) we have           ̅̅ ̅̅ ̅̅ ̅̅  

Hence the null space      is closed 

It is worth noting that the range of a bounded linear operator may not be closed.  
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Theorem  

Let        be a linear operator, Then T is continuous on   if and only if it is 

continuous at    . 

Proof:   

Suppose T is continuous on   then it is continuous at    . 

Conversly 

Suppose is continuous at     then we have to prove T is continuous on  . 

For this let        and     there exists     such that for all     we 

have ‖    ‖  ‖ ‖ 

 ‖      ‖  ‖  ‖     

Hence for any      we have ‖    ‖    

 ‖      ‖  ‖       ‖     

Implies that T is continuous at    and therefore also on  . 

Theorem  

Let        be a linear operator, and T is continuous on   then      is closed 

in  . 

Proof:   

Suppose T is continuous on   and   be a limit point of     . Then there is a 

sequence      in      such that             

Then by continuity of   we have                

Hence        and      is closed in  . 
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Composition (Product) of Mappings (Operators) 

Let       and       be two mappings (Operators) then their composition is 

defined as           by             

 

Result 

If        and       are bounded linear operators then their composition 

       is also linear and bounded, moreover ‖  ‖  ‖ ‖‖ ‖ 

Or 

If         and        are bounded linear operators then their composition 

         is also linear and bounded, moreover ‖    ‖  ‖  ‖‖  ‖ 

Proof 

Linearity:               (         ) 

                            Since    is linear 

                                Since    is linear 

                            Hence      is linear 
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Boundedness: ‖       ‖  ‖       ‖    ‖     ‖     Since    is bounded 

‖       ‖      ‖ ‖       Since    is bounded 

‖       ‖   ‖ ‖       Hence      is bounded 

‖    ‖  ‖  ‖‖  ‖  

‖    ‖              
   

‖     ‖

‖ ‖
             

   

‖       ‖

‖ ‖
             

   

‖  ‖‖   ‖

‖ ‖
  

‖    ‖  ‖  ‖          
   

‖   ‖

‖ ‖
 ‖    ‖  ‖  ‖‖  ‖  

Remember 

 Two operators    and      are defined  to be equal, written if  they  have  the  

same domain              and  if          

for all               

 The  restriction  of  an  operator            to  a  subset        is 

denoted by     and is  the operator defined by        , as         

for all    .  

 An extension of an operator           to a set         is an operator 

 ̃     such that  ̃       , that  is,   ̃      for  all       .  

[Hence T is the restriction of   ̃ to     ]. 

If       is  a  proper  subset  of  M,  then  a  given  T  has  many extensions.  

Of  practical  interest  are  usually  those  extensions  which preserve some basic 

property, for  instance linearity (if T happens to be linear) or  boundedness (if  

     lies  in a normed  space  and  T is bounded).  

The following important theorem is typical in that respect. It concerns an 

extension of a bounded linear operator T to the closure     ̅̅ ̅̅ ̅̅ ̅  of the domain 

such that the extended operator is again bounded and linear, and even has the 

same norm.  This  includes  the case  of  an extension  from  a  dense  set  in  a  

normed  space X  to  all  of X.  It also includes  the  case  of  an  extension  from  

a  normed  space  X  to  its completion. 
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Theorem (Bounded linear extension, Principle of Extension by Continuity)  

Let          be a bounded linear operator, where       lies in a normed space 

X and Y is a Banach space. Then T has an extension  ̃     ̅̅ ̅̅ ̅̅ ̅    where  ̃ is a 

bounded linear operator of norm ‖ ̃‖  ‖ ‖. 

Proof: First we show the existence of  ̃. i.e. we justify that such a  ̃ exists. 

Let       ̅̅ ̅̅ ̅̅ ̅ then there exists a sequence      in      such that      then 

using the fact, T is linear we have 

‖       ‖  ‖        ‖  ‖ ‖‖     ‖    as       

(Actually we use the fact;    being convergent sequence in Cauchy sequence.) 

This implies that     is a Cauchy sequence in Y. Since Y is complete therefore 

       . This means that              

We define  ̃ by  ̃              then Clearly  ̃                 

We now show that this definition of  ̃ is independent of the particular choice of a 

sequence in      converging to  .   

Suppose that      and     .  Then     , where  (  )  is  the sequence 

                 

Hence (T  ) converges by (     implies       ), and the two subsequences 

(   ) and  (   )  of  (   )  must  have  the  same  limit.   

This proves that  ̃ is uniquely defined at every       ̅̅ ̅̅ ̅̅ ̅.  

 ̃ is linear 

                        such that      and      

                                        

 ̃          ̃    ̃   
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 ̃ is Bounded 

Let      be a sequence such that      then using the fact T is bounded we have 

‖   ‖  ‖ ‖‖  ‖  

       ‖   ‖  ‖ ‖       ‖  ‖  

 ‖    
   

   ‖  ‖ ‖‖    
   

  ‖  

 ‖ ̃ ‖  ‖ ‖‖ ‖  

  ̃ is Bounded 

‖ ̃‖  ‖ ‖  

Since ‖ ̃ ‖  ‖ ‖‖ ‖ 

 
‖ ̃ ‖

‖ ‖
 ‖ ‖          

       
‖ ̃ ‖

‖ ‖
 ‖ ‖          

 ‖ ̃‖  ‖ ‖  ……………(1) 

Also  ‖ ‖  ‖ ̃‖  ……………(2) Since          ̅̅ ̅̅ ̅̅ ̅ 

Combining (1) and (2) we have  

‖ ̃‖  ‖ ‖  
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LINEAR FUNCTIONALS  

A functional is an operator whose range lies on the real line   or in the complex 

plane  . And functional analysis was initially the analysis of functionals. The latter 

appear so frequently that special notations are used.  We denote functionals by 

lowercase letters         ,  the domain of I by     , the range by      and  the 

value of   at an        by     , with parentheses.  

Functionals are operators, so that previous definitions apply. We shall need in 

particular the following two definitions because most of the 'functionals‟ to be 

considered will be linear and bounded.  

Functional (Function of Functions) 

Let                         then       is called functional. 

Linear functional   

A linear functional   is a linear operator with domain in a vector space X and 

range in the scalar field K of X;  thus,          where     if X  is  real and 

     if X  is  complex. 

Bounded linear functional 

A bounded linear functional   is a bounded linear operator with range in the scalar 

field of the normed space X in which the domain       lies.  

Thus there exists a real number „c‟ such that for all       ,  |    |   ‖ ‖  

Furthermore, the norm of   is ‖ ‖           
   

|    |

‖ ‖
  Or  ‖ ‖           

   

|    | 

Also remember that   |    |  ‖ ‖‖ ‖ 

Remark:  The result that we proved for bounded linear operator continue to hold 

true for bounded linear functional. i.e. 

A linear functional   with domain      in a normed space is continuous if and 

only if   is bounded.  
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Examples  

 Norm:  The norm ‖ ‖       on a normed space (X, ‖ ‖)  is a functional 

on X  which  is  not linear (Since ‖   ‖  ‖ ‖  ‖ ‖ 

 Dot product:  The familiar dot product with one factor kept fixed defines a 

functional         by means of                          

where                      is fixed. Then   is linear.   is 

bounded. Also ‖ ‖  ‖ ‖  

Solution 

 Linearity: 

                                          

 Boundedness: 

|    |  |   |  |‖ ‖‖ ‖    |  ‖ ‖‖ ‖          

|    |  ‖ ‖‖ ‖  

 ‖ ‖  ‖ ‖  

Since |    |  ‖ ‖‖ ‖ then 
|    |

‖ ‖
 ‖ ‖         

      
|    |

‖ ‖
 ‖ ‖          

‖ ‖  ‖ ‖   ……………(1) 

Now  ‖ ‖        
|    |

‖ ‖
 

|    |

‖ ‖
 

|   |

‖ ‖
 

‖ ‖ 

‖ ‖
 ‖ ‖ 

‖ ‖  ‖ ‖   ……………(2) 

From (1) and (2)   ‖ ‖  ‖ ‖ 

 Definite  integral  

The  definite  integral  is  a  number  if we  consider  it  for  a  single  

function,  as  we  do  in  calculus most  of  the  time. However, the situation 

changes completely if we consider that integral for all functions in a certain 

function space. Then the integral becomes a functional on that space, call it 

 . As a space let us choose C[a, b]; 

    [   ]    by      ∫       
 

 
 where    [   ] then   is linear  and 

bounded functional and ‖ ‖      

Solution 

 Linearity: 

         ∫          
 

 
  ∫    

 

 
  ∫    
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 Boundedness: 

We have ‖ ‖       [   ]|    | then 

|    |  |∫       
 

 
|  ∫ |    |  

 

 
           [   ]|    |  

|    |       ‖ ‖  

 ‖ ‖  ‖ ‖  

Since |    |       ‖ ‖ then  
|    |

‖ ‖
               

      
|    |

‖ ‖
                

‖ ‖          ……………(1) 

Now choose        

‖ ‖        
|    |

‖ ‖
 

|     |

‖  ‖
 

|∫        
 

 
|

‖     [   ]|     |‖
 

   

 
      

‖ ‖        ……………(2) 

From (1) and (2)   ‖ ‖      

 Space C[a, b]:  Another  practically  important  functional  on C[a, b] is 

obtained if we choose a  fixed       [   ]  and set   

                 [   ]  then    is linear  and bounded functional and 

‖  ‖    

 Space   :  We  can  obtain  a  linear  functional    on the Hilbert space    by 

choosing a  fixed              and setting      ∑   
 
      where  

         . This series converges absolutely and    is bounded.  

Solution 

 Linearity: 

         ∑ (       )
 
       ∑   

 
       ∑   

 
       

                      

 Boundedness: 

|    |  |∑   
 
     |  ∑ |    |

 
    (∑ |  |

  
   )

 

 
(∑ |  |

  
   )

 

 
   

|    |   ‖ ‖  where  ‖ ‖  (∑ |  |
  

   )

 

 
        (∑ |  |

  
   )
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Algebraic dual space (Conjugate Space) 

Let X be a vector space then the  set  of  all  linear  functionals defined  on  X  can  

itself  be made  into  a  vector  space. This space is denoted by X* and is called the 

algebraic dual space of X  

i.e.                                

(Note that this definition does not involve a norm. The so-called dual space X' 

consisting of all bounded linear functionals on X).  Its algebraic operations of 

vector space are defined in a natural way as follows (i.e. it satisfies the algebraic 

operation of a vector space).  

                            

                  

Second Algebraic dual space 

 Let X* be a vector space then the set of all linear functionals defined on X* can 

itself be made into a vector space. This space is denoted by X** and is called the 

algebraic dual space of   . 

i.e.                                  

Dual Space 

The set of  all  continuous or bounded  linear  functionals  on X  becomes  a  

normed  space, which  is  called  the  dual  space X' of X. 

Remark: Dual space of a normed space also a dual space with defined norm. 
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Theorem (Dimension of X*) 

For a finite dimensional normed space X show that            

Or Let X be n – dimensional norm space then its dual also n – dimensional. 

Or Let X be an n – dimensional vector space and                 a basis for 

X.  Then                  given by            {
              
              

 is a basis for 

the algebraic dual    of X, and             .  

Proof    

Suppose                be a basis for X then     could be written as 

  ∑     
 
    .  

Define a linear functional        by            {
              
              

   

Also         (∑     
 
   )  ∑     (  )

 
       

We are to show that                 is a basis for   . 

Step – I: Linear Independence 

Let ∑     
 
      then  

       (∑     
 
   )  ∑        

 
    ∑         

 
    ∑      

 
     

     . This shows that                 is linearly independent. 

Step – II:                 generate    

Let      then for any   ∑     
 
      we have  

      (∑     
 
   )  ∑    (  )

 
    ∑     

 
    ∑        

 
    (∑     

 
   )   

   ∑     
 
   . This shows that                 span   . 

Hence                  is a basis of   . 

Implies that              
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Theorem (Dimension of X**) 

A finite dimensional normed (linear) space X is isomorphic to its second dual. i.e.  

      

Proof   Let X be finite dimensional normed (linear) space and     be its 

second dual. Then define         as               where     
    

defined as                  . 

Step – I:   is Linear 

                                                

                                         

                       

Step – II:   is Injective 

Let                then take           

       (     )                               

                      is Injective 

Also   is onto and hence   is bijective. So        

Also      is subspace of    . 

Since X has finite dimension so                   then          

Implies       

Lemma  Let X be a finite dimensional vector space. If       has the property 

that         for all     ,  then     .  

Proof  Let               be a basis for X and    ∑     
 
   . Then 

       (∑     
 
   )  ∑    (  )

 
    

By assumption this is zero for every     . i.e.       ∑    (  )
 
      

       ∑    (  )
 
            ∑     
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Reflexive Space 

A normed space X is said to be reflexive if there is an isometric isomorphism 

between X and     (second dual) 

Canonical Mapping 

To each      there corresponds a       .  This defines a mapping          

by         this mapping is linear and is called the canonical mapping of X into 

X**. C is linear since its domain is a vector space. C is also called the canonical 

embedding of X into X**. 

Theorem (Algebraic Reflexivity).   

A finite dimensional vector space is algebraically reflexive.  

Proof   

Let the canonical mapping           is linear.       means that for all 

     we have           (   
)        by  the  definition  of  C.  This 

implies       by Lemma “Let X be a finite dimensional vector space. If       

has the property that         for all     ,  then     .”.   

As we know that the mapping  C  has  an  inverse           ,  where      is  

the  range  of  C.  We also have             . 

Now as we know that,                   . 

Together,                

Hence          because       is a vector space and a proper subspace of     

has dimension less than       .   

By the definition, this proves algebraic reflexivity. 

Space B(X,Y) 

Let X and Y be normed spaces over the same field. The vector space of all 

bounded linear operators from X into Y is called B(X,Y) space. i.e. 
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Theorem 

The vector space B(X,Y) of all bounded linear operators from a normed space X 

into a normed space Y is itself a normed space with norm defined by  

‖ ‖        
   

‖  ‖

‖ ‖
       

   
‖  ‖  

Proof 

     ‖ ‖        
   

‖  ‖

‖ ‖
   

     ‖ ‖          
   

‖  ‖

‖ ‖
   ‖  ‖        

     ‖  ‖        
   

‖   ‖

‖ ‖
       

   

| |‖  ‖

‖ ‖
 | |      

   

‖  ‖

‖ ‖
 | |‖ ‖ 

     ‖   ‖        
   

‖      ‖

‖ ‖
       

   

‖     ‖

‖ ‖
       

   

‖  ‖ ‖  ‖

‖ ‖
 

‖   ‖        
   

‖  ‖

‖ ‖
       

   

‖  ‖

‖ ‖
  

‖   ‖  ‖ ‖  ‖ ‖  

Theorem (Completeness)   

If Y is a Banach space, then B(X,Y) is a Banach space.  

Proof 

Let      
  be a Cauchy sequence in B(X,Y) then for all     there exists      

such that   ‖     ‖                

Now consider for any     and        

‖       ‖  ‖        ‖  ‖     ‖‖ ‖    ‖ ‖  ‖       ‖     

Implies       
  is a Cauchy sequence in Y. 

Since Y is a Banach space (Complete metric + norm) therefore          

Clearly the limit     depends upon the choice of     
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This defines an operator      , where               .   

The operator T is Linear 

                                            

             
   

        
   

             

The operator T is Bounded 

Since for any     and        we have ‖       ‖     

‖      ‖      letting      

 ‖       ‖                    is bounded. 

                                          

To prove      

Since we have   ‖      ‖    ‖ ‖  ‖       ‖    ‖ ‖ 

 
‖       ‖

‖ ‖
                

       
‖       ‖

‖ ‖
                ‖    ‖                  

       with ‖ ‖ 

Hence B(X,Y) is a Banach space. 

This theorem has an important consequence with respect to the dual space X' of X, 

which is defined as follows.  

Definition (Dual space X') 

Let X be a normed space.  Then the  set  of  all  bounded  linear  functionals  on X  

constitutes  a  normed space with norm defined by    

‖ ‖        
   

|    |

‖ ‖
       

   
|    |  

which is called the dual space of X  and is denoted by X' . 
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Theorem 

The dual space X' of a normed space X is a Banach space (whether or not X is).  

Proof 

Let       be a linear functional then the set           consisting of all 

linear functionals       such that  ‖ ‖        
   

|    |

‖ ‖
  is finite, is itself a 

normed space of linear functional. Because the following axioms are satisfied; 

     ‖ ‖        
   

|    |

‖ ‖
   

     ‖ ‖          
   

|    |

‖ ‖
   |    |        

     ‖  ‖        
   

|     |

‖ ‖
       

   

| ||    |

‖ ‖
 | |      

   

|    |

‖ ‖
 | |‖ ‖ 

     ‖   ‖        
   

|      |

‖ ‖
       

   

|         |

‖ ‖
       

   

|    | |    |

‖ ‖
 

‖   ‖        
   

|    |

‖ ‖
       

   

|    |

‖ ‖
  

‖   ‖  ‖ ‖  ‖ ‖  

Since    itself is a normed space and hence a topological space, the topology on    

is called the strong topology in   . Since Y is   or  , which are complete. So    as 

the space of all bounded linear functionals defined on X, is also complete and 

hence is a Banach Space. This is true even if X is not a Banach Space. 
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It is a fundamental principle of functional analysis that investigations of spaces are 

often combined with those of the dual spaces. For this  reason it is worthwhile to  

consider  some of  the more  frequently occurring  spaces and  find  out what  their  

duals  look  like. In this connection the concept of an isomorphism will be helpful 

in understanding the present discussion. 

Isometric Isomorphism of a Normed Space  

An isomorphism of a normed space X onto a normed space Y is a bijective linear 

operator         which preserves the norm, that is, for all    ,  ‖  ‖  ‖ ‖ 

(Hence T  is  isometric.) X is then called isomorphic with Y, and X and Y are 

called isomorphic normed spaces.  

From an abstract point of view, X and Y are then identical, the isomorphism 

merely amounting to renaming of the elements (attaching a "tag" T to each point). 

Or Let X and Y be normed spaces. A function        is said to be an 

isometric isomorphism if  

   is bijective 

   is linear 

   preserves norm. i.e. for any    ,  ‖  ‖  ‖ ‖ 

Example  Show that The dual space (Conjugate Space) of    is   .  

Or   Show that The dual space of    is isomorphic with   .  

Proof. 

Let     be the dual space of    then we have to show that     is isomorphic to 

  . For this we define a function           as         

Where       and                be a basis of    and for each      we 

have   ∑     
 
  as well as        ∑     

 
   ∑        

 
  ∑     

 
  where we 

take          and                   . 

We are to show that T is an isomorphism. 
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  is bijective (Injective + Surjective) 

Let          then            
         then consider for           

                                  
    

      
        

   

                                           

         ∑           
 
      since   ∑     

 
  

               is injective. 

 Now let                   then for any   ∑     
 
     define a function 

        by      ∑     
 
 . This   is linear and, because    is finite 

dimensional,   is bounded, so      . We put then          .  

So that T is surjective.  is bijective. 

  is linear 

Let          and         then 

                       
     

       
      

                  

                                   
              

                          

Hence T is linear. 

  is norm preserving 

Let for any      we have  ‖ ‖        
   

|    |

‖ ‖
 

|    |

‖ ‖
 

|     |

‖  ‖
 ‖  ‖       

‖ ‖  ‖  ‖    ………..(1) 

Also for all      we have  |    |  |∑     
 
 |  √∑ |  |

  
 √∑ |  |

  
   Holder Inequality 

 |    |  ‖ ‖‖  ‖  
|    |

‖ ‖
 ‖  ‖        

   

|    |

‖ ‖
 ‖  ‖  

‖ ‖  ‖  ‖    ………..(2) 
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Combining (1) and (2)   ‖ ‖  ‖  ‖  ‖    ‖ 

This show that           is the isometric isomorphism between     and    . 

Hence          . i.e.   dual space (Conjugate Space) of    is   . 

    space: This space consists of all sequences        with ‖ ‖  ∑ |  |
 
    

    space: This space consists all sequences        with ‖ ‖      
 |  |    

Example  Show that The dual space (Conjugate Space) of    is   .  

Or   Show that The dual space of    is isomorphic with   .  

Proof 

Let     be the dual space of    then we have to show that     is isomorphic to   . 

For this we define a function           as         

Where       and                be a basis of    and for each      we 

have   ∑     
 
  as well as        ∑     

 
   ∑        

 
  ∑     

 
  where 

we take               and fistly we show that      . 

|  |  |     |  ‖ ‖‖  ‖  ‖ ‖         

 ‖  ‖      
 |  |  ‖ ‖               

We are to show that T is an isomorphism. 

  is bijective (Injective + Surjective) 

Let          then            
         then consider for           

                                  
    

      
        

   

                                           

         ∑           
 
      since   ∑     

 
  

               is injective. 
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 Now let                   then for any   ∑     
 
     define a function 

        by      ∑     
 
 . This   is linear. Also for any     ; 

|    |  |∑     
 
 |  ∑ |    |

 
      

 |  | ∑ |  |
 
  ‖ ‖‖ ‖  

|    |  ‖ ‖‖ ‖  
|    |

‖ ‖
 ‖ ‖  ‖ ‖  ‖ ‖  

So      . We put then          .  

So that T is surjective.  is bijective. 

  is linear 

Let          and         then 

                       
     

       
      

                  

                                   
              

                          

Hence T is linear. 

  is norm preserving 

Let for any      we have   

|    |  |∑     
 
 |  ∑ |    |

 
      

 |  | ∑ |  |
 
  ‖  ‖‖ ‖  

|    |

‖ ‖
 ‖  ‖  

‖ ‖  ‖  ‖    ………..(1) 

Also for all       we have  |  |  |     |  ‖ ‖‖  ‖  ‖ ‖      

 ‖  ‖      
 |  |  ‖ ‖        ‖ ‖  ‖  ‖    ………..(2)  

Combining (1) and (2)   ‖ ‖  ‖  ‖  ‖    ‖ 

This show that           is the isometric isomorphism between     and    . 

Hence        . i.e. dual space (Conjugate Space) of    is   . 

This shows that    is not reflexive. As    is separable but         is not. 

Available at MathCity.org
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    space 

This space consists of all sequences        with ‖ ‖   ∑ |  |
  

  
 

    

Example  For any    , show that the dual space of    is   . Where   is 

conjugate exponent of  . Hence    is reflexive. 

Or   The dual space of     is   ;  here,         and   is the conjugate 

of  , that  is,  
 

 
 

 

 
   .  

Proof 

Let     be the dual space of    then we have to show that     is isomorphic to   . 

For this we define a function           as         

Where       and                be a basis of    and for each      we have 

  ∑     
 
  as well as        ∑     

 
   ∑        

 
  ∑     

 
  where we 

take               where      .  

We are to show that T is an isomorphism. 

  is bijective (Injective + Surjective) 

Let          then            
         then consider for           

                                  
    

      
        

   

                                           

         ∑           
 
      since   ∑     

 
  

               is injective. 

 Now let                   then for any   ∑     
 
     define a function 

        by      ∑     
 
 . This   is linear. Also using Holder Inequality; 

|    |  |∑     
 
 |   ∑ |  |

  
  

 

  ∑ |  |
  

  
 

  ‖ ‖ ‖ ‖  ‖ ‖  ‖ ‖   

So      . We put then          .  So that T is surjective.  is bijective. 
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  is linear 

Let          and         then 

                       
     

       
      

                  

                                   
              

                          

Hence T is linear. 

  is norm preserving 

Let for all       we have  

|    |  |∑     
 
 |  ∑ |    |

 
   ∑ |  |

  
  

 

  ∑ |  |
  

  
 

  ‖ ‖ ‖  ‖ 
  

 
|    |

‖ ‖ 
 ‖  ‖ 

        ‖ ‖  ‖  ‖ 
    ………..(1)  

To show ‖ ‖  ‖  ‖ 
 

For any     define                              {
| |

 
        

         
  

It is clear that |    |    and       | | for all  . 

Take a sequence      ,  
   

- in    such that    
   

 {
|  |

                
                             

 

Then for    , using the definition of signum function |  
   

|  |  |
    

Also from 
 

 
 

 

 
             we have  |  

   
|
 
 |  |

       |  |
  

 |    |
 
 (∑ |  

   
|
 

 
 )

 

 
 (∑ |  |

  
 )

 

   …………….(A) 

  (    )  ∑   
   

     
 
  ∑   

   
  

 
  ∑ |  |

   |  |
 
  ∑ |  |
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  (    )  ∑ |  |
  

    …………….(B) 

Again using 
 

 
 

 

 
             we have 

| (    )|  ‖ ‖‖    ‖
 
 | (    )|  ‖ ‖ (∑ |  

   
|
 

 
 )

 

 
  

 | (    )|  ‖ ‖(∑ |  |
  

 )
 

    using (A)     …………….(C) 

 | (    )|  ∑ |  |
  

  ‖ ‖(∑ |  |
  

 )
 

    using (B) and (C) 

 
∑ |  |

  
 

(∑ |  |
  

 )
 
 

 ‖ ‖  (∑|  |
 

 

 

+

  
 
 

 ‖ ‖  (∑|  |
 

 

 

+

 
 

 ‖ ‖ 

  ∑ |  |
  

  
 

  ‖ ‖   ∑ |  |
  

  
 

  ‖ ‖   

‖  ‖ 
 ‖ ‖   …………….(2)          

Combining (1) and (2)   ‖ ‖  ‖  ‖ 
 ‖    ‖ 

This show that           is the isometric isomorphism between     and    . 

Hence        . i.e. dual space (Conjugate Space) of    is   . By similar method, 

the dual space of    is   . Hence the second dual of    is   . Therefore    is 

reflexive. 

What is  the significance of these and similar examples?  

In applications  it is  frequently quite useful  to know the general form of bounded 

linear functionals  on spaces  of practical  importance,  and many spaces have  been  

investigated  in  that  respect.  Our  examples  give  general representations  of  

bounded  linear  functionals  on    ,    and     with    . 
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INNER PRODUCT SPACES  

In a  normed space we can add vectors and multiply vectors by scalars, just as  in 

elementary vector algebra. Furthermore,  the norm on such a space  generalizes  

the  elementary  concept  of  the  length  of  a  vector. However, what is  still 

missing in a general normed space, and what we would  like  to  have  if  possible,  

is  an  analogue  of  the  familiar  dot product   ⃗                       

and  resulting  formulas,  notably | ⃗ |  √ ⃗   ⃗  and  the  condition  for  

orthogonality (perpendicularity)  ⃗       which  are  important  tools  in many  

applications.  Hence  the  question arises whether the dot product and orthogonality 

can be generalized to arbitrary  vector  spaces.  In  fact,  this  can  be  done  and  

leads  to  inner product  spaces  and  complete  inner  product  spaces,  called  

Hilbert spaces.  

Inner  product  spaces  are  special  normed  spaces,  as  we  shall  see. Historically 

they are older than general normed spaces. Their theory is richer and retains many 

features of Euclidean space,  a central concept being  orthogonality.  In  fact,  inner  

product  spaces  are  probably  the most natural generalization of Euclidean space,  

and  the  reader should note the great harmony and beauty of  the concepts  and 

proofs  in  this field.  The whole  theory was  initiated by the work of D. Hilbert 

(1912) on  integral  equations.  The  currently  used  geometrical  notation  and 

terminology  is  analogous  to  that  of  Euclidean  geometry  and  was coined  by  

E. Schmidt  (1908),  who  followed  a  suggestion  of G.  Kowalewski. These  

spaces  have been,  up  to  now,  the most  useful  spaces  in  practical applications  

of functional  analysis.  

Important  concepts, brief  orientation about main  content  

An  inner product  space X is  a  vector  space with  an inner product 〈   〉 defined 

on it. The latter generalizes the dot product of vectors  in  three dimensional  space  

and  is  used  to  define  

i.   a  norm  ‖ ‖ by  ‖ ‖  √〈   〉 

ii. orthogonality  by  〈   〉   .  
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A  Hilbert  space H is a complete  inner  product  space. The  theory  of inner 

product ap.d Hilbert spaces is  richer than that of general normed and Banach  

spaces.  Distinguishing features  are  

(i) Representations of H  as a direct sum of a closed subspace and its 

orthogonal complement. 

(ii) Orthonormal sets and sequences and corresponding representations  of 

elements of H. 

(iii) the  Riesz  representation of  bounded  linear  functionals by  inner 

products.  

(iv) The Hilbert-adjoint operator  T*  of a  bounded  linear operator T.  

Orthonormal sets  and  sequences  are  truly  interesting only if they are  total. 

Hilbert-adjoint  operators  can  be  used  to  define classes of operators  (self-

adjoint,  unitary,  normal,which are of great imporance in applications.  

Inner Product  Space (Sesquilinear Space or  
 

 
 time linear Space) 

An  inner product  space (or pre-Hilbert space)  is  a  vector  space  X  with  an  

inner product  defined  on  X.  It  is  a mapping of 〈   〉        into  the 

scalar field  F  of X; that is, with every pair of vectors  x  and  y  there is associated  

a  scalar which  is  written 〈   〉 and is  called the  inner product of x  and y,  such 

that for all vectors  x,  y, z  and  scalars     we have  

 (Additivity Axiom): 〈     〉  〈   〉  〈   〉. 

  (Symmetry Axiom): 〈   〉  〈   〉  for real field.  

And 〈   〉  〈   〉̅̅ ̅̅ ̅̅ ̅  for complex field 

 (Homogeneity Axiom): 〈    〉   〈   〉 . 

  (Positivity Axiom): 〈   〉   ; and 〈   〉    if and only if    . 

Norm on an Inner Product Space: An  inner product on X  defines  a  norm  on 

X  given  by  ‖ ‖  √〈   〉. If ‖ ‖    then   is a normalized or unit vector. 

Metric on an Inner Product Space: An  inner product on X  defines  a  metric on 

X  given  by         ‖   ‖  √〈       〉     

Hence  inner product spaces  are  normed  spaces,  and Hilbert  spaces are  Banach  

spaces.  
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Example: Let    〈   〉  be an inner product space over a field F then show that 

〈   〉    〈   〉       

Solution: 〈   〉  〈     〉   〈   〉          

Similarly    〈   〉  〈   〉̅̅ ̅̅ ̅̅ ̅  〈     〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅   〈   〉̅̅ ̅̅ ̅̅ ̅          

Example: Let    〈   〉  be an inner product space over a field F then show that 

〈    〉   ̅ 〈   〉              

Solution: 〈    〉  〈    〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅   〈   〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅   ̅ 〈   〉̅̅ ̅̅ ̅̅ ̅   ̅ 〈   〉              

Example: Let    〈   〉  be an inner product space over a field F then show that 

〈   〉  〈   〉                

Solution: 〈   〉  〈   〉  〈   〉  〈   〉    〈     〉          

     

Example:  Show that  the Euclidean space R
2
 is an inner product defined by 

〈   〉                       

Solution   〈   〉    

〈   〉                              
    

     

 〈   〉                           

        
    

           
      

     

                           

 〈     〉  〈   〉  〈   〉 

〈     〉                                            

〈     〉                                      

                                                 

〈     〉  〈   〉  〈   〉  

  〈   〉  〈   〉 

〈   〉                                      

      〈   〉  

 〈    〉   〈   〉 

〈    〉                                       

             〈    〉   〈   〉  
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Theorem 

Let H be an inner product space then H is a normed space with defined norm 

‖ ‖  √〈   〉 

Proof 

      〈   〉    √〈   〉    ‖ ‖    

     ‖ ‖    √〈   〉    〈   〉        

     ‖  ‖  √〈     〉  √ 〈    〉  √  ̅ 〈   〉 

‖  ‖  √| | 〈   〉  | |√〈   〉  | |‖ ‖  

     ‖   ‖  ‖ ‖  ‖ ‖ 

‖   ‖  〈       〉  〈     〉  〈     〉  

‖   ‖  〈   〉  〈   〉  〈   〉  〈   〉  〈   〉  〈   〉  〈   〉  〈   〉  

‖   ‖  〈   〉   〈   〉  〈   〉  

‖   ‖  〈   〉   |〈   〉|  〈   〉  ‖ ‖   ‖ ‖‖ ‖  ‖ ‖   

‖   ‖   ‖ ‖  ‖ ‖   ‖   ‖  ‖ ‖  ‖ ‖  

This shows that an inner product space is a normed space. 
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Theorem   

An  inner product is a metric space with metric defined by 

       ‖   ‖  √〈       〉  

Proof  

(M1)         √〈       〉  ‖   ‖                      

(M2)        √〈       〉  ‖   ‖             

           if and only if      

(M3)        √〈       〉  ‖   ‖  ‖   ‖  √〈       〉 

                           (Symmetry) 

(M4)         √〈       〉  ‖   ‖  ‖       ‖ 

       ‖   ‖  ‖   ‖  

                        (Triangle Inequality).  

Thus        √〈       〉 satisfies all the properties of a metric and hence a 

metric space. 
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Inner Product Space Satisfies Parallelogram Equality 

‖   ‖  ‖   ‖    ‖ ‖  ‖ ‖    

i.e. the sum of squares of the length of diagonals of parallelogram is equal to the 

sum of the squares of the lengths of sides of parallelogram. 

Proof 

      ‖   ‖  ‖   ‖   

 〈       〉  〈       〉  

 〈     〉  〈     〉  〈     〉  〈     〉  

 〈   〉  〈   〉  〈   〉  〈   〉  〈   〉  〈   〉  〈   〉  〈   〉  

 〈   〉  〈   〉  〈   〉  〈   〉  

  〈   〉   〈   〉    〈   〉  〈   〉     ‖ ‖  ‖ ‖          

This  name  is  suggested  by  elementary  geometry,  as  we  see  from  Figure if 

we  remember  that  the  norm  generalizes  the elementary concept of the length of 

a vector. It  is  quite remarkable that such an  equation  continues  to  hold  in  our 

present  much  more  general setting.  

 

We  conclude  that  if  a  norm  does  not  satisfy  Parallelogram Equality,  it  

cannot  be obtained from an inner product by the use of ‖ ‖  √〈   〉. Such 

norms do exist. Without  risking misunderstandings we may  thus  say:  

Every inner product space is normed but Not all  normed  spaces  are  inner 

product  spaces 
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Question 

Every norm space is not an inner product space. Prove! 

Proof 

We will prove it by using an example. 

Consider  *  
 

 
+. i.e. A space of all continuous real valued functions on interval 

*  
 

 
+. Then define the following norm; 

‖ ‖  *  
 

 
+    with ‖ ‖     

  *  
 

 
+
|    | 

i. ‖ ‖        Since    
  *  

 

 
+
|    |    

ii. ‖ ‖       
  *  

 

 
+
|    |    |    |        

iii. ‖  ‖     
  *  

 

 
+
|     |  | |   

  *  
 

 
+
|    |  | |‖ ‖ 

iv. ‖   ‖     
  *  

 

 
+
|         |     

  *  
 

 
+
|    |     

  *  
 

 
+
|    |   

‖   ‖  ‖ ‖  ‖ ‖  

Hence ( *  
 

 
+  ‖ ‖) is  a normed space. 

Now let ‖ ‖     
  *  

 

 
+
|    | and choose      *  

 

 
+ such that; 

            and                where    *  
 

 
+  then 

‖ ‖     
  *  

 

 
+
|    |      as well  as  ‖ ‖     

  *  
 

 
+
|    |    

‖   ‖     
  *  

 

 
+
|         |  

 

√ 
 

 

√ 
 √    using   

 

 
 

‖   ‖     
  *  

 

 
+
|         |          using   

 

 
 and     

‖   ‖  ‖   ‖    ‖ ‖  ‖ ‖        

Hence  *  
 

 
+ is not an inner product space. 
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Triangular Inequality for Vectors 

‖ ⃗    ‖  ‖ ⃗ ‖  ‖  ‖  

Proof 

‖ ⃗    ‖  〈 ⃗      ⃗    〉  〈 ⃗   ⃗    〉  〈    ⃗    〉  

‖ ⃗    ‖  〈 ⃗   ⃗ 〉  〈 ⃗    〉  〈    ⃗ 〉  〈     〉  〈 ⃗   ⃗ 〉  〈 ⃗    〉  〈 ⃗    〉  〈     〉  

‖ ⃗    ‖  〈 ⃗   ⃗ 〉   |〈 ⃗    〉|  〈     〉  ‖ ⃗ ‖   ‖ ⃗ ‖‖  ‖  ‖  ‖   

‖ ⃗    ‖   ‖ ⃗ ‖  ‖  ‖   ‖ ⃗    ‖  ‖ ⃗ ‖  ‖  ‖  

Remember:  When does Equality Holds? 

‖ ⃗    ‖  ‖ ⃗ ‖  ‖  ‖  

 ‖ ⃗    ‖  [‖ ⃗ ‖  ‖  ‖]   

 ‖ ⃗    ‖  ‖ ⃗ ‖   ‖ ⃗ ‖‖  ‖  ‖  ‖   

〈 ⃗   ⃗ 〉  〈 ⃗    〉  〈 ⃗    〉  〈     〉  〈 ⃗   ⃗ 〉   ‖ ⃗ ‖‖  ‖  〈     〉  

 〈 ⃗    〉  〈    ⃗ 〉   ‖ ⃗ ‖‖  ‖  

 〈 ⃗    〉  〈 ⃗    〉̅̅ ̅̅ ̅̅ ̅   ‖ ⃗ ‖‖  ‖  

    〈 ⃗    〉   ‖ ⃗ ‖‖  ‖  

   〈 ⃗    〉  ‖ ⃗ ‖‖  ‖  |〈 ⃗    〉|  ………….(1) 

But    〈 ⃗    〉  |〈 ⃗    〉|    ………….(2) 

From (1) and (2)    〈 ⃗    〉  |〈 ⃗    〉| 

 ‖ ⃗ ‖‖  ‖  |〈 ⃗    〉|  

  ⃗          or  ⃗      for any     
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Cauchy–Schwarz Inequality 

If  ⃗  and    are vectors in a real inner product space V, then 

〈 ⃗    〉  〈 ⃗   ⃗ 〉 〈     〉   or |〈 ⃗    〉|  ‖ ⃗ ‖‖  ‖ 

Proof 

For any real number „t‟ consider  〈  ⃗       ⃗    〉    

  〈 ⃗    ⃗    〉  〈     ⃗    〉   〈  ⃗      ⃗ 〉  〈  ⃗       〉     

    〈 ⃗   ⃗ 〉   〈    ⃗ 〉    〈 ⃗    〉   〈     〉     

   〈 ⃗   ⃗ 〉   〈    ⃗ 〉   〈 ⃗    〉   〈     〉     

   ‖ ⃗ ‖    〈 ⃗    〉  ‖  ‖     

Let   
〈 ⃗⃗   ⃗ 〉

‖ ⃗⃗ ‖ 
 then     〈  ⃗       ⃗    〉  

〈 ⃗⃗   ⃗ 〉 

‖ ⃗⃗ ‖ 
‖ ⃗ ‖   

〈 ⃗⃗   ⃗ 〉

‖ ⃗⃗ ‖ 
〈 ⃗    〉  ‖  ‖     

 
〈 ⃗⃗   ⃗ 〉 

‖ ⃗⃗ ‖ 
  

〈 ⃗⃗   ⃗ 〉 

‖ ⃗⃗ ‖ 
 ‖  ‖      

〈 ⃗⃗   ⃗ 〉 

‖ ⃗⃗ ‖ 
 ‖  ‖     ‖  ‖  

〈 ⃗⃗   ⃗ 〉 

‖ ⃗⃗ ‖ 
  

 ‖ ⃗ ‖ ‖  ‖  〈 ⃗    〉   〈 ⃗    〉  ‖ ⃗ ‖ ‖  ‖   

 |〈 ⃗    〉|  ‖ ⃗ ‖‖  ‖  or 〈 ⃗    〉  〈 ⃗   ⃗ 〉 〈     〉  

Remember:   

|〈 ⃗    〉|  ‖ ⃗ ‖‖  ‖  

 ‖  ⃗    ‖     

   ⃗      

   ⃗      are L.Independent. 
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Appolonius Inequality   

‖   ‖  ‖   ‖  
 

 
‖   ‖   ‖  

 

 
     ‖

 
  

Proof:  

‖   ‖  〈       〉  〈     〉  〈     〉  

‖   ‖  〈   〉  〈   〉  〈   〉  〈   〉  

‖   ‖  ‖ ‖   〈   〉  ‖ ‖    ……………..(1) 

‖   ‖  〈       〉  〈     〉  〈     〉  

‖   ‖  〈   〉  〈   〉  〈   〉  〈   〉  

‖   ‖  ‖ ‖   〈   〉  ‖ ‖    ……………..(2) 

Adding (1) and (2) we have 

‖   ‖  ‖   ‖  ‖ ‖   〈   〉  ‖ ‖  ‖ ‖   〈   〉  ‖ ‖   

‖   ‖  ‖   ‖   ‖ ‖   ‖ ‖    ……………..(3) 

Put             in (3) 

‖       ‖  ‖       ‖   ‖   ‖   ‖   ‖   

‖        ‖  ‖    ‖   ‖   ‖   ‖   ‖   

 ‖  
 

 
     ‖

 
 ‖    ‖   ‖   ‖   ‖   ‖   

 ‖  
 

 
     ‖

 
 

 

 
‖   ‖  ‖   ‖  ‖   ‖   

Hence we get 

‖   ‖  ‖   ‖  
 

 
‖   ‖   ‖  

 

 
     ‖
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Polarization Inequality  〈 ⃗    〉  
 

 
 ‖ ⃗    ‖  ‖ ⃗    ‖    

Proof: Consider ‖ ⃗    ‖  ‖ ⃗    ‖   

 〈 ⃗      ⃗    〉  〈 ⃗      ⃗    〉  〈 ⃗   ⃗    〉  〈    ⃗    〉  〈 ⃗   ⃗    〉  〈    ⃗    〉  

 〈 ⃗   ⃗ 〉  〈 ⃗    〉  〈    ⃗ 〉  〈 ⃗   ⃗ 〉  〈 ⃗    〉  〈    ⃗ 〉  〈     〉  

 ‖ ⃗ ‖   〈 ⃗    〉  ‖  ‖  ‖ ⃗ ‖   〈 ⃗    〉  ‖  ‖   〈 ⃗    〉  

〈 ⃗    〉  
 

 
 ‖ ⃗    ‖  ‖ ⃗    ‖    

Theorem: Let V be an inner product space, V also a normed space if following 

axioms are true; 

 ‖ ⃗ ‖        ‖ ⃗ ‖     ⃗    

 ‖  ⃗ ‖  | |‖ ⃗ ‖        

 ‖ ⃗    ‖  ‖ ⃗ ‖  ‖  ‖ 

Proof 

 ‖ ⃗⃗ ‖        ‖ ⃗⃗ ‖     ⃗⃗    

Let  ⃗    then ‖ ⃗ ‖  √〈 ⃗   ⃗ 〉    ‖ ⃗ ‖    

If   ⃗    then ‖ ⃗ ‖  √〈 ⃗   ⃗ 〉    ‖ ⃗ ‖    

 ‖ ⃗ ‖        ‖ ⃗ ‖     ⃗     

 ‖  ⃗⃗ ‖  | |‖ ⃗⃗ ‖        

Let ‖  ⃗ ‖  〈  ⃗    ⃗ 〉    〈 ⃗   ⃗ 〉    ‖ ⃗ ‖  ‖  ⃗ ‖  | |‖ ⃗ ‖         

 ‖ ⃗⃗   ⃗⃗ ‖  ‖ ⃗⃗ ‖  ‖ ⃗⃗ ‖ 

‖ ⃗    ‖  〈 ⃗      ⃗    〉  〈 ⃗   ⃗    〉  〈    ⃗    〉  

‖ ⃗    ‖  〈 ⃗   ⃗ 〉  〈 ⃗    〉  〈    ⃗ 〉  〈     〉  〈 ⃗   ⃗ 〉  〈 ⃗    〉  〈 ⃗    〉  〈     〉  

‖ ⃗    ‖  〈 ⃗   ⃗ 〉   |〈 ⃗    〉|  〈     〉  ‖ ⃗ ‖   ‖ ⃗ ‖‖  ‖  ‖  ‖   

‖ ⃗    ‖   ‖ ⃗ ‖  ‖  ‖   ‖ ⃗    ‖  ‖ ⃗ ‖  ‖  ‖  
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Hilbert Space:  A complete  inner  product  spac is called  Hilbert space. Or an 

inner product space in which every Cauchy sequence converges is said to be 

Hilbert Space. 

Example: Show that  the Euclidean space R
n
 is a Hilbert space with inner product 

defined by 〈   〉  ‖ ‖  ∑ |  |
  

 . 

Solution   Let      be a Cauchy Sequence in R
n
 where      ,  

   
-
 

 
 then for 

any     there exists      such that   

‖     ‖  √〈           〉                  

 √∑ |  
   

   
   

|
 

 
                  

 |  
   

   
   

|                  

   
   

  is a Cacuchy sequence in R and since R is complete  

therefore   
   

      

then there exists a natural number      such that  |  
   

   |  
  

√ 
            

 |  
   

   |  
  

√ 
            

|  
   

   |  
  

√ 
            

         

|  
   

   |  
  

√ 
            

If                then     . 

Let                    then for the above expression we have  

‖    ‖  √∑ |  
   

   |
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 ‖    ‖  √∑ |  
   

   |
 

 
  |  

   
   |

 
   |  

   
   |

 
  

 ‖    ‖  √
  

 
 

  

 
   

  

 
 √

   

 
          

 ‖    ‖            √〈         〉             

This shows that      converges in R
n
. Hence R

n
 is a Hilbert space. 

Similary we can show that C
n
 is a Hilbert space with complex sequence. 

Theorem:   The  space      with      of all sequecnes        is a Hilbert  

space with inner product defined as √〈   〉  ‖ ‖   ∑ |  |
  

  
 

  

Solution   Let      be a Cauchy Sequence in    where      ,  
   

-
 

 
 then for 

any     there exists      such that   

‖     ‖  √〈           〉                  

 √∑ |  
   

   
   

|
 

 
 

 

                 

 |  
   

   
   

|                  

   
   

  is a Cacuchy sequence in R and since R is complete  

Therefore   
   

      then  |  
   

   |    for each i 

Next suppose that        then 

‖    ‖  (∑ |  
   

   |
 

 
 )

 

 
    Since |  

   
   |    for each i 

       

Now                then         

This shows that      converges in   . Hence    is a Hilbert space. 
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Theorem 

The  space      with       is  not an  inner product space, hence  not a Hilbert  

space. 

Proof 

We know that in an inner product space Parallelogram law holds. We check this 

law for give space    of all sequecnes       . 

Let                                 then we are to prove  

‖   ‖  ‖   ‖    ‖ ‖  ‖ ‖    

‖ ‖   ∑ |  |
  

  
 

   | |  | |  | |  | |    
 

   
 

   

‖ ‖   ∑ |  |
  

  
 

   | |  |  |  | |  | |    
 

   
 

   

‖   ‖  ‖                        ‖  ‖           ‖     

‖   ‖  ‖                        ‖  ‖           ‖     

‖   ‖  ‖   ‖     

 ‖   ‖  ‖   ‖    ‖ ‖  ‖ ‖    

      ( 
 

   
 

 *     ( 
 

 *  this is only possible when     . 

      does not satisfy the parallelogram law with     . 

Hence The space    with       is  not an  inner product space, hence  not a 

Hilbert  space. 
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Theorem   

The  space      of all b ounded sequecnes is a Hilbert  space with inner product 

defined as √〈   〉  ‖ ‖        |  | where           

Solution   Let      be a Cauchy Sequence in    where      ,  
   

-
 

 
 then for 

any     there exists      such that   

‖     ‖  √〈           〉                  

       |  
   

   
   

|                  

 |  
   

   
   

|                  

   
   

  is a Cacuchy sequence in R and since R is complete  

Therefore   
   

      

then there exists a natural number      such that  |  
   

   |  
  

 
            

 |  
   

   |  
  

 
            

|  
   

   |  
  

 
            

         

|  
   

   |  
  

 
            

If                then     . 

Let                    then for the above expression we have  

|    |  |  
   

   |  
  

 
            

 ‖    ‖        |  
   

   |  
  

 
            

 ‖    ‖            √〈         〉             
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This shows that      converges in   . 

Now | |  |  |  |  
   

      
   

|  |  
   

   |  |  
   

| 

| |     |  
   

|   ………………(1) 

Since      ,  
   

-
 

 
    being a bounded sequence could be written as for any 

real K; |  
   

|    

    | |         this show that           is a bounded sequence. 

Then         and Hence    is a Hilbert space 

Theorem  

The  space C[a, b]  is  not an inner product space, hence  not a Hilbert  space.  

Proof 

We know that in an inner product space Parallelogram law holds. We check this 

law for give space  [   ] with defined norm ‖ ‖        |    |      [   ] 

Let                 
   

   
  [   ] then we are to prove  

‖   ‖  ‖   ‖    ‖ ‖  ‖ ‖    

‖ ‖  ‖ ‖     

                
   

   
  and                 

   

   
 

‖   ‖     and  ‖   ‖    

 ‖   ‖  ‖   ‖    ‖ ‖  ‖ ‖    

                

    [   ] does not satisfy the parallelogram law. 

Hence the space  [   ] is  not an  inner product space, hence  not a Hilbert  space. 
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Theorem   

The  space         is a Hilbert  space with inner product defined as 

√〈   〉  ‖ ‖        |    | 

Solution   Let         be a Cauchy Sequence in       then for any     there 

exists      such that   

‖     ‖                       |           |                  

 |           |                  

        is a Cacuchy sequence in R and since R is complete  

Therefore              where      is function       

Next we show that             for this it is enoght to show that   is 

continuous. Let     and     . 

Since              then being continuous on X it will be continuous on     . 

 |            |  
  

 
   whenever  ‖    ‖    

Since            so we have      such that  

 |          |  
  

 
            

Since              so we have      such that  

 |            |  
  

 
            

Now we are to show that            for this let 

|          |  |                                    |  

|          |  |          |  |            |  |            |  

|          |  
  

 
 |            |  

  

 
  

|          |  
  

 
  |            |  
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|          |  
  

 
  

  

 
  whenever  ‖    ‖    

|          |    whenever  ‖    ‖    

This shows that   is continuous at   , so   is continuous on X, so              

This shows that                     

Hence        is a Hilbert space 

Other Examples 

 Space L
2
[a,b] is a Hilbert space with 〈   〉  ∫         

 

 
   

 Hilbert sequence space    is a Hilbert space with 〈   〉  ∑     
 
    it is  

the  prototype  of  a  Hilbert  space.  It was  introduced  and investigated by 

D. Hilbert (1912)  in his work on integral equations. 

Theorem   

Show that the space c consisting of all convergent sequecnes        of real 

number (or complex numbers) with inner product defined as 

√〈   〉  ‖ ‖        |  | is a Hilbert Space. 

Solution   Since a convergent sequence is bounded and the space    consists of 

bounded sequences, so the space c is subspace of   . Since    is Hilbert Space, so 

to show that c is Hilbert space it is enough to show that c is closed. For this we will 

have to show    ̅. 

We already know that     ̅  …………(1) 

Let         ̅  then there must exists a sequence {    }    such that         

Hence then for any     there exists      such that   

‖      ‖  
 

 
             

       |  
   

   |  
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 |  
   

   |  
 

 
             …………(2) 

Similarly for each fixed     and      we have 

 |  
       |  

 

 
             …………(3) 

 |  
       |  

 

 
             …………(4) 

Since        , so       ,  
    - is the convergent sequence of real numbers. 

Since every convergent sequence is Cauchy sequence, then for any     there 

exists      such that   

 |  
       

    |  
 

 
              …………(5) 

Now using (2), (3), and (4) we have 

|     |  |     
       

       
       

       |  

|     |  |  
       |  |  

       
    |  |  

       |  

|     |  
 

 
 

 

 
 

 

 
  

 |     |                 

This shows that        is a Cauchy Sequence of real numbers. Since the set of 

real numbers is complete, so this Cauchy sequence converges. i.e.        is 

convergent sequence. Then          

Then     ̅     …………(6) 

Hence    ̅ and this shows that   is closed, so   is Hilbert Space. 
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Theorem   

Show that the space c consisting of all sequecnes        of real number (or 

complex numbers) converging to zero with inner product defined as 

〈   〉  ‖ ‖         |  | 
   is a Hilbert Space. 

Solution   Since a convergent sequence is bounded and the space    consists of 

bounded sequences, so the space c is subspace of   . Since    is Hilbert Space, so 

to show that c is Hilbert space it is enough to show that c is closed. For this we will 

have to show    ̅. 

We already know that     ̅  

Let         ̅  then there must exists a sequence {    }    such that         

Since the space c consists of those sequences which converges to zero so        

Since a sequence can converge at most one point so     i.e.                

This shows that      i.e.     

Then     ̅      

Hence    ̅ and this shows that   is closed, so   is Hilbert Space. 
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Orthogonality 

An element    of an  inner product space X  is  said  to  be  orthogonal  to  an 

element      if 〈   〉   . 

We also  say  that   and   are orthogonal,  and we write     .  Similarly, for  

subsets        we write      if     for  all     , and      if     for  

all       and  all     .  

Orthogonal Set 

A set            of vectors of an inner product space X is said to be an 

orthogonal set if distinct vectors of X are orthogonal, i.e.  

〈     〉          and        . 

Theorem of Pythagoras 

If   and   are orthogonal vectors in a real inner product space then  

‖   ‖  ‖ ‖  ‖ ‖   

Proof: Since   and   are orthogonal therefore 〈   〉    

‖   ‖  〈       〉  〈     〉  〈     〉  

‖   ‖  〈   〉  〈   〉  〈   〉  〈   〉  〈   〉  〈   〉  〈   〉  〈   〉  

‖   ‖  〈   〉   〈   〉  〈   〉  ‖ ‖  ‖ ‖    〈   〉    
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Generalized Pythagoras Theorem 

If               are piecewise orthogonal vectors in a real inner product space 

then   ‖∑   
 
   ‖  ∑ ‖  ‖

  
     

Proof 

‖∑   
 
   ‖  〈∑   

 
    ∑   

 
   〉  ∑ ∑ 〈     〉

 
   

 
     

‖∑   
 
   ‖  ∑ 〈     〉

 
       〈     〉         

‖∑   
 
   ‖  〈∑   

 
    ∑   

 
   〉  

‖∑   
 
   ‖  ∑ ‖  ‖

  
     

Lemma (Continuity of inner product)  

If  in  an  inner  product space,        and     ,  then  〈     〉  〈   〉.  

Proof:    

Subtracting and adding a  term, using  the triangle inequality  for  numbers  and,  

finally,  the Schwarz  inequality, we  obtain  

|〈     〉  〈   〉|  |〈     〉  〈    〉  〈    〉  〈   〉|  

|〈     〉  〈   〉|  |〈       〉|  |〈      〉|   

|〈     〉  〈   〉|  ‖  ‖‖    ‖  ‖    ‖‖ ‖    as     

|〈     〉  〈   〉|    as     

Hence  〈     〉  〈   〉 as     
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Remember  

 Theorem (Completion). For  any  inner  product  space  X  there exists  a  

Hilbert  space  H  and  an  isomorphism  A  from  X  onto  a  dense subspace  

   .  The  space H  is  unique  except  for  isomorphisms.  

 A subspace Y of an inner  product space  X is defined  to  be a vector  

subspace of X  taken with the inner product on X restricted  to     .  

 Theorem (Subspace): Let Y  be a  subspace of a Hilbert space H, Then;  

a) Y  is  complete  if and  only  if Y  is  closed  in H.  

b) If Y  is  finite  dimensional,  then  Y  is  complete.  

c) If H  is  separable,  so  is  Y.  More  generally,  every  subset  of a 

separable  inner product space  is  separable.  

Interesting to Remember 

In  a  metric  space  X,  the  distance     from  an  element       to  a nonempty  

subset      is  defined  to  be                          

In a  normed  space  this  becomes          ‖   ‖           

A  simple  illustrative  example  is  shown  in the following figure.  
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The segment joining two given elements  x  and y of a vector space X  is  defined  

to  be  the  set of  all       of  the  form  

                                   

In fact for any   [   ], the point              is always the point of the 

segment with ends x and y. 

A  subset M of X  is said to be convex if  for every        the segment joining x  

and y is contained in M. In other words, a subset M of X  is said to be convex if  

for any point      , the closed segment with end points x and y is contained in 

M. 

 

For instance,  every  subspace  Y  of X  is  convex,  and  the  intersection  of  

convex  sets  is  a  convex  set. The empty set and the singleton sets are always 

convecx sets. 
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Minimizing Vector Theorem 

Let X be an inner product space and     a convex subset which is complete (in  

the metric induced by the inner product).Then for every given     there exists a 

unique     such  that        ̅  ‖   ̅‖  ‖   ‖ 

Proof   

Existence:   we have       ̅  ‖   ̅‖ then by  the  definition  of  an  infimum  

there  is a sequence        in M  such  that 

     as     where    ‖    ‖ 

We show that       is Cauchy.  

Let         then ‖  ‖     ……………(1) 

Now ‖     ‖  ‖         ‖  ‖          ‖ 

‖     ‖   ‖  
 

 
       ‖   ‖  (

 

 
   (  

 

 
)   )‖  

Since M is convex therefore 
 

 
        

 

 
   (  

 

 
)      

‖     ‖      ……………(2)  by definition of   

Now by  the  parallelogram  equality; 

‖     ‖  ‖           ‖  ‖     ‖
  ‖     ‖   

‖     ‖   ‖     ‖    ‖  ‖
  ‖  ‖    

‖     ‖             
    

    

‖     ‖           
    

      as       

implies  that       is  Cauchy.  Since  M  is  complete,  therefore      such that 

      . Since    ,  we  have ‖   ‖   . Also, 

‖   ‖  ‖         ‖  ‖    ‖  ‖    ‖  

‖   ‖     ‖    ‖       
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 ‖   ‖     

 ‖   ‖     

Uniqueness:  

We  assume  that      and       both satisfy ‖   ‖    i.e. 

  ‖   ‖  ‖    ‖ and  we will show  that  then      .   

By  using the  parallelogram  equality,  

‖    ‖
  ‖            ‖   

‖    ‖
   ‖            ‖    ‖   ‖  ‖    ‖    

‖    ‖
   ‖          ‖

            

‖    ‖
    ‖  (

 

 
  (  

 

 
)   )‖

 
      

Since M is convex therefore 
 

 
  (  

 

 
)      

‖    ‖
              

 ‖    ‖     
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Turning  from  arbitrary  convex  sets  to  subspaces,  we  obtain  a lemma which 

generalizes  the familiar  idea of elementary geometry that the unique point    in a 

given subspace  Y closest  to  a given  x  is  found by  "dropping  a  perpendicular  

from  x  to  Y."  

Lemma 

Let    〈   〉  be an inner product space and let Y  be  a  complete  subspace of X 

and      fixed.  Then          is orthogonal  to Y.  

Proof   

 

Suppose that      is not true then there exists      such  that  〈    〉      

Clearly,      since otherwise 〈    〉   .   

Furthermore, for any scalar   consider 

‖     ‖
  〈           〉  〈       〉  〈        〉  

‖     ‖
  〈   〉   ̅ 〈    〉  〈    〉   ̅ 〈     〉  

‖     ‖
  〈   〉  〈    〉   ̅ [ 〈     〉  〈    〉]  

Consider   
〈    〉

〈     〉
 then  

‖     ‖
  〈   〉  

〈    〉

〈     〉
〈    〉   ̅ *

〈    〉

〈     〉
〈     〉  〈    〉+   

‖     ‖
  〈   〉  

〈    〉

〈     〉
〈    〉  〈   〉  

〈    〉

〈     〉
〈    〉  〈   〉  

 

〈     〉
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‖     ‖
  ‖ ‖  

| | 

‖  ‖
 
  

Since ‖ ‖  ‖   ‖    therefore 

‖     ‖
      

But  this  is  impossible because we  have  

‖     ‖  ‖       ‖  ‖         ‖     

‖     ‖
      

Hence  〈    〉       cannot hold, hence      and the  lemma  is  proved.   

Sum  

The sum of two subspace Y and Z of a vector space X is denoted by Y + Z and is 

defined to be a set                       .  

Direct  Sum  

Let  Y and Z be two subspace of a vector space X and if        , then Y + Z 

is called the direct sum of Y and Z and is denoted by    . 

Remember   

A  vector  space  X  is  said  to  be  the direct  sum  of  two  subs  paces  Y  and Z  

of X, written        ,  

If  each       has  a  unique  representation                    .  

Then Z  is  called  an  algebraic  complement  of  Y  in X  and  vice  versa, and  

Y,  Z  is  called  a  complementary  pair  of subspaces  in X 

For  example,   

Y =  R  is  a  subspace  of  the  Euclidean  plane  R
2
. Clearly,  Y  has  infinitely 

many  algebraic  complements  in  R
2
,  each  of which  is  a  real  line.  But  most  

convenient  is  a  complement  that  is perpendicular. We make  use  of  this  fact 

when we  choose  a  Cartesian coordinate  system.  In R
3
  the  situation  is  the  

same  in  principle.  
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Remember 

 Theorem:  Let a linear space X be the sum of two subspace Y and Z, so 

that X = Y + Z then       if and only if        . i.e. Y and Z are 

disjoint. 

 The condition in this theorem that the subspace Y and Z have only the origin 

in common, is often called disjointness of Y and Z.  

Theorem 

If M and N are linear closed subspace of a a Hilbert Space H, such that    , 

then the linear subspace     is also closed. 

Proof 

For any subspace M and N their sum M + N is also a subspace. We have to show it 

is a closed subpsce. We need to show that all the limit points of     are in 

   . 

Let      be a sequence in     converging to a limit point „z‟ i.e.     . 

It is enough to show that      . i.e.         . 

Since    , so we see that        . i.e. M and N are disjoint. Then using 

the theorem “Let a linear space X be the sum of two subspace M and N, so that 

        then       if and only if        . i.e. M and N are 

disjoint.” 

The sum     can be strengthen to the direct sum     and thus each    can 

be expressed uniquely in the form          where          . 

Then we have; 

‖     ‖  ‖               ‖   

‖     ‖  ‖               ‖   

Now using pythagorian theorem 

“if     in IPS then ‖   ‖  ‖ ‖  ‖ ‖ ” 
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We have the following result 

‖     ‖  ‖     ‖  ‖     ‖   

Now since      is a Cauchy sequence then  

‖     ‖                

‖     ‖                 

‖     ‖  ‖     ‖                 

‖     ‖                and ‖     ‖                

‖     ‖               and ‖     ‖               

So      and      are Cauchy sequences in   and   respectively. Also   and   

are closed subspace of a Hilbert space H, therefore   and   are complete. So by 

completeness there exist vectors x and y in   and   such that; 

     and      

Since     is in    , we have 

                                            

       

This shows that   is also in     

Hence     is closed. 
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Orthogonal Compliment  

If Y is any subset of a Hilbert  space  H,  then orthogonal compliment of Y is 

denoted by    and is defined by the formula  

        〈   〉                      

Which  is  the  set  of  all  vectors  orthogonal  to  Y. 

Annihilator    

Let Y be a subset of a Hilbert space H, then the set of all vectors of H which are 

orthogonal to Y is called the annihilator of  Y and is denoted by   . i.e. 

              

Remember 

 The annihilator of     and is denoted by    . i.e.                

      {         }    and                  

Theorem    

Let  Y  be  a subset  of  a  Hilbert  space H.  Then         

Proof    

Let     then 〈   〉    for all      

                   

Theorem    

Let  A and B be subset  of  a  Hilbert  space H. And     Then         

Proof   

Let     and      then 〈   〉    for all     

 〈   〉    for all                 
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Theorem    

Let  A and B be subset  of  a  Hilbert  space H. Then             . 

Proof   

Since       and       then           and           

                ……………..(1) 

Let         this means that      and      then by definition 

〈   〉    for all     and 〈   〉    for all     

Hence 〈   〉    for every       and so by definition          

                ……………..(2) 

From (1) and (2)               

Theorem    

Let  A and B be subset  of  a  Hilbert  space H. Then             . 

Proof   

Since       and       then           and           

               

Theorem    

Let  A be a subset  of a Hilbert space H. Then        . 

Proof   

Since       then                   

Also                    

Hence          
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Theorem    

Let  Y be a subset  of a Hilbert space H. Then         . 

Proof   

If        then clearly            so the condition is true. 

If        then let        implies     and      and so 〈   〉    i.e. 

‖ ‖                           

Theorem    

Let  Y be a subset  of a Hilbert space H. Then    is closed linear subspace of H. 

Proof   

Let        and       then we have to show that          

Since         therefore 〈   〉    and 〈   〉    for every     then 

〈       〉   〈   〉   〈   〉                     . 

This shows that    is linear subspace of H. Now we have to show that    is 

closed. For this we just show      ̅̅ ̅̅ . 

We already know that       ̅̅ ̅̅  …………..(1) 

Now let     ̅̅ ̅̅  then there exists a sequence      in    such that      

Now by using continuity of inner producsts for any     we have  

〈   〉  〈          〉     
   

〈    〉              

Implies that     ̅̅ ̅̅     …………..(2) 

Then      ̅̅ ̅̅  and    is closed subspace of H. 
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Theorem    

Let  Y be a closed linear subspace of a Hilbert space H. Then         . 

Proof   

Since we know that if Y be a subset  of a Hilbert space H. Then  

           …………….(1) 

Given that Y is closed linear subspace of H and we also know that    is closed 

linear subspace of H. Let        implies     and      and so 〈   〉    

i.e. ‖ ‖            and             

            …………….(2) 

Combining (1) and (2) we get           

Projection Theorem    

Let  Y  be  any  closed  subspace  of  a  Hilbert  space H.  Then            

Proof   

Suppose      is proper subspace of H then there is a non – zero vector     

such that          . i.e.           

Now          implies            

Also we know           implies             

Then                          a contradiction. 

Hence      is the whole of H. i.e.         since          

Thus         
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Theorem    

Let  Y  be  a closed subset  of  a  Hilbert  space H.  Then         

Proof    

Let     then 〈   〉    for all      

                   

Now let       and Y be a closed subset H also         so;  

For each                          

But        therefore        

                 

But                                    

Hence from both cases      . 

Theorem    

For any complete subspace Y of an inner product space V, Prove that       . 

Proof    

Let     then 〈   〉    for all      

                   

Now let       and Y be a complete subspace of  V also         so;  

For each                              

                 

But                                    

Hence from both cases      . 
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Theorem    

Let A be proper complete subspace of an inner product space V, then Prove that 

          

Proof   

Let V be an inner product space and     and being a subspace is convex subset. 

Then for every given     there exists a unique     such  that 

‖   ‖      ̅  ‖   ̅‖  

For each          put        

Then                  

                   

To see this expression is unique, suppose also                      

              

                     

                              

            

Thus          

Lemma (Keep in Mind) 

The  orthogonal  complement     of  a closed  subspace  Y of a Hilbert  space H is  

the  null  space,       of the orthogonal projection P of H onto Y.  
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Lemma 

For  any  subset      of a  Hilbert  space H,  the  span  of M is dense in H if and  

only if       .  

i.e. The set of all linear combiniations of vectors of M is dense in H iff       . 

Proof   

Let      and assume          to be dense in H.  

Then     ̅   .   

Then By Theorem     ̅                   there  is  a  sequence       in 

V such  that     .   

Since      and    , we have  〈    〉   .   

The continuity  of  the  inner  product implies  that 〈    〉  〈   〉 as    . 

Thus 〈   〉  ‖ ‖   , so  that     .   

Since      was  arbitrary,  this  shows  that       .  

Conversely,   

Suppose  that        and         .  

If     ,  then    , so that        and     .   

Hence        .   

Since V is  a subspace  of H, then     ̅   ̅  

We  thus  obtain   ̅   .i.e. V is dense in H.  
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Orthonormal Vectors 

Let X be an inner product space, the vectors       are said to be orthonoram if 

〈   〉    and ‖ ‖    ‖ ‖. 

Orthonormal  Sets  and  Sequences  

An  orthogonal set M  in  an  inner product space X  is  a  subset      whose 

elements are  pairwise  orthogonal.  An  orthonormal  set     is  an  

orthogonal set  in X  whose  elements  have norm 1,  that  is,  for  all       , 

〈   〉  {
         
         

  

If  an  orthogonal  or  orthonormal  set  M  is  countable,  we  can arrange  it  in  a  

sequence        and  call  it  an  orthogonal  or  orthonormal sequence, 

respectively.  

Orthonormal Basis 

In an inner product space, a basis consisting of orthogonal vectors is called an 

orthogonal basis, and a basis consisting of orthonormal vectors is called an 

orthonormal basis. A familiar example of the orthonormal basis is the standard 

basis                           for R
3
 with the Eucledian inner product. 

Lemma 

An orthonormal  set  is  linearly independent.  

Proof   

Let                 be orthonormal  and  consider  the  equation  

                      

Consider 〈                     〉    

 〈∑         〉    ∑   〈     〉    〈     〉        

This shows that orthonormal  set                is  linearly independent.  
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Examples  

 Euclidean  space  R
3
:  In  the  space  R

3
 ,  the  three  unit  vectors (1, 0, 0),  

(0,1,0),  (0,0,1)  in  the  direction  of  the  three  axes  of  a rectangular  

coordinate  system  form  an  orthonormal  set. 

 Space    :   In  the  space    ,  an  orthonormal  sequence  is  (  ),  where 

   (   ) has the nth element 1 and all others zero. 

 Continuous functions:   Let X  be  the inner product space of all real-valued 

continuous functions on [    ] with inner product defined by  

〈   〉  ∫           
  

 
  

An orthogonal  sequence  in X  is  (  ), where                         

Another orthogonal sequence in X is (  ), where                      

Advantage   

A  great  advantage  of  orthonormal  sequences  over  arbitrary linearly  

iadependent  sequences  is  the  following.  If we  know  that  a given  x  can be  

represented  as  a  linear combination of some elements of an orthonormal 

sequence,  then the orthonormality makes the actual determination of the 

coefficients very easy.  

Fourier  Coefficients   

The  inner  products  (x, ek)  are  called  the  Fourier  coefficients  of  x  with  

respect  to  the orthonormal  sequence  (  ).  

Geometrical Interpreatation of the Bessel  Inequality اسکا حل آگے آرہا 

A Geometrical Interpreatation of the Bessel  Inequality is that the sum of the 

squares of the projections of a vector x onto a set of mutually perpendicular 

directions can not exceed the square of the length of the vector itself. 
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Bessel  Inequality  

Let (  ) be anorthonormal sequence in an inner product space X. Then for every 

    we have ∑ |〈    〉|
  

    ‖ ‖  

Proof   

Let                     then for every      we can express  

  ∑     
 
          〈    〉  

We claim that for a particular choice of   . i.e.    〈    〉       but      

then we can obtain     such that           (will show this) 

We first note that  

‖ ‖  〈   〉  〈∑     
 
    ∑     

 
   〉  〈∑ 〈    〉  

 
    ∑ 〈    〉  

 
   〉  

‖ ‖  ∑ 〈    〉
 
   〈   ∑ 〈    〉  

 
   〉  ∑ 〈    〉

 
   ∑ 〈    〉 

   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〈     〉  

‖ ‖  ∑ 〈    〉
 
   ∑ 〈    〉̅̅ ̅̅ ̅̅ ̅̅ ̅ 

   〈     〉  

‖ ‖  ∑ 〈    〉
 
   ∑ 〈    〉̅̅ ̅̅ ̅̅ ̅̅ 

   〈     〉  taking     

‖ ‖  ∑ 〈    〉
 
   〈    〉̅̅ ̅̅ ̅̅ ̅̅      

‖ ‖  ∑ |〈    〉|
  

    ∑ |〈    〉|
  

     ………(1) 

Now consider 

〈   〉  〈     〉  〈   〉  〈   〉  〈  ∑     
 
   〉  ‖ ‖   

〈   〉  〈  ∑ 〈    〉  
 
   〉  ‖ ‖  ∑ 〈    〉

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〈    〉  ∑ |〈    〉|
  

     

〈   〉  ∑ 〈    〉̅̅ ̅̅ ̅̅ ̅̅ 
   〈    〉  ∑ |〈    〉|

  
    ∑ |〈    〉|

  
    ∑ |〈    〉|

  
     

〈   〉     Implies     

Now       then using Pyhtagorian Theorem  ‖ ‖  ‖ ‖  ‖ ‖   

  ‖ ‖  ‖ ‖  ∑ |〈    〉|
  

    ∑ |〈    〉|
  

    ‖ ‖   

 ∑ |〈    〉|
  

    ‖ ‖   if    . Hence proved. 
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Bessel  Inequality (Another Form) 

Suppose              is an orthonormal set of vectors in an inner product space 

X. Let     be any arbitrary vector and    be the fourier coefficients of vector   

with respect to    then ∑   
  

    ‖ ‖  

Proof 

Consider  〈  ∑     
 
      ∑     

 
   〉    

〈   〉  〈  ∑     
 
   〉  〈∑     

 
     〉  〈∑     

 
    ∑     

 
   〉     

‖ ‖   〈  ∑     
 
   〉  ∑   

  
   〈     〉     

‖ ‖   ∑   
 
   〈    〉  ∑   

  
   〈     〉     

‖ ‖   ∑   
 
   

〈    〉

〈     〉
 ∑   

  
       

‖ ‖   ∑   
  

    ∑   
  

       

‖ ‖  ∑   
  

       

∑   
  

    ‖ ‖    Hence proved. 

Series Related  to Orthonormal Sequences and  Sets  

There  are  some  facts  and  questions  that  arise  in  connection with  the Bessel  

inequality.  In  this  section we  first  motivate  the term  "Fourier coefficients,"  

then  consider  infinite  series  related  to  orthonormal  sequences,  and  finally  

take a first look at orthonormal sets which are uncountable.  

Fourier  series  

A  trigonometric  series  is  a  series  of the  form  

   ∑                  
 
     

Where     
 

  
∫       

  

 
    

 

 
∫            

  

 
    

 

 
∫            

  

 
          

These coefficients are called the Fourier coefficients of x.                 
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Theorem Let  (  )  be  an  orthonormal  sequence  in  a  Hilbert  space H. Then:  

a) The series ∑     
 
    converges  (in  the  norm  on H)  if and only  if the 

following  series  converges: ∑ |  |
  

    

b) If  ∑     
 
     converges,  then  the  coefficients      are  the Fourier 

coefficients 〈    〉, where   denotes  the  sum of ∑     
 
   ;  hence in this 

case,  ∑     
 
      can be  written    ∑ 〈    〉  

 
    

c) For  any     ,  the  series  ∑     
 
     with    〈    〉 converges (in 

the norm of H).  

Proof  

(a)  Let                     and     |  |
  |  |

    |  |
  

Then,  because of  the orthonormality,  for  any     and      ,  

‖     ‖  ‖                                     ‖   

‖     ‖  ‖                    ‖
   

‖     ‖  |    |
  |    |

    |  |
         

Hence        is  Cauchy  in H  if  and only  if        is  Cauchy in R. Since H and R  

are  complete,  the  first  statement of  the  theorem  follows. i.e.The series 

∑     
 
    converges  (in  the  norm  on H)  if and only  if the following  series  

converges: ∑ |  |
  

    

(b)  Let ∑     
 
     converges in H.Then   ∑     

 
     

So that  〈    〉  〈∑     
 
      〉    for         

〈    〉  ∑   
 
   〈     〉       since            are orthonormal. 

(c)  Let there is an element      such that    〈    〉               then by 

Bessel inequality;   ∑ |〈    〉|
  

    ‖ ‖    

i.e. ∑ |〈    〉|
  

      implies for  any     ,  the  series  ∑     
 
     with 

   〈    〉 converges (in the norm of H).  

This complete the proof. 



212 
 

For video lectures @ You tube visit “Learning with Usman Hamid” 

 

Riesz and Fischer Theorem 

Let               be  an  orthonormal  set in  a  Hilbert  space H.Then for any 

sequence      of scalar the following statements are equivalent;  

a)         

b) ∑     
 
     converges in H. 

c) There is an element      such that    〈    〉                

Proof  

(a)  Let         then ∑ |  |
  

       

For            let    ∑     
 
     

Then,  because of  the orthonormality,  for  any     and      ,  

‖     ‖  ‖                                     ‖   

‖     ‖  ‖                    ‖
   

‖     ‖  ∑ |  |
  

         as       since         convergent 

‖     ‖     as       

Hence        is  Cauchy  in H. Since H is complete,  therefore       . 

Hence ∑     
 
     converges in H. 

(b)  Let ∑     
 
     converges in H.Then   ∑     

 
     

So that  〈    〉  〈∑     
 
      〉    for         

〈    〉  ∑   
 
   〈     〉       since            are orthonormal. 

(c)  Let there is an element      such that    〈    〉               then by 

Bessel inequality;   ∑ |  |
  

    ∑ |〈    〉|
  

    ‖ ‖    

i.e. ∑ |  |
  

      implies        . 

This complete the proof. 
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Representation of Functionals on Hilbert Spaces  

It is  of  practical  importance  to  know  the  general  form  of  bounded linear  

functionals  on  various  spaces. For general Banach spaces such formulas and their 

derivation  can  sometimes  be  complicated.  However,  for  a  Hilbert space  the  

situation  is  surprisingly  simple:  

Riesz's Representation Theorem  

Every bounded  linear  functional    on a Hilbert space H can be  represented  in 

terms  of the  inner product,  namely,      〈   〉 where  z depends on   , is  

uniquely determined  by   and has norm ‖ ‖  ‖ ‖ 

Proof   We prove  that  

(a)   has  a  representation      〈   〉. 

(b) z  in       〈   〉 is  unique.  

(c) formula  ‖ ‖  ‖ ‖  holds.  

(a)  If    ,  then       〈   〉 hold  if  we  take     .   

Let    .  To motivate  the  idea  of  the  proof,  lets investigate what properties  z 

must  have  if  a  representation       〈   〉  exists.  First  of  all,       since 

otherwise     .  Second, if       〈   〉    for  some      then        

and       . Hence        .  This suggests  that we  consider       and  its  

orthogonal  complement      .  

Since       is a vector space and closed therefore               

Furthermore,     implies        ,  so  that             by  the projection 

theorem.  

Choose            and let                 where       is  arbitrary.  

Applying   ,  we  obtain                               since   is linear. 

This show that       .  

Since         , we have 〈    〉    

〈                〉     

    〈     〉       〈    〉     
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〈     〉
〈    〉  

     

‖  ‖
 
〈    〉  〈  

     ̅̅ ̅̅ ̅̅ ̅̅

‖  ‖
 
  〉  

      〈   〉   where   
     ̅̅ ̅̅ ̅̅ ̅̅

‖  ‖
 
   

Since       was  arbitrary,   has a representation      〈   〉. 

 (b) We prove that   in      〈   〉 is unique. Suppose that for all     we have 

     〈    〉  〈    〉  

 〈    〉  〈    〉    〈       〉              

Choosing         we get 

 〈           〉    ‖     ‖
     ‖     ‖      

Hence         , so that       , the uniqueness.  

(c) We finally prove ‖ ‖  ‖ ‖.  

If     ,  then     and ‖ ‖  ‖ ‖  holds.  

Let    .  Then    .  From      〈   〉 with       we obtain   

     〈   〉  ‖ ‖   

 ‖ ‖       |    |  ‖ ‖‖ ‖  

 ‖ ‖  ‖ ‖  ……………(1) 

Now  |    |  |〈   〉|  ‖ ‖‖ ‖  by Schawarz Inequality 

 
|    |

‖ ‖
 ‖ ‖        

|    |

‖ ‖
 ‖ ‖  

 ‖ ‖  ‖ ‖  ……………(2) 

From (1) and (2)  ‖ ‖  ‖ ‖ 

 

 

Available at MathCity.org
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Lemma 

If  〈    〉  〈    〉  for  all    in  an  inner product  space  X,  then       .  In 

particular,  〈   〉     for  all      implies    .  

Proof   Let, for all  , 

〈    〉  〈    〉  〈    〉  〈    〉    〈       〉     

Choosing         we get 

 〈           〉    ‖     ‖
     ‖     ‖      

Hence         , so that       . 

Let, for all  , we have 〈   〉    and Choosing     we get 

 〈   〉    ‖ ‖     ‖ ‖          

The practical usefulness of bounded linear functionals on Hilbert spaces  results  to  

a  large  extent  from  the  simplicity  of  the  Riesz representation       〈   〉. 

Furthermore,       〈   〉  is  quite  important  in  the  theory of operators on 

Hilbert spaces.  In particular,  this  refers  to  the Hilbert-adjoint operator T* of a  

bounded  linear  operator  T  which we  shall  define  in the  next section.  For  this  

purpose  we  need  a  preparation which  is  of  general interest, too. We begin with  

the  following  definition.  

SesquiIinear  Form  Let X and Y be vector spaces over  the same field  

K (=R or C).Then a sesquilinear  form (or sesquilinear  functional)  h  on      is  

a mapping          such  that  for  all              and              and  

all  scalars    ,  

(a)                             

(b)                            

(c)                 

(d)          ̅       

Hence  h  is  linear  in  the  first  argument  and  conjugate  linear  in  the second 

one.  If X  and  Yare real (K =  R), then                   is  simply and  h  is  

called  bilinear  since  it  is  linear  in  both  arguments.  
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Bounded Sesquilinear Function 

If X and Yare normed spaces and if  there is a real number   such that for  all  

   ,     we have |      |   ‖ ‖‖ ‖  then     is  said  to  be  bounded 

sesquilinear, and  the number ‖ ‖            

       

|      |

‖ ‖‖ ‖
    ‖ ‖  

‖ ‖  

|      | is  

called  the  norm  of   . Also we have  |      |  ‖ ‖‖ ‖‖ ‖. 

Hilbert Adjoint Operator T* 

Let         be a bounded linear operator, where    and    are Hilbert spaces. 

Then the Hilbert-adjoint operator  T*  of  T  is  the operator          such that 

for all      and     , we have 〈    〉  〈     〉 

Theorem (Riesz  Representation)  

Let    and    be Hilbert  spaces and            is a  bounded  sesquilinear 

form.  Then     has  a  representation         〈    〉 where           is  a 

bourrded  linear  operator.  S  is  uniquely  determined  by  h  and  has  norm 

‖ ‖  ‖ ‖ 

Proof   

We consider       ̅̅ ̅̅ ̅̅ ̅̅ ̅. This is  linear in y, because of the bar. And x is fixed.  Then  

      ̅̅ ̅̅ ̅̅ ̅̅ ̅  〈   〉   By Riesz Theorem 

        〈   〉  …………..(1) 

Here let       is  unique  but, of  course,  depends on our fixed     . It 

follows  that  (1)  with  variable  x  defines  an  operator         by     . 

           〈    〉    which is required.  using       

Now S is linear. In fact, its domain is the vector space   . And we have from 

       〈    〉 the following result 

〈            〉                

〈            〉                     
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〈            〉   〈     〉   〈     〉  

〈            〉  〈           〉  

                       

Now S is bounded linear operator, then 

‖ ‖        
   

|      |

‖ ‖‖ ‖
       

   

|〈    〉|

‖ ‖‖ ‖
  

Choose      

‖ ‖        
    

|〈     〉|

‖ ‖‖  ‖
       

    

‖  ‖ 

‖ ‖‖  ‖
       

‖  ‖

‖ ‖
 ‖ ‖  

‖ ‖  ‖ ‖     …………..(2) 

Now by definition 

‖ ‖        
   

|      |

‖ ‖‖ ‖
       

   

|〈    〉|

‖ ‖‖ ‖
       

   

‖  ‖‖ ‖

‖ ‖‖ ‖
       

‖  ‖

‖ ‖
 ‖ ‖  

‖ ‖  ‖ ‖     …………..(3) 

Hence from (2) and (3)  ‖ ‖  ‖ ‖ 

For Uniqueness 

Let another operator         for which        〈    〉 but        〈    〉 

for          then in this case 

〈    〉  〈    〉  

       

       and hence S is unique. 
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Theorem (Existence)   

The Hilbert-adjoint  operator  T*  of         where    and    are Hilbert 

spaces exists,  is unique and  is a bounded linear operator with norm ‖  ‖  ‖ ‖ 

Proof 

Consider           define by the  formula  〈   〉  〈    〉  ………..(1) 

and this defines  a  sesquilinear  form  on        because  the  inner  product  is 

sesquilinear (linear in first argument and conjugate linear in second argument)  and  

T  is  linear.   

We claim that   is boubnded by Schwarz  inequality. To see this consider; 

| 〈   〉|  |〈    〉|  ‖ ‖‖  ‖  ‖ ‖‖ ‖‖ ‖  

| 〈   〉|  ‖ ‖‖ ‖‖ ‖  ………..(2)   implies   is boubnded. 

By Riesz representation theorem for  ; writing  T* for S, replace by T* we  have  

 〈   〉  〈     〉   ………..(3) 

where          is  a  uniquely determined  bounded  linear  operator with  

norm ‖ ‖  ‖  ‖  ………..(4) 

comparing (1) and (3) 〈    〉  〈     〉 

 〈    〉̅̅ ̅̅ ̅̅ ̅̅ ̅  〈     〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅  〈    〉  〈     〉     is Hilbert Adjoint Operator. 

Now we prove ‖  ‖  ‖ ‖ 

From (2) we have   
| 〈   〉|

‖ ‖‖ ‖
 ‖ ‖ 

       
   

| 〈   〉|

‖ ‖‖ ‖
 ‖ ‖  ‖ ‖  ‖ ‖   ………..(5) 

Now  ‖ ‖        
   

| 〈   〉|

‖ ‖‖ ‖
 

 ‖ ‖        
   

|〈    〉|

‖ ‖‖ ‖
       

|〈     〉|

‖ ‖‖  ‖
       

‖  ‖ 

‖ ‖‖  ‖
       

‖  ‖

‖ ‖
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 ‖ ‖  ‖ ‖    ………..(6) 

From (5) and (6)   ‖ ‖  ‖ ‖    ………..(7) 

From (4) and (7)   ‖  ‖  ‖ ‖ 

Lemma  (Zero  operator)  

Let X  and  Y  be  inner product  spaces and           a  bounded  linear 

operator. Then:  

(a)      if and  only  if 〈    〉     for  all       and    .  

(b) If        ,  where X  is  complex, and  〈    〉     for  all    ,  then 

   . 

Proof.  (a)           〈    〉  〈   〉   〈   〉     

Conversely,  〈    〉              for  all  x  and  y. 

(b)  By  assumption,  〈    〉     for  every           , that  is,  

  〈            〉  | | 〈    〉  〈    〉   〈    〉   ̅〈    〉  

The  first  two  terms on  the  right  are  zero  by  assumption.  a =  1 gives  

〈    〉  〈    〉    and      gives         and 〈    〉  〈    〉    

By  addition,  〈    〉   , and      follows  from  (a).   

In  part  (b)  of  this  lemma,  it  is  essential  that  X  be  complex. Indeed,  the 

conclusion may not hold  if X  is  real. A  counterexample is a  rotation   of the 

plane R
2
  through  a  right  angle.   is linear, and     , hence 〈    〉    for all  

    ,  but    .  
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Self-Adjoint Operator 

A bounded linear operator           on a Hilbert space H  is  said  to be Self – 

adjoint or Hermitian if  the T*=T,  

Where the T* is the Hilber adjoint operator of  T. 

Unitary Operator 

A bounded linear operator           on a Hilbert space H  is  said  to be Unitary 

if T  is bijective and           

Where the T* is the Hilber adjoint operator of  T. 

Normal Operator  

A bounded linear operator           on a Hilbert space H  is  said  to be Normal 

if           

Where the T* is the Hilber adjoint operator of  T. 
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Theorem The Gram-Schmidt Orthogonalisation Process 

If H is a Hilbert space over K and      
  is a linearly independent set in H, then we 

can find an orthonormal set      
  in H so that  

                                   for all    . 

This procedure is used to find orthogonal basis and orthonormal basis set. 

The Gram-Schmidt Orthogonalisation Process 

Suppose              forms a basis set for inner product space V.One can use to 

construct an orthogonal basis              as follows; 

       

      
〈     〉

〈     〉
    

      
〈     〉

〈     〉
   

〈     〉

〈     〉
    

      
〈     〉

〈     〉
   

〈     〉

〈     〉
   

〈     〉

〈     〉
    

         

      
〈     〉

〈     〉
   

〈     〉

〈     〉
     

〈       〉

〈         〉
      

In need for orthonormal set find the norms of             . 

Example  

                           

                 

      
〈     〉

〈     〉
             

  

 
                       

For orthonormal 

   
  

‖  ‖
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FUNDAMENTAL THEOREMS FOR NORMED AND BANACH SPACES  

This  chapter  contains,  roughly  speaking,  the  basis  of  the  more  advanced  

theory of normed and Banach spaces without which  the usefulness of these spaces 

and their applications would be rather limited. The four important theorems in  the 

chapter are the Hahn-Banach theorem, the  uniform  bounded  ness  theorem,  the  

open  mapping  theorem,  and the  closed graph theorem. These are  the 

cornerstones of the  theory of Banach spaces.  (The  first  theorem  holds  for  any  

normed  space.)  

Brief orientation about main  content  

 Hahn-Banach  theorem    

This  is  an extension  theorem  for  linear  functionals  on vector  spaces.  It 

guarantees  that a  normed  space  is  richly  supplied with  linear  

functionals,  so that  one  obtains  an  adequate  theory  of  dual  spaces  as  

well  as  a satisfactory  theory of adjoint operators. 

 Uniform  boundedness  theorem by Banach and Steinhaus.  

This  theorem  gives  conditions  sufficient  for  (‖  ‖)  to  be  bounded, 

where  the        are  bounded  linear  operators  from  a  Banach  into  a 

normed  space.  It  has  various  (simple  and  deeper)  applications  in 

analysis, for instance in connection with Fourier series, weak convergence, 

summability  of  sequences, numerical  integration, etc.  

 Open  mapping  theorem   

This  theorem  states  that  a bounded linear operator  T  from  a Banach 

space onto a Banach space is  an open mapping,  that is, maps open sets onto 

open sets. Hence if  T is  bijective,      is  continuous  ("bounded  inverse  

theorem ").  

 Closed  graph  theorem   

This  theorem  gives  conditions under which  a  closed  linear  operator  is  

bounded.  Closed linear operators  are of importance  in  physical  and  other  

applications. 
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Definitions 

 A  partially ordered  set  is  a  set M  on which  there  is  defined  a  partial 

ordering,  that is,  a binary relation which  is  written   and  satisfies  the 

conditions  

a   a  for  every     .    (Reflexivity)  

If a   band b    a,  then  a = b.   (Antisymmetry)  

If a    band b    c,  then  a    c.  (Transitivity)  

"Partially"emphasizes that M may contain elements a and b for which neither 

     nor       holds.  Then  a  and  b  are called  incomparable elements.  In 

contrast,  two  elements  a  and  b  are  called  comparable elements  if  they  

satisfy  a   b or  b    a  (or both).  

 A  totally  ordered  set  or  chain  is  a  partially ordered  set  such  that 

every  two  elements of the  set are comparable.  In other words,  a  chain is  

a  partially ordered set  that has  no  incomparable  elements.  

 An  upper bound  of a  subset W  of a  partially ordered set M  is  an 

element       such  that     for every    .  

Finite Functional 

Let V be a linear space, a functional       is said to be finite if      is finite 

for all    . 

Convex Functional 

Let V be a linear space, a functional       is said to be convex (or Semi norm) 

if  

        for all     

             for all     and real     

                  for all       

Zorn's  Lemma   

Let      be  a  partially  ordered  set.  Suppose that  every  chain       has  

an  upper  bound.  Then M  has  at  least  one maximal element.  
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Hahn-Banach Theorem  

The  Hahn-Banach  theorem  is  an  extension  theorem  for  linear  functionals. It 

guarantees that a  normed  space  is  richly  supplied with  bounded  linear 

functionals and  makes  possible  an  adequate  theory  of  dual  spaces,  which  is  

an essential  part of  the general  theory of normed  spaces.  In  this way  the Hahn-

Banach  theorem  becomes one of  the most  important  theorems in connection 

with bounded linear operators. Furthermore, our discussion will  show  that  the  

theorem  also  characterizes  the extent to which values  of  a  linear  functional  

can  be  preassigned.  The  theorem  was discovered  by  H.  Hahn  (1927),  

rediscovered  in  its  present  more general form  (Theorem 4.2-1) by S.  Banach 

(1929)  and generalized to complex  vector  spaces by H. F. Bohnenblust and A.  

Hahn – Banach Theorem for Real Spaces (Extension of  linear functionals)   

Let X  be a  real vector space and   a sub – linear (convex) functional on X. 

Furthermore, let     be  a  linear  functional  which  is  defined  on a  subspace Z of 

X  and satisfies            for all    . Then     has  a  linear  extension  ̃ 

from  Z  to  X  satisfying   ̃          for all    .  

That is,   is a  linear functional on X, satisfies   ̃         on X   

And        ̃    for  every     .  

Proof   

We  can suppose that     otherwise the theorem is trivial. 

Step – I  

In this part we shall prove that   can be extended onto a larger subspace without 

violating condition            for all    . 

Let       and put                  then   is subspace of X and 

contains Z properly. 

Define a function        by                              where   

       . 

Clearly    is a linear functional on V. 
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We show that it is possible to choose a real number c such that the „majorisation‟ 

condition                  is satisfied. 

That is there exists a real number c such that  

                 

  (
 

 
)     (

 

 
  )  

    (
 

 
  )   (

 

 
)   if     

And  

  (
 

 
)     ( 

 

 
)          

  (
 

 
)      ( 

 

 
  )  

     ( 
 

 
  )   (

 

 
)   if     

Now for any arbitrary points        of Z we have 

                                  

              (            )  

              (             )  

                                

Hence                                  

                                     
               (Say) 

        Say for any arbitrary        

Now choose c such that           

Then for this value of c the linear functional    define on V by   
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Satisfies the condition that             for all    . 

Because conditions    (
 

 
  )   (

 

 
) and     ( 

 

 
  )   (

 

 
) are 

satisfied. 

Hence    is an extension of   to a subspace V containing Z properly and satisfying 

condition            for all    . 

Step – II  

Now suppose that X as a linear space, is generated by a countable set of elements 

                in X. Then we construct a linear functional on X by induction 

on n. that is we construct a sequence of subspaces 

   〈    〉     〈     〉       〈       〉   

This process extend the functional   onto the whole space X, since every   in X is 

in some subspace   . 

Step – III  

For the general case, that is, when no countable set generates X, the theorem is 

proved by applying Zorn‟s Lemma as follows; 

Let F be the class of all possible extensions  ̃ of   satisfying the condition 

 ̃          for all    ( ̃) and   ̃         for every        .  

Then F is non – empty because    constructed above is in F. 

We partially order F as follows; 

For        we say that      if and only if   is an extension of   . 

That is            and             for every         . 

Now let C be a chain in F. Define a linear functional   ̅as follows; 

i. Domain of  ̅           

ii.   ̅         for every     ( )̅             
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It is clear that   ̅is a linear extension of   and   ̅        for all    ( )̅. 

So  ̅    and is an upper bound for C. 

By Zorn‟s Lemma, F has a maximal element    which is an extension of   and 

           for all        .  

We claim that        . For otherwise, let           then as in step I, there 

is an extension    of    to 〈       〉, contradicting the maximality of   . 

Hence    is the required extension of   and this prove the theorem completely. 

Hahn – Banach Theorem for Real Spaces (Dr. AbdulMajeed)  
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Hahn-Banach Theorem (Generalized) for Real Vector Spaces  

The Hahn-Banach theorem concerns  real vector  spaces. A generalization that 

includes complex vector spaces was obtained by H.F.Bohnenblust and A.Sobczyk  

(1938):  

Statement 

Let X be a  real vector space and    a  real-valued functional on X which  is 

subadditive,  that  is,   

for  all       ,                     

and  for  every  scalar a  satisfies        | |    .  

Furthermore,  let   be a  linear functional which  is defined on a subspace Z of X 

and  satisfies |    |        for all    .  Then     has a  linear  extension  ̃  

from  Z  to  X  satisfying  | ̃   |        for all    . 

Proof  

If X  is  real,  the  situation  is  simple.  

Then  |    |        for all      implies            for all    .  

Hence by  the Hahn-Banach theorem  there  is  a  linear  extension  ̃  from  Z  to X  

such  that 

 ̃         for all    .  …………..(1) 

From  this  and        | |      we  obtain  

  ̃     ̃           |  |           

  ̃              …………..(2) 

From (1) and (2)         ̃         

Hence | ̃   |        for all    . 
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Hahn-Banach Theorem (Generalized) for Complex Vector Spaces  

The Hahn-Banach theorem concerns  real vector  spaces. A generalization that 

includes complex vector spaces was obtained by H.F.Bohnenblust and A.Sobczyk  

(1938):  

Statement 

Let X be a complex vector space and   a  real-valued functional on X which  is 

subadditive,  that  is,   

for  all       ,                     

and  for  every  scalar a  satisfies        | |    .  

Furthermore,  let   be a  linear functional which  is defined on a subspace Z of X 

and  satisfies |    |        for all    .  Then     has a  linear  extension  ̃  

from  Z  to  X  satisfying  | ̃   |        for all    . 

Proof  

Let X  be complex. Then Z  is a  complex  vector  space,  too.  Hence     is  

complex-valued,  and we  can write                      for     where     

and    are  real-valued. For a moment we  regard X  and Z  as  real  vector  spaces  

and  denote  them  by     and    ,  respectively;  this simply means  that we  

restrict multiplication by  scalars  to  real numbers (instead of complex numbers). 

Since     is  linear on Z  and      and     are real-valued, linear  functionals on   , 

Also        |    | because the real part of a complex number cannot exceed the 

absolute value.Hence by |    |        for all    , we have 

           for all      

By  the Hahn-Banach  theorem there is a linear extension  ̃  of    from     to    

such  that   ̃          for all      

This takes care of     and we now turn to   . Returning to Z and using          

we  have  for  every      

 [            ]                        
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The  real parts  on both sides must be equal:                     for     

Hence  if  for  all       we  set   ̃     ̃       ̃        for     

We see from                that  ̃         on Z.  

This shows  that  ̃ is an extension  of   from  Z  to X.  Our  remaining  task  is  to  

prove  that  

i.  ̃ is  a  linear  functional  on  the  complex  vector  space X  

ii.  ̃ satisfies  | ̃   |       on X.  

That  (i)  holds can be seen from  the following calculation which uses  

 ̃     ̃       ̃       

and the linearity of  ̃  on the real vector space   ; here      with real   and   is  

any complex scalar:  

 ̃(       )   ̃ (       )    ̃             

 ̃(       )    ̃       ̃       [  ̃        ̃    ]  

 ̃(       )        [ ̃       ̃     ]  

 ̃(       )         ̃     

We  prove  (ii).  For  any     such  that   ̃       this  holds  since        by 

                 and       | |    . 

Let  x  be  such  that   ̃     ,  Then we  can write,  using  the  polar form  of  

complex  quantities,   ̃    | ̃   |    thus | ̃   |   ̃         ̃(     ). 

Since | ̃   | is  real,  the last expression  is  real and  thus  equal  to  its  real part.  

Hence by       | |     we have 

| ̃   |   ̃(     )   ̃ ( 
    )   (     )  |    |           

This  completes  the  proof.  
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Hahn-Banach Theorem for Complex Vector Spaces (Dr.AbdulMajeed) 
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This complete the proof of theorem. 
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Hahn-Banach Theorem (Normed Spaces).   

Let   be a bounded linear functional on a subspace Z of a normed space X. Then  

there exists a bounded linear functional  ̃ on X which is an extension of   to X  

and has the same norm, i.e.   ‖ ̃‖
 

 ‖ ‖   

Where  ‖ ̃‖
 

       
‖ ‖  

| ̃   | and ‖ ‖        
‖ ‖  

|    | 

(and  ‖ ‖     in  the  trivial  case      ).  

Proof:  If      , then    , and the extension is  ̃   .   

Let      . We want to use Hahn-Banach Theorem (Generalized). Hence we 

must first discover a suitable  .  

For all     we have    |    |  ‖ ‖ ‖ ‖ 

Comparing with |    |       we have       ‖ ‖ ‖ ‖ 

We see that   is defined on all of X.  

Furthermore,   satisfies                  on X since  by  the  triangle  

inequality,  

       ‖ ‖ ‖   ‖  ‖ ‖  ‖   ‖             

Also       | |     because        ‖ ‖ ‖  ‖  | |‖ ‖ ‖ ‖  | |      

Hence we can now apply Hahn-Banach Theorem (Generalized) and conclude 

that there exists a linear  functional  ̃ on X which is an extension of   and satisfies  

| ̃   |       ‖ ‖ ‖ ‖  

Taking the supremum over all     of norm  1, we obtain the inequality 

‖ ̃‖
 

       
‖ ‖  

| ̃   |  ‖ ‖   

Since  under  an  extension  the  norm  cannot  decrease,  we  also  have  

‖ ̃‖
 

 ‖ ‖ .  Together we  obtain ‖ ̃‖
 

 ‖ ‖   and  the  theorem  is  proved.  
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Hahn-Banach Theorem for Normed Spaces (Dr. AbdulMajeed).   
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Corrollary 
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Theorem  (Bounded  linear  functionals)  

Let  X  be a normed space and let       be  any element of X. Then there  exists 

a bounded linear functional   ̃ on X such that       ‖ ̃‖      ̃     ‖  ‖  

Proof   

We  consider  the  subspace  Z  of  X  consisting  of  all  elements       where    

is  a scalar.  

On Z  we define a  linear functional    by               ‖  ‖ 

  is bounded and has norm  ‖ ‖    because 

|    |  |      |  | |‖  ‖  ‖   ‖  ‖ ‖  

Then Hahn-Banach Theorem (Normed Spaces) implies  that   has a linear 

extension  ̃ from Z  to X,  of norm  ‖ ‖  ‖ ̃‖   .   

Then From              ‖  ‖  we  see  that;          ̃           ‖  ‖  

Corollary (Norm, zero  vector)   

For  every     in  a  normed  space X  we have  ‖ ‖         

   

|    |

‖ ‖
.  

Hence if     is  such  that         for  all      ,  then      .  

Proof     

From Theorem  (Bounded  linear  functionals)  we  have, writing     for   , 

        

   

|    |

‖ ‖
 

| ̃   |

‖ ̃‖
 

‖ ‖

 
 ‖ ‖ 

and  from  |    |  ‖ ‖‖ ‖  we  obtain           

   

|    |

‖ ‖
 ‖ ‖ 

Hence   ‖ ‖         

   

|    |

‖ ‖
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Uniform Boundedness Theorem/ Uniform Boundedness Principle 

The uniform  boundedness  theorem  (or  uniform boundedness principle) by S.  

Banach and H. Steinhaus  (1927)  is  of great  importance.  In  fact, throughout 

analysis  there are many  instances  of  results  related  to  this theorem,  the  

earliest  being  an  investigation  by  H.  Lebesgue  (1909).  

The  uniform  boundedness  theorem  is  often  regarded  as  one  of  the 

corner stones of functional  analysis  in normed spaces,  the others being  the 

Hahn-Banach theorem, the open mapping theorem  and  the  closed  graph  

theorem. Unlike  the Hahn-Banach theorem, the other three of these four  theorems 

require completeness.  Indeed,  they  characterize  some  of  tl1e  most  important 

properties of Banach  spaces which  normed  spaces  in general may not have.  

It  is  quite  interesting  to  note  that  we  shall  obtain  all  three theorems  from  a  

common  source. More precisely, we  shall  prove  the so-called  Baire's  category  

theorem  and  derive  from  it  the  uniform boundedness  theorem as well  as  the  

open  mapping theorem. The  latter will  then  readily  entail  the  closed graph  

theorem. 

Baire's  category  theorem  has  various  other  applications  in  functional- analysis 

and is  the main reason why category enters into numerous  proofs;  for  instance,  

the  more  advanced  books  by  R.  E. Edwards  (1965)  and  J.  L.  Kelley  and  I. 

Namioka  (1963).  

Definition (Category).  A  subset M  of a metric space X  is  said to  be  

(a)  Rare (or  nowhere  dense)  in X  if  its  closure   ̅  has no  interior  points   

(b) Meager (or  of  the  first  category)  in  X  if  M  is  the  union  of 

countably many  sets  each of which  is  rare  in X,  

(c) Nonmeager (or of the  second category)  in X  if M  is not meager in X.  

Bair‟s Category Theorem 

If       is complete then it is non-meager in itself. 

Or  A complete metric space is of second category. 
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From  Baire's  theorem  we  shall  now  readily  obtain  the  desired uniform  

boundedness  theorem.  This  theorem  states  that  if  X  is  a Banach space and a  

sequence of operators            is  bounded at every  point     ,  then  the  

sequence  is  uniformly  bounded.  In  other words,  pointwise  boundedness  

implies  boundedness  in  some  stronger sense,  namely,  uniform  boundedness. 

Uniform  Boundedness  Theorem (Banach Steinhaus Theorem) 

Let  (  )  be  a  sequence  of  bounded  linear operators          from  a Banach  

space X  into  a  normed  space Y such that  ‖   ‖  is bounded for every    ,  

say,  

‖   ‖                     

where    is a real number. Then  the  sequence  of  the  norms  ‖  ‖  is  bounded,  

that  is,  there  is  a     such  that  

‖  ‖                    

Proof  

For every     ,  let        be  the  set of  all  x  such  that  

‖   ‖        for  all  n.  

    is  closed.   

Indeed,  for  any     ̅   there  is  a  sequence        in     converging  to  x.   

This means  that for  every  fixed     we have  ‖    ‖    and obtain ‖   ‖    

because      is  continuous  and  so  is  the norm.  

Hence      ,  and      is  closed.  

By  ‖   ‖    ,  each       belongs  to  some   .   

Hence        
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Since X  is complete, Baire's theorem implies that some    contains an open ball,  

say,  

               
  

Let         be  arbitrary. We  set  

         with    
 

 ‖ ‖
 

Then  ‖    ‖   , so  that      . By (               
)  and  from  the 

definition of    
we  thus have ‖   ‖      for  all  n.   

Also ‖    ‖      since      .   

From (       ) we obtain    
 

 
       

 ‖   ‖  
 

 
‖        ‖  

 ‖   ‖  
 

 
 ‖   ‖  ‖    ‖  

 

 
‖ ‖     with    

 

 ‖ ‖
 

Hence  for  all  n,   ‖  ‖     ‖ ‖  ‖   ‖  
 

 
   

 ‖  ‖                    

Where    
 

 
    

 

 

 

 

 

 

 

Available at MathCity.org
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Applications of Uniform  Boundedness  Theorem   

 Space  of polynomials.  The  normed  space X  of all  polynomials with  

norm  defined  by ‖ ‖      |  | is  not complete.  

(        the coefficients of x)  

Proof:   We construct  a  sequence of  bounded  linear operators on X  which  

satisfies  (‖   ‖    )  but not  (‖  ‖   ),  so that X cannot be complete.  

We may write  a  polynomial       of  degree     in  the  form  

     ∑      
     (     for     ) 

As  a  sequence  of  operators  on X  we  take  the  sequence of  functionals  

      defined  by              and                        

    is  linear.      is  bounded  since |  |  ‖ ‖  by  (‖ ‖      |  |),   

So that  |     |   ‖ ‖. 

Furthermore,  for each  fixed     the sequence (|     |)  satisfies  (‖   ‖    ) 

because a polynomial   of degree     has      coefficients, so  that by  

            and                        

we  have  |     |      ‖ ‖ 

Which  is  of  the  form  (‖   ‖    ).  

We  now  show  that  (  )  does  not  satisfy  (‖  ‖   ),  that  is,  there  is  no  c 

such  that  ‖  ‖  ‖  ‖    for  all  n.  This we  do  by choosing particularly 

disadvantageous polynomials.  For      we  choose  x  defined  by  

                  

Then ‖ ‖    by  ‖ ‖      |  |  and                  ‖ ‖ 

Hence  ‖  ‖  
|     |

‖ ‖
  ,  so  that  (‖  ‖)  is  unbounded.  
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 Fourier series:  There  exist  real-valued  continuous  functions  whose  

Fourier  series diverge  at a  given  point    .  

Proof:  Let X  be  the  normed  space  of all  real-valued  continuous 

functions  of period      with  norm  defined  by ‖ ‖     |    |. 

X  is  a Banach space with  a = 0 and      .  We may take      , without 

restricting generality. To prove our statement, we  shall  apply  the  uniform  

boundedness  theorem  to        where         is  the  value  at       of  the  

nth partial  sum  of  the Fourier series of  .  Since for  t =  0 the sine  terms are zero 

and the cosine  is one,  

We  see  from the followings that   

the Fourier series of  a  given  periodic  function  x  of period      is  of  the  form 

      
  

 
 ∑                        

     

With  

   
 

 
∫       

 

  
      

 

 
∫            

  

 
      

 

 
∫            

  

 
 

That         
 

 
   ∑   

 
    

      
 

 
∫     *

 

 
 ∑       

   +   
  

 
  

We want  to  determine  the  function  represented by  the  sum under  the integral  

sign.  For  this  purpose we  calculate  

    
 

 
 ∑       

    ∑     
 

 
       

     

    
 

 
 ∑       

    ∑ *    (  
 

 
)      (  

 

 
)  + 

     

    
 

 
 ∑       

        
 

 
     (  

 

 
)    

where the  last expression follows by noting that most of the terms drop out in 

pairs. Dividing this by    
 

 
  and adding 1 on both sides, we have  
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   ∑       
    

   (  
 

 
) 

   
 

 
 

  

Consequently, the formula for         can be written in the simple form  

      
 

  
∫     

   (  
 

 
) 

   
 

 
 

  
  

 
  

      
 

  
∫            

  

 
  with       

   (  
 

 
) 

   
 

 
 

 

Using  this,  we  can  show  that  the  linear  functional      is  bounded.  In fact,  by  

(‖ ‖     |    |)  and  (      
 

  
∫            

  

 
),  

From  this  we  see  that      is  bounded.  Furthermore,  by  taking  the supremum 

over  all  x  of norm  one we  obtain  

‖  ‖  
 

  
∫ |     |  

  

 
  

The  equality  sign  holds,  when |     |            

where          at every  t at which         and          elsewhere.    is  

not  continuous,  but  for  any  given        it  may  be  modified to a continuous  

   of norm  1  and  

‖  ‖  
 

  
∫ |     |  

  

 
  

This  sequence is  unbounded, so  that  ‖  ‖     does not hold.  Since X  is  

complete,  this  implies  that  ‖   ‖      cannot  hold  for  all  x.  Hence  there  

must  be  an       such  that  (|     |)  is  unbounded. But by  the definition of 

the       this means  that the  Fourier  series  of  that  x  diverges  at     . 
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Open Mapping  Theorem  

We have discussed  the Hahn-Banach theorem and the uniform boundedness 

theorem and shall now approach the third "big" theorem in this chapter,  the open 

mapping theorem.  It will  be  concerned with  open mappings. These are 

mappings such that the image of every open set is an  open  set  (definition  below).  

Remembering  our  discussion  of  the importance  of  open  sets,  we  understand  

that  open mappings  are of general  interest.  

More specifically,  the open mapping theorem states conditions under which a 

bounded linear operator is  an open mapping. As  in the uniform boundedness 

theorem we again need completeness,  and  the  present  theorem  exhibits  another  

reason  why Banach  spaces  are more  satisfactory  than  incomplete  normed  

spaces.  

The  theorem  also  gives  conditions  under  which  the  inverse  of  a 

hounded  linear  operator  is  bounded.  The proof of  the open mapping theorem  

will  be  based  on  Baire's  category  theorem. 

Let us  begin by  introducing  the  concept of  an  open mapping.  

Definition  (Open mapping)  

Let X  and  Y  be metric spaces. Then           with  domain         is 

called  an  open  mapping  if  for  every open set  in      the  image  is  an open 

set in  Y. 

Lemma  (Open unit ball)   

A  bounded  linear operator T  from  a Banach space X  onto a Banach space Y has  

the property  that the  image T(  ) of  the open unit ball             

contains an open ball about    .  
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The Open Mapping Theorem (Dr.AbdulMajeed) 
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Open  Mapping  Theorem,  Bounded  Inverse  Theorem.   

A bounded  linear operator T from  a Banach space X  onto a Banach space Y  is  

an  open  mapping.  Hence  if T  is  bijective,     is  continuous  and thus  

bounded.  

Proof: 

We  prove  that  for  every  open  set       the  image       is  open  in  Y.  This 

we  do  by showing  that for every           the set T(A) contains an open 

ball about     .  

Let           .   

Since  A  is  open,  it contains  an open ball with center  x.  Hence        contains  

an  open  ball  with  center  0. 

Let the radius  of  the  ball  be     and  set    
 

 
,  so  that    

 

 
.   

Then         contains  the  open  unit  ball        .   

Using Lemma   

“A  bounded  linear operator T  from  a Banach space X  onto a Banach space Y 

has  the property  that the  image T(  ) of  the open unit ball             

contains an open ball about    . ” 

 Now  implies  that  [      ]   [       ] contains an open ball about 0, 

and so  does         .   

Hence T(A)  contains  an  open  ball  about      . Since           was 

arbitrary,       is open.  

Finally, if          exists, it is continuous because T is open. Also since     is  

linear, it  is bounded. 

Hence the result. 
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Closed Graph Theorem  

Not  all  linear  operators  of  practical  importance  are  bounded.  For instance,  

the  differential  operator  in  2.7-5  is  unbounded,  and  in quantum  mechanics  

and  other  applications  one  needs  unbounded operators  quite  frequently.  

However,  practically  all  of  the  linear operators which  the  analyst  is  likely  to  

use  are so-called  closed  linear operators.  This makes  it worthwhile  to  give  an  

introduction  to  these operators.  In  this  section we  define closed  linear 

operators on normed spaces  and  consider some of  their  properties,  in  particular  

in  connection  with  the  important  closed  graph  theorem  which  states  

sufficient conditions  under which  a  closed  linear operator on  a Banach  space  is 

bounded.  

Definition  (Closed Linear  operator).   

Let X  and  Y be normed spaces and           is a linear  operator with  

domain       .Then T is called a closed linear operator if its graph  

                           

is  closed  in  the  normed  space    , where  the  two  algebraic operations  of  a  

vector  space in     are defined  as  usual,  that  is  

                               

                 

(   a scalar)  and  the norm on      is  defined by  

‖     ‖  ‖ ‖  ‖ ‖  
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Closed Graph Theorem (Dr.AbdulMajeed) 

 

Another Statement: A closed linear operator forms a banach space X into a 

Banach space Y is continuous. 
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Closed Graph Theorem   

Let X  and  Y be  Banach spaces  and           a closed  linear operator,  

where       . Then  if      is  closed  in X,  the  operator T  is  bounded.  

Proof   

We  first  show  that       with  norm  defined  by ‖     ‖  ‖ ‖  ‖ ‖ is 

complete.  Let  (  )  be Cauchy  in    , where           .Then for every  

    there is an    such that 

‖     ‖  ‖     ‖  ‖     ‖                 

Hence (  ) and (  ) are Cauchy in X and Y, respectively, and converge, say, 

      and     ,  because X and Y are complete. 

Since   ‖     ‖                 

Therefore   ‖    ‖              as     

This  implies  that               

Since  the  Cauchy  sequence  (  )  was arbitrary,     is  complete.  

By assumption,                           is closed in     and      

is closed  in X.  

Hence      and       are  complete.  By Theorem 

“A  subspace  M  of a  complete metric space X  is  itself complete if  and only if  

the set M  is closed in X.” 

We  now  consider  the mapping              defined by          then P  

is  linear.  P  is  bounded because  

‖       ‖  ‖ ‖  ‖ ‖  ‖  ‖  ‖      ‖  

P  is  bijective;  in  fact  the  inverse mapping  is   

              defined by          
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Since      and      are complete, we can apply  the bounded  inverse theorem 

and  see that     is  bounded,  say,   

‖      ‖   ‖ ‖  for some     and  all        .   

Hence  T  is  bounded because  

‖  ‖  ‖  ‖  ‖ ‖  ‖      ‖   ‖ ‖  for  all        . 

Interesting to Know 

 Theorem  (Closed  linear  operator)   

Let          be a linear operator, where          and X  and Yare 

normed spaces.  Then T is  closed  if and only  if  it has the following 

property.   

If     ,  where        , and       ,  then          and      .  

 Example (Ditlerential  operator):  Let    [   ]  and          

defined by        where  the  prime  denotes  differentiation  and        is  

the  subspace  of functions       which  have  a  continuous  derivative.  

Then T is not bounded, but is closed.  

 Closed ness  does  not  imply  boundedness  of a  linear  operator.  

Conversely,  boundedness  does  not  imply  closedness. 

 Lemma(Closed operator): Let          be a  bounded linear  operator  

with  domain        ,  where  X  and Y are  normed spaces. Then:  

(a)  If      is a closed subset of X, then T is  closed.  

(b)  If T  is  closed and Y  is  complete,  then      is a closed subset of  X.  
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BANACH FIXED POINT THEOREM  

The  Banach  fixed  point  theorem  is  important  as  a  source  of  existence and 

uniqueness  theorems in different branches of analysis.  In this way the theorem 

provides an impressive illustration of the unifying power  of  functional  analytic  

methods  and  of  the  usefulness  of  fixed point  theorems  in  analysis.  

The  Banach  fixed  point  theorem  or  contraction  theorem  concerns 

certain mappings  of a complete metric space  into  itself.  It  states  conditions  

sufficient  for  the  existence  and uniqueness  of  a  fixed  point  (point  that  is  

mapped  onto  itself).  The theorem  also  gives  an  iterative  process  by  which  

we  can  obtain approximations  to  the  fixed  point  and  error  bounds. We 

consider three important fields of application of  the theorem, namely, linear 

algebraic equations, ordinary differential  equations, integral  equations. 

Fixed  Point A  fixed  point  of  a  mapping         of  a  set X  into  

itself  is  an      which  is  mapped  onto  itself  (is  "kept fixed"  by  T),  that  is, 

    , the  image  Tx  coincides with  x.  

For  example,  a  translation  has  no  fixed  points,  a  rotation  of  the plane  has  a  

single  fixed  point  (the  center  of  rotation),  the  mapping      of  R  into  

itself  has  two  fixed  points  (0  and  1)  and  the projection              of  R
2
  

onto  the     axis  has  infinitely  many fixed  points  (all points of  the    axis).  

Contraction  Let          be  a  metric  space. A mapping        is  

called a  contraction on X  if  there is  a positive real  number       such  that  

for  all         we have                               

Geometrically  this  means  that  any  points  x  and  y  have  images  that are  

closer  together  than  those  points  x  and  y;  more  precisely,  the ratio  
        

       
 

does  not  exceed  a  constant a  which  is  strictly less  than  1.  

Iteration:  By  definition,  this  is  a method such that we choose an arbitrary     

in a given set and calculate recursively  a  sequence             from  a  relation  

of  the  form         . that  is,  we  choose  an  arbitrary    and  determine  

successively                        
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Banach  Fixed  Point  Theorem  (Contraction  Theorem).  Another proof 

Consider  a  metric  space         ,  where     .  Suppose  that X  is 

complete  and  let         be  a  contraction  on X.  Then  T  has precisely one  

fixed  point.  

Proof   

We construct a  sequence  (   )  and  show  that it is Cauchy, so  that it converges 

in the complete space X, and then we prove that its limit     is  a  fixed  point of T  

and  T  has  no  further  fixed  points. This  is the  idea  of  the proof.  

We choose any       and define  the "iterative sequence" (  )  by  

                                         

Clearly,  this  is  the  sequence  of  the  images  of      under  repeated application 

of T.  We  show  that (  )  is  Cauchy. For this consider; 

                         

                                           

                            

                                              

Continuing in this manner we get 

                       

Hence  by  the  triangle  inequality  and  the  formula  for  the  sum  of  a geometric 

progression we obtain  for       
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Since       ,  in  the numerator we have         . Consequently,  

         
  

   
                                       

On the  right,        and            is  fixed,  so  that we can make  the right-

hand side as  small as we please by taking   sufficiently large  (and    ). This 

proves that (  )  is  Cauchy. Since X is  complete, (  ) converges,  say,      . 

We  show  that  this  limit  X is  a  fixed  point of the mapping T.  

From  the  triangle  inequality and                   we  have  

                          

                            

and can make the sum in  the second line smaller than any preassigned     

because     . We conclude that          ,  so that      by (M2).  

This shows  that     is  a  fixed  point of  T.  

   is  the only fixed  point of T  because from         and    ̃    ̃  we obtain by  

                 

     ̃          ̃        ̃   

which  implies       ̃     since     .   

Hence     ̃  by  (M2)  and  the theorem  is  proved. 
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Corollary (Iteration, error  bounds).   

Under  the  conditions  of  Banach  Fixed  Point  Theorem  (Contraction  Theorem) 

the  iterative  sequence                               with arbitrary 

      converges to  the  unique  fixed  point x  of T.  Error  estimates  are  the  

prior  estimate          
  

   
          

And  the  posterior  estimate         
  

   
           

Proof  

The  first  statement  is  obvious  from  the  previous  proof.  

Since          
  

   
                                       

Then letting     we get          
  

   
          

Now We  derive          
  

   
           

Since         
  

   
         

Taking  m = 1  and writing      for      and      for    , we have; 

        
  

   
          

Setting         we  have            and obtain   
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Theorem  (Contraction  on  a  ball).   

Let  T  be  a  mapping  of a complete  metric  space          into  itself.  

Suppose  T  is  a  contraction on  a  closed  ball                 ,  that  is, T 

satisfies                   for all      . Moreover, assume  that  

                   

Then  the  iterative  sequence                                

converges  to  an     .  This     is  a  fixed point of T and  is  the  only  fixed  

point of T  in  Y.  

Proof  

We merely have  to show that all       as well as     lie  in  Y.  

We put      in           
  

   
        ,  change     to     and  use 

                   to  get           
 

   
           

Hence  all        are  in  Y.  Also       since         and  Y  is  closed.  

The assertion of  the theorem now  follows  from  the proof of Banach's theorem.   

Lemma (Continuity)   

A  contraction  T on  a  metric  space X  is  a continuous mapping.  
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Application of Banach's Theorem  to Linear Equations  

Banach's  fixed  point  theorem  has  important  applications  to  iteration methods  

for  solving  systems  of  linear  algebraic  equations  and  yields sufficient  

conditions  for  convergence  and  error bounds.  

To  understand  the  situation,  we  first  remember  that  for  solving such  a  

system  there  are  various  direct  methods  (methods  that would yield  the  exact  

solution  after  finitely  many  arithmetical  operations  if the  precision-the word  

length  of  our  computer-were unlimited);  a familiar  example  is  Gauss'  

elimination method  (roughly,  a  systematic version of  the elimination  taught in 

school). However,  an iteration, or indirect  method,  may  be  more  efficient  if  

the  system  is  special,  for instance,  if  it is  sparse,  that is,  if  it consists of many 

equations but has only  a  small  number  of  nonzero  coefficients.  (Vibrational  

problems, networks  and  difference  approximations  of  partial  differential  

equations often lead to sparse systems.) Moreover,  the usual direct methods 

require about n3 /3  arithmetical operations (n = number of equations = number of 

unknowns),  and  for  large  n,  rounding  errors may  become quite  large,  whereas  

in  an  iteration,  errors  due  to  roundoff  (or  even blunders) may be damped out 

eventually.  In fact, iteration methods are frequently  used  to  improve  "solutions"  

obtained by  direct methods.  

 

 

 

 

 

 

 

 

 



263 
 

For video lectures @ You tube visit “Learning with Usman Hamid” 

 

Application of Banach's Theorem  to Linear Equations  
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Application of Banach's  Theorem  to Differential Equations  

The most interesting applications of Banach's fixed point theorem arise in 

connection with function  spaces. The  theorem  then  yields  existence and 

uniqueness  theorems  for  differential  and  integral equations,  as we shall  see.  

In fact,  in  this  section  let us  consider an  explicit ordinary  differential  

equation  of the  first  order           

An initial value problem for  such an equation consists of  the equation and  an  

initial  condition           where      and      are  given  real  numbers.  

We  shall  use  Banach's  theorem  to  prove  the  famous  Picard's theorem which, 

while  not the strongest of its  type  that is  known,  plays a vital role in  the theory 

of ordinary differential equations. The idea of approach is  quite  simple:  ODE 

(given above)  with          will be converted to an integral equation, which  

defines  a  mapping  T,  and  the  conditions  of  the  theorem  will imply  that  T  is  

a  contraction  such  that  its  fixed  point  becomes  the solution  of our problem.  
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Picard's Existence and Uniqueness Theorem (ODE)   /another form 

Let    be  continuous  on  a  rectangle  (Fig.1)  

            |    |     |    |      and  thus  bounded on R,  say  (Fig. 2)  

|      |                

Suppose  that     satisfies  a  Lipschitz  condition  on  R  with  respect  to  its 

second argument,  that is,  there  is  a  constant    (Lipschitz constant)  such that  

for                we have |             |   |   | Then  the  initial  

value  problem           with  (        )  has  a  unique  solution.  This  

solution exists  on  an  interval  [         ],  where      ,  
 

 
 
 

 
- 
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 fig.1 

 

Fig 2 

Proof  

Let      be the metric space of all real-valued continuous functions  on  the  

interval   [         ]  with metric   defined  by  

             |         |  

Where      is  complete. Let  ̃  be  the  subspace  of       consisting  of  all  those  

functions          that satisfy |       |    . 

It  is  not difficult  to  see  that   ̃  is  closed in     , so  that  ̃ is  complete. By  

integration  we  see  that            with           can  be  written        ,  

where    ̃   ̃ is  defined  by           ∫          
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Indeed,  T  is  defined  for  all     ̃,  because       by       ,  
 

 
 
 

 
-,  so 

that  if     ̃,  then      and            , and  the integral above exists since    

is continuous on R.  To see  that T  maps  ̃ into  itself, we  can use  

         ∫          
 

  
    and  |      |   ,  obtaining  

|        |  |   ∫          
 

  
     |  |∫          

 

  
  |   |    |  

|        |      

We show  that  T  is  a  contraction on  ̃.  By  the Lipschitz  condition, 

|           |  |∫ [ (      )           ]
 

  
  |  

|           |  |    |       |         |  

Since  the  last  expression  does  not  depend  on  t,  we  can  take  the maximum  

on  the  left and  have  

                  where           

From       ,  
 

 
 
 

 
-  we  see  that         ,  so  that  T  is  indeed  a  

contraction on   ̃. Implies that  T  has  a  unique  fixed  point     ̃, that is,  a  

continuous  function     on J  satisfying       . Writing       out, we  have  

by           ∫          
 

  
   

        ∫          
 

  
    

Since              where    is  continuous,          ∫          
 

  
    may  

be  differentiated.  

Hence     is  even  differentiable  and  satisfies           with  (        ).  

Conversely,  every solution of            with  (        )  must  satisfy 

        ∫          
 

  
  .   

This  completes  the  proof. 
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Application of Banach's Theorem  to Integral  Equations  
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Application of Banach's Theorem  to Integral  Equations  

We  finally  consider  the  Banach  fixed  point  theorem  as  a  source  of existence 

and uniqueness  theorems  for  integral equations. An  integral equation of  the  

form  

      ∫       
 

 
             ……………..(1) 

is  called  a  Fredholm  equation  of  the  second  kind. Here,  [a, b]  is  a given  

interval.     is  a  function  on  [a, b]  which  is  unknown.     is  a parameter. The  

kernel   of  the  equation  is  a  given  function  on  the square     [   ]  [   ] 

shown in Fig., and    is  a given function on [a, b].  

 

Integral  equations  can  be  considered on various  function  spaces. In  this  

section we  consider      on C[a, b],  the space of all  continuous functions  

defined  on  the  interval  J =  [a, b] with metric     given  by    

             |         |. 

For  the  proposed  application  of  Banach's  theorem  it  is important to note that 

C[a, b] is  complete. 

 

 

 

 

 

 



275 
 

For video lectures @ You tube visit “Learning with Usman Hamid” 

 

Theorem  (Fredholm integral equation).   

Suppose     and    in       ∫       
 

 
            to  be continuous on     

and J =  [a,  b], respectively, and assume that   satisfies | |  
 

      
  with   

defined as |      |   . Then       ∫       
 

 
             has a unique 

solution x on J.  This  function  x  is  the  limit  of the  iterative  sequence  

         , where     is any continuous function on J and for             , and  

              ∫       
 

 
         

The Volterra  integral  equation  

An equation of the following form is called the Volterra  integral  equation  

      ∫       
 

 
             

The  difference  between   

      ∫       
 

 
            and        ∫       

 

 
              

is  that  in  first  the  upper  limit  of  integration  b  is  constant,  whereas  here  in  

second it  is  variable.  This  is essential. 

Theorem  (Volterra  integral  equation).   

Suppose  that  v  in        ∫       
 

 
            is continuous  on  [a,  b]  

and  the  kernel     is  continuous  on  the  triangular region R  in  the      plane  

given  by       ,       ;  see Fig.  Then   

      ∫       
 

 
             

has  a  unique  solution  x  on  [a,  b]  for  every   .  
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Lemma  (Fixed point)   

Let          be a continuous mapping on a complete metric space        ,  

and suppose  that    is  a  contraction  on X  for  some  positive  integer  m.  Then  

T  has  a unique  fixed  point.  
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