CHAPTER 3 [Fundamental Theorems of Functional Analysis]

Definition (3.1): If A is a subset of a topological space X, then the interior $\text{int} A$ of A is defined as the union of all open sets of X that are contained in A, i.e.,

$$A = \bigcup_{i=1}^{n} O_i,$$

where each O_i is open and $O_i \subseteq A$.

We say that A has an empty interior, i.e., $\text{int} A = \emptyset$, if and only if A does not contain any non-empty open set.

Definition: A subset M of a topological space X is said to be:

(a) nowhere dense (or rare) in X if \overline{M} has empty interior, i.e., M does not contain any non-empty open set.

(b) of the first category (or meager) in X if M is the countable union of nowhere dense sets.

(c) of the second category (non-meager) in X if M is not of the first category, i.e., M cannot be expressed as a countable union of nowhere dense sets.

Theorem (3.2) [Baire's Category Theorem]

Every complete metric space is of the second category.

Hence, if $X \neq \emptyset$ is complete and $X = \bigcup_{k=1}^{n} A_k$ (Ak is closed), then at least one A_k contains a non-empty open set.
Theorem 3.3 (The Principle of Uniform Boundedness).

Let \(\{T_n\} \) be a sequence of bounded linear operators \(T_n : X \rightarrow Y \) from a Banach space \(X \) into a normed linear space \(Y \) such that \(\{T_n x\} \) is bounded in \(Y \) for all \(x \in X \). Then \(\{\|T_n\|\} \) is a bounded subset of \(\mathbb{R} \); there is a constant \(C > 0 \) such that \(\|T_n\| \leq C \), \(n = 1, 2, \ldots \).

Proof: For each \(k \in \mathbb{N} \), we define
\[
A_k = \{x \in X : \|T_n x\| \leq k, \forall n\},
\]
we show that \(A_k \) is closed.

Let \(\{x_j\} \) be a sequence in \(A_k \) such that \(x_j \rightarrow x \).

By continuity of \(T_n \) (because \(T_n \) is bounded), we have \(T_n x_j \rightarrow T_n x \). Also by continuity of a norm, we can write: \(\|T_n x_j\| \rightarrow \|T_n x\| \)
\[
\text{ie } \|T_n x\| = \lim_{j \to \infty} \|T_n x_j\| \leq k. \quad (\ast x_j \in A_k).
\]

ie \(\|T_n x\| \leq k \), which shows that \(x \in A_k \) (by def. of \(A_k \)).

And hence \(A_k \) is closed (\(: x_j \rightarrow x \Rightarrow x \in \lim_{j \to \infty} x_j \)).

Since by hypothesis, each \(x \in X \) is in some \(A_k \), because \(\{\|T_n x\|\} \) is bounded for each \(x \in X \) ie
\[
\|T_n x\| \leq k \quad \text{for some constant } k. \quad \text{Hence } X = \bigcup_{k=1}^{\infty} A_k.
\]

Since \(X \) is complete, so by Baire’s Category Theorem, \(X \) must be of the second category. So there exists at least one \(A_k \), namely \(A_k \), which contains an open ball \(B_k(x_0) = \{x \in X : \|x - x_0\| < r\} \) ie \(B_k(x_0) \subseteq A_k \).

Let \(x \) be an arbitrary non-zero vector in \(X \). We set
\[z = yx + x_0, \text{ where } y = \frac{y}{2\|x\|} \rightarrow 0 \]

since \(x - x_0 = yx \Rightarrow \|z - x_0\| = \|yx\| = \left\| \frac{y}{2\|x\|} \cdot x \right\| \]

\[= \frac{y}{2\|x\|} \cdot \|x\| \]

\[= \frac{y}{2} \]

\[< y \]

So \(\|z - x_0\| < y \), which shows that \(z \in B(y) \).

But \(B(y) \subset A_k \), so that \(z \in A_k \). And from the definition of \(A_k \), we have: \(\|T_n x\| \leq k_0 ; \forall n \rightarrow (2) \)

Also since \(x_0 \in B(y) \subset A_k \), so that \(x_0 \in A_k \).

So \(\|T_n x_0\| \leq k_0 ; \forall n \rightarrow (3) \) [by def. of \(A_k \)].

By (1), we have \(z = yx + x_0 \), where \(y = \frac{y}{2\|x\|} \) so we can write: \(x = \frac{z - x_0}{y} \). This yields for all \(n \).

\[T_n x = T_n \left(\frac{z - x_0}{y} \right) \]

\[\Rightarrow \|T_n x\| = \left\| T_n \left(\frac{z - x_0}{y} \right) \right\| \]

\[= \frac{1}{y} \left\| T_n (z - x_0) \right\| \leq \frac{1}{y} \left[\|T_n z + T_n (-x_0)\| \right] \]

\[\leq \frac{1}{y} \cdot \left[\|T_n z\| + \|T_n x_0\| \right] \quad (|1| = 1) \]

\[\leq \frac{1}{y} \left[k_0 + k_0 \right] \quad (\text{use } \circ \in \Theta), \]

\[= \frac{2k_0}{y} \]

\[= \frac{\frac{2k_0}{\|x\|}} \]

\[= \frac{\frac{4k_0 \|x\|}{y}} \]

Hence for all \(x \): \(\|T_n x\| \leq \frac{4\|x\| k_0}{y} \)
\[\| T_n \| \leq \frac{U_k}{y} \quad (\text{by taking } \sup \text{ over both sides}) \]

Assume that \(\frac{U_k}{y} = c \), then

\[\| T_n \| \leq c \quad \forall n. \]

which completes the required proof.

Note: The principle of uniform boundedness is often called the Banach-Steinhaus Theorem.

Theorem (3.4): Let \(\{ T_n \} \) be a sequence of bounded linear operators \(T_n : X \to Y \) from a Banach space \(X \) into a n.l.s. \(Y \) such that \(\lim_{n \to \infty} T_n x = T x \) exists for each \(x \in X \). Then \(T \) is a bounded linear operator.

Proof: Since \(\lim_{n \to \infty} T_n x = T x \) exists for each \(x \in X \), so \(\{ T_n x \} \)

is a convergent sequence and hence bounded, because every convergent sequence is bounded. Therefore by the Principle of Uniform Boundedness, \(\{ \| T_n \| \} \) is a bounded sequence of real number, that is there exist a constant \(K > 0 \) such that:

\[\| T_n \| \leq K \quad \forall n. \]

we prove that \(T \) is a bounded linear operator. \(T \) is linear, because for \(x, y \in X \) and a scalar \(\alpha \), we have:

\[T(\alpha x + y) = \lim_{n \to \infty} T_n (\alpha x + y) \quad \left[= T x = \lim_{n \to \infty} T_n x \text{ from above} \right] \]

\[= \lim_{n \to \infty} (T_n x + T_n y) \quad \left[= T_n x + T_n y \text{ is linear} \right] \]

\[= \lim_{n \to \infty} T_n x + \lim_{n \to \infty} T_n y = T x + T y \quad \left[\text{" } \right] \]
Also, \(T(ax) = \lim_{n \to \infty} T_n(ax) \) \[\Rightarrow T = \lim_{n \to \infty} T_n \] \[= \lambda \lim_{n \to \infty} T_n \] \[= \lambda T \] \[\Rightarrow T = \lim_{n \to \infty} T_n \] Also, \(T \) is bounded, because since \(\{T_n\} \) is a bounded sequence, so from (i), we have:

\[\|T_n\| \leq K \quad \forall n. \]

Now \(\|T_n x\| \leq \|T_n\| \|x\| \) \((\Rightarrow T_n \) is bounded)\n
\[\leq K \|x\| \] \((\Rightarrow \|T_n\| \leq K) \); \(\forall n. \)

i.e., \(\|T_n x\| \leq K \|x\|. \)

Taking limit over both sides as \(n \to \infty \), we get:

\[\lim_{n \to \infty} \|T_n x\| \leq \lim_{n \to \infty} K \|x\| \]

\[\Rightarrow \lim_{n \to \infty} \|T_n x\| \leq \lim_{n \to \infty} K \|x\| \]

\[\Rightarrow \|T x\| \leq K \|x\| \quad \forall n. \]

which shows that \(T \) is bounded.

Hence \(T \) is a bounded linear operator.

Definition (3.5): Let \(X \) be a linear space. A real valued function \(p \) defined on \(X \) is called \textit{subadditive} if

\[p(x + y) \leq p(x) + p(y) \quad \forall x, y \in X. \]

and positive homogeneous if

\[p(\alpha x) = \alpha p(x), \]

where \(\alpha > 0 \) in \(\mathbb{R} \) and \(x \in X. \)

Definition (3.6): A real valued function \(p \) on a linear space \(X \) is called \textit{sublinear functional} if it is both subadditive and positive homogeneous.
Definition (3.7): Let \(X \) be a linear space (real or complex).

A semi-norm on \(X \) is a real valued function \(p \) defined on \(X \) such that

(i) \(p(x) \geq 0 \) \(\forall x \in X \) (ii) \(p(x+y) \leq p(x) + p(y) \) \(\forall x, y \in X \).

(iii) \(p(\alpha x) = |\alpha| p(x) \); for all scalars \(\alpha \) and \(x \in X \).

If \(p \) has the further property that \(p(x) = 0 \) iff \(x = 0 \) (or equivalently \(p(x) = 0 \) iff \(x = 0 \)), then \(p \) is a norm on \(X \).

Remark: As with a norm, the properties of \(p \) imply the further properties.

(i) \(p(0) = 0 \) (ii) \(|p(x) - p(y)| \leq p(x-y) \).

(iii) \(p(-x) = -p(x) \).

Proof: (i) we show that \(p(0) = 0 \).

\[
p(0) = p(0,0) = 0 \quad [p(0) + p(0)]
\]

(ii) since \(x = x - y + y \)

\[
\Rightarrow p(x) = p(x-y+y) \leq p(x-y) + p(y) \quad [p(x+y) \leq p(x) + p(y)]
\]

\[
\Rightarrow p(x) - p(y) \leq p(x-y) \quad \Box 1
\]

Now again \(y = x+y-x \) \(\Rightarrow p(y) = p(x+y-x) \leq p(x) + p(y-x) \)

\[
\Rightarrow p(0) = p(y-x) \leq p(x) + p(y-x) \quad \Box 2
\]

\[
\Rightarrow p(x) - p(y) \leq p(x-y) \Rightarrow p(x) - p(x-y) \leq |1| p(x-y) \]

\[
\Rightarrow p(x) - p(y) \leq p(x-y) \Rightarrow -p(x-y) \leq p(x) - p(x-y) \Rightarrow p(x) - p(x-y) \leq 0 \quad \Box 2
\]

\[
\Rightarrow p(x) - p(y) \leq 0 \quad \Box 2
\]

\[
|p(x) - p(y)| \leq p(x-y) \quad \Box 3
\]

We have: \(p(-x) = p(-x+x) = 2p(x) + p(x) \)

\[
\Rightarrow p(-x) - 2p(x) \leq p(x) \Rightarrow -p(x) \leq p(x) \Rightarrow p(x) \geq p(x) \neq \emptyset.
\]
Definition (3.8):

If \(X \) is a set, \(M \) a proper subset of \(X \) and \(f \) is a function defined on \(M \) (i.e. \(f : M \rightarrow M \)), then a function \(F \) defined on \(X \) (i.e. \(F : X \rightarrow X \)) is called an extension of \(f \) if \(F(x) = f(x) \) for all \(x \in M \)

and \(f \) is called the restriction of \(F \) to \(M \).

Theorem (Hahn–Banach Theorem – Real Version):

Let \(M \) be a proper subspace of a real linear space \(X \). Let \(p \) be a sublinear functional on \(X \) and let \(F \) be a linear functional defined on \(M \) such that

\[
p(x) \leq F(x) \quad \forall x \in M.
\]

Then there exists a linear functional \(\hat{F} \) on \(X \), which extends \(F \) and that

\[
p(x) \leq \hat{F}(x) \leq F(x) \quad \forall x \in X.
\]

(3.10) **Theorem [Hahn Banach Theorem – Complex Version]:**

Let \(X \) be a complex linear space and \(M \) a linear subspace of \(X \). Let \(p \) be a semi-norm defined on \(X \). Let \(F \) be a linear functional on \(M \) such that

\[
|F(x)| \leq p(x) \quad \forall x \in M.
\]

Then there exists a linear functional \(\hat{F} \) on \(X \) such that

\[
F(x) = \hat{F}(x) \quad \forall x \in X \quad \text{[Extension]} \quad \text{and that}
\]

\[
|\hat{F}(x)| \leq p(x) \quad \forall x \in X.
\]

(3.11) **Theorem [Hahn–Banach Thm for n.b.s.]:**

Statement: Let \(X \) be a n.b.s. over a field \(K \) and let \(M \) be a subspace of \(X \). If \(m \in M \) (i.e. \(m \) is a linear functional defined on \(M \)), then there exists \(x \in X \) such that

\[
\|x\| = \|m\| \quad \text{and} \quad m'(x) = F(x) \quad \forall x \in M \quad \text{[Extension]}
\]
Proof: Let \(p \) be a real valued function defined on \(X \) by:
\[
p(x) = \|m\| \|x\| \quad \forall x \in X \rightarrow 0
\]
First we show that \(p \) is a semi-norm on \(X \).

(i) For \(x \in X \), \(p(x) > 0 \) because \(p(x) = \|m\| \|x\| > 0 \).

(ii) For \(x, y \in X \), we have:
\[
p(x + y) = \|m\| \|x + y\| \quad \text{(by (i))}
\leq \|m\| (\|x\| + \|y\|) \quad \text{[\(\|x + y\| \leq \|x\| + \|y\| \)]}
= \|m\| \|x\| + \|m\| \|y\|.
= p(x) + p(y). \quad \text{[by (i)]}
\]
i.e. \(p(x + y) \leq p(x) + p(y) \).

(iii) For any scalar \(\lambda \) and \(x \in X \), we have:
\[
p(\lambda x) = \|m\| \|\lambda x\| \quad \text{[by (i)]}
= |\lambda| \|m\| \|x\| \quad \text{[by definition of norm]}
= |\lambda| p(x) \quad \text{[by (i)]}
\]
Hence \(p \) is a semi-norm on \(X \).

Now \(|m(x)| \leq \|m\| \|x\| \quad \text{(\(: |\lambda x| \leq \|x\| \|\lambda\| \))}
\]
\[
= p(x) \quad \text{[by (i)]}
\]
i.e. \(|m(x)| \leq p(x) \) for all \(x \in M \).

Hence by "Hahn–Banach theorem for complex space," there exists a linear functional \(\lambda x \) on \(X \) such that:

(i) \(\lambda x(x) = m(x) \forall x \in M \) (i.e. \(\lambda x \) is extension of \(m \))
and (ii) \(|\lambda x| \leq p(x) \) \(\forall x \in X \).

To prove the required result, we will prove that
\[
\|m\| = \|\lambda x\| \quad \text{and} \quad \lambda x(x) = m(x) \quad \forall x \in M.
\]
But \(\lambda x(x) = m(x) \forall x \in M \) is satisfied from (i) above:
Also from (1), we have:

$$|x(x)| \leq f(x) = \|m||x|| \quad \forall x \in X.$$

Taking supremum over both sides with $\|x\|=1$, we obtain

$$\|x\| \leq \|m\| \to 0$$

Also

$$\|x\| = \sup_{x \to 0} \frac{|x(x)|}{\|x\|} \geq \sup_{x \to 0} \frac{|m(x)|}{\|x\|} = \|m\|$$

$$\Rightarrow \|m\| \leq \|x\|.$$

Since x is the extension of x, so that $\|m\|$ cannot be less than $\|x\|$ and so $\|x\| \geq \|m\| \to 0$

From (2) and (3), we get:

$$\|x\| = \|m\|.$$

Thus completing the proof.

Theorem (3.2): Let X be a normed linear space and let $x \to 0$ be any element of X. Then there exists $x \in X$ such that $\|x\| = 1$ and $x(x) = \|x\|$.

Proof: we consider the subspace M of X containing all elements $x = \alpha x_0$, where α is a scalar,

ie $M = \{x \in X: x = \alpha x_0, \text{where } \alpha \text{ is a scalar}\}$.

Define a linear functional m on M such that:

$$m(x) = m(\alpha x_0) = \alpha \|x_0\| \to 0.$$

Then m is bounded ie $m \in M$, because

$$|m(x)| = |m(\alpha x)| \leq \|m\||\alpha x_0|| = \|m\||x|| \quad \text{(by def. of } m)$$

ie

$$|m(x)| \leq \|m\||x||$$

Also

$$|m(x)| = |m(\alpha x)| = |\alpha||x_0| \quad \text{(by (1))}.$$

$$= |\alpha||x_0| = \|\alpha x_0\| = \|x\| \quad \text{(by def. of } m).$$
That is \(|m'(x)| = \|x\| ; \forall x \in M \).

Taking supremum over both sides, we have

\[
\sup_{x \to 0} \frac{|m'(x)|}{\|x\|} = 1 \quad \text{ie} \quad \|m'\| = 1. \quad \rightarrow (2)
\]

since \(m' \) is a bounded linear functional defined on \(M \). So by "Hahn–Banach Theorem for n.l.s."

\(m' \) has a linear extension from \(M \) to \(X \),

ie \(x'(x) = m'(x) \); \(\forall x \in M \rightarrow (3) \)

and \(\|x'\| = \|m'\| \rightarrow (4) \)

But by (2), \(\|m'\| = 1 \). So that (4) \(\Rightarrow \|x'\| = 1 \).

It remains to show that \(x'(x_0) = \|x_0\| \).

From (1), we have \(m'(x) = \alpha \|x_0\| \), where \(\alpha = \alpha(x_0) \).

and so by (3), we have \(x'(x) = m'(x) = \alpha \|x_0\| \), where \(x = x_0 \).

\[\Rightarrow x'(x) = \alpha \|x_0\| , \text{ where } x = x_0 . \]

\[\Rightarrow x'(x_0) = \alpha \|x_0\| \quad \rightarrow (5) \]

\[\Rightarrow \alpha x'(x_0) = \alpha \|x_0\| \quad (\because x' \text{ is a bounded linear functional}) \]

\[\Rightarrow x'(x_0) = \|x_0\| \]

Thus completing the proof of the theorem.

Available at www.mathcity.org
Recall that a mapping \(f : X \rightarrow Y \), where \(X \) and \(Y \) are topological spaces, is said to be open mapping if \(f \) maps open subsets of \(X \) into open subsets of \(Y \).

In connection with subset \(A \) of \(X \), we define for scalar \(\alpha \) and \(x_0 \in X \), as follows:

\[
\alpha A = \{ x \in X : x = \alpha a, \text{ where } a \in A \}
\]

and \(x_0 + A = \{ x \in X : x = x_0 + a, \text{ where } a \in A \} \).

Lemma: Let \(X \) be a n.l.s and \(B(x_0; r) \) be an open ball in \(X \). Then \(B(x_0; r) = x_0 + rB(0,1) \).

Proof: By definition, \(B(x_0; r) = \{ x \in X : \| x - x_0 \| < r \} \)

\[
= \{ x \in X : \| x \| < r, \text{ where } x = x_0 + x \}
\]

\[
= \{ x \in X : \| x \| < r, \text{ where } x = x_0 + z \}
\]

\[
= \{ x \in X + z \in X : \| x \| < r \} \quad (\text{by recall 9})
\]

\[
= x_0 + \{ z \in X : \| z \| < r \}
\]

\[
= x_0 + \{ z \in X : \| z \| < 1, \text{ where } z = \frac{z}{r} \}
\]

\[
= x_0 + \{ z \in X : \| z \| < 1, \text{ where } z = \frac{x_0}{r} \}
\]

\[
= x_0 + \{ z \in X : \| z \| < 1 \}
\]

\[
= x_0 + rB(0,1) \quad (\text{by recall 9})
\]

\[
= x_0 + rB(0,1)
\]

\[
\text{ie} \quad B(x_0; r) = x_0 + rB(0,1)
\]

Remark: In particular, \(B(0; r) = rB(0,1) \).

Available at

www.mathcity.org
The proof of the "open mapping theorem" depends upon the following lemma, however, we omit the proof, because it is too lengthy.

Lemma (3.15): Let \(T \) be a bounded linear operator from a Banach space \(X \) into a Banach space \(Y \). Then for each open ball \(B_0 = B(0,1) \subseteq X \), the image \(T(B_0) \) contains an open ball in \(Y \) with centre at the origin.

Theorem (3.16): The open mapping theorem

Statement: A bounded linear operator \(T \) from a Banach space \(X \) into a Banach space \(Y \) is an open mapping.

Proof: Let \(T : X \to Y \) be a bounded linear operator from a Banach space \(X \) into a Banach space \(Y \). In order to show that \(T \) is an open mapping, we need to show that for any open set \(A \subseteq X \), the image of \(A \) under \(T \) is open in \(Y \) i.e. \(T(A) \) is open in \(Y \).

For this let \(y \in T(A) \); since \(T \) is an operator, so there exists \(x \in A \) such that \(y = Tx \in T(A) \).

It is enough to show that \(T(A) \) contains an open ball around \(y = Tx \).

Since \(A \) is open in \(X \); so by definition, it contains an open ball with centre \(x \) and radius \(r \) i.e. \(B(x;r) \subseteq A \).

We know by Lemma (2.14) that:

\[
B(x;r) = x + rB(0;1) \rightarrow 0
\]

By Lemma (3.15), for the open ball \(B(0;1) \subseteq X \), there is an open ball \(B(0;r) \), with centre at origin.
in Y such that:

$$B'(x_0,y) \leq T(B(x_0;1)) \leq T(B(0;1)) = T(B(x_0;1)) \quad \text{by (1)}$$

Hence $B'(y; y') = \frac{y + y' B(x_0;1)}{y} \rightarrow [b_0\theta]$

$$y + T(B(x_0;1)) \quad [b_0\theta]$$

$$= T(x + T(B(x_0;1)) \quad [y = Tx]$$

$$= T(x + y B(x_0;1)) \quad [T \text{ is linear}]$$

$$\leq T(x) \quad [b_0\theta].$$

i.e. $B'(y; y') \leq T(y).$

This shows that $T(x)$ contains an open ball around $y = Tx.$ Consequently $T(x)$ is open in y and hence T is an open mapping.

Corollary (3.17): Let $T: X \rightarrow Y$ be a bijective bounded linear operator from a Banach space X into a Banach space $Y.$ Then T is a homeomorphism.

Proof: Recall that T is a homeomorphism if

(i) T is continuous

(ii) T is bijective

(iii) T^{-1} is continuous.

Since T is continuous (i.e. T is bounded) and bijective, so by the latter condition, $T^{-1}: Y \rightarrow X$ exists. To show that T^{-1} is continuous, let U be an open subset of X; then $(T^{-1})^{-1}U = T\overline{U}$, which is open in Y because T is open by above Thm. So that the image of any open set in Y is open in X under $T^{-1},$ showing that T^{-1} is continuous.

Hence T is a homeomorphism.

...
Definition (3.18): Let X and Y be norm linear spaces,

Then $X \times Y$ is also a norm linear space, where the two algebraic operations of addition and scalar multiplication are defined by:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2).$$

and $\alpha (x, y) = (\alpha x, \alpha y)$

and the norm on $X \times Y$ is defined by: $\| (x, y) \| = \| x \| + \| y \|$.

(Check it).

Theorem (3.19): Suppose that X and Y are Banach spaces, then $X \times Y$ is also a Banach space.

Proof: We show that the product space $X \times Y$ is complete.

Let $\{ z_n \}$ be a Cauchy sequence in $X \times Y$, where $z_n = (x_n, y_n)$ then by definition of Cauchy sequence, for every $\varepsilon > 0$ there exists an N such that:

$$\| z_n - z_m \| < \varepsilon \text{ for } m, n \geq N \rightarrow 0$$

Now:

$$\| x_n - x_m \| + \| y_n - y_m \| = \| (x_n, y_n) - (x_m, y_m) \|$$

$$= \| (x_n, y_n) - (x_m, y_m) \| \quad \text{[by the operation of addition in $X \times Y$]}$$

$$= \| z_n - z_m \|$$

$$\leq \varepsilon \text{ for } m, n \geq N \quad \text{[by θ]}.$$

$$\Rightarrow \| x_n - x_m \| < \varepsilon \text{ and } \| y_n - y_m \| < \varepsilon \text{ for } m, n \geq N \quad \text{[by θ]}.$$

Therefore $\{ x_n \}$ and $\{ y_n \}$ are Cauchy sequence in X and Y respectively.
and since X and Y are Banach spaces, so that
\[\{x_n\} \text{ and } \{y_n\} \text{ converges, say } x_n \to x \text{ and } y_n \to y. \]

Since norm is a continuous function, therefore
\[||x_n - x|| \to 0 \text{ and } ||y_n - y|| \to 0 \text{ as } n \to \infty \]
we show that $\{z_n\}$ is convergent in $X \times Y$

i.e. $z_n = (x_n, y_n) \to (x, y) = z \text{ (say).}$

Now $||z_n - z|| = ||(x_n, y_n) - (x, y)||$
\[= ||(x_n - x, y_n - y)|| \quad \text{[by def. of operation of addition in } X \times Y \]
\[= ||x_n - x|| + ||y_n - y|| \]
\[\to 0 \text{ as } n \to \infty \quad \text{[by (3).]} \]

This shows that the Cauchy sequence $\{z_n\}$ in $X \times Y$ is

Convergent. Since $\{z_n\}$ was chosen arbitrary, therefore

$X \times Y$ is Complete. Consequently $X \times Y$ is a Banach space.

Definition (3.20):

1. Let X and Y be normed-linear spaces and $T: D(X) \subset X \to Y$ be a linear operator from $D(X) \subset X$ into Y, then the set $G = \{(x, Tx) \in X \times Y : x \in D(X)\}$ is called the graph of T.

2. Let X and Y be normed-linear spaces and $T: D(X) \subset X \to Y$ be a linear operator from $D(X) \subset X$ into Y, then T is called a closed linear operator if its graph $G = \{(x, Tx) \in X \times Y : x \in D(X)\}$ is a closed set in the normed-linear space $X \times Y$.

Available at www.mathcity.org
Theorem (3.21) The Closed Graph Theorem:

Statement: Let X and Y be Banach spaces. Let T be a closed linear operator whose domain is all of X and whose range is in Y, then T is continuous.

Or

A closed linear operator from a Banach space X into a Banach space Y is continuous.

Proof: Let T be a closed linear operator whose domain is all of X and whose range is in Y i.e. $D(T) = X$ and $R(T) = Y$.

Then by above definition, the graph G of T is closed subspace of the Banach space $X \times Y$, with the norm defined by: $\| (x,y) \| = \| x \| + \| y \|$. Since X and Y are Banach spaces and G is a closed subspace of the Banach space $X \times Y$, so G itself is complete (i.e. a closed subspace of a complete metric space is complete) and hence G is a Banach space. Define a mapping $\delta: G \rightarrow X$ by:

$\delta(x,Tx) = x$ for all x in X.

First we show that δ is a linear mapping:

Now $\delta[(x,Tx) + (y,Ty)] = \delta(x+Ty, Tx+Ty)$

$= \delta(x+Ty, Tx+Ty)$ [by def. of δ]

$= x + y$ [by def. of δ]

$= \delta(x,Tx) + \delta(y,Ty)$ [" + "].

and $\delta[\alpha(x,Tx)] = \delta(\alpha x, \alphaTx) = \alpha x$ [by def. of δ]

$= \alpha \delta(x,Tx)$.
which shows that T is linear.

Clearly β is one-one and onto.

Next we show that β is bounded.

Now $\|\beta(x,Tx)\| = \|x\|$ (i.e. $\beta(x,Tx) = x$)

$\leq \|x\| + \|Tx\|

= \|(x,Tx)\|

i.e $\|\beta(x,Tx)\| \leq \|(x,Tx)\|

$\Rightarrow \beta$ is bounded and hence continuous.

Since β is bijective, so the inverse mapping $\beta^{-1}: X \to G$

exists and is defined by $\beta^{-1}x = (x,Tx)$; $\forall x \in X$.

Now since X and G are complete and β is bijective

bounded linear operator from G to X, so by

Corrolary (3.17), β^{-1} is continuous (β^{-1} is homeomorphism).

and hence bounded.

Now $\|Tx\| \leq \|x\| + \|Tx\|$ (i.e. $\|\beta(x,Tx)\| = \|x\|$; $\forall x \in X$).

$\Rightarrow \|Tx\| = \|\beta^{-1}x\|

\leq \|\beta^{-1}\| \|x\|; \forall x \in X.$

This inequality shows that T is bounded and hence continuous as required.

The end of Chapter 3

Written by: TAHIR HUSSAIN JAFFERY

Peshawar University.

Available at

www.mathcity.org