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INTRODUCTION

Fluid Mechanics or Hydrostatics

As the name implies, fluid mechanics is the study of fluids at rest or in motion. It
has traditionally been applied in such areas as the design of canal, levee, and dam
systems; the design of pumps, compressors, and piping and ducting used in the
water and air conditioning systems of homes and businesses, as well as the piping
systems needed in chemical plants; the aerodynamics of automobiles and sub- and
supersonic airplanes; and the development of many different flow measurement
devices such as gas pump meters.

Or  The branch of science which is concerned with the study of motion of fluids
or those bodies in contact with fluids is called fluid mechanics or hydrostatics.

Or The study of forces and flows in fluid is called mechanics.
There are three categories of fluid mechanics;

Fluid statistics:  Fluid statistics is the study of fluids at rest.
Fluid Kinematics:

Fluid Kinematics is the study of fluids in motion without considering the force
which causes the motion. e.g. Speed, Velocity etc.

Fluid Dynamics:

Fluid Dynamics is the study of fluids in motion. It used to analyze flow of air over
an aeroplane wing or over a surface of automobile.

Why we study the fluid mechanics?

We casually look around most things seem to be solids but when one thinks of the
oceans, the atmosphere and on out into space it becomes rather obvious that a large
portion of the earth surface and of the entire universe is in a fluid state. Therefore,
it becomes essential for sciences and engineers to know something about fluid
mechanics.
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Applications (Scope) of Fluid Mechanics:

There are many applications of fluid mechanics make it one of the most important
and fundamental in almost all engineering and applied scientific studies such as
applied mathematics, plasma physics, geo-physics, bio physics and physical
chemistry etc. The experimental aspects of fluid mechanics are the studied through
various discipline of engineering. The flow of fluids in pipes and channel makes
fluid mechanics of importance to civil engineer. They utilize the results of fluid
mechanics to understand the transport of river, irrigation channels, the pollution of
air and water & to design pipe line systems, flood control systems and dams etc.

The study of fluid machinery such as pumps, fans, blowers, air compressors heat
exchangers, jet and rocket engines, gas turbines, power plants, pollution control
equipment etc.

Fluid

A fluid is a substance that deforms continuously under the application of a shear
(tangential) stress no matter how small the shear stress may be. Fluids comprise the
liquid and gas (or vapor) phases of the physical forms in which matter exists.

Or afluid as any substance that cannot sustain a shear stress when at rest.
Or  afluid is something which has the property of flowing freely

Note: The distinction between a fluid and the solid state of matter is clear if you
compare fluid and solid behavior. A solid deforms when a shear stress is applied,
but its deformation does not continue to increase with time.

Properties of a fluid are of at least four classes

1. Kinematic Properties: Linear Velocity, Angular Velocity, Vorticity,
Acceleration and Strain Rate.

2. Transport Properties: Viscosity, Thermal Conductivity, Mass Diffusivity.

3. Thermodynamic Properties: Pressure, Density, Temperature, Enthalpy,
Entropy, Specific Heat, Bulk Modulus, Coefficient of Thermal Expansion.

4. Other Miscellaneous Properties: Surface Tension, VVapor Pressure, Surface
Accommodation Coefficient.
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Motion of fluid particles

A fluid consists of innumerable (countless) whose relative position never fix
whenever fluid is in motion the particle moves along certain line depending upon
the characteristics of fluid and shape of the passage through which the fluid
particle moves. It is necessary to observe the motion of fluid particle at various
time and point.

Fluid mechanics have two method of fluid motion
(i) Lagrange’s method (i) Eulerian Method
Basic Equations (Laws)

Analysis of any problem in fluid mechanics necessarily includes statement of the
basic laws governing the fluid motion. The basic laws, which are applicable to any
fluid, are:

1. The conservation of mass.

2. Newton's second law of motion.

3. The principle of angular momentum.
4. The first law of thermodynamics,

5. The second law of thermodynamics.

Note: All basic laws are always required to solve any one problem. On the other
hand, in many problems it is necessary to bring into the analysis additional
relations that describe the behavior of physical properties of fluids under given
conditions.

Dimensional Analysis of Fluid Flow: It is a mathematical technique used to
predict physical parameters that influence the flow in fluid mechanics, heat transfer
in thermodynamics and so forth. The analysis involves the fundamental units of
dimensions MLt (mass, length and time)
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Example  First Law Application to Closed System

A piston-cylinder device contains 0.95 kg of oxygen initially at a temperature of 27°C and a pressure due to the
weight of 130 kPa {abs). Heat is added to the gas until it reaches 4 temperature of 627°C. Determine the amount of
heat added during the process.

Given: Piston-cylinder containing Oy, m =095 kg.
h=1FC T,=87TC
Find: Ql_;z.

Solutlon: p=constant =150 kPa (abs)
We are dealing with 2 system, m=0.95 kg,

Governing equation: First law for the system, 0y - W)y =E, - E

Assumptions: (1) £="U, since the system is stationary.
(2) Ideal gas with constant specific heats.

Under the above assumptions,
E-E = Uy - U = mlig-u) = me(T,- 1)

The work done during the process is moving boundary work

T,
Wy = l ¥ = pi¥, - ¥,
l

For an ideal gas, p¥ =mRT. Hence Wy =mR(T,—T,). Then from the
first law equation,

Qu=E-E + Wy =me(T,-Th) +mR(T, - T))
Oz =m(T,-T)){g + R)
O = m‘}:(Tz‘ T) {R= ﬂp‘fv}

From the Appendix, Table A.6, for Oy, ¢, = %94 Ji{kg-K). Solving for
(15, we obtain

I
O = 0.951,@,,')(EJ[)‘Jkg—.K X 600K = 518kJ
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System and Surroundings

A system is defined as a fixed, identifiable quantity of mass where the region of
physical space beyond the system boundaries is called surroundings. The system
boundaries separate the system from the surroundings. The boundaries of the
system may be fixed or movable; however, no mass crosses the system boundaries.

In the familiar piston-cylinder assembly from thermodynamics, the gas in
the cylinder is the system. If the gas is heated, the piston will lift the weight; the
boundary of the system thus moves. Heat and work may cross the boundaries of
the system, but the quantity of matter within the system boundaries remains fixed.
No mass crosses the system boundaries.

I

l
System—T Gas | [ lingar
boundary : Cylinezr

Control Volume and Control Surface

A control volume is an arbitrary volume in space through which fluid flows.
There are two types of control volume. i.e. Finite size control volume. e.g. Pipe
and Differentiable size control volume. e.g. Cube. Both types of control volume
are used to drive conservation principles of mass, energy and momentum. Finite
size control volume is further divided into two categories. i.e. Deformable
Control Volume ( Such volume in which control surface is allow to change its
shape) and Non - Deformable Control Volume (Such volume in which control
surface is not allow to change its shape)

The geometric boundary of the control volume is called the control surface. The
control surface may be real or imaginary; it may be at rest or in motion.
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Example Mass Conservation Applied To Control Volume

A reducing water pipe section has an inlet diameter of 50 mm and exit diameter of 30 mm. If the steady inlet speed
{averaged across the inlet area) is 2.5 m’s, find the exit speed.

Inlet| | Exit
Given: Pipe, inlet D;= 50 mm, exit D, =30 mm. —_ i
Inlet speed, Vi=2.5 més. : |

Find: Exit speed, V. Contral volume

Solutton:
Assumption: Water is incompressible (density p = constant).

The physical law we use here is the conservation of mass, which you learned in thermodynamics when studying
turbines, boilers, and so en. You may have seen mass flow at an inlet or outlet expressed as either s = VAfr or
i = pVA where V, A, v, and p are the speed, area, specific volume, and density, respectively. We will use the density
form of the equation.

Hence the mass flow is:

m = pVA
Applying mass conservation, from our study of thermodynamics,
pYid; = pVed,

{Nate: p;= p. = p by our first assumption.)
{Note: Even though we are already familiar with this equation from
thermodynamics, we will derive it in Chapter 4.)

Solving for V,,

m {50\ m
ﬂ—l.?;(ﬁ) —?.5;

Thermodynamic Process:

Thermodynamic Process in fluid flow is a steady state of flow into and out of a
vessel with definite wall properties. The internal state of vessel contents is not the
primary concern. The quantities of primary concern describe the state of the inflow
and outflow materials, and on the side, the transfer of heat, work and kinetic and
potential energies for the vessel. Flow processes are of interest in engineering.
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Historical development of Fluid Mechanics

Some basic properties of fluids are
Density Mass per unit volume is called density p = AA—I\’;

A = rate of change And p =F(x,y,2z,t)
Where (x,y,z) are the coordinates of a point and t is the temperature.
Specific Weight

It is defined as the weight per unit volume and is denoted by y = pg

. p- . . . .V 1
Specific Volume It is defined as volume per unit mass. Its formula is m= 3

. . . . AF
Pressure  Force per unit area is called pressure. Its formula is P = limy,_,¢ vy

Where F is normal force due to fluid in elementary area.

Viscosity It is the property of fluid by which it offers the resistance to sheer (the
tangent force per unit area) acting on it i.e. the property of fluid which control the
flow of fluid. Viscosity of liquids decreases with temperature and viscosity of
gases increases with temperature.

Bulk modulus and compressibility (bulk compressibility modulus or modulus
of elasticity)

It is denoted as dp « %p I.e. variation of its density. After arranging dp = K%p

where K is called Bulk Modulus. Pressure and density changes in liquids are
related by the bulk compressibility modulus, or modulus of elasticity,

If the bulk modulus is independent of temperature, then density is only a function
of pressure (the fluid is barotropic).

Buoyancy Force: When a body is immersed in a liquid, or floating on its surface,
the net vertical force acting on it due to liquid pressure is called the Buoyancy
Force, and is denoted by Fz = pgV
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Methods of Description (Motion of Particles)

A fluid consists of innumerable (countless) whose relative position never fix
whenever fluid is in motion the particle moves along certain line depending upon
the characteristics of fluid and shape of the passage through which the fluid
particle moves. It is necessary to observe the motion of fluid particle at various
time and point. Fluid mechanics have two method of fluid motion

(i) Lagrange’s Method (i) Eulerian Method
Lagrange’s Method (Flow of Single Particle)

This method deals with the study of flow patterns of the individual particles. In this
method the path traced by the particle under consideration with the passage of time
Is studied in detail.

Eulerian Method This method deals with the study of flow patterns of all
particles simultaneously at one section. In this method the path traced by all
particles at one section and one time are studied in detail.

The general example for both methods is the study of movement of vehicles on a
busy road. The Lagrangian deals with the study of the movement of only one
vehicle through a specific distance. And The Eulerian deals with the study of the
movement of all vehicles at one section and one time.

In study of fluid mechanics, Eulerian method is commonly used because of its
mathematical simplicity. Moreover in fluid mechanics, movement of individuals is
not important.

Rigid Body: Solid body in which deformation is zero. Rigid body is a system of
particles whose distance from one another is fixed.

Rigid Body Motion: Solid body in which deformation is zero. Rigid body is a
system of particles whose distance from one another is fixed. Motion of rigid body
is studied under the influence of forces. The general motion of rigid body consists
of a combination of translation and rotation. Its equation of motion can be derived
from the equation of motion of its constituent particles.
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Example Free Fall Of Ball In Air

The air resistance {drag force) on a 200 g ball in free flight is given by Fp =2 X 107* V2, where Fp is in newtons and
V is in meters per second. If the ball is dropped from rest 500 m above the ground, determine the speed at which it
hits the ground. What percentage of the terminal speed is the result? {The terminal speed is the steady speed a falling
body eventnally attains.)

g
Givet: Ball, m =02 kg, released from rest at yp =500 m. Yo—
Adr resistance, Fp =kV?, where k=2 X 107 N-sfm”.
Units: Fp(N), V(m/s). , FID
Find: {(a) Speed at which the ball hits the ground. L
{b) Ratio of spced to terminal speed. *

Solution:
Governing equation: TF = ma
Assumption: Neglect buoyancy force.

The motion of the ball is governed by the equation

av
EF, =mag, = -
. _ . _ o avidy av
Since V= V(y), we write TF, = ma s mV & Then,
av
LF, =Fp—mg = kV: —mg = mVE
Separating variables and integrating,
/Id Y mvdv
o 4 o kVZE—mg
v 2
o = [ Pngev? - R
¥—¥ |:2kln(kV mg)] % In g
o

Taking antilogarithms, we obtain
EvE— mg =—mg ali@kfr) (v — ]l

Solving for ¥ gives

V= {% (1 _E[m;'m)(y—m])}"z

Substituting numerical values with y =0 yields

V=702kgX 9.81 0 x m? X N-s* (] _e[2x2xm—‘m_z(—sm)])
27 2x10" N .2 kg-m

V = 787 m/fs L4
At terminal speed, 2,=0 and F, = 0 = kV] —mg.
1/2
_[me12 _ m m? N.¢
Then, V, [k] [ﬂ.2kgx9.81 ¢ %5570 3 “kg.m
=89.0 m/s
The ratio of actual speed to terminal speed is
14
Vv 187 Vv,
= o £74 '
v, = o0 0.795, or 79.5%
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DIMENSIONS AND UNITS

Engineering problems are solved to answer specific questions. It goes without
saying that the answer must include units (it makes a difference whether a pipe
diameter required is one meter or one foot).

Dimension is specific form used to refer any measurable quantity.

If we refer physical quantities such as length, time, mass, and temperature as
dimensions in terms of a particular system of dimensions, all measurable quantities
are subdivided into two groups—primary quantities and secondary quantities.

* Primary quantities are those quantities for which we set arbitrary scales of
measure. e.g. Mass(Kg), Length(Meter), Time(Second)

= Secondary quantities are those gquantities whose dimensions are expressible
in terms of the dimensions of the primary quantities. e.g. Velocity,
Acceleration, Torque, Momentum etc.

Units

Units are the arbitrary names (and magnitudes) assigned to the primary dimensions
adopted as standards for measurement. For example, the primary dimension of
length may be measured in units of meters, feet, yards, or miles. These units of
length are related to each other through unit conversion factors.

(1 mile = 5280 feet = 1609 meters).
Systems of Dimensions

Any valid equation that relates physical quantities must be dimensionally
homogeneous; each term in the equation must have the same dimensions. We have
three basic systems of dimensions, corresponding to the different ways of
specifying the primary dimensions.

a. Mass [M], length [L], time [t], temperature [T].
b. Force [F], length [L], time [t], temperature [T].

c. Force [F], mass [M], length [L], time [t], temperature [T].
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In system a, force [F] is a secondary dimension and the constant of proportionality
in Newton's second law is dimensionless. In system b, mass [M] is a secondary
dimension, and again the constant of proportionality in Newton's second law is
dimensionless. In system c, both force [F] and mass [M] have been selected as
primary dimensions. In this case the constant of proportionality, g., (not to be
confused with g, the acceleration of gravity!) in Newton's second law (written

F= md/g.) is not dimensionless. The dimensions of g. must in fact be [ML/Ft?]
for the equation to be dimensionally homogeneous. The numerical value of the
constant of proportionality depends on the units of measure chosen for each of the
primary guantities.

Note

We recognize that Newton's second law (F « ma) relates the four dimensions, F,
M, L, and t. Thus force and mass cannot both be selected as primary dimensions
without introducing a constant of proportionality that has dimensions (and units).
Length and time are primary dimensions in all dimensional systems in common
use. In some systems, mass is taken as a primary dimension. In others, force is
selected as a primary dimension; a third system chooses both force and mass as
primary dimensions

Systems of Units

There is more than one way to select the unit of measure for each primary
dimension.

Common Unit Systems

System of Dimensions Unit System Force F Mass M Length L Timet Temperature T
8. ML(T Systeme International d'Unités (S1) (N ke m 5 K

b. EL{T British Gravitational (BG) Ibf  (shg) ft g R

¢. FMLET English Engineering (EE) Inf [bm ft 5 R
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We shall present only the more common engineering systems of units for each of
the basic systems of dimensions.

a.MLIT

SI, which is the official abbreviation in all languages for the Systeme International
d'Unites, is an extension and refinement of the traditional metric system. More than
30 countries have declared it to be the only legally accepted system.

In the SI system of units, the unit of mass is the kilogram (kg), the unit of length is
the meter (m), the unit of time is the second (s), and the unit of temperature is the
kelvin (K). Force is a secondary dimension, and its unit, the newton (N), is defined
from Newton's second law as

1 N =1kg * m/s?

In the Absolute Metric system of units, the unit of mass is the gram, the unit of
length is the centimeter, the unit of time is the second, and the unit of temperature
Is the kelvin. Since force is a secondary dimension, the unit of force, the dyne, is
defined in terms of Newton's second law as

1 dyne =1 g * cr/s?
b. FLtT

In the British Gravitational system of units, the unit of force is the pound (Ibf), the
unit of length is the foot (ft), the unit of time is the second, and the unit of
temperature is the degree Rankine (1K = 1.8 °R). Since mass is a secondary
dimension, the unit of mass, the slug, is defined in terms of Newton's second law
as 1 slug = 1 Ibf « s%/ft

c. FMLLT

In the English Engineering system of units, the unit of force is the pound force
(Ibf), the unit of mass is the pound mass (Ibm), the unit of length is the foot, the
unit of time is the second, and the unit of temperature is the degree Rankine. Since
both force and mass are chosen as primary dimensions, Newton's second law is

written as F = md/g,
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A force of one pound (1 Ibf) is the force that gives a pound mass (1 Ibm) an
acceleration equal to the standard acceleration of gravity on Earth, 32.2 ft/s%. From
Newton's second law we see that

_ 1lbm x 32.2 ft/s? _ 322 ftlbm
11lbf = o or e =T by 52

The constant of proportionality, g., has both dimensions and units. The dimensions
arose because we selected both force and mass as primary dimensions; the units
(and the numerical value) are a consequence of our choices for the standards of
measurement

Since a force of 1 Ibf accelerates 1 Ibm at 32.2 ft/s?, it would accelerate 32.2 lbm

at 1 ft/s”. A slug also is accelerated at 1 ft/s® by a force of 1 Ibf. Therefore,

1 slug =32.2 Ibm

e v e e e

> [ABEE S
N Btnery ey T

VS vnks __ BG i | lopveraim
~_Dlmeneiny | ! . | «:%:w .
i O Rt P PP s

| .?,f’qtzafalfﬁ’m

T (] | detfn Jeemd i)

s A
Tenp[T] | etanetr) | oprnerr)| Ixo=187%
doree(F]]  Pewstom iy, Obf= b
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Conversion Factors and Definitions

15

Fundamental
Dimension English Unit Exact 81 Value Approximate 81 Value
Length limn. 00254 m —
Mass 1 1bm 0.453 592 37 kg 0.454 ke
Temperature I°F 58K —
Drefinitions:
Acceleration of gravity: g =9.8066 m/s (= 32174 fi’s?)
Energy: Btu (British thermal unit) = amount of energy required to raise the
temperature of | bm of water I°F (1 Btu="778.2 ft- Ibf}
kilocalorie = amount of energy required to raise the temperature of
1 kg of water 1 K(I keal =4187 J)

Length: 1 mile = 5280 ft; 1 nantical mile =6076.1 ft = 1852 m {exact}
Power. 1 horsepower = 550 ft - bffs
Pressure: 1 bar = 10° Pa
Temperature: degree Fahrenheit, Tp = %TC + 32 (where T is degrees Celsius)

degree Rankine, Tr =75 + 45967

Kelvin, Tx = Tc + 273.15 (exact)
Viscosity: 1 Poise = 0.1 kg/(m -5}

1 Stoke = 0.0001 m%s
Volume: 1gal = 231 in? (1 £ =7.48 gal)

Useful Conversion Factors:

Length: L ft=03048 m Power: Thp=15TW
Lin.=25.4 mm 11t [bfis = 1,356 W
Mass: L [bm=04536 kg 1 Bta/hr =0.2931 W
1 slug=14.59 kg Area 11t =0.0929 m®
Foree L Ibf =4448 N 1 acre = 47 m?
L kgf =9.807N Volume: 116 =0.02832 m
Velocity: | ft/s=10.3048 m/s 1 gal (US)=0.003785 m®
1 ft/s =15/22 mph 1gal (US)=3785 L
1 mph=0.447 m/s Volume flow rate: 165 =002832 m's
Pressure: | psi=6.895 kPa 1gpm=6309 X 107 * m's
1 [bffft* = 4788 Pa Viscosity (dynamic) 1 Ibf-sfft* = 47.88 N-s/m’
| atm=101.3 kPa 1 g/em-s)=0.1 N-s/m’
| atm =147 psi 1 Peise = 0.1 N-s/m?
Lin. Hg=3.386 kPa Viscosity (kinematic) 1 t%6=0.0929 m™s
lmmHg=1333Fa 1 Stoke =0.0001 m/s
Energy: | Btu=L055k]

Lft-1bf=1356]
lcal=4.187]
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Example

The label on a jar of peanut butter states its net weight is 510 g. Express its mass and weight in 81, BG, and EE units.

Given: Peanut buiter “weight,” m=510g.
Find: Mass and weight in 81, BG, and EE units.

Solution: This problem invelves unit conversions and use of the equation relating weight and mass:

W =mg
The given “weight” is actually the mass because it is expressed in units of mass:
mg = 0.510 kg 51
Using the conversions of Table G.2 (Appendix GJ),
11lbm 11bm m
= — | =0510kg | ——— ) = 1.121b EE
MR = st (0.454 kg) 8 (0.454 kg) "

Using the fact that 1 slug = 32.2 |bm,

1 =sln 1T sln
fsG ™ MEE (32 Zlbgm) = 1.121bm (32 Zlbgm)

= (.0349slug G

To find the weight, we use
W = mg

In 81 units, and using the definition of a newton,

m kg-m N
Wg = 0510 kg X 9.815—2 = 5.00 ( 32 ) (kg . mjsz)

= 3500N
In BG units, and using the definition of a slug,

Wao = 0.0349slugx 322 1 = 1 1p8ue -1
5 5

- 2-
= o Sug-ft) 7 LT s Wec
52 slug

In EE units, we use the form W =mgfg., and using the definition of g,
it I _ 361 lbm-1t

Wee = 1.121bm X322 5 X — 5 !
27 g 8 S
Ibm - fi Ibf - 52 Wer
= 35.1( = ) (32_2& - ]bm) = 1.12 Ibf
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Useful Conversions
1 meter = 3.280 ft , 1Slug =14.5939%g =32.2 Ibm , g = 32.2 ft/s*
Ibf = 4.68N | 1IK=18°R, 1gallon = 3.78541 liter

Conversion in MLtT with Dimensions

Quantity Formula Unit (SI System) Dimension

Power W Fd ma.d kg X ms™% xm MLZI
P=—=—= P = —

t ot t s £3

kgm?
=—

Pressure p_ F _ma kg xms™? kg [ M ]

A A P= mb2 " ms? Lt?

Modulus of | Stress kgms=2 kg M
Elasticity | Strain 2 ms? [F]

F/A F

~ Change inlayer A
origional layer

Momentum P=mv p— kgm @]
s t
1 — -1\2 2
K.E KE = Lmp? K.E kg(ms2 ) [ML ]
2 kgm t2
K.E=—
S

Question: Convert the pressure 1Pa to Pounds force per square inches.

F N :
P—Z=>Pa—ﬁ ........... (1)

Since 1lbf = 4.68N = 1IN = — Ibf

Also 1 meter = 3.280 ft = 1m? = 10.7584ft>
And 1ft? = (12in.)? = 144in.?

= 1m? = 10.7584 x 144in.? = 1549.20in.?

L Ibf

(i) = Pa=—22—— = 1Pa = 1.44 X 107 *Ibfin."?
1549.20in.
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Ibf.s
ft?

Question: Convert viscosity of 1 — to

Since 11bf = 4.68N = 1N = —Ibf

Also 1 meter = 3.280 ft = 1m? = 10.7584ft>

18

—Ib
Now 1 = fosz 172 = 0.02074 27
m2 ~ 10.7584ft
2 2
Question:  Convert Energy of 1 ki’: to Slusgft
Since 1Slug = 14.5939kg = 1kg = o9 Slug

Also 1 meter = 3.280 ft = 1m? = 10.7584ft?

2 Slugx10.7584ft2
Now X7 — rammas “gsxz 518 = 7372
ion: JIA
Question: Convert Energy of 1min to o
Since 1 meter = 3.280 ft = 1ft = 2—80m = 1ft3 = 0.02833m3
Also 1 h = 60min = 1min = —h = 0.0166h
ft3 0.02833m3 __ ft3 m?
Now min  00l66h  min 1.6998 h
. gallon liter
Question: Convert Energy of 1 — to —
Since 1gallon = 3.78541 liter
Also 1 h = 3600s
Now ga;lon — 3.783564;10?ter gaillon —1.0515 x 10~ 3 llteecr
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Question: Convert Stress to lbf
Since 11bf = 4.68N = 1N = —Ibf

Also 1 meter = 3.280 ft = 1m? = 10.7584ft>
1 meter = 3.280 ft And 1ft? = (12in.)? = 144in.?
= 1m? = 10.7584 X 144in.? = 1549.20in.?

lef

Stress = — = —458___ — 1 44 x 10~*Ibfin.">
m 1549.20in.

Question: Power into Ib.min.

Since p=¥m _ Mt Apg p =

S sec

W _Fd _mad _ kgxms—2xm _ kgm
t t t s s3

1
Slug =
14.5939 14.5939

Also 1 meter = 3.280 ft = 1m? = 10.7584ft>

1Slug = 14.5939%kg = 1kg = x 32.2lbm = 2.2064lbm

And 1ft? = (12in.)? = 144in.? = 1m? = 10.7584 X 144in.? = 1549.20in.2

m? _ 2.2064lbmx1549.20in.2 lbmin.?

Now P = X9 — 3418.15

s3 s3 s3

Question: Modulus of Elasticity into Slug ft

. .. Stress F/A F __kgms™2 _ k
Since Modulus of Elasticity = ——— = Change/inlayer == g =

ain ar
origional layer

m2 ms?

1

1Slug = 14.5939kg = 1kg = T2 5939

Slug = 0.06852Slug

1 meter = 3.280 ft then

g _ 0.06852Slug 0.0280 Slug

Modulus of Elasticity = nl;z = 3280 fixs? fts?
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Question: Convert 300kWh in BG.

Since Watt = P = % = ? = 1ft.% and 1hp = 746Watt

1hp = 550ft.~~
300000hp
746

Then 300kWh = 300 x 1000Wh = 300000Wh =

h = 402hph

Question: Convert 40 m*hr in BG.
Since 1 meter = 3.280 ft = 1m? = 10.7584ft2 Also 1 h = 3600s

Then 40m?h = 40 x 10.7584ft% x 3600s = 1549209.6ft*Sec

Question: Convert 50Ns/ m? in BG.

Since 1 meter = 3.280 ft = 1m? = 10.7584ft>

Also 11bf = 4.68N = IN = —Ibf = 0.2232141bf

50x0.2232141bf X5 _ 10373 Ibfs

Ns
Then Soﬁ T 10.7584ft2 re2
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FUNDAMENTAL CONCEPTS

In Chapter 1 we discussed in general terms what fluid mechanics is about, and
described some of the approaches we will use in analyzing fluid mechanics
problems. In this chapter we will be more specific in defining some important
properties of fluids, and ways in which flows can be described and characterized.

Fluid As A Continuum

“Point” Catx,v,z
Volume &%

=

I
I
| TRRREEY
: ‘*l NEEEE
| fm/g¥| XL
| ATkl
| Rk sianen
I SRR
J | I O I I I |
f¥ &Y
(a) (&)
¥ Yolume ¥
of mass, m
¥, Valume 5+
s of mass, dm
/
s ,
I
I I
I
| | i -
I
: | | palimdn
I | i [
I i :
e > : 'I‘ ¥
iy
z
la) (B}
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Continuum is smoothly varying and continuously distributed body of matter —
no holes or discontinuities. The concept of a continuum is the basis of classical
fluid mechanics. The continuum assumption is valid in treating the behavior of
fluids under normal conditions. It only breaks down when the mean free path of the
molecules becomes the same order of magnitude as the smallest significant
characteristic dimension of the problem. This occurs in such specialized problems
as rarefied gas flow (e.g., as encountered in flights into the upper reaches of the
atmosphere).

As a consequence of the continuum assumption, each fluid property is assumed to
have a definite value at every point in space. Thus fluid properties such as density,
temperature, velocity, and so on, are considered to be continuous functions of
position and time.

To illustrate the concept of a property at a point, consider how we determine the
density at a point. A region of fluid is shown in Figure. We are interested in
determining the density at the point C, whose coordinates are Xo, Yo, and zo.
Density is defined as mass per unit volume. Thus the average density in volume V
is given by p = m/V.

In general, because the density of the fluid may not be uniform, this will not
be equal to the value of the density at point C. To determine the density at point C,
we must select a small volume, 8V, surrounding point C and then determine the

ratio 2™
I

The question is, how small can we make the volume §V? We can answer this
question by plotting the ratio ‘Z—rg, and allowing the volume to shrink continuously
in size.

Assuming that volume 8V is initially relatively large (but still small compared with

the volume, V) a typical plot of ‘;—’; might appear as in Figure (b) In other words,

5V must be sufficiently large to yield a meaningful, reproducible value for the
density at a location and yet small enough to be called a point. The average density
tends to approach an asymptotic value as the volume is shrunk to enclose only
homogeneous fluid in the immediate neighborhood of point C. If §V becomes so
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small that it contains only a small number of molecules, it becomes impossible to

fix a definite value for i—’;; the value will vary erratically as molecules cross into
and out of the volume. Thus there is a lower limiting value of §V, designated 6V’

in Figure (b), allowable for use in defining fluid density at a point.

The density at a "point" is then defined as p = limgy_,s77/ ‘;—7;
Since point C was arbitrary, the density at any other point in the fluid could be
determined in the same manner. If density was measured simultaneously at an
infinite number of points in the fluid, we would obtain an expression for the
density distribution as a function of the space coordinates, p = p (X, Y, ), at the

given instant.

The density at a point may also vary with time (as a result of work done on or by
the fluid and/or heat transfer to the fluid). Thus the complete representation of
density (the field representation) is given by p = p (Xx,y,z,t)

Since density is a scalar quantity, requiring only the specification of a magnitude
for a complete description, the field represented by p = p (X,y,z,t) is a scalar field.

The density of a liquid or solid may also be expressed in dimensionless form
as the specific gravity, SG, defined as the ratio of material density to the
maximum density of water, which is 1000 kg/m? at 4°C (1.94 slug/ftat 39°F). For
example, the SG of mercury is typically 13.6—mercury is 13.6 times as dense as
water. The specific gravity of liquids is a function of temperature; for most liquids
specific gravity decreases with increasing temperature.

Specific weight, , is defined as weight per unit volume; weight is mass times
acceleration of gravity, and density is mass per unit volume, hence y = pg. For
example, the specific weight of water is approximately 9.81 kN/m*(62.4 Ibf/ft®).

For video lectures Visit our channel @ YouTube “Learning With Usman Hamid”



24

Local and Partial Rate of Change
g Vil

1 i — "

Let us suppose that particle of fluid move from point P(x, y, z) at time ‘t’ to point
Q(x+ éx,y +06y,z+ 6z) inatime t + t. Let f(x,y,z, t) be ascalar function
define in a region of a motion of fluid. The motion of particle from P to Q is given

by f =g—£5x+3—£5y+3—£5z+g—f5t

§f _oféx , df 8y , of 6z | of
5t 9x &t Ay St 9z St ot

L= lim Z+L gim 24+ jim 242

= lim
6620 5t = 9x " §t-0 8t | 0y §t—0 8t | 0z §t-0 St

df _ofdx  ofdy  ords  of
dt 9dxdt 9dydt 9dzdt ot

zﬂ:(a_f"_ka_ff{_a_fk) (d_x,\_l_d_y],\+ k) 6f
dt ox dz dt dt

f - _ i —
Vf—+— VIV + L =2V vf = (5 +V.V)f

d ] =

Where % Is total or material rate of change, % Is local rate of change and V.Vis
partial or convective rate of change. Above result shows that action of the operator
% on the function is same as the action of operator % + V.V on the function.
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Example A velocity field V=ui+ vj + wkisgivenas u = x + 2y + 3z + t2
,v=xyz+tandw = (x + y)z? + 2t then find
Local acceleration, Convective acceleration and Total acceleration at P(1,1,1,2)

Solution

. d o = L dV oV | = =
Since—=—+V.V =>a=—=—+V.VV
dt at dt at

= (@iocar = 2 = = (ul + vj + wk) = 2t1 + ] + 2k
= (Diocal 1pr 11 = 260+ ] + 2k =2(2)1+ ] + 2k = 41+ ] + 2k

NOW (&) convective = V.YV = (ut + vj + wk). (—l + &4 &g

- av av av
= (@) convective = U Ir +v ay + WE
i du du du
Then in components form = (&x)convective =U—+v—-+tw—
dx dy dz
- dv dv dv
=>la = Uu— v— w—
( y)convective dx + dy + dz
= dw dw dw
= (az)convective =u dx +v E +w e
. du du du
Using —=1,—=2,—=3
dx dy dz

= (Ay)convec = (X + 2y + 3z + t2)(1) + (xyz + £)(2) + (W = (x + y)z? + 2t)(3)

= (ax)convec lp(11,2) 3

Using £ = yz, % = xz, ¥ = x
gdx_y'dy_ ‘dz y

= (dy),, .= @ +2y+32+t)y2) + (xyz + ) (x2) + W = (x +y)z° + 26) (xy)

= (d,) =19
convec |P(1'1'1’2)
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. aw aw
USIng x = ZZ,—

_ 2 aw _
Pk 2z(x +y)

= (Ay) convec = X+ 2y + 32+ t) (22 + (xyz+ )z + (w = (x + y)z2 +
2t) (ZZ(x + y))

= (dz) convec lp(L112) 37

Then we can get (@) convective = Gyl + dyf + d k
= (@) convective = 341+ 197 + 37k

Now

(Drorar = 41+ j + 2k + 341 + 19f + 37k

(@ rorar = 381 + 207 + 39k
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Velocity of fluid particle or Velocity of fluid at a point.

PQ = Ar

And therefore, velocity of a fluid particle denoted as V.

= . Ar  dr .
V = limp;_,g ST o e (1)

dt
In Cartesian coordinates
V=ui+vj+wk and 7 =xi+yj+zk

() :ﬁ:%(xi+yj+zlz)

~ ~ 7 dx;\ dy,\ dZA
— = — —_ b
ul +vj + wk dtl+dt]+dtk
- d d d
Oncomparing u=—, v=—, w=—
dt dt dt

Ar _
At
and also shows that velocity depends upon 7 and ‘t’ i.e.

- S i . : : o ,
The expression V = limp;_,q d—: gives the velocity at a point P and in time ‘t

V=V(yzt) =V(F#t)
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Velocity Field

In continuum mechanics the flow velocity in fluid dynamics, is a vector field used
to mathematically describe the motion of a continuum. The length of the flow
velocity vector is the flow speed, and is a scalar. It is also called velocity field.

In dealing with fluids in motion, we shall be concerned with the description of a
velocity field. Consider the following Figure.

¥ Volume ¥
of mass, m
») o Volume §v
i of mass, §m
/
F--r—=faC
I i :
)
I I ?& ! - _
I
I
: I | palimdm
I s I e - gy B¥
| b |
DY e mm > : l &y
by
z
14} (B}

Velocity field implies a distribution of velocity in a given region. At a given instant

the velocity field, V, is a function of the space coordinates X, y, z. The velocity at
any point in the flow field might vary from one instant to another. Thus the
complete representation of velocity (the velocity field) is given by spatial and time

coordinates as V = V(x, v, z, t)

Velocity is a vector quantity, requiring a magnitude and direction for a complete
description, so the velocity field V= V(x,y,zt) is avector field. The velocity

vector V, , also can be written in terms of its three scalar components. Denoting the
components in the x, y, and z directions by u, v, and w, then

V=ul+vj+wk ... (i)
In general, each component , u, v, and w, will be a function of x, y, z, and t.

Since # = xi + yj + zk
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. > dFf  d g/ . . ~
)=V =—"=—(xi+y]+zk)
~ ~ 17 dx;\ dy,\ dz «
— = — - -
ul+vj+wk =—i+—j+—k
: d d d
Oncomparing u=—, v=—, w=—
dt dt dat

If properties at every point in a flow field do not change with time, the flow is
termed steady. Stated mathematically, the definition of steady flow is % =0
where n represents any fluid property. Hence, for steady flow,

Z—’Z= 0 or p=p (XY, z)and Z—:= 0 or V="V(xy,z2)
In steady flow, any property may vary from point to point in the field, but all
properties remain constant with time at every point.

Flow Field: The term uniform flow field (as opposed to uniform flow at a
cross section) is used to describe a flow in which the velocity is constant, i.e.,
independent of all space coordinates, throughout the entire flow field.

Remark: Sometimes we want a visual representation of a flow. Such a
representation is provided by timelines, pathlines, streaklines, and streamlines.

» Timeline: If a number of adjacent fluid particles in a flow field are marked
at a given instant, they form a line in the fluid at that instant; this line is
called a timeline. Subsequent observations of the line may provide
information about the flow field. For example, in discussing the behavior of
a fluid under the action of a constant shear force (Section 1-2) timelines
were introduced to demonstrate the deformation of a fluid at successive
Instants.

= Pathline: A pathline is the path or trajectory traced out by a moving fluid
particle. To make a pathline visible, we might identify a fluid particle at a
given instant, e.g., by the use of dye or smoke, and then take a long exposure
photograph of its subsequent motion. The line traced out by the particle is a
pathline. This approach might be used to study, for example, the trajectory
of a contaminant leaving a smokestack.
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Streakline: On the other hand, we might choose to focus our attention on a
fixed location in space and identify, again by the use of dye or smoke, all
fluid particles passing through this point. After a short period of time we
would have a number of identifiable fluid particles in the flow, all of which
had, at some time, passed through one fixed location in space. The line
joining these fluid particles is defined as a streakline.

Streamlines: The imaginary line drawn in the fluid where the velocity along
the tangent. Streamlines are lines drawn in the flow field so that at a given
instant they are tangent to the direction of flow at every point in the flow
field. Since the streamlines are tangent to the velocity vector at every point
in the flow field, there can be no flow across a streamline. Streamlines are
the most commonly used visualization technique. For example, they are used
to study flow over an automobile in a computer simulation.

Stream Tube: An element of the fluid bounded by the number of a
streamlines which confine the flow, is called Stream Tube.

Filament lines: The instantaneous pictures of the position of all particles
which have passed through a given point at previous time are called filament
line. For example, the line finds by smoke particle exerted from a nozzle of
rocket.

Potential and Equipotential lines: We know that there is always a loss of
head of fluid particles as we proceed along the flow line. If we draw the line
joining the points of equipotential on the adjacent flow lines, we get the
potential lines. The points where lines A,B,C,D,E,F,G,H are the potential
line and i,j,k,I,m,n are the equipotential line.

For video lectures Visit our channel @ YouTube “Learning With Usman Hamid”



31

Flow nets: The intersection of potential line and stream line of two set of
lines are called flow line i.e. intersection with the help of flow nets we can
analysis of the behavior of certain phenomenon which cannot be
mathematical means. Such a phenomenon is generally analyzed and studied
with the joint flow nets.

Difference between stream line and path line

) The stream line is not in general same as the path line.

i)  Stream line show how each particle is moving at given instant of time
whereas path line represents the motion of fluid particle at each instant.

i) If the flow is steady the stream lines remain unchanged as the time
progressed and hence they are also the path line.

Iv)  For a steady flow stream lines, path lines and streak lines are coincide in
a flow field, whereas in general they are quite distinct.

Remark

Solid: Solid has definite shape, which is retain until an external force is
applied to after it. In other words, a solid is a substance that deforms when
sheer stress is applied, but it does not continue to deform.

Liquid: Liquid takes the shape of a vessel into which it is poured. It is
considered to have incompressible flow.

Gas: Gas completely filled up the vessel into which it contains.

We can determine the state of moving fluid with the help of five quantities.

I.e. three components of velocity I7(x, y,z), Pressure and p(x, y, z).
dx _dy _ dz

du dv  dw

dx _dy

du  dv

Equation of Streamline in Space:

Equation of Streamline in Plane:
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Conservative Force
A force is said to be conservative if V x F = 0
Then F = =V  where ¢ is scalar function.

In case of velocity field VxV =0

We define scalar function (Potential Function) ¢ such that
V=-Vp then VxV=0x(-Vp)=0

= _ 3B .. ; R R A__a_<pA_a_<pA_a_¢A
Now as V = —V¢ then this implies  ui + vj + wk = %l T 3y azk

- icient w= _2¢ ,—_%  _ %
Comparing coefficient u = V= T W= TS,

With potential function defined in this way the Irrotational condition

ow  dv du Jdw dv Jdu . . .
3y 9232 x93y 0 Is satisfied identically.

A : o 3, 10 , d 4 = = L
In cylindrical coordinates V= —¢é, + ——¢&, + —é, then V = —V¢ implies
or r 06 0z
A A A a(p A 1a(p A a(p A
VT'eT' + VQeQ + I/ZeZ - or T r 060 9z eZ
- ici _ %y _ _10¢  _ O
Comparing coefficient V. = ar,Vg = rae'VZ =——

With potential function defined in this way the Irrotational condition

10v, 0dvg _ 0y % _ la(rvg) .
r 00 9z 0z or r or

10v, - : ;
vy Is satisfied identically.

Where negative sign in V= —V}p shows that flow takes place from higher
potential to lower potential.
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Example If u = x and v = —y then investigate the type of flow.

Solution  Since we know that, for V = ui + vj + wk

i j k
= ow  Ov)\ . ow  oJu\ . v du\ s
YxT=|o o oo (Bogmy,_(w_u);, (o sy
ax dy 0z dy 0z dx 0z dx OJy
u v w

VxV=(0-0)i—-(0-0)j+(0—-0)k=0

Hence flow is Irrotational.

Example

2

— 2_
fu=—22_p=""2 andw = LZ)Z then investigate the type of flow.

(x2+y2)2’" 7 T (x2+y?)? (x2+y

Solution  Since we know that, for V = ui + vj + wk
ow  0v\ . ow  odu\ . dv  oJu\
=G -2)i-G-2)i+(G-5)F

= x?-3y2 )\, 4xy N 6xy?—2x3  2y(x?+y®)+4y*(x*=y* )\ & =
VXV = ((x2+y2)3) L+ ((x2+y2)3)] T ((x2+y2)3 T (x%2+y2)3 )k *0

[~ %l@ ~>

VXV

<gle
$8le ™

Hence flow is rotational.

— 2 T—v1i
1f 7 = K xi—vD

Example ey then determine equation of streamline.

Solution  Since we know that, for V = ui + vj + wk

_kz k2
Hereu=# v=—-2uoandw=0

yZ’ x2+y2

Z =2 = L= K (say)

Then using equation of streamlines == =
du dv aw

We get x? +y% = Constant  equation of circle.

Hence streamlines are circle.
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In steady flow, the velocity at each point in the flow field remains constant with
time and, consequently, the streamline shapes do not vary from one instant to the
next. This implies that a particle located on a given streamline will always move
along the same streamline. Furthermore, consecutive particles passing through a
fixed point in space will be on the same streamline and, subsequently, will remain
on this streamline. Thus in a steady flow, pathlines, streaklines, and streamlines are
identical lines in the flow field.

The shapes of the streamlines may vary from instant to instant if the flow is

unsteady. In the case of unsteady flow, pathlines, streaklines, and streamlines do
not coincide.

Example: Streamlines And Pathlines In Two-Dimensional Flow

A velocity field is given by V = Axi- Ayf; the units of velocity are m/s; x and y are given in meters; A =0.3 s
(a) Obtain an equation for the streamlines in the xy plane.
(b) Plot the streamline passing through the point (xp, yo) = (2, 8).
(c) Determine the velocity of a particle at the point (2, 8).

(d) If the particle passing through the point (xg, yo) is marked at time ¢ = 0, determine the location of the particle
at time :=6 s.

(e) What is the velacity of this particle at time ¢ =6 s?
(f) Show that the equation of the particle path (the pathline) is the same as the equation of the streamline.

Given: Velocity field, V= Axi- Ayf; x and y in meters; A =03 gl

Find: (2) Equation of the streamlines in the xy plane.
(b) Streamline plot through point (2, 8).
{c) Velocity of particle at point (2, 8).
{d) Position at ¢=6 s of particle located at (2, 8) at 1=0.
{e) Velocity of particle at position found in (d).
(f) Equation of pathline of particle located at (2, 8) at t=0.

. 16
Solution:

(a) Streamlinesare linesdrawn in the flow field such that, at a given instant,

they are tanpent to the direction of flow at every point. Consequently, 12

@) _v_—Ay_y E 8 Vy5 = 0.60- 2.4fmis
a
dx streamline u Ax x
Separating variables and integrating, we cbtain 4
dy _ dx 0 x=16m?
; - ; 0 4 8 1Z 16

ar

Iny =-Inx+¢;

This can be wriften asxy =c «
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(b) For the streamline passing through the point (xq, yo) = (2, 8) the constant, ¢, has a value of 16 and the equation
of the streamline through the point (2, 8) is

xy = xgyp = 16m®

The plot is as sketched above. )
(¢) The velocity field is V = Axi — Ayj. At the point (2, 8) the veloeity is

V =Alxi—y) = 03512 —8)m = 0.6/ — 2.4/ m /s«
(d) A particle moving in the flow field will have velocity given by

V=Axf—Ayf
Thus
dx dy
%—E—Ax and b= o= Ay

Separating variables and integrating (in each equation) gives

x I y 1
f d—x = ] Adt and d—y = f—Adt
X X qa Yo ¥y 1]

Then

or
x=xpe™ and y =y ¥
Att=6s,
1=2me®¥® = 121m and y=8me O = 132m

At t=6s, particle is at (12.1, 1.32) m «

(¢) At the point (12.1, 1.32) m,
V = A(xi—yj) = 035 1(12.1{ — 1.32)m
= 3631 —0.396/m/s

(f) To determine the equation of the pathline, we use the parametric
equations

r=xet and y =y

and eliminate ¢. Solving for *' from both equations

A=
y X

Therefore xy =xgyy =16 m e

For video lectures Visit our channel @ YouTube “Learning With Usman Hamid”



Question: A velocity field is given by V= axi-
b = 1s72. Find the equation of the streamlines at any time t. Plot several
streamlines in the first quadrant at t = 0s,t = 1s,and t = 20 s.

36

btyj, where a = 1s~1 and

Solution
. v d bt
For streamline = = 2 = - 22
u dx ax
d bt dx _bt
>2=_ZZ 5 y———lnx+c=>y—cx a
y a x
c
Whent=0s=>y=c Whent=1s=>y=-
Whent = 20s >y = cx™ 20
O X = =y S
20 £telse t"‘ ZO ‘
- C=le ‘ﬁ;l: CX pal Cx2 Lo =t ‘
x ¥y ¥y ylx ¥y y yXxX ¥ ¥ o
hog Voo Zoe 30 oof 2o beoo Getloll : %&v!‘f ”
ia i A
L0 Leo Zoo Zodolo lpee 2900 S?'UD ple =
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D R0 g 4 ke 129 ZEe XN &.0 \?-6 Moo ,“
50 2 L Noqa ey 222 212N 9.0 1pul o8 .60
Hwle & ~ loom bemer Pee S0 1a0 oo Zoo 5{!\00
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= Surface Forces: All forces acting on the boundary of the medium through
direct contact: e.g. Pressure and Frictional force.

» Body Forces: All forces acting on the boundary of the medium without
direct contact: e.g. Gravitational and Electromagnetic force.
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Stress Field (Surface and body forces are discussed in this phenomenon)

In our study of fluid mechanics, we will need to understand what kinds of forces
act on fluid particles. Each fluid particle can experience: surface forces (pressure,
friction) that are generated by contact with other particles or a solid surface; and
body forces (such as gravity and electromagnetic) that are experienced throughout
the particle.

The gravitational body force acting on an element of volume, dV, is given by
pgdV, where p is the density (mass per unit volume) and g is the local
gravitational acceleration. Thus the gravitational body force per unit volume is pg
and the gravitational body force per unit mass g.

Surface forces on a fluid particle lead to stresses. The concept of stress is useful for
describing how forces acting on the boundaries of a medium (fluid or solid) are
transmitted throughout the medium. For example, when you stand on a diving
board, stresses are generated within the board. On the other hand, when a body
moves through a fluid, stresses are developed within the fluid. The difference
between a fluid and a solid is, as we've seen, that stresses in a fluid are mostly
generated by motion rather than by deflection.

Imagine the surface of a fluid particle in contact with other fluid particles, and
consider the contact force being generated between the particles. Consider a

portion,(S/T, of the surface at some point C. The orientation of 84 is given by the
unit vector, 71, shown in Figure. The vector 7 is the outwardly drawn unit normal
with respect to the particle.
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The force, 8F, acting on SA may be resolved into two components, one normal to
and the other tangent to the area.

A normal stress is then defined as Normal component of force per unit area is
called Normal stress. i.e.

SF,,

O, = llmgAn_m E

And a shear stress is then defined as Tangent component of force per unit area is
called sheer stress. i.e.

SFy

Tn = llmgAn_,O E

Subscript n on the stress is included as a reminder that the stresses are associated
with the surface 64 through C, having an outward normal in the 7 direction. The
fluid is actually a continuum, so we could have imagined breaking it up any
number of different ways into fluid particles around point C, and therefore
obtained any number of different stresses at point C.

In dealing with vector quantities such as force, we usually consider components in
an orthogonal coordinate system. In rectangular coordinates we might consider the
stresses acting on planes whose outwardly drawn normals (again with respect to
the material acted upon) are in the X, y, or z directions.

Now check the following figure;

¥ 5F, ¥ o
EF, T
&R, )
x X
v i
: {ay Forée components : (b] Stress Componects
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In Figure we consider the stress on the element §A,., whose outwardly drawn

normal is in the x direction. The force, §F, has been resolved into components
along each of the coordinate directions. Dividing the magnitude of each force
component by the area, §A4,., and taking the limit as § A, approaches zero, we
define the three stress components shown in Fig.(b):

— 1 OFy

Oxx = 1rné‘Ax—>O SA,
OF.

— 1 Yy

Txy = hmé‘Ax—>O S_Ax
— 1 OF,

Txz = 1rnSAx—>0 5A,

We have used a double subscript notation to label the stresses. The first subscript
(in this case, x) indicates the plane on which the stress acts (in this case, a surface
perpendicular to the x axis). The second subscript indicates the direction in which
the stress acts.

Consideration of area element §4,, would lead to the definitions of the stresses,
0yy, Tyx» and T,,, , Use of area element §A, would similarly lead to the definitions

of 0,5, Tzx» and 7,,,.

Although we just looked at three orthogonal planes, an infinite number of planes
can be passed through point C, resulting in an infinite number of stresses
associated with planes through that point. Fortunately, the state of stress at a point
can be described completely by specifying the stresses acting on any three
mutually perpendicular planes through the point. The stress at a point is specified
by the nine components

Trex  Txy Txz
Tyx Oyy Tyz

Tee Tzy Tz

Where o has been used to denote a normal stress, and 7 to denote a shear stress.

For video lectures Visit our channel @ YouTube “Learning With Usman Hamid”



42
Viscosity

It is the measure of resistance against the motion of fluid. It is denoted by u. It is
also called absolute viscosity and dynamic viscosity.

Explanation

Where do stresses come from? For a solid, stresses develop when the material is
elastically deformed or strained; for a fluid, shear stresses arise due to viscous flow
(we will discuss a fluid's normal stresses shortly). Hence we say solids are elastic,
and fluids are viscous (and it's interesting to note that many biological tissues are
viscoelastic, meaning they combine features of a solid and a fluid). For a fluid at
rest, there will be no shear stresses. We will see that each fluid can be categorized
by examining the relation between the applied shear stresses and the flow
(specifically the rate of deformation) of the fluid.

]-é-';-] 1 28! I
Af P2 P o 6.F M M AP propr
8 4y / / /
vl o= |
Ie—
N [ N a
pe— fx —
(a) () (c)
&l
e—
M M’ ¥
; o Force, &F,
{ A Velocity, du
[

Fluid element

Fluid element
y at time, ¢

at time, 1 + &1

— e |
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Consider the behavior of a fluid element between the two infinite plates shown in
Figure. The upper plate moves at constant velocity, éu, under the influence of a

constant applied force, §F,. The shear stress, 7,,,, applied to the fluid element is
OFx _ dFx

givenby 7, = limga, 0 5a, ~ da,

Where §A,, is the area of contact of a fluid element with the plate, and §F, is the

force exerted by the plate on that element. During time interval §t, the fluid
element is deformed from position MNOP to position M'NOP'. The rate of
deformation of the fluid is given by

. 1 fx _ dx
Deformation rate = limg;_,q =

We want to express ‘;—: in terms of readily measurable quantities. This can be done
easily. The distance, §1, between the points M and M’ is given by 81 = duét

Alternatively, for small angles, 61 = §yd «

Equating these two expressions for §1 gives i—‘: = i—;

Taking the limits of both sides of the equality, we obtain

lim O lim ou
ot—0 St 6y—0 Sy

d< _ du

at ~ dy

Thus, the fluid element of Figure, when subjected to shear stress, 7,,,., experiences

a rate of deformation (shear rate) given by Z—;‘.
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Yiscous

Laminar

Turbulent
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Incompressible

Fig. 213 Possible classification of continuum fluid mechanics,

Intemnal

External
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TYPES OF FLUID

Flow
The quantity of fluid passing through a point per unit time is called flow.
Viscous Flow

Fluid that has non-zero viscosity or finite viscosity and can exert sheer stress on
the surface is called viscous fluid or real fluid.

Inviscous Flow  Fluid having zero viscosity is called inviscid fluid.
Compressibility

Compressibility is the measure of change in fluid w.r.t volume and density under
the action of external forces.

Compressible fluid

A type of fluid in which change occur due to volume and density changes by the
action of pressure (temperature) is called compressible fluid. Examples: gases.

Incompressible fluid

A type of fluid in which no change occur due to volume and density changes by
the action of pressure (temperature) is called incompressible fluid.

Steady and Unsteady Flow

The flow in which the properties and the conditions are associated with motion of
fluid particles is independent of time. i.e. % = 0. Such a flow is said to be steady
flow. On the other hand, the flow in which the properties and the conditions are
associated with motion of fluid particles is independent of time. i.e. % + 0. Such a
flow is said to be Unsteady flow.

Coquette Flow  The flow of viscous fluid in the space between any two surface,

one of which is moving tangentially relative to the other. The relative motion of the
surface imposes a sheer stress on the fluid and induces flow.
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Uniform and Non — Uniform Flow

The flow in which the velocity of the fluid particle at all section of the particle of
pipe and channel are equal i.e. constant. On the other hand, the fluid particles are
said to be non-uniform it the velocity of the particles is not equal i.e. not constant.

Laminar and Non-Laminar flow or Stream line flow and Turbulent flow

A flow in which fluid particle have definite path of particle and the two paths of
two individuals does not cut each other is called Laminar or stream line flow. How
a viscous flow can be laminar or turbulent, respectively. A laminar flow is one in
which the fluid particles move in smooth layers, or laminas. The velocity of
laminar flow is 7 = ui

On the other hand, if the flow of each other particle does not trace out a
definite path. The path of individuals particle also crosses each other is called non
— laminar or turbulent flow. ; a turbulent flow is one in which the fluid particles
rapidly mix as they move along due to random three-dimensional velocity

fluctuations. The velocity of turbulent flow is ¥ = 7 + u'i + v'j + w'k
Rotational flow & Irrational flow:

Rotational flow is that flow in which fluid particles rotate about their own axis
have the same angular velocity.

On the other hand, the fluid particle does not rotate about their own axis and retain
their original orientation is called irrational flow.

I

Compressible and Non-compressible flow:

A flow in which volume and density of fluid changes during the flow is said to be
compressible flow. On the other hand, if volume and density of fluid does not
change during the flow is said to be non-compressible flow or incompressible flow.
The most common example of compressible flow concerns the flow of gases, while
the flow of liquids may frequently be treated as incompressible.
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Internal and External Flow System

Internal flows of system are those where fluid flows through confined spaces such
as pipe and open channels. Or Flows completely bounded by solid surfaces are
called internal or duct flows. While External flows of system are those where
confining boundaries are at relatively larger or infinite distances, such as
atmosphere through which aero planes, missiles and space vehicles travel, or ocean
water through which submarines move. Flows over bodies immersed in an
unbounded fluid are termed external flows. Both internal and external flows may be
laminar or turbulent, compressible or incompressible.

Ideal fluid

Ideal fluid is a fluid in which both inviscid and incompressible fluid is involved is
called Ideal fluid or it is a perfect fluid. These are non-Newtonian fluid. In ideal
fluid the viscosity is zero. There is no internal resistance between them. It is
incompressible, Irrotational and non — viscous (inviscid) fluid.

Real Fluid

A fluid in which the finite viscosity exists and therefore we can exert tangential or
sheering stress on a surface with which it is in contact. Real fluid is called viscous
fluid. Real fluid can be further divided into Newtonian fluid and Non-Newtonian
fluid.

Newton's Law of viscosity ~ According to this law

Shear Stress is directly proportional to deformation rate
le. T Z—’; >T= uZ—Z Where u is called absolute or dynamic viscosity.

u is also called Coefficient of Viscosity of Newtonian Fluid.

Absolute or dynamic viscosity u

Force needed by a fluid to overcome its own internal molecular friction so that the
fluid will flow.

Or  Tangential force per unit area need to move fluid in one horizontal plane
with respect to other plane with the unit velocity.
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Dimension of Absolute or dynamic viscosity u

Since the dimensions of force, F, mass, M, length, L, and time, ‘t’, are related by
Newton's second law of motion, the dimensions of u, can also be expressed as
[M/Lt].

M
© . _ _F/A _ |zl [Lz _
S'ncef—ﬂ—iﬂ—duﬁﬂ—miﬂ—[£]=>M ; [
dx distance tL

= In the British Gravitational system, the units of viscosity are Ibf » s/ft>
Or slug/(ftes).
= In the Absolute Metric system, the basic unit of viscosity is called a poise
[1 poise =1 g/(cm * s)];
» |n the Sl system the units of viscosity are kg/(m e s) or Pa s
(1 Pa*s=1N-es/m?)
Kinematic viscosity:

In fluid mechanics the ratio of absolute viscosity, u, to density, p, is called

kinematic viscosity and is represented by the symbol v. i.e. v = %

Since density has dimensions [M/L?], the dimensions of v are [Lt]. In the
Absolute Metric system of units, the unit for v is a stoke (1 stoke = 1 cm?/s).

Newtonian Fluids

Fluids in which shear stress is directly proportional to rate of deformation are
Newtonian fluids. Water and air are Newtonian fluid. This is a fluid in which
viscosity is independent of the velocity gradient due to single variable. They obey

law of viscosity. i.e. 7,,, < LN Ty = du where u is called absolute or
Y. 1.E. yx dx yx de u
dynamic viscosity.

If we draw the graph then we get a straight line. Blood, milk, jellies, butter, water,
air, and gasoline are example of Newtonian fluid.

X Newtonian Fluid
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Non-Newtonian Fluids

Fluids in which shear stress is not directly proportional to deformation rate are
non-Newtonian. The term non-Newtonian is used to classify all fluids in which
shear stress is not directly proportional to shear rate. This is a fluid in which
viscosity at a given temperature and pressure for which a viscosity is a function of
velocity gradient is not a straight line. Non-Newtonian fluids are very important in

fluid mechanics.

[ Y

Non-Newtonian Fluid

h 4

Although we will not discuss these much in this text, many common fluids exhibit
non-Newtonian behavior. Two familiar examples are toothpaste and Lucite paint.
The latter is very "thick™ when in the can, but becomes "thin" when sheared by
brushing. Toothpaste behaves as a "fluid" when squeezed from the tube. However,
it does not run out by itself when the cap is removed. There is a threshold or yield
stress below which toothpaste behaves as a solid. Strictly speaking, our definition
of a fluid is valid only for materials that have zero yield stress.

Non-Newtonian fluids commonly are classified as having time-independent
or time-dependent behavior. Examples of time-independent behavior are shown in

the rheological diagram of Figure.

Bingham
plastic =
N ~._ Pseodaplastic
= F= T
é Pseudaplastic g -
£ &
W r-J
—_ k=3 -
3 | e
) Clatant § ~-~ " Dhlatant
=
Newtanian Newtonian
Deformatian rate, . Defarmation rake, Hu
dy el
{a) )]
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Remark

= Toensure that 7, = “Z_Z has the same sign as Z—z, we may write by

n-1 gy ___du

du
dx N dx

. du\"
Power’s Law Ty =kl|l=—=) =k
dx dx

n-1
Thetermn =k |Z—Z| Is referred to as the apparent viscosity.

= Fluids in which the apparent viscosity decreases with increasing
deformation rate (n < 1) are called pseudoplastic (or shear thinning)
fluids. Most non-Newtonian fluids fall into this group; examples include
polymer solutions, colloidal suspensions, and paper pulp in water.

= Fluids in which the apparent viscosity increases with increasing deformation
rate (n > 1) the fluid is termed dilatant (or shear thickening) fluids.
Suspensions of starch and of sand are examples of dilatant fluids.

= A "fluid" that behaves as a solid until a minimum yield stress, ,, , is
exceeded and subsequently exhibits a linear relation between stress and rate

of deformation is referred to as an ideal or Bingham plastic. The

. . d
corresponding shear stress model is 7,,, = 7, + u, ﬁ

Clay suspensions, drilling muds, and toothpaste are examples of substances
exhibiting this behavior.

= The study of non-Newtonian fluids is further complicated by the fact that the
apparent viscosity may be time-dependent.

n-—1
» Thixotropic fluids show a decrease in apparent viscosity n = k |Z—z
with time under a constant applied shear stress; many paints are thixotropic.
n—-1
» Rheopectic fluids show an increase in apparent viscosity n = k |Z—z

with time.

= After deformation some fluids partially return to their original shape when
the applied stress is released; such fluids are called viscoelastic. (Many
biological fluids work this way).
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ample 2 AND SHEAR STRESS IN NEWTONIAN FLUID

An infinite plate 1s moved over a second plate on a layer of liquid as shown. For small gap width, d, we assume a
linear velocity distribution in the liquid. The liquid viscosity is 0.63 centipoise and its specific gravity is 0.38.
Determine:

(a) The absolute viscosity of the liquid, in Ibf - /ft% .
(b) The kinematic viscosity of the liquid, in m%s. ’
(c) The shear siress on the upper plate, in Ibfitt. e y-03 M
(d) The shear stress on the lower plate, in Pa. .
(¢) The direction of each shear stress calculated in parts (c) and (d). L/ d=0dmm
-
Given: Linear velocity profile in the liquid between infinite parallel

plates as shown.

p=1065¢cp
SG =088
Find: (a) s in units of Ibf - s/’
(b) v in units of m?s. y
(c) 7 on upper plate in units of Ibfft e b03m
(d) 7 on lower plate in units of Pa. TR
(e) Direction of stresses in parts (c) and (d). 7 i=03mnm
/|
Solution: ——

d
Governing equation: Ty = ,ud—u Definition: » = =
i P
Assumplions: (1) Linear velocity distribution (given)
(2) Steady flow

(3) p=constant

pmse ¢ bno g om B
063 K—X——XPI—X—
0 cp cp agpoie 4 Llbm f dupf

= LI B4 }
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b
b y=-=
(b) s Gmg
Ibfs it , gt
=136x10° X (0.305
ft? (0 B8)1.94 slug Ibf - s X ) i
y=TAIX 10 mlfs. v
di
¢ Tupper = Tyx,upper = ﬂ@)}:ﬂ
Since u varies lmearly with y,
de A U-0_ U
dy Ay d-0 4
=03~ By 1 oo™ - s
0.3 mm m
U Ibf-s 1000
T = 7 = 1.36><10‘5TS X — = Q136 i/t «
! bt N Paen’ r
d = 00136—= x445— X = 651 Pa. lower
( ) Tlower = d f[z lbf (0 305)2[1]2 N a

(e) Directions of shear stresses on upper and lower plates.

{ The upper plate is a negative ysurface; so }

) positive 7, acts in the negative x direction,
— The lower plate is a positive y surface; so
— o positive 7, acts in the positive xdirection.
-
i
Ower ; (E)
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Example

Methyl lodide at a thickness of 10mm and having a viscosity 0.005Pas at a
temperature of 20 °C is flowing over a flat plate. The velocity distribution of thin
film may be considered as parabolic. Determine the shear stress at y = 0,5 and
10mm from the plate surface.

Solution

7 PSS fU”é/"’ = \-qu”/

Since the velocity distribution is parabolic therefore
u=A+By+Cy* ... (1)
Boundary conditions are

I. Aty =0, u=0 (No slip condition)
.  Aty=0.01lm,u=0.1m/s

li. Aty =0.01m (free surface), Z—; =0

Using (i) in (1) we get A=0s0 (1) becomes u=By+Cy? ............... 2)
Using (i) in (2) weget 0.1s"1 =0.01B + C(0.01)’m  ............... (3)
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@ =T =B+20y (4)
Using (iii) in (4) weget 0=B+2C(0.01)m
>-2=C00Dm (5)
Using (5) in (3) we get  0.1s™* = 0.01B + (—3)(0.01)

= B =20s"1

1000
ms

Using A,B,C in (1) u=A+By+Cy?

G)=>C=- using B = 20s~1in (5)

1000
u=20s"ty ——y?

Yy——05Y
2000

ms

= & _ 20571 —
dy
Since we know that Tyx = uZ—Z therefore
du -1
Tyx)y=0 = p_—= 0.005Pas x 20s™" = 0.1Pa

d
Tyx)y=0.005m = ,Llﬁ = 0.05Pa

du

Tyx)y=0.01m = :ua =
Question:

Compute the sheer stress in a SAE 30 oil at 20C° if v = 3ms~ 1 and h = 2cm.

Solution:  Using formula T = uZ—;‘ = H%

3ms~1! kg

= 7 = (0.29kg/ms) T — = 439 = 43 % = 43Pa

Here we use u = 0.29kg/ms from table for SAE 30 oil at 20C°

54
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Example

A flat plate 4ft by 4ft slides down an inclined plane at angle of 30° to the horizontal
at a velocity of 30ft per minute. The inclined plane is lubricated by a thin film of
oil having viscosity of 0.0011bf/ft?. Find the thickness of the film if the mass of the
plate is 1Slug.

Solution

FﬁN:Y‘nﬂ "'-_"

Area = 4ft X 4ft

Velocity = u = 3075; %Sfetc ;Sf; and p = 0.001lbf/ft? also m =1Slug
Using rzy%zu(g) and r=§:>F=rA
Wehave F=yu (%)A ............. (1)

Since we know that F = mg

Resolving in components F = mgSin30°

= F =1x322xSin30° = 3225089 1
sec 2

1ft

1 =0.001bf/ft? x (T) X 16ft2

(1) = 32 thSlug

= Thicknes = y = 4.9844 x 10~ *ftSec
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Example

An infinite plate is move over a second plate on a layer of a liquid. For a small
gape width we assume a linear velocity distribution in a liquid. The liquid viscosity
is 0.65 x 1073kg/ms and its specific gravity is 0.88. Then find;

. Kinematic viscosity of liquid. v
I, Shear stress on lower plate. 7,
iii.  Indicate the direction of shear stress.

Solution

u = 0.3m/s, py,0 = 1000kg/m?, d = 0.3 x107*m,u = 0.65 x 10> kg/ms

Specific Gravity = SG = Psubstance _ (y gg

PHy0
_ _ 1000kg 3 3
= Psubstance = 0.88 X PH,0 = 0.88 % e 0.88 X 10 kg/m
. u  0.65x10"3kg/ms 2
I. V=== =m*-/s
p  0.88xx103kg/m3

1073k =
9 x s = (0.65kg/ms?
ms 0.3xX1073m

iii.  Direction is always positive because plane is positive. And shear
stress is positive.

cﬂ‘“__‘r”i l <

Fez A2 i — ¢
—

i, Tyxz,u;l—z=u%=0.65x
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Example

The velocity distribution for laminar flow between parallel plats is given by

u

2
=1- (2%) where ‘h’ is the distance separating the plates and origin is

Umax

placed mid — way between the plates. Consider the flow of water at 15 °C with
Umax = 0.30m/s and h = 0.50mm then

Calculate the shear stress on upper plate and give the direction, sketch the variation
of shear stress across the channel.

Solution

& = umax [0-2(57) ()

du 8y

dy - h2 umax
i du
Since we know that Tyx = U
8 h
Therefore for upper plate Tyx)h = U (_ = Uax X E)
2
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Tyx)g =HU (_ %umax)

4
0.50mm

7,008 = 1.14 X 1073 Ns/m? (— X 0.30m/s)
2

Tyx)n = 2.74N /m?
2

Direction of shear stress will be positive and in x — direction.

. . e 8
Change in stress is linear because Tyx = —HU (h—z umax)

4
4
\\ f/

o /
by v\ /
-\ \ f

Example

A crude oil with specific gravity SG = 0.85 and u = 3.15 X 10 3lbfsec/ft>
flow steadily when a surface inclined at & = 30° below the horizontal in the film
of thickness h = 0.125in.

2
The velocity profile is given by u = % (hy — y?) Sin6@ where the coordinate ‘x’

along the surface and ‘y’ is normal to surface. Calculate the magnitude and
direction of shear stress that acts on the surface.
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Solution

We have to find shear stress on surfacey =0 Tyx)y=0 =?
Si know th =

ince we know that Tyx = h

R = (P9 h — ;
Then ,u[ ( (hy )Sm@)] = U ( p (h y)SmG)
Tyx)y=0 = PGhSInG = psypstanceghSind ............. (1)
Also Specific Gravity = SG = Zsubstance _ 59U _ () g5
szO pH20

= S0il = 0.85 X py, o = 0.85 X Tl

= 0.85 x 103kg/m?3

(1) = Tyx)y=0 = 0.85 X 103kg/m> x 32.2ft/s* x 0.125in.X Sin30°

0.85x103slug

14:5939(53575)

= Tyx)ymo = : x 32.2ft/s% x 0.125 (L) x 0.5

= Ty)y=o = 58.24 X (0.3048)° 7 29 X 32.2ft/s? X 0.01ft X 0.5

slug
[tz

= Tyx)y=o = 0.265

Direction of Shear Stress is Positive.
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Question

The velocity distribution for laminar flow between parallel plates is given by

u

2
=1- (2%) where ‘h’ is distance separating the plates and origin is placed

Umax

mid-way between the plates. Consider the flow of water at 15° with maximum
speed 0.05ft/s and h = 0.1mm. Calculate the force on 1ft? section of lower plate.

Solution
We have to find shear stress on surfacey =0 Tyx =7

i _ v _ g _(2)°
Since we know that Tyx = 1 and = 1 (h)

Then Tyx =l [;—x (umax (1 - (2%)2»] = (umax (_ %))

8)(E 4u
Therefore for lower plate Tyx), = H (umax (— h—22>> =—u (%)

2

Ty = 114 X 10—3E(— t x 0.05ft/s)
2

m2 0.01mm
_ _3 0.223lbf xs (_ 4 E)
Tyx)g =114x10 (3.280f1t)2 0.01x1073(3.280ft) x 0.05 s

Ibf

Tyx)g = —001443]?
Ibf

NOW F = PA = 7,,A = (—0.01443 f?) (1ft2)

F = —0.014431bf
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Surface tension

Whenever a liquid is in contact with other liquids or gases, or in this case a
gas/solid surface, an interface develops that acts like a stretched elastic membrane,
such phenomenon is known as surface tension.

There are two features to this membrane: the contact angle 8, and the magnitude of
the surface tension, o (N/m or Ibf/ft). Both of these depend on the type of liquid
and the type of solid surface (or other liquid or gas) with which it shares an
interface.

When your car needs waxing: Water droplets tend to appear somewhat flattened
out. After waxing, you get a nice “beading” effect. We define a liquid as “wetting”
a surface when the contact angle 8 < 90°. By this definition, the car’s surface was
wetted before waxing, and not wetted after. This is an example of effects due to
surface tension.

In the car-waxing example, the contact angle changed from being smaller than 90°,
to larger than 90°, because, in effect, the waxing changed the nature of the solid
surface. Factors that affect the contact angle include the cleanliness of the surface
and the purity of the liquid.

Other examples of surface tension effects arise when you are able to place a needle
on a water surface and, similarly, when small water insects are able to walk on the
surface of the water.

In engineering, probably the most important effect of surface tension is the creation
of a curved meniscus that appears in manometers or barometers, leading to a
(usually unwanted) capillary rise (or depression).
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FLUID STATICS

We defined a fluid as a substance that will continuously deform, or flow, whenever
a shear stress is applied to it. It follows that for a fluid at rest the shear stress must
be zero. We can conclude that for a static fluid (or one undergoing "rigid-body™
motion) only normal stress is present—in other words, pressure. We will study the
topic of fluid statics (often called hydrostatics, even though it is not restricted to
water) in this chapter.

Although fluid statics problems are the simplest kind of fluid mechanics problems,
this is not the only reason we will study them. The pressure generated within a
static fluid is an important phenomenon in many practical situations. Using the
principles of hydrostatics, we can compute forces on submerged objects, develop
instruments for measuring pressures, and deduce properties of the atmosphere and
oceans. The principles of hydrostatics also may be used to determine the forces
developed by hydraulic systems in applications such as industrial presses or
automobile brakes.

In a static, homogeneous fluid, or in a fluid undergoing rigid-body motion, a fluid
particle retains its identity for all time, and fluid elements do not deform. We may
apply Newton's second law of motion to evaluate the forces acting on the particle.

Static Equilibrium

A fluid body is said to be at rest or in static equilibrium if sum of all components
of applied forces acting on it in the direction of arbitrary axis is zero. It is also
means that there is no rotation of a fluid body that is sum of moments about that
arbitrary axis must also be zero.

Hydrostatics Pressure: Pressure exerted by a fluid at equilibrium at a given point
within the fluid, due to the force of gravity.

For video lectures Visit our channel @ YouTube “Learning With Usman Hamid”



63

The Basic Equation Of Fluid Statics/ Pressure Field Equation

According to this equation; A fluid element in static equilibrium under the action
of pressure and gravity results a set of equation after applying Newton's second law
of motion. Mathematically it can be written as follows;

‘;_z =—pg=—-—y Or dp=-—-pgdz=—ydz

Where y is the specific weight of the fluid . The objective of equation is to obtain
an equation for the determination of pressure field within a fluid.

Restrictions

I. Static fluid
ii.  Gravity is only body force
ii.  z—axis is vertical and upward.

Explanation

Let us consider a fluid element in a large body of a fluid in a static equilibrium
having dimensions dx,dy and dz. The fluid element is stationary relative to
stationary coordinate axis. Let ‘p’ be the pressure at the center of the element. The
pressure at various faces of element can be computed with the help of Taylor’s
theorem at point ‘O’. Since area of each face is infinitesimal divisible size. We can
assume pressure at the center of face is uniformly distributed. Given figure show
differentiable fluid element in X,y and z direction.

Fy

dz
_ I geanc;y —| ( 9p dy )
(p By 2)( e dz){ §) - (gj -—] p+ay = (dx dzd—f )

S
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Therefore the surface force for each face of the fluid element can be determined by
the product of the pressure at center of the face at its area. The unit vector is
introduced to indicate the direction. Now we will write different forces as follows;

Pressure at left face of differential element = p + g—z (— d—y) = op &y

- —

ady 2

Pressure at right face of differential element = p + —p%y

Pressure force at left face = P, = (p — g—z—y) dxdzj

Pressure at right face = Py = (p + 6_p_y) dxdz(—))

D dﬁs = Total Pressure acting at fluid element = F,i + F,j + Ek

Y dFs = [(p — a__) dydzi + (p + a—pd—) dydz(— l)] [( — a_p_y) dxdzj +
(p +2%2) dxdz(=)| + [( — 222 dxdyk + (p + 22) dydz(—F)]
D dﬁs = — —dxddel dxdydzj — Z—dedydzl?

Y dF, = — (a—”“ P4+t o k) dxdydz = —VpdV

Y dF
gradp =Vp = — dI75 ............. (1)

Where Vp is the rate of change of pressure with distance is called pressure
gradient.

Physical Significance of Gradient of Pressure/ description of PG.

Physically the gradient of pressure is the negative of the surface force per unit
volume due to pressure. Higher the Pressure Gradient, the faster is the fluid flow.
For example fresh water has a pressure gradient of 0.433 ps/ft which means 0.433
of fluid column acts on 1ft of TVG.
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Now for body force dFg = gdm = gpdV

We combine the formulations for surface and body forces that we have developed
to obtain the total force acting on a fluid element. Thus

dF = dFs + dFy = —VpdV + GpdV = (=Vp + pg)dV

&l&
<U =

=—-Vp+pgd = )

For a fluid particle, Newton’s second law gives dF = ddm = dpdV. Then

% = ddm and For a static fluid, @ = 0. Thus % 0 and

(2)=-Vp+pg=0

Where —Vp is the net pressure per unit volume at a point and pg is the body force
per unit volume at a point.

Above is a vector equation, which means that it is equivalent to three component
equations that must be satisfied individually. The component equations are

0 . .

— £ +pg, =0 °x’ direction
d o

— £ +pg, =0 ‘y’ direction

] o
—a—z +pg, =0 °z’ direction

Above system of Equations describe the pressure variation in each of the three
coordinate directions in a static fluid. It is convenient to choose a coordinate
system such that the gravity vector is aligned with one of the coordinate axes. If
the coordinate system is chosen with the z axis directed vertically upward, then
gx = gy = 0,and g, = —g. Under these conditions, the component equations

op _ op _ 6_p _
become o = 0, 3y 0, —=—pg

Implies dp = —pgdz = —ydz

Where y is the specific weight of the fluid . The objective of equation is to obtain
an equation for the determination of pressure field within a fluid.
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Incompressible Liquids: Manometers
Hydrostatic Form of an Incompressible (p = Constant) Fluid

For incompressible fluid p = po = Constant
Since dp = —pgdz = —pygdz therefore fpi dp = fZZo —pogdz

P —Po = pog(2zo —2z) = —pogh  whereh =z, —z
P =po+ pogh Whereh=z,—z then p—p,=A7Ap =pogh

Equation indicates that the pressure difference between two points in a static
incompressible fluid can be determined by measuring the elevation difference
between the two points. Devices used for this purpose are called manometers.

Special Case: if z = 0 is a datum (arbitrary reference point) then

P — Do = —Po9Zo implies P = Do — PodZo

Remember Since we know that P — Do = P9 (2o —Z) = po9gZo — P09z
P+ pogz = Po + PogZo
D1+ Pogz1 = P2 + pogZzz = " = Pn + PogZz, = -+ = Constant

In general p + vz = Constant where y = pg

§+ z = Constant = H
Where )B/ = Pressure energy per unit volume

z = Electron Head and H = Static Head
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Quantity Formula Unit (SI System) Dimension
Pressure b F kg xms™ kg [ M ]
A = 2 = 2 Lt2
i mé m ms Lt
A
Specific Weight Y =pg Yy = kgm 3 X ms™2 [ M
= kgm_zs_z [2¢2
Pressure energy per unit p kg [L]
volume y ms?
kgm=2s~2
Example Systolic and Diastolic Pressure

The normal blood pressure of a human is 120/80 mm Hg. By modeling a
sphygmo-manometer pressure gage as a U-tube manometer, convert these

pressures to psig.

Solution:
Blood 7~ ar—__
pressure ™ / g W T
h
A A L]

Hg

N

Apply hydrostatic equation to points 4, A", and B.

Governing equation:
P—po = Op = pgh

Assumptions: (1) Static flwid,
(2) Incompressible fluids.
(3) Neglect air density (« Hg density).
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Applying the governing equation between points A’ and B (and pg is atmospheric and therefore zero gage):

pa =t pyggh = SGngpy,08h

In addition, the pressure increases as we go downward from point A" to the bottom of the manometer, and
decreases by an equal amount as we return up the left branch to point A. This means points A and A' have the same
pressure, so we end up with

Ps = P4 = SGygpyy o

Substituting §G, =13.6 and py o = 1.94 sluglft3 from Appendix A.1
yields for the systolic pressure (%= 120 mm Hg)

slu in.

Posalc = P4 = 136x194fgx322 K1 X
L
12in. shup-ft

Pasaic = YMIE[IE = 2.32 s « Pyl

By a similar process, the diastolic pressure (% =80 mm Hg) is

Piastolic = 135 psi e Piastolc

Remember

Manometers are simple and inexpensive devices used frequently for pressure
measurements. Because the liquid level change is small at low pressure
differential, a U-tube manometer may be difficult to read accurately. The
sensitivity of a manometer is a measure of how sensitive it is compared to a
simple water-filled U-tube manometer. Specifically, it is the ratio of the deflection
of the manometer to that of a water filled U-tube manometer, due to the same
applied pressure difference Ap. Sensitivity can be increased by changing the
manometer design or by using two immiscible liquids of slightly different density.
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The Standard Atmosphere
Scientists and engineers sometimes need a numerical or analytical model of the

Earth’s atmosphere in order to simulate climate variations to study, such type of
atmosphere is known as The Standard Atmosphere for example, effects of global
warming.

There is no single standard model. An International Standard Atmosphere (ISA)
has been defined by the International Civil Aviation Organization (ICAO); there is
also a similar U.S. Standard Atmosphere.

The temperature profile of the U.S. Standard Atmosphere is shown in Figure.

90
80 —
70 —
60 —
= 52.4 km
E so- —
— 47.3 km
=
B
B 40 —
Ll
30 —
20 —
10 - —
]
&
Lo
] ] I I ] I —
-120 -100 -B0 -60 40 =20 0 20

Temperature {7C]
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Sea level conditions of the U.S. Standard Atmosphere are summarized in the
following Table

Sea Level Conditions of the U.5. Standard Atmosphere

Property Symbol S1 English
Temperature T 15°C 59°F

Pressure i 101.3 kPa {abs) 14.696 psia
Density 2 1225 kg/m? 0.002377 slhug/ft’
Specific weight ¥ 0.07651 [bi/ft’

Viscosity i 1789 X 1077 kg/(m-s) (Pa.s)  3.737 x 107 Ibf - s/ft?

Example  Multiple-Liquid Manometer

Water flows through pipes A and B. Lubricating oil is in the upper portion of the
inverted U. Mercury is in the bottom of the manometer bends. Determine the

pressure difference, pa — pe, in units of Ibf/in.?

9 e [

— H,0

1
|
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Solution:

Governing equations: Ap =gY ph  SG= —
i

Assumplions: (1) Static fluid.
(2) Incompressible fluid.
Applying the governing equation, working from point B to A
pa—ps = Ap = glow,obs + pytls — oy + ppyth — p,0th) (1)

This equation can also be derived by repeatedly using Eq. 3.7 m the following form:

pr—p1 = pglhy — )

Bepinning at point A and applying the equation between successive points along the manometer gives

Pc—P4 = tpu,080

Po—Pc= ‘PHggdz
pe—pp = tp8ds
Pr—PE =~ e

PB = PF = ~Pu,0805
Multiplying each equation by minus one and adding, we obtain Eq. (1)

pa—ps = (pa—pc)+(pc—po) +{ppo—pe) + (pe—pr) + (pr —ps)
= P08 T P8t — Pongl3 t Prig8tls + pyy08s

Substituting p = SGpy,o With SGyy =136 and SG =038 (Table A.2), yields
= nggO(_dl +13.6d, — 0.88d + 13.6d, + dg)
PA—PB = EPy,o(—10+40.8-3.52 + 68+ 8) in.

P4 ~Pp = §Pu,p X 103310,

2 .
= 2ty 1048y 13300 x ML« I IO
§? ft} 12in. 144in2 " slug- ft
p4—pp = 373 1bf/in?. PA” P8
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Gases

In many practical engineering problems density will vary appreciably with altitude,
and accurate results will require that this variation be accounted for.

The density of gases generally depends on pressure and temperature. The ideal gas
equation of state, p = pRT = p = 1% ............... @)

Where R is the gas constant and T the absolute temperature.

In the U.S. Standard Atmosphere the temperature decreases linearly with altitude
up to an elevation of 11.0 km. For a linear temperature variation with altitude

givenby T =T, - mz.
As we know that dp = — pgdz = dp =— —-gdz  using (i)

p dp gdz p dp g rz dz
__P ___9& _pdp__9
R(To -mz) Po p R 70 (T - mz)

g

= tnlplf, =i tnlTo - maly = () =55 tn (B5) = n (B22)

g g g

To - mz\mR T\mRr T \mRr

= 2= ()" = e = ()" = p=ro(3)"
Po To Po To Ty
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Example

The Empire State Building in New York city, one of the tallest city in the world,
raises the height of approximately 1250ft. Estimate ratio of the pressure at its base
assuming the air to be at the common temperature 59°F. Compare this result with
that obtained assuming the air to be incompressible with y = 0.0765Ibf/ft* at
14.71bf/m? (Value of air at standard condition)

Solution

2, LS4

-

Consider ideal gas equation, p = pRT = p = 1%
Where R is the gas constant and T the absolute temperature.

Using basic hydrostatic equation Z_Z = —pg Where p is variable.

dp P . .

_— = - using (1

dz RTg g()

d dz d V4
:—p:_g_:fpz_p:_iIZdZ

1% RT P1 p RT “Z4

Where g and R are assumed to be constant over the elevation change from z; to z,.
Since the temperature has constant value T, over the range from z; to z,
(isothermal condition) then we have;

P2 _ 9 Z P2\ _ _ 9 _ —_9 -
> hlply = -2 |22 = (B) = - & (-2) = —1% (- 2)
) g
= D2 — e_R—To (z2—21) = D2 — e_R—To (z2—21)
P1 P1
Where R = 223208 _ TTIOBTE - gince 1Slug = 32.21bm

Lbm°R Slug°R
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Also T, = (°F + 460) = (59 + 460)°R

" 2
_[ 32.2ft/sec ‘ (1250—0)ft _l 1716;???/5% ‘ (1250-0)ft
e =e

17161bF fT - -
= Pz _ , | SugrR (59+4600R Ibf.secZ/ftoR O TSR
P1
=2 — 0956
P1

Consider air to be incompressible

fpplz dp = -y J‘ZZIZ dz

= IpI§§ ==Y |Z|§f >p 01 ="V (22—z)=>p,=p1 —V (22— 2z1)
_ 0.0765lbf (1250ft)
= Z_Z R A D R [ 12.71bf = 0.095
1 D1 mZ

Note that there is a little difference between two results, since pressure difference
of top and bottom building is small. It follows that variation in fluid density is
small and therefore compressible and incompressible analysis yields essentially the
same result.
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Example Pressure and Density Variation in the Atmosphere

The maximum power output capability of an internal combustion engine decreases
with altitude because the air density and hence the mass flow rate of air decrease.
A truck leaves Denver (elevation 5280 ft) on a day when the local temperature and
barometric pressure are 80°F and 24.8 in. of mercury, respectively. It travels
through Vail Pass (elevation 10,600 ft), where the temperature is 62°F. Determine
the local barometric pressure at Vail Pass and the percent change in density.

Given: Truck travels from Denver to Vail Pass.

Denver: z=35280fi WVail Pass: z=10,600 fi
pP=248in Hp T'=62"F
T'=80"F

Find: Atmospheric pressure at Vail Pass.
Percent change in air density beiween Denver and Vail.

Solution:

Governing equalions: :;; =—pg p = pRT
k4

Assumptions: (1) Static fluid.
(2) Air behaves as an ideal gas.

We shall consider four assumptions for property variations with altitude.

(a) If we assume temperature varies linearly with altitude, Eq. 3.9 gives

po  \To
Evaluating the constant rm pives

Ho—T _  (0-6)F 338 X 1072 °F/ft

m = = 5
z—z20  (10.6—528)10° ft
and
g ft ft Ibm -°R slug Ibf-s2
2 =327 _ % X =
mR 322 27 3383x102°F S53.3ft'Ibf * 3221bm  slug-ft 335
Thus
T\&™R 1460 + 62\>%
LRy = = (0.967)°% = 0.830
Fo TD 460 + 80
and

p = 0.830p, = (0.830)24.8in. Hg = 20.6in. Hg.
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Noie that iemperature musi be expressed as an absolute temperature in the ideal gas equation of state.
The percent change in density is given by

Ap

pTo_, _ 0830 rs

P P _ 2 —1=-0142 or —14.2%.

=Y _1= =
Pg Po Fo T 0.967

(b) For p assumed constant (=py),

RT,

A
p=202in.Hg and -2 =0 .

Po

(c) If we assume the temperature is constant, then

P
dp = —pgdz =——gd
P pgaz RTg <

and

For T =constant = T,

p=206in. Hg  and — =-169% -«

d) For an adiabatic atmosphere p/s* = constant
(4) phere pip ,

p
kfk-1 v Th
p=pu(T) = 20in.Hy and %=—82% _ n m:; t':':a Pl s ofth
” M wit i
elatmnt "h the bas ea’&’

We note that over the modest change in elevation the predicted pressure is - g7 beiy b tain the .
not strongly dependent on the assumed property variation; values calculated
under four different assumptions vary by a maximum of approximately
% percent. There is considerably greater variation in the predicted percent
change in density. The assumption of a linear temperature variation with
altitude is the most reasonable assumption.
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BASIC EQUATIONS IN INTEGRAL FORM FOR A CONTROL VOLUME

We will examine the control volume approach in this chapter. The agenda for this
chapter is to review the physical laws as they apply to a system; develop some
math to convert from a system to a control volume description; and obtain
formulas for the physical laws for control volume analysis.

Basic laws for a system

The basic laws we will apply are conservation of mass, Newton’s second law, the
angular-momentum principle, and the first and second laws of thermodynamics.
For converting these system equations to equivalent control volume formulas, it
turns out we want to express each of the laws as a rate equation.

Newton's Second Law

For a system moving relative to an inertial reference frame, Newton's second law
states that the sum of all external forces acting on the system is equal to the time

rate of change of linear momentum of the system, F= Z—f)system
Where the linear momentum of the system is given by

ﬁ)system = f Vdm = f I_/)pdV

(M)system (V)system

The Angular-Momentum Principle / Angular-Momentum of fluid flow

The angular-momentum of fluid remains constant when the net torque acting on it
Is zero. The angular-momentum principle for a system states that the rate of
change of angular momentum is equal to the sum of all torques acting on the

L, _dH
system, T = E)system
Where the angular momentum of the system is given by

H)system = J #xVdm = #x VpdV

(M)system (V)system

Torque can be produced by surface and body forces, and also by shafts that cross

the system boundary, T=FxE+[ 7 X gdm+ Tenafe

M )system
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The First Law of Thermodynamics

The first law of thermodynamics is a statement of conservation of energy for a
system, 6Q — W =dE

The equation can be written in rate form as Q-W = Z—f)system

Where the total energy (entropy) of the system is given by
VZ
E)system = f(M)systemedm = f(V)Systeme,DdV And e=u+ 5 + gz

InQ —W = Z—f)system, Q (the rate of heat transfer) is positive when heat is added
to the system from the surroundings; W (the rate of work) is positive when work is

2
done by the system on its surroundings. Ine = u + V; + gz, u is the specific

internal energy, V the speed, and z the height (relative to a convenient datum) of a
particle of substance having mass dm.

Example: The increase in the energy of a potato in an oven is equals to the amount
of heat transferred to it.

The Second Law of Thermodynamics

If an amount of heat, §Q, is transferred to a system at temperature T, the second
law of thermodynamics states that the change in entropy, dS, of the system satisfies

60
>_—
dS_T

-0

. . as
On a rate basis we can write E)System =

Where the total energy (entropy) of the system is given by

S)system = f sdm = f spdV

(M)system (V)system

Example: A cold object in contact with a hot one never gets colder, transferring
heat to the hot object and making it hotter.
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Relation of System Derivatives to the Control Volume Formulation
Intensive and Extensive Properties

Intensive property is a physical property of a system that does not depends on the
system size or amount of the material in the system. e.g. Hardness. It is represented

by 7.

While Extensive property is a physical property of a system that depends
on the system size or amount of the material in the system. e.g. Mass and VVolume.
It is represented by N.

npdv

And their equation is  N)gysrem = [ ndm = [

(M)system (V)system

The basic equation for relation of system derivative to control volume is

dN d = e
E)system = 3 fCVUPdV + fCSUPV- dA

It is the fundamental relation between the rate of change of any arbitrary extensive
property, N, of a system and the variations of this property associated with a
control volume. Some authors refer to above equation as the Reynolds Transport
Theorem. Where

dN
?) is the rate of change of the system extensive property N. For exam-
£ system ple,if N = P, we obtain the rate of change of momentum.

d
5 npd¥  istherate of change of the amount of property Nin the control volume.
ey The term [, pd¥ computes the instantaneous value of N in the
control volume ([, pd¥ is the instantaneous mass in the control
volume). For example, if N = P, theny = V and fcv Vpd’rz computes
the instantaneous amount of momentum in the control volume.

/ npV - dA s the rate at which property N 1s exiting the surface of the control
Cs

volume. The term pV - dA computes the rate of mass transfer leaving

across control surface area element dA; multiplying by n computes
the rate of flux of property N across the element; and integrating
therefore computes the net flux of N out of the control volume. For

example, if N = P, then n = V and fcsl?pﬁ -dA computes the net
flux of momentum out of the control volume.
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Conservation of Mass (Continuity Equation)

The first physical principle to which we apply this conversion from a system to a
control volume description is the mass conservation principle:

According to this law; For a system Mass is constant. i.e. Fluid mass can neither
created nor destroyed.”

am

system =0 (A)
Where M)gysiem = | Msystom @M = Jeppav (1)

. dN d = >
Now using —)system =5, pmpdV + [ ognpV.dd Q)
Where N)gysrem = | (Msystem 1AM = 1] DoystomMPAV oo (3)

To derive the control volume formulation of conservation of mass, we set from (1)
& (3) N=M and n=1

. : e : dm ] = e
With this substitution, we obtain E)System = afcvpdv + fCSpV. dA

From (A), we arrive (after rearranging) at the control volume formulation of the
conservation of mass:

%fcvpdv + [ spV.dA=0 Integral Form

In this equation the first term represents the rate of change of mass within the
control volume; the second term represents the net rate of mass flux out through
the control surface. Equation 4.12 indicates that the rate of change of mass in the
control volume plus the net outflow is zero. The mass conservation equation is
also called the continuity equation. In common-sense terms, the rate of increase of
mass in the control volume is due to the net inflow of mass.

Remember: In a continuous motion the equation of continuity expresses the fact
that increase in the mass of fluid with any closed surface drawn in the fluid at any
time must be equal to the access of the mass that flows ‘in’ over the mass of that
flows ‘out’. Inward flow is equal to outward flow.
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Special Cases

Case — I: Consider first the case of an incompressible fluid, in which density p
remains constant. When p is constant, it is not a function of space or time.
Consequently, for incompressible fluids, we may write

0 - -
poteydV+pfoV.dA=0

The integral of dV over the control volume is simply the volume of the control
.- . 0 = -
volume. Thus, on dividing through by p, we write afcvdv + [ V.dA=0

For a non-deformable control volume of fixed size and shape, V = constant. Then
if dV = 0 and the conservation of mass for incompressible flow through a
ot” CV

fixed control volume becomes [ CSI7. dA =0

Where V. dA is called volume flow rate or volume rate of flow. Then volume rate
Q through a section of an area A'is given by Q = fAI7. dA = 0 then average

Q [ VdA

velocity could be written as V= " = Volume flow rate per unit area.

Case — I1: A useful special case is when we have (or can approximate) uniform
velocity at each inlet and exit. In this case [ ..V.dA = 0 simplifies to

chﬁg: 0

General Case: Consider now the general case of steady, compressible flow
through a fixed control volume. Since the flow is steady, this means that at most
p = p(x,y,z). By definition, no fluid property varies with time in a steady flow.

Consequently, % | cyPaV = 0 and, hence, for steady flow, the statement of

conservation of mass reduces to [ .pV.d4 = 0

A useful special case is when we have (or can approximate) uniform velocity at
each inlet and exit. In this case, [ .,oV.dA = 0 simplifies to Y.cs pV. 4 = 0

Thus, for steady flow, the mass flow rate into a control volume must be equal to
the mass flow rate out of the control volume.
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WIPE JUNCTION

Consider the steady flow in a water pipe joint shown in the diagram.
The areas are: A;= 0.2 m?, A, =02 m?, and A, =0.15 m?. In addition,
fluid is lost out of a hole at @), estimated at a rate of 0.1 m*s. The
average speeds at sections () and (3) are ¥, =5 m/s and V3 =12 m/s,
respectively. Find the velocity at section (2).

Given: Steady flow of water through the device.

A =02m® A, =02m? A; =0.15m?
Vi=5mfs Vi=12m/s p=999kg/m’

Volume flow rate at (4y=0.1 m’/s
Find: Velocity at section (2).

Solution: Choose a fixed control volume as shown. Make an assumption
that the flow at section (Z) is outwards, and label the diagram accordingly
(if this assumption is incorrect our final result will tell us).

Governing equation: The general control volume equation is Eq. 4.12,
but we can go immediately to Eq. 4.13b because of assumptions (2) and
(3) below,

chﬁ'j=0

Assumptions: (1) Steady flow (given).
(2) Incompressible flow.
(3) Uniform properties at each section.

Hence (using Eq. 4.14a for the leak)
‘71'21+92'A‘2+‘?3'A3+Q4=0 (1)
where {J, is the flow rate out of the leak.

Let us examine the first three terms in Eq. 1 in light of the discussion of Fig. 4.3 and the directions of the velocity

vectors:
v,
&f‘r@ ¥i ry
7 X = T Sign of V] - A; is
Vi-A; =—ViA A
e . ' r: {negative at surface (1)
P
o
L 1 | : A3
Va-A; = +VoA; L@ {Slgl} .Of V2-A; is }
i positive at surface (2)
¥z
______ Vs
| —
- = p TR O
Vy-A; = +V3As 1A Slgl:l _of V3-Asis
& positive at surface (3)
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Using these resnlts m Eq. 1,
VA tVaA1+ V34310 =0
or

ViA| —V3A3 -0y
A

Vz =

5?X0.2m2—12%><0.15m2—

01m’

02m?

=—45m/s« Y

Recall that V represents the magnitude of the velocity, which we
assumed was outwards from the control volume. The fact that Vs is
negative means that in fact we have an inflow at location (2)—our
inilial assumption was invalid.

ample 4, RATE IN BOUNDARY LAYER

83

The Mwd in direct contact with a stationary solid boundary has zero velocity; there is no slip at the boundary. Thus
the flow over a flat plate adheres to the plate surface and forms a boundary layer, as depicted below. The flow ahead of
the plate is uniform with velocity V = Ui U=30mis. The velocity distribution within the boundary layer (0 < y < §)

along cd is approximated as w/U=2(y/6) - (y/é)%

U U
" / ke
—

\ Edge of

boundary
layer

The boundary-layer thickness af location 4 15 § =5 mm. The Auid 15 air with density p=1.24 kglmj. Assuming the
plate width perpendicular to the paper to be w=0.6 m, calenlaic the mass flow rate across surface be of control

volume ghcd.
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Given: Steady, incompressible flow over a flat plate, p=124 kg/m3. Width of plate, w=0.6 m.
Velocily ahead of plate is uniform: V = Ui, U=30 m/s.

At x=1xg v, o RN
—* / P
§=5mm o mefeme e S —
2 y = = |5
L oaf)-() = - s
) = |
a d

Find: Mass {low rate across sutface .
Solution: The fixed control volume is shown by the dashed lines.

Governing equation: The general control volume equation is Eq. 4.12, but we can go immediately to Eq. 4.15a
because of assumption (1) below,

[pv.dA':o
s

Assumptions: (1) Steady flow (given).
(2) Incompressible flow (given).
(3) Two-dimensional {low, given properties are independent of z.

Assuming that there is no flow in the 7 direction, then

1o flow
across da
/pﬁ-dA'Jr/ pﬁ-d,i'+ deA+/ f'm 0
Az Ape
mb,:=[pv.d;f=- i | g7 1)
A Ag Aut

We need to evaluate the mtegrals on the right side of the equation.
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For depth w in the z direction, we obtain

L. % 3 - .
fp%dA:—[ pudA:_f puw dy dﬁ'@" {V :iéline(gfanve}
A Am Y — = wdy

|

] & |
=— | puwd =—f pliwd "
J iy = | oty ®

- 5
f pV -dA =— {pry] = —pUwé
Ap 0

{u = U over area ah}

=i

@ { V.dAis positive }

dA = wdy

L %
f pV-dA = pudA=f puw dy
Ay Acg Ya

L L)

)
= ¥ L 2pliwé
V.dd =]l - 2| = pwis|1- 2| = 22220
]Af a [5 gl P 3 3

0

O | N

Substituting into Eq. 1, we obtain

* riy, = pUwb — 2"[3]“’5 = —*"l’;w‘s
1 ke m m
= - X124=% x30— X0. X
3 124m3 >(3{]S X 0.6 m X 5 mm 1000 mm

Pasitive sign indicates flow
out across surface be. ry,

vy = 0.0372kg/s <

ample 4 HANGE IN VENTING TANK

A tank of 0.05 n volume contains air at 800 kPa (absolute) and 15°C. At t=0, air begins escaping from the tank
through a valve with a flow area of 65 mm® The air passing through the valve has a speed of 300 m/s and a density of
6 kg/m’. Determine the instantaneous rate of change of density in the tank at r=0.

Given: Tank of volume ¥ = 0.05m’ contains air at p=800 kPa (absolute), 7=
15°C. At +=0, air escapes throuph a valve. Air leaves with speed V=300 m/s
and density p=6 kg/m3 through area A =65 mm’.

Find: Rate of change of air density in the tank at ¢=0.

Solution: Choose a fixed control volume as shown by the dashed line.

Governing equation: 9 ] pd¥+ f oV-dA =0
ar Jev cs

Assumptions: (1) Properties in the tank are uniform, but time-dependent.
(2) Uniform flow at section (7).
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Since properties are assumed uniform in the tank at any instant, we can take g out from within the volume integral

of the first term,
Q[pc‘,] d}‘]+f pV -dA =0
i cv cs

Now, [, d¥ = ¥, and hence 5
H¥et [ o7-di=0
L Jes

The only place where mass crosses the boundary of the control volume is at surface (7). Hence

[ p‘l}'-df_i'= p‘l?d/i' and g(pV)+[ pf-d/_i'=0
cs Ja, ot

At surface (1) the sign of pV - dA is positive, so

Swwre [ ovar=o [
ot A
Since [low is assumed uniform over surface (D, then

d d
E(PV) tpVid; =0 or = (p¥) = —p V14,

Since the volume, ¥, of the tank is not a function of time,

V% = —p V1A
and
BP_ o V141
a v
Att=0,
U —6kg><3[}0 sty
& m TR

{The density is decreasing.} %

b __ ;
. 234 (ke/ur')s

i

For video lectures Visit our channel @ YouTube “Learning With Usman Hamid”



87

Momentum Equation for Inertial Control Volume
The Control Volume Form of Newton's Second Law

We wish to develop a mathematical formulation of Newton's second law suitable
for application to a control volume. In this section our derivation will be restricted
to an inertial control volume fixed in space relative to coordinate system xyz that is
not accelerating relative to stationary reference frame XYZ.

In deriving the control volume form of Newton's second law, the procedure is
analogous to the procedure followed in deriving the mathematical form of the
conservation of mass for a control volume.

Recall that for a system moving relative to an inertial reference frame, Newton's
second law states that the sum of all external forces acting on the system is equal to

the time rate of change of linear momentum of the system, F = Z—i)system
Where the linear momentum of the system is given by
P)system = f Vdm = f VpdV

(M)system (V)system

And the resultant force, F, includes all surface and body forces acting on the
system,  F =F;+ Fp

The system and control volume formulations are related using Equation

dN ) > o
E)system ~ 3 fCVUPdV + fCSnPV- dA

To derive the control volume formulation of Newton's second law, we set
N=Pand n=V then we get

dﬁ 0 — - = -

E)system = EICVVPdV + fCSVpV. dA

Since, the system and the control volume coincided at to, then

- -
F)on system — F)controlvolume
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. - dP
Also using F)on system = =) system

In light of above two equations may be combined to yield the control volume
formulation of Newton's second law for a nonaccelerating control volume

- - - 0 — - — -

F=F;+Fg= afCVVpalV + [ VpV.dA

For cases when we have uniform flow at each inlet and exit, we can use
- - - 0 — - - -

F=F;+Fy= afCVVpalV +YcsVpV.dA

This equation states that the sum of all forces (surface and body forces) acting on a
nonaccelerating control volume is equal to the sum of the rate of change of
momentum inside the control volume and the net rate of flux of momentum out
through the control surface.

The momentum equation is a vector equation. As with all vector equations, it may
be written as three scalar component equations. The scalar components of
Equation, relative to an xyz coordinate system, are

0 - -
F,=Fs, +Fs = afcvupdV + J cupV.dA
d - -
F =Fs, +Fg, =~ S eyvpdV + [ cvpV.dA
d - -
F, =Fs, +Fp, = S eywpdV + [ . cwpV.dA

Or, for uniform flow at each inlet and exit,

0 - -
F=Fs, +Fg, = S eyupdV + YesupV.dA
0 — -
Fy=Fs, +Fp, = afcvvpdV + Y csvpV.dA
0 - -
F,=Fs, +Fg = afcvadV + Y cswpV.dA

Note that, for the mass conservation equation, the control surface integrals can be
replaced with simple algebraic expressions when we have uniform flow at a each
inlet or exit, and that for steady flow the first term on the right side is zero.
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Differential Control Volume Analysis

Streamlines

-]

x

We have considered a number of examples in which conservation of mass and the
momentum equation have been applied to finite control volumes. However, the
control volume chosen for analysis need not be finite in size.

Application of the basic equations to a differential control volume leads to
differential equations describing the relationships among properties in the flow
field. In some cases, the differential equations can be solved to give detailed
information about property variations in the flow field. For the case of steady,
incompressible, frictionless flow along a streamline, integration of one such
differential equation leads to a useful (and famous) relationship among speed,
pressure, and elevation in a flow field. This case is presented to illustrate the use of
differential control volumes.

Let us apply the continuity and momentum equations to a steady
incompressible flow without friction, as shown in Figure. The control volume
chosen is fixed in space and bounded by flow streamlines, and is thus an element
of a stream tube. The length of the control volume is ds.

Because the control volume is bounded by streamlines, flow across the bounding
surfaces occurs only at the end sections. These are located at coordinates s and
s + ds, measured along the central streamline.
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Properties at the inlet section are assigned arbitrary symbolic values. Properties at
the outlet section are assumed to increase by differential amounts. Thus at s + ds,
the flow speed is assumed to be V; + dVj, and so on. The differential changes, dp,

dV,, and dA, all are assumed to be positive in setting up the problem.
Now let us apply the continuity equation and the J - component of the momentum

equation to the control volume of Figure.
o

d -
;{d/pdv-}_fcgpv dA=0 ... (1)

Assumptions: (1) Steady flow. (2) No flow across bounding streamlines.
(3) Incompressible flow, p = constant.

Then (=pVsA) + {p(V; + dVs)(A + dA)} = 0

So p(Vs+ dVs)(A + dA) = plVsA

or (V,+dV,)A+dA=VvA ... (2)

On expanding the left side and simplifying, we obtain

V.dA + AdV, + dAdV, = 0

But dAdV, is a product of differentials, which may be neglected compared with
V.dA or AdV,. Thus VedA+ AdV, =0 ... 3)

Streamwise Comgonent of the Momentum Equation

0 - -
Fs, + Fp, = %/CvuspdV + [ouspVodd (4)

Assumption: (4) No friction, so FSB is due to pressure forces only.

The surface force (due only to pressure) will have three terms:

Foo =pA—(+dp)(A+dA)+(p+2T)da ... (5)
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The first and second terms in Equation (5) are the pressure forces on the end faces
of the control surface. The third term is Fg_, the pressure force acting in the s
direction on the bounding stream surface of the control volume. Its magnitude is

the product of the average pressure acting on the stream surface, p + %p, times the
area component of the stream surface in the s direction, dA.

Equation (5) simplifies to Fs, = —Adp — %dpdA ........... (6)

The body force component in the s direction is

Fg, = pgsdV = p(—gSind) (A + dTA) ds

But Sinfds = dz, so that Fg. = —pg (A + dz—A) dz ... (7)
The momentum flux will be

[ esuspV.dA = Vi(=pVid) + (V; + dV;) {p(V; + dV;)(4 + dA))

Since there is no mass flux across the bounding stream surfaces. The mass flux
factors in parentheses and braces are equal from continuity, so

J oquspV.dA = Vo (—pV,A) + (V; + dV, )(pVeA) = pVsAdVy, e (8)
Substituting 6,7,8 into 4 (the momentum equation) gives
—Adp — %dpdA — pgAdz — épgdAdz = pV,AdV,

Dividing by pA and noting that products of differentials are negligible compared
with the remaining terms, we obtain

_%p_gdzzvsdvszd(‘%z) or 6%’+d(‘%“'2)+gdz=0

For incompressible flow, this equation may be integrated to obtain

V2
% +--+ gz = constant

2
Or, dropping subscript s, % + V? + gz = constant

For video lectures Visit our channel @ YouTube “Learning With Usman Hamid”



92

This Equation is a form of the Bernoulli equation. It is such a useful tool for flow
analysis and because an alternative derivation will give added insight into the need
for care in applying the equation.

This equation is subject to the restrictions:
1. Steady flow.

2. No friction.

3. Flow along a streamline,

4. Incompressible flow.

By applying the momentum equation to an infinitesimal stream tube control
volume, for steady incompressible flow without friction, we have derived a relation
among pressure, speed, and elevation. This relationship is very powerful and
useful.

This equation is widely used in aerodynamics to relate the pressure and velocity in
a flow (e.g., it explains the lift of a subsonic wing). It could also be used to find the
pressure at the inlet of the reducing elbow analysis or to determine the velocity of
water leaving the sluice gate.
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Momentum Equation for Control Volume with Rectilinear Acceleration

For an inertial control volume (having no acceleration relative to a stationary frame
of reference), the appropriate formulation of Newton's second law is given by

F=Fs+Fz = f o VeyePAV + [ o ViysViyr dA o (1)

Relating the system derivatives to the control volume formulation, the flow field,
V(X,Y, z, t), was specified relative to the control volume's coordinates x, y, and z.

dﬁ 0 — — — -
we have  —)system = 5 S e ViyzPdV + [ o ViyzPViyz dA oo )
> dP
Also we know F = E)System ............ (3)
Where  P)gysrem = | (Msystem’ AT = 1] DoystomVPAV e 4)

Thus, if we denote the inertial reference frame by XYZ, then Newton's second law

states that F = dPXYZ)System ............ (5)

Since the time derivatives of Py, and P,,,, are not equal when the control volume
reference frame xyz is accelerating relative to the inertial reference frame, thus

ﬁ)system = f Vdm = f I_/)pdV

(M)system (V)system

Is not valid for an accelerating control volume.

To develop the momentum equation for a linearly accelerating control volume, it is
necessary to relate ﬁXYZ of the system to f’xyz of the system. We begin by writing
Newton's second law for a system

-

dpP d — av
F= XYZ)system = Ef VXYde = f XYz am ............ (6)

(M)system dt

(M)system

The velocities with respect to the inertial {XYZ) and the control volume
coordinates (xyz) are related by the relative-motion equation

Vevz = Vayz +Vop (7)
where Vrf is the velocity of the control volume reference frame.
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Since we are assuming the motion of xyz is pure translation, without rotation,
relative to inertial reference frame XYZ, then

dVxyz > _ dl7xyz dVrf _
dt = Qxyz = dt dt axyz + arf
Where

dyyz 18 the rectilinear acceleration of the system relative to inertial reference frame
XYZ,

dy, 18 the rectilinear acceleration of the system relative to noninertial reference
frame xyz (i.e., relative to the control volume), and

s is the rectilinear acceleration of noninertial reference frame xyz (ie., of the
control volume) relative to inertial frame XYZ.

Substituting from Eq. 7 into Eq. 6 gives

> dp
F XYZ

)system = f(M)system(axyz + arf)dm

AViyz

F = L eyseem@ 8 ) e —ar 4
r - _ dﬁxyz
Or F- J‘(M)syst:emarden o dt )syStem
=3 - dPx z
Or F— [, drpdV =—2 —E)iystem  eeeeeeeeeees (8)

Where the linear momentum of the system is given by

nyz)system = f(M)Systemnyzdm = f

And the force, F, includes all surface and body forces acting on the system.
: dN d =

Since E)system ~ fCVnPdV + fCSUPV- dA

To derive the control volume formulation of Newton's second law, we set

N=P,, ad n=V=1V,, then

dnyZ 0

=2 ystem = o= f oy VeyzPdV + [ o VeyspVeys dA 9)
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Combining Eqg. 8 (the linear momentum equation for the system) and Eq. 9 (the
system-control volume conversion), and recognizing that at time t, the system and
control volume coincide, Newton's second law for a control volume accelerating,
without rotation, relative to an inertial reference frame is

- N 0 — - — -
F— fCVanpdV = afcyvxyzpdv + ICSnyZpnyZ' dA
Since = Fs + Fy , this equation becomes

N 0 — — — -
Fs + Fp — fcvarfpdv = afcvvxyzpdv + fCSnyszxyz- dA
In this equation Fs represents all surface forces acting on the control volume.

The momentum equation is a vector equation. As with all vector equations, it may
be written as three scalar component equations. The scalar components of Equation
are

- 0 = i
Fs, + Fp, — fCVarfxpdV ~ ot fCVuxyzpdV + fcguxyzpvxyz- dA
- 0 =2 i
FSy + FBy - fcvarfypdv = afcvvxyzpdv + fcsvxyZpnyZ' dA

- a cd r
Fs, + Fp, — fcyarfypdv = afcvwxyzpdv + fcswxyZpnyZ' dA
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Equation for Fixed Control Volume / The Angular-Momentum Principle

The angular-momentum principle for a system states that the rate of change of
angular momentum is equal to the sum of all torques acting on the system,

—

> dH
T=—)system e (1)
Where the angular momentum of the system is given by

H)system = | FxVdm= [ FxVpdV (2)

(M)system (V)system

Torque can be produced by surface and body forces, and also by shafts that cross
the system boundary,

- -

T=FxE+ [ PXGAM+ Topare ceeeeeeeennnnn (3)

M )system

The position vector, 7, locates each mass or volume element of the system with

respect to the coordinate system. Where ﬁs is the surface force exerted on the
system. The relation between the system and fixed control volume formulations is

dN d = e
E)system = 3 fCVUPdV + fCSUPV- dA

Where N)system = | ndm

(M )system

lfweset N=H and n=#xV then

dﬁ d - = N - — -
—)system = Efcvr X VpdV + fcsr XVpV.dA ............ 4)

Combining Egs. (1), (3), and (4), we obtain

PxXE+ [ FX gdm+Tggr =—[ #xVpdV + [ .7 xVoV.dA
S (M)system g shaft otY CV P CS pv.

Since the system and control volume coincide at time to, then 7 = 7, then

FXE + [ F X GpdV + Fspage = == [ o, F X VpdV + [ (7 x VpV.dA

This is a general formulation of the angular-momentum principle for an inertial
control volume.
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The First Law of Thermodynamics (Control Volume Form)

The first law of thermodynamics is a statement of conservation of energy for a
system, 6Q — W =dE

The equation can be written in rate form as Q-W = Z—f)system

Where the total energy (entropy) of the system is given by

E)system = f edm = f epdV

M )system (V)system

2

And e=u+V7+gz

InQ —W = Z—f)system, Q (the rate of heat transfer) is positive when heat is added
to the system from the surroundings; W (the rate of work) is positive when work is

2
done by the system on its surroundings. Ine = u + V; + gz, u is the specific

internal energy, V the speed, and z the height (relative to a convenient datum) of a
particle of substance having mass dm.

: dN ] =
Since E)system = fCVnPdV + fCSnPV- dA
To derive the control volume formulation of 1% law of thermodynamics, we set

N=E and n =e then

dE 9 -

E)system = afcvepdv + fCSepV. dA

Since the system and the control volume coincide at to,

. . dE . . dE
Q-W= E)system =Q-W= E)CV

dE

Th US E) cv

Kl - -
= EfcvepdV + fCSepV. dA

Note that for steady flow the first term on the right side of above equation is zero.
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The Second Law of Thermodynamics (Control Volume Form)

If an amount of heat, §Q, is transferred to a system at temperature T, the second
law of thermodynamics states that the change in entropy, dS, of the system satisfies

5Q
>
as >

-0

. . as
On a rate basis we can write E)system > 7

Where the total energy (entropy) of the system is given by

S)system = f sdm = f spdV

(M)system (V)system

: dN ) >
Since E)system = fCVUPdV + fCSUPV- dA
To derive the control volume formulation of 1% law of thermodynamics, we set

N=S and n =s then

ds 0 = L2
E)system - afcyspdv + fCSSpV. dA

Since the system and the control volume coincide at to,

as das 1 -
E)system = E)CV > ;Q

ds ds 1/0
Or E)system = E)CV = fcg; (Z) dA

as

Thus —
dt

0 — - 1 Q
Vev = afcvspdv + [ ospV.dA = fcs;(z) dA
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INTRODUCTION TO DIFFERENTIAL ANALYSIS OF FLUID MOTION

In Previous Chapter, we developed the basic equations in integral form for a
control volume. Integral equations are useful when we are interested in the gross
behavior of a flow field and its effect on various devices. However, the integral
approach does not enable us to obtain detailed point-by-point knowledge of the
flow field. For example, the integral approach could provide information on the lift
generated by a wing; it could not be used to determine the pressure distribution that
produced the lift on the wing.

To obtain detailed knowledge, we must apply the equations of fluid motion in
differential form. In this chapter we shall develop differential equations for the
conservation of mass and Newton's second law of motion. Since we are interested
in formulating differential equations, our analysis will be in terms of infinitesimal
systems and control volumes.

Conservation of Mass

In previous Chapters, we developed the field representation of fluid properties. The
property fields are defined by continuous functions of the space coordinates and
time. The density and velocity fields were related through conservation of mass in
integral form. In this chapter we shall derive the differential equation for
conservation of mass in rectangular and in cylindrical coordinates. In both cases
the derivation is carried out by applying conservation of mass to a differential
control volume.

Equation of Continuity or Law of Conservation of Mass:

“Law of conservation of mass state that fluid mass can neither created nor
destroyed.”

The equation of continuity gives the law of conservation of mass in analytical
form or mathematical form z—‘t’ +V.pV = 0 where V is the velocity of fluid.

Therefore, in a continuous motion the equation of continuity expresses the fact that
increase in the mass of fluid with any closed surface drawn in the fluid at any time
must be equal to the access of the mass that flows ‘in’ over the mass of that flows
‘out’. Inward flow is equal to outward flow.
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Equation of Continuity in Cartesian coordinate OR differential form of
continuity or Conservation of Mass (Continuity Equation) in Rectangular
Coordinate System

Control volume
R 4

p | 7

tq

In rectangular coordinates, the control volume chosen is an infinitesimal cube with
sides of length dx, dy, dz as shown in Figure. The density at the center, O, of the
control volume is assumed to be p and the velocity there is assumed to be

l7=ui+vj+wl?

To evaluate the properties at each of the six faces of the control surface, we use a
Taylor series expansion about point O. For example, at the right face,

P =p+ ()T +5(E(E) +

2

dx

N . . _ a_p dx
Neglecting higher-order terms, we can write p)x+% =p+ (ax) .

dx

At )= (2

dp 9 .
Where p, u,ﬁ,% are all evaluated at point O.

The corresponding terms at the left face are
— o (22)(— ) =, _ ()
p)x—%_p-l_(ax)( 2)_'0 (ax)z
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and ) a=u+(5)(-5) =u-(5)5

We can write similar expressions involving p and v for the front and back faces
and p and w for the top and bottom faces of the infinitesimal cube dxdydz. These
can then be used to evaluate the surface integral in following Equation

B R
—eypdV + [ pV.dd=0 . (1)

Mass Flux Through the Control Surface of a Rectangular Differential Control Volume

Surface Evaluation of f pﬁ»dﬁ

dx dy dz

5 - ()4 ()4 2
[({E?)t = [p+ (a—i)dg {qu (%) fg—x}dydz = pudydz+ - ! [ (g—p) +p(g—j]dxd}’d2
e G () e S8) o
5 - ()4 () - 3o
e =l ()3l () Jocw = momaeara oG} oo ) e

Front Ap\ dz Ow 1 E?p) (ﬂw)} .
(+2) —[p—l—(g)?} {w%—(az) z}dxd}-pwdxdy+2{ (5_2 +p Bz dx ey dz
Adding the results for all six faces,

+ = dp Ju Gp & dp ow
furmed = [{e) oG} 1) o) {5 () f o

ar

- = [Bpu 8pu ﬁpw]
/f;spV-dA {51: + — R dx dy dz
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The result of all this work is [ V. dA = (2= + "’a’;" +22%) dxdydz

This expression is the surface integral evaluation for our differential cube.

Now as — [ pdV is the rate of change of mass in the control volume therefore
ot” CV

0

0 _o
afcvpdV e (pdxdydz) = " (dxdydz)

dpu . dpv . dpw .
+ 222+ 2% dxdydz = 0

ap
(1) = 2 (dxdydz) + ( T

Hence, we obtain (after canceling dxdydz) a differential form of the mass
conservation law

ap (Bpu dpv 6pw)
> — =
at T ox t dy T 0z 0

op (a_PA 9p 5 a_PA) P14t L whk) =
=5+ Geita, ] +3,k (ui+vi+wk)=0

ap =
=>E+V.pV—O

Special Cases: Two flow cases for which the differential continuity equation may
be simplified are worthy of note.

Case — I: For an incompressible fluid, p = constant and then ‘Z—’Z = 0; density is
neither a function of space coordinates nor a function of time. For an
incompressible fluid, the continuity equation simplifies to V. V=0

Thus the velocity field, V=ui+ vj + wk, for incompressible flow must satisfy
V.V =0.

Case — I1: For steady flow, all fluid properties are, independent of time. Thus

Z—f = 0 and at most p = p(x, y, z). For steady flow, the continuity equation can be

written as V. pV = 0.
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D’ Alembert’s Euler’s acceleration formula for a fluid flow in plane polar
coordinates with V = V,.&, + Vy&,

Since we have V= V.é, +Vyéy
Where V. =, Vg =16 then— =¥ ,%Vg =70+ 16
é, = CosOi + Sinbj

€g = —Sinfi + Cos@j then

%ér =0, %ér = —Sinfi + CosOj = &g
ér=%ér=z—?z—f=9ée

%ée =0, % = —Cos0i — Sinfj = —
é.g =%é9 = %%: _éér

Now differentiating V= .e, + Vyég with respect to time we get acceleration.

SV =d == (e, +Vpép)
i =6, (h) + Vo (&) + 89+ (Vo) + Vo= ()
d=e.(F)+V(06g) + &g(70 + 16) + Vy(—08,)
= ¢, () + ()(08y) + 89 (0 + r0) + (r6)(=68,)
d =16, +706y + 1708y + 1085 —1rh?e,
d =ieé, + 2108y + rfé, — rb?e,
i = (¥ — r62)e, + (rd + 276)é,
a=a,é +agéy

Where a, = # —r8% and ag = r + 276
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Equation of continuity for an incompressible, Irrotational fluid

For an incompressible fluid we have V. V=0 ........ (1)

For an Irrotational fluid we have V= -V and V X V=0...... (i1)
D)=2V.(-Ve) =0 -V.Vp=0=V2p=0

Example: Integration of Two-Dimensional Differential Continuity Equation

For a two-dimensional flow in the xy plane, the x component of velocity is given by u = Ax. Determine a possible
y component for incompressible flow. How many y components are possible?

Given: Two-dimensional flow in the xy plane for which x = Ax.

Find: (a) Possible y component for incompressible flow.
(b) Number of possible y components.

Solution:

Governing equotion: V-pV + % =0

For incompressible flow this simplifies to VV=0I rectangular coordinates
Ou dv  ow
—t+t0—+—=0
o gy Oz
For two-dimensional flow in the xy plane, V= ‘I?'(x, y). Then partial derivatives with respect to z are zero, and
Ju  Ov

dx Oy
Then

Gv _ _Ou_ _

ady Ox

which gives an expression for the rate of change of v holding x constant.
This equation can be integrated to obtain an expression for v. The result is

du v
o= [ oty ) =~y + (e

[{The function of x and ¢ appears becanse we had a partial derivative of v
with respect to y.}

Any function f{x, t) is allowable, since 8/3y f(x,) = 0. Thus any
number of expressions for v could satisfy the differential continuity
equation under the given conditions. The simplest expression for v would
be obtained by setting f{x, {) = 0. Then v =—Ay, and

V= Axf—Ayf -
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Example

Two components of velocity in an incompressible velocity field are given by
u=x?—y?and v = y? + logx determine third component assuming that origin
Is at stagnation point (velocity of fluid = 0)

Solution

Since flow is incompressible therefore V. V=0

ou v ow
> —+—+—=

ow ow
=t 0=>2x+2y+g—0:>5——2(x+y)

>w==-2(x+y)z+ f(x+y) integrating w.r.to ‘z’  ............. (1)
Since velocity is at stagnation point therefore V (u, v,w) = V(0,0,0)
>0=-2(x+y)z+f(x+y)=>flx+y) =2(x+y)z
MD)=>w==2x+y)z+2(x+y)z=>=w=0

Example

If u = x and v = —y describe a certain flow (compressible or incompressible)
field. Determine whether or not equation of continuity is satisfied. Also investigate
the type of flow mode (compressible or incompressible).

Solution ~ When p not given then it will be constant.

Since the velocity field state in problem is of 2 dimensional characters. Then
velocity in third dimension can be safely assumed to be zero. The velocity
components are independent of time therefore the flow is steady and p is not state
in problem hence we can assume flow field is incompressible.

For steady and incompressible flow V. V=0
= Z—Z + Z—; =0=1-1= 0= Equation of Continuity is satisfied.

As velocity components are functions of space coordinates, so flow field is
not uniform in character. The velocity gradient in x — direction the flow field is
positive and constant and in in y — direction it is negative and constant.
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i 7k

UxV=|9 9 20|=0i4+0j+0k=>VxV =0 aftersolving
dx dy 0z
u (% w

Since V x V = 0 therefore given field is Irrotational.

2xy x%—y?

Example  Show that the velocity components u = — 'V = ey and
y

W= ol represent the possible incompressible fluid.

Solution  For incompressible fluid V. V=0

o (o 2 2%y . x2-y% y ~
> V.V = (a l+ ] + = k) ( (x2+y2)21+ (x2+y2)2] + ) k)

=07 = =3 () * 5 Grmm) * 2 (@)

SV.V=0

2xy x%—y?
— =,V = w =
(x2+y2)2 (x2+y2)2 (x2+y2)2
represent the possible incompressible fluid.

Hence the velocity components u = —

Example

k(xJ y)

Test whether the motion specified by V= Is possible motion for

incompressible flow, so determine equation of streamlme.

Solution  For incompressible fluid V. V=0

<07 (i ) () = )+ 5 (559 -

. . k?y k?x
For equation of streamline u = — ,WV=—=,w=0
x2+y2 x2+y2
dx dy dz dx dy dz dx dy dz
—_— = 0 — = =0 - == — = — =
u v w k2y k2x 0 y x 0 xdx _'de

xZ2+y2 x2+y2

= x?+vy%=C anequation of circle.
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Example

Find a two dimensional in the xy — plane the x component of velocity
u = Ax. Determine a possible y component for an incompressible flow. How many
y components are possible?
Solution  For incompressible fluid V. V=0

du O0v ov u ov
= =02—=——=-A>—=-A=>v=-4
dox Oy dy dx dy v y+f(x)

The simple expression of v can be obtain by putting f(x) =0 = v =—-Ay

>V =ul+ vj = Axi — Ayj and number of expression for V could satisfy the
differential continuity equation under the given conditions.

Example

Find a two dimensional in the xy — plane the x component of velocity
u = Ax(y — B) where A = 1ft, B = 6ft, X,y are measured in feet. Determine a
possible y component for steady and an incompressible flow.

Solution  For steady and incompressible fluid V. V=0

= ou ov d v v
ﬁV.V—a'I‘@—Oﬁa(Ax(y—B))'Fa—0=>A(y—B)+5—O
=>Z—;=—A(y—B)=>Z—;=—Ay+AB=>v=—A§2+ABy+f(x)

sv=-L + M@y +f®) 3v=-2 +6y+f(x)

The simple expression of v can be obtain by putting f(x) = 0

=>v=—§2+6y
— N A N yz A
=>V=ul+v]=Ax(y—B)L+(—E +6y)]

>V =x(y-6)i+(-2 +6y)j where 4 = 1ft, B = 6ft,
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Example

Find a two dimensional in the xy — plane the x component of velocity u = f
where A = 2m? /s, X, is measured in meter. Determine a possible ‘y’ component

for steady and an incompressible flow.
Solution  For steady and incompressible fluid V. V=0

:v?=@+@=0:a()+—_0:mM+—=o

> Z = —Alnx = v = —Aylnx + f(x) = v = =2ylnx + f(x)

o
ay
The simple expression of v can be obtain by putting f(x) =0

>v= —2ylnx=>17=ui+vj=§i—2ylnxj=>V=§i—2ylnxj

Example

Find a two dimensional in the xy — plane the y component of velocity
_ 2xy
- (x2+y2)2"
flow.

Determine x component of velocity for steady and an incompressible

Solution  For steady and incompressible fluid V. V=0

= Ju . Jv ou ] 2xy ) ou 0 ( 2xy )
>VVi=—4+—=0=>—+— =U=—=—=—=
V.V ax + oy 0 dx + oy ((x2+yz)2 0 oy 0y \(x?+y?)?

x24(x? +y)

Su=—"—"—>=+f()

2(x2+y2)2
The simple expression of u can be obtain by putting f(y) = 0

x%+(x2%+y?) = N A X2+ (x24y2) 2Xy .
SU=——V=ul+vj=
2(x2+y2)2 J 2(x2+y2)2 (x2+y2)2]
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Example

Find a two dimensional in the xy — plane the x component of velocity
u = 3x2%y — y3. Determine y component of velocity for steady and an
incompressible flow.

Solution  For steady and incompressible fluid V. V=0

-

_Ou v _ 9 32y —y3) 290 _ o _
=>V.V—ax+ay—0=>ax(3xy y)+ay—0=>6xy+ay—0

= Z—; =—6xy =>v= —6x%2 +f(x) > v=—-3xy*+ f(x)
The simple expression of v can be obtain by putting f(x) =0 = v = —3xy?

>V =ul+ vj = (3x%y — y)i + (—3xy?)j

Example

Show that the velocity components u = 2x2 + y% — x2y,v = x3 + x(y? — 4y)
represent the possible incompressible fluid.

Solution  For incompressible fluid V. V=0

= . 9, . .
> V.V = (al + 5]) : ((sz +y2 = x2y) i+ (23 + x(y? - 4y))])
> V.V =2 (x?+ 2—xz)+i(x3+x(2—4 )

S>V.V=0

Hence the velocity components u = 2x2 + y? — x2y,v = x3 + x(y? — 4y)
represent the possible incompressible fluid.
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Example

Show that the velocity components u = 2xy — x2y, v = 2xy — y? + x?2 represent
the possible incompressible fluid.

Solution  For incompressible fluid V. V=0

=>Vl7=(ii+iA) ((2xy — x?y)i + 2xy — y* + x2)j)
- oxt Tal) y y y=y J
V=2 42 0 42 2

=>V.V—ax(2xy xy)+ay(2xy Y+ x°)

=>V.I7=2x—2xy¢0

Hence the velocity components u = 2xy — x%y,v = 2xy — y? + x2 do not
represent the possible incompressible fluid.

Example

Show that the velocity components u = 2y? + 2xz,v = —2yz + 6x?yz and
w = 3x2z% + x3y* represent the possible incompressible fluid.

Solution  For incompressible fluid V. V=0

. 0, 0, 02 . .
> V.V = (al + 3y) + Ek) : ((Zy2 + 2x2)i + (—2yz + 6x2%yz)] +
(3x%z% + x3y4)l€)

7 =9 (2 9 2 9 (2.2,2 3.4
>V.V= ax(Zy +2xz)+ay( 2yz + 6x yz)+az(3x z° + x°y*)
> V.V =12x%2#0

Hence the velocity components u = 2y? + 2xz,v = —2yz + 6x%yz and
w = 3x2z% + x3y* do not represent the possible incompressible fluid.
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Equation of Continuity or Conservation of Mass (Continuity Equation) in
Cylindrical Coordinate System

{a} |sometric view {¥) Projection on +# plane

A suitable differential control volume for cylindrical coordinates is shown in
Figure.

The density at the center, O, of the control volume is assumed to be p and the
velocity there is assumed to be V= e, V. + éyVy + kV,

Where é,, &g, k are unit vectors in the r, 8, and z directions, respectively, and

1., Vg, V, are the velocity components in the r, 8, and z directions, respectively. To
evaluate fCSpV. dA = 0, we must consider the mass flux through each of the six
faces of the control surface. The properties at each of the six faces of the control
surface are obtained from a Taylor series expansion about point O. The details of
the mass flux evaluation are shown in Table (given below). Velocity components
., Vo, V, are all assumed to be in the positive coordinate directions and we have
again used the convention that the area normal is positive outwards on each face,
and higher-order terms have been neglected.

We see that the net rate of mass flux out through the control surface is given by (in
table)

apVy  0pVy apV,
r
or T 06 t 0z

[espV.dA = [pV, +7 | ardodz
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The mass inside the control volume at any instant is the product of the mass per
unit volume, p, and the volume, rdrd@dz. Thus the rate of change of mass inside
the control volume is given by

] = dp
~JcypdV = —-rdrdodz

In cylindrical coordinates the differential equation for conservation of mass is then

%fcvpdl_/) + fCSpV. dA =

Z—Zrdrdedz + [er +r ag:r + 6229 + rag:z] drdfdz =0
=>p14+rag:r+aggg+ragzz+r3—i= 0
=>a(;prvr)+agge+r%+r3—i=0

ot o ot e

= (éT%+é9%%+l§%).p(érVr+é0V9 +I€VZ)+Z—’Z= 0

=>V.pl7+g—’t)=0

For an incompressible fluid, p = constant, and Equation reduces to

V.V =0=V.V=0 =20

10Ve , OV, _
or t7a0 Tz 0
Thus the velocity field, V{Xx, y, z, t), for incompressible flow must satisfy V. V=0

For steady flow, Equation reduces to

19d(rpV 1dpV
_, 10GrpVy) 190V
r odr r 00 d0z

2=0=>V.pV =0
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Example Differential Continuity Equation in Cylindrical Coordinates

Consider a one-dmensional adiel fow in the plane, given by V,={{r) and V,=0. Determine the conditions on
f(r) required for the flow to be incompressible.

Given: One-dimensional radial flow in the rf plane: V, = f{r) and V=10
Find: - Requirements on f{r) for incompressible flow.
Solution:

Governing equation: V-V + % =

For meompressible flow in cylindrical coordinates this reduces to Eq. 5.2b,

1o, . 19,

For the given velocity field, V= l7(r). Vy = 0 and partial derivatives with respect to 7 ate zeto, 50

14
;&("Vr)—o

Integrating with respect to r gives

r¥, = constant

Thus the continuity equation shows that the radial velocity must be V, = fir) = Cr for one-dimensional radial flow of
an incompressible fluid. Thus is not a surprising result: As the fluid moves outwards from the center, the volume flow

rate (per unit depth in the 7 direction) =2rrV at any radius r is constant \
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Stream Function for Two-Dimensional Incompressible Flow
It is a function that describe pattern of flow.
Or  Itis discharge per unit thickness. Denoted by ¥ = ¥(x, y)

There are various ways to define the stream function. We start with the two
dimensional version of the continuity equation for incompressible flow.

dpu

V.pV=0=>ax+ay 5 =0

dpu  dpv _ _ dimensi
=——+ 3y 0 ...o...... (1) For 2 — dimension

i _o __%
If we introduce pu = 3y and pv = FRTRRRRPR (2)
. a (oY d ( P\ _

Then (2) satisfied (1) >~ (@) + (-35) =0

%y %y _

dxdy  dydx

Thus stream functions are defined as using continuity equation

_ __%
U= and v = ™
Using equation of streamline udy —vdx =0
o 0 _
=>uay+vax—0 where dy = 0

Advantages of stream function:

. Stream function is taken only for a flow in plane.

ii.  We have the simplified analysis by having to determine only unknown

function Y (x, y) rather than two functions.
ii.  Using stream function we can find stream lines

114
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Description of a stream function describing stream lines in a cylinder

__,:?r’/f_i__—_:—____i—?f‘\:\\ il
S L /T IR
—:7_’ /}-\
S O

s _ oo — "

The figure shows that computed streamlines around a cylinder. In this case we
move with the object and flow proceeds from left to right. Since the streamline is
traced out by moving a particle at every point along the path the velocity is tangent
to path. Since there is no normal component of the velocity along the path, mass
cannot cross a streamline.

RZ
W(r, 0) = V,,rSin(0) [1 - Tz]
Certain conditions to define stream function

= Stream function is defined for any two or three dimensional flow.

= Stream function is defined for three dimensional axial symmetric flows.

» For two dimensional flow streamlines are perpendicular to equipotential
lines.

= Stream function is defined for incompressible (divergence free) flow in 2
dimension.
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Example

Compute the velocity components in the fluid flow describing the stream function
given as Y (x,y) = (aV)?xf(n) ;n = (a/V)Y?y to verify the velocity
component by satisfying the continuity equation of two dimensional flow.

Solution

Giventhat ¥(x,y) = (aV)Y*xf() ;n = (a/V)*?y
The stream functions are defined as using continuity equation

0

u = % —llf(xy)

u=2pCey) = 2 (@) 2af ) = 2 <(aV)1/2xf (5" y))

! (€ SR ©")

> u = axf’ ((V)l/2 y)

__w__32
Also v = = axl,b(x,y)

- v == 2 (@) = - & (@ ((§)))

= v = —(aV)V?f ((%)1/2 y>

To verify equation of continuity V.V = 0

ARt (axf (®" y)) - aa—x<(aV)1/2f ©8 y)> 0

Hence verified.
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Example Stream Function for Flow in a Corner

Given the velocity field for steady, incompressible flow in a comer (Example 2.1), V = Axi — Ayj, with 4 = 0357,
determine the stream function that will yield this velocity field. Plot and interpret the streamline pattern in the first
and second quadrants of the xy plane.

Given: Velocity field, V = Axi— Ay}, with A =03 57"
Find: Stream function t and plot in first and second quadrants; interpret the results.

Solution:
The flow is incompressible, so the stream function satisfies Eq. 54,

From Eq. 54, u = i andv =- 64"0 From the given velocity field,

Oy oy N
u=Axr= ¥
Integrating with respect to y gives
b= [yt )= Ay 41 )
where flx) is arbitrary. The function flx) may be evaluated using the equation for v. Thus, from Eq. 1,
=gy T 0

d
From the given velocity field, v = —Ay. Comparing this with Eq. 2 shows thataf = {, or f{x) = constant. Therefore,
Eq. 1 becomes

p=Axy+c « v

Lines of constant ¢ represent streamlines in the flow field. The constant ¢ may be chosen as any convenient value for
plotting purposes. The constant is chosen as zero in order that the streamline through the ongin be designated as
=1, =0. Then the value for any other streamline represents the flow between the origin and that streamline. With
¢=0and A=035", then

¥ =03y (m's/m)

{This equation of a streamline i identical to the result (xy = constant) obtained in Example 2.1.)

Separate plots of the streamlines in the first and second quadrants are presented below. Note that in quadrant 1,
1 >0, s0 1 valugs are positive. In quadrant 2, u <{, so ¢ values are negative.

In the first quadrant, since u >0 and v < {}, the flow is from left to right and down. The volume flow rate between
the streamline = ¢/ through the ongin and the streamline =g is

Op =45 -9 = 03m/s/m
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Guadrant 2 yIm}

Guadrant 1

¥ = 1.2 melsim
/ 1y = 0.9 milaim
1= 0.6 maim

i

1p= 03 milsim

In the second quadrant, since u </} and v <0, the flow is from right to left
and down. The volume flow rate between streamlines o and thy is

O =1y -

=12

0.6))m m/s/m = 0.6 m’/s/m

The negative sign is consistent with flow having z < 0.

Volume Flow Rate

€ 5p

Pac iﬂ_g in the
for

Volume flow rate measure the amount of volume that passes through an area per
unit time. The volume flow rate equation is Q = AV where

Q = Volume Flow Rate

A = Area Occupied By Flow Material

V' = Average Velocity

118
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Question

Show that volume flow rate between two streamlines can be written as the
difference between the constant values of the stream function i defining the two
streamlines

Solution

Flow rate across AB Q= f;’: udy = fl;f’lz a—”bdy ............... (1)
Since Y = Y(x,y) therefore dy = Z—fdx + ‘;—;l:dy

Along AB ‘X’ is constant therefore dx = 0 and we have dy = Z—l}/jdy

(1) Implies Flow rate across AB Q= le’: dy =y, — Y,
Flow rate across BC Q= [*vdx = - 12012 Z—fdx ............... )
Since Y = Y(x,y) therefore dy = Z—fdx + Z—;{’dy

Along BC ‘y’ is constant therefore dy = 0 and we have dy = W dx

dx

(2) Implies Flow rate across BC Q=- fl;f’zl dy = ff: dy =P, — Py
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A 2 Dimensional incompressible flow field is given as u = 2x, v = —2y determine
the stream function 1, also indicate that whether or not the given flow field is
Irrotational, if it is Irrotational determine velocity potential.

Solution:  Given that u = 2x,v = —2y then

W _ = _ =

a—u—Zx ....... (1) and L= V= 2y ... (2)
Integrating (1) with respect to ‘y’ Y=2xy+f(x) ... 3)

Differentiating (3) with respect to ‘x’ Z—f =2y + f'(x)

2y =2y+f'(x)=>f'(x)=0=f(x)=c using (2)

B)=2yY=2xy+c

Now we have to show that V x VV = 0 with V = 2xi — 2yj

j k
SVUXV = 2  21=0 after Simplification

dy 0z

-2y 0
Hence flow is Irrotational.
V= _ t oyt = 205 004

NowV = =V = 2xi — 2yj = oz " ay) glves
0] _ 6_<p _
= 2x (1) and By = 2y ... (2)
Integrating (1) with respect to ‘X’ o=—x*+f(y) ... (3)

2y=f'(0)=>f)=y*+c using (2)

B)=2>p=—-x*+y*+c
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Question
= k2(xj-yi) . s : . :
Whether V = iy Is of potential kind? If so determine velocity potential.
Solution:
— Lo kKA(xj-yb) K2y . k?x
We have toshowthat VXV =0withV = —F—~-=—-——1+—-—]
x“+y x“+y x“+y
i ik
. d d d
>VXV=| o« ay o9zl =0 after Simplification
K%y k?x 0

Hence flow is Irrotational. And the given velocity is of potential kind.

—>__ _ k2y R kzx A__a_(PA__(pA .
Now V = —V¢p = ey + ) = Tt T gy gives
dp _ kZy dp _  K’x
Tx  wg (1) and 3y T (2)
Integrating (1) with respect to ‘x’ @ = k*ytan™?! G) +f&y) ... (3)

Differentiating (3) with respect to ‘y’ g—‘; =4 f'(y)

=) =2 fY) = s using (2)
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Motion of a Fluid Particle (Kinematics)
There are four types of motion of a fluid element;

. Translation: Motion in which the particle moves from one point to
another. Orientation not changed.
I, Rotation: Motion which can occur about any or all of the X, y or z axes.
In this orientation changed.
ii.  Linear Deformation: Motion in which the particle’s sides stretch
(expansion/dilation) or contract (contraction/reduction).
= Linear deformation of a fluid element occurs when it passes through
the zone of accelerated or decelerated.
= Dilation or expansion of fluid element occurs when it passes through
deaccelerated flow region.
= Contraction or reduction of fluid element occurs when it passes
through an accelerated flow region.
= Decrease or increase in magnitude of normal stress is responsible for
dilation or contraction of the fluid element.
iv.  Angular Deformation: Motion in which the angles (which were initially
90° for our particle) between the sides change. It is also called stress
deformation.

Fluid Translation: Acceleration of a Fluid Particle in a Velocity Field

The translation of a fluid particle is obviously connected with the velocity field
V= V(x, v, z,t). We will need the acceleration of a fluid particle for use in

-

Newton's second law. It might seem that we could simply compute this as a = ‘;—:.

This is incorrect, because V is a field, i.e., it describes the whole flow and not just
the motion of an individual particle.

The problem, then, is to retain the field description for fluid properties and obtain
an expression for the acceleration of a fluid particle as it moves in a flow field.
Stated simply, the problem is:

Given the velocity field, V = V(x, y, z, t), find the acceleration of a fluid particle,

a,.
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Consider a particle moving in a velocity field. At time t, the particle is at the
position X, y, z and has a velocity corresponding to the velocity at that point in

— —

space attimet, V, I =V(x,y,21t)

Particle path

W
Ej”ti:le at ‘/:I

FPartizia at
F = ufF tirme:, 5 = efr

— ;

At t + dt, the particle has moved to a new position, with coordinates x + dx,

vy + dy, z + dz, and has a velocity given by

—

V) levae = V(X +dx,y + dy,z + dz,t + dt)

Now dv, = dV(x,y,2,t)

= v v v v
de —adxp +5dyp +Ede +Edt

L, _dV, aVdx, aVdy,  dVdz,  aVdt
P 4t 9x dt 9y dt 9z dt = dtdt

5 av v v av v dx dy. dz
p P 14 4
=—=u—+v—+w—+— where u=——,v=—,w = —
p dt ax t dy t 0z T ot dt dt dt
) 5 DV, ov v av . av
We may write d,=—2=u—4+v—+w—+—
y p Dt dx t dy t 0z t ot

ivative 2 =00  dywo  dzp0d 0 ;
The derivative, EYSlralwie e 5 T @ o, T8 commonly called the

substantial derivative to remind us that it is computed for a particle of
"substance."” It often is called the material derivative or particle derivative.
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. N ., _ DV __ 9V ov ov | av .
The physical significance of the terms in a,, = = uU—+v 3y tw—+—Is
. DV av  av av av
2, = —_— = — + v— + w—— + —_
# Dt Hx Sy Jz at
Latal conveclive leweal
acceleration acceleralion acpeleralion

of a particle

It recognizes that a fluid particle moving in a flow field may undergo acceleration
for either of two reasons. This is a steady flow in which particles are convected
toward the low-velocity region (near the“corner’), and then away to a high velocity
region. If a flow field is unsteady a fluid particle will undergo an additional local
acceleration, because the velocity field is a function of time.

The convective acceleration may be written as a single vector expression using the
gradient operator V. Thus

v v vV = o
uaﬂ'vaﬂ'WE = V(VV)

> = o, OV
Hence d, = =V.(VV)+6—:

For a two-dimensional flow, say V = V(x, v, t), Equation reduces to

Which, as we have seen, is not necessarily zero. Thus a fluid particle may undergo
a convective acceleration due to its motion, even in a steady velocity field.
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. DV 1% v v  av. . .
Equation a, = — = u— + v— + w— + — is a vector equation. As with all
Dt ox ay 0z t

vector equations, it may be written in scalar component equations. Relative to an
Xyz coordinate system, the scalar components of Equation are written

a,, = % =ug—x+vg—!;+wg—z—l—%
Dy Gu au v du

a,, = Dr =HE+UB_}7+W5—Z+E
Dw aw v ow  Ow

2 = P =ua+ua—y+waz —+ Y

The components of acceleration in cylindrical coordinates may be obtained by
expressing the velocity, V,in cylindrical coordinates. Thus,

av, Va OV, 1-”3 av, av,
- v, 4 L& R VAALan
r " ar r 909 r 9z ot
OV Vo OV | N Vs OV
-2, + +v, 08 OV
a8, f or r o6 r t 9z ot
_ oV, Vg OV, av, oV,
% =Vig T 58 "Vea T e
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Example

Following the fluid particle, calculate the y component of the acceleration for a

particle where velocity vector is given by V = (3z — x2, yt2, xz2) in ft/Sec at a
pointx = 1ft,y = 1ft,z = 9ft,t = 2Sec

Solution

The y component of the acceleration for given fluid is

DYy Wy Ay Oy O
ay(x'y'z't)_Dt_anx+Vyay+Vzaz+6t
Using V =3z — x%1 + yt2] + xz%k

ay(6,y,2,8) = 32 = x2) - (t?) + () 5> D) + (x22) 32 (92) + 5 (9t?)

a,(x,y,z,t) = 3z —x2)(0) + (yt*)(t?) + (xz*)(0) + (2yt)
a,(x,y,2,t) = yt* + 2yt

ay(1,1,9,2) = 20ft/Sec
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Fluid Rotation

The average angular velocity of any two mutually perpendicular linear elements of
the particle is called rotation. It is denoted by .

A fluid particle moving in a general three-dimensional flow field may rotate about
all three coordinate axes. Thus particle rotation is a vector quantity and, in general,
W = Wyl + wyf + w,k where w, is the rotation about the x axis, w,, is the rotation
about the y axis, and w,, is the rotation about the z axis. The positive sense of
rotation is given by the right-hand rule.

Mathematical expression for Fluid Rotation

To demonstrate the development of rotational character of flow field, let us
consider a fluid element of rectangular shapes with sides Ax, Ay in 2D flow field. It
Is assume that velocity vector increases within the direction of increasing
coordinate axis.

Velocity components on the boundaries of a fluid element.
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Rotation of fluid element in 2 dimension

Consider the motion of fluid element in xy plane view of the particle at time t. the
component of velocity at every point in the flow field are given by u(x,y),v(x,y)
Now if velocities at points ’a’ and ‘b’ are different from O then in time interval At

the two mutually perpendicular lines ‘oa’ and ‘ob’ will rotate as show in figure ‘2°.

Rotation of line ‘oa’

The rotation of the line ‘oa’ of length Ax is due to the variation of ‘y’ component.
If 170 is the y — component of the velocity at point O then by Taylor Series

expansion of velocities at point ‘a’ can be written as;
— — ov

V="V +--Ax

The angular velocity of line ‘oa’ is given by

An

R T Aa . Ax
Woq = limy,_, i limy,, e (1)

dx
A v v A v
=0 = DAy = Anp = ZAxAt = L = ZA¢
At ox dx Ax dx
a
1 — i An li 512 t ov
( ) = Woq = IMps0 At 1MA¢—0 ¢ = Woq a

0
w=-
t

s=r0=0=

Then Aa =
Ax

i )

An
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Rotation of line ‘ob’

The rotation of the line ‘ob’ of length Ay is due to the variation of ‘x’ component.
If l_fo Is the x — component of the velocity at point O then by Taylor Series

expansion of velocities at point ‘b’ can be written as;

~|

— . — a_u w
U=U,+ 3y Ay
S
The angular velocity of line ‘ob’ is given by s=1r=>0=-
r

AB 4. _ A
Wop = limyg,o 5= = limpgg A—ty .............. (3) Then Af = iy

A¢

:ﬁ—a—uA =>A5——AyAt=> a8 _ou
At Ay

A v
¢ FIval ou ou

. Ay . ay
N = 8y o —— = i
(3) @ w,p, = limpg m limy, m Wop = 35 % (4)

Here negative sign shows that ob rotates in clockwise direction.

The rotation of fluid elements about z — axis is the average angular velocity of two
mutually perpendicular line elements oa & ob in Xy — plane.

av 6u)

Wy, (woa + wob) = (a - 5

In the similar manner we can find the rotation of fluid element in x —axis ory —
axis (yz — plane, xz — plane) respectively as follows;

w. = (aw Bv) and P (6u 6w)
X oy 0z Y 2\0z ox

Then we have from the relation & = w, i + w,j + w,k

1 ow ov\ . u ow\ . v au\ o
z((a—a—z)”(a—a)”(a—a)k)

== (V x V)  Required Mathematical expression for Fluid Rotation

gl
Il
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Vorticity: The vorticity is a measure of the rotation of a fluid element as it moves
in the flow field. It is represented by orQand { = 2@ =V X Vv

In cylindrical coordinates the vorticity is

= . (19V, 9V, A [0V, OV, ~(13Vg 10V,
VUxV =26 (——Z——) 8 (——— f(2%e _ 1o%
r\Gas a2 T \% T ) TG TR0

Circulation: The circulation, I', is defined as the line integral of the tangential

velocity component about any closed curve fixed in the flow, T = 93617. ds

Where ds is an elemental vector tangent to the curve and having length ds of the
element of arc; a positive sense corresponds to a counterclockwise path of
integration around the curve.

Relationship between Circulation and Vorticity

We can develop a relationship between circulation and vorticity by considering the
rectangular circuit shown in Figure,

¥

Su
w+ EE Ay
o HT R

v TL+axAx
(I

o [
N

Where, the velocity components at O are assumed to be (u, v), and the velocities
along segments bc and ac can be derived using Taylor series approximations.

E

x

ov du
For the closed curve oacbh, Al' = uAx + (v + an) Ay — (u + EAy) — vAy

ov u
Ar = (32— 5) AxAy = 2w,AxAy

ThenT = $ V.ds =T = [ 2w,dA=T = [ 2(VxV) dA

This Equation is a statement of the Stokes Theorem in two dimensions. Thus the
circulation around a closed contour is equal to the total vorticity enclosed within it.
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Example Free and Forced Vortex Flows

Consider flow fields with purely tangential motion (circular straamlines): V, = 0 and V= f{r), Evaluate the rotation,
vorticity, and circulation for rigid-body rotation, a forced vortex. Show that it is possible to choose f{r) so that fow s
irrotational, i, to produce a free vorter,

Given: Flow fields with tangential motion, V, =0 and V,= fy).
Find: (a) Rotation, vorticity, and circulation for rigid-body motion (a forced vortex).
(b) Vymf(r) for irrotational motion (a free vorterx).
Solutlon:
Governing equation:  { = 23 m Y xV (5.15)

For motion in the 4 plane, the only components of rotation and vorticity are in the 7 dirsction,

o, g L0 180
CETT TR
Because V, = everywhere in these fields, this reduces to , = 2, = % %

(a) For rigid-body rotation, Vym wr.
11 8:% 114 ]

Thenu,-i;yli;gw ‘E[Zuﬂ')-w and C:'Zw.

The circulation is T = f Vodi= f QuydA. (5.18)
3 A

Since w, =w = constant, the circulation about any closed contour is given by ['=2wA, where A is the area
enclosed by the contour. Thus for rigid-body motion (a forced vortex), the rotation and vorticity are constants;
the circulation depends on the area enclosed by the contour,

1
(b) For irrotational flow, o, = - aETVg = (. Integrating, we find
ror

£
Vg = constant or ¥y =f(r) = -
r

For video lectures Visit our channel @ YouTube “Learning With Usman Hamid”



132

Faor this flow, the origin is a singular point where ¥y —» oc. The circulation for any contour enclosing the origin is
. 2z C
I‘=fV-¢ﬁ'= f —rdd =27C
¢ o F

It tums out that the circulation around any contour not énclosing the singular point at the ongin is zero.
Streamlines for the two vortex flows are shown below, along with the location and orientation at different
mstants of a cross marked in the fluid that was initially at the 12 o'clock position. For the rigid-body motion
{which occurs, for example, at the eye of 4 tomado, creating the “dead” region at the very center), the cross
rotates as it moves in a circular motion; also, the streamlines are closer together a5 we move away from
the origin. For the irotational motion (which occurs, for example, outside the éve of a tornado—in such a large
repion viscous effects are negligible), the cross does not rotate as it moves in a circular motion; also, the
streamlines are farther apart as we move away from the origin.

.

Rigid-bady matien Irotational mation \
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Momentum Equation/ Law of Conservation of Momentum

A dynamic equation describing fluid motion may be obtained by applying
Newton's second law to a particle. To derive the differential form of the
momentum equation, we shall apply Newton's second law to an infinitesimal fluid
particle of mass dm.

Recall that For a system moving relative to an inertial reference frame, Newton's
second law states that the sum of all external forces acting on the system is equal to

the time rate of change of linear momentum of the system, F= ‘;—i)system
Where the linear momentum of the system is given by

P)system - f(M)systedem - f(V)SyStemvpdV

Consider a differential fluid element of mass dm, using Newton’s second law

dF = dm
dt
= DV av av ov . av
=>dF—de—dm ua+v£+W£+E .................. (1)

We now need to obtain a suitable formulation for the force, dF, or its components,
dF,, dF,, and dF,, acting on the element.

We shall consider the x component of the force acting on a differential element of
mass dm and volume dV = dx dy dz. Only those stresses that act in the x
direction will give rise to surface forces in the x direction. If the stresses at the
center of the differential element are taken to be gy, Ty, and ,,, then the stresses
acting in the x direction on all faces of the element (obtained by a Taylor series
expansion about the center of the element) are as shown in Figure.
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’ I dy
F}.t+ {?}. ?
| - _Pnea
I fa gz 2
a"ufir l"" -
g — - —_—
= g 2 | e dy
T | Tt Bx 2
i x

Zz

To obtain the net surface force in the x direction, dFs_, we must sum the forces in
the x direction. Thus,

dFg = <gﬂ 4 Joxe @) dy dz — (gﬂ _ 97 d—x) dy dz

ax 2 gx 2
+ (u-zx 1 6;—: %)dxdy— (sz - % dz—z) dx dy
On simplifying, we obtain dFs, = (ag;"‘ + a;}y]x + a(;zx) dxdydz

When the force of gravity is the only body force acting, then the body force per
unit mass is g. The net force in the x direction, dF,, is given by

00xx

dF, = dFy, + dFs, = (pg, + 22 +

O0Tyx

0Tzx
oy | oz )dxdydz ... 2)

For video lectures Visit our channel @ YouTube “Learning With Usman Hamid”



135

We can derive similar expressions for the force components in the y and z
directions:

0Ty do dt,

dF, = dFy, +dFs, = (pg, + =2 + 4 22 dxdydz oo 3)
a XZ aT z a ZZ

dF, = dFy, + dFs, = (pg, + 2 + 2 )dxdydz ... &)

These are the required forms of momentum equation in the x, y and z directions.
Differential form of Momentum Equation

To find differential momentum equation along x — axis

00y |, OTyx arzx) _ ( ou ou u a_u)
(pgx+ pai 3y t=, dxdydz = p uax+vay+waz+6t dxdydz

we obtain the differential equations of motion, for any fluid satisfying the
continuum assumption.

00xx |, OTyx | OTzx _ ou ou ou  Ou
’Dgx+ ox t dy t 0z _p(u5+v5+wﬁ+5)
Similarly
ar Go gr,. v U U U
DBy T = gy =p<a—+u6—+va—+wa—)
ax dy Oz ot ax dy 3z

¢ Oy O | O0u p(a—w Pl +w@)

P T oy dy dz

Above Equations are the differential equations of motion for any fluid satisfying
the continuum assumption. Before the equations can be used to solve for u, v, and
w, suitable expressions for the stresses must be obtained in terms of the velocity
and pressure fields.
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Newtonian Fluid: Navier - Stokes Equations

For a Newtonian (viscous) fluid the viscous stress is directly proportional to the
rate of shearing strain (angular deformation rate). The stresses may be expressed in
terms of velocity gradients and fluid properties in rectangular coordinates as
follows:

_ _ {0v | Ou
Tey = Tpe = H Hx+5_y

_ _ fow  du
Ty = Tzp = H 8y+£ﬂz

o + ow
= i N
Tez = az ox

Z - it
= —p— — V+2
T px r 3;-4? Koy
2 - v
2 ~ ow

Where p is the local thermodynamic pressure. Above equations are called
constitutive equations. Thermodynamic pressure is related to the density and
temperature by the thermodynamic relation usually called the equation of state.

If these expressions for the stresses are introduced into the differential equations of
motion

d0xx | OTyx | 0Tyx _ ( ou ou ou a_u)
PYGx T dx t dy t 2z P u6x+v6y+waz+6t
Similarly
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We obtain

Du _ 9, 9| (500 20 5N\, 8, (%,0
PDr T P& o T ax [""(zax 3V V)] T 5 [“(ay +ax)]

These equations of motion are called the NavierStokes equations. The equations
are greatly simplified when applied to incompressible flow with constant viscosity.
Under these conditions the equations reduce to other forms as follows;

Ou  Ou ﬂu) Op (6211 Fu 6211)

Ou
p(ﬁ+ﬂa+ﬂa+wa—z —pgt_a‘i‘j_& sz‘l'ayz‘l‘azz
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M\ ax? T By? T 972

( +uZ 2 ¢ ) + (32W+52W+62w)
P\ ot ax Jy &z P 5 TH\ a2 97

(Bzu v 32::)

This form of the NavierStokes equations is probably most famous set of equations
in fluid mechanics, and has been widely studied. These equations form a set of four
coupled nonlinear partial differential equations for u, v, w, and p. In principle,
these four equations describe many common flows; the only restrictions are that
the fluid be Newtonian (with a constant viscosity) and incompressible.

Cases for Newtonian Fluid: Navier - Stokes Equations
Write Navier Stokes equation for

I. Compressible flow (4 = constant)

. Incompressible flow V.V=0
ii.  Inviscous flow (u = 0)

Case — I: Navier - Stokes Equation for Compressible flow (u = constant)

Since we have

e B )] B2

ox  Ox dx 3 dy B_y Ox
L O fow, bu
oz gx Oz
ou ou ou | ou\ _ _Op az_u_z NG ET
:p(ua+v£+wa—z+5)—pgx ax+2u = 3,uax(V.V)+
a [ou v 0 [ow ou
H@(@'Fa)'F[JE(a'FE) ..................... (1)
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Also
Dv _ op | 0O ou Ov a v 2 -
"Dr " oy T ox {*“"(ay ¥ axﬂ * oy [’”(Zay 3V V)]

¢ dv  Ow
+ — — + —
32[ (Bz c’iyﬂ

617 v ov | v\ _ dp a (odv 2 0 /=
p( ox +v£+wa+5)—pgy—5+2u5(5)—gua(vV)+
d (odu v d (ow ov
ﬂa—(aﬁ'ax)ﬁ'ﬂa(a'i'a) ..................... (2)
And

] ] dw , 8 2 a (0 d (2T
:p(u%+v%+wa—j+a—f)=pg ——p+2,ua—(—w)—— 5(V.V)+

0z
d (ow . Ou ad [ow Ow
”5(54_5)4_”5(54_5) ..................... (3)
Case — I1: Navier - Stokes Equation for Incompressible flow (V.V =0)

Since we have

Du dp 0 du  2_ - a Ju  du
PDr T P& o T ax {”(Zﬁx 3V V)] T By [“(6y d'x)}

d (ou av d (ow ou
“5(5+a)+#a—z(a+a—z)
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ouy _ _ 9 o*u 9 (u, 9v
=>p( ox T _+ +E)—pgx ax+2“ax2+“ay(ay+ax)+
d [ow . = =
u£(7+ ) after putting V.V = 0
ou ou\ _op 0%u 0%u 9%v
(uax+v—+w—+—)—pgx Zuax2+“(ay2+ayax)

62
H (azax T ;)

Ju Ju du . Jdu
:>p(u—+v5+wa+a)=pgx—a
02w 0%v
H (azax + ayax)
ou ou . du op 0%u . 9%*u , 0%u
:>p(u_+v_y+WE+E)ngx_£+“(ax2+ay2+az2)+
i(au ov 6W)
“ax

op (azu 0%u azu) 0%u
H 6x2+6y2+622 +'u6x2+

ox ' dy | oz

LTI WP Y e\ BN A
=>p(u tv y+Waz+6t)_p'gx ax+'“ ax2+ay2+622 +,uax(V.V)

ou ou ou | du\ _ _dp (azu 9%u 62u) =9
=>p(uax+vay+waz+at)_pgx ox TH 6x2+6y2+622 *Vr=0
Similarly

v v ov v Loy (T Oy oy
:>p(u FUS w4 ) gy — ot u(5E+ 5t

aw aw aw | aw\ _ _dp (aZW 92w 62W)
=>p(u +v6y+waz+at)_pgz 62+'u 6x2+6y2+622

Case — I11: Navier - Stokes Equation for Inviscid flow (¢ = 0) (Euler’s
Equation of motion)

Since we have

Du _dp D du  2_ - a Ju  du
PDr T P& o T ax {”(Zﬁx 3V V)] N dy[ (3y N 51:)}
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ou ou ou | ou\ _ _op E)Z_u_z NG EY

=>p(ua+v£+wa+5)—pgx 6x+2‘u6x2 3,uax(V.V)+
d (ou v 0 [ow ou

Hay Gyt 50) + 1o Gr +5)

ou ou ou , ou\ _ _Op . _
=>p(uax+vay+waz+at)—pgx P usingu =0
Similarly

ov ov ov | 0v\ _ _6_p
ﬁp(uax+vay+waz+at)_p93’ dy

ow ow ow | ow\ _ _6_19
=>p(u6x+v6y+waz+at)_pgz 0z

And in vector form we get Euler equation of motion

av _ Lz

P =pPg—Vp
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Momentum Equation For Frictionless Flow: Euler's Equation of Motion

Euler's equation after neglecting the viscous terms is given as follows;
av 5
p=pPg—Vp

This equation states that for an inviscid fluid the change in momentum of a fluid
particle is caused by the body force (assumed to be gravity only) and the net
pressure force.

Derivation

A

Uiseost = o

Consider finite size control volume through which inviscid fluid is flowing.
Applying Newton’s Second Law of Motion in X,y,z coordinates

Forxaxis; Y F, =ma, ......cco...... (1)
Now using the fact Total force = Surface (Pressure Force) + Body Force

The sum of force acting on the fluid particle in x direction is

YE = [( — Z—Zd—x) (p + ——)] dydz + pg,dxdydz

2
(1,1

YE = — —Z (5 +3) dxdydz + pgydxdydz

YE =—— dxdydz + pg,dxdydz ............... (i1)

Sincep = % = m = pdv = m = mass of fluid particle = pdxdydz

(i) > X F, = a,pdxdydz  ............... (iii)
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Comparing (ii) and (iii)

- Z—Z dxdydz + pg,dxdydz = a,pdxdydz

d :

—£ +pg9y =ap . (iv)

Similarly

~2 4 pg,=a v)
oy TPIy=ayp

24 pg,=a (vi)
o, tPg=ap

Now adding (iv),(v),(vi) we get total pressure

op. 0p. 0opgn . . " . . ~
—£L—£]—£k+p(gxl+gy]+gzk)=p(axl+ay]+azk)

.. 9 .. 0 ¢ 5
—(al+£]+a—zk)p+pg—pa

—Vp + pg = pa
av
Or P =Pg— Vp ... (A)
We may write above as — %Vp +g=ad ................. (B)
Thenusingd =2 =2 4+ v.vV
dt at
1 - 6‘7 cd
We get —;Vp+g:E+V.VV ................. ©)

Hence (A),(B),(C) are different forms of Euler Equation of motion in Vector
notation.
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Example Analysis Of Fully Developed Laminar Flow Down An Inclined
Plane Surface

A liquid flows down an inclined plane surface in a steady, fully developed laminar film of thickness /. Simplify the
continuity and Navier-Stokes equations to model this flow field. Obtam expressions for the liquid velocity profile,
the shear stress distribution, the volume flow rate, and the average velocity. Relate the liquid film thickness to the
volume flow rate per unit depth of surface normal to the flow. Calculate the volume flow ratz in a film of water # =1 mm
thick, flowing on a surface b =1 m wide, inclined at § =15° to the horizontal.

Given: Liquid flow down an inclined plane surface in a steady, fully developed laminar film of thickness 4.

Find: (a) Continuity and Navier—Stokes equations simplified to model this flow field.
(b) Velocity profile.
(c) Shear stress distribution.
(d) Volume flow rate per unit depth of surface normal to diagram.
(e) Average flow velocity.
(f) Film thickness in terms of volume flow rate per unit depth of surface normal to diagram.
(g) Volume flow rate in a film of water 1 mm thick on a surface 1 m wide, inclined at 15° to the horizontal.

Solution:

The geometry and coordinate system used to model the flow field are shown. ([t is convenient to align one coordinate
with the flow down the plane surface.)

Widthh=1m

The governing equations written for incompressible flow with constant viscosity are
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4
p(%{+"ax+”a§+ 0] =os.- 3{ (é? o ,gz)
SR

gl
ol ol 0d) o (0 o o

R T

The terms canceled to simplify the basic equations are keyed by number to the assumptions listed below. The
assumptions are discussed in the order in which they are applied to simplify the equations.

Assumptions: (1) Steady flow (given).
(2) Incompressible flow; p = constant.
(3) No flow or variation of properties in the z direction; w =0 and 8/8z =0.
(4) Fully developed flow, so no properties vary in the x direction; 9/0x =0.

Assumption (1) eliminates time variations in any fluid property.

Assumption (2) eliminates space variations in density.

Assumption (3) states that there is no z component of velocity and no property variations in the z direction. All
terms in the 7 component of the Navier—Stokes equation cancel.

After assumption (4) is applied, the continuity equation reduces to 3u/@y =0. Assumptions (3) and (4) also
indicate that dv/8z =0 and Jv/dx = 0. Therefore v must be constant. Since v is zero at the solid surface, then v must
be zero everywhere.

The fact that v = 0 reduces the Navier—Stokes equations further, as indicated by (5) in Eqs 5.27a and 5.27b. The
final simplified equations are

_ Fu
0=rpgtups (1)
)
0=pgy—5p._ (2)

Since du/dz = 0 (assumption 3) and du/éx = 0 (assumption 4), then u is at most a function of y, and Fu/dy” = Fuidy’,
and from Eq. 1, then

&y [ siné
- pg R
dy f
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Inieprating,
du sin @
g = v ()
and integrating apain,
sin# y?
u=_PST%+Cly+Cz (4)

The boundary conditions needed to evaluate the constants are the no-slip condition at the solid surface {(z =0 at
y=0) and the zero-shear-stress condition at the liquid free surface (duw/dy =0 at y =h).
Evaluating Eq. 4 at y=0 gives c,=0. From Eq. 3at y=#h,

0= —pgﬂh+c1

or
sin #
o, = pg—h
1 g P
Substituting into Eq. 4 we obtain the velocily profile
sinéd 4
g™ y_2 sm sinf,
7l
or
_sinf ¥ u(y)
M= pgT (hy 7) .

The shear stress distribution is (from Eq. 5.25a after setting dv/0x to zero, or alternatively, for one-dimensional flow,
from Eq. 2.15)

7y(¥)

du .
=k = pgsinf(h—y) «

The shear stress in the fluid reaches its maximum value at the wall (y = 0); as we expect, il is zero at the free surface
(y =h). At the wall the shear stress 7, is positive but the surface normal for the fluid is in the negative y direction;
hence the shear force acts in the negative x direction, and just balances the x component of the body force acting on
the fluid. The volume flow rate is

A
Q=/udA= / u bdy
Ja Jo

where b is the surface width in the z direction. Substituting,

B . . 1A
pgsind ¥ sin@b [hy? y
0 [ (=g )par - W™ T -G
o B Y SRR 0

2 6

pgsindb k> (30

Q= . 3

The average flow velocity is V = Q/A = Q/bh. Thus

Q _ pgsind i’
bk u 3

<l

V=

-
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Solving for film thickness gives

T 30 1/3
"= Lgsinﬂb] (6) h

-
T

A film of water #=1 mm thick on a plane b =1 m wide, inclined at §=15°,
would carry

Q=999k—§><9.31%><5iﬂ(15")><1mx m‘ss
- S 1.00X 10 kg
3.3
¥ WXlD{]{]L
3 m’

Q = 0846 L/se g

Example
Analysis Of Laminar Viscometric Flow Between Coaxial Cylinders

A viscous liquid fills the annular gap between vertical concentric cylinders. The
inner cylinder is stationary, and the outer cylinder rotates at constant speed. The
flow is laminar. Simplify the continuity, Navier Stokes, and tangential shear stress
equations to model this flow field. Obtain expressions for the liquid velocity profile
and the shear stress distribution. Compare the shear stress at the surface of the
inner cylinder with that computed from a planar approximation obtained by
“unwrapping” the annulus into a plane and assuming a linear velocity profile
across the gap. Determine the ratio of cylinder radii for which the planar
approximation predicts the correct shear stress at the surface of the inner cylinder
within 1 percent.

For video lectures Visit our channel @ YouTube “Learning With Usman Hamid”



148

Given: Laminar viscometric flow of liquid in annular gap between vertical concentric cylinders. The inner cylinder
1 stationary, and the outer cylinder rotates at constant speed.

Find: {a) Continuity and Navier—Stokes equations simplified to model this flow

field.

(b) Velocity profile in the annular gap.

(c) Shear stress distribution in the annular gap.

(d) Shear stress at the surface of the inner cylinder.

(e) Comparison with “planar” approximation for constant shear stress in the
narrow gap between cylinders.

() Ratio of cylinder radii for which the planar approximation predicts shear
stress within 1 percent of the correct value.

Solution:
The geometry and coordinate system used to model the flow field are shown. (The z
coordinate is directed vertically upward; as a consequence, g, = gp=0and g, =—g.)

The continuity, Navier—Stokes, and tangential shear stress equations (from Appendix B) written for incom-
pressible flow with constant viscosity are

4
2Lty + 133/(0,“_/; 0 (B.1)

oo e
=%/—%g arrar/)j 1%4[ %%Jr%é]

oot o
4 4
_ 18 3 1 o4y | 2 By , 0y B.3b
5/ 35 g ‘)“Dei—mzzg’ o

+/é~%+»m EECE S
i 1%[] (B2)
Brr
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The terms canceled to simplify the basic equations are keyed by number to the assumptions listed below. The
assumptions are discussed in the order in which they are applied to simplify the equations.

Assumptions: (1) Steady flow; angular speed of outer cylinder is constant.
(2) Incompressible flow; p = constant.
(3) No flow or variation of properties in the z direction; v, =0 and 8/3z = 0.
(4) Circnmferentially symmetric flow, so properties do not vary with 8, so /6 =0.

Assumption (1) eliminates time variations in fluid properties.
Assumption (2) eliminates space variations in densily.
Assumption (3) causes all terms in the z component of the Navier—Stokes equation (Eq. B.3¢) to cancel, except
for the hydrostatic pressure distribution.
After assumptions (3) and (4) are applied, the continnity equation (Eq. B.1) reduces to
14

;5(”#) =0

Because §/96 =0 and 8/0z =0 by assumptions (3) and (4), then g-» di’ so integrating gives
¥ r
ry, = constant

Since . is zero at the solid surface of each eylinder, then v, must be zero everywhere.
The fact that v, =0 reduces the Navier—Siokes equations further, as indicated by cancellations (5). The final
equations (Eqs. B.32 and B.3b) reduce to

o~ 3t}

But since &8¢ =0 and &8z =0 by assumptions (3] and (4), then vy is a function of radius only, and

d {1 d
E(;E[ﬂb]) =0

Integrating once,

14d ] = e
ydr | =0
or
—d! [
] = oy

Integrating again,

¥ 1
ity ==+ or == tiog—
ty 15 2 Ly 15 27
Two boundary conditions are needed to evaluate constants ¢y and ¢;. The boundary conditions are

Wy = whs at r= K; and
=10 at r= R
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Substituting
R 1
Ry = 2 oy
why =6y 2 ] 7
Ry 1
D = — =+ i
=] 7 Ly Rl

After considerable algebra

Substituting into the expression for vy,

by — wr _ wR%/r _ wiy » Rl}

SOOI

The shear stress distribution is obtained from Eq. B.2 after using assumption (4):

_dfwy  d why I_Rl : why 2 _R]
T,y—ﬂfﬂ(?)_m_ W{R_l rz} pr Rlz( 2)( r:i)

— Tr
T=fi——— 55 ¢

At the surface of the inner cylinder, #= Ry, so
2w

Taurface = f 7¢ o
1= (H
(RE) why
For a “planar™ gap y
_ Ar _ MR;! I.J
Tplanar = #ﬂ_y = Pﬁ T
Ry Ry
or
— w T planer
Tolanar = P R ¢
1-—
R
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Factoring the denominator of the exact expression for shear stress at the surface
gives

_ 2w _ £ 2
Toudoce — H : R, ]+Rl _Pl_ﬂ.]+£
R, R, ) Ry
Thus
- R
T planar 1+ "
Ry
For 1 percent accuracy,
2
1.01 = B
1+ L
R
or
Ry
R 1 R,
—L = —({2-1.01) = 0.980. i

R 101

The accuracy criterion is met when the gap width is less than 2 percent of
the cylinder radius.
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Reynolds Number

It is the ratio of inertial force to the viscous force. It tells us whether the flow is
laminar or turbulent. If the inertial force that resists the change in velocity is
dominant then the flow is turbulent. And if the viscous force that resists the flow is
dominant then the flow is laminar.

. VL
Its formula is Re = pT

Or Re=2  wherev =%~

v p
Where p is fluid density, V is characteristic velocity, L is characteristic length or
size scale of flow, u is dynamic fluid viscosity and v is kinetic viscosity.

If the Reynolds number is “large,” viscous effects will be negligible, at least in
most of the flow; if the Reynolds number is small, viscous effects will be
dominant. Finally, if the Reynolds number is neither large nor small, no general
conclusions can be drawn.

Remember
diffusion rate
Prandtl number: Pr = L - Viscous : :
@ thermal diffusion rate
Schmidt number: S = Y . viscous @1ffu-51on rate
D mass diffusion rate
. D mass diffusion rate
Lewis number: le = = = : -
« thermal diffusion rate
poUL
Reynolds number: Re =
U?
Froude number: Fr = g_L
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Prandt]l number:

Eckert number:

Cavitation number:

Froude number:

Weber number:

To summarize, the following parameters are important for any particular flow:

1. All viscous flows: Reynolds number

Pr

Fr

I

We

I

2, Variable-temperature problems: Prandt] and Eckert (or Mach) numbers
3. Flow with free convection: Grashof and Prandtl numbers

4. Wall heat transfer: temperature ratio or Nusselt number
5. Slip ftow: Knudsen number and specific-heat ratio

6. Free-surface conditions: Froude number {always), Weber number (sometimes),
and cavitation number (sometimes)

153
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Short Questions Appears in Past Papers

1. Give dimension of dynamic viscosity.

Define first law of thermodynamics. Also give its example.

Give simple mathematical relation of the sheer stress related to velocity

gradient.

Write integral form of equation of continuity.

Write mathematical form of velocity field for laminar and turbulent flow.

Write complete form of Navier Stokes equation.

Define specific gravity.

Define control surface.

. Define Stream line.

10.Define vorticity and give its mathematical form.

11.Define law of conservation of mass.

12.Define pathline.

13.Define control volume in a fluid flow.

14.Write the difference between control volume and control surface.

15.Give mathematical form of sheer stress for non — Newtonian Fluid.

16.What is the difference between Newtonian And non — Newtonian Fluid?

17.Define Hydrostatic Pressure.

18.What do you mean by the fluid dynamics?

19.What do you mean by the dimensional analysis of the fluid flow?

20.Define dynamic viscosity of the fluid.

21.What do you mean by the Newton’s law of the viscosity?

22.Define conservation law of the momentum in fluid flow.

23.What do you mean by the rigid body motion?

24.Define a buoyancy force acting on the fluid particles.

25.What do you mean by ideal fluid?

26.Define rotational and Irrotational flow.

27.What do you mean by angular momentum of fluid flow?

28.Give the description of stream function describing the stream lines in a
cylinder.

29.What are the certain conditions to define stream function?

30.What do you mean by thermodynamic process in the fluid flow?

31.Give the description of pressure gradient in a fluid flow.

W n

© oo No R
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32.What do you mean by the static equilibrium in a fluid flow?

33.Given dimension of density.

34.Define Reynolds Number.

35.Write down three basic systems of dimension.

36.Write differential form of equation of continuity.

37.Write mathematical form of basic pressure field equation.

38.Write vector differential form of Navier Stokes Equation.

39.Write the difference between incompressible and compressible fluid flow.
40.Compute the sheer stress in a SAE oil at 20C° if v = 3ms~t and h = 2cm.
41.Give mathematical forms of normal and sheer forces.

42 .Define rotational flow.

43.Define turbulent flow.

44 .Define dilatant.

45.Define streamline.
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Long Questions Appears in Past Papers

1) Derive integral form of linear momentum equation.

2) A velocity field is given by V = axi — btyj, where a = 1s~* and
b = 1s72. Find the equation of the streamlines at any time t. Plot several
streamlines in the first quadrant at t = 0s,t = 1s,and t = 20 s.

3) Find a two dimensional in the xy — plane the x component of velocity
u = Ax. Determine a possible y component for an incompressible flow.
How many y components are possible?

4) Derive Bernoulli’s equation for unsteady frictionless flow along a
streamline.

5) Consider a fluid particle moving in a general three dimensional flow field
may rotate about all three coordinate axes. Derive angular notation in vector

notation of the form & = %V x V.

6) State and prove 2" law of thermodynamics.

7) Derive the continuity equation of motion for a two dimensional
incompressible flow field. Also generate the D’ Alembert’s Euler’s
acceleration formula for a fluid flow in a plane polar coordinates with
V=Ve +Vyé,.

8) Find the dimension of Newton’s 2™ Law of Motion by using international
system of units (Sl system), Gravitation System and English Engineering
System. Compute the velocity components in the fluid flow describing the
stream function given as Y (x,y) = (aV)?xf(n) ;n = (a/V)Y?y 1o
verify the velocity component by satisfying the continuity equation of two
dimensional flow.

9) A flat plate 4ft by 4ft slides down an inclined plane at angle of 30° to the
horizontal at a velocity of 30ft per minute. The inclined plane is lubricated
by a thin film of oil having viscosity of 0.001Ibf/ft>. Find the thickness of the
film if the mass of the plate is 1Slug.

10) Following the fluid particle, calculate the y component of the
acceleration for a particle where velocity vector is given by
V = (3z — x2, yt2,xz2) in ft/Sec at a point
x=1ft,y = 1ft,z = 9ft,t = 2Sec
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11) Classify the Newtonian and Non — Newtonian fluids by given at least
one example to each case. Derive the basic hydrostatic equation for a fluid
element in static equilibrium for an incompressible fluid.

12) Derive Euler’s equation of motion.

13) Derive equation of continuity by applying law of conservation of mass
to fluid elements.

14) A liquid flows down an inclined plane in a steady, fully developed,

laminar flow of thickness ‘h’. Simplify the continuity and Navier Stokes
equation to model this flow. Obtain expression for liquid’s velocity profile,
the sheer stress distribution.

For video lectures Visit our channel @ YouTube “Learning With Usman Hamid”



158

(17-05-2021) 7757

ST L Us 99 & B sl N UEP T 3

| . & o ~ { |
(DN U P I 6205 12 Lf y321 - LEp
D4

boss yd (Ub&)ﬁdl"’ 105 /'; Jg/

UNIVERSITY OF SARGODHA

PUNJAB, PAKISTAN

Available at MathCity.org

For video lectures Visit our channel @ YouTube “Learning With Usman Hamid”



