DIFFERENTIAL GEOMETRY

MUHAMMAD USMAN HAMID

The study of geometry by using the method of calculus is called
Differential Geometry. It is the study of curves, surfaces and their

abstract generalization. The study of DG required two primary tools;
Linear Algebra and Calculus
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& AN

REVIEW OF VECTORS AND SCALARS

VECTOR: A quantity with magnitude, unit and direction is called vectors. e.g. force, velocity,
acceleration etc.

GRAPHICALLY: vector represented graphically by directed line segment. If P(x,y,z) be a point in

R3(space) then the vector OP from the origin to the point P is called the Position vector of the

point P.
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Usually we denote vector OP by 7 and (x,y,z) is called the coordinate representation. Thus we
can write 7 = (x,y, z) and the magnitude of 7 is denoted by | 7| or simply ‘¥ and from

geometry we know that | 7| = r = \/x2 + y? + 22

COMPONENTS OF VECTOR: In certain coordinate system, a three dimensional vector having
initial point P(x4,y4,2Z1) and terminal point Q (x5, y,, Z;) is represented by
7 = (X, — X1,Y2 — V1,23 — Z1) Where x, — X1, VY, — V3, Z, — Z; are called components of 7

VECTOR ADDITION:
if = (x1,y1,2z;) and T, = (x2,¥2,2,) then AT = (x1 + X2, y1 + ¥2,21 + 23)

SCALAR MULTIPLICATION:
If 7 = (x,v,2) be avector and A is any scalar then A7 = (Ax, 1y, 1z)
also (A + u)7 = A7 + u# and (Aw)7 = A(u?) = u(Ar)

SCALAR: A quantity which needs only magnitude and unit and no need to direction is called
scalar. e.g. temperature, time, volume, length etc.

SCALAR PRODUCT (DOT PRODUCT):
If a, and d, be two vectors then their scalar product can be denoted by d,. d, And defined

. da,.a
as dq;.d, = a; a, CosO Where @ is the angle between d, and a, and Cosf = al—az
1 @2

UNIT VECTORS: If{,], k denote the unit vectors along W, W,O_Z respectively then

e ii=jj=kk=1andij=jk=Fki=0

e The scalar product is distributive over addition i.e. d. (F) +¢) = d. b+d.c

° If C_l) = (al, a,, ag) = ali + azj + a3k\ and I; = (bll bz, b3) = bli + sz + b3i€ then
EiB == (albl + azbz + a3b3)
e d.d=a?=|dl? i.e. square of vector equals to square of its modulus.

e The necessary and sufficient condition that two vectors be perpendicular is that their
scalar product vanishes.

e 7#=a-+th is called vector equation of straight line. With ‘t’ a +ve or —ve number.

e The vector of constant length is perpendicular to its derivative. i.e. .71’ = 0

o A7 =77
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VECTOR PRODUCT (CROSS PRODUCT):

If &,

and d, be two vectors then their vector product can be denoted by d; X d, and

defined as d; X d, = a, a, SinfA where @ is the angle between d; and d, and 7 is the unit

vector in the direction of movement of a Right handed screw when turned from d, to d, Also

Sin@ =

a az
a, X d, = —dy X dy
Vector product is distributive over addition.
ixi=jxj=kxk=0
ixj=k |
jxi=—k,

If C_il = (al, az, a3) = ali + azj + a3i€ andC_l)Z = (bl’ bz, b3) = bli + sz + b3i€ then

~

i j k R
a, X dy, =|a; a, az|=(ayb;—asb,)i+ (a3by —ab3)j+ (a1b, — ayby)k
by b, bs

The necessary and sufficient condition that two vectors be parallel is that their cross
product vanishes.

SCALAR TRIPLE PRODUCT: d. (b x &) is called Scalar Triple Product or Box Product. Its value is
numerically equal to the volume of the parallelepiped whose edges are determined by the

vectors a,b and ¢

. a; a, as
a. (b X 5) = b1 bz b3
c, € C3

d.(bx¢&)=b.(¢xad) =2 (dxb)

|Ei X l;| is the area of parallelogram with sides @ and b

d. (l; X ¢) is denoted by [&I;E’] where [&I;E’] = —[EiE’B]

The necessary and sufficient condition that three vectors be coplanar is that their scalar
triple product vanishes.

Right handed screw, positive sense for rotation or anti — clockwise, all same.

VECTOR PRODUCT OF MORE THAN TWO VECTORS

@x (bx¢é)=(dcb—(d.b)e
(@xb)x &= (a.&)b—(b.d)d
(@xb).(¢xd) = (@) (b.d) - (b.¢)(d.d)

Proof: letd x b =1 then

I.(¢xd)=[led] =[edl] = & (dxI)=2é[dx(@axb)]

=C. [(d b)a - (d a)b] [(J B)(E. a) — ( a)(é. 5)] = (a. c)(B &) (b ¢)(a. d)
(@xb)x (¢xd) = [aéd]b — [béd]a

Proof: letéx d =1 then
(@xb)xT=(a.I)b—(b.Nd=[a(éxd)]b—[b.(¢xd)]d=[acd]b - [bed]d
(@x b) x (¢ x d) = [dbd]é — [abé]d

—

Second Proof: letd X b = I then
Ix(@xd)=(I.d)é- (I.é)d =[(@xb).d]¢ - [(dxb).é]d = [abd]¢ — [abé]d
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SURFACE: A surface S of R3 is the locus of the point whose coordinates are functions of two
independent parameters ‘u’ and ‘v’

Thusx = fi(uw,v),y = f,(u,v), z = f3(u, v) are parametric equations of surfaces.

OR: A surface in R3is a set of all points whose coordinates satisfy a single equation
f(x’ y' Z) = 0

OR: A surface may be regarded as the locus of a point whose position vector 7 is a function of
two independent parameters u and v.

We not that any relation between the parameters (f (u, v) = 0) represents a curve on the
surface, because 7 than becomes a function of only one independent parameter.

In particular, the curve on the surface, along which one of the parameters remains constant are
called parametric curves.

Position of any point on the surface is uniquely determined by the values of ‘u’ and ‘v’. So that
the parameters ‘u’ and ‘v’ constitute a system of coordinates which are called curvilinear
coordinates.

EXAMPLES:

1) The parametric equation of the sphere with Centre at origin and radius ‘a’ are
x = aSinfCose,y = aSinfSing, z = aCosO
= x?2 + y? + z%2 = (aSinfCosp)? + (aSinfSing)? + (aCosH)?
= x%2 +y? + z%2 = (aSinB)?[(Cosp)? + (Sing)?] + (aCosH)?
= x2 +y%+ 2% = (a)?[(SinB)? + (CosH)?]
= x%2 + y? + z%2 = a? is the implicit form of the sphere

2) The parametric equation of the ellipsoid are
x = aCosBCos@,y = bCosBSing,z = cSinf

2 2 2
eliminating 6 and ¢ we have a Z—z + i—z = 1 which is the equation of the ellipsoid.

@

2 2
3) Asurface in R3defined by the equation of the form x—2 + y_2 = cz is called an elliptical
a b

paraboloid.

n -
4) A surface in R3 defined by the equation of the form
2 +y?+z22+ux+vy+wz+d=0=(x—-h)?+ @ -k*+@Ez-D*=r%is
called a sphere.

2 2
5) Asurface in R? defined by the equation of the form 2—2 - % = cz is called a hyperbolic

paraboloid.
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6) A surface in R3 defined by the equation of the form
x%  y? z? x%  y?  z? . . . .
= + prlmbr i 1or = + Pk —1 is called a hyperboloid. Hyperboloid defined by
first equation is called Hyperboloid of one sheet and Hyperboloid defined by second

equation is called Hyperboloid of two sheet

~
'

) 2 2
7) Asurface in R3 defined by the equation of the form z—z + % =cz;c > 0iscalleda

elliptical cone.

| ¢
8) The parametric equation of the cone are
x = uSinpCos¥,y = uSinpSin¥,z = uCosep
= x? +y?% = (uSingCos¥)? + (uSingSin¥)?
= x? + y? = (uSing)?[(pCos¥)? + (Sin¥)?] = (uSing)? =

2¢Qin2

”C(f;—’;f. Cos?g
= x? +y% == p?Tan?@Cos*¢p = x? + y? = z?Tan’¢

9) Asurfacez = 0 represents xy — plane OR the set of all points (x, y, z) satisfying a
linear equation ax + by + cz = 0 where a, b, ¢ are not all zero determines a linear
surface called a Plane.

10) The set of all points (x, y, z) satisfying a linear equation
ax? + by* + cz®> + fyz + gxz + hxy + ux + vy + wz + k = O where a, b, ¢, f, g are
not all zero determines a quadratic surface OR Quadratic equation in three variables is
called Quadratic Equation e.g. = x% +y? +2z2 =1

11) If ax? + by? + cz%? + fyz + gxz + hxy + ux + vy + wz + k = 0 factorize into two
linear functions then equation defines a pair of planes and then surface is called
Degenerate Surface.

12) x =aCosOCosp, y = alosOSingp, z = aSin6 Represents a sphere with
centre at origin and radius “a”. The surface of the sphere is the function of 8 and ¢ the
parametric curves are 8 = constant, which are small circles parallel to xy — plane

and ¢ = constant ,which are great circles revolving about the z - axis

SYMMETRY: A surface is symmetric with respect to yz - plane if its equation is unchanged when
‘%" is replace by ‘-x" . It is symmetric with respect to z — axis if its equation is unchanged when ‘x’
is replace by ‘-x’ and vy is replaced with ‘-y’ .A surface is symmetric with respect to origin if its
equation is unchanged when ‘X’ is replace by -x’, ‘y" is replaced with -y’ and ‘Z’ is replaced with
‘-7’. e.g. the equation x2 + y? + z? = a? is symmetric about each coordinate plane , about
each axis and about origin.

TRACE AND INTERCEPTS: The section of a surface intersected by a coordinate plane is called
the trace of the surface in that plane. If a coordinate axis intersects a surface, such a point of

intersection is called as_intercept.

Consider a Hyperboloid type surface x2 + y2 —z2 —2x =0

then its trace in yz — plane is y? — z2 = 0 which are two straight linesasy = +z
its trace in xz — plane is x? — z%? — 2x = 0 which is hyperbola.

its trace in xy — plane is x? + y% — 2x = 0 which is circle.

The x —intercepts are 0 and 2, y — intercepts is 0 and the z — intercept is 0.
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& AN

CURVES WITH TORSION

N,

CURVE: A curve is a locus of a point whose position vector 7 relative to the fixed origin may be
represented as a function of single variable parameter (say ‘t’) then its Cartesian coordinates
are also the function of same parameter.

The equations of the curve in parametric forms are x = x(t) ,y = y(t) ,z = z(t)

where x(t) ,y(t) ,z(t) are any functions of parameter ‘t’

LEVEL CURVE: A level curve is a function U(x, y) define by the locus of a point (x, y) in domain
D such that U(x,y) = constant where C is a constant.

PARAMETERIZED CURVE " 7(t)": A parameterized curve in R™ is a mapping 7: (a, B) » R™ for
some a,f with—oo <a < f <

the symbol (a, B) denote the open interval (a, ) = {teR:a < t < B}

where 7(t) = {7 (t), (L), oo T (1)}

PARAMETERIZATION OF LEVEL CURVE: A parameterized curve which is contained in a level
curve ‘C’ is called Parameterization of level curve.

Example: How we can define a parameterization 7(t) of parabola y = x?2?

Answer: If 7(t) = {#(t), 7,(t)} then components #(t), % (t) must satisfy #,(t) = [ 7 (t)]?
now if 7,(t) = t then % (t) = t? and so parameterization willb 7(t) = {t, t?}

= 7(t): (—o0,0) - R? where te(—o0, )

Example: Is 7(t) = {t?,t*} a parameterization of the parabola y = x2?

Answer: Yes 7(t) = {t?,t*} a parameterization of the parabola y = x? because x = t? then
y=[t*]* =¢*

Example: How we can define a parameterization 7(t) of parabola x2? + y? = 1?

Answer: If 7(t) = { #(£), 7% ()} then components 7 (t), 7,(t) must satisfy 7> + 7, = 1
now if 7, (t) = tthent? + [A(D)]? =1 = [AR(O)]? =1 —-t? = 7 (t) = V1 — t2

and so parameterization will be 7(t) = {t, m} = 7(t): (—o0,0) = R? where te(—00, )
REMARK: We can use 7, (t) = Cost,,7,(t) = Sint must satisfy Cos?t + Sin?t = 1 then

7(t) = {Cost, Sint}

Example: Show that the parameterized 7(t) = {Cos3t, Sin3t} ; teR represent an equation of
asteroid x2/3 + y2/3 =1

Answer: Put x = Cos3t,y = Sin3t then (Cos3t)?/3 + (Sin®t)?/® = Cos?t + Sin’t = 1
Example: Find parameterization 7(t) of the curve y? —x% = 1?

Answer: If 7(t) = {#,(t),7,(t)} then components 7, (t),, 7, (t) must satisfy Flz - Fzz =1 now
if7 () =tthent? — [/ =1= [RO]2=1-t2 = 7)) =V1 -2

and so parameterization will be 7(t) = {t, m} = 7(t): (—o0,0) - R? where te(—o0, )

2 2
Example: Find parameterization 7(t) of the curve x— + y— =17
2
Answer: If 7(t) = {#,(t),7,(t)} then components 7 (t),, 7, (t) must satlsfy— +2Z = 1nowif
-) 2
7(t) = 2tthen@+—_ 1= 2 =12 =32 =9(1 - t2) = (1) = 3\/1 2

and so parameterization will be r(t) = {Zt, 3V1 — tz}
2 2
Example: Consider the ellipse :—2 + % = 1 verify that 7#(t) = {pCost, qSint} is the

parameterization of ellipse.
y2 (pCost)2 (gSint)?

=1
p? q?

Answer: Put x = pCost and y = qSint then :> +

Hence 7(t) = {pCost, gSint} is the parameterlzatlon of elllpse.
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ALLOWABLE CHANGE OF PARAMETER OF LEVEL CURVE: A real valued function t = t(6) on an
interval Iy is an allowable change of parameter if

i. t(@)isofclass Cinly (1% time differentiable)
ii. % #0 VOin Iy i.e. t =t(0) is one — to — one mapping of Ig onto an interval
I; = t(Ig) and the inverse of 8 = 6(t) is an allowable change of parameter on I,

2

Example: Show that t = is an allowable change of parameter on 0 < 8 < oo and takes

02+1
theinterval 0 < 8 < woonto 0 <t <1

62 dt . . dt -
Answer: If t = —— 20 — (@1 'S continuous and—>#0on 0 <6 <o hence it is an
allowable change of parameteron 0 < 8 < oo and Since 970l = 0 for8 =0and
2
limgﬁom =1 itshows thatinterval 0 <60 <oonto0<t<1

DERIVATIVES OF "7(t)": Since 7: (@, B) — R™ then taking derivatives w.r.to ‘t’ we get

S dr (az?1 df, dis d?m)
r{¢)=—=\—7,—,— i e eres,——
® dt dt ' dt’ dt ' dt

F”(t) _ ar _ (d2F1 d?*7, d?7s dzf’m)

dt? dtz’ dat2’ dez " de?
(e = i _ (ana dnf, d"iy anfm)

o T ipreal el N ey

n— T e o . o . . - d? .

TANGENT VECTOR OF "7(t)": if 7 is a parameterized curve then its first derivative 7'(t) = - is

called the tangent vector of 7 at point 7(t).

GEMETRICAL INTERPRETATION OF "7'(t)" OR GEMETRICAL INTERPRETATION OF TANGENT
VECTOR OF "7(t)":

L~

[ 4
ECt» 5T

consider two points 7(t) and 7(t + 8t) on the curve ‘C’ then joining these two points by a

ey F(t+6)-7(t) || 57 > _ar _ . F(t+61)—7(t)
chord ‘PQ’ then s | PQ = 7'(t) = i limg;_, —

PREPOSITION: If the tangent vector of a parameterized curve is constant, then image of the
curve is a straight line.

=
Il
Q
Q
o~

. - - d_) -
Answer: Given that 7'(t) = tangent vector = constant = d(say) = d—; =a=d

= [d? =d [dt = 7(t) = @t + b = image of the curve is a straight line.
Now here two cases we can discuss.

—
£t
& .
P

Case I: if @ # 0 then this is the parametric equation of straight line parallel to d and passes
through b.

Case II: if @ = 0 then image 7 of is a single point (namely b)
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Example: Find the Cartesian equation of the curve #(t) = {Cos?t, Sin?t} and also find the
tangent vector.

Answer: Put x = Cos?t,y = Sin’tthenx +y = Cos’t +Sin*t=1=x+y=1
also 7'(t) = (—2CostSint, 2SintCost)

Example: Find the Cartesian equation of the curve 7(t) = {et, t?} and also find the tangent
vector.

Answer: Putx = et ....(i) ,y=1t%...(ii) then (ii) > t = \/; and (i) = x = eV
also 7#'(t) = (et, 2t)

Example: Calculate the tangent vector of asteroid x2/3 + y2/3 = 1 at each point. And at which
point tangent vector will be zero?

Answer: when x = Cos3t,y = Sin3t then x?/3 + y?/3 = (Cos®t)?/® + (Sin3t)*/* =1 and
we gent parameterization 7(t) = {Cos3t, Sin3t}

= 7'(t) = (—3Cos?tSint, 3Sin*tCost) a required tangent vector

now# (t) =0if 0 = —3Cos?tSint=0= Sint=0= t=Sin"1(0)= t=0
and also 3Sin*tCost =0 = Cos = 0= t = Cos }(0) = t =90°

CYCLOID: A cycloid is the plane curve traced out by the point on the circumference of the circle
as it rolls without slipping along a straight line.

C Yelors/

QUESTION: Show that if the straight line is the x — axis and circle has radius a > 0 then the
cycloid can be parameterized by 7(t) = [a(t — Sint), a(1 — Cost)]

Answer: let x = a(t — Sint), y = a(1— Cost)
Now if straight line is x —axistheny = 0 = a(1 — Cost) =0 = a # 0,(1 — Cost) =0
= Cost=1=t=Cos'(1)=t=2nr VYn=012,....

Then x = a(t — Sint) = x = a(2nw — Sin2nn) = x = 2nmwa witha >0

NORMAL LINE: the normal line to a curve at ‘P’ is the straight line passing through ‘P’ and
perpendicular to the tangent line at ‘P’.

- . .

—
"

PROF. MUHAMMAD USMAN HAMID (0323-6032785)




QUESTION: Find the tangent and normal line passing through P(x, y) to the curve
7(t) = [2Cost — Cos2t, 2Sint — Sin2t] at the point corresponding t = %

Answer: Given 7(t) = [2Cost — Cos2t,2Sint — Sin2t]
=7(3) = [ZCos (3) - cosz(3),2sin (5) - sin2 () = 7(5) = [V2 , V2 - 1]]
let x = 2Cost — Cos2t, y = 2Sint —Sin2t = dx = —2Sint + 25in2t, dy = 2Cost — 2Cos2t

2605(%)—26052(%) - R
—25in(§)+25in2(§) M= "R~ avavz V-1

d 2Cost—2Cos2t d
dy _ = (&), =m, =

= =m, =
dx  -2Sint+2Sin2t dx 1
4

Andmz=—m11=>m2=—(x/§—1)=>m2=—x/7+1=(1—x/§)

Now equation of tangent at [V2 , V2 — 1] isY —y; = m(X —x) = Y —y; = my(X — x)
=V-(VZ-1) ==K -V2) = (VZ-1)r - (v2-1)" = (x - V2)

= X + (V2 —1)Y + 3(vV2 — 1) = 0 is required tangent line. ( after solving )

Now equation of Normal at [VZ , VZ—1] isY —y; = ——(X —2;) = ¥ — y; = my(X — x,)
=Y-(V2-1)=1-V2)(Xx-v2) =Y+ (1-v2) =X(1-v2) - v2(1 - v2)

= (1 —-+2)X —Y + 1 = 0is required Normal line. ( after solving )

Example: Find the representation of the intersection of the cylinderx? = x;, x,2 = 1 — x;
that does not involve radius.

Answer: givenx2 = x;andx,2 =1—x; = x; =1 —x,2 then=x3 =1 — x,2 or
= x2 + x,2 = 1 now if we put x, = Cos8 and x3 = Sinf then x; = 1 — Cos?0 = Sin*0
then equation of the resulting curve is o (8) = (Sin?8, Cos6 , Sin6d)

Example: Write the equation of circle centered at (c;, ¢,) having radius ‘r’ in parametric form.

Answer: < (t) = (¢q,c,) + (rCost ,rSint) = (x = ¢; + rCost,y = ¢, + rSint)

. T S T T A l-\r-u-..-..

A" .
e :! -
T =TS
4 TRy
i\ l: X1 o on < . j
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Example: The hypocycloid is the plane curve generated by the point ‘P’ on the circumference
of the circle ‘C’ as ‘C’ rolls without sliding on the interior of the fixed circle Cy as shown in the
figure. If ‘C’ has radius ‘r’ and C, as at origin with radius r, and ‘P’ is initially located at
Py(7p, 0) then find a representation of hypocycloid.

Answer: let ‘A’ denote the center of ‘C’ and d#@ is the angle that ‘OA’” makes with e; then

. \\*\“‘\

04 = |0A|CosOe, + |0A|Sinfe, = (r, — r)CosOe, + (r, — r)Sinbe,

If ‘B” is the angle that AP makes with e, then

- N R Tg— T
PPlB:PP1+PlB=>r06=rﬁ+r9=>rﬁ=(ro_r)9:>'8:(Or )9

Since B is in clockwise direction therefore we will have ff = — (ror_r) 0

OP = 0A + AP = [(ry — r)CosBe, + (1, — )Sinfe,] + [rCos (— (Tor_r) 0) e +
sin(- (22)d)e

— 0P = [(ro —1)Cosf +rCos ((E) 6) , (ry —1r)Sin6 — rSin ((r"r—_r) 9)]

r

ARC LENGTH OF PARAMETERIZED CURVE: the arc length of a curve 7 starting from a point
7(ty) is the function s(t) and given by s(t) = fti)llf"(u)lldu

}QUESTION: Find the arc length of a logarithmic spiral 7(t) = [e**Cost, e*tSint]|

Answer: Given 7(t) = [e*tCost, e Sint]

=7 (t) = % = [—e*tSint + ke*tCost, e Cost + ke*‘Sint]

= |7 ()| = e?*t(kCost — Sint)? + e2kt(kSint + Cost)? = ||#'(t)|| = e**Vk2 + 1

Then for arc length

s(0) = [, IF @lldu = s(0) = [; e"ViZ + 1du = s(t) = Vk? + 1 [ e*du

‘/m (ekt _ 1)

:>S(t)=\/k27+1 .

eku t
Ty = s® =
0
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QUESTION: Find the arc length as the function of 8 along the epicycloid
7(0) = [(ro +1)Cosf —rCos (r°+r 9) , (ry + r)Sinf — rSin (

To+7r

9) , O] and calculate the arc

r r

length when 1y, =4,r=2,0=mn

Tro+

Answer: Given 7(0) = [(ro +1r)CosO —rCos ( - . 9) ,(ry + 1r)Sinf — rSin (r":r 9) , 0]

= 7'(0) = [—(ro +71)Sind + 2 1Sin (To:r 0) ,(rg + r)Cosb — ro:r rCos (r":r 9) ]

r

T T

5 2
= [I7(0)]| = j(-(ro +7)Sind + T rSin (r":re)) + ((ro +71)Cos6 — L rCos (@9))

r r

= |7 ()l = (1o + r)\/(—SinB + Sin (r°+r 0))2 + (CosH — Cos (TOH 9))2

= |7 (O] = (ry + r)\/z — 2Cos (:—09) = 2(ry + r)Sin (%6)

Then for arc length s(8) = f;ll?’(@)lld@ = 5s(0) =2(ry+71) foe Sin (;—‘; 9) de

6
|4 10tr To __ aTotr To _
= s(0) = |4 - rCos (Zre)lo =4 - r[Cos (ZTH) 1]
Now whenry =4,r = 2,0 = 1 = s(0) = —24units = s(0) = 24units

PRACTICE: find the arc length of followings;

i.  Circular helix 7(t) = [rCost,rSint, ht] ;r>0,h>0 for0<t <10
ii. 7(t) =[2Cosh3t,—2Sinh3t ,6t | =2[Cosh3t,—Sinh3t ,3t | ;0<t<5
iii. 7(t)=[24,1% ,ln2 ] ;21> 0 between the points P(2,1,0) and Q(4,4,[n2)

UNIT SPEED CURVE: if 7: (a, B) — R™ is a parameterized curve, its speed at point 7(t) is
||7'(t)|] and 7 is said to be a unit speed curve if 7'(t) is a unit vector for all te(a, b)
ie. [[7F@®|=1

is unit speed curve.

3 3
QUESTION: Show that 7(t) = E(l +6)7, 2(1-10)z, vizl

Answer: Given 7(t) = [l (1+ t)g 1 - t)% L]
’ 3 ’ 3 ’ V2
>/ _ d? _ 1 3 1 l 1
=7(t)=—= [5(1 +1t)z, = (1 =1z, ﬁ]

= POl = fa+o+ia-0+i= fa+eri-n+i=FOl=1

= 7'(t) is unit vector = 7(t) is unit Speed curve.

EPRACTICE: Show that #(t) = % s + Vs2+1, ﬁ \/fln(s +VsZ + 1)- is unit speed curvei

REPARAMETERIZATION CURVE: a parameterized curve 7 (&, E’) — R™ is a reparameterization
of a parameterized curve 7: (a, B) — R™ if there is a smooth bijective mapping
@: (&, E) — (a, B) such that the inverse mapping ¢~ : (a, B) — (&, E) is also smooth and

7 =Tlp®] Vvie(@B)
Since ¢ has a smooth inverse therefore 7 is a reparameterization of 7 i.e.
e =t=ti=97' ()

And  #(D) = Flp(®)] = Fet @) =Fle(et@®)] = (o™ (®) = 7(t)
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QUESTION: Find the unit speed reparameterization of logarithmic spiral
7(t) = [etCost, etSint]

Answer: Given 7(t) = [e!Cost, etSint]

= 7'(t) =

dr
T = [—etSint + eCost, efCost + etSint]

dt

= |7 ()|l = /e?t(Cost — Sint)? + e2t(Sint + Cost)? = |7 ()| = V1 + 1 = V2et

Then for arc length s(t) = fti)II?'(u)IIdu = s(t) = fot V2etdu = s(t) = \/ffote"“du

= 5(t) =V2le!s = s() =V2(e N = 2= (f — D) = ef =T+ 1
s(t)

=>t=ln(ﬁ+1)

Now unit speed reparameterization of curve is

7(s) = [(% + 1) Cos (ln (% + 1)) , (% + 1) Cos (ln (% + 1))]

= ||#'(s)|| = 1 and it is unit speed reparameterization curve.
PRACTICE: Find unit speed reparameterization of the followings;

i. 7(t) =[eCost,etSint, et ]
ii. 7(t) =|[Cosht,Sinht,t]
iii. 7(t) =[rCost,rSint, ht] ;r>0h>0,0<t <
iv. 7(t) = [e*Cost, e’ Sint]
v.  Find reparameterization of the regular curve
x = et[a(Cost)e; + a(Sint)e, + bes]; —o0 <t <

NATURAL REPRESENTATION: when a curve is presented by its arc length then the
representation is called natural, Since the speed of such curve is 1 it is therefore called unit
speed curve.

QUESTION: Obtained the equation of circular helix

7(t) = [rCost,rSint, ht] ;r>0,h> 0,0 <t < oo referred to arc length as a parameter
and show that length of one complete turn of the helix is 2mc where ¢ = Va? + b? and is
called pitch.

Answer: Given 7(t) = [rCost,rSint, ht] ;r>0,h>0,0<t < o .....(i)

— (1) = % = [—rSint,rCost, h] = ||F'(®)|| = Va2 + b2 = ¢
S

Then for arc length s(t) = fOtIIF’(t)Ildt = s(t) = fot cdt =ct =t ==
(=7t = [rCos G) ,rSin (Z), h (E)] this is required parameterization.

For one completer turn ‘t’ varies from 0 to 2mr = s(t) = ct = 2nc where ¢ = Va? + b?

REGULAR POINT AND SINGULAR POINT: a point 7(t) of a parameterized curve 7 is called

regular point if 7'(t) # 0 otherwise 7(¢) is called singular point of 7.
Remember: as s(t) = fttollf”(u)lldu = % = IF Wl

REMARK: A curve is regular if all of its points are regular.
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Example: Show that the representation 7(t) = te; + (t% + 2) e, + (t3 + t) e3 is regular for
all ‘t’ and sketch the projection onthe 7, 73 and 75 7; planes.

Answer: If 7(t) =te, + (t2 +2) ey + (3 +t) €5

= ()= e, +2te, +Bt2+De; = [ =1+ Q2+ @Bt2 +1)2#0 vt
= the representation is regular. And the projection onto the 7; 75 plane is
F=t7%=0rF=t3+tor fys= 7 + 7y, 7, = 0 also the projection onto the 7 7, plane

iS?1=t,772=t2+2,?3=00r?2=?12+2,?3=0
PRACTICE: Determine whether the following curves are regular?
i.  Circular helix 7(t) = [rCost,rSint, ht] ;r > 0,h >0

i. 7)) =1[t?,0,0] ii. 7)) =[t>+¢t,0,0]
iv. 7(t)= [CosH 1 — Cos6 — Sinf ,—Sin0 ]
v. 7(t) =[2Sin%6,2Sin?6Tanb ,0 ]

[

vi. 7(t) =[CosO,Cos%0,Sind]
vii. o(wv)=[ut+v,u—v,u®+v?]

QUESTION: Find the singular point of the hypocycloid and sketch

x, = (ry —1)CosB + rCos ((ror_r) 9) , X3 = (rp — 1)Sin@ — rSin ((T"T_T) 0) withr, = 5,7 =2

ror—r) 9>

= x1(ro = 5,7 = 2) = (3C0s0 + 2C0s20) and x,(ro = 5,7 = 2) = (35in6 — 25in>0)

Answer: If x; = (ry —r)Cos8 + rCos ((ror_r) 9) , Xy = (rg — r)Sinf — rSin <(

3 3
= x;(0) = -3 (Sin@ + SinEH) and x3(0) =3 (Cos@ — Cos§0>
5
= |r'(O)] = v (x)? + (x3)? = 6Sin 6

And for singular points [r'(8)| = 0 = 6Sin%9 =0=0-= (g) nt;n=0+1,+2....

PREPOSITION: Any reparameterization of a regular curve is regular.

PROOF: Suppose 7 (&, ﬁ) — R™is a reparameterization of a regular curve 7: (a, ) - R"
then there exist smooth bijective mapping ¢: (d, ﬁ) — (a, B) whose inverse
¢t (a,B) - (& pB) is also smooth and 7(£) = #[¢p(F)]

Nowlet t = () and¥W =@ 1thent = @ 1(t) = = Y(t) .......... (i)
Consider q)((p"l(t)) =t=WP@{t)) =t.......(i0)
Now @(t) =t :dgo(t) 1 =>d(2—(:).3—f= 1 ﬁd(g—(:).%= 1= d(ggf) * 0,,%;& 0

now we have to show that % 0 V fe(d, B)

df df _dFf dF dt _dif dif d
For this consider #(f) = Flp(D] > === —==—.—=> — = 2
at i~ ai at’af ai ar’di

; ar ae ar (&
now since —- # 0 and % #0 =2 — L0 V te(a,ﬁ) hence proved.
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PREPOSITION: if 7(t) is a regular curve, its arc length is ‘s’ starting at any point 7, is a smooth
function of ‘t’.

PROOF: Given that 7(t) is regular and s(t) = fttoll?’(u)lldu is its arc length

SE_FOI>0 w7 is regular

Assume that 7(t) = (u(t), v(t)) is plane curve.

, ar .
= 7'(t) = d_: =W®),v'() -~ u&varesmooth functions

= 2= ¥l = V@2 + @2 >0

Since u &v are smooth functions then u'(t),v'(t) and (u')? + (v')? are also smooth
functions of t

d S . .
= d—i = |7 (O] = (@W)? + (v")?is also a smooth function.

d?s ' v v
d

? = \/(ul)2+(vl)2 \/(ul)2+(vl)2
smooth functions of ‘t’ This the completer proof.

Now 7'(t) =

which exists, similarly for derivatives, we have

PREPOSITION: a parameterized curve has a unit speed reparameterization if and only if it is
regular.

PROOF: Suppose : (&, ) — R™ be a unit speed reparameterization of a regular curve
7: (a, B) = R™ i.e. ||#'(t)|| = 1 then there exist smooth bijective mapping ¢: (5:, ﬁ) - (a,B)
which has a smooth inverse ¢~ 1: (a, B) - (d, E) is also smooth such that

#(E) = FLQE)] e o o ()

~ de(®) _ do d_f_ ..
Now let ¢(f) =t = — 1= =l (ii)
O=TO_ GO G 4O by 260
at ~ dt dt dt " df at ~ dt’ di dt dt
dF di d . di|| ||d a7|| ||d
al = 5 5l = ren= [ 5] = 1= 1Z g
a|| |lae|| _ ar ar _ ) . PN
dt” ||df||—1¢0:> — ¢0:>dt¢0 ; Ve = 7'(t) #0 ;Vt = ¥(t) is regular.

CONVERSLY: Suppose that 7(t) is regular. = % =7({t)#0 ;Vt= % = ||7(®)|| > 0

= s:(a,p) » (d, E) has a local smooth inverse s~ 1: (d,ﬁ) - (a,B)

If ¥ isthe corresponding reparameterization then F(s(t)) =7(t)

dar ar dr ds ar dr ds dar dar ds 7
priirin bk gl | protberd el e ol !l = 7@l
= [IFOINF O = 17 @®)] = lIF()|| = 1 = 7#(¢) is a unit speed curve.

QUESTION: Show that given is regular also find unit speed reparameterization of curve where
curve is 7(t) = [Cos?t,Sin%t] ;teR

Answer: Given 7(t) = [Cos?t,Sin?t]

-

dr
= 7'(t) = i [—2CostSint, 2SintCost] = [—Sin2t, Sin2t] = Sin2t[—1, 1]

Now as teR so it can be any multiple of%and ont = gwe have 7'(t) = 0 so given curve is not

regular. And we have no need to find unit speed reparameterization of curve.
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QESTION: Show that given is regular also find unit speed reparameterization of curve where
curveis 7(t) = [Cos?t,Sin%t] ;for0<t <§

Answer: Given 7(t) = [Cos?t, Sin®t]

— #(t) = % — [=2CostSint, 2SintCost] = [=Sin2t, Sin2t] = Sin2t[-1, 1]

Nowas0 <t < g we have 7'(t) # 0 so given curve is regular. And we will find unit speed

L S dar . .
reparameterization of curve. =7'(t) = d—z = [-Sin2t, Sin2t]

= IOl = /Sin22t + Sin22t = /2Sin22t = V2Sin2t = |7 (t)|| = V2Sin2t

Then for arc length s(t) = fttoll?’(u)lldu = s(t) = fot V2Sin2udu = s(t) = \/EfOtSinZudu

_ t _
= s(t) =2 |—60252u|0 = s(t) = \/?(—CZSZt + —COZZO) = g (1 — Cos2t)

= s(t) = %(1 — Cos2t) = \2s(t) = 2Sin’t = gs(t) = Sin’t = Sin’*t = %s(t)

now since Cos?t =1 —Sin’t=1——s
V2

N o 1 1
Hence Reparameterization curveis 7(s) = [1 — 55 ﬁs]

QUESTION: Show that given is regular also find unit speed reparameterization of curve where
curveis 7(t) = [t,Cosht] ;for teR

Answer: Given 7(t) = [t,Cosht] = 7'(t) = Z—: = [1, Sinht]

Now as teR we have y(t) # 0 so given curve is regular. And we will find unit speed

. S dr .
reparameterization of curve. = 7'(t) = a_I = [1, Sinht]

= ||7'(O)|| = V1 + Sinh2t = VCosh?t = Cosht = ||7'(t)|| = Cosht
Then for arc length s(t) = fttOIIF'(u)Ildu = s(t) = fot Coshudu

t_,—-t
= 5(t) = |Sinhuly = s(t) = Sinht = s(t) = % = e?t — 1 = 2set

:>(et)z—Zset—l=O=>et=25i2ﬂ=5i\/52—1=>t=ln(si\/52—1)
= Cosh’u = 1 + Sinh?u = Coshu = V1 + s2

Hence Reparameterization curve is  7(s) = [In(s £ Vs2 — 1), V1 + s2]

VELOCITY VECTOR: The velocity vector of regular curve 7 = 7(t) att = t, is the derivative
7'(t) evaluated at t = t, and the velocity vector field is the vector 7'(t). The speed of 7(t) at
t =t is the length of the velocity vector i.e. |7'(¢)|¢=,

PLANE CURVES: the set of all points lies in same plane then the curves are called Plane curves.

SPACE CURVE OR TWISTED CURVE OR SKEW CURVE OR TORTOUS CURVE:
when all the points of a curve do not lie in the same plane then it is said to be a space curve
otherwise a plane curve.

Example: 7(t) = aCosti + bSintj + 0k comparing this equation with general equation of the
curve 7(t) = x(t)i + y(t)j + z(t)k then we get x = aCost, y = bSint, z=0 then

xZ_C 2 . yZ_S.z o h x? yZ_C 2 52_1
— = Cos“t N €3 oz = sint N €13 then = + 75 = Cos“t + Sin"t =

which is the equation of ellipse.

PROF. MUHAMMAD USMAN HAMID (0323-6032785)




EQUATION OF TANGENT OF A PLANE TO THE CURVE

Let ‘p’ and ‘@’ be two points on the given curve ‘C’ whose position vectors are 7 and 7 + 67

corresponding to the values of s’ and "s + 6s" of parameters. Then we note that

- d . ) 2. . .
¥ = d—z = llmgs_,gré_—: =t is the unit vector parallel to the tangent to the curve at P. this

unit vector is denoted by t and is called unit tangent. The equation of tangent to the curve
at any point Pis R—7=uf =R =7+ufl = R =7+ u? where R is the position
vector of any point on the tangent ‘t’ and is called the current point and ‘U’ is any scalar.

Question: Find the equation of the tangent to the curve whose coordinates are
x =aCosf, y=aSinf, z=0.

Solution: Since #'(t) = x'(t)i + ¥'(t)] + Z'(t)k and x' = —aSin80’ , y' = aCos68’' , z' =0
SO using these in equation of tangent

—

- = => - > = - >/ => - _,’ ﬁ-?
R—r=ut =>R=r4+ut=R=r4+ur’ = R-—r=ur =

ST U (i)

now R =X{+Yj+Zk and# = xi+ yj + zk
X—x Y-y Z-z

then equation (i) becomes — =—=—=u
X! y! z!
X—-aCos0 Y-aSin6 Z-0 Z-0
- = =—=Uu = — =Uu =0
—asSinfor aCos00r 0 0
X—aCos0 Y—-aSin@ , ,
and = = (X — aCosB)Cosh = (Y — aSinB)(—Sinb)

—-Sin6  Cos@
= XCos6 + YSinO = aCos?08 + aSin’6 = XCosO + YSinf = a

Question: Find the equation of the tangent vector and tangent line to the curve
X=t€1+tzez+t3e3 att=1$X(t=1)=el+ez+eg

Solution: Since x'(t) = e; + 2te, + 3t%e; = x'(t = 1) = e; + 2e, + 3e;

! = = W = = xr(t=1) = i
= |x'(t = 1)] 12+ 22432 =+14 andT =D m(el

+ 2e, + 3e3)
NowX —x =uT = X=x+uT where—oco<u<o

:X= (81+€2+€3)+u[\/%_4(81+262+3e3)]
k 2k 3k
=>X=(1+ﬁ)e1+(1+ﬁ)ez+(1+ﬁ)e3=(1+t)81+(1+2t)ez+(1+3t)eg

k : . . .
Cg st (say) Then in Cartesian coordinate we get parametric form

=X =(0xy,x)=1+8), (1+2), (1+30

—x,=(+1t), x,=0+2t), x5=(1+30t)

x, —1 x3—1
=x—1=t —=t, =t
=x—1= sz—1 = x33_1 is the tangent line to the curve att=1i.e.at P(1,1,1)
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NORMAL PLANE: the plane normal to the tangent to a curve at the point ‘P’ of contact is called
the normal plane at that point P.

EQUATION OF NORMAL PLANE:

let R be the position vector of the current point ‘Q’ on the normal plane and 7 be the position
vector of the current point ‘P’ thus R — #is the position vector of any line in the plane as
shown in figure. Thus according to the definition of the normal plane R—7#and? are

perpendicular to each other. i.e. (I_f - ?).f = 0 Which is the equation of normal plane. Thus
every line through P in this plane is normal to the curve.

Question: Let < (s) be a unit speed curve such that every normal plane to « (s) goes through a
given fixed point x,eR3 then the image of « (s) lies on sphere.

Solution: Since the equation of normal plane is (ﬁ - 7‘”’). t=0= (xo—oc (s)).f =0

(< (8) —x0).t =0 and = (o (5) — x0).7" = 0 = (x () — xp). < '(s) =0
Where (oc1 (s) = xo, , %z (5) — X, , %3 (5) — xog). (oc’1 (s), ¢, "(s),0¢5 ’(s)) =0
= [(o¢y () = x,) - <) () + (o< (5) — xq,)- 0 (s) + (<3 (5) — x0,)-%3 '(s)] = 0

(“1(5)—9501)2 (“2(5)—3502)2 (°<3(S)—xo3)2

2 2 2

= costant

Integrating w.r.to ‘s’ =

= (o¢q (s) — x01)2 + (ocz (s) — xoz)2 + (3 (s) — x03)2 = 2 X costant = costant = a?(say)
This is the required equation of curve lying on sphere.

CURVATURE: (it tells how much does a curve, curve)

curvature of the curve at any point is defined as ‘the arc rate of rotation of the tangent” it is
the ratio of change in turning to the distance travelled. It is sometime called first curvature or
circular curvature. It is denoted by K(keppa). It measures the extent to which a curve is not
contained in a straight line.

OR if 7 is a unit speed curve with parameter ‘s’ then its curvature denoted K (s) at point

dT/dt _
dS/dt

o
'

T

=7

7'"

7(s) is defined as K(s) = |[¥"(s)||  Also remember: k = |%| -

DERIVATION OF EXPRESSION FOR CURVATURE:

let ‘C’ be a curve and ‘CX’ be a fixed direction. Let position vectors of ‘P’ and ‘Q’ are 7 and
7 + 67 respectively. Let tangent at ‘P’ makes angle '8’ with x-axis or OX and tangent at ‘Q’
makes angle ‘@ + 60’ with OX. Where the angle ‘56’ is the angle between tangent at P and Q

— 86 . = T
and clearly PQ = és then 55 1 average curvature of arc PQ when s — 0 then its limiting
50 _ do

value is the curvature at the point P. i.e. K = limg,_, il o'
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REMARK:

e The circle passing through three points on the curve coincident at P is called circle of
curvature at P. it is the circle that best describes how C behave near P; it shares the
same tangent, normal and curvature at P.

e K(keppa) is considered as the positive quantity.

e the reciprocal of curvature is called Radius of Curvature and is denoted by ‘p’ so

1 1
pP=rx and K = s

e ifK=0or]|7"(s)|| = 0everywhere then 7 is a part of straight line.

e curvature of straight line should be zero.

e Curvature should be independent of reparameterization. It depends only on the shape
of curve

e Large circle should have small curvature and vice versa.

QUESTION: if K = 0 or ||7"'( s)|| = 0 everywhere then 7 is a part of straight line.

ANSWER:if K=0= ||[7""(s)||=0=7"(s)=0=7(s)=c=7(s)=cs+b
= curve is a straight line.

QUESTION: Curvature of straight line should be zero.

ANSWER: let 7( s) curve is a straight line
=7(s)=as+b=7(s)=a=7"(s)=0 = ||7"(s)||=K=0.

QUESTION: A regular curve of class = 2 is a straight line iff its curvature is identically zero.

ANSWER: let 7( s) curve is a straight line
=7(s)=as+b=7(s)=a=7"(s)=0 = ||[F"'(s)]|=K=0.

Conversely: if K=0= ||F"(s)||=0=7"(s)=0=>7(s)=c=7(s)=cs+b
= curve is a straight line.

» Possible Question: A curve of class = 2 is straight line if all tangent lines have a common
intersection.

QUESTION:  Prove that p =~ or K = %

PROOF: Consider a circle in R? with centre at (0,0) and radius is p and this will be a unit speed
parameterization. i.e.

7(s) = [PCOS( ) pSin (p)] =~ 7(s) =[rCosh,rSinf] ands =10 = s =pd = 6 :%

= 7(s) = [—p.l.Sin (%), p.%Cos( )] = 7"'(s) = [—lCos (%), —%Sin (%)]

= K =|[7"(s)ll = \/—Cos + SLn2 \/ [Cos +Sm2 (5)] =l k=1

p
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PREPOSITION (1°* method):

; . . FXT r''xr!
let 7(t) be a regular curve in R® then its curvature is K = w _ TIE ” OR let y(t)
' _ ' s
be a regular curve in R® then its curvature is K = _HI)I/VII);“
> dr  ar ds di# ds ds N ds
PROOF: Let 7 be areqular curve =7 =—=—. — =79 =—. === r_as
OOF: Let 7 be egular curve dt  ds'dt dt dr  dt dt

ds d(dr)_dv d ds)
dt'dt\ds/) ds'dt\dt

(&)

Now K = ||7"'|| =

d (d?)
ds \ds

d52

i dr/dt i dr/ds
ds ds/dt dt ds/dt

ds d (d7 dt\ d7dt(d?%s ds d?Fdt ., dt (d?s ds oy; oy (d%s
LA ) _|amer ) _ e
K = dt'dt\dt'ds) dt'ds\dt? at'dt?'ds "ds'\de2 dt’ \dt? (l)
- ds ds ds\3 t
6l ) (@)
. 5, ds SN2 ds\2 Sr ooy ds\2 S o1 o ds (d%s
Since r —d—:(r) =\z) =77 =3 = 2r .r—ZEE
— FII vd A (dz )
"~ dt \dt?
as[ds 11 _ (d_zs)] (E)Z Rzt E(d_ZS)
T . .r . =/ 124 =14 ﬁII =1
. _ ||atlat dt? dt ac\aez)|| _ [|[F"#)F" =7 ("7 x
(i)=K-= (9)4 = (5)4 = E SRR €13
dt dt

Now . d x (b x &) = (@.8)b— (d.b)¢ = 7' x (?" x #') = (. #)#" — @". 77

. [ )" =" @) _ 7Gx
i) > K = — 3
(i) (17714 (17714

Since#’ L (7" x 7') therefore

17" > @ < 7OI I IIG x 7)11Sin90° |G x 7)) 1@ x 7))l
= = e =
17 11* 17 11* I711° 17113

REMARK: if 7' # 0 then we can find the curvature of the curve by the above formula.

PREPOSITION (2" method):

ll#x7| _

let 7(t) be a regular curve in R3 then its curvature is K = i K= OR let y(t)
3 1234
be a regular curve in R® then its curvatureis K = HE
=/ —
PROOF: Since T = % =7 =T
=P =BT o s LS A
t dt
2
- - d g g
=7 x7" = (—S) (TxT)
dt
2 2
N N d. - — N N d — — —> — -
=7 x| =(2) [TxT| =17 x| =($) || «|FxT|=|T||F'|sin90° = ||
dt dt
N U T T e
:>|T|_ ds\ 2 :>|T|_ |72
(&)
dt
"o |F’XF”|
= K|r'| = ElE
_ ]
lr'113
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EXAMPLE: (Circular helix with z —axis) if 7(0) = (aCos8 ,aSin0, b) then find the curvature
of the curve.

SOLUTION: Given 7#(0) = (aCos8, aSin8, b8)
= 7'(0) = (—aSind, aCosO, b) = 7''(0) = (—aCosh, —aSind, 0)
i j k
Then (¥ X 7') = [—aCos® —aSind 0
—aSin6 aCosf b
= (7' x7) = (—abSinf — 0)i + (0 + abCosB)j + (—a?Cos?6 — a?Sin?0)k

= ("' x¥') = (—abSind)i + (abCosh)j — a*

= || x¥)|| = Va?b2Sin26 + a2b2Cos?6 + a* = Va?b? + a* = aVb? + a2

N - =11 =l b2 7
Also = ||¥|| = Va2Sin20 + a2Cos?0 + b2 = Va? + b2 Then K = ||(rfr3,)|| = e 3= 2
1711 (VaZ+b?) a?+b?

EXERCISE: Find K where K = 102 o0 g — 127 o)l

7113

i. 7(t)= (1, Cosht) i. 7(t) = (Cos3t, Sin3t)
S 4 , 3 5 3 3
ii.  7(t) = (ECost, 1 — Sint, —ECost) iv. 7(t)= (% (1+1¢)z, %(1 — 1)z, \/LE)

v. let 7= (x(s),y(s), 0) be a unit speed curve then prove that K = |x'y" — x"'y'|
vi. 7(8) = (aCos6,aSinb,adCotf)

» Symbol Tt used is called torsion, discussed later.

QUESTION: if 7(t) is a unit speed curve with K(t) > 0 and t(t) # 0 Vt show that if 7 is a spherical

then — = i( Al ) if and only if p? + (p'c)? = r? where r is constant radius of sphere.

K~ ds \tk?
SOLUTION: Consider = == (=) ........... (D)
K ds \tK
. —l: ’—__’ﬁ_ ’—K_’ l —l: —l
TPERXTP T T P =iz as0o=0=1T=7

. d (K d ' d ' d '
(1):%:E(m):>§:—E(ap):>p=—a£(ap)=>p+ag(ap)=0

= 2p'p + Zp’ai(o*p’) =0=2[pp'ds+2 f(ap’)%(ap’)ds =0

= 2= p + 2 (Gp ) . r being constant = p*+(p'o)? =1

CONVERSLY: Suppose that p? + (p'0)? =12 = 2p'p + 2p’a%(ap’) = 0 diff.w.rto’s’
= 2p’ [p + ai(ap’)] =0= 2p' # 0then [p + ai(ap’)] =0=p= —a%(ap’)

KI)' =lopy=-f 0 p=X gsoo=t=r="
TK? "p_K p = K2 p_K2 T T o

p___ d
=>;_ (O-’D):K ds(

>

UNIT TANGENT VECTOR: Let #(s) be a unit speed curve in R3 then 7' = % = t is a unit tangent

vector at any point 7(s).

Tit)

ALSO Let 7(t) be a regular curve in R3 then t = =T

is a unit tangent vector at any point 7(t).

TURNING ANGLE OF 7 : The smooth function ¢: (a, B) — R is called the turning angle of 7
determined by the condition ¢(sy) = ¢,
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SIGNED CURVATURE: Arc rate of rotation of the tangent vector in clockwise or anti clockwise

direction is called Signed curvature. It is the rate at which tangent vector of the curve rotates.
. _as
ie. Ky = =

When the curve lies in a plane we may assign a sign of plus or minus to measure the arc rate of
rotation the tangent clockwise or counter clockwise.

THEOREM: Suppose 7(s) is a unit speed curve in R? then curvature of the curve is absolute
valued of its signed curvature. i.e. K = ||K||

PROOF:

A 7w

tnt”
Suppose 7(s) is a unit speed curve in R? . And let 7' = Z—j = t be the unit tangent vector of 7(s)
since 7(s) is a unit speed curve.
Now there are two unit vectors perpendicular to £ among them first is
i = signed unit normal to 7 and second is 7'’ = £’ which is a unit vector obtained by
rotating the tangent vector t in anti-clockwise direction by an angle %
Thent' Lt =t Iy = €' = Kty = 7' = Kiig = ||| = K|l = K = [IK ||| ||
= K = ||K,|l.1 = K = ||K,|| hence the result.

OR let 7 = #(s) is a unit speed curve and 8(s) be the angle through which a fixed vector must

be rotate anticlockwise to bring it into coincidence with unit tangent vector t of 7 then

dae
Ky =2 = K = |IK,|

THEOREM: Let 7#(s) be a unit speed curve. Let (s) be the angle through which a fixed vector

must be rotated anti — clockwise to bring it into coincidence with the unit tangent vector tof 7

ao
then show that K, = =

PROOF: let d be a fixed unit vector and b be the unit vector obtained by rotating d in an anti-

clockwise direction by an angle g then

£=3dCosd+bSing =1 =% =—dsin0% + pcoso L2 = (—dsing + ECOSQ)d—e
ds ds ds ds
- - - . T > de 21 - . de .
= t.d =[-(d.d)Sind + (b.d)Cos8]| —=t'.d = —Sinf— ......... (i)
ds ds
Since we have t' || iy, = t' = K,7i; then (i) = K s d = —Sin@i—f
. ., de . ., do do
= K,|n,||d|Cos (9 + g) = —SmHE = K,(—Sinf) = —SmBE = K, =—

= result shows that signed curvature K; is the arc rate of rotation of the tangent vector.




QUESTION: Find the signed curvature of 7#(t) = (t, Cosht)

ANSWER:

Given 7#(t) = (t, Cosht) = #'(t) = (1, Sinht) = ||7'(O)|| = V1 + Sinh2t = VCosh?t
|17 (&)|| = Cosht
Then for arc length s(t) = fttoll?’(u)lldu = s(t) = fot Coshudu

= s(t) = |Sinhul{ = s(t) = Sinht
Now let ¢ is the angle between 7’ and x — axis then Tang = Sinht = s
do 1 do 1 1 1

d
=>Sec2<p—(p=1=>—: = = = = =K, =—;
ds ds Sec2¢ ds 1+Tan?¢ 1+s2 1+s

RESULT: Let 7(s) be a unit speed plane curve and K, = Z—‘: then (1) — @(0) = f(: K.(s)ds

where [ is the length of curve and @ (I) — ¢@(0) is total signed curvature.

PROOF: Given that 7(s) be a unit speed plane curve and K, = Z—f then

Kds =dop = fol K.(s)ds = fol dp = o) —@(0) = fol K.(s)ds when [ is the length of curve

COROLLARY: The total signed curvature of a closed plane curve is an integer multiple of +2m
ROTATION THEOREM (Hopf’s Umlaufsatz):

The total signed curvature of a simple closed curve in R? is +2m

PROOF: let #(s) be a unit speed plane curve [ is its length then the total sighed curvature of 7

is (1) —@(0) = fol K.(s)ds where ¢ is a turning angle of 7

Now 7 is | = periodic then7(s + 1) = 7(s) = 7' (s + 1) =7'(s) = 7'(1) = 7'(0) then by
equation [Cos@(l), Sinp(l) ] = [Cos@(0), Sing(0)]
= @ (1) — ¢(0) is an integer multiple of 21

RIGID MOTION: A rigid motion in R? is a mapping M: RZ — R? Of the form M = Tz o Ry where
ﬁg is an anticlockwise rotation by an angle 8 with about the origin. And

ﬁg (x,y) = (xCos6 — ySinf, xSinh + yCosO) and Ty is the translation by the vector d and
Tz = ¥ + d for any ¥(x, y)eR?

EXAMPLE: For ﬁg (x,y) = (xCosB — ySin@, xSinb + yCosh)
= Ry(1,0) = (1.C0s90° — 0.S5in90°, 1.S5in90° + 0.C0s90°) = R4(1,0) = (0,1)

_-,
(nr') ‘fé
[s]
c‘ o LN o
v 0

PROF. MUHAMMAD USMAN HAMID (0323-6032785)




THEOREM: Let K: (@, B) — R by any smooth function then there is a unit speed curve
7: (a, B) = R? whose signed curvature is K. further if 7 (d, E) — R?is any other unit speed

curve whose signed curvature is K, there is a rigid motion #(s) = M[7(s)] ; Vse(&, E)

PROOF: For the first part fix sye(a, B) for any se(a, B) then ¢(s) = f:o K(u)du -~ K, = d—f

then 7(s) = [f:o Cosqp(t)dt ,f:o Sing(t)dt ]

then tangent vector 7'(s) = [Cos@(s), Sing(s) ] is a unit vector making angle ¢ (s) with the

. SN . . . d
x — axis and thus #(s) is a unit speed plane curve and its signed curvature is K(s) = == or

ds
dp _d s _
—~=— fSO KW)du = K(s)

Now for the second part let ¢(s) be the angle between the x — axis and the unit tangent vector
7' of ¥ then 7'(s) = [Cos@(s),Sing(s) ]

= #(s) = | [ Cos@(v)dt , [ Sm@(O)dt |+ F(50) v (i

now by using % =K(s) = fs“: dp = fs”: Kwdu = ¢(s) — ¢(sg) = f:o K(w)du

= @(s) = f:o K@)du+ ¢(so) = @(s) = o(s) + §(sq) also take 7(sy) = d and §(sy) =0
then (i) = 7(s) = | I2 Coslp(t) + 61dt , [ Sin[e(t) + 0]dt |+a

= 7(s) = [fSSO[Cosgo(t)CosH — Singp(t)Sinf]dt ,f:o[Singo(t)CosH + Cose(t)Sinf]dt ] +a
= 7(s) = [Cos() f:o Cosp(t)dt — Sind fsso Sing(t)dt ,Cos6 f:o Sing(t)dt + Sind f:o Coso(t)dt ] +d
= 7(s) = Tz © Rg(7(s)) = 7(s) = M[F(s)]

UNIT PRINCIPAL NORMAL:

g =

o
-

P
= ] T
—
”y

a vector perpendicular to the tangent at ‘P’ is called the unit principal normal at ‘P’ and it is
denoted by 7. Where the straight line passing through ‘P’ on ‘C’ and parallel to the unit
principal normal is called unit principal normal line at that point ‘P’

PRINCIPAL NORMAL: if the curvature K(s) is non —zero i.e. K(s) # 0 we define Principal

1 1 >,
0 XG) 12’

= |||l = 1 which is our unit principal normal. ~EN =171 =K

£ = |7l = |

normal of 7* at the point 7(s) to be the vector 7, =

OSCULATING PLANE OR PLANE OF CURVATURE:

¥ v

Plane containing two consecutive tangents at a point P and three consecutive points at P
OR the plane parallel to the unit tangent and unit principal normal is called osculating plane at
point ‘P’ to the curve ‘C’

—

if R is any point on this plane then R — 7, £ and 7 are Coplanar vectors so, [R-7, { 7| = 0 this
is the scalar triple product and this is the equation of osculating plane.
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EQUATION OF OSCULATING PLANE (2" form):

n

=
=y

we know that ¢ Since 7' = tand7" =t' =Kn =n= =>[R—‘r,r', ]=0

=|
x|

= [R-7#¢p"] =0 Also = [R—7].b=0

QUESTION: If 7'and 7'’ are linearly independent at a point 7, along the curve 7 = 7(t) then

show that osculating plane is [R — 7, £,7i] = 0

. . - - - ar a7 ds -
Solution: given 7 =7(t) => 7' =—=—.—=ts'
dat  ds’dt

- d - - - - — N N - N N —
=7r" = Ets’ =ts" +t's' =ts" + Kis' = 7' x 7" = (ts') x (ts” + Kiis') = (s)3Kb

> I

AtF=Tg= 7 X7 = (s4")3Keby # 0 - #'and 7" are linearly independent at a point 7

S I o5

i To X7 . . - — . =4 —1 7
= by = (;’ 1)3‘;( also we know that equation of osculating plane at 7 =1y is [R — ro].bo =0
0 0
S LI
= —>_)_ = —71 To XTo _ _)_—> - !/ = I _)_—>—>’—>”_
- [R - ro].bo - [R - ro]'(sol)31(o - 0 = [R ro].ro X ro - 0 = [R 7‘0,1"0 ,7‘0 ] - O
=>[R—F,t,ﬁ]=0 W=7, t=7andn = 7"

» Possible Q: If xand X are linearly independent at a point x, along the curve x = x(t)
then show that osculating plane is [V — x, Xo, X5l =0 ;Y = (X1, %5, x3)

Question: Find the equation of the osculating plane of the given curve
7(t) = (t,t5,t3) att =1

Solution: given curve 7(t) = (t,t%,t3) = #(t=1) =(1,1,1)
= 7'(t) = (1,2¢,3t?) =7 (t=1)=(1,23) = 7"(t) = (0,2,6t) =7"'(t=1) =(0,2,6)
R x1 - 1 xz - 1 X3 - 1
[R-7L7A]=0 =] 1 2 3 [=0
0 2 6
$6(x1_1)+6(xZ_1)+2(X3_1) = 0:2(3X1+3.X'2+X3)_14:0

= (3x; + 3x, + x3) — 7 = 0 _this is equation of osculating plane for given curve.

Question: Find the equation of the osculating plane of the given curve
#(0) = aCos6i + aSin6j + 0.k

Solution: given curve 7#(6) = aCosfi + aSinfj + 0.k then comparing it with

#(0) = xi + yj + zk = x = aCosO,y = aSinf,z =0
X—x Y-y Z-z
now [ﬁ—?,?’,%l]=0 = x," y,I, Z,,, =0
X Yy z_
K K K
X—x Y-y Z-2z X—x Y-y Z—-z
:>% x! yl 7' -0 = x' yl Py -0
xl/ yll Zl/ xll yll ZII
nowas x = aCos6,y =aSinf,z=0
= x' = —aSind,y' = aCs0s0,z' = 0= x"" = —aCosh,y" = —aSinhd,z"' =0
X —aCosO® Y —aSin8 Z-0
= | —aSinf aCsos6 0 =0
—aCosf —aSiné 0

= z(a?Cos?0 + a?Sin?0) = 0 = za?(Cos?0 + Sin?0) =0 = za’> =0
= a® # 0= z =0 thisis equation of osculating plane for given curve.
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BINORMAL AT ‘P’:
the normal at ‘P’ which is perpendicular to the osculating plane is called binormal at ‘P’

the vectors 5, t and 71 are perpendicular to each other. A straight line passing through ‘P’ and is
parallel to the binormal at ‘P’ is called binormal line.

EQUATION OF BINORMAL:
We know that R =7+ ub andSince b =£x 7, £ =7, ﬁz%
SR=Ff+ub=R=7+u(xn) =>R=F+u@ x %) Which is required equation

RECTIFYING PLANE:

2
B B = =5
e Tp g3y . —Z n
=
AN <. ";
o
T -
=X % t
s > .
’f—_" //% .
s -
—% ¥ B
% —‘"/I \ s

the plane through ‘P’ which is parallel to the unit tangent £ and unit binormal b is called
Rectifying plane. so

e Li=fd=bb=1

e th=bA=7t=0

o txni=b bxt=n Axb=¢t
e fixt=-b, EtXb=-R bxnA=-—t

l

e The triplet (Z, n, b) of unit tangent, unit principal normal and unit binormal is called
moving trihedran. This is the set of orthonormal vectors of R3 and is Right handed.

INTERESTING FACT:

The plane determined by the normal and binormal vectors 7 and b ata point P on a curve Cis
called the Normal Plane of C at P. it consists of all lines that are orthogonal to the tangent
vector t. The plane determined by the vectors ¢ and 7 is called Osculating Plane of C at P. it is
the plane that comes closest to containing the part of the curve near P. ( for a plane curve, the
osculating plane is simply the plane that contains the curve).
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SERRET FRENET FORMULAE:
the Serret Frenet Formulae are derived from the fact that the frame vectors are mutually
perpendicular and that they have unit length. Formulae are as follows;

H _)’—d_E— " i _»’—d_f)—_"" iti _":d—ﬁz E—KE
i t—dS—Kn ii. b—ds— m . n 25 ¢
. > dt

PROOF (i): t’=d—;=KTi

The unit tangent is not a constant vector as its direction varies from point to point of the curve.
Let £ and £ + &t are its values at two different points ‘E’ and ‘F’ respectively. The vectors BE

and BF are respectively equal to these. Then

5t = EF and 86 = mzEBF also % = limgs_, EF and its direction is perpendicular to tangent £

=5 52 dt . | A 80 ..,
moreover |BE| = |BF| = 1 also the modulus value of—t is the limiting value of—whlch is ‘K

> >

d . 5t
hence d—; = limgg_,0— =¥ = K7 where 7 is the unit vector perpendicular to £ and in the plane of

>

. . " 2 dat —
tangent at ‘P’ and at a consecutive point ‘P’ so t’' = == Kn

OR we know that

K, = k=24 =% = e...
dt ds
aIsoK = ||t || = II*”II ... (ii) andsince ||#']? =1 = r’ r = 1

! -)ll

Diffw.rto’s = 27 . 7" =0 =7 17" = #" | 1=17" =Kin = t' = Kil from (ii)

. > _db _
PROOF (ii): b = L= T
Consider b2 =b.h =1
Diff. w.r.to ‘s’
P 2y 0= 2L = 0=b®=0=DbDb =0=1"is perpendiculartol; ............... (i)
ds ds ds ds

l

Again Consider £.b =

Diff. w.r.to ‘s’

EEV"”’ 0=10.b+Lb=0=KAb+Lb=0=£(b=0 ~7b
= b'is perpendicular to t e, (ii)
From (i) and (i) = b’ is parallel to i = b =—1R = b = % =—1n

where T measure the arc rate of rotation of binormal.
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HH — dn 5 -
PROOF (iii): n' = d—’s' =1th — Kt
Consider 1 = b Xx £ = Diff. w.r.to ‘s’ %zf)x%+%xf=5xf’+5’xf

=bx Kii + (—ti) x t = K(b x i) + ©(~7i x ) = K(~) + 7(b) = =Kt + 7b
dn > 5

=n = b — Kt
n ds

THE SERRET FRENET TRANSFORMATION (MATRIX FORM):

Since
i =%L=kn i. b=2=_1% i. 7 =%=1p—Kt
ds ds ds
t 0 K 0]t
Then the matrix || = |—-K 0 7| |n]is called matrix form of Serret Frenet Formulae.
b’ 0 -t olfp
0 K 0 0 —K O 0 K 0
Let A =|—-K 0 TﬁAT=K 0 —1|l=—-1-K 0 T:AT=—A
0 -1 0 0 0 0 -1t 0

= matirx is Skew Symmetric.

THE SERRET FRENET APPARATUS:
the Serret Frenet apparatus of a unit speed curve 7(s) are [K(s), 7(s), £(s),7(s), b(s)]

Question: Show that 7(s) = (15—3 Cos(s), 1% — Sin(s), %Cos(s)) is a unit speed curve and

find its Serret Frenet Apparatus.

Solution: Since 7(s) = (15—3 Cos(s), % — Sin(s), %Cos(s))

= 7'(s) = (—iSin(s), —Cos(s),—ESin(s)>

= || 7)|? = SLTLZ(S) + Cos?(s) + Slnz(s) = Sin%(s) + Cos?(s) = ||[7')|? =1

= || 7' ()] = 1 = given curve is unit speed curve.

Now we can find the Serret Frenet Apparatus

7''(s) = (—%Cos(s), Sin(s), —%Cos(s)) = 7''(s) = (%Sin(s),Cos(s),%Sin(s))

i j k

5 o
— 7' x 7" = |—=Sin(s) —Cos(s) ——Sln(s) ( 0 i)

153 13’ 7’ 13

__COS(S) Sin(s) ——Cos(s)
= |7 X2 =24 0+ = =1= |7 x| =1
Now = ¥ X 7.7 = Sm(s) +0— —Sm(s) 7P X 7" =0
! ->II . >/ -’II 21! 0

For curvature = K = % = % = 1 and for torsion = 7 = —r”ﬂ f,f”z =-=0

Also since t = 7' = (—%Sin(s), —Cos(s), —%Sin(s))

' =Kn=1n=7"= (—iCos(s), Sin(s), —%Cos(s)) and
b=txXn=r"xXr :(13 0, E)
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PRACTICE: CALCULATE SERRET FRENET APPARATUS OF THE FOLLOWINGS;

i F(s) =1 +t3 ¢t t3) iv. 7(s) = (e®Cost, e?Sint, e?Sint)

ii. 7(s)=(Cosht, Sinbt, t) v.  7(s) = (TCOS (i) rSin (E) 0)
iii. 7(s)=(t— Cost, Sint, t) " ’

vi. Showthat 7(s) = ( 1+ t)_ = (1 — t)z ) is a unit speed curve and find its Serret

Frenet Apparatus.
vii. Showthat 7(s) = %(Cos‘l(s) —sV1—s2, 1—5s? 0) is a unit speed curve and find

its Serret Frenet Apparatus.

Question: Show that 7(t) = (g Cost, 1 — Sint, —%Cost) is a circle and find its radius,

centre and plane in which it lies.

Solution: Since 7(t) = (gCost, 1 —Sint,—%Cost) = 7(t) = (—gSint, —Cost, %Sint)
= |7 = gSinzt + Cos?t + Z%Sinzt = Sin%t + Cos’t = || #'(D|? =1

= || #'(¢)|| = 1 = given curve is unit speed curve.

Now we can find the Serret Frenet Apparatus

7''(t) = (—%Cost, Sint,%Cost) = 7"'(t) = GSint, Cost, — %Sint)

i j k
— P X P = —SSint —Cost %Sint _(_E 0 __)
5, )
—%Cost Sint %Cost

N ||F’><F”||2=%+ 0+§=1:>||r x 7" =1

_’II —)III

Now = 7' X P =_—Slnt+0+ Slnt:rxr”"”’:O

N7 Rl 71t
7' X1 1 . T X1 0

For curvature = K = u =- =1 and for torsion = 17 = f =-=0
17113 1 17" <772 1

. ird - . 3 .
Alsosincet = 7' = (—%Slnt, —Cost, ESLnt)
' 4 ., 3 R 4 . .3
= (——Cost Slnt,ECost) =n= (—gCost, Slnt,gCost)

-

Cost, Sint,- Cost) = b = (0, 0,0) »b'=—11 andt =0

= b’ =(0,0,0) = b = (c1, ¢y, ¢3) = constant unit vector

Now let x = %Cost, y=1-Sint, z = —%Cost = x2 + y? + z? = 2y (after solving)
Sxl+y?-2y+1+z22=1=x*+(@y-1%+2z2=1

Now if z=0then (x — 0)2 + (y — 1)? = (1)? is an equation of circle centered at (0,1) having
radius ‘1’ lies in xy — plane.

Or ifx=0then (y — 1)2 + (z — 0)2 = (1)? is an equation of circle centered at (1,0) having
radius ‘1’ lies in yz — plane.

Or ify—1=0= y =1then (x — 0)? + (z — 0)? = (1)? is an equation of circle centered at
(0,0) having radius ‘1’ lies in xz — plane.
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Question: if the nth derivative of # w.r.to ‘s’ is given by #™ = a,,t + b7t + c,b then prove
the reduction formulae a,,; = a', — Kb, , bpy1 = b’y + Ka, — t¢c,;, Cpyq =C'n + Thy

Solution: Since given 7™ = a,t + bpft + cpb eee eov enn. ()

= 7" = appg €+ by + Cpyrb o (A)

Diff (i) w.rto ‘s’ 71 = @', + a,t’ + b'yfi + byfi' + ¢' b + b’

= P = ' 4 ay(K7) + b'pii + by (b — KE) + ¢'3b + cp(—77)
= 71 = (@' — Kbyt + (@K + b’y — T + (Thy + ¢')b . (B)
Comparing (A)and(B) we get

! ! !
Api1 = n — Kby, bpy1 = by + Kap —TCy, Cpy1 =Cpn +7hy

Question: Prove that 7" = K'7i — K2t + Ktb

. s o ar - Sy dr’  d* d = di
Solution: Since 7 = 7(s >7r ===t =7 =—=—=—

( ) ds ds ds? ds() ds
= 7" =Kn

=7 =Ki'+Ki =7"=K@&b-KbO)+K7 =7" =K7—-K*+Krb

Question: Prove that 7% = (K" — K3 — Kt2)7i — 3KK'T + (2K't + T'K)b

Solution: Since 7 = #(s) and = #" =K' — K*(+Ktb
= 7 == (K'fi — K? + Ktb)
= 7Y =K"#+K'#' —2KK't — K*¥' + K'tb + Kt'b + Kb’
= 7% = K"ii + K'(tb — Kt) — 2KK't — K*(K7) + K'tb + Kt'b + Kt(—17)
= 7?7V =K"R+K'tb— K'Kt —2KK't — K37 + K'tb + K©'b — Kt*#
= 7V = (K" —K3—Kt®)A + (K't+ K't + Kt")b — 3K'K{

7V = (K" — K3 — Kt¥)1i — 3KK't + 2K't + TK)b

QUESTION: if x=x () is a unit speed curve whose image lies on a sphere of radius ‘R’ and centre ‘C’
then K # 0 if T # 0 then C =« +p7i + p'ob and p? + (p'0)? = R? where R is constant radius of

sphere.

SOLUTION: Let ReR?3 be a vector in 3D, so we have R =x (s) = C = R.R = (¢ (s) — C).(x (s) = C)
=R =(x(s)=C).(x(s) =) = 0=2(x(s) = C).t= (x(s)=C).T=0
~ R being constant and dif ferentiating

= (x(s)=C).T +(x(s)=C).2=0= (x (s) = C).Ki+L.2=0
= (x ()= O.fi=—7=—p= (x(s)= C).7' + (x (s) = €)\.7i = —p’

= (x(s) = C).(th —K£) + 2R = —p' = 1(x (s) = €).bh — K(x (s) = ).+ 0 = —p'
= 7(x (s) = €).b — K(x (s) — €).E+0 = —p'

!

= 1(x< (s) = €).h— 0 = —p' = (x (s)_c)_zz_"?
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Since E, 7, b is an orthonormal set of three vectors, then every vector in R3 can be expressed as linear

combination of these basis sets, thus we can write R = (< (s) — C) =« £ + b7i + b ... €))
=Ri=(x(s)=C).t=xtt+bit+cht=a= (x(s)=C).F=x=0

Similarly = (« (s) = C).i=b=—p = (x(s)—C).b=c=p'c
(D=R=(x(s)—C)=xt+bA+ch =R =(0)+ (—p)ii+ (p'0)b

= R=(-p)i+ (p'o)b

= p% + (p'0)? = R?* (taking self-product)

QUESTION:

if s; is the arc length of centre of spherical curve of a regular curve «=x (s)eC™;n = 3
having arc length ‘s’ determine the relationship between ‘s’ and 's;’ And also find Serret Frenet
apparatus of the curve.

SOLUTION: Since the equation of center of spherical curve « (s) is given by C =« +p7 + p'ch
where p and o are the radius and torsion of curvature of curve respectively.

= ac _ dc ds, =o' (s) + p'Ai + pit' + p"'ab + p'a’b + p'ob’
ds ds; ds

—>d51_—> 7 - - ”—> ,,—> ’ —
:t1g— +pn+p(rb—Kt)+p ob+p'a'b+po(—1tn)

-

ds " N P RN 1
:tld—;z(pr+p a+p0)b=(5+(/0 U))b e e (D)

= 6.6 2% = (24 (o)) (2+ (o)) bbb =2 = (24 (p'0) ) = ;TS =L+ (p’a)')_l

Now (i) = £, = ;—Ssl(g + (p’a)’) b= (g + (p’cr)’)_1 (g + (p’a)’) b= t;=b

dt, db ds -1

- -1 — ! ! -3 g} -4 ! Y
S T R Y ey PR P
=i, =—1 and K; = (p + o(p'c)’) !
$51=51Xﬁ1=_(l_;xﬁ):51=£

== fn =G ee) 2w o) =5 = () (o)

—.

= (niy = () 2+ 0'o)) =u=[pE+e)]

Where the Serret Frenet apparatus are K; ,T;, Zl , My, by

QUESTION: Prove that the rectifying line is parallel to the vector 7t + Kb

PROOF: Since the equation of rectifying plane is (ﬁ — F).ﬁ =0. ... (i)

(R=#).4' + (=7).7i= 0= (R—7).(th — K{) + L. = 0 = (R = 7). (th — K¥t) ... .... (i£)) from (i)
and (ii) (ﬁ — ) is perpendicular to both 7 and (TB - Kf)

Now 71 X (TB—KE) = [T(ﬁXB)—K(ﬁxf)] = [T(E) —K(—E)] =1+ Kb

= (ﬁ - ?') is parallel to tt + Kb and hence rectifying lines are parallel to the vector Tt + Kb
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QUESTION: Suppose the path traced by the particle is ¥ = ¥(t) then prove that
(i) Acceleration vector lies in the osculating plane.
(ii)Find the tangential and normal component of the acceleration.

. dx dxX ds 5, ds > ds
lution: Since ¥ = X(t n = === =¥ ==t=
Solution: Since (t) and Frimrben " "
5 d?% d (- ds d (> ds\ ds dt ds - d3?s dt,ds
- x”:—:—(t.—)z—(t.—).—z at ds | g 4 dhds
dt? dt dt ds dt/ " dt [ds dt+ dt? ds] dt
S p(B) e tE oz (U kae
- dt acz’ ~ \dt di?

= This shows that acceleration vector is in plane formed by t and 71 which is the osculating plane.

2

. . d?s »
Tangential component of the acceleration = d—tj .t

. ds
normal component of the acceleration = (E) K7

TORSION: the rate of turning of binomial is called the torsion of the curve at the point ‘P’ . it is
denoted by ‘T’ Torsion can also be defined as “the rate of rotation of the osculating plane”
this is also called Second Curvature.

[ S

Torsen $ve Torsion =

e Curvature is always positive but torsion may be positive or negative.
e Torsion is regarded as positive if rotation of binormal as ‘s’ increases is in same sense of
right handed screw.

RADIUS OF TORSION: reciprocal of torsion is called radius of torsion and it is denoted by '8’
1 1, .. . . .
thus § = - and 7 = 5 It is important to note that there is no circle of torsion or centre of

torsion associated with the curve in the same way as circle.

PREPOSITION:  Let #(t) be a regular curve in R® with nowhere vanishing curvature then
1 o) 57 > [17’ 7! _)”’] PR ! R sc!! 7111
rove that T = = [, 7", 7" =~ =F2—=— or T= =
b e lr T = AN

-

PROOF : we know that#' = ¢, 7" =t = Kii and 7" = K'ii + Kii' = K'fi + K(‘L’B — K?)
then [, #",#"] = #.7" x #"" = L. [K#t x (K'T + Ktb — K2D)]

= [, #",7#""] = &.[KK'(A x ) + K2t( x b) — K3(ii x )]

= [#,7",7#"] = £&.[KK'(0) + K?7(£) — K3(=D)] = K27(£.£) + K3(£.b) = K27(1) + K3(0)

=1 2 I

= [#,7",7#"] = K2t === [F 7] e (D)

Now since 7 is a unit speed curve so 7’ L 7" = ||#' x 7"'||? = ||#'||?|I7"||?Sin?90° = 1.K?. 1

—’I —’II 2117

SN2 2 . _ Xr
= ||#' x#"||* = K? then (i) > T = —”ﬂ =TTE
5y oy N _) P!t p1
We may replace 7. 7" x 7' with #’ x 7#"".#"" thus also 7 = T
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EXAMPLE: Find torsion of the circular helix 7(8) = (aCos8 ,aSin8, b8) also show that circular
helix is just a circle in xy — plane. Or if b = 0 then T = 0 then the curve will be straight plane.

Given 7(0) = (aCos0 ,aSin0, b8) = 7'(0) = (—aSinb ,aCos0, b)
= 7"(0) = (—aCosb ,— aSind, 0) = 7""'(8) = (aSind ,—aCosh, 0)

t j k R
= 7' X7 =|—aSind@ aCos® b|= (abSinB)i— (abCosB)j+ (a*Sin?6 + a*Cos?0)k
—aCosf —aSinf 0

= 7' x 7" = (abSin® , abCosO, a?)

= ||#' x 7""||?> = a?b?Sin?0 + a?b?Cos?0 + a* = a?b?(Sin?0 + Cos?0) + a* = a?b? + a*
= ||#' x #"'||? = a?(a® + b?)

Also = 7' x 7. 7" = (abSin® , abCosB, a?).(aSind,—aCos6, 0)

= 7 X ¥".7" = a?bSin?0 + a?bCos?0 + 0 = a?b(Sin?0 + Cos?0) = a?b

7 xi!! a2b

b , , ,
=T = e T aain) (@@ +09) and if b =0 then 7 = 0 then the curve will be straight

plane. Or circular helix is just a circle in xy — plane.

EXAMPLE: Find torsion of the circular helix 7 = (aCos@ , aSin8, afCotp)

Given 7 = (aCos0 ,aSinf, afCotp) this is the curve drawn on the surface of circular cylinder
cutting the generators at the constant angle (.

d_> - 2 . 5 = - . .
= d—: =7" =t = (—aSinf ,aCosH,a CotB)H" But this is the unit vector so that its square its

unity and therefore |f|2 =1= a?(8")? =Sin’p = (8")* = t 4 B = (8")? = cosntant

= 7" = (—aCos8 ,—aSinh,0)(8)> +0 = 7" =t = Kii = —a(CosB ,Sind,0)(8")?

Sin?p
a

Then the PRINCIPAL normal is the unit vector 77 = (Cos8 ,Sin6,0) and K = a(8")? =
= 7" = a(Sin6 ,—Cosb, 0)(8")3
i j k
= 7' X 7" = |—aCos0(6)? —aSin8(8)% 0| = a?(0,0,1)(8")"
aSind(8")® —aCosf(6")° 0

Hence = K2t =7'x7".7" =[#,7",7""] = a3CotB(6")°

6
Sm B

B a3Cotﬁ(9’)6 a Cotﬁ( 22 )

- K2 (stﬁ)

a

=T= iSinﬂCosﬁ’
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QUESTION: Prove that (i) If K = 0 at all the points then curve is a straight line.
(ii) If T = 0 at all the points then curve is a plane.

Solution:
Proof (i) Proof (ii)
Using Serret Frenet formulae £’ = K7 Again Using Serret Frenet formulae

. b' = —17i
Nowif K =0 thent' =0

R Now ifT = 0 thenb’ = 0
= t = cosntant

= unit tangent is cosntant = b = cosntant

i.e. tangent is fixed This is possible only if curve is a plane.

This is possible only if curve is a straight line.

POSSIBLE Q: Prove that if K = 0 at all the points then curve will be straight line. Also show the
behavior of the curve if T =0

PREPOSTION: Let 7 be a regular curve in R3 i.e. curve of class > 3 with nowhere vanishing
curvature then then image of 7 is contained in a plane if and only if 7 = 0 at every point of the
curve.

PROOF: We can assume that 7 is a unit speed curve and 7 = 7(s) where’s’ a parameter. And
suppose first the image of 7 contained in plane V.N = d where N is a fixed vector and VeR3

R
and we can assume that N is a unit vector

—

Now since 7 lies on plane V.N = d therefore#. N =d = #.N +#N' =0

=7 N=0.....(0) ~Nisafixed also = &N =0 .........(ii) = 7' = ¢
()= N+tN =0=¢{N=0=KAiN=0=K#0= A.N=0.......(iii)

equation (ii)and (iii) show that N is perpendicular to both  and i = (E =t X r_i) | N
now since b and N are unit vectors and B(S) is smooth function of ‘s’ we must have
b(s)=+N = bisconstant=b' =0 = —1ii=0= -1 # 0

= 7 = 0 for every point of the curve

CONVERSLY: Using Serret Frenet formulae b' = —1R

Now if 7 = 0 then b’ = 0 = b = cosntant this is possible only if curve is a plane.

» Possible Question: Show that a curve is a plane curve iff all osculating planes have a
common point of intersections.

PREPOSTION: show that the Principal normals at consecutive points do not intersect unless
=0

PROOF: Suppose ‘P” and ‘Q’ are two consecutive points with position vectors 7 and 7 + d7
and unit PRINCIPAL normals be 71 and 71 + di. For intersection of the PRINCIPAL normals the
necessary condition is that the three vectors d7, 7 and d7i be coplanar.i.e. 7', 7 and 1’ be
coplanar

This requires [/, n,71'] = 0 = [f, 7 1h — Kf] =0= T[E, n, B] =0=>1t=0, [f, n, I;] =0
thus the PRINCIPAL normals at consecutive points do not intersect unless 7 = 0

PROF. MUHAMMAD USMAN HAMID (0323-6032785)




QUESTION:  Prove that the necessary and sufficient condition for a curve to be plane is
[?I’FH’ —>Hr] _ 0

PROOF: (NECESSARY CONDITION): If the curveis planethen 7 =10

o 1 - - 1 - - - -
Since we prove that 7 = — [7,7",7"] = = [7,7",7"] =0 =5#0= [7,7",7"] =0

(SUFFICIENT CONDITION):

Given that [#/,7",7""'] = 0 == [9’,?”,?”’] =0 = 7 =0 = Curveis plane.

PREPOSTION: For 7 = 7(s) find the curvature and torsion of its centre of spherical curve.

. . = = =1 d_F _ d‘F(s) _ d?(s) ﬁ =0 1] =1 20 ] .
Solution: Let 7 = 7(s) = 1’ = T o T s .dt =7'(s).s' =71 =7'(s).s" ....... (D)
S ar’ d S d d S
— P! = dz — [ ( ) ] Tfs) 1 /( )__ ris) S / T"(S)S”
=7 = _’”(s)(s’)z + 7'(s)s" ... (iD)

Taking cross product of (i)and (ii) = 7' X 7" = [F#'(s).s'] X [#""(s)(s")? + #'(s)s"]
= 7" X7 =[F'(s) X 7"(5)](s)3 + [F'(s) x 7' (s)]s"'s" = [#'(s) x 7" (s)](s")3+ 0

= 7' X 7" = [F(s) X 7'(s)](s")?3 ... ... (iiD)

0= B e el e

= ”r” :Hs ” = ||7"(s)|l = s~ |17 ()|l = 1 being unit speed curve.

FOR TORTION:

Now since 7 = #(s) = 7' = 7/(s).s" ... () and = 7" = 7"(s)(s")? + 7#'(s)s" ... ..... (ii)
Then= 7" = — & as ( N2 +7"(s)2s's" + —= ar” (S) & +7'(s)s""

dt ds dt

= 7" = 7"(s).(s")3 + 27" (s)s's" + 7" (s)s's" + 7' (s)s""

= 7" = 7#""(5).(s")3 + 37" (s)s's"” + #'(s)s"" ... ... (iii)

Now = 7' x 7' = [#'(s) X 7" ()] (s")?

Then = (7' x #").7" = {[#'(s) x 7" (s)](s)3}L.{#"(s).(s)3 + 37" (s)s's" + 7'(s)s""}

= (T X T'”) T'”’
= {[7'(s) x 7" ()] 7" ()}(s)® + 3{[F'(s) X 7" ()]. 7" (s)}(s")*s"
+{[7'(s) X 7" ()].7'(s)(s")°s""}

= (' x 7). 7" ={[F'(s) x 7"(s)].7"(s)}(sN)e+ 0+ 0
= (@ x7").7" = {[7'(s) x 7" ()]. 7" ()}(s")® Also |7 x #"[|2 = [|I#'(s) x 7" (s)II*(s")°

(T-ZIX,FII) 2117 _ {[ (S)XT”(S)] —)I”(S)}(S,) {[ (S)XT”(S)] *III(S)}

177 %712 177 ()7 ()12 (s")® 17" (s)x7"" ()12

Then =
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QUESTION: if tangent and binormal at a point of curve make angle ‘6’ and ‘¢’ respectively

. . . . Sin6do K
with the fixed direction then show that _m = ——
Sinpdg@ T
Solution:
i ws . <
< _
oY * >
s =

Let C be a given curve with a point ‘P’ on it and ‘a’ is any unit vector along the fixed direction
making angles ‘0’ and ‘@’ with tangent and binormal respectively. Then

t.d= |f| |d| Cos® = Cos8 Similarly
= t.d = CosH b.d = |b|.d| Cosp = Cose
Differentiate with respect to ‘s’ = b.d = Cos@
={.d+0=— Smeg Differentiate with respect to ‘s’
- - de . ﬁ B’ ~ + 0 —_— S d_(p
= Kn.a=—Sinb— ... (i) a = —olnP g
- o . do i
= —m.a = —Sinpg—  .......... (ii)
ds
Dividing eq (i by (i) X7 — 250 _, K _ sinoao
g€q y —tid - Sin(pd_q’ T Singde

Question: For any curve 7 = (4aC053u, 4aSin3u, 3cCos2u) prove that 7 = (Sinu, Cosu, 0)
and K = 2

6(aZ2+c2)Sin2u

Solution: Since 7 = (4aCos3u, 4aSin3u, 3cCos2u)

= P =t= Z—f = Z—i.i—: = (—12aCos?u Sinu, 12aSin*u Cosu, —6¢Sin2u)u’
= f = (—12aCos?u Sinu, 12aSin?u Cosu, —6cSin2u)u’

= t= (—6aCosu Sin2u, 12aSin?u Cosu, —6c¢Sin2u)u’

= f = 6Sin2u(—aCosu, aSinu, —c)u’  .coovvecvrrrrr. (i)

= | E| = |6Sin2u(—aCosu, aSinu, —c)u'|

= 1 =./(6Sin2u)?[(—aCosu)? + (aSinu)? + (—c)?](u')?

= 1= (6Sin2u)\/[a2Coszu + a?Sin%u + c?]. (u")

= 1= (6Sin2u)+/[a%(Cos?u + Sin?u) + c2]. (")

1
1= 2w STz +c2l. () = u=—
: (6Sinzu)y[a® + c*]. () v (6Sin2u)v a+c?

1 = 2= (—aCosu,aSinu,—c)
" (6Sin2u)VaZ+c? Va?+c?

(i) = t = 6Sin2u(—aCosu, aSinu, —c)

. . > dt dt du (aSinu,aCosu,0) ,
Differentiatew.rto’'s!s = t' =—=—. — = ———
ds du ds vaZ+c?
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(aSinu,aCosu,0) 1

= Kn= Va2+c? " (6Sin2u)Va? +c?
— _ (aSinu,aCosu,0) a . ..
= Kn= (s aieed) — (esman@iieD)” (Sinu, Cosu, 0) ............. (ii)
-1 a .
= |Kn| = —(6Sin2u)(a2+cz).(51nu, Cosu, 0)|
= Ikl = [ . [(Sim0)? + (Cosw)?]
ni= (6sin2u)(a?+c2)| ° tnu osu

a a a

2
= K7l =J el = el = 'K':[<6Sinzu>(a2+c2>

= Kn = K.(Sinu,Cosu,0) = n = (Sinu, Cosu,0) Hence proved

Question: Prove that the position vector of the current point on a curve satisfied the
. . . d d azr 8 d7 p d?7#
differential equation E{(S = (p E)} +— (; E) t5oez =
Solution:

s = (50 )+
=%{5%(pl<ﬁ)}+%(gf) +§Kﬁ

=% {5 (pKn)} £ — (6Kt) + ptK#

L5 L))+ 2 (ok7) + i

= S {8(th — Kt)} + 6'KE + SK'E + Kt + 1l = +-{8th — 8Kt} + 6'KE + 6K'T + 8Kt + i
1

= 2 (b — 6Kt} + 8'KE + 6K'T + 6Kt + it =1 &~-=K
ds o) p

=Db' —8'KL—6K't—6Kt' + 8'KE+ 6K't + 6Kt' + i = —thi+ i = 0 = R H.S
PARAMETER OTHER THAN ‘s’: these are as follows;

2! ->II| [-’I =17 -’III] [ I->II II->I]

K=" TP TR ¢ T TRE?
- _ F’XF” [?IX?II ﬁIII:I (?,,)2_(5,,)2
_rxr_ rxr v ] 2
b= K2[7]8 e
PROVE THAT k= and b=
|s’|3 K(s")3
Sinc 7(u) and = P =TT B B, (i)
du ds du dt
L, d¥od o dat , .ds' dt ds\ , . [(ds' ds
= ) =|l—.s +t.—|=|—.— _
du2 du d d ds du ds du

. dt ds S .
= r I Tu s'+ts" =t.s".s"+t.s" =Ki(s"N? +t.s"

= 7' =Ki(s)2+Es" s (ii)
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-

_ . dt L ds"
= 7" =K'1(s")* + Kn'(s")* + Kii2s's" + —.s" + t.—

du du
20 22 d_ﬁ E) N2 =l (d_E ﬁ) o, 7 dsv
= 7" =K'n(s") +K(ds.du (s")*+ Kn2s's" + o) S Ht—

= 7" =K'7(s")? + Kii's'(s)? + 2K7is's" + t's's” + ts""

= 7" =K'1(s")?* + K(TB — Kt)(s")® + 2K7s's" + K7is's" + ts""

= 7" = K'fi(s)? + Ktb(s")? — K28(s")3 + 2K7ns's” + Kns's" + s

= 7" = K'#i(s")? + Ktb(s")? — K2£(s")% + 3Kiis's" + 5" v, (iii)

From (i) and (ii) we have

X7 =15 X (Ki(s)?+Ls")=K(s)3(ExA)+s's"(Ext) = K(s’)3(l;) + s's"'(0)
= 7 x 7" = K(s")3(b) = |#' x #"| = |[K(s)3(b)| = |K(s")?||b] = K|s'[3. 1

|ﬂr aul = =12l

7' <7
n —3 = —
Is"|3 and b K(s")3

REMARK:

e Arcrate to turning of tangent is called curvature.
e Arc rate to turning of binormal is called tortion.
e Arc rate to turning of Principal normal is called screw curvature.

¥ [?IX?III?III] F & [?,X?”.?’”]

PROVE THAT = e =

Since = 7' x 7' = K(s")3(b)

= 7 x 7. 7" = K(s")3(b). {K'7i(s")* + Ktb(s")? — K?E(s")? + 3Kiis's" + £s""}

= 7' x 7. 7" = KK'(s")5(b.7) + K*7(s")°(b.b) — KK?(s")(b.T) + 3K2(s")*s" (b.7) +
K(s)3s" (b.%)

— F’ % F”.F’” — KK'(S’)S(O) + KZT(S’)6(1) _ KKZ(SI)6(O) + 3K2(S,)4S”(0) +
K(s")3s"'(0)

— X PR = K27(s') = T = [*Kf(;] = [7';; {6] f P =ts = | =8 0s' =8
PROVE THAT n= —[si(;jf]
PROOF
Since #' =t and 7" =Kn(s)?+t.s"
= s"? = s”(f.s’) =£5'S" (i)
s'P =s'(Kni(s)? +L.s") = KA(s )]+ £.5's" e (ii)

1211

Subtracting equation (i) from (i) = s'7#" —s"# = Kn(s")3 + t.s's" —ts's" = K#i(s")?3

[S’F”—S”F’]

=l STl

K(s")3
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(7//)2_(511)2
PROVE THAT K?2=+-.1_~ "~

(s")*

PROOF: Since 7' = #'(s")? + t.5"

= ()2 =777 = (F(s)? + E.s"). (B (s)? + E.s”

= (F")? = 0.0 (D + T 8" + 165" (s)? +LE(s")?

= (7")2 = Ki.K7i(s)* + KA. £(s")2s" + KA. t.s" (s)? + (1).(s")?
= (#")? = K*R.7(s)* + K7 T(s")%s” + K#i. £.5"(s")? + (1). (s")?
= (7?2 = K2(1)(s)* + K. E(s)%s" + Kii.E.5" ()% + (1). (s")?
— (7')? = K2(s")* + (s"")? Wt =0
= (7")2 = (s")? = K2(s")*

=12 _ (2 —1nZ_rn? N >
2=M$KZ=M P =ts = =|tIs'| =5

—3
Kk (s")* (17 D*

Question: forthe curve x = a(3u —u3),y = 3au?,z = a(B3u + u®) provethat K =1

Solution:

. _ |?’XF”| N |r->l><r-:lll B [F’XF”.F”’] L F’XF”.F”’]
Since K = EIERERNTIE and = ToeE . — R
Now 7 = a(3u — u?),3au?,a(Bu + u?)
= 1’ = (3a — 3au?),6au, (3a — 3au?) ... (i)

= |7| =/ (3a — 3au?)?, +(6au)? + (3a — 3au?)?

= || = V9aZ + 9a%u* — 18a2u? + 36a%u? + 9a? + 9aZu* + 18a%u?

= [r7| = V18a? + 18a2u* + 36a2u? = \/18(a? + a?u* + 2au?)

= |r’| = J/18(a + au?)? = 3aV2(1 + u?)

—

()= 7 = —6au, 6a,6au and " = —6a,0,6a

7' x 7" = [(3a — 3au?), 6au, (3a — 3au?)] X [—6au, 6a, 6au]

~

i j k
X7 =1a(3-3u?) 6au a(3-3u?)
—6au 6a 6au

= 7' x 7" = (36a’u® — 6a%(3 + 3u?))i — (6a*u(3 — 3u?) + 6a’u(3 + 3u?))j
+ (6a%(3 — 3u?) + 6a%u?)k

x 7" = (36a*u? — 18a? — 18a*u?)i — (18a%u — 18a?u? + 18a%u + 18a?u?)j
+ (18a? — 18a?u? + 36au?)k

x 7" = (36a%u? — 18a? — 18a?u?)i — (36a%u)j + (18a? — 18a?u? + 36au?)k
= 7' x 7" = 18a?[(2u? — 1 —u®)i — Quw)j + (1 — u? + 2u?)k|

= 7' X 7" = 18a?[(u? — Di+ Qu)j + (1 + ud)k]
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= |7 x 7| =/ (18a2)2[(u? — 1)2 + (2u)? + (1 + u?)?]

= |7 x 7| = 18a?yu* — 2u? + 1 + 4u? + 1 + u* + 2u? = 18a%/2u* + 4u? + 2

= |#' x 7| = 18a%V2Ju* + 2u? + 1 = 18a2V2/(u? + 1)? = 18a%V2(u? + 1)

Now K = i j(r |
[77]3
=K = 18a2V2(u?+1) _ _18a*V2(uP+1) L, (A)

B |3a1\/§(1+uz)|3 T 27.a3.242.(1+u2)3  3a(1+u?)?

Now for T we have

=y

T PR = 18a2[(u2 —_ 1)2\ + (ZU)j + (1 + uZ)E] [—661, 0, 661]

= 7' x7#".#" = 18a*[—6au? + 6a + 0 + 6a + 6au?] = 18a?[12a] = 21643

Now T = [#/x#" 7] 21643 _ 216a3
K2|F,|6 [ 1 2]2(33\/5(14-”2))6 ﬁ[36.8.a6\/§(1+u2)6
3a(1+u2) 9a?(1+u?)
4
216a%.9a?(1+u?) 27 33 1
= T = = = =

[36.8.a6vV2(1+u2)6  [3%a(1+u2)?  [3%a(1+u?)?  3a(1+u?)?

4
216a%.9a?(1+u?) 27 33 1 1
= T = = = =— - T =
[36.8.a6vV2(1+u2)6  [3%a(1+u2)?  [3%a(1+u?)?2  3a(1+u?)? 3a(1+u?)?

From (A) and (B) K=<

NOTE: when two planes intersected then we get a line as a result of intersection and when
three planes intersect then we get a point as a result of intersection. When two surfaces
intersect each other we get a curve.

Question: for the curve x = a(u — Sinu),y = a(1 — Cosu),z = bu find K&t

Solution:
. _ |‘F,X‘F”| i |flelll | [‘F’X‘F”.‘F’”] | [F’XF”.F”’]
Since K = FIERNTIE and = Tee C e
Now 7 = a(u — Sinu),a(1 — Cosu),bu = r' = a(1 — Cosu),aSinu,b ... (i)

= |r’| = V[a(1 = Cosw)]2, +(aSinu)? + (b)?

= |7| =+ a? + a2Cos?u — 2a2Cosu + a?Sin?u + b2

= |7| =+a? + a? — 2a2Cosu + b? = V2a% — 2a%Cosu + b% = ,/2a%(1 — Cosu) + b2

(i) = r"” = aSinu,aCosu,0 and r'’ = aCosu,—aSinu,0

ndd

= 7' X 7" = [a(1 — Cosu), aSinu, b] X [aSinu, aCosu, 0]

~

i ik X
= 7' X7" = |q(1 = Cosw) aSinu b|= (—abCosu)i — (—abSinu)j + (a®Cosu — a*)k
aSinu aCosu 0

= |#' x #"'| = /(—abCosu)? + (—abSinu)? + (a%Cosu — a?)?

= |#' x #"'| = \/a?bh2Cos?u + a?b2Sin*u + a*(Cosu — 1)2

= |#' x #'| = \/a?b? + a*(Cosu — 1)2 = a\/b? + a?(Cosu — 1)2
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7 x#!! ayb?2+a?(Cosu—1)2
Now K =71 — g = ¢ il
1771 |,/2a2(1—Cosu)+b2‘
Now for T we have
7' x 7. 7" = [(—abCosu)i — (—abSinu)j + (a*Cosu — a®)k]|. [aCosu, —aSinu, 0]
= 7' x7". 7" = —a’bCos?*u — a’bSin*u+ 0 = —a®b
Now 7 = X7 _ —a?b

21216 2+a2 12 6
K2|7| [ax/b +a2(Cosu-1) ]2(\/2a2(1—Cosu)+b2)

3
| /Zaz(l—Cosu)+b2
6
—a?b [,/Zaz(l—Cosu)+b2]

a2(b2+a2(Cosu-1)2) " [2a2(1-Cosu)+b?]3

= T =

_ -b [2a2(1—Cosu)+b2]3 — = -b
" (b2+a2(Cosu—1)2) " [2a2(1-Cosu)+b2]3

= T =
(b2+a?(Cosu—1)2)

Question: for a point of the curve of intersection of the surfaces x? — y? = ¢2,y = xTanh%

2x2 1 1
prove that p =6 = — whereS—; &p= P

Solution:

Since x2 — y% = ¢? = x? — y? = ¢?(Cosh?0 — Sinh?0) = (c?Cosh?8 — c?Sinh?0)
= x2? — y? = (c?>Cosh?0 — c2Sinh?0)

= x? = ¢2Cosh?0, y% = ¢?Sinh?0 = x = cCosh® ..... (i), y = ¢Sinh0 ........(ii)
From (i) and (ii) % = Tanh©

But we are given that % = Tanh% = Tanh0 = Tanh% =0 = % =z =0

So 7= (x,y,z) = (cCosh®, cSinh0 ,c0) = 7" = (cSinh8, cCoshB , ¢)

= |#'| = \/(cSinh8)2 + (cCoshB)? + c2 = /c2(Sinh26 + Cosh26 + 1)

= |#'| = ¢y/(Cosh?0 + Cosh?0) = c\/ZCoshze = /2cCosh®
Now as = #' = (cSinh8, cCosh0 , ¢)

= 7"" = (cCosh®, cSinh6,0) = #""" = (cSinh®, cCoshB ,0)

i j k
Now 7' X7" =? =7 X7" =|cSinh® cCosh® ¢
cCosh® ¢Sinh® O

= 7' X 7" = (—=c?Sinh0)i — (—c?CoshB)j + (c?Sinh?6 — c?Cosh?0)k

= 7' X #"" = (—=c?Sinh0)i + (c?Cosh)j + c?(—1)k = (—c?Sinh0)i + (c2CoshB)j — c?k

= |#' x #"'| = \/(=c2SinhB)?2 + (c2CoshB)? + (—c?)2 = Vc*Sinh20 + c*Cosh?6 + c*

= |#' x 7| = ¢%/Sinh26 + Cosh?0 + 1 = c2,/Cosh?6 + Cosh?8 = c%y/2Cosh?0

= |#' x 7"'| = ¢2V/2Cosh®
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= 7' x 7.7 = [(—c?Sinh8)i + (c2Cosh8)j — c?k]. (cSinhB)i + (cCosh®)j + 0k

= 7' X 7. 7" = —c3Sinh?8 + ¢3Cosh?6 + 0
7 x7!! c2y/2Cosh® c(cv2Cosh® c c
NowK=|%,3| =K = 3=( 3)= 7 == >
17’1 (V2cCosh8) (V2cCosh@) (V2cCosh®) 2c%Cosh?6
c 1 2x2
=>K=§=— = p=— (iii)
p c
Also 7 = [#'x#" #"""] _ —c3Sinh?0+c3Cosh?0 _ c(—c?Sinh?0+c2Cosh?6) c(x?-y?)
K2[7'[6 K2[7'[6 K2|7'[6 55)2(V2cCosho)”
c(c? c3.4x* c 1 2x2
= T=— (<) =S——=-——== =0=— .. (iv)
C—4.2C6COSh66 c=.8x 2x ) c
ax
2x?2

From (iii) and (iv) p=06=—
REMARK:

A curve is defined uniquely by its curvature and torsion as functions of natural parameters. i.e.
K =K(s) and t = 1(s)

NATURAL REPRESENTATION OR INTRINSIC EQUATIONS:

The equations K = K(s) and t = t(s) which give the curvature and torsion of the curve as
functions of natural parameter ‘s’ are called the natural or intrinsic equations of a curve, for
they completely define the curve.

QUESTION: Find the natural representation or intrinsic equation of the curve

x = e{aCoste, + aSinte, + beg} ; —0 <t <

Solution: Given x = et{aCoste; + aSinte, + be3} ; —0 <t <

= x = e{a(Cost — Sint)e, + a(Sint + Cost)e, + bes}

= i = e{a(Cost — Sint — Sint — Cost)e; + a(Sint + Cost + Cost — Sint)e, + be3}
= ¥ = e'{—2a(Sint)e; + 2a(Cost)e, + bes}

= X = e'{—2a(Sint + Cost)e; + 2a(Cost — Sint)e, + bes}

= x X ¥ = e?{ab(Sint — Cost)e, — ab(Cost + Sint)e, + 2a’e;}

= |x| = etV2a? + b2 and = |x x ¥| = V2ae?V2a? + b?

Using above values find K (s), 7(s), £(s), 7i(s), B(s)
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Question: Prove that the curve x = aSin®u, y = aSinuCosu, z = aCosu lies on a sphere

and also verify that all the normal planes pass through origin.

Solution: Let x = aSin®u, y = aSinuCosu, z = aCosu

= x? + y? + z? = (aSin*u)? + (aSinuCosu)? + (aCosu)?

= x% + y% + z? = a®Sin*u + a?Sin*uCos?u + a*Cos?u

= x? + y? + z? = a?Sin*u(Sin*u + Cos*u) + a?Cos?*u = a*Sin*u + a*Cos?u
= x% +y? + 2% = a?(Sin*u + Cos?*u) = x*+y?* +z* = a?

Which is the equation of sphere with centre at origin and radius ‘a’

Now equation of normal planeis (R —#).t=0 = R.t-7.t=0

Now if the plane pass through origin then R=0 =#{=0

Thus all the normal planes will pass through origin if 7. t=0

Now 7 = aSin?u, aSinuCosu, aCosu

., ,, drf dr du , ., , )
t=7r"=—=—.— = (2aSinuCosu, — aSin“u, —aSinu)u
ds du ds
= At = (aSin*u, aSinuCosu, aCosu).[(2aSinuCosu, — aSin*u, — aSinu)u']
= 7.t = (2a%SinuCosu — a?SinuCosu + a?Cos3uSinu — a®SinuCosu) . u'’
= 7.t = (a®SinuCosu + a?Cos3uSinu — a®SinuCosu) .u'’
= 7.t = [a®SinuCosu(Sin*u + Cos?*u) — a®SinuCosu] .u’
= 7.t = [a®SinuCosu — a®SinuCosu] .u' = [0] .u' =0 =7At=0

Thus all the normal planes will pass through origin

Question: for any binormal unit vector b find b" and b""’

i

. . 4 — e dab — — - — - -
Solution: Since b’ = —tn = b'' = - = —tn—tm' = b =—-—1'n- T(Tb — Kt)
— b’ = —1'7 — b + TKE

nro__ db” _ n= 1221 2% 270 7 (4 2!
=b —d———‘r n—tn —2tt’b—1t°b' + 'Kt + TK't + Kt

s
= b =—1"% - T’(TB — Kt) - 2t7'b — 12(—1#) + UKL 4+ TK'T + tK (K7)
— b = —1t"f—10'h + T'KL — 217'h + 137 + 'Kt + tK't + tK?7

= b" = {@'K + 17K + 1K) + (—t" + 1% + tK*)i — 17'b — 217'b

= b" = tQ2T'K +tK') + (—7" + T3 + TK?)7i — 31T’
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- - -
Question: for any curvature evaluate b"’. b’ where b is the binormal unit vector.

Solution: Since b’ = —77i and b’ = —7'R — t2b + TK%
= b".b = (-’ - 2b + TKt). (—17)

= b".b' =1t (.7) + 13(5. ) — 2K (£.7)

_)II_)I !
= b".b' =11

MOMENTS:

if a vector d is localized in a line through the point P whose position vector is 7 relative to

origin O then the moment of d about Ois# x d. Itis ascalar quantity. Moment of a vector
about a point is a vector, called , Moment vector.

7.bata point
b

o

Let 7 = 7(s) be a regular curve of class > 3 with £, 73, b then the moments of

X

on 7(s) about the origin are definedasm; =¥ Xt , m, =# X7 ,mz =7

QUESTION: if m;, m,, ms are the moments about the origin of unit vectors £, 7, b localized in
the tangent , normal and binormal and dashes denote differentiation w.r.to ‘s’ then show that

m;=Km,, m)=b—Kmy +tmz , m;=—n—1m,

Proof:

if 7 is a current point then by definition of moment of forces about a point

m1=?Xt, m2=FXﬁ ,m3=FXb

then differentiating above w.rto‘'s = m}, =7 Xt +7# x t' =t x t + 7 X (K1)
=m; =0+ K(F xXn) = mj =Km,

also

=my=7 XA +7Fxi =txA+7x(th—Kt)=b+1(Fxb)—K(F x{)

= m;=b—Km; +1tm4

Similarly
= mi =7 Xb+7Xb =txXb+7X(—1tit) = -1 — 1(F X 1)
= m;=—n—1m,
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THEOREM: if plane of curvature at every point of the curve passes through the fixed point
then prove that curve is plane.

Proof:

Let R be the position vector of the current point lying in the osculating plane (plane of
curvature) and 7 be the position vector of the point ‘P’ on the curve, then the equation of
osculating plane is

-

[R-7tA]=0=R—-7.ixii=0= (R=7).b=0 .ccrerrr (0

Let 1_3)1 be the fixed point then 1_3)1 must satisfy the equation (i) since plane of curvature is
passing through fixed point.

Diff. w.r.to ‘s’ = (—;——;)I; + (ﬁl —T)= 0

= (0-%).b+ (R, —7).(-ti) =0 =t.b+ (R, —7).(ti) =0
= (R, —7)i=0 (R —7).i=0

If T = 0 then curve is plane.

Now we prove that (ﬁl —7).7#0

let (R, —7).i=0 = (R, —#)is Lton and alsofrom (i) (R, —#)is L tob

= (ﬁl —#) is parallel to t
So = (R, —7)=Af = Ry =7+ At whichis the equation of the tangent.
= tangent is fixed . since R is fixed = curve is straight line. Which is not possible.

Hence (ﬁl —7#).1#0 = T=0 and curveis plane.

SKEW CURVATURE: the arc rate of rotation of normal is called skew curvature. i.e.
an N

i > d_) — . - . .
= n = (rb — Kt) = |d—: = |n'| = V12 + K? and this term |n’| is called centre of circle of

curvature.

Question: If 7" = (tb — K¢) then find 7" and 1"

. . — 7 rd — d_)’ ' i i 2
Solution: Since 1’ = (‘L’b — Kt) =n'= d—t =t'b+1tbh' — K't — Kt

= 7" = t'b + t(~17) — K't — K(K7) =" =1'b -1’3 — K't — K*7
=7 =(—1*— KA +1b—K't

dﬁ”

=" = = (=217’ — 2KKDA + (-12 = K)#' +t"b+1'b' —= K"t — K'?
=" = =211’ — 2KK'i + (—12 — Kz)(rg — K©) + 7"b + 7' (—17) — K"t — K'(K7)
= A" = —2t7'R — 2KK'R — 13b + K12t — K?th + K3t + t"b —tt'A — K"t — KK'RA

= 7" = (Kt + K3 — K")t + (=377’ — 3KK)7i + (" — 13 — K®©T)b
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SOME USEFUL RESULTS

For 7 = 7(s) =7 =t = 7' =Kii = 7" =K'7%—K*+Kreb

= 7= (K" - K® — Kt?)ii — 3KK'E + ((2K'7 + T'K))b

Then
o PP =LKAi=K(A)=0=7.7" =0
o P.FW=¢[(K"—K3—Kt¥)A-3KK't+ ((2K't +TK))b| = —3KK' -~ ti=1
o PP =1L[K'ii—K*+Kih|=—K?* ~tt=1

o PP =Kil|K'ii—K*+Ktb| =KK' ~#Aii=1

o PFW =Kl [(K"— K3 - Kt?)ii — 3KK't + (2K't + T'K))b] = K(K" — K3 — K1?)
o P".7W =[K'H — Kt +Ktb|.[(K" — K3 — Kt)#i — 3KK't + ((2K't + T'K))b]

o .7 =[K'fi — K*t +Ktb).[(K" — K® — Kt?)i — 3KK't + ((2K't + T'K))b]
PP = K'K" — K'K3 — KK't? + 3K3K' + 2KK'12 + K?K't' + K217’

° =

CIRCLE OF CURVATURE: the circle of curvature at ‘P’ is the circle passing through three
consecutive points on the curve ultimately coincident at ‘P’ then centre ‘C’ of such circle is
called Centre of Curvature. And its radius is called Radius of Curvature. And it is denoted by 'p’
the circle of curvature lies in osculating plane at ‘P’ and its curvature is same as that of
curvature at ‘P’ so it has two consecutive tangents PQ and PR

ALTERNATIVELY:
c_ TE >
< P
F £
«<D

the centre of curvature of a point ‘P’ is the point of intersection of Principal Normal at ‘P’ or
with a Principal Normal and a Principal Normal at a consecutive point P” which lies in the
osculating plane.

EQUATION OF CENTRE OF CURVATURE:

let C be the position vector of centre of curvature from the origin and 7 be the position vector

of point ‘P’ then where 'p’ is the radius of curvature and its direction is always
along the normal at ‘P’
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THEOREM: the tangent to its locus is parallel to tangent to the curve. Prove that it lies on
normal plane.

PROOF:

SinceC=7+pii ===7"+p'R+pi =>Z—§=t+p’ﬁ+p(rE—KE)

:Z—:=E+p’ﬁ+p15—pl(f =>%=E+p’ﬁ+prl_))—f ap=

dc - > : .
=== p'n+ ptb = tangent to its locus lies on normal plane.

THEOREM: if the radius of curvature is constant for the given curve C then prove that the
tangent to its locus of the centre of curvature is parallel to the binormal at point ‘P’ to C.

PROOF: Since C = 7 + p# :2—5:7’)+p’ﬁ+pﬁ’ =>d—_t+pn+p(rb K?)
9 _ 24 R+ orh — oK A _ 2. =t il -1 L=l
=>ds—t+pn+ptb pKt =>ds_t+pn+p1'b t “p =g
%zprg . p = constant then p' = 0

dc ds; _ ds;— P dsy—~ _ 7 .
dsl'ds_dstl pth =>dst1—prb ................ (i)

- (25 (25) =m0

= (&) @& =026 = () =60  O=&=5

Which show that the tangent to locus of the centre of curvature is parallel to the binormal at
point ‘P’ to C.

THEOREM: If the radius of curvature is constant for the given curve C then prove that the
curvature of locus C; is same as the curvature of given curvei.e. K; = K .

PROOF: Since C =7 + pii = === (F + ﬁ).ﬁ=(7"+p’ﬁ+pﬁ’ 45
1
:>t1—[t+pn+p(rb Kt) ﬁ =>t1—[t+pn+ptb pKt]
S1
— - = —>_—> E . _i
=t =[t+pn+ptb t].ds1 “p=z
=>t_1)=[prl_5].;Ts . p = constant then p’' = 0
1
— 2. ds
= [&1] = |[orbl. 5
ds — > ds 1
=>1—[pr].d—s1 K |t1|—|b|—1 zd—&_;
Nowsince t; = b = 21 ( )— =t =b.— = Kn; = —thh.—
das, ds pT pT
:>1<1n—’1=—% =Ky =—Ki 2p=— = Ky=K andn; =
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THEOREM: If the radius of curvature is constant for the given curve C then prove that the
torsion of locus of centre of curvature varies inversely as the torsion of the given curve i.e.

PROOF: Sincef, =bh = <2 il i(I;).E =1t = b= = Kin] = —tn.—

das, ds das, pT pT
ﬁ — 1 — —
=>K1n_1’=—; = K\n; = —Kn wp=- =Ky=Kandn =-n
- — - db; d ;> ds —, 5, 1
Then t; Xny=bx -1 =b =t =>—=—(t)— = b, =t.—
€ tl 1 n 1 dsq ds(t dsq 1 pT
— 501 — o o1 21 1 5.
=>—T1n1=Kn.; =>—rln1=Kn.K; =1 =-K - ST X ~ K“is constant

QUESTION: if S; is the arc length of the locus of centre of curvature then show that

dsi _ 1 N2 — BZ ’
& =@ KT E) = () + 6

i d? —

SOLUTION: Since t = = b bethe tangent, normal and binormal to the given curve C.

Similarly t; = = n4, by are the tangent, normal and binormal to the curve formed by the
dSl

locus of centre of curvature.

. 2 5 - ac _d ., o ds = o ~\ ds
SinceC =71+ pn :dsl—ds(r+pn).dsl—(r +,on+,on).ds1

=1t = [E+p’ﬁ+p(TB—KE)].:TS
1

=>t1—[t+pn+prb pKt]ds1 =1 [t+pn+prb—t]Tl-'-p=%

=1t = [pn+pr] = |t;| = [[p’ b]l ds,

2
(p)2+(pf)271=>1—1/(p)2 % Ssl= ()2 + (&
1 , 1 mg % ds; 1 0\%, (1.)?
v =t == = [T ()

dsq (K12 T2 dsq 1 \/ﬁ
- — = —_ = —=—=—./K K 2
ds K* + K2 ds K2 L ( )

QUESTION: Prove that for any curve C [t tt %"'] =[#",7",#"Y] = K3(Kt' — K't) = K> — d (K)

~+y
=
Il
o~
Il
=
S|

SOLUTION: Since For 7 = 7(s) =7 =
= " =" = K'ii — K*t + Ktb
= PV =f" = (K" —K?—Kt*)7i — 3KK't + (2K't + T'K)b
0 K 0
Then [t // ///] _ [FII,FIII’FI‘U] — _Kz K, Kt
—3KK' K" —-K3-Kt? 2K't+7K
= [EI’ E//, E///] — [FII’FIII’?IU] =0+ K[_3K2K/T + KZ(ZK,T + T,K)] +0
= [¢,t",t"] = [?",#", 7] = =3K3K't + 2K3K't + TK* = K3[Kt' — K'7]

st sy o KS|Kkt'-K'T d (T
— [EI, EII, i_’lu] — [rll’rlll',rlv] — [ = ] — KSE(E)
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QUESTION: Prove that for any curve C, [E', b, B”'] =73(K't —K7') = TS; (I:)

SOLUTION: Since b’ = —ti = b"' = —1'7i — t2b + 1K{
= b" = tQ1'K + 1K") + (=" + 3 + 1K) — 317'b
0 —T 0

Then [E’, b, 5’”] = K -7/ —12
2T'K + 1K' —t" + 13+ 1tK? =317

U

[6',b",b""] = 0 — 1[-372KT’ + 2K1't% + K't3] + 0

U

[6',b",b""] = t3[-3Kt' + 2Kt + K't] = 13[-Kt' + K'1]

= [5,5", 5] = T s 4 (K)

72 ds \t

QUESTION: show that the shortest distance between the Principal normals at consecutive
pds

Jorio

points distance is

SOLUTION: let P(#) and Q(# + d7) be two consecutive points and 7 and 71 + d7 are unit
principal normal at P and Q respectively. We have to find the shortest distance between 7 and
1 + dn and this the perpendicular distance.

The perpendicular vector to both 7 and 71 + d7 is 7 X (1 + d7) then

—

dn . 1
ﬁx(ﬁ+dﬁ)=ﬁxﬁ+ﬁxdﬁ=0+?1><Eds=ﬁ><ﬁ”ds=ﬁ><(rb—l(t)ds

— i x (i + di) = [e(7i x B) — K(7i x )] ds = [¢(Z) — K(=B)] ds = [+ + KB] ds
This is perpendicular vector to both 71 and 71 + d7

Now we will find its unit vector.

Let & be its unit vector in the direction of 7 X (i1 + dn) or 7 X dnl

t+Kb t+Kb . . . - - -
E;rl(z]ds = E/Ter] This is unit vector perpendicular vector to both n and n + dn

é_

Now the shortest distance between the two principal normals at P and Q is given by

. I S A A go Kb Kb] a7
Shortest distance = projection of dr upon é = é.dr = [et+kb] Ldr = [re+kb] ] .

VT24K?2 Vt24K?2
shortest disance = E/T% ]ds = [\/2-1-—1(] ds ~tt=1landt.b=
o SD=|—ts |45 —s.p=—LE_

' - 2 2 / 2152
(Ms) +(Mp) *
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QUESTION: show that the shortest distance between the Principal normals at consecutive
points distance divides the radius of curvature in the ratio p?: §2

SOLUTION:

—

let the shortest distance line meet the unit principal 7 at ‘P’ 71 + d7i at ‘Q’ then the vectors
QP, , QQ, , P,Q, are Coplanar then [QP, , QQ, , P,Q,| =0

: H p’ CP, 2 2
As Cis the circle of curvature at ‘P’ then we have to prove that ﬁ = % = % = p?: 62
o
is a vector parallel to 71 + d7 and P is a vector parallel to the vector which is
o p 0Xo0 p

perpendicular to the both 7 and 71 + d7. Let 7, be the position vector of the point P, then
QP =75 — (7 +d7)

So[QF, , QQy , P,Q,| =0 = [r5— (F+dP) , i+dRi, [tf+Kb|ds]| =0 ... (i)
Now equation of principal normal is R = 7 + u, 7

Since P, (7,) is lying on normal 7 So it must satisfied equation of normal 7, = 7 + u,n
Hence (i) = [ + poi —# — d* , i +dfi , [¢f+ Kb] ds| = 0
= [,uoﬁ—%ds ) ?L+Z—:ds , [f+ KB] ds] =0

= [yoﬁ—fds , 1+ [TE—KE]dS , [TE+KI;] ds] =0

—ds u, 0
= |-Kds 1 1ds|=0 = —ds(Kds) —u,[—(Kds)? — (zds)?]+0=0
Tds 0 Kds

= —Kds? + u,[K?ds? + t2ds?] = 0 = [-K + u,K? + u,7%]ds?> =0
= ds? # 0= [~K + K2 + 172] = 0= pp = - — = |R,P|

k
T2+K?2

Now Since |CP| = |CP,| + |P,P| = |CP,| = |CP| — |P,P| = p

ko 72
T2+K?2 K(t2+K?2)

1
= |CPO| :;—

gz
Now ICPo| _ k(:2+k?) _ x _ T2 _p° _ p%: 82
|P,P| 2" 5 K K2 &2 )
T4+K

= the shortest distance divides the radius of curvature in the ratio p?: §2
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HELIX: a curve traced on the surface of a cylinder and cutting the generator with constant angle
is called Helix. Thus the tangent to the Helix is inclined at a constant angle with direction of the
cylinder. Thus of t is the unit tangent to the Helix and d is the constant vector parallel to the
generator of the helix then £.d = |t||d@|Cos «= 1.1.Cos = Cos x= constant

= {.d = constant ~o is fixed and it is the angle between t and d

r

l tanger

Constant
angle

generator

THEOREM: prove that necessary and sufficient condition for a curve to be helix is

K
7 = constant

PROOF: (NECESSARY CONDITION):

Let the curve be helix then we have to prove that g = constant. As the curve is helix so the

unit tangent t at any point to the curve makes a constant angle with the fixed direction of
cylinder. Let d be the unit constant vector along that parallel to the generator then

t.d = |t||d|Cos x= 1.1.Cos x= Cos = constant = t.d = constant
Diff wt.s=t.d+0=0=Ki.d=0=K+#0=n.d=0
If K = 0 then curve is straight line that is not possible. Since curve is a Helix. So7n.d = 0

= 7 1L @ = 0 = d will lies in the plane determined by £ and b which is rectifying plane.

— d=Cosxt+Sinxh

Diff. w.t.s = 0 = Cos x £ 4+ Sin x b’ = 0 = Cos « (K7) + Sin « (—7)

=>71[CosocK—Sinocr]=O=[CosocK—Sinocr]=0$§=§Z§=Tanoc

K . .
= o= constant - is fixed

(SUFFICIENT CONDITION): Let§ = constant then we have to prove that a curve is a

helix for this . it is sufficient to prove that t.d = constant

Let— == s (i) where Cis constant.
. dz i — dE T >
Now consider — =t' = Kn - (T (ii)
ds ds Cc
.. db ¢ 1db T
Similarly —=b" = =t = =— = — =T cvetrerrree. (iii)
ds cds Cc

PROF. MUHAMMAD USMAN HAMID (0323-6032785)




Adding (ii) and (iii) =% — + 1db _

T —
- n=20
C ds c

n—

al«

= %(E + g) =0=— (Ct +b) =0 Integratingw.rto ‘s’ = (Ct+b) = d = constant

- -

=t(Ct+b)=td=C(L.t)+(b.t)=t.d=C(1)+(0)=L.d
= (C=td = t.d = constant = given curve is helix.

» Possible Question: A unit speed curve « (s) with K # 0is a helix iff there exists a
constant ‘c’ suchthatt = cK Vs

QUESTION: prove that for a curve g = constant whose position vector is given by

7 = (aCos@, aSin@,abCotf) where 8 is constant angle

SOLUTION- given that 7 = (aCos8, aSind,afCotp) = 7' = (—aSind,aCosH,aCotf)
= 7" = (—aCosh,—aSinh,0) = 7" = (aSinh, aCosb,0)

= || = \/(—aSinG)Z + (aCosB)? + (aCotB)? = \/aZ(SinZG + Cos?0) + (aCotB)?

= || = a2 + a2Cot?f = |#¥'| = ay/1 + Cot?pB = a\/Cosec?f = aCosecf
i j k
= 7' X7" =|-aSin@ aCos® aCotf
—aCosf —aSind 0
= 7' X #"" = (a?Sin6CotB)i — (a*CosbCotB)j + (a®Sin?6 + a?Cos?0)k

= 7' x #"" = (a?Sin6CotB)i — (a?CosOCotB)j + a’k

= |7 x7'| = \/(aZSinBCot,B)Z + (—a?CosbCotf)? + (a?)?

= |#' X #"'| = \/a*Sin20Cot2pB + a*Cos20Cot2f + a*

= |#' X #"'| = \/a*Cot?B(Sin20 + Cos20) + c* = \/a*Cot2f + c* = \Ja*(Cot?B + 1)

= |#' x 7| = \Ja*(Cosec?p) = a*Cosecp

2 2
a“Cosec a“Cosec

Now K=——=K = B = B

|73 (aCosecp)3 a3Cosec3p

_1q. 2
= aSln B
Now 7' X 7#".#""" = [(a?Sin8CotB)i — (a®CosOCotB)] + a’k]. (aSindi — aCosbj + 0k)]

= 7' x7#".#" = a35in*0Cotp + aCos?0Cotf + 0 = a®>CotB(Sin?0 + Cos?0) = a3Cotp

A xp!! # a3cCot, a3cot 1.
Nowr—[ 2,6]=1, i =3 d = =SinpCosp
K27 [£Sin?B]?(aCosecp)® a—251n4ﬁ.a6COSec6B a

K SSin?g
So — = 1&—— = Tanf = constant

; %Sin,BCos[)’
REMARKS:

K . . .
° If? = (0 then curve is a straight line.

K . . > -
e |f— = then curveis a plane where < is angle between t and a .
T
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SPHERE OF CURVATURE OR OSCULATING SPHERE:

The sphere which passes through four consecutive points on the curve alternately coincident at
point ‘P’ is called the osculating sphere. The centre of sphere of curvature is denoted by s and

its radius is denoted by R

THEOREM: derive an expression for the radius of spherical curvature and position vector of the
centre of spherical curvature.

PROOF: Let R be the position vector of the point ‘P’ on the curve and § be the position vector of
centre of spherical curvature. The centre of spherical curvature is limiting position of
intersection of three normal planes at consecutive points.

-

Now equation of normal plane = (§—7).t =0 ............(0)

-

(B irconr=0=(B_2) i+ c-n &) =0
dsr' s—r)t' = Is . s—17).(Kn) =

d_) - - =
=>(d_j-t>—(t-f)+(§—F)(Kﬁ)=O=>0—1+(§—F).(Kfi)=o=>(§—?).1<ﬁ=1

1
= (§—7) r_i=E=> =N =p ... (iD)
Diff. w.r.to arc length = (Z—f—i—f) n+@G-Hn=p
ds R R S
=>$.ﬁ’—t.ﬁ+(§—?) (tb—Kt) = p’

=0-0+GE -7 (th—KE)=p'= E—7) (tb—Kt) = p’

= 13-A.b—KGE-P.t=p = tG=P.b=p ~GF-7P.L=0
- N 1 7 - SN T 7
= (§—7).b =—p= (§—=7).b=38p ............(iiD)

Now the vector (S — 7) satisfies the equations (i),(ii) and (iii)

Thatis G—=7).t=0, G=-ANiAa=p, G—=7.b=35p
H=>E-Ntt=0=>GE-PN=0(i)=GEF-PDid=pi = E-7) =pn
(ii)= G—Pb.b=6p'. b= (3—7) =6p'b

= -7 =0+pii+6p'b= $=7+pii+6p'b

Where § is the position vector of centre of spherical curvature. Now p1 is the vector PC and

6p’l; is the position vector CS. So the centre of spherical curvature lies on the axis of centre of
curvature and it is at distance §p’

Now radius of spherical curvature is given by R = (§ — 7) = pil + (Sp’l_)>
= R =/(p)*+ (6p")?
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REMARK: for the curve of constant curvature the radius is equal to curvature.

PROOF: Letp = cosntant = p'=0= R =,/(p)2 + 0 = R = p required.

THEOREM: prove that the tangent, principal normal and binormal to the locus of centre of
osculating sphere C is parallel to the binormal, principal normal and tangent to the given curve.

PROOF:

Let position vector of centre of osculating sphereis § =7+ pit + 8p'b

. « ) 7 d§ _ d = - ,_) d§

Diff.w.rtoarclength sy’ = £, = 2= = - (7 + p7i + 6p'b) oo
2 ds >/ 1= > N ny 1720 ds
=>t1=—=(r +p'n+pn’' +6'p'b+ 6p b+6pb)—
ds; ds;

- - > > - BN 175% 1 = d§
$t1=(t+pn+p(rb—Kt)+6pb+6p b+6p(—rn))g
1

? ? 1= 7 ? N ny 1= d§
=, = (t+p'n+pth—pKt + 8'p'b + 6p b—r6pn)E
1

- - L - N - - N dS
=6 =(F+pnR+ptb—t+68p'b+8p"b—p'R) I
1

=, = (pth+8'p'b + 6p”5)5—i =t =(pr+8p + 6,0”).1;;—;1 " Ny ey

O = |t] = |(or+8'p" +8p"). 5=
S1

as _ 1

_ I Al 2 d_§ -’y
=1=(pr+8'p' +5p") (dsl) T &, pradiptap

(i):>51=(pr+6’p’+6p”).3( )=>Z1=B

1
pT+8'p'+6p"
= tangent is parallel to the binormal of the given curve.

> - dt db ds > >, ds S oy ds
Now t; =b > —2=—.—=t,=b.—= K;ii, = (—tn).—
as, ds ds; dsq as,

== nl = —Nn an 1= T——
ds;

= N, of the locus is parallel to 71 of the curve but direction is opposite.
Now fl=l; and 71, = -7 =>fl><r_i1=—l_5xﬁ’=>l_51=£’

= binormal of locus is parallel to the tangent to the curve.
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THEOREM: prove that the product of the curvature of Cand C; at the corresponding points is
equal to the product of the (curvature) torsion of these points.i.e. KK; = 174

PROOF:

dt; _db ds

Considert; = b =—,
dasq ds ds;

= g ds — — ds
=t,=b.—= K n, = (—1n).—
1 ds; 1741 ( )dsl

ds ds Kl

:>T—l>1:—7_l) andK1=TE=>E— T
1 1

()

. . > > db; dt ds >, >, ds o S ds
Again Considerb;, =t = —=—.—=b,=t.—= —1yn; = (Kn).—
g 1 dsq ds dsq 1 dsq 171 ( ) asq

= —1,71, = (K7D). (K—) = —1,(—7) = (K7). (K—) = 1,7 = (K7i). ("—) — KK, = 114

NOTE: for a curve to be spherical curve the centre and radius of osculating sphere must be
fixed. Or centre and radius are independent of the point on the curve.

THEOREM: necessary and sufficient condition for a curve to be spherical curve is that

2y (2= -
st o) = 0 for every point of curve.

PROOF: (NECESSARY CONDITION):

| d
Let the curve be spherical curve then we have to prove that % + B (p?') =0

As the curve is spherical that is the curve lies in the sphere, therefore the sphere is osculating
and so its centre and radius is fixed.

The radius of osculating plane is given by = R = /(p)2 + (6p")2 = R? = (p)? + (6p")?

= 0=2pp + 2(6p’)%(6p’) diff.w.r.to ‘s’ and R is fixed.
, 50| = , 250 = P LA ()=
= 20" [p+ ()= )| =0=2p" 2 0,[p+ ()= (6] =0 =2+ S (Z) =0

d

(SUFFICIENT CONDITON): Let £ + =(£) = 0 then we have to show that curve is
6 ds\tT

spherical curve. For this we have to prove that the radius and centre of osculating sphere are
fixed.

d / d '
AL+ (Z)=0=p+ ()= (8p) =0

ds \t
! d ! ! ! d !
=20 |p + (9) - (30))| = 0 = 209’ +2(8p") - (3p) = 0
Integratingw.rto’s’ = (p)? + (6p’)? = C? where Cis constant.
To find C we will compare it with Radius of osculating plane i.e.
= R=(p)?+(6p)2=R*>=(p)*+(6p)? =R*=C*=R=C
= R is fixed and is constant. = radius is independent of the point of the curve

Now position vector of the centre of osculating sphere is given by § =7 + pii + 5p’l;

. « ) d§ _ i - - I_)
Diff.w.r.to arc length ‘s’ = == (r + pn + 6p b)

S

d§ - — —
== (7 + p'i+ pii' + 8'p'b + 6p"'b + 5p'b’)
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ds

= (t +p'n + p(rb Kt)+8'p 'b+8p"'b + 6p’(—rr_i))

ds
== = (t+ p'fi + pth — pKE + 8'p'b + 8p"'b — 18p'T)

- g = (E+p'7i+pth —E+8'p'b +8p"h — p'i) = 5= = (pr + 8'p' + 6p")b

=>d§ p ((5 )]b=> %—[O]Ez:»dsj—o::»*— tant
15 6 75 (6p = = S = constan

= Centre of osculating sphere is fixed or it is independent of the point to the curve. Hence the
curve is spherical curve.

SPHERICAL INDI CATRIX: it is defined as “the locus of the point whose position vector is equal
or parallel to the unit tangent ¢ of the given curve C is called the spherical indicatrix” Of the

tangent to the curve. it is denoted by 7¥; = t

Spherical indicatrix always lies on the surface of the unit sphere i.e. having radiusR =1

THEOREM: prove that the curvature of the spherical indicatrix of tangent is the ratio of skew

VK2+12

K

curvature to circular curvature. i.e. K; =

PROOF: As the given indicatrix is spherical of tangent so it can be written as 7; = t

dfy, _ dt d ary _ > d
an L M7 t’—s=>t1 (Kn)—:tl—nandl—l(—
dsq ds dsq dsq dsq
ds 1 0
=S —— == (0
ds; K
Now £, =7
dt; _ dn ds ds > _ (7 1 S0 _ |7 _ w1
ds;  ds'ds; ty =7 5 K = (b — K)o = Kyihy| = |(Tb Kt)'Kl
242 | K2 +12
$K12:K'|;T :}Klz K+t
K K
. . T . . Kt'-7K’
THEOREM: Prove that the Torsion of the spherical indicatrix of tangent is T; = K(KZ+22)

PROOF: As equation of the radius of osculating sphere is R? = (p)? + (§p’)? and as the
indicatrix lies on the sphere of the unit radius and it is the locus of the curve so we have,

1=p% + (6101 )2:>1——+(T1) e (D)
Lk
1 -1 . 1 K2 1t 1 1 (Kqr?
Nowas p; =—=p; ==K{'then(i) > 1=—+|=2~— :>1:—+_( )
P1 Ky P1 K12 1 () K12 74 K12 7,2 K14
1 [(Kqr? Ki2-1 Kqr? Kq1? 1 Kq?
=>1__2=_(14)=>1—2=1—4 Kl-1l=—5=1*=——"%
1 T12 K1 K1 T12K1 T12K1 Ki“—1 Kl
Kqr ..
=T = — (i0)
Ky /K12—1
VKZ+72

Now since we know that K; = =K, =

ds;

d (VK2+12\ ds
ds K
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————(2KK'+2111)—VKZ+12K/

2472 1
— Kll — zx/K +1 _ (_)
K K
— K _ K(kK'+77')-(K?+72)K’ _ K?K'+Ktr'-K?K'-v?K' _ Kvt'-12K’
1 K3VKZ+12 N K3VKZ+12 T K3VKZ 412

So now using the values of K; and K;' in (ii)

Krt'-12K’'
.. _ 3 /K272 _ Ktt'-7%K’ 1
(ll):}fl_zzzz_szzzzzzz
VK242 [K2422 K3VK2+1 \/K+7:\/K+1'—K
K K2
— 7 = Ktt'—1%K’ 1 _ Ktt'-7%K’ 1
1 K3VK?2+12 JK2412 |12 K3VK2 412 yK2+472 (l)
K ~NkK? K \K
7. = Kt'-t?2k’ 1 t(kt'-1K')  K? — . = Kt' 1K’
17 g3vk2yr2 Jk24:27  K3VK2+12 VK2+12.1 1= K(K2%+12)

K2

THEOREM: Prove that the Torsion of the spherical indicatrix of binormal is T4

TK'-K7'

- (K2 +12)

PROOF: As equation of the radius of osculating sphere is R? = (p)? + (6p’)? and as the
indicatrix lies on the sphere of the unit radius and it is the locus of the curve so we have,

1=p2+ (6p)2 = 1 __+(T1)2 e ()

_ 1 A
Now as pl—K—lﬁp1 _K_12K1

2
—Ky 2
. 1 K 1 1 (Kqy/
(l)ﬁ1=k,—12 (1—> =1=K—12+—2(K114)

1 1 [(Kqr? Ki%-1 Kq/ Kq1?
=1-—2 == () . K2—-1="1— 72
Kl le Kl K1 T12K1 T12K1
14
ene— 5 ML ds
KivK,“—1
. VKZ2+12 d (VK2+12\ ds
Now since we know that K; = —— = K, = —[—— | —
T ds T dsq
———(2KK'+2101) VK2 +12T/
- Kll — 2 K“+T1 - (_)
T T

(KK +77")—(K?4+72)7’ ‘L'KK’+‘L'2‘L"—K2T’—‘L'2T’ _ 1KK'-K?7'

T3VK2+712 T3VKZ+12 T 3VKZ+12

= K| =

So now using the values of K; and K;' in (ii)

TKK'-K27'
(i) = 1, = B3VK2+2 _ TKK'-K?7' 1
1 VK2+12 |KZ+12 3VK2+12 JK2412 [K2 41272
7 2 ! T 72
— 7. = TKK'-K?>T’ 1 __ TKK'-K?7' 1
1 3VK2+12 JK2+12 (K2 T3VK2+72 \/K2+12(5)
T 72 T T
= tKK'-K?t" 1 _ K(tKk'-K7') 72 — . = K’ —K7'
17 3VKZ47Z V242K~ 13VKZ412 VKZ+12K 17 o(k2+12)
2
T

1 Kqr?

T K %2-1" K2
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¢ WORKING RULE TO FIND OUT SPHERICAL INDICATRIX (IMAGES):

Given a space curve whose position vector is 7* then

e Find out the unit tangent t e Equate t=7
e Find out the unit principal normal 71 e Equaten =7
e Find out the unit binormal b o Equateh=7

QUESTION: find out the spherical images of the circular helix 7 = (aCos8, aSin8,c8) ;c # 0

SOLUTION: Given 7 = (aCos0,aSin0,c8) ;c =0

Diff. w.r.to ‘s’ = #' =t = (— aSin6, aCos0, c) % .............. (i)
- . do)?
Squaring both sides = t.t = 1 = (a?Sin?0 + a?Cos?0 + c?) (5)

~1m @ D@ = (@) - = ()

ds T (a%+c?) ds (a2+c?)

= (Z_;) = /(a2 + c2) = 1 = constant quantity (Say) ... (ii)
(i) = t = (— aSinb, aCosé, c)% .............. (iii)

- < (1) s & =L (L oS 140w _asing. 0) 14
Diff. w.rto s’ (i) = t' = dG( aSth,aCosH,c)Ads = t' = (—aCosf ,—aSiné, O)Ads

Using (ii) = K1 = (—aCos0 , —aSinH,O)%2 .............. (iv)

2
Squaring both sides = K? = a?( Cos?0 + Sin%0 + 0)%4 = K? = % =K = % .............. (v)
(iv) = K = (—Cos0 ,—Sinf,0)K = 1 = (—CosO ,—Sin,0) .............. (vi)
Now
7 rd — 1 i j ]’{\ 1 -
b=txn= S|—asSind aCos® c| =7 [(cSinG)i — (cCosB)j + (aSin?6 + aCosze)k]

—Cos68 —Sin6 0

= b = [(cSin6)i — (cC0s8)] + ak]....... (vii)

From (iii),(vi) and (vii) we can obtain the spherical indicatrix.

e e L, 2 -asin@ Cos0

The spherical indicatrix of the tangentare r =t = x = a;n VY = 2 :S ,Z = %

The spherical indicatrix of the principal normalare 7 =n = x = —Cosf,y = —Sinf,z =0
e e . S P Siné —cCos6

The spherical indicatrix of the binormalare ¥ = b = x = £ ;n Y = C/_los ,Z = %

INVOLUTES AND EVOLUTES: when the tangent to a curve C is normal to another curve C; then
C; is called involute of C and C is called evolute of C;

L =

i K ’
= e
T h-té " .
- — T e
‘-$ - P «»y -— - -:.—q‘:
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QUESTION: Determine the curvature of the involute of a curve « (s)

SOLUTION:

1
(c-9)K

Since we know that £,(s;) = 7i(s) = t,'(s;) = '(s)s’ = K;7; = (‘L’B — K?)

2= =~ _ (tb—Kt)(tb—Kf) 2= =~ _ (tb—Kt)(tb-Kf) _ 12+K?
= (Kl) (nl.nl) - (c—5)2K?2 = (Kl) (nl'nl) - (c—5)2K? - (c—s)2K?
= (K))? = _THKE = K, = _THKE ; K1, K # 0 required curvature of the involute of a
1 (c—5)2K?2 1 (c-s)2kz| 'L
curve « (s)

QUESTION: Determine the equation in involutes of the circular helix
7 = (aCost, aSint,bt) ;a>0,b # 0

SOLUTION: Given 7 = (aCost, aSint,bt) ;a > 0,b # 0
= 7'(t) = (—aSint,aCost, b) = |7'(t)| = a? + b?

. ﬁl - i ) ,b >/
Since T = I;'EgI = ¢ aS\l/ZtZiZZSt ) also s = fotlr (Oldt = (Va2 + b2)t

Thus the equation of involute of the curve is

(—aSint,aCost, b)

B(t) =7(t) + (c — s)T(t) = (aCost, aSint, bt) + (c - (\/ a?+ bz) t)

Va? + b?
_ _ (c-(VaZ+b2)t)sint , (c—(VaZ+b2)t)cost ) (c-(VaZ+b2)t)t
B(t) = (aCost a N ,aSint + a = bt ) + ==

c . . .
Putr = T B(t) = (aCost — arSint + atSint, aSint + arCost — atCost, br)

= B(t) = [a(Cost + tSint) — arSint, a(Sint — tCost) + arCost , br]

= Involute is a plane curve. . x; = br
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THEOREM: prove that there exist infinitely many involutes to the given space curve C.

PROOF:

Let the given space curve be 7 = 7(s)

Now the position vector of the point P; (74) to the curve C; can be written as PP, = At

Then OP, = OP + PP, = #, = F 4 Af evv vev e e ()
Diff. w.r.to ‘s’ => == —( + /1t)

- >y 2 - ds - - 2 — ds
=t =F+2t+A).—=1t =L+ VT + AKA).—
ds; ds;
Taking dot product with £ = £,.f = (f.f+ NEt+ AK7 t) — => 0=0+1+ 0) —
ﬁ(1+/1’).:TS=O=>;TS¢O,,(1+/1’)=0ﬁ/1’=—1=»/1=—s+cwherecisconstant.
1 1

()= =F+(=s+c)t =7, =7+ (c—s)t

This equation signifies that due to presence of an arbitrary constant C there exist an infinite
number of involutes for the given curve C.

THEOREM: prove that tangent at any point P;of the involute C; is parallel to the normal at a
corresponding point to the curve C.

PROOF: Since we know that 7 = 7 + Af

Diff. w.r.to ‘s;'= d— = —( + At)

=1 = (F'+/’l’f+lf’).;Ts=> t=(-t+ (c—s)Kﬁ).%z}» t, = ((c—s)Kﬁ).;Ts
1 1 1

ds 1
dsq - (c-s)K

- — - — — = d
= t, isparallelton = t;,=n > n= ((c—s)Kn).;TS=> =>%= (c—s)K
1

This implies that tangent at any point P, of the involute C; is parallel to the normal at a
corresponding point to the curve C.

» Possible Question: Prove that the tangents of involute and normals of its evolutes are
parallel at corresponding points.

QUESTION: obtain expression for the curvature to the involute C;

SOLUTION: Since t, is parallel to 71

. dat an ds ds
Diff. wrto ‘s, = —=—.—=t,=1.— = K7l = (Tb Kt)
dsq ds dsq dsq

(c- s)K

2472 2.2
Squaring both sides = K;* = (CK_S% — K, = V(f_;;(
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THEOREM: Prove that there are an infinite families of evolutes for the given space curve.

PROOF: Let the given space curve be 7 = 7(s)

Since the tangent at P, of C;is normal to the curve C at corresponding point P i.e. the tangent at
P, of C; lies in the normal plane to the given curve at 7

Now#, =7+ AR+ b ... (i) where A and u are to be determined and both are
functions of arc length ‘s’

e v dF _doa o N AR (o s g > >
Diff. (i) w.rto's’'= —%=— (7 + i+ ub) = —2 = (¥ + XA + i’ + +u'b + +ub’)

dary

=—= (E + A'n+ /1(1'1; — Kf) + u'b + +,u(—rﬁ))

dry

== (E+/1’77Z+/11'I;—AKE+/,1’I_9)—/,¢1'17)
— % =(1—-2AK)T+ N — uD)+ AT + @b e e e (i)
As C;rsl lies in the normal plane so (Z—r;l S ) N (1)

Now comparing (ii) and (iii) we get

1
=>(1—)IK):0=>1:AK=>A:E=>/1:p

:>(/1’—ur)=l=>1=wand =>(/1‘c+,u’)=,u=>~1=M
= @) _ (e A 2 g | gicpeney enirpmyr LY ey
A u A A u u u A A u
24,2 10 1t
=>T(/1+;L) =/’Lu ul: =lu u'a
Au Au A2+ u?
. s _ s (A u-p'2 _ 1.5 w'aA-A"u _
SmcefOTds—l,b+c=f0(/12+#2) ds=9+c= Azf0<1+(ﬁ)2> ds=9y +c
v

=>¢+c=—tan‘1(%)=Tan(zp+c)=—(%)$Tan(z/)+c)=—(§) ~“A=p
= pu=—pTan(P+c) () =7# =7+ AR +ub =% =7+ pit + [-pTan(¥ + c)]b

=7, =7+ pn— pTan(yp + C)E where Cis any arbitrary constant so due to this we say that
there are infinite families of evolutes for the given space curve C.
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THEOREM: prove that the locus of centre of curvature is an evolute only when the curve is
plane curve.

PROOF: The equation of evolute is 7, = 7 + p7i — pTan( + )b ...... ... .... (i) where Cis any
arbitrary constant and for the different values of C we have different evolutes.

Now the equation of locus of centre of curvatureis ¢ = 7 + p7i ... ... ... ... (il)
Equations (i) and (ii) are identical when pTan(y + c)l;
=p#0b£0=>Tan(+c)=0=yY+c=nr ;n=0123....
SyYy=nr-c=>yP =0=1=0 cfrds=y=yY' =1

= curve is plane curve.

THEOREM: prove that the ratio of the torsion and curvature of an evolute of a space curve
(involute) is :{—1 = —-Tan(y + a)
1

PROOF: The equation of evolute is 7, = 7 + p7i — pTan(y + a)b

Diff. w.r.to ‘s,"= d— =— (r + pni — pTan(y + a)b)

=1, = (#' + p'fi + pit’ — p'Tan(y + a)b — pSec?(y + a)v,b’l; — pTan(y + a)l;’).:—:1

=t = (f +p'n+ p(TE — K©) — p'Tan(y + a)b — pSec?(y + a)th — pTan(y + a)(—rr_i)) .;TS
=6L=~CF+pn+ pth — pKt — p'Tan(y + a)b — pSec?( + a)th + pTan(y + a)rr_i).:Ts

=1, = (t+p'fi+pth—t— p'Tan(y + a)b — pSec?(Y + a)th + pTan(yh + a)rr_i).;TS
1
n1=K
p

=t = (p'fi + ptb — p'Tan( + @b — p[1 + Tan* (P + Q)tb + pTan(y + Q)tid). 1>
=1, = (p'fi + ptb — p'Tan(¥ + a)b — ptb — prbTan?(y + a) + pTan(y + a)rr‘i).;—;
=1, = [(p' + ptTan(y + a))ii — Tan(y + a)b(p’ + prTan(y + a))]';Ts

=1, = (p' + ptTan(y + a))[R — Tan(y + a)B].j—jl SR ()

Squaring both sides = 1 = (p’ + ptTan(y + a))z[ﬁ —Tan(y + a)g]z' (;_;1)2

= 1= (p' + prTan(y + a))z[l + Tan®(Y + a)]. (:_;1)2

= 1= (o' +prTan + @) Sec’ () + @), (:TS)Z

O S S —
ds; (p’+prTan(1,b+a))ZSecz(1,l)+a) ds;  (p'+ptTan(y+a))Sec(P+a)

1
+a))Sec(+a)

()=t = (p’ + ptTan(y + a))[T_i —Tan(y + a)B]. (p'+ptTan(y

> _ fi-Tan(y+a)b > [_> Sin(p+a)b
=4 = Sec(y+a) =t = Cos(P+a)

] Cos(y + a)
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= t;, = iCos(Y + a) — Sin(y + Q)b

Diff. w.r.to ‘s’ = ﬂ =— (nCOS(l/J +a) — Sin(y + a)b)

-

= b _ (7'Cos(yp + a) — ASin(y + a)yp' — Cos( + a)yp'b — Sin(y + a)l;').ﬁ
ds, ds;

= — dtl = ((Tb Kt)COS(l/J +a) —nSin(y + a)t — Cos(Y + a)rb Sin(y + a)(— rn))
=t = (TCOS(I/) +a)b — KCos( + a)t — tSin(y + )7t — tCos(P + a)b + tSin(yP + a)ﬁ).:TS
=t,' = (—KCos(y + a)f).ﬁ

dSl
= Kin, = ( —KCos(y + a)t) — => K; = KCos(y + a);TS NPT €15

1

And = 7i; = —t = 7, || £ but in opposite direction.
Now for by we have by = £, x ii; = [[iCos( + @) — Sin(i + a)b] x (—t)

= b; = Cos(ip + a)(—7i x ©) — Sin(yp + a)(—b x £) = Cos(PY + a)b + Sin(yP + a)id

Diff. w.r.to ‘s;/= ? =— (Cos(t/) + a)b + Sin(y + a)n)

= b, = (=Sin(y + a)l,lJ'B + Cos(y + Q)b + Cos(Y + a)yY'n + Sin(y + a)nt’ .;—:1

= -7 = (—Sin(t/) + a)th + Cos(Y + a)(—77) + Cos(Y + )Tt + Sin(y + a)(TB - KE)) &

ds,

= -7 N, = (—Sin(t/) +a)th — Cos(Y + a)tri + Cos(YP + a)Tn + rBSin(l,b + a) — KtSin(y + a)) s

dSl

= -1, = ( KtSin(y + a)) — =1 = (KtSln(l/) + a))

— g t= (KESinop + a)) = wfy = 1
1
= 17 = —(KSin( + @)). 2 e . (i)
1
- —(KSLn(1,l)+a)) s T
Dividing (ii)by (if) = = = L= — = —-Tan(y + a)
1

KCos(l/)+a)a K4

NOTE: when curve is specified by the equation giving the curvature and torsion as function of
s’ (arc length) i.e. K = f(s) and T = g(s) then these are called the intrinsic equations of the
curve.
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GLOBAL PROPERTIES OF CURVES

R,

CLOSED CURVE: A regular curve 7: R = R™ is closed if 7 is a periodici.e.?(t + a) = 7#(t) Vt and
a # 0 then the period of 7 is the last such number a.

REMARK:

e If7is a periodic a point moving around 7 returns to its starting point after time a, of
course every is o — periodic.

e If7isaperiodicapointie.7(t+a) =7(t) = 7(t—a+a) =7(t —a)
= 7(t) = #(t + (—a)) = 7is (-a) — periodic.

SIMPLE CLOSED CURVE: A simple closed curve in R? is a closed curve in R? that has no self-
intersection.

edrere éi:’% @ 2
7] ) é
S

QO U @ — . =l ij-f:fﬂe ofesest,

LENGTH OF SIMPLE CLOSED CURVE: The length of simple closed curve 7 of a period a is defined
as L = [[I7'(0)]ldt

LEMMA: If 7(t) is a closed curve with period ‘a’ and let « (s) be its unit speed

reparameterization by arc length ‘s’ then o« (s) is closed with period L = foallf’(t)lldt

PROOF: Consider S(t) = [l lldu ... ... .. ... (D)
= S(t+a) = [, 7 Wldu = [JIF@lldu+ [, “IF@lldu = L+ |17 Wl du

= St+a) =L+ i (i)

Now consider | = f:+aIIF’(u)||du andputu =v+a=v=u—a= dv = du also change

limits then I = fOtII?’(v + a)||dv ... ... ... .. (HHD)

Now since 7(t) is a closed curve with period ‘@’ 7(v+a) =7(v) = 7' (v +a) =7'(v)
then (iii))=1= fotllF’(v)IIdv =5(t) then (ii)= S(t+a)=L+S(t)= S+L=S
letoc (S + L) = (S(t) + L) = (S(t + a)) = #(t + a) = #(t) =x (S(1)) = (5)

=« (§+ L) =x (§) =« (S) is closed curve.

Since ‘@’ is a lest number such that 7(t + a) = 7(t) Vt therefore ‘L’ must be the least positive
integer such that < (S 4+ L) =x (S) = (§) is closed with period ‘L’.

REMARK: The total signed curvature if a simple closed curve in R? is +2m
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QUESTION: If #(t) is a simple closed curve with period ‘@’ and t, 7, K, are its unit tangent
vector, signed unit normal and signed curvature respectively then show that
t(t+a) = t(t) , is(t +a) = 7,(t) also K;(t + a) = K(t)

SOLUTION: since 7(t) is a simple closed curve with period ‘a’ i.e.
Pt+a)=70t) =27 (t+a) =7(1) = t(t+a) =)

Rotating f in anticlockwise by g we obtain 1 (t + a) = 1, (t)
Now 7i,(t + a) = 1 (t) = n's(t + a) = n's(t)

= —K,(t + Q)t(t+a) = K, ()E(t) 7' =th—Kt=%"=0—KL=—K¢
= —K,(t + a)t(t) = —K,()t(t) = K (t + a) = K,(t) ~tt+a) =t

JORDAN CURVE THEOREM (Just Statement): Any simple closed curve in the plane has an
‘interior’ and ‘exterior’ more precisely, the set of points of R? that are not the point of curve is
the disjoint union of two subsets of R? denoted by int(#) and ext(#) with the following
properties

(i) int(¥) is bounded. i.e it is contained inside the circle of sufficiently large radius.
(ii) ext(7) is unbounded

(iii) Both of the regions int(7) and ext(7) are connected. i.e. they have the property that any
two points can be joined by a curve contained entirely in the region. ( But any curve joining a
point of int(7) to a point of ext(7) must be cross the curve)

AREA OF SIMPLE CLOSED CURVE: The area contained by a simple closed curve 7 is

AP) = ﬂint(f) dxdy
these type of integral can be computed using Green’s theorem which relates line integral with
double integral.

GREEN'’S THEOREM: If 7 is a simple closed curve which bounded the region int(#) and which is
transversal counter clockwise then [ fdx + gdy = ffmt(ﬂ(gx — f,)dxdy where

f(x,y) and g(x,y) are smooth functions.
(i.e. functions with continuous partial derivatives of all orders)

AREA OF CLOSED CURVE: If 7(t) = [x(t), y(t)] is a closed curve then A(¥) = %ff, xdy — ydx

EXAMPLE: Find area of circle

SOLUTION: let 7(t) = [aCost,aSint] be a curve of circle with 0 <t < 2m then using

AP) = %f? xdy — ydx = %fozn[(aCost)(aCost)dt — (aSint)(—aSint)dt] = % Ozn a’dt = ma?

> PRACTICE: Find area of ellipse (HINT: use 7(t) = [aCost, bSint] ;0 < t < 2m)

PROF. MUHAMMAD USMAN HAMID (0323-6032785)




RESULT: If #(t) = [x(t),y(t)] is positively oriented simple closed curve in R? with period ‘T’
then A(int(7)) = %fOT(xy’ —yx')dt

PROOF: From Green’s theorem we have ffmt(ﬂ(gx — f,)dxdy = fF Fdx + gdy oo ()
taklngg:le:—l :}gx:%’fy:—%whereOStST
T xd d
ffmt(r)( )dxdy f ——ydx + - xdy = -Unt( )dxd = —f X ydty X dt
T !
= -Ulnt(r) dxdy = _f [ E -y ] dt = A(mt(r)) = EfO (xy - yx ) dt

ALTERNATIVE METHOD: Since area of simple closed curve in R% is A(7) = %f? xdy — ydx then
T xdy—ydx

since 7" is defined on [0, T] = A(¥) = fo Tdt = f [ — Y ]dt

= A(int(?) = Efo (xy' — yx') dt

WIRTINGER’S INEQUALITY: Let F; [0, ] — R be a smooth function for which F(0) = F(m) =0
then f: (%) dt >f [F(t)]?dt where equality holds iif F = DSint ; V te[0, ] where Dis

constant.

PROOF: Let F(t) = G(t)Sint = ‘;—f - Z—fSint + G(t)Cost

= [ (%)2 dt= [ (%Sint + G(t)Cost)2 dt

1rdF2 _7thZ,2 T .5 2 T/ . dG ]
= [ (5) dt = [} (5) Sin*tde + [ G*Cos?tdt + 2 [ (G 57 (SintCost)dt

w(af\% | (d6\? o, 5 T 2 ;
= [ (5) dt = [} (5) Sin*tdt + [} G*Cos?tdt +1 ........ (D)

1=2f" (G ‘2—‘5) (SintCost)dt = 2(SintCost) [ (G %) dt— [ [ (G %) dt [% (ZSintCost)] dt

F©)

Now since F(0) = F(m) = 0= G(0) = G(w) = 0 becauseG(t) = -~
s
I = (SintCost) |G72|0 - fo" (672)[ (SmZt)] dt =0— f ( )(ZCoszt)dt
1=0-[G?(Cos?t — Sin*t)dt = [ G*Sin’tdt — [ G*Cos?tdt
2 2
W= f7(5) dt=f; (5) sin?tdt + f) G2Costdt + [)' G2Sin’tdt — [ G2Cos?tdt
F\? dG 2 _ dG\? . - T 2
X (E) dt = [, (E) Sin tdt+f G2Sin?tdt = f (E) Sin*tdt + [ [F(t)]?dt

dr\? dc\? .. dG\? .. .

(—t) dt — F(t)] dt —f (E) Sin?tdt > 0 (E) Sin’t =0 ..........(i0)
= [T (%) dt— [FOPdt =20 = [T (d’;) dt > [[[F(OPdt ....... (i)

also right side of (ii) is 0 & E =0;Vt

&S G =Cosntant & G =D < F(t) = G(t)Sint & F = DSint
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ISOPERIMETRIC INEQUALITY: Let 7 be a simple closed curve, [(¥) be its length , A(7) be the

area contained by it, then A(7) < ilz(?) and equality holds iff 7 is a circle.

PROOF: Let 7#(s) = [x(s),y(s)] be an arc length parameterization of # after a translation and
rotation (rigid motion), we can assume that the curve 7 is contained in a slab |y| <7 and it
touches the line y = +7 at exactly one point.

e nyimxr};

- ) -,

ey e
/ \ — J’s — Z
4

Let ¥ be the circle of radius of r centered at the origin, notice that the arc length
parameterization of the 7 indices a parameterization. (Not necessary arc length
parameterization) of the circle # by a projection perpendicular to y — axis , therefore
7(s) = [%(s),y(s)] ;s€[0,1] and A(F) = mr?

Now by Green's theorem ffint(?)(gx — f,)dxdy = J: fdx + gdy
. , ! L xd L, .

taking g =x,f = 0; A®) = [f,,,, dxdy = [ xdy = fo%dt = [yxy'dt o (D)

Alsotaking g = 0,f = —y; AGF) = [[—ydx = [, 2 dt = [[—yx'dt ...... .. (id)

Adding (i) and (i) = 24(F) = fol(xy’ —yx)dt = A@) = %fol(xy’ —yx') dt

(i) = A@) = [, ~y()x'() d(S) .. (i) and (D) = AF) = [, Z(5)y'(5) d(5) oo (iV)
Adding (iii) and (iv)

= A + A = [,(E$)y'(s) = y()x'(s)) ds = [, < £(s),¥(s) >< y'(s)x(s) >ds
= A + AP < [12(s) = y©lllly'(s) = x' ()l ds < rl = AF) + A(F) < rl by shwartz's

o : 2
Now by using the fact GM < AM = Vab < aTer = JA@AF) < w = A(P)nr? < (%l)

o 212 5 ()
= A(r) < o AP) < po
2 -
It is obvious that equality holds for A(7) S% iff and only if 7 is a circle. In that case

12(7) _ an?r?

4T 41T

A(#) = nr? and = I(#) = 2nr

CONVEX: A simple closed curve 7 is called convex if its int(7) is convex, in usual sense that the
straight line segment joining any two point of int(#) is contained entirely in int(#) otherwise it
is not convex.
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REMARK: The following statements for a convex curve are equivalent.

> The simple closed curve 7 is convex.
> If a line segment meets the curve 7, the intersection is either a line segment (which
could possibly degenerate to a single point) or exactly at two points.

A\

The curve 7 lies on one side of the tangent line at every point on7.
» The signed curvature K, of the curve does not change the sign.

. . x| yr
EXAMPLE: The ellipse = + Pl 1 is a convex.

a?

SOLUTION: Let P(x4,y;) and Q (x5, y,) be interior points of ellipse then

x4 2

2t oyt -
+57 < 1.....(0) and

a2

2 2
= +3;i2 < 1.......(i0) then the line segment joining P and Q is

a2

given by t(xq,y;1) + (1 —t)(x3,¥,) = (txy + (1 = )xy, ty; + (1 = t)y,)

2 2 _ 2 _ 2
Now z_z + % _ [tx1+(;2 £)x2] n [ty1+(zz t)y,]

x? oy x1%2 | y12 X2 | y,? t(1-t) .
St= t2 [a—lz + bLZ] + (1 —-1)2 [ﬁ + %] +—5 (2x1%5 + 2Y1Y2) v o (D)

Since (x; —x,)% =0 = 2x,x, < x;2 + x,2% ... (iv) and similarly 2y;y, < y:% + y,% ... (V)
then using all above equations in (iii)

t(1-t)
a?p?

(iii) = Z— + Z— < 1]+ (1 - )?[1] + [Cx1? + x2%) 1% + ¥22)]

P Y 2414422 1
ST+ T <t 1+ t2 -2t +t(1 - 1)

X123 +y1%4+x2% 4y,
a?b?

x12+Y12+x22+YZ2]
a2p?

x? | y? 2
=>;+§<2t +1-2t+t(1—-1t)f
Nowifa=1b=1thenx?+x,2<landy;?+vy,2< 1

2 2
Thus =+l <22 +1-2t+t(1—-t)[1+1] <2t?+1-2t+2t—2t> =1
a b

x? 2 . .
==+ Y_ < 1 and hence proved ellipse is convex.
a b2

VERTEX OF THE CURVE: A vertex of the curve 7(t) in R? is a point where its signed curvature
K, has stationary pointi.e. % = 0 OR a critical point of ‘K’ is called a vertex of curve #(t)

» A closed curve must have at least two vertices the maximum and minimum point of ‘K’
» Every point of circle is vertex.

EXAMPLE: The ellipse 7(t) = [aCost, bSint] ;0 < t < 27 is a convex simple closed curve
with period 27, find the vertex of the curve.

SOLUTION:
Let 7(t) = [aCost, bSint] = 7#'(t) = [—aSint,bCost] = 7"'(t) = [—aCost, —bSint]
then K, = ||7"(t)|| = Va2Cos?t + b2Sin?t

For vertex put % =0= %\/aZCOSZt + b2Sin?t = 0 = Sin2t (—p + q) = 0 after solving
= Sin2t=0, (-p+q) 0=t = 0,%,71,37” , so K vanishes exactly at 4 points. Hence
proved the curve is simple convex closed curve having vertices 7(t) = [aCost, bSint] then at

t=0=7(t)=[0,bt="=7() =[a,0)t = = 7¥(t) = [—a,0],t=37"=>17’(t) = [0, —b]
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» Signed curvature K has relation with vertices so far ellipse we only four points. (next
theorem illustrate this)

FOUR VERTEX THEOREM: A convex simple closed curve in R? has at least four vertices.

PROOF: Assume that 7#(t) is a unit speed closed curve , so that its period is the length ‘I’ of 7
then  consider 1= [ K’ (DF()dt = [F(OK(O]4 — [ K(OF (D)dt = 0 — [ K (t)Tdt
= [ = [[()dt = |0y = A, (1) —7,(0) = 0 =1 = 0 Fis closed.

Since K, (t) is a continuous function on the closed interval [0,1] it attain maximum and minimum

points (say) ‘P’ and ‘Q’

=,

a closed curve and every point of 7 is a vertex. let @ be a unit vector parallel to P_Q) and b be a

3

* we can assume P # Q since otherwise K (t) would be constant. Now 7 is

vector obtained by rotating d in anticlockwise by making an angle ofg

Now I = [ K's()F(6)dt = 0 = b.I = [, K's(b.7¥)dt = 0= [ K's(b.7)dt = 0......... 0
now suppose ‘P’ and ‘Q’ are vertices of 7 and since 7 is convex then straight line joining ‘P’ and
‘Q’ divides the curve into two segments. And since there are no other vertices therefore we
have K'.>0 on one segment and K';<O0 on other segment. Then
(i) = either fol K'¢(b.7)dt < 0 or fol K's(b.7)dt > 0 (P’ and ‘Q’ where it vanishes) so it its
contradiction. Hence there must be one more vertex say ‘R’. if there are no other vertices then
point ‘P,Q and R’ divide the curve into three segments on each of which always eitherK'; > 0
or K's < Obut K’ must have the same sign on the adjacent segments then there is a straight
line which divides 7 again into two segments on which K’ is always positive and negative. And
this is impossible. Hence there must be a fourth vertex. And this complete the proof.

EXERCISE: Show that the length [(#) and A(int(F)) are unchanged by applying the rigid

motion to 7

SOLUTION: Since 7(t) = [x(t), y(t)] then we have for a curve 7(t) of period ‘a’

a - a . . — 1 ra ..
L= [ 17" ®lldt = [ x'2 +y"?dt ... (i) and A(int(#)) = Efo (xy' —yx')dt ... .. (ii)
if # is obtained from 7* by a translation then ' = 7' and if # is obtained from 7 by a rotation of and
angle 6 about the origin then Ry (7") = Ry(x,y) = (xCos8 — ySinh , xSinf + yCosh) then
% = xCosf — ySind = %' = x'CosO — y'Sin6 also ¥ = xSinh + yCosd = §' = x'Sinf + y'Cosb
now consider ¥'2 + 52 = (x'Cos6 — y'Sin)? + (x'Sind + y'Cos6)? = x'* + y'* after solving.
SoI(F) = ['IF'(Dlldt = [ &2 +52dt = [ xZ +y?2dt = [|# (©lldt = I(F)
=I1F)=17) ... (iii)
Now for area
Xy — yx' = (xCosO — ySin6) (x'Sinf + y'CosO) — (xSind + yCos6)(x'Cosh — y'Sin0)
%y — y% = xy'(Cos?6 + Sin?6) + yx (Cos?6 + Sin?6) = xy — yx'

= A(int(®) = [,/ @y - %) dt =5 [, (xy" = yx) dt = A(int()))
= A(int(®) = 1(#) .. .. (iv)

Hence from (iii) and (iv) proved that length and area remains unchanged.
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EXERCISE: Show that ellipse 7(t) = [aCost, bSint] ;0 < t < 2m is a simple closed curve and
compute area of its interior and also length of curve.

SOLUTION: Suppose 7(t") = 7#(t) = [aCost’, bSint'] = [aCost, bSint] = t' =t
=t'=t+2kn .~ t' —t=2km Then 7 is a simple closed curve. Now for period 2w we
have A(int(#)) = %fozn(xy’ — yx')dt = mab where x = aCost,y = bSint  also

I(#) = [IF ©ldt = ["xZ + y2dt = [[" VaZSin®t + bZCos?tdt

EXAMPLE: By applying isoperimetric inequality to the ellipse prove that then
fozn Va2Sin2t + b2Cos?tdt > 2mvab and equality holds iffa = b

SOLUTION: Since by isoperimetric inequality A(#) < ﬁlz(i‘) ......... (i) and for ellipse we
have A(int(#)) = mab and I(7) = fozn Va2Sin?t + b2Cos?tdt using these in (i)

= mab < —12(F) = 4n’ab < 1*(¥) = VanZab < \I2(F) = I(7) = 2nVab

= fozn\/aZSinzt + bZCos?tdt > 2n\ab

Now for holding above inequality puta = b

o [P Va2Sin?t + a2Cos?tdt = 2mvaa < [ aVSinZt + Cos2tdt = 2ma
0 0

2
o afondt = 2na < alt|d™ = 2na < 2na = 2na
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S N

DIFFERENTIAL GEOMETRY OF SURFACES

R,

OPEN SET: A subset U of R™ is called open if for any a € U 3 €> 0 such that for every point
ueR™ we have |[|lu — a|| < € = uelU

EXAMPLES: The whole of R™ is an open set.

i. ThesetD,(a) = {ueR™: ||lu— a|l < r}isan open set and is called open ball with
centre ‘@’ and radius ‘r’
e If n=1= D,(a)isanopen interval.
e If n=2= D,(a)isan open disk.
e If n=3 = D,(a)isanopen spheres.

ii. ThesetD,(a) ={ueR™ |lu— al| < r}isnotan open set and is called closed ball with
centre ‘@’ and radius ‘r’

CONTINUOUS MAPPING: Suppose X € R™ and Y € R™ then a mapping f: X — Y is said to be a
continuous at aeX if forany €> 03 § > 0s.that [|f(x) — f(a)|| < € whenever [x —a| < §

HOMEOMORPHISM: A mapping f: X — Y is said to be Homeomorphism if ‘" is continuous and
bijective and f‘l: Y — X is also continuous, then X is said to be Homeomorphicto Y.

SURFACE: A surface S of R? is the locus of the point whose coordinates are functions of two
independent parameters ‘u’ and ‘v’

Thusx = fi(w,v),y = f,(u,v), z = f3(u, v) are parametric equations of surfaces.

OR: A surface in R3is a set of all points whose coordinates satisfy a single equation
f(x,y,z) = 0 for example sphere, paraboliods, hyperboloid etc. (discussed in start)

OR: A surface may be regarded as the locus of a point whose position vector 7 is a function of
two independent parameters u and v.

We not that any relation between the parameters (f (u,v) = 0) represents a curve on the
surface, because 7 than becomes a function of only one independent parameter.

In particular, the curve on the surface, along which one of the parameters remains constant are
called parametric curves.

Position of any point on the surface is uniquely determined by the values of ‘u’ and ‘v’. So that
the parameters ‘u’ and ‘v’ constitute a system of coordinates which are called curvilinear
coordinates.

REMARKS:

1) Elimination of u and v from the parametric equations will give rise to the equation of the
form f(x,y,z) = c which is called the implicit form of the surface.
2) An equation of the form z = f(x,y) or x3 = f(x;, x,) is called monge’s form.

ONE PARAMETER FAMILY OF SURFACE: an equation of the form F(x,y,z,a) = 0 where ‘@’ is
constant represents a surface. It the value of constant ‘a’ is changed then we get another
surface.

The set of all surfaces corresponding to different values of ‘a’ is called one parameter family of
surface with parameter ‘a’ .This parameter ‘a’ has different significance from that of ‘u’ and ‘v’

(uand v relate a single surface while ‘a’ remains constant for single surface) these relate to a
single surface and vary from point to point of that surface. These are curvilinear coordinates of
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a point on the single surface (the parameter ‘a’ however determines the particular member of
the family of surfaces and have the some value at all points of that member.

e.g. F(x,y,z) = x? 4+ y? + z2 — a? = 0 Represent a sphere with centre at origin and radius
‘a’ where ‘a’ is that parameter.

CHARACTERISTICS OF A SURFACE

The curve of intersection of two surfaces of the family corresponding to the parameters value
of ‘@’ and a + da is determined by the equation F(x,y,z,a) = 0and F(x,y,z,a+ da) =0

And therefore by equations F(a) = 0and F(a + da) — F(a) =0
(for the sake of similarity we write F(x,y,z,a) = F(a) )

Now if §a — 0 the curve becomes the curve of intersection of the consecutive members of the

family with parameter value and its defining equation are F(a) = 0 and aiaF(a) =0

This curve is called characteristic of the surface for the parametric value ‘a’

LEVEL SURFACE: A level surface ‘S’ is a function ¢ (x, y, z) define by the locus of a point
P(x,y,z) in domain ‘D’ such that ¢(x, y,z) = ¢ where ‘c’ is constant.

OR: A level surface is a surface S = {(x, y,z)eR3: f(x,y,z) = 0} where f is smooth function. So
surface is also smooth.

PARAMETERIZED SURFACE OR SURFACE PATCH: A subset S of R3 is a surface if for every point
PeS3 an open set U in R? and an open set W in R3containing P such that a
Homeomorphism a: U = S N W is called a surface patch or parameterization of ‘S’. Where
SNW c §andsince ‘W is open then S N W is also open in ‘S’

A collection of such surfaces whose image cover the whole of ‘S’ is called an Atlas of S.

EXAMPLES: (i) Circular cylinder of radius ‘@ and axis is z - axis and
S ={(x,y,2)eR3: x* + y? = a?} and the parameterization of ‘s’ is

o(u,v) = (aCosu, aSinu, v)

(ii) A sphere of radius ‘@’ and S = {(x,y,2)eR3:x% + y? + z2 = a?} and the parameterization

of ‘S"isa(6, p) = (aSinBSing, aSinfCose,aCosH)
—><6<-and0<g¢<2n

where

(i) A circular cone i.e. S ={(x,y,2)eR3:x? + y? = z?} and the parameterization of ‘S’ is
y y

¢

o(u,v) = (u. v, +Vu? + v? )
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SMOOTH SURFACE: If U is an open set i.e. UeR3 a mapping o: U — R3 is said to be a smooth
surface if each of the n — components of ‘c’ which are functions U = R have continuous partial
derivatives of all orders.

REMARK:

i. (Classical result of surfaces) One of the classical result of the differential geometry is

do do
where U C R?

dax0y - dyodx
ii. A mapping o:U — R3 is smooth surface if o is of two components ‘U’ and ‘v i.e.
O'(u, 17) = (O-l(u; v); 0, (ur v); 03 (ur U) ) then

do (601 do, 003 ) and do (601 do, 803)
du \du’ du’ du v

that if : U » R3 of two components then

ov’ ov’ ov
iii.  We often use the following abbreviations;

du U2 T gy T gy T TV

- _ = _62'?_620'_ - _ = _627_620'_ - _ = _627_620_
i =hu =575 327 OuwrT22 =T = 575 52 w112 = Tww = 502 = 57200 = Owp

iv.  Ingeneral g, # 0y, butif 0:U — R3 is smooth then g, = 7y,

REGULAR PARAMETERIZATION OF SURFACE: A surface o:U — R3 is called regular if it is
smooth and the vectors a,, and g, are linearly independent at all points(u, v)eU, equivalently,

o should be smooth and g, X 0, # 0

QUESTION: Let U € R? and f:U — R3 then the surface z = f(x,y) is parameterized by
o(u,v) = (u.v, f(u,v) ) prove that it is regular.

Solution: Givena(u,v) = (uw.v,f(w,v)) = g, = (1,0, £, ), 0, = (0,1, f,,)

&)

=0y X 0, = ful = (fu fu, 1) # 0= surface is regular

O =~
_ O~
Sh

QUESTION: The parameterization of surfaceis o(u,v) = (u + v,u — v,u? + v?) show that

. L . 1 _
this surface represents the elliptical paraboloid z = 3 (x% + y?) and it is regular.

Solution: Suppose from given o(u, v) we have
X=Uu+v.... D,y=u—v.... (ii),z=u? +v?..... (iii)

Adding (i) and (ii) = u = %(x + y) and Subtracting (i) and (ii) > v = %(x —-y)
1 2 2 1
(iii):zz(z(x+y)> +<E(x—y)> ﬁzzi(x2+y2)

Nowo(u,v) = (u+v,u—v,u?+v?)=o0,=(1,12u),o, = (1,-1,2v)

~

it j k .
=0, Xo,=|1 1 2u|l=2w+v,u—v,—-1)* 0= surfaceisregular
1 -1 2v
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QUESTION: The mapping o(u, v) = (CosuSinv, SinuSinv, Cosv ) defines a mapping of the
uv — plane onto a unit sphere. Then prove that x? + y? + z? = 1 and examine it is regular or
not?

Solution: Suppose from Given g(u,v) we have x = CosuSinv,y = SinuSinv,z = Cosv then
=x*+y*+z2=1
Now g, = (—SinuSinv, CosuSinv,0 ), g, = (CosuCosv, SinuCosv, —Sinv )
i j k
= 0, X 0, = |=SinuSinv CosuSinv 0 = Sinv(—CosuSinv, —SinuSinv, —Cosv )
CosuCosv SinuCosv —Sinv

=0, X 0, * O when Sinv # 0i.e.v = 2n + 1)% = surface is regular forv = (2n + 1)%
=0y, X 0, = 0 when Sinv = 0i.e.v = nr = surface is not regular forv = nn

REMARK: Another parameterization of surface (unit sphere) can be express as

ow,v) = (uv,v1—u? —v?)

EXAMPLE: The parameterization of surface a(u,v) = (pCosu, pSinu, v ) where p > 0 show
that it represent the right circular cylinder with radius p and axis is z — axis. And show that it is
regular.

Solution: Suppose from given o(u,v) we have x = pCosu,y = p Sinu,z=v then
= x2 + y? = p? which is circular cylinder.

Now g, = (—pSinu, pCosu,0),0, = (0,0,1)

{ j k .
= 0y X 0y, = [—pSinu p Cosu 0| = (pCosu, pSinv,0) # 0 = surface is regular
0 0 1

NOTE: We have two methods of reparameterization of a surface, one is global
reparameterization by using the constraint equation F(x,y, z) = 0 and other parametrically by
expressing  (x,y,z) in terms of (u,v) varying over a domain as

o(u,v) = (f(w,v),g(w,v), h(u,v))

PRACTICE: Show that following are regular or not?

i. o(v)=(uvvu) i. o(wv)=w@+u?vv?
i. o(v)=v?%v3

2 2 2
EXAMPLE: Show that z—z + 3;—2 + i—z = 1 where p,q,r are non — zero constants, is a smooth

2 2
surface of the form o(u, v) = (u, v, 47 [1—=— "_2>
p? q

2

2
Solution: Suppose x = u,y = v then given as ;—2 +

2 2 2 2
y z u v z?
F-I_r_z_l:}?-l_?-}_r_z_l

z? u? 2 u?  p? uz  v?
$—2=1——2——2=>ZZ=T2(1——2——2)$Z=iT 1——2——2
r p q p q p q
uz  p2
therefor = o(u,v) = (u,v,2r [1 - —=
p q
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SECANT LINE: The line which cut the curve at two points.
TANGENT LINE: tangent to any curve drawn at a space is called a tangent line to the surface.
Or The line which cut the curve at one point.

TANGENT PLANE: tangent plane to a surface at a point ‘P’ is the plane containing all the
tangent lines to the surface at that point.

OR A tangent plane to a surface ‘S’ at point PeSisa tangent vector at P ofacurvein ‘s’

passing through P

. S docdou 900 . .
Now suppose 7*(t) = o(u,v) = 7'(t) = ﬁa_? + éa—: = Aoy, + Ao, this is the equation of

tangent plane at PeS of a surface 0: S — R3

TANGENT SPACE: Set of all tangent plane vector to surface ‘S’ at P= o(ug, vy) is called tangent
space and it can be expressed as T,,(S) = {Ag, + A0,,: 4, ueR}

CURVE ON THE SURFACE: If 7: («, f) = R? is a parameterized curve contained in the image of
a surface patch o: U — R3 in the Atlas of ‘S’ then there is a mapping 7: («, ) — U such that
7(6) = o(u(t), v(t)) where u(t), v(t) are necessarily smooth functions.

STANDARD UNIT NORMAL TO THE SURFACE: A surface ‘S’ defined by a mapping 6: U — R3

where U € R? containing a point P then standard unit normal to the surface is defined as

— N oy X O;
Na:n:u
low X oyl|

OR The normal to the surface at any point is perpendicular to every tangent line (7; and 7,)

7 XTy 7 XTy

and its direction is along |7}y X 7| Thus = 1l = —= =
|71 X7 H

NORMAL LINE TO THE SURFACE: The line which is perpendicular to the tangent line.
OR The straight line passes through ‘P’ perpendicular to the tangent plane at ‘P’ is called

normal line to the surface at ‘P’ and equation of normal line at ‘P’ is given by y = X + tﬁa

Lpna a P
Lrvwe

EXAMPLE: Find the equation of tangent plane and normal line to the surface represented by
o(u,v) = (u,v,u? — v?) at P(1,1,0)

SOLUTION: Given o(u,v) = (u,v,u? — v?) Then o, = (1,0,2u),0, = (0,1,—2v) and
o(1,1) = (1,1,0) is a given point ‘P’ and equation of tangent plane at P(1,1,0) is
7'(t) = Aoy + Ao, = 1(1,0,2u ) + A(0,1, —2v)

Or T,,(S) = {14(1,0,2u ) + A(0,1, —2v ): L, ueR} = {(4,u, 24 — 2u): A, ueR}

. L oy X0 (-2,2,1) 2 21
For normal line we find N, = —/——— = =(—§,§,§)

llow x ayll 3

)

Now by using equation of normal line ¥ = % + tN, = (1,1,0) + ¢ (—

wIiN

2
3

Wl

) )

- 2 2.1
y = 1—§t,1+§t,§t
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» Practice: Find the equation of tangent plane and normal line to the surface represented
by a(r,8) = (rCosh®,rSinh8,r?%) at B(1,01)

LEVEL SURFACE: A level surface ‘S’ is a function ¢ (x, y, z) define by the locus of a point
P(x,y,z) in domain ‘D’ such that ¢(x, y,z) = ¢ where ‘c’ is constant.

OR: A level surface is a surface S = {(x,y,z)eR3: f(x,y,z) = 0} where f is smooth function.
So surface is also smooth.

CONDITON TO PROVE SMOOTH LEVEL SURFACES: A surface is smooth if Vf = (fy, f,, f,) of
f(x,y,z) does not vanishes at ‘P’ i.e. ||[Vf]|| # 0

EXAMPLE: Show that surface x? + y2 + z% = 1 is smooth surface.

SOLUTION: Suppose f(x,y,z) = x> +y* +z* — 1= f, = 2x,f, = 2y, f, = 2z

Now Vf = (fo. . ;) = 2(x,3,2) = |IVfll = 2{/x2 + y2 + 22 =21 =2 # 0

= given surface is smooth.
PRACTICE: Show that following surface are smooth or not?

i zZ=x%+y? i. x24+y*+zt=1
ii. x%2+y%+z%+a®—b?=4a*(x*+ y?) wherea > b > 0 are constants

RULED SURFACE: A ruled surface is a surface which is the union of straight lines and it is also
called ruling of the surfaces.

OR a surface which is generated by the motion of one parameter family of straight lines is
called a ruled surface.

TYPES OF RULED SURFACE: (i) Developable Surface (ii) Skew Surface

DEVELOPABLE SURFACE: If consecutive generators intersect, then the ruled surface is called
developable. e.g. Cones and Cylinders.

SKEW SURFACE: If consecutive generators do not intersect, then the ruled surface is called
developable. e.g. Hyperboloid of one sheet and Hyperbolic Paraboloid.

SURFACE OF REVOLUTION: A surface generated by the rotation of the plane curve about an
axis in its plane is called a surface of revolution.

If z— axis is taken as the axis of revolution and ‘u’ denotes the distance of a point
from z — axis then surface may be expressed as x = uCosg, y =uSing, z = f(u)

We may also use o (u,v) = (uCosv, uSinv, f(u))
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THEOREM: Derive an equation of the tangent plane and equation of the normal at a point ‘P’ to
the surface F(x,y,z) = 0

PROOF: Let F(x,y,z) =0 ... ... ... ..... () be the equation of surface. Let’s’ be the length of the
curve measured from a point ‘A’ to the point '(x, y, z)’
Diff. () w.rto's’ = Fx'+ Fy' + F,z =0

= (Fx,Fy,Fz)(x’,y’,Z') =0 ... ceo.ne.. (ii) Where the vector (x',y’,z') is a unit tangent £ to
the curve on the surface at point '(x, y, z)’

OF OF oF
ox’ oy’ oz
that all the tangent lines to the surface at the point '(x, y, z)" are perpendicular to (Fx, E, FZ) and hence

Equation (ii) shows that £ is perpendicular to (Fx,Fy,FZ) whichis VF = grad F = ( ) it is clear

lies in the plane through (x, vy, z) perpendicular to this vector and this plane is called tangent plane to
the surface at that point and normal to the plane at that point of contact is called normal to the surface.

Since the line joining the point R(X,Y, Z) on the tangent plane to the point of contact is perpendicular
to the normal so we have

pD_ 2 OF OF OF
(R—r).VF:0=>(X—x,y—y,z_z)(a,5,5)
= X-xY-y,Z-2)(F.E,F)=0=X—-x)F,+Y -y)F,+(Z-2)F,=0

Which is the equation of tangent plane and equation of normal will be

R=F+uVF =>R—7=uVF = X —x,Y —y,Z—2) = u(F, E,F,)

X-x Y- Z-z .. .
== 7 which is equation of normal to the surface.
z

If we eliminate u then we have

X Fy

THEOREM: Prove that sum of square of the intercepts made by the tangent plane to the surface

. . 2 2 2 2
is constant.i.e. x/3+y /3 +2z7/3=a"/3

PROOF: Given surfaceis F(x,y,z) = x/3 + y2/3 47/3—a/3 =0 )

OF -1 oF -1 dF -1
Fo=35,="%/3x /3'Fy=£=2/33’ /3'Fz=£=2/3z /s

Now the equation of tangent planeis (X —x)F, + (Y —y)E, + (Z —2)F, =0

2 2 2
23(X:—X)——E"F(Y'—y)——q"+(Z'—Z)——I::O

3x3 3y3 373

2| X—x Y-y YA 2 X—x Y-y Z-z
==+t —=+—=<|=0=#0,[F+—+-—7|=0

3 x3 y3 z3 3 x3 y3 z3

X x Y y Z z X 2 Y 2 Z 2
=S3-S+g-S+3-5F=0=>3-xB+5-y+53-27=0

x3 x3 y3 y3 z3 z3 x3 V3 z3

Y Z

T +0—=1

=S +5+L=xB+y s+ =a"5by() =+ .
x3 y3 z3 x3a’ /3 y3a /3 z3a /3

1 1 1
Thus the intercept with coordinates axis are (x§a2/3, 0,0), (0, y§a2/3, 0) , (0,0, z§a2/3)
. 1 2/ 2 1 2/ 2 1 2/ 2
Then sum of square of intercept = (xsa 3) + (y3a 3) + (zsa 3)

. 4/ 2 2z 2 4/ 2 6/ 2
= sumof square of intercept = a /3 (xs +y3 + yS) =aq/3 (aS) = a /3 = a* = cosntant
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THEOREM: Prove that the tangent plane at any point to the surface is constant. i.e. xyz = a3
and to the coordinate plane form a tetrahedron of constant volume.

X1 V1 23
. 1|X2 Y2 22

PROOF: V=-
OOF: Since oles vz

Xy YVa Zy

and given surface is F(x,y,z) = xyz— a3 =0

(SR Y

Now the equation of tangent planeis (X —x)F, + (Y —y)E, + (Z —2)F, =0
=S X-x)yz+ Y —-y)xz+(Z —-2z)xy=0
= Xyz—xyz+Yxz—xyz+Zxy—xyz=0= Xyz+Yxz+ Zxy = 3xyz

Xyz Yxz  Zxy X Y Z
= + + =l=—+—+—-=1
3xyz 3xyz 3xyz 3x 3y 3z

Now the point of intersection are (0,0,0), (3x,0,0), (0,3y,0), (0,0,32)

0 0 0 1
3x 0 o0 1 3 00 1 9
=V=:0 3y o . =V=-10 3y 0 :>V:g(27xyz):5a3=constant
Y 0 0 3z
0 0 3z 1

2 2 2
QUESTION: the normal at a point ‘P’ of the ellipsoid is % + % + i—z = 1 meet the coordinate
|[PGy| |PG| |PGs|

J ) are constant.
|PG| " |PGs| " PGy

planes in the points G, G,, Gzrespectively. Prove that the ratios

2 2 2
SOLUTION: Given surface is F(x,,2) = 5+ 5+ 5 —1=0 = F, == F, == F, ==

. . . X- Y- Z—
Now the equation of tangent plane at any point P(x, y, z) to the surface is = e

Fy Fy F,
X—x Y-y Z-z X-x Y-y Z-z
== Ty T m T X T T Tz
a? b2 c2 a? b2 c?

Now the normal meet at YZ—Plane at G; then X =0

-X Y-y YA 2 Y-y Z-z
= - = vy = —% - —Qq° = vy = —%
aZ b2 cz b2z cz

Z-z a’z a’z a? c%-q?
and = —a? == ﬁZ—Z=——2=——2+Z=Z(——2+1)$Z=Z( . )
c c c c

c2

2_,2 2_42
Thus a point lying in YZ — Plane which is G; have the coordinates [O,y (b 2 ),Z (C 2 )]

b2 c?

2_n2 2_42
Similarly a point lying in XZ — Plane which is G, have the coordinates [x (a D ),0, z (C 2 )]

a? c?

2_n2 2_42
Thus a point lying in XY — Plane which is G3 have the coordinates [x (a azb ),y (b bza ), 0]

=y (5 o ()~
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PG| = sz +y? [(¥)r + g2 [(—)]2
ZZ

4 4 2 2
=>|PG1|=\/xz+yZZ—4+z2‘;‘—4=>|PGl|=a2 =L+

a*  b* ¢t

2 2 2 2 2 2
Foai _ 2 [X* ¥z oo |x2 y? |z
Similarly = |PG,| = b* |5 +=+= and = |PG3| =c¢* [+ +=
a b c a b c

2 X2 y2 22
go PGl _ ¢ Jatta o

= = — = constant
PGz 5 |22 2 22 D
at’ p*
2 2 2 2 2 2
2 X2, y" .z 2 |XZ,Y" .z
T | B P e IPGs| _ S Naatyata _ c?
Similarly = = — = constant  Also = = — = constant
|PGs| x2 y2 722 c? PG| 22 y2 22 a2
c? |=z+z+=3 a? |=z+z+73
a% bt * a* b* %

2

QUESTION: the normal at a point ‘P’ of the ellipsoid is Z— 2

:t o

2 2
+ i—z = 1 meet the coordinate

' planes in the points G, G,, Gsrespectively. Prove that the ratios |PG, |: |PG,|: |PGs| are
| constant.

2 2 2
SOLUTION: Given surface is F(x,y,2) = 5+ 25 +5-1=0 = F, = z—j,F =2 p =%

Yy T 2tz T 2

Now the equation of tangent plane at any point P(x, y, z) to the surface is = rx_ry_zz

Fy Fy F,
X-x _ Y-y _ Z-z X-x _ Y-y _ Z-z
== T i B A
a? b2 c2 a? b2 c2

-X Y- Z—-z Y- Z—Z
:}T: yy: = :}—azz yy: =
aZ bZ 2z bZ 2z
Y-y a’y a’y a? b%2-a?
=-at=F =vV-y=-=-T+y=y(-5+1)=v=y(3)
b
7— 2 2 2 2_,2
and = —a? = ZZﬁZ—Z=—a—zz=—a—zz+z=z(—a—2+1)$Y=z(c Za)
c_2 Cc c c Cc
. . L . b%-a? c?-a?
Thus a point lying in YZ — Plane which is G; have the coordinates [O,y( = ),Z( = )]

2_32 2_ .2
Similarly a point lying in XZ — Plane which is G, have the coordinates [x (a " i ), 0,z (C z )]

Thus a point lying in XY — Plane which is G5 have the coordinates [x (aza_zbz),y (bz_az) , 0]
Pt = e by () o e (5 o]

= = ey ()] ()

_ a* a* oo %%y z2
:>|P61|—\/x2+y2b—4+ch—4:>|PGll—a F+_+_

2
b* = c*

2 2 2 2 2 2
Similarly = |PG,| = b? /%+2’—4+i—4 and = |PG;| = c? ’%4_%4_?_4

Hence |PG,|: |PG,|: |PG3| = a?: b?: c? is constant.
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QUESTION: Show that the tangent plane at the point common to the surface
a(xy + yz + zx) = xyz and a sphere whose centre is at origin and radius ‘b’
x% + y? + z? = b? makes intercept on the axis whose sum is constant.

SOLUTION:

Given surfaceis F(x,y,z) = a(xy + yz + zx) —xyz =0

a a a

= (axy +ayz+azx) —xyz=0= F(x,y,2) =;+;+E—1 =0 ~+ing byxyz
a a a

bk=-ab="pmk="1

Now the equation of tangent plane at any point P(x, y, z) to the surface is
= X-x)E+Y-yE+(Z—-2F=0

SX-0(-5)+-N(-5)+@-2(-5)=0

X Y y z z X 1 Y 1 A 1

- — — — —_—— ———=O:——— —_—— ———_0
x2 x2+y2 y2+zz 22 x2 x+y2 y 22z
X z 1 1 1 X Y VA 1 (xy+yz+zx) 1
St o=t b= ST = 2
x2 2 z2 y oz x2 = yZz = z2 a xyz a
X Y VA
@ a a

2 2 2
Thus the intercepts of the coordinates axis are (%, 0,0) , (0, y:, 0) ) (0’0’ %) and

xz 2 ZZ x2+ 2+22 b2
=L L L2 0 _ constant
a a a a a

QUESTION: Find equation of tangent plane to the surface z = x? + y2 at P(1,—1,2)

SOLUTION:
Given surfaceis F(x,y,z) = x>+ y?—z=0
Fo=2xF, =2y,F,=-1=F =2F=-2F=-1 s«x=1y=-1

y

Now the equation of tangent plane at any point P(x, y, z) to the surface is
S X-E+Y-E+(Z-2)FE=0=>X-1D2-(Y-y)2-(Z-21=0

= 02X-2)-(Y+1)2-(Z-2)1=0=2X—-2-2Y—-2—-Z+2=0
= 2X—2Y—-Z+2z—-4=0
ENVELOPS

The locus of characteristics of F(a) = 0 as ‘a’ varies is called envelope of the family of surface

with parametric value ‘@’ . it is determined by eliminating ‘a’ from F(a) = 0 and %F(a) =0
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QUESTION: Find the envelope of the family of paraboliods x? + y% = 4a(z — a) where ‘a‘is
parameter.

SOLUTION:

Givensurfaceis F(a) = x> +y? —4a(z—a) =0 ... cc. e ... (D)

9] 1
=>£F(a)=—4z+8a=0=>—4z+8a=0=>azzz

— a1 (et =0 m eyt 2 =0

= 2x2+2y2 - 222+ 22 =0=2x*+2y2 —z2 =0 = 2x? + 2y% = z*

QUESTION: show that the envelope of surfaces g CosBSing + %SinQSinq) + %Cos<p = listhe

2 2 2
ellipsoid z—z + Z]—Z + i—z = 1 where 6 and ¢ are independent parameters.

SOLUTION

Given surfaceis F(x,y,z2,0,¢9) = %Cos@Sinqa + %Sin@Singo +§Cos<p —1=0 ... ()

— 9 2 ) = — X sin0sing + 2 CosoSing = 0 = Sin (—fsme + Xc()se) =0
da a ¢ b ¢ ¢ a b

Sind _ ya

Cos®  bx

o
T
K =y

a bx . a
ﬁTan0=Z—xﬁCost9=—ﬁSm0= 4 b

/a2y2+b2x2 /a2y2+b2x2

) X . y x . y
= Sing # 0,,(—551719 +ECOSH) =0= aSmB = ECOSQ =

9 F(@) = > Cos08Cosp + 2 SinBCosp — = Sing = 0
- = — —
9a @ s oS osQ b moeose ), me

x YV o Z e _ Z o — x Y ¢i
= Cosg (ZCOSH +ZSm9) — ;Smgo =0= CSm<p = Cosg (a Cosf + bSlnB)

z Singp

x Y z _(x Y o
< Coso (;CosH +;Sm9) = zTanq) = (a Cosf + bSLnH)

b

x y ay )
+ —.
/azyz + b2x2 b azyz + b2x2

Z X
= - =-.
cTang = |~

. bixtraty?  JaPyTiRE T
= -Tanp = = = Tanp = ——
c ab+/a?y2+p2x2 ab abz
1 g%
gy
L‘;(OLL&L
&Vt 2, 2
[ :{461’-
abz
. c\Ja2y2+b2x2 abz
= Sing = = Cos@p =
¢ Jb2c2x2+a2c2y2+a2bh2z? ¢ Jb2c2x2+a2c2y2+a2h2z2
(i) — x bx cJa2y2+b2x2 y ay c\a2y2+b2x2
a’Ja?y2+b2x2 " \[b2c2x2+a%c2y2+a?b?z2 b [a2y2+b2x2 \[b2c2x2+a%c2y2+aZb?z2
z abz
z —1=0
c/b2c2x2+aZc2y2+a2b2z2
2 2 2

cbx acy abz

-1=0

+ +
a/b2c2x2+a%c2y2+a?b2z2  by/b2c2x%+a’cly?+a?b2z2  c¢\b2cix%+a?cly?+ab?z2
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cbx?+acy?+abz? 1= Jb2c2x2+a2c2y2+a?b2z?

abcy/b2c2x2+a2c2y?+a2bh2z2 abc

= /b2c2x? + a2c?y? + a?b2z2 = abc = b%c?x? + a’c?y? + a?bh?z? = a?b?c?

bZCZxZ aZCZyZ aZbZZZ

a?b2¢?2  a?b?¢?2 ' a?b?¢?

x2  y? z? . . .
=1= 2t tz= 1 which is required

QUESTION: Find the envelope of the family of cones
(ax+x+y+z—1(ay + 2z) = ax(x + y + z — 1) with ‘@’ being parameter.

SOLUTION:
GivensurfaceisF(a) = (ax+x+y+z—1)(ay+z)—ax(x+y+z—-1)=0

=>Z—Z=(ax+x+y+z—1)(y)+(x)(ay+z)—x(x+y+z—1)=0

=Saxy+xy+y:+zy—y+taxy+xz—x?—xy—xz+x=0

= 2axy+y*+zy—-y—x*+x=0=2axy=—-y* —zy+y+x?—x
x2-y2-x+y-zy

=aq= B — Using this value in (i) we will get required eq. of envelope.

QUESTION: Sphere of constant radii ‘b’ having their centre at fixed circle x> + y?> = a2,z =0
prove that their envelope is the surface (x? + y% + z2 + a? — b?)? = 4a?(x? + y?)

SOLUTION

x? +y2 + z? = b? is the equation of sphere with centre at origin
Now the centre of sphere will be (aCos6, aSin8, 0)

= (x —aCos0)? + (y — aSin8)? + (z — 0)? = b*?

= x2 + a?Cos?0 — 2axCosB + y* + a2Sin?0 — 2aySinf + z> = b?

= x% 4+ y%+ 2% + a? — 2a(xCos6 + ySinf) = b? ... .......... (1)
aF25'92C90 2axSin8 = 2ayCos6 P LE
—_— — = — = > = e = —
EY axSin ayCos axSin ayCos CosB — %
—X [ = B4 = X
= Tanl = . = Sind pere: = Cos0 P

: 2 2 2 2 x Y — K2
(D) =>x“+y“+z°+a —Za(x.\/x2+y2+y.\/x2+y2>—b

2 2
— 12 2 2 2 _ <x+y ): 2 — 42 2 2 2 _ 2 — B2
x“+y“+z°+a°—2a pere b x“+y +z°+a°—2ax“+y b

=>x2+y2+22+a2—b2=2am=(x2+y2+zz+a2—b2)2=4a2(x2+y2)

QUESTION: Find the envelope of family of the surface F(x,y, z, a, b) = 0 in which parameters
‘a’ and ‘b’ are connected by the equation f(a,b) = 0

SOLUTION

Given surfaceis F(x,y,z,a,b) =0 ........(0) and f(a,b) =0 ... ..... (ii)

Diff. (i) w.r.to ‘a’ and ‘b’ having total differential (i) = z—Zda + Z—Zdb =0........ (iiQ)
Diff. (ii) w.r.to ‘a’ and ‘b’ having total differential (ii) = g—ida + Z—Zdb =0......(iv)
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Now

. of of db db a
(iv) = —-da+--db=0= fyda+f,db=0=fy+f,—=0=—= —;—b....----(v)

oF aF db
Also (iii) =>£da+£db =0= F,da+F,db=0= Fa"’ﬂ;a— 0

fa H fa Fa F .
= F, +F, (_E) =0 ~ Using (v) = F, = F, (E) S E= D)

Elimination of ‘a’ and ‘b’ from (i), (ii)and (vi) will give us the required equation of envelope.

QUESTION: Prove that the envelope of the surface F(x,y,z,a, b,c) = 0 in which parameters

‘a’ and ‘b’ and ‘c’ are connected by the equation f(a, b, c) = 0 is obtain by eliminating ‘a’, ‘b’,

’c’fromF=0,f=0,F—“=F—b=E

fa fb fe
SOLUTION
Given surfaceis F(x,y,z,a,b,c) = 0........(iJ) and f(a,b,c) = 0......... (i)

e [ o s . ) oF oF oF
Diff. (i) w.r.to ‘@’, ‘b’ and ‘c’ having total differential = ada + 5db + %dc =0......(ii)
e (i o a e . . of of of )
Diff. (ii) w.r.to ‘@’, ‘b’ and ‘c’ having total differential = gda + 5db + Edc =0......(Iv)

Now multiplying eq. (iii) byg—’: and (iv) byz—lcD and subtracting
= f.F,da + f.Fpdb + f.F.dc = 0and = F.f,da + F.f,db + F.f.dc =0

Then required answer = (f.F, — F.f,)da + (f.F, — F.f,)db = 0

db
= (cha _Fcfa) + (ﬁ:Fb _E:fb)a =0 (‘l))

Let % = k where db and da are the changes in parameters ‘a’ and ‘b’. Then for different

values of db and da we have different values of ‘k’ and it will always non — zero. So eq. (v) will
hold only when = (f.F, — F.f,) = 0 and (f.F, — F.f,) =0

Fa Fc , Fb Fc .
= f,F, =F.f,and f,F, = F.f, > —=—........(wi)and — = — ... ... (vii)
fa fc fb fc
From (vi) and (vii) = ;—“ = ;—b = %and also F = 0, f = 0 are required.
a b c

QUESTION: Prove that the envelope of the plane lx + my + nz = p is an ellipsoid where
| p? = a?l* + b*m? + ¢*n?

SOLUTION

Given F(x,y,z,Lmn) =lx+my+nz—p=0 .............. (Q)

= p? = a212 + b?m? + c?n? = p = a?l% + b2m? + ¢?n?

() =>F(x,y,zl,mn) = lx+my+nz—\/azl2 +b%2m2+c?n2=0

oF 2a?1 a?l a?l

px

Now — = x — =) =2x——=0=2x=—=1l==

ol 2Va212+b2m?+c?n? p p a?
oF 2b%m b?m b*m Py
om y 2Va212+b2m?2+c2n? y P y P b2
OF 2¢%n c?n c?n pz
—_— =7 — :O:}Z——:O ﬁz:—ﬁn:—z
on 2Va212+b2m?2+c2n? P P c
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px z
(i) = F(x, y,Zlmn)——x+Z}2]y+p_Z_p

x2  y2  z2 L. . . . .
=0p [— += + ] p = [ﬁ tzt c_Z] = 1 Which is required equation of ellipsoid.

NOTE: two surfaces are said to touch each other at a common point when they have same
tangent plane and normal at that point.

THEOREM: Prove that the envelopes touché each member of the family of the surface at all
points of its characteristics.

PROOF:

The characteristic corresponding to the parametric value ‘a’ lies both on the surface and
envelope and hence have the same parametric value.

OF aF OF

ax’ ay’ 62) nd the

The normal to the surface F(x,y, z,a) = 0 is parallel to the vector (

equation of envelope is obtained by elimination from F(a) = 0 ..... (i) and aa—aF(a) =0...(iiQ)

So the normal to the envelope of the surface F(x,y,z,a) = 0 is the vector
(Lo L L or . or 00) (i)
dx  da ox’ dy = 9da’dy’ 0z da’dz) T o

OF OF 6F)

a
s —F VA =
ox’ ay 0z da (x,y, ,a) =0

Using (ii) in (iii)) = (

Hence this show that all common points the surface and envelope have the same normal

dF OF 9
(£ a—F —F) therefore have the same tangent plane. So that surface and envelope touch each

other at all points of characteristic.

10508031

e

EDGE OF REGRESSION: The locus of ultimate intersection of consecutive characteristics of one
parameter family of surface is called Edge of Regression.

THEOREM: Prove that each characteristic touches the edges of regression.

Lo

If A,B,C are the three consecutive characteristics. And A and B intersect at ‘P’ and B and C
intersect at ‘Q’. Thus ‘P’ and ‘Q’ are consecutive points at characteristic B and on edge of
regression.

Hence ultimately as A and C tends to coincide with B then the chord PQ will become the
common tangent to the characteristic and edge of regression. Thus Surface or curve are said to
touch each other at a common point if they have same tangent to the characteristic.
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METHOD TO FINDING THE EDGE OF REGRESSION

Let F(x,y,z,a) = 0 be the one parameter family of surface with parameter ‘a’ then the
equations of characteristic corresponding to the parametric values ‘a’ and ‘a + §a’ are

F(x,y,z,a) =0& aa—aF(x,y,z,a) =0alsoF(x,y,z,a+da) =0& ;—aF(x,y,z,a+6a) =0

Fa(x,y,z,a+8a)—Fq(x,y,z,a) OF d%F
S =0 whereF, = a s 0=F,=0

It follows that limg,_,

So we can find the edge of regression by eliminating ‘a’ from F(a) = 0,F,(a) = 0,F,4,(a) = 0

QUESTION: Find the edges of regression of the envelope of the planes
xSinf — yCosO + z = af with 6 being parameter.

SOLUTION:
Let F(x,y,z,0) = xSin@ —yCos6 +z—al =0 ......cceo..... (i)
Now = Fy = Z—g = xCo0s0 +ySind —a =0................. (ii)
’F

Fgg = —= = —xSi =0.. . (R0
= Fyo 302 xSin@ + yCos8 =0 (iii)
(iii) = xSind = yCosf ) =210 Y e 6 = Tan* (%)

= = = === =-=0= =
[ii xSin yCos (iv) Cos0 an an
Also Sinf = —= Cosh = —— (v)
T xzeyz T fxZeyr
Now using (iv) in (i)
(i) = yCosO —yCosO +z—af =0 = z=al = z = aTan™ ! (%) v een e e e (VD)
. . . x y xZ+y? > > _

Now using (v) in (ii) (ll):>x\/xz—+y2+yw a—O=>\/m—a=> x?2+y?=a

= x2+y2=a%........(vi)

Hence equation (vi) and (vii) are the equations of edges of regression.

QUESTION: Find the envelope and edges of regression of the family of ellipsoids

2 2

2
c? (x— + y—) + Z—2 = 1 with ¢ being parameter.
c

a? b2

SOLUTION:
_ 2 x2 y2 ZZ _ i
Let F(x,y,z,¢c) =c (;+ﬁ) +5-1=0 e (D)
oF x? | y? 272 ..
Now = F, == 2C(§+b_2)_?= (0 RN (13
x2 | y?\ 22 x2 | y?\ _ 72 72 2 z
=2(G+h) == (Grh)=5=d == ==
(a2+b_) (a_z"'b_)
2 2 2 2 2 2 2
= —=—(5+5)+—F—-1=0=>—=—==(5+5)+z[(5+5)-1=0
2 )2 az = b2 2 )2 az = b2 az = b2
(&) (5+%2) ()
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x%  y? L .
= 472 ( + bz) = 1 Which is the equation of envelope
d%F 2 y2\ 672
Now (ii) = — pyrie 2 (%+2]—2) —Ciz =3 I (113
Loy €2 2(X* Y\ 2.2 _ ,
(lll)? =c (; + ﬁ) 3z =0 . e v v e (IV)
z x—2+y—2 +Z—2 -1=0
Now subtracting (iv) from (i) “\a2™p2) ez T
z? X2 y?
11— 2 2,2 _
=>C2 1—3z2 c (?-I_b_) 3z2°=0
z? —3z° .
= > =1= -2z°=c
c
2 2
(i) = —272 ( +%)+ ZZZZ—1=O =>4z2(—2+ )+1+2—0
2 2 2 2
Y y
2 —
= 4z (— b2> +3= 0ﬁz< +b2> ~2 (v)
N =42 (5+5) - =0 = 4(-229) (5+5) - 225 = 0
ow (ii)c c 7 = z t) T S T
x2 y2 xZ yZ 1
2 .
= —4z < b2> +1=0=2z < b2> T e (VD)
2 2
Since from (v) = z (x + iz) = —% not possible
x2 y2 ;] _1
so required equation of regression is z ( + bz) =&
DEVELOPABLE SURFACE:

In one parameter family of planes the characteristic being the intersection of consecutive plane
are straight lines. These straight lines are called generator of the envelope and envelope is
called Developable surface.

REMARK:

e The reason of name lies in the fact that plane is developed into a surface without
stretching or tearing. Any surface which satisfies this property is called Developable
surface.

e Tangent plane of Developable surface depends upon only one parameter.

QUESTION: Find the condition that the given surface is developable.

SOLUTION: Let z = f(x, y) be an equation of surface then the equation of tangent plane at
i — (X -2 _9F
P(x,y,z) willbe Z —z= (X — x) P Y —v) %

Tangent plane of developable surface depends upon only one parameter. There must be some

. oF oF . .
relation between — and 3 which may be written as

0x
aF oF . .
Pyl (5) e e e (D) where ¢ is constant.
. . d2F 92F ..
Diff. (i) w.r.to X’ = Fyeial 2 (axay) IR €15
. . . 9%F 0%F 9%F 1 ( 0%F . 0%F _ 9%F
Diff. (i) w.rto 'y = ayax =~ ¢ (6y2) = 37— (axay) e e (TID) ayox — 3735
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oo I 0%F 9%F _ 9%F\ 1 ([ 9%F
Multiplying (ii) and (iii) = oy = ¢ (axay)'g (6x6y)

2
) which is the condition for the given surface to be developable.

d%F 0%F _ (aZF
dx2 9yz ~ \9xdy

QUESTION: For the surface xy = (z — ¢)? prove it is developable.

SOLUTION: Given surface xy = (z — ¢)?

=>\/x_yzz—c=>2=\/x_y+c=>2=f(x,y)=\/x_y+c

Now &£ = 2 y similarly F_ 1y =8P Y g ZE o X
I 2d%v " v : 9x2 3 vz 3
dx 2\/xy ay 2+/xy dx 4(xy)2 ady 4(xy)2

d%F - 1 —Xy+2x x

Also _ y _ Yy Yy — Yy

- 3 - 3 3
XY 4ayyz WY aGy)z aGy)z

2

. 9%F 0°%F d%F
Now to prove surface is developable use = — = 529y

ox2 6_312 -
2 2 2 25,2 25,2
4(xy)2) \4(xy)z 4(xy)2 to(xy)®  16(xy)
EDGE OF REGRESSION OF A DEVELOPABLE SURFACE: The edge or regression of a developable
surface is the locus of intersection of consecutive generators and are touched by each

generator.

OSCULATING DEVELOPABLE: The envelope of the osculating plane is called osculating
developable.

QUESTION: Fid the osculating developable of the circular helix 7 = (aCos0, aSin8, b@)

SOLUTION: For osculating developable we have [(ﬁ - F), £ ﬁ] =0......(0)
. - . rd -7 df') df') dae . 12
Given 7 = (aCos@,aSin0,b0) => t =7r' = % s L (—aSind,aCos6,b)0o
and t' = % = %.% = (—aCos6,—aSind,0)(6")? = Kn = (—aCosh,—aSinb,0)(68")?

1
= 7 = - (~aCos6, ~aSing, 0)(6")?

X —aCos6 Y —-bSin0 Z — bO

()= [(F-7), & ] =0= | —aSind6'  aCoso' b6’ |
—aCosHT —aSinHT 0

n3 "3 3
— (X — aCos6) [0 + abSin® %] — (Y — bSin®) |0 + abCoso %] +(Z - b0) [azsmze% +
3
aZCoszeﬂ] =0
K
—

n3 "3 "3 "3
XabSin6 % — a’bCosfSind % —YabCos6@ % + ab?SinfCos0O (GK) +

N3 N3
a’(Z — bb) [Sin29%+ COSZH%] =0

1)3 9' 3
— (Y — bSi
e ( bSinB)abCosO X

= (X — aCos0)abSinb +a?(Z-b6)=0

n3 "3
= (X — aCos0B)bSinb % — (Y - bSinG)bCosG% + a(Z — bO) = 0is required equation.
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THEOREM: Prove that the generator of the osculating developable of a twisted curve is tangent
to the curve.

PROOF: The equation of the osculating plane at any point ‘P’ with 7 on the curve is plane
(I_f — 7). b=0.... (i) where R is fixed.

Diff. (i) w.rto ‘s = (R—#).b'+ (0—#).b =0 = (R — 7). (~ti) + £.b = 0
= ()R -7)A+0=0=1#0= (R—7).A=0.occo..... (i)

Now characteristic of surface is given by Equations (i) and (ii) is the of rectifying plane. The
characteristic of generator is the intersection of osculating plane and rectifying plane and it is
tangent to the curve at that point ‘P’

Hence generator of osculating developable are tangent to the curve.

THEOREM: Prove that the edge of regression for osculating developable is curve itself.

PROOF: For edge or regression (R — ).7 = 0 where R is fixed.
Diff. w.rto ‘s’ = (R —#).7' + (0 —#).7i =0 = (R —#).(¢th — Kt) + (0 — £).71 = 0
= [¢(R-7#).b—K(R—7).t]-t.Ai=0= [t(R—7#).b—K(R—7).t]-0=0

= [0-K(R-7).{]-0=0 «(R=#).b=0
K+0= (ﬁ —#).£ =0 ......... ... (iii) Also from previous result (ﬁ - F)B = 0and

(ﬁ —#).7 = 0 shows that (ﬁ - 7“’) is perpendicular to £, 7 and b which is not possible. Hence

= (ﬁ -7H)=0= R = # = Edge of regression is curve itself.

THEOREM: A point on the edge of regression corresponding to a point P(7) on the given

. = K(tt+KDb
curveisgivenbyR =7 + #
K't—KTt/

PROOF: For edge or regression (R — ). = 0..... (i) where R is fixed.

Diff. w.r.to s = (R —7).7' + (0 —#).i=0= (R—7).(tb - Kt) + (0 —£).7 = 0

= (R—7).(tb—Kt)—ti=0= (R—7#).(tb—Kt) -0 =0

= (R—7).(tb—Kt) =0

Diff. w.r.to ‘s’ = (R — 7). (tb’ + t'b — K't — K') + (0 — ). (th — K£) = 0

= (R—7).(cb' +T'b—K't—Kt') —tt.b+ Kt.t =0= (R—7).(tb' +t'b—K'E—KE') + K = 0

= (R-7).(-t?R+1b—K't—K*R) +K =0

= —12(R-7).4+7(R-#).b—K'(R—7).t-K*(R-7)7i+K=0

= 0+7'(R—7).b—K'(R-7).t—0+K=0= (R—7#)[t'b—K't] + K = 0..... (ii)

since (B —7) Il (th — k&) = (R = 7) = I(th — Kf) = R = 7 + I(ch — K{)

(i) = U(th —KE)[t'b—K't] +K=0= l[[{'K —K't] +K = 0= | = K/[t'K — K'1]
7 4 K(t+KD)

= R=7+—;
K't—Kt/
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S N

CURVILINEAR COORDINATES AND FUNDAMENTAL MAGNITUDE

R,

LENGTH OF SIMPLE CLOSED CURVE: The length of simple closed curve 7 of a period a is defined
asL = [|I7'(0)lldt

FIRST FUNDAMENTAL FORM OF THE SURFACES OR FIRST ORDER MAGNITUDES: Consider tow
Neighboring points on the surface with position vectors 7 and 7 + d7 corresponding to the

. - - - a_) 6_)
parameters u,v and u + du v + dv respectively Then7? =7(u,v) = dr = a—;du + a—;dv

e
=

P,

~

As the two points are adjacent on the curve passing through them, the length ds of the arc joining them
is equal to their actual distance |d7| apart. Thus ds? = |d7|?

We shall use suffix “1” to indicate the partial differentiation w.r.to ‘u’ and suffix “2” to indicate the

particular differentiation w.r .to ‘v’ hence

T1 —_ Tu —a,,f‘z —Tv —5,,7‘11 . T‘uu —ﬁ,,rzz —Tvv —a?,,rlz —Tuv = dudv and so on.

We note that the vector 7 is along the tangent to the curve v = constant at the point 7 and
the vector 7, is along the tangent to the curve u = constant at the point 7

" "3
Now ds? = |d7|? = (Z—; du + g—;dv) = (F,du + dv)? = 2 du? + 7, °dv? + 27 7 dudv

. . > 2 - 2
Then we will write#,” = E,,7," = G and F = 747,

Then ds? = |d¥|?> = Edu® + Gdv? + 2Fdudv this equation is called the fundamental form
of the first order. Where E,F,G are called fundamental magnitudes of first order.

We ma also use =T _af_aa_a F g =0_2% o
y 17U 7oy " gu TWI2T W T gy 7T gy Y

- _ = _azf_ach_ - _ = _aZf_ 20'_ - _ = _821?_820'_

M1 =T = 502 = 552 = OwwnT22 T Tow = 52 = 52 = O T12 = Tuw = 550 = 55, = w
—>2_ _ _ 2 —>2_ _ _ 2 _ 23 _

Then 7" = E = 0.0y = |loll*,, 72" = G = 0,.0, = ||l6,]|* and F = |1, = 0,,. 0,

QUESTION: For a(u, v) find first fundamental form of the surface.

SOLUTION: Suppose 7(t) = a(u,v) = 7'(t) = Agy, + A0y, ... ... (i)
= 7.7 = (Aoy + A0,). (Ao, + A0,) = 1%(0,.0,) + 2Au(oy.0,) + u?(0,.0,) .......(A)

Where E = .0, = |loyll%,G = 0,.0, = ||l6,]|? and F = g,.0,

And d7 = o,du + 0,dv ... ..........(iQ) i.e. total differential

Comparing (i) and (i) A=duand u=dv

(A) = 7.7 = Edu® + Gdv?® + 2Fdudv  this the 1 fundamental form of the surface.

Then length of curve of first fundamental formis L = foallf‘"(t)lldt

Since = 7.7 = ||#'(H)||? = Edu® + Gdv? + 2Fdudv

a a
== j 17 (©)|ldt = j VEdu? + Gdv? + 2Fdudvdt
0 0
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PROPERTIES:

i. H=+VEG- F?
Iet EG == FZ == Flz.Fzz = (7_21.7_22)2 ES (|F1||772|COSW)2 = |771|2|F2|2C052W = 7:)12F22C052W
where ‘W’ is the angle between 7; and 7,

2,2 2,2 2,2 252
Now EG — F2 = #°%,° — #,°%, Cos?*w = 7%, (1 — Cos*w) = #,°%,"Sin*w = H? (Constant)

= H = VEG — F? where H is any arbitrary positive constant.

ii. ds=+VEdu

Since ds? = |d7|? = Edu? + Gdv? + 2Fdudv then the length of the parametric curve
v = constant is obtained by putting dv = 0 so we get ds? = Edu? = ds = VEdu

iii. ds=+vVGdv

Since ds? = |d#|? = Edu? + Gdv? + 2Fdudv then the length of the parametric curve
u = constant is obtained by putting du = 0 so we get ds? = Gdv? = ds = V/Gdv

iv.  Now we find the unit vectors in the direction of 7 adn 7,. For this let @ and b be unit
tangents to the parametric curves v = constant and u = constant then

G- =tz _ T2
R EMLEET
v. the two parametric curves through any point of the surface cut an angle w such that

i, T T2
—_ = = = — COSW = —
b| 1.1 VEG  VEG VEG

-

> O T 2117 e . d@xb __JFXyc __Tixt, _ H , _H
d x b =|d||p|Sinw = Sinw = B 1= Ve Ve = Sinw = —
H
Si J5¢ H H
now Tanw = —— = YE& = Z — Tanw = =
Cosw — F F
VEG
. F . . . .
vi. ForCosw = N that the parametric curves will be cut at right angle at any point if and
only if w = 90°

nOWifconSiderF=0=>COSW=L=0:>COSW=0=>W=900
VEG

hence the curves are orthogonal.

Now if the curves are orthogonal then C0s90° = 0 = L =F=0
VEG

vii.  Surface is plane surfaceif F = 0,.0, =0

QUESTION: Find the first fundamental form of the surface for plane o(u, v) = d + Up + vq
where p L g both are unit vectors.

SOLUTION: o(u,v) =d +1ip + vq = 0, = p,0, = q
ThenE =o,.0,=|Ipl?=1,,G =0,.0,=|qll?=1and F =o6,.0,=pq=0 ~plg

For 1% fundamental form we have Edu? + Gdv? + 2Fdudv = du? + dv?
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QUESTION: Find the first fundamental form for the surface of revolution
o(u,v) = [f(w)Cosv, f(u)Sinv, g(u)] assuming, f(u) > 0 Vu

SOLUTION: o (u, v) = [f(u)Cosv, f(u)Sinv, g(u)] where f'> + g'’> =1+ U = (£,0,9) is
unit speed curve.

= o0, = [f'(w)Cosv, f'(w)Sinv, g'(w)], o, = [—f (w)Sinv, f (u)Cosv, 0]

ThenE =0,.0,=f"*+9'°=1,,6 =0,.0, = f2(uw) and F = g,.0, = 0

For 1* fundamental form we have Edu? + Gdv? + 2Fdudv = du? + f?(u)dv?
Special Case: Takeu = 6,v = ¢, f(0) = Cos6,g(0) = Sinb

Then we have Edu? + Gdv? + 2Fdudv = d6? + Cos*0dp?

QUESTION: Find the first fundamental form for general cylinder o(u,v) = 7#(u) + vd where ‘7’
is unit speed curve and d is unit vector.

SOLUTION: o(u,v) =7(u) +va = o, =7'(u),0, = d

ThenE =o,.0, = [ WI*=1,,G6 =0,.0, = ||d||? =1and F = 64.0, =0
For 1* fundamental form we have Edu? + Gdv? + 2Fdudv = du? + dv?
PRACTICE: Find the first fundamental form for the following surfaces;

i. o(u,v) = (SinhuSinhv, SinhuCoshv, Sinhu)
ii. o(u,v)=(Coshu,Sinhu,v) ii. o(wv)=wvu*+v?
iv. owv)=w—-v,u—vu®+v?

QUESTION: on the surface of revolution x = uCosv,y = uSinv, z = f(u) write down
fundamental form of first order. Show that the parametric curves are orthogonal.

SOLUTION: 7 = [uCosv,uSinv, f (u)]

or or
=7 = 3= [Cosv,Sinv, f'(W)] = 7, = Fi [—uSinv, uCosv, 0]

= E=%"=Cosv+Sin*v+f?=1+f?=G6=7" =uSin®v + u?Cos?v = u?
= F = 7,.7, = [Cosv, Sinv, f'(u)]. [-uSinv,uCosv, 0] = —uCosvSinv + uCosvSinv = 0
= F = 7,.7, = 0 show that both vectors are orthogonal.

Now for the fundamental form of fist order ds? = Edu® + Gdv? + 2Fdudv
=ds?=(1+ f’z)du2 + WH)dv? + 2(0)dudv = ds? = (1 + f’z)du2 + u?dv?

DIRECTION ON A SURFACE: Let 7 = 7(u, v) be a surface and let (du, dv) and (6u, 6v) denote
the change in 7 in two directions then

dr = fdu + 7%dv ..o () and 87 = F0U + 150V e e (1)
= d7. 67 = 7. hdubu + 7. % dudv + 7.7, dudv + 7,. 7, dvév

= d7. 87 = Edudu + F(duédv + dubv) + Gdvdv
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Now write |d7| = ds also |87| = 6s and consider W is the angle between two directions then
dsésCos¥ = Edudu + F(dudév + dudv) + Gdvév

The two directions are perpendicular if CosW¥ = 0

We also note that |d7 X 67| = ds&sSin¥W
= |(idu + 7 dv) X (16U + 7,6v)| = dsésSin¥ = |#| X 1,||dudv — dvéu| = dsdsSin¥

= H|dudv — dvéu| = dsdsSin¥

STANDARD UNIT NORMAL TO THE SURFACE: A surface ‘S’ defined by a mapping 6: U — R3

where U € R? containing a point P then standard unit normal to the surface is defined as
I—V" — ‘Fi — oy X Oy

o llow X oyl|

OR The normal to the surface at any point is perpendicular to every tangent line (#; and 7,)
and its direction is along |# X 7| Thus = 7 = 2 = X172
|7y X7 H

It is clear that (7,.7) = 0 also (7,.7) = 0 and we also get the following properties

1. [?l ,?1 ) Fz] = 1_1). (Fl X Fz) = T_i. T_iH =H

- — - F XF 1, - - 1 > o\ N 1 - -
2. I Xn=13X % = ;[7”1 X (ry X 7,)] = E[(T1-7"2)7"1 - (A.1)R] = ;[Frl — E7]

- — - 74 XT 1> - - 1 S > o\ 1 - -
3. HXA=ThX——2= T [7, X (ry X 7p)] = E[(Tz-rz)ﬁ — (1. 71] = e [GT, — F13]

SECOND FUNDAMENTAL FORM OF SURFACES OR FUNDAMENTAL FORM OF SECOND ORDER:

Let o: U — R3 is a parameterization of a surface. Then the 2" fundamental form is defined by
the formula Ldu? + Ndv? + 2Mdudv
Where L = 7_1). Fll = T_i. O-uu M = 1_1). FIZ = ﬁ. O-uv N = ﬁ. ?22 = ﬁ. O-vv

The second order derivative or 7 with respect to ‘u’ and ‘v’ are denoted by

. . %7 . . %7 . . 0%7
1 =N = U2 =O0yy T2 =T = T = Oy T2 =Ty = Ay = Ow

Then “the fundamental magnitude of the second order is the resolved parts of the vectors
Ti1, Tap, Typ inthe direction of normal to the surface” and they are denoted by

L =77L).711 =T_i.0-uu M=ﬁ'F12 =T_i.0-uv N=’Fi.?22 =T_l>.0'm,
Also keep in mind the relation T? = LN — M? which is not necessarily positive.
We can express scalar triple product by using L,M and N as follows;

1. [ , Ty, Ti4] = X7p).7, = Hi.7y; = HL
2. ['r]_ , 7'2, ?12] = (?1 X Fz).?lz = Hﬁ 712 = HM
3. [4 , Ty Topl = (1 XTp). 7 = HA. Ty, = HN

THINGS TO REMEMBER:

Let P(u, v) be the point of contact with parameter values ‘u’ and ‘v’ and 7 the unit normal.
Then the position vector of a neighboring point Q(u + du, v + dv) on the surface has the

values 7 + (7 du + 7,dv) + % (F1du? + 75,dv? + 27 ,dudv)

Also the length of the perpendicular from ‘Q" on the tangent plane at ‘P’ is the projection of the
vector ’ﬁ' on the normal at ‘P’ and is therefore equal to

dSz = 7_1) (Fldu + dev) + %ﬁ (Fllduz + Fzzdvz + 2?12dudv)
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As7i L 7 also 71 L 7, thus the first expression vanishes and the net result so obtained is
d52 = %T_l). (Fllduz + Fzzdvz + Zflzdudv) == %(T_i. Fllduz + ﬁ. Fzzdvz + 27_1). Flzdudv)

ds? = %(Ldu2 + Ndv? + 2Mdudv)

Which is the length of perpendicular F(j and is called second order magnitude. Or Second
fundamental form. Where L,M,N are called the fundamental coefficients of Second order.

EXAMPLE: Consider the plane o(u, v) = d + up + vq where d is a point of plane and p, g are
constant unit vectors parallel to the plane and perpendicular to each other then show
Ldu? + Ndv? + 2Mdudv = 0

SOLUTION: o(u,v) =d+up+vq§ = 0, =p = 0yy = 0,0, =4 = 0,, =0alsoog,, =0

-

— oy X O; —)X — — — — — —
Andn = ”auxa”” = ”gxg,”thenL =N.0y, =N.0=0,M =n.0y, =n.0=0,N =n.0,, =n.0=0
u v

= Ldu? + Ndv? + 2Mdudv = 0 after putting the values.

> Compute 2™ fundamental form of elliptical paraboloid ¢(u, v) = (u, v, u? + v?)

EXAMPLE: Compute 2™ fundamental form of a surface of revolution
o(u,v) = [f(w)Cosv, f(w)Sinv, g(u)]

SOLUTION: o(u,v) = [f(w)Cosv, f(u)Sinv, g(u)] where we assume that assuming
f@)>0vVuand f?+g'>=1-U- (f,0,g) is unit speed curve.

= oy, = [f'(w)Cosv, f'(W)Sinv, g'(w)] = oy, = [f"'(w)Cosv, f"'(w)Sinv, g" (u)]
o, = [—f (W)Sinv, f (u)Cosv, 0] = o, = [—f(u)Cosv, —f (u)Sinv, 0]
also gy, = [—f'(W)Sinv, f'(u)Cosv, 0]
{ h k
=0, X 0, =|f'(WCosv f'WSinv g (Ww)|=fl-g' W)Cosv,—g'(W)Sinv, f'] also |lo, x o,|l = f
—fw)Sinv  f(u)Cosv 0

oy X0y, f[—g,(u)COSv,—g'(u)Sinv,f’]

Now 71 = =
lloy X ayll f

= [—g W) Cosv, —g'(W)Sinv, ']
thenL =n.0y, =fg —-fg, M=n.o0,=100=0, N=in.o,=/fg

= Ldu? + Ndv? + 2Mdudv = (fg" - f g)du? + (fg")dv? after putting the values.

QUESTION: Calculate fundamental magnitude of first and second order for the surfaces
x =uCose, y =uSing, z = ce where uadn ¢ are parameters.

ANSWER: 7 = (x, y, z)= (uCosg, uSing, c@)

=7 = s_z = [Cosp, Sing, 0]=71, = % = [-uSingp, wuCosp, ]

Now the fundamental coefficients of first order are 7, = E,, %, = G and F = 7,7,

= E =% = Cos%p + Sinp = 1 = G =7 = uSin%p + uCos?¢p + ¢ = u? + 2
= F = 7.7, = [Cos, Sing, 0].[-uSing, uCose, c] = —uCoseSing + uCospSing =0
= F = 7#,.7, = 0 show that both vectors are orthogonal.

Also H2 =EG—F?=1(u?+¢?) -0 =u? + ¢?
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71 X7y o Tyxi,

Also unit normal to the surfaceis 1 = —=>=n =
|7y X745 H
. i j k
— 7= [cSing,—cCose, u] =7 X7 =| Cosp Sing 0
H —uSing uCosp ¢
Now the fundamental coefficients of second order are 71, 752, 712
For7 = (x, y, z) = (uCosey, uSing, c@)
L, % N .
=Ty == (0, 0, 0) DTy = o= (—uCosp, —uSing, 0)
> %7 .
=Ty =5 = (—=Sing, Cosp, 0)
So the second order coefficientsare L =1n.7;, =0 M =n.7j, = —% N=n7,=0
2 2 c 2 c2
And T2 = LN - M2 =0—(-5) =5
H H
QUESTION: Calculate fundamental magnitude of first and second order for the surfaces
x =a(u+v), y =b(u+v), z =uv where uadn ¢ are parameters.
ANSWER: 7 = (x, y, z)=(a(u+v), b(u+v), wuv)
> ar > or
ﬁrl—a—[a, b, v]=>r2—a—v—[a, b, u]
Now the fundamental coefficients of first order are 7,° = E,, %" = G and F = 7,7,
= E=%"=a®+b?+ v? =G6=%" =a’+b%+u?
=>F=%#.%=[a, b, v].[a, b, u]l=a%?+b*+uv
Also H2 = EG — F? = (a? + b> + v?)(a®? + b* + u?) — (a®* + b?> + uv )?
= H? = EG — F? = a?u® + b*u® + a®v? + b*v? — 2uvb? — 2uva?
Also unit normal to the surface is 7 = % n = l;i—i;; =T XT, = ; {; :
a b u
— 7= b(u—v)i+a(v—u)j+0k
Vb2(u-v)2+a2(v-u)?
Now the fundamental coefficients of second order are 7y4, 752, 712
For7 = (x, y, z)=(a(u+v), b(u+v), uv)
> %7 > %7 > 047
=T = Tz = (0, 0, 0) = Ty = Fr) = (0, 0, 0) =T = PP = (0, 0, 1)
So the second order coefficientsare L=n.79, =0 M =n.7, =0 N=1.7,=0

And T2 =LN —-—M?=0

QUESTION: Taking x,y, as parameters, calculate the fundamental magnitudes and the unit
normal to the surface 2z = ax? + 2hxy + by?

2 2
ANSWER: Given? = (x , y , z) = (x |y, Qxir2nayiby )

2
2ax+2hy
2

=>F1=g—i=(1,0, )= .0, ax+hy)

> a7 2hx+2by
= T, =— _—
ay

2

=(0,1, )=(0,1,hx+by)
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Now=E =7"=1+0+ (ax + hy)? = 1 + (ax + hy)?
=G6=%"=0+1+ (hx +by)? =1+ (hx + by)?

= F =7.7% =0+ 0+ (ax + hy) (hx + by)

Also H2 = EG — F? = (ax + hy)? + (hx + by)? + 1

Also unit normal to the surface is 7 = o2 = 7§ = 2.
|7y X7 |
i j k
— _ [(-ax-hy), —hx-by, 1] _ [(-ax—hy), —hx-by, 1] =7 X =la b v
=n= =
J(ax+hy)2+(hx+by)2+1 H a b u
Now the fundamental coefficients of second order are 7, 753, Ti2
2 2
Fori=(x , vy, z):(x , Y, ax TRy +2hxy+by)
2
5 _ 0% _ 5 _ 0% _ S _ 0%
=11 = ﬁ = (0, 0, a) =Ty, = a—yz = (0, 0, b) =Ty = % = (0, 0, h)
So the second order coefficients are L = 1.7y, = [(Cax—hy), —hx-by, 1] 0, 0 a)=2
H H
M =iy, = (C@hy), “heby 11 g g py =2
H H
o __ [(-ax—hy), —hx—by, 1] _b
N == n.rzz - H '(0' O; b) - H
QUESTION: For the surfaces x = uCosg, y =uSing, z = f(u) where uadn ¢ are
3
parameters. Then show that T? = %
ANSWER: 7= (x, vy, z)=(uCosp, uSing, f(u))
== (Cos Sing, f'(w) =+ = _ [—uSin uCos 0]
1 ou (pl ¢I 2 a(p §01 (pl
Now the fundamental coefficients of first order are 7,° = E,, 7" = G and F = # 7,
= E=%"=Cos2p+Sinp+[f WP =1+[f'1? >E=1+[fT?
= G =7 =u?Cos?¢ + u?Sin’p + 0 = G = u?
= F =7.7% = [Cosp, Sing, f'(w)].[-uSing, uCose, 0]
= —uSingpCosp + uSinpCosp +0 = F =0
Also HE=EG—F?*=1+[f'?)@?)-0=H? =u*(1 + [f']?)
Also unit normal to the surface is 71 = 22 = 7} = ——2.
|7y X7
i j k
—n= u[Cosof', —Singfr, 1] =% xth=| Cosp Sing f'(w)
- H —uSing uCos@ 0

Now the fundamental coefficients of second order are 7, 755, 712

Fori=(x, ¥, z)=(uCosp, uSing, f(u))

:>—> _ﬁ_ 0 O r =>—> _BZF_[_S. C 0]
=32~ (o, , f) T2 = 902 ing, 059,
=7, = 01 _ (—uCos —uSin 0)
1z = dudp ® 'z
. . — o> n — > — o> 2f1
So the second order coefficients are L =n.rj; = % M=n7r,=0N=nr,= %

" 2f! 3’//
And T2 = LN —M2 =Y_ ¥T _ g2 211"
H H H
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QUESTION: For the surfaces x = uCosg, y =uSing, z = f(¢) where uand @ are

parameters. Then show that T? = %

ANSWER: 7= (x, vy, z)=(uCosp, uSing, f(¢))

=7 = Z—z = (Cose, Sing, 0) = 7, = % = [—uSing, uCosp, f'(p)]

Now the fundamental coefficients of first orderare 7, = E,,%,° = G and F = #7,
—=E=7"=Cos?p+Sinp+0=1 =E=1
= G =7%" =u?Cosp + u?Sin%g + [f'(9)]> = G = u® + [f'(¢)]?

= F =7,.7% = [Cosp, Sing, 0].[-uSing, uCose, f'(p)]
= —uSingCosp + uSinpCosp + 0 = F =0

Also H> = EG — F?> = 1(w? + [f'(¢)]?) — 0 = H? = u? + [f'(p)]?

. . — F XF — F XF
Also unit normal to the surfaceis 1 = —= =1z
|7 X7 |
: ' ' t J k
_,  [Sinef', —Cosef’, u] =7 xi=| Csp Sing 0
= n= —uSing uCosp f'(p)

H

Now the fundamental coefficients of second order are 7, 752, 712

Forf=(x, y, z)=(uCosp, uSing, f(p))

- = —_—= e — =M = —
i = o= (o, o0, 0 o2 = 5.7 (—uCose, uSing, f')
=T, = o [—Sing Cosep, 0]
dudg ! ’
. . - > - - fr - - ufn
So the second order coefficientsare L =n.r,;, =0 M =n.1}, = —4 N =n.r,, = 0

And T2=LN—M2=0.ﬂ—(—ﬂ):>1~2:£
H H H

QUESTION: On the surface generated by binormal of twisted curve, the position vector of the

current point may be expressed as 7 + ub where 7 and b are functions of ‘s’ take ‘v’ and's’ as
parameters and find fundamental magnitudes.

ANSWER: Let R be the position vector of any point on the surface. And R=#+ub

= R > = > = _9OR _dR
- = — = - = e = — = —
Ry P 0+b Ri=b R, s s

where 7 is perpendicular normal to the curve.

dE - g = i -
+uE=r’+ub’=>R2=t—uTn

Now the fundamental coefficients of first order are 7,° = E,,7,° = G and F = #,7,
- 2 - - 2 2

—E=R, =b.b=bh* =E=b
- 2 - — - — e g

= G =R, =(t—umh)(f —urit) = £ + u?t*1* = G = 1 + u’r?

=F=R,.R,=0—wbi=F=0

. . . I_?) X}_?) - I_?) XI_?) Ti"‘u‘tz
Also unit normaltothe surfaceis n =+ == —n=
H |R1 xR, vV 1+u272

Now the fundamental coefficients of second order are ﬁn, ﬁzz. ﬁn
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5, T3 9%R = 8%R

R — = —= = = B = —m
ForR=r+ub= Ry; = P 0 =Ry, Si9s b ™m
=4 az_' rd — — > = — i 2 —
= Ry, = a_sf = (t —u(tn’ + t’n)) = Kn — ut(tb — Kt) — ut'n = K1l — ut®b — utKt — ur'n

= R,, = (K — ut)it — ur?b — utkt

So the second order coefficientsare L =7.R;; =0 M =#.R, = —%
N 2.,2_ 2.2 2 2
N=iRpy=""""""" And T?> = LN - M? = 0. — (-2)

T
:)Tzz—
HZ2

QUESTION: When the equation of the surface is given in Mango’s form z = f(x,y) ; x,y may

be taken as parameters. Let ‘P’, ‘Q’ be derivatives of ‘Z’ of first order and let ‘r’,’s’,’t’ be those

_g2
of second orders then show that T? = rtst Also deduce that T> = 0 for a developable

surface.

0z _ 0%z _ 0%z _ 0%z

ANSWER: Given thatz = f(x,y) = p =Z—i, q =5 r=—=, =57 s = 3oy
S > or 0z > or 0z
r=(x' vy, Z)=r1=a=(1; 0,a=p)$rz=5=[0: 1: £=q:|

Now the fundamental coefficients of first orderare 7, = E,, %, = G and F = #7,

$E=1_")12=1+p2 $G=1+q2$F=pq
Also H? = EG — F? = H? = 1 + p% + ¢°

. o — Ty XT — T4 XT
Also unit normal to the surfaceis 1 = =2 =22
H |T'1><T2|
it ]k
. [_p, —q, 1] =#xhb=[(1 0 p
= n= 0 1 ¢q
p:+qg®>+1
Now the fundamental coefficients of second order are 7, 752, 712
Forr=(x, 'y, z)
N 927 3 %7 _ %7
=T =32 0, 0, 1) =1y,= a2 0, 0, t) =r,= xdy (0, 0, s)
. . - o> T - - S - - t
So the second order coefficientsare L =n.7q; = o M=nr, = o N =n.75, = o
2 2 r t s? 2 _ rt—s? .
And T*=LN-—M* " =——-——==T° = —— ..uen (i)
H'H H? H?2

Now for a developable surface

92z \%2 _ 9%z 0%z 2 2 , 2
= —— = - — = - - =
(axay) ox2 9y S rnt=rt—s =0=>{)=>T"=0

QUESTION: Show that the curves du? — (u? + ¢?)d¢@? = 0 form an orthogonal system on the
surfacesx = uCosp, y =uSing, z =c@ where uadn ¢ are parameters.

ANSWER: 7 = (x, y, z)= (uCosgp, uSing, c@)

>
-

=7 = g—i = (Cosep, Sing, 0) =7, = Z—; = [—uSing, uCosp, |

Now the fundamental coefficients of first order are 7,° = E,,7,° = G and F = #,7,
= E=%"=Cos’p+Sin*p+0=1 =E=1

= G =7" = u2Cos?p + u?Sin%p + ¢* = G = u® + ¢
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= F =7.7%, = [Cosp, Sing, 0].[-uSing, uCosp, c]|=—uSinpCosp + uSingpCosep + 0
=F=0

Also the directions are given by du? — (u? + ¢?)d@? = 0 = du? = (u? + c?)dg?
du)? d . ) .
= (ﬁ) =W +c?) = ﬁ =J (W% +c?) ........(0) also = ﬁ = —J@Z ¥ c2) ... (iD)

N du a e pdu d d
the two directions —, == on a surface are orthogonal if EZ=Z4F (ﬁ + i) +G=0

do’ d¢ dp d¢
now putting values in L.H.S.
du du du | ou - _ Z 1 2 21 2 2, .2
=>E(p'6¢)+F(d(p+6(p)+G_ 1.4/ (u? + c2)y/ (u? + c2) + (u? + ¢?)
du ou ou — —(y2 4 o2 2, 2y —
=>Ed(p. +F((p+a¢)+6— wu*+c)+ W +c“)=0
= E—.— + F( + a_u) + G = 0 Thus two directions are orthogonal.
de dp 99

QUESTION: Show that the differential equation of the orthogonal projection of the family of
curves given by Péu + Qév = 0 where ‘P’ and ‘Q’ are function of ‘u’ and ‘v’ is
(EQ — FP)du+ (FQ — GP)dv =20

ANSWER: The family of the curves is given by Péu+ Qv =0 ............... ()
Diff.w.r.to ‘v’ =>P +Q —0:>8_u:_9
ov P
Now the condition for two curves to be orthogonal is E (d—u 5—”) +F (d— + —u) +G=0
dv 6bv 5
du Q du _Q B . 3% B O
ﬁE(E'(_F))JrF(E_F)J’G_O P

= —FEQdu + FPdu — FQdu + GPdv =0 = (EQ — FP)du + (FQ — GP)dv = 0 Required.

QUESTION: Find the tangent of the angle between two directions on the surface determined
by the equation Pdu? + Qdudv + Rdv? = 0

(OR) if W is the angle between two directions on the surface determined by

Pdu? + Qdudv + Rdv? = 0 then show that Tan¥ = HY QPR
ER—EQ+GP
ANSWER: The given equation is Pdu? + Qdudv + Rdv? = 0
=>P( )+Q( )+R—O =~ dividing by dv?
Let (d ) and ( ) be the roots of the given above equation then
d ov
du  bu _  Q , _du éu _R ..

sum of roots = T, = T (i) Product of roots = ey P (i)

du Su _ /Q2?-4PR

Dif ference of roots = — 5= .

.. (iii)
Now we know that if ¥ is the angle between two directions on the surface then
dsésCos¥ = Edudu + F(dudv + dvéu) + GdvSv and dsdsSin¥ = H(dudv — dvdu)

H(dubv—dvéu)
Edubu+F(dudv+dvdu)+Gdvdv

Hence Tan¥ =

(&5

= Tan¥ = 520w ~ dividing by dvév
Edv v (dv+8v)+G
({@=r
P e e H\QZ—4PR

= Tan¥ = ~ using (i), (i)and (iii) = TanV¥ =

ER—-EQ+GP
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QUESTION: Prove that if 8 is the angle between a direction on a surface and the curve

1 du dv . H (du
u = constant then Cosf = \/_E(FE + GE) and Sinf = \/_E(X)

ANSWER: We know that if d7 is the displacement corresponding to the increments du, dv
and 87 is the displacement corresponding to the increments du, 6v then

dr = fdu + 7%dv ..o (i) and 87 = F0U + 150V e en el (B

Then angle 8 between two directions is

dsdsCosO = Edudu + F(dudv + dvéu) + Gdvdv ... ... ... ..... (iii)
and  dsdsSinf = H(dudv — dvdu) ... ... .. ..... (iv)

now if the displacement is in the direction u = constant then Su = 0
(ii) = 67 = 6v = |67 = |7;L|6v = 6s = VGV

(iii)) = dsVGSvCosh = 0 + F(dudv) + Gdvsv = Sv(Féu + Gdv)

1 d d
— dsvGCosh = (Fdu + Gdv) = Cos6 = TE(Fd—Z‘ n Gd—’s’)

(iv) = dsVG6vSing = H(dudv — 0) = dsVGévSind = H(dudv) = ds\VGSin = Hdu

= Sinf = \%(‘;—Z)

QUESTION: If y is the angle between a direction on a surface and the curve u = constant then
find Coty

ANSWER: We know that if d7 is the displacement corresponding to the increments du, dv
and 87 is the displacement corresponding to the increments du, 6v then

dr = fdu + 7dv ..o () and 87 = HOU + 50V e (D)

Then angle 8 between two directions is
dsésCosy = Edudu + F(dudv + dvéu) + Gdvdv ... ... ... ..... (iii)
and  dsdsSiny = H(dudv — dvéu) ... .. .. ... (iV)

now if the displacement is in the direction u = constant then u = 0

(ii) = 67 = H6v = |67 = |;|6v = 6s = VG v

(i) = dsVGvCosy = 0 + F(dudv) + Gdvév = 6v(F5u + Gdv)

= dsVGCosy = (Fdu + Gdv) = Cosy = =(F -+ 6%))

(iv) = dsVGévSiny = H(dudv — 0) = dsVGévSiny = H(dudv) = dsVGSiny = Hdu
= Siny = \/_(du)

du dv
Then Coty = i?:j(( = \/—( d(sai) z) = Coty = %(F + G%)
VG\ds

QUESTION: Prove that if 8 is the angle between a direction on a surface and the curve

= _ (gl g P (1
Ev—constant then Cos@—ﬁ(E dS+FdS) and Sinf = \/E(ds)

ANSWER: We know that if d7 is the displacement corresponding to the increments du, dv
and 87 is the displacement corresponding to the increments du, 6v then

dr = Hidu+ 7dv ..o (i) and 87 = F0u + 1560 e en o (D)

Then angle 8 between two directions is

dsdsCosO = Edudu + F(dudv + dvéu) + Gdvdv ... ... ... ..... (iii)
and  dsdsSinf = H(dudv — dvéu) ... .. .. ... (iV)

now if the displacement is in the direction v = constant then v = 0

(i) = 67 = H6u = |67| = |#|6u = 6s = VESu
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(iii) = dsVESuCos® = Edudu + F(0 + dvéu) + 0 = Su(Edu + Fdv)

1 du dv
= dsVECos0 = (Edu + Fdv) = Cos6 =~ (EZ + F;)

(iv) = dsVESuSin = H(0 — dvéu) = dsVESuSind = —H (dvdu)

dv
= dsVESind = —Hdv = Sin@ = _\/_—(E)

QUESTION: Prove that if y is the angle between a direction on a surface and the curve
v = constant then find Coty

ANSWER: We know that if d7 is the displacement corresponding to the increments du, dv
and 87 is the displacement corresponding to the increments du, 6v then

dr = Hidu+ 7dv ... (D) and 87 = F0U + 1500 e e e e (D)

Then angle y between two directions is
dsésCosy = Edubu + F(dubv + dvéu) + Gdvév ... ... ... ..... (iii)
and  dsésSiny = H(dudv — dvéu) ... ... ... ..... (iv)

now if the displacement is in the direction v = constant then év = 0
(ii) = 67 = H6u = |67| = | |6u = 85 = VESu

(iii) = dsVESuCosy = Edudu + F(0 + dvéu) + 0 = 6u(Edu + Fdv)
= dsvVECosy = (Edu + Fdv) = Cosy = \/_(E +F)

(iv) = dsVESuSiny = H(0 — dvéu) = dsVESuSiny = —H (dvéu)

dv
= dsVESiny = —Hdv = Siny = _\/_’(E)
1/ du, dv
Then Coty = % = ”(EZ“F ) _, Coty = —+(EZ+F)
Sinx _\/__(ds) ay

—

DERIVATIVES OF m (By means of fundamental magnitudes)

We may express the derivatives of 71 in terms of 7, and 7,

we know that .7, = 0 = 1.7, + .73, = 0 ~diffow.r.to'u'
- > — -
. nl.T‘l = —n. T11 = _L
S|m||ar|y we can find ?LI.FZ = _?L Flz =-M ’” T_iz.?l = _T_i ?21 = _M,,'r_iz.Fz = _T_i ?22 = —N
now we know thatn.7 =0 = n;.n+ 1.1, =0 ~diffow.r.to'u

= n.n; = 0 = 1, L7 andtherefore 71, is parallel to the plane determined by 7, and 7,
thus we can express ; = ar; + b 7, where ‘a’ and ‘b’ are to be determined as follows
forming the scalar product of each side with 7; and 7, we get

= 7.7 =(al +b). 7, =af,  + b7, =—-L=aE+bF .......(i

=S5 =(af+bR).h=af.fa+ bty = -M=aF+bG......... (i)

Multiplying eq (i) with F and (ii) with E and the subtracting we get

— — 2 _ 2 (FL—-EM) _ (FL-EM)
FL+ EM = bF* — bEG = —(FL — EM) = —b(EG — F*) = b = =) = b= 2

Multiplying eq (i) with G and (ii) with F and the subtracting we get

— = 2 _ _ _ — 2 _ (FM-LG) __ (FM-LG)
FM + LG = aF* —aEG = —(FM — LG) = —a(EG — F*) = a = 6= =a=—pg5

Thenforni, = aty + b1, = (FMHZLG) 7+ (FL EM) 7

= H%*1, = (FM — LG)#, + (FL — EM)%,y ... ... ... ..... (iii)
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(FM-LG) - (FL-EM) -
TR r+ PE )

= H%#, = (FN — GM)?, + (FM — EN)?, wc. eev eee ... (iV)

Similarly for i, = a?y + b 7, =

Now form (iii) and (iv) we have

— T27, = (FM — EN)ii, + (EM — FL)ii, also = T?#%, = (GM — FN)#i, + (FM — GL)#,
Where T? = LN — M?

POSSIBLE QUESTION: Express the derivative of 77 w.r.to ‘U’ as a linear combination of
derivatives of 7

SOME USEFUL RESULTS

> Prove that H[n,7i;, 1] = T?

Proof: we know that H?#i; = (FM — LG)7, + (FL — EM)7, ... ... .. ... (0)
= H27i, = (FN — GM)?, + (FM — EN)#y e evs e .. (i)

Then taking cross product of above both

= H*(Ry X ,) = [(FM = LG)(FM — EN) — (FL — EM)(FN — GM)](#, X )

= H*(f; x1,) = H?*[LN — M?]|(#, X 7,) After multiplication and simplifying
4= = — 2m2= = — ‘7'1>(‘F2
= H*n.(ny X n,) = H*T*n. (nH) L=

- H[ﬁ,ﬁl,ﬁz] J T2
> Prove that H[n,n,,7";] = EM — FL
Proof: we know that  H?7; = (FM — LG)7, + (FL — EM)7,

— H%A. (i, x7,) = fi. (EM — FL)(H) =~ = H[fi, 7y, 7] = EM — FL

> Prove that H[n,1,,7,] = FM — GL
Proof: we know that  H?7i; = (FM — LG)7, + (FL — EM)7,

— H2(7, X 7,) = (FM — LG)?, X 7 + 0 = (FM — LG)#, X 7, = (FM — LG)(RH)
= H[ﬁ,ﬁl,Fz] =FM — GL

> Prove that H[ﬁ,ﬁ)z,?l] =EN-FM
Proof: we know that = H?n, = (FN — GM)#, + (FM — EN)7,

= H2R.(R, X ) = #i. (EN — FM)(#iH) = H[R, 7i,, 7] = EN — FM

> Prove that H[n,n,,7",] = FN — GM
Proof: we know that = H?n, = (FN — GM)#, + (FM — EN)#,

= H2(#i, X 1) = (FN — GM)?, X7, + 0 = (FN — GM)(#iH)
= H2R. (R, X 7)) = 7t. (FN — GM)(RH) = H[R,7,,71] = FN — GM
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Rt

PRINCIPAL CURVATURES, PRINCIPAL SECTIONS, PRINCIPAL
DIRECTIONS AND LINES OF CURVATURE

RN,

CURVATURE OF THE NORMAL SECTION: A normal section of a surface at a given point is the
section of the surface by a plane containing the normal at the point. Such a section is plane
curve, whose PRINCIPAL normal is parallel to the normal to the surface. We adopt the
convection that the PRINCIPAL normal to the normal section is in the same direction as the
direction of the normal to the surface.

NORMAL CURVATURE AND RADIUS OF NORMAL CURVATURE: Curvature of the normal section

is called the normal curvature and its reciprocal is called the radius of the normal curvature.
L(du)2+2Mu’v’+N(dv)2
Edu?+2Fdudv+Gdv?

And it is denoted as = K,

OR if 7 is a unit speed curve in surface patch o i.e. 7(t) = [u(t),v(t)] and || (t)|| = 1

Then #' = £ is a unit tangent vector. Hence 7' L 7 (unit normal vector of S) then by
definition of cross product 77 X 7' is also a unit vector perpendicular to 7’ and 7 unit vectors.
Since 7 is a unit speed curve then 7’ L 7" and hence the linear combination of 7 and 1 X 7' is
7' =Kyt + Ky X 7') e (1)

Taking dot product of (i) with 1 = 7.7 = K,ni.7t + K, (i X 7). 7 = K, (1) + K, (0)

= K, = 7".nis called Normal Curvature.

Taking dot product of (i) with 1 X 7' = 7. (1 X ') = Kyni. (M X 7)) + K, (i1 x 7). (0 X ')
= 7".(M x7") = K,(0) + K;(1) = K, = 7". (7 x 7¥') is called Geodesic Curvature.

REMARK:
since K = |7l = K2 = |#"|I? = K? =#".7" = [K, 1+ K, (1 x 7). [KnTt + K, (7 x 7]

= K? = K,* .1 + K, K, (R X 7). 7+ K K, (7 x 7). 7+ K2 (7 x 7). (7 x #1)

= K? = I(n2 + ng =K = /an + ng is actual curvature.

SYNCLASTIC AND ANTICLASTIC: Those portions of the surface on which the two principal
curvatures have the same sign are said to be Synclastic e.g. the surface of an ellipsoid is
Synclastic at all points, where those portions of the surface on which the two principal
curvatures have opposite sign are said to be Anticlastic e.g. the surface of hyperbolic
paraboloid is anticlastic at all points.

GUASS MAP:

for any regular parameterized surface §:u — R3, the Gauss map g: 6(u, v) - S? = &veR3 is

a 6
6u 617

definedas g = H ”
6u av

The Gauss map sends & (u, v) of surface S to the point N(u, v) of S?
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MEUNIER’S THEOREM: The curvature K,, of a normal section of a surface in any direction and
the curvature Kof any other section through the same tangent line are related as

K, = KCosO = Cos0 = % where 6 is the angle between the planes (Principal Normals) of

the two sections.

PROOF (1°T METHOD): The angle between the two planes is the same as the angle between
the PRINCIPAL normals of their sections. The unit PRINCIPAL normal of the normal section is
clearly 71 and the unit PRINCIPAL normal of the other section, by Serret Frenet Formulae, is

R

- >y - T .
t'=7r" —Kn=>n——andhence9|sg|venbyC059—n7 (D)
dr ar du ar dv > d (dr d (o7 6r dv
Now we know th = =>r”=—(—)=—(—.— )
° € owt at ds au ds 617 ds ds \ds ds \du 617 ds
> or 07 d%u or o7 d?v
=7 =50 e =G
ou t o ou ds2 T ov T ov d52
L, [0°7 du %% dv du+ or d2u+ 027 dv+ 0%7 du dv+ or d*v
et = —_— ] — _— —_— | — _—
ou? ds auav ds)ds oOuds? 0vids  oudvds)ds ' Ovds?
- - 2 - - - - - 2 - >
= 7" =r U+ rpu' v +nru + Fou'v’ + Rv't + v
= A7 = A + AUy + AR AU+ R AUy + vt + A v

- o> 2 - o> - o> 2
= nr" =nru" +2nru' v + 0+ 0" + 0

= A7 = Lu'? + 2Mu'v 4+ Nv'2 ... ... ... (iD)

—

We note that u’ and v’ have the same value for both the curves at P, hence 7. 7"’ have the same

value for both the curves at this point.

Next we know consider the normal section using Serret Frenet Formulae

e =17 =1

t'=7"=Kn=7r"n=Knn=K,=7".1 ........(ii0)
(i) = CosO = ?l.%” = Cos0 = % = K, = KCos0 This is required.

PROOF (2" METHOD): Suppose 7 is the unit speed curve on the surface patch o then 7" is
perpendicular to 7' = £ but 7’ makes angle 8 with the principal unit normal 71 then

774 = 17" AN COSO v vve o (D)

Now since K,, = 7.7 and K = ||7"|| also ||7]| = 1 (i) = K,, = KCos@ = Cos0 = %

CORROLLORY: Since
L(du)z+2Mu’17'+N(dwu)2
(ds)?

K,=7#"A= K, =Lu'> +2Mu'v' + Nv'* = K,

L(uzu)2 +2Mdudv+N(dv)?
Edu?+2Fdudv+Gdv?

Then using first fundamental form we have = K,,
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QUESTION: If L,M,N vanish at all points then show that the surface is plane.

ANSWER: We know that K, = Lu'* + 2Mu'v' + Nv'> = K, =0 ~L=M=N=0
= All normal sections are straight line which is possible only if the surface is plane.

QUESTION: A real surface for which the equation % = % = % holds is either spherical or plane.

Answer: Let% = % = % =« where < isany constant. Then =>E =L «x, F=M &G =N «

L(du)?+42Mu’v' +N(dv)? L(du)?+42Mu’v' +N(dv)?
Now we know that K,, = =K, =
n Edu?2+2Fdudv+Gdv? n Locdu2+2Mocdudv+Nocdv?

L(du)?+2Mu'v' +N(dv)?
x(L(du)2+2Mu'v' +N(dv)?2)

1
:>Kn: :>Kn:;

Now ifé = 0 then K;, = 0 at all points and the surface is plane. And if i # 0 (constant) then

normal curvature at any point of the surface is constant. Which implies that surface is sphere.

QUESTION: Show that curvature K at any point ‘P’ of curve of intersection of two surfaces is
given by K2Sin?0 = K% + K% — 2K,K,Co0s0 where K,, K, are two normal curvature of
surfaces in the direction of curve at ‘P’ and @ is the angle between the normals at that point.

ANSWER: Let 8, be the angle between the principal normals of the curve of intersection and
the normal section of the first surface at ‘P’. Similarly 8, is the angle between the PRINCIPAL
normals of the curve of intersection and the normal section of the second surface at ‘P’ then
6 = 6, + 6, applying Meunier’s Theorem i.e. K,, = KCos@

then K; = KCosO; .......(I) and K, =KCos0, ........(i0)
. K . K2 K2_K. 2
(i) = Cosb, = — = Sinb, =\/ —K_12=J G

(ii) = K, = KCos6, = K, = KCos(6 — 6,) = K{CosOCosb; + Sin6Sinb,}

2
—K,=K {6059 (%) + Sind ( Kz;fl )} = K,CosO + |K? — K,?Sin®

— K2 — K,%Sind = K, — K,Cos6 = (K2 - Klz)SinZH = (K, — K,C058)?

= K2Sin?0 — K,’Sin%0 = K,% + K,2Cos?6 — 2K,K,Cos0
= K2Sin%0 = K,* + K,%Cos?0 + K,*Sin?0 — 2K, K,Cos0
= K?Sin*0 = K3 + K3 — 2K,K,Cos0 which is required result.

ASYMPTOTIC CURVE: A curve 7 on a surface ‘S’ is called asymptotic if its normal curvature is
everywhere zeroi.e. K, =0

QUESTION: Prove that the asymptotic curve on the surface o(u, v) = (uCosv ,uSinv, Ilnu) is
given by Inu = +(v + ¢) where ‘c’ is an arbitrary constant.

ANSWER: : o(u,v) = (uCosv ,uSinv, Inu)

=0, = [Cosv, Sinv, ﬂ = oy = [0;0; _u_12]

o, = [—uSinv,uCosv, 0] = o, = [-uCosv, —uSinv, 0] also o, = [-uSinv,uCosv, 0]

i j k
=0, X 0,=| Cosv  Sinv % = [—Cosv,—Sinv,u] also |lo, x o, = V1 + u?
0

—uSinv  uCosv
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oy Xoy, _ [—Cosv,~Sinv,ul

Now 71 = =
"= fowx ol 2
then L = 7.0, = — ———— M=%#.0,=0 N=i.o0,, =—
By u(\/ 1+u2) ’ T ’ W iz
1 2 2
as we know that K, = Lu'? + 2Mu'v' + Nv'> = ———u'* + 0 + v’
n u(\/ 1+u2) 1+u?
1 ) u 2 .
——Uu v°o =0 ~ K = 0 for asymptotic curve.
u(\/ 1+u?) v 1+u? ymp
2 2 2 2 2 2 ' , '
= — 12[1u —uv]=0=>1u —w =0l =y sk =+v = [Ldt =+ [Ddt
1+u2 lu u u u u dt

=slhu=+w+o

PRINCIPAL SECTION: the normal section of the surface having the maximum or minimum
curvature is called principal section.

PRINCIPAL CURVATURE: the maximum or minimum values of normal curvature of principal
sections are called principal curvatures. Its equation may be written as follows
K,?H? — K,(EN —2FM + GL) +T?> =0

OR let o(u, v) be a surface patch with 1% and 2" fundamental forms respectively. Define
symmetric 2 X 2 matrices F; and F;; by

_[E F _[L M | ) .
F = [F G] and F;; = [M N] Then principal curvature of surface patches o(u, v) is the
roots of the equation det[F;; — KF;] =0
HELICOIDS: A surface generated by a curve which is simultaneously rotated about a fixed axis and

translated in the direction of the axis with a velocity proportional to the angular velocity of rotation.
The plane sections through the axis are called Meridians.

QUESTION: Calculate principal curvature of the Helicoid o(u, v) = (vCosu, vSinu, Au)

ANSWER: : o(u,v) = (vCosu, vSinu, Au)

= 0, = [-vSinu,vCosu, A | = gy, = (—vCosu,—vSinu, 0)
o, = (Cosu, Sinu, 0) = a,,, = [0,0,0] also gy, = [—Sinu, Cosu, 0]

ThenE =oy.0y = |loyll? =v? + A2,,G = 0,.0, = |loy||? =1and F = 6,0, = 0
i ik

= 0, X 0, = |—vSinu vCosu A|=[—ASinu,ACosu,—v] also||loy, X o, = VA% + u?
Cosu Sinu 0
- _ oyXo, _ [-ASinu,ACosu,~v] = _ _ = _ A _ = _
n= llow x ol VAZ+u?Z thenl =m0y =0, M=n.0oy = Nk N =n.0, =0
- _ _[E F _[L M
Now for principal curvature det[F;; — KF;] = 0 where F; = [F G] and F; = M N]
0 A
_ _[L M]_,[E F]_ vizvz| _ o [v? + 22 0]
Then F;; KT,—[M N] K[F p _[ A K[ o
VaZ+u?
| ——— K= (0 +22) -2
— TII _ Kg:-] — VAZ+u?2 _ [K(vz + /‘{2) 0] — VAZ+4+u?
& 0 K A —
e T Kk
(152 1 32 4
= det[F;; — KF;] = Ko+ ) V| _ KA (0422) 22
VaZ+uz
K2 (v2+22) 72 A
Thendet[F; —KF] = 0= ———2—=0=K*w*+2)’ - =0 =>K=+-"—
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PRACTICE: Calculate principal curvature of the followings;

i.  Aunitsphere a(8,¢p) = (Cos6Cosq, CosBSing, Sinb)
ii.  Acylinder of radius ‘1’ and axis is z — axis o(u, v) = (Cosv, Sinv, u)
iii. Centroid o(u,v) = (CoshuCosv, CoshuSinv, u)

PRINCIPAL DIRECTIONS: the tangent lines along the principal sections at a point are called
principle directions.

LINE OF CURVATURE: A curve drawn on a surface is called a line of curvature iff the tangent line
about any point of this curve gives one of two principal directions at that point. Its equation

(dv)? —dudv (du)?
may be written as follows L M N |=0
E F G

FIRST CURVATURE: The first curvature of the surface at any point may be defined as the sum of
principal curvatures. We will denote it by ‘)’ and is given by

J = Ko + Ky = — (EN — 2FM + GL)

SECOND CURVATURE: The second curvature or specific curvature or Gauss curvature of the

surface at any point may be defined as the product of principal curvatures. We will denote it by

2
‘K"and is givenby K = K,. K}, = %

AMPLITUDE OF NORMAL CURVATURE: It may be defined as A = %(Kb - K,)
MEAN NORMAL CURVATURE: It may be defined as B = %(Kb + K,)

SURFACE OF CENTRES OR CENTRO - SURFACE: the locus of centre of curvature is a surface
called Centro surface or surface of centre.

MINIMAL SURFACE: the surface is called minimal surface if first curvature is zero at all points
on the surface.

NULL LINES: the null lines (or minimal curves) on a surface are defined as the curves of zero
length.

QUESTION: Find the line of curvature and principal curvature for the surface (right helicoid)
7 = (uCose, uSing, c¢) and prove that it is a minimal surface.

SOLUTION: 7 = (uCosp, uSing, c@)

=7, = (Cosp, Sing, 0) =7, = [—uSing, uCosp, c]

Now the fundamental coefficients of first orderare 7, = E,,%,° = G and F = 7,7,
= E=%"=Cos’p+Sin*p+0=1 =E=1

= G =17, = uCos?p + u2Sin®¢ + ¢ = G = u® + ¢*

= F =7,.75 = [Cosp, Sing, 0].[-uSing, uCose, c]
= —uSingCosp + uSinpCosp + 0 = F =0

Now the fundamental coefficients of second order are 7, 752, 712

For7 = (uCosp, uSing, cp) =7, =00, 0, 0)
= 7y, = (—uCosp, —uSing, 0)= 7, =(-Sinp, Cosp, 0)
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So the second order coefficientsare L =1n.7;, =0 M =n.7, = - N= M.Ty, = 0 also
H = |, x 7| = |(cSinp, cCosp, u)| =+Vc?+ u?
Also unit normal to the surface is 7 = Fl;FZ >n=- (cSm<p, cCosep, u)
now equation of normal curvature is given as
2 _ 2 (dp)? —dudep (du)?
(df) d;;d(p (d;) =0=| 0 —= 0 |=0=( )2—ﬂ
- H - Py = u2+c?
E F G 1 0 u? + c?
= dp = WZ)*([) +Smh +A
Now equation of principal curvature is K,*H? — K,(EN — 2FM + GL) + T?> =0
2 2y _ ct _ .2 —M2=_2°
= Ko* (@2 +¢?) = K (0) ——— =0 “T2=LN—M? = —=
c
= Kn =1 u?+c?

Also] =K, + K, = %(EN — 2FM + GL) = 0 thus given surface is minimal.

QUESTION: Find the principal curvature and principal direction on the surface of
x=alu+v), y=b(u—v), z=uwv

SOLUTION: 7 = (a(u +v), b(u — v),uv)

SE=%"=a?+b*+1v2 =26=%"=a’+b*+ul =>F =7#.%, =a? — b? +uv

So the second order coefficientsare L =1.7;, =0 M =7.7, = —% N =n.7, = 0 also
232
H = |, x %] = J4a2b? + a?(u — v)?2 + b2(u + v)2 alsoT? = LN — M? = —4(;217
now for principal directions
2 2

(dv)? —dudv (du)? (dv) —dzzuiv (dw)

L M N |=0= 0 -= 0 =0

E F G

a?+b?+v? a®?—-b* +uv a®+b%*+u?
2 _ a’+b%+v? 2 = ’a2+bz+v2
= (dv) T a2+b2+u? (du) = dv= a2+b2+u? du
Now equation of principal curvature is I('nZH2 —K,(EN—2FM +GL) +T? =0
2_pn2 2_p2
= K,2H? + 4ab (“—"2) K, +T> =0 Also] = —4ab (=

H3

2

)andKn=T—

UMBILIC POINT: when the normal curvature K, is independent of the ratio du: dv and has the
same value for all direction through the point such a point is called umbilic on the surface.

THEOREM: Prove that the necessary and sufficient condition for the lines of curvature to be
the parametric curvesisthat F =0,M =0

PROOF: Suppose that the lines of curvature are parametric curves i.e.
u = cosntant; v = constant

(dv)? —dude (du)?
Now equation of normal curvature is givenas | [, M N |[=0...... (4)
E F G

since the lines of curvature are parametric curves then the lines of curvature are mutually
orthogonal. And being orthogonal curves F = 0

Now let du = 0 i.e.u = cosntant and v = arbitrary also F = 0 then using all these values

(dv)? —dude (0)?
A=\ L M N | =0= (dv)?’(-MG) =0......... (B)
E 0 G
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Also let dv = 0i.e.v = cosntant and u = arbitrary also F = 0 then using all these values

(0)2 —dude (du)?
A= M N |=0= (du)?(EM)=0....... ©
E 0 G

as H=VEG-F2=VEG-0=EG>0=EG+0=E+0,G+0
so from (B) and (C) we conclude M =0

CONVERSLY: Suppose F = 0,M = 0, to prove the lines of curvature to be the parametric
curves we show that either u = cosntant or v = constant

(dv)? —dudv (du)?
Since equation of line of curvature is givenas | [, M N |=0
E F G

(dv)? —dudv (du)?
= L 0 N
E 0 G

let (EN —GL) =0= % = % which is condition of umbilie point and there is no umbilie point

=0 = dudv(EN —GL) = 0= dudv =0 or (EN—-GL) =0

in this case so dudv = 0 = either du = 0ordv =0
= either u = cosntant or v = constant = the lines of curvature to be the parametric curves

THEOREM: Prove that the two principal directions at any point of a surface are orthogonal.

PROOF: let u = @, (V) e e cee.. (D);u = @ (V) ... ... ... (ii) be two lines of curvature passing
through point ‘P’ of the surface S: 7 = 7 (u, v)
(dv)? —dudv (du)?

do, d
d": (pzare the roots of the equation | L M N [=0
E F G
d d G-
then the sum of the roots will be 2% 4 &2 — _L&=NE (iii)
dv dv LF—-ME
d G- .
and the product of the roots will be 401 A6y _ MGZNE ... (iv)
dv  dv LF—ME
- a_f:d(l)l or —) d‘Pl 6_17(1(,02 67‘ - d(pz
Now the vectors a = S0 du 1 = + 7, and b= wan T A= o tT 7y
represent lines parallel to the tangent to the lines of curvature given by (i) and (ll)at the point
) - P do, d d d G- G-
‘P’ then consider d. b = E( o1 <p2> + F( e <p2) +G=E (M NF) (— L NE) +G
dv LF—ME LF—ME

=db=0= principal directions at any point of a surface are orthogonal.
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EULER’S THEOREM!: If K,, is the normal curvature in a direction ‘I'(i.e. %) at any point ‘P’ of the

surface S: 7 = 7(u, v)and K, and K, are the principal curvatures at ‘P’ then
K, = K,Cos? x + K,Sin? «< where « is the angle which the direction ‘I’ makes with the
v = constant curve i.e.u = parametric curve.

PROOF: let us assume that the parametric curves on the given surface ‘S’ are its lines of
curvatures.

. s7-Y(u%  And as we know that the normal curvature in the direction at ‘P’ can be
. du)?+2Mdud dv)? . . . .
written as K, = L{dw)” +2Mdudv+N(dv) . e .o+ (1) and using orthogonality of lines of curvature
Edu?+2Fdudv+Gdv?
L(du)?+N(dv)? .. . .
wehave F=0=M = K, = L@w) tN@dvy = ..... (ii) equivalently we can write
Edu?+Gdv?
__ L(dw)?+N(dv)? _ (du)z (dv)z
K, = @) =K, =1L —) T N ) e 113
Now normal curvature along the principal direction for u = constant curve becomes
_Law? L SN _ N@v)* _ N
K, = g T g (iv) similarly K}, = T T g (v)

as « is the angle which the direction ‘I’ makes with the v = constant curve so

1 du dv 1 du du
COSOC—\/—E(EE-FFz)ﬁCOSOC—\/—E(Eg) o F—OﬂCOSOC—\/EE
du 1
) — = —

= ﬁCosoc-u........(vi)

Now the angle between the direction ‘I’ and principle direction given by u = constant is

1 du dv . 1 ) _ . _ 2
(90—c) 50 Cos(90—c) = —(FE n GE) — Sin o= —(c; ) s+ F=0= Sinox=G

VG VG
Sin &« .. ..... (vid)

dv
ds

aw_ 1
ds VG
From equation (iv)and(v) L = K,E and N = K, G and putting the values of%,%,L,N in

1

VE

1

2
—=Sin oc) = K, = K,Cos® x + K,Sin? «

(i) = K, = K,E (= Cos oc)2 +K,G (

REMARK: if K; and K, are principal curvatures of a surface patch ¢ at a point ‘P’ then

(i) K; and K, are real members.

(i) K; = K, = K Then F;; = KF; and hence every tangent vector to ¢ at a point ‘P’ is principal
curvature.

(ii) K; # K,Then tow non — zero vectors t; and t, corresponding to K; and K, respectively are
perpendicular.

PRINCIPAL VECTOR: If T = [f]] satisfying equation [F;; — KF;]T = 0 then the corresponding

tangent vector t= ¢a, + no, to the surface o (u, v) is called the principal vector
corresponding to the principal curvature.
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EULER’S THEOREM (another proof): Let 7 be a curve on a surface path ¢ and let K; and K, be
the principal curvature with non — zero principal vectors El and Ezthen
K, = K,C0s?0 + K,Sin?0 where 8 is the angle between 7 'and t,

PROOF: let us assume that 7 is a unit speed curve. Let  be a tangent vector of 7 also consider

t =&o, +no,thenT = [g]

Case#l: let K; = K, = K Then F;; = KF, and hence K,, = T*F,,T = T*KF,T = KT'F,T
K, = Kt.t = K||t]| = K(1) = K(Cos?8 + Sin?6) = K, = KCos?0 + KSin?6
resultistrueforK; = K, = K

Case#2: let K; # K,Then tow non — zero vectors t; and £, corresponding to K; and K,
respectively are perpendicular. We assume that El and fz are unit vectors then

El =$10y + M0y then Ty = [gﬂ and Ez = $,0y + 10, then T, = [gi]

B o T e e

Then #' =t = £,Cos0 + t,5inf = #' = &0y, + no, = (§,0,, + 110,)Cos0 + (§,0, + 1,0,)Sind
= ¢ =¢§,CosO+&,5in8  and 1 =n,CosO + n,Sind

Then [5] = [51] CosO + [52] Sind = T = T,Cos6 + T,Sin6
n M N2

So the normal curvature of 7 is K,, = T*F ;T = [T;Cos60 + T,Sin01*F;;[T,Cosb + T,Sinb]
= Kn = COSZQ(Tl)tT”Tl + Sin@COSQ[(Tl)t:F”TZ + (Tz)t:F”Tl] + SinZH(Tz)tT”TZ

Since [‘7:11 _KTI]T == 0 ﬁfp”T = KTIT

Then

K, = Cos?0(Ty) (K F,T,) + Sin0CosO[K,(T;)tF,T, + K1 (T)EF, Ty ] + Sin?0(T,) (K, F,T,)
K, = K,Cos?0(T)'F Ty + Sin0CosO[K,(t;.t,) + Ky (L2.£1)] + K2 Sin?6(T,) F, T,

K, = K,Cos?0(t;.t,) + Sin0CosO[K,(0) + K,(0)] + K,Sin?6(t,.t,)

K, = K;Co0s?6(1) + K,Sin*0(1) = K,, = K,Cos*0 + K,Sin*0

COROLLARY: The sum of the normal curvatures in two directions at right angles is constant and
' equal to the sum of the principal curvature i.e. K, + K, = K, + K}, '

o du & . . . o . .
let the directions are ﬁ, 6—: as shown in the figure then rotating the directions to coincide with

v = constant curve and u = constant curve. respectively
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then forZ—Z direction = 0 and using the Euler’s theorem i.e. K,, = K,Co0s? x + K, Sin? «
— Ky, = K,C05%(0) + K,Sin?(0) = Ky, = Ky o e oo . (D)

and forz—: direction <= 90° and using the Euler’s theorem i.e. K,, = K,Cos* « + K,Sin? «
= Kn, = K,C05?(90°) + K,Sin*(90°) = K,,, = Kp .. eev vev voe. (i)

adding (i) and (ii) = Kp, + Kn, = K, + Kpp

QUESTION: If B is the mean normal curvature and A is the amplitude, deduce from Euler’s
theorem that K,, = B — ACos2

Solution: R.H.S.= B — ACos2 x= %(Kb +K,) —%(Kb — K,)(2Cos? « —1)
=~ (Ky + Ko) =5 (Ky — Kz)Cos? + = (K, — Kg) = Ky, — 2 (K, — K,)Cos?
= K,(1 — Cos? x) + K,Cos? = K, Sin* « +K,Cos* = K, = L.H.S.

QUESTION: If B is the mean normal curvature and A is the amplitude, deduce from Euler’s
theorem that K, — K, = 2ASin? «

Solution: R.H.S.= 2ASin? «= 2 % (Kp — Ko)Sin? «= K, Sin? « —K,(1 — Cos* x) = K, — K,

QUESTION: If B is the mean normal curvature and A is the amplitude, deduce from Euler’s
theorem that K, — K,, = 2ACos? «

Solution: R.H.S.= 24Cos” x= 23 (K — K,)Cos” o= Ky, (1 — Sin? &) — K,Cos” o= K}, — K,,

THEOREM: A surface is developable iff its specific curvature is zero at all points.

L _ 0%z _ 0%z 0%z

_5' r ox2’ _W' S_axay

PROOF: Consider the surface z = f(x,y) letp = Z_;Zc’ q

—=E=7"=1+p2 >G=1+¢> = F =pq also H = EG — F2 = H? = 1+ p* + ¢°

. . T4 XT T4 XT-
Also unit normal to the surfaceis 1 = =2 =71 = —=%
|71 X7, |
i ]k
NS b SR =#Hxh=[1 0 p
Jp2+q2+1 01 ¢q
N 927 N 927 > 927
= 1 = _axz = (0, 0, T) == oo = _ayz = (0, 0, t) = T = _axay = ( y 0, S)
. . - o T - - S - - t
So the second order coefficientsare L =n.7, =— M =n.17, =— N=n.71,=-
H H H
2 2 r ot 52 2 rt—s?
And T*=LN-M*=—-—-——==T““=—
H'H H? H?

Now equation for curvatureis K?H? — K(EN — 2FM + GL) + T? = 0 and hence specific
rt—s? _ rt—s?
H2  14p2+q2

. T2
curvature will be K = — = product of roots =
H

STEP-II: suppose that surface is developable then
2 _ 9%z & T?2  rt—s? 0
2

622 2 2
= —. i =71t = 1rt — = =>K=—= :—ﬁK:
(6x6y) 0x2 " 0y? s t t=s 0 H H?2 H? 0

CONVERSLY: suppose that surface curvature is identically zero then K = 0

0%z )2 0%z 0%z

oxdy 0x2 " 9y?

>rt—s’2=0=>s’=rt= ( = the surface is developable.
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QUESTION: Find the equation for the principal curvatures and the differential equation of the

. x2 2
lines of curvature, of the surface 2z = o + %

. x2  y? R X2 y2
SOLUTION: glven22=;+ﬁ=>r=(x, y, E-I_E)
>l ot X - or y
=T :—:(1 —): :—:[ 1 —]
1 dx ) 0; a 2 ay O, ) b
> 2 x? y? xy S o X2  y2
:>E:T'1 :1+§:>G:1+EZ>F:E aIsoH=|r1><r2|: ;-I_ﬁ-l_l
: . 7y X7, 7y X7
Also unit normal to the surfaceis 1 = 22 = 7n = —=
|7 x75|
x y L i ] k
—>_[_E’ P 1] =nXxXn=I1 0 p
:)n_T 01 ¢q
a_2+b_2+1
> Ed 1 N 9%y 1 N 927
ﬁr“:ﬁ:(o’ 0, Z) ﬁr22=6_yz=(0' 0, Z) $T12=6x6y=( , 0, 0)

-

- 1
So the second order coefficientsare L = .7, = — M= .

1

And T? = LN — M? =
abH?

Now differential equation for principal curvatureis K?H? — K(EN —2FM + GL) +T?> =0
= K?H? - K (

a’+x?  b?*+y?

bH aH

) + T2 = 0and hence specific curvature will be

T2 1
K= == product of roots = T Also ] = (

a?+x? b2+y2) 1

a H3

Now for the differential equation of the lines of curvature we have
[(dy)? —dxdy (dx)?|

(dy)? —dxdy (dx)* 1 0 1
L M N |=0=| | =0
E F G X xy y?
1+ 2 142

—%(d}/)2 + [(1+Z—j)$— (1 +z—z)$] dxdy+%(dx)2 =0

xy (dy\? b%+y%\ 1 a?+x%\ 1]dy xy -0
prrrl e IR (G Pl G o e
xy (dy\? 1 b?+y? a’+x%\]dy xy -0
_asz(a) +ﬁ[( b )_( a )E—i_asz_
) ) - -
b \dx xy b a dx a

2 2 2 24,2

d b b“+ a“+x d b . .

— (_y) _2 [( Y ) — ( )] 2 _ 2 =0 is the required answer.
dx xy b a dx a

PRACTICE: Find the equation for the principal curvatures and the differential equation of the
lines of curvature, of the surfaces

i. 3z=ax®+by?

i. z= cTan"1§
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QUESTION: At the point of intersection of the paraboloid xy = cz with the hyperboloid

. . . z2(1+V2
x? +y% —z% + ¢? = 0, the principal radii of the paraboloid are %
. . - X
SOLUTION: given paraboloidxy =cz =7 = (x, vy, Ty)
- ar y) - o7 [ x]
=1 = —= =) = = — = -
£t dx (1' 0, c T2 oy 0, L c
5 2 y? x? xy 5 U2 -y, -x c _y* x* 1
=>E=r =1+ =>G6G=1+==F == also H=|r| X1r,| = ==+=+=
c? c? c? c c2 ' 2
. . — F XF — ‘F XF PN
Also unit normal to the surface is 7 = 2—2 =1z tj ok
H |7y X7 | 0 ?
S X, = c
X
— -y, =X, C —
= n = M 0 1 c
cH
S 927 S 927 5 927 1
— = — = ) — ¢ = —= —— :—:( _)
11 9x2 (0 0! 0) 22 dy? (0' 0' 0) 12 xdy 0' 0, c
. . - > - - 1 - >
So the second order coefficientsare L=n.r,;, =0 M=nr,=— N=n.7,,=0

cH

And T? = LN — M? = and We note that at a point of intersection with hyperboloid

2y2

2 —
x2+y2—z2+c2=0isH?> == and T2 = =
c

72

Now differential equation for principal radiiis T?p? — (EN — 2FM + GL)p + H*> = 0
2 1
= -2 —(0-2224+0)+ H? = 0= p?c? — 2cz2Hp — 2 = 0

z
2cz24V4c2z2+4c2z% 224222 z?(11V2)

2c2 c c

=p=

SURFACE OF REVOLUTION: A surface generated by the rotation of the plane curve about an
axis in its plane is called a surface of revolution.

If z— axis is taken as the axis of revolution and ‘u’ denotes the distance of a point
from z — axis then surface may be expressed as x = uCosg, y = uSing, z = f(u)

We may also use o (u, v) = (uCosv, uSinv, f(u))

QUESTION: show that if a surface of revolution is a minimal surface then

_+_[1+ (&) ]_0:>uf"(u)+f(u)[1+(f w)’] =0

SOLUTION: let the surface of revolutionis 7 = (uCos<p, uSing, f(u))
=7, = (Cosg, Sing, fi) = 7, = [—uSing, uCosp, fo]
:>E:F12:1+f12 :>G:F22:u2$F271.F2:O

For7 = (uCos<p, uSing, f(u)) =7,=00, 0, fi1)

= 7y, = (—uCosp, —uSing, 0)= 7, =(-Sinp, Cosp, 0)
also
H = |, x 7| = |(—ufiCose, —ufiSingp, w)| = \/(—uflCoscp)Z + (—ufiSing)? + u?

= H = |7_‘>1 Xle =\/u2 +u2f12 =\/(1 +f12)u2

. . 7 X7, 1 .
Also unit normal to the surface is 71 = 172 =n= = (—uf,Cosp, —uf;Sing, u)
. . _ —) - ufll N _ == _ 2f1
So the second order coefficientsare L =n.r;; = . M=n7r,=0 N=nr,= -




Now equation of principal curvature is K?H? — K(EN —2FM + GL) + T?> =0

_(1+f12)u2f1 udfiq u f11f1

= ut(1+£?) K2 - K [L =0

fu] 20

= (e 7K K (o 7+ R el = 0
= u6(1 + f12)4K2 - K -f13‘/(1 + f12)u2 + u3f11 /(1 + flz)uzl + u3f11f1 =0
=us(1+£2) K2 -K /(1 + £+ AU + 13y + uPfify = 0

"(1+f12)u2[f1(1+f12)u2+u3f11]
Then | =K, + K;, =

us(1+£,2)"

Now given surface is minimal then curvature will be zero then [f;(1 + f,?)u? + u3fy;] = 0

=1+ +ufu=0=u —+—[1+ df)]_o

EXAMPLE: On the surface formed by the revolution of a parabola about its directrix, one
principal curvature is double the other.

SOLUTION: consider a parabola in yz — plane with its directrix along z — axis then surface of
revolution will be 7 = (yCoscp, ySing, f(y)) where f(y) = z = 2 Ja(y — a)

S af a
=71, =(Cosp, Sing, ===
1 < fl ay [—(y_a)

d
) =7, = [—uSin(p, uCosp, f,= % = O]

5 2 a y 5 2 2 5 o
=>E=T‘1 =1+ = :G:‘rz =Yy =>F=T‘1.T2=0
v-a G-a
S . 5 ’f _  —a
Forr = (uCosgo, uSing, f(y)) =1 = (O, 0, fii= 22 2(y_a)3/2)
= 7y, = (—yCosp, —ySing, 0)= 7, = (—Sing, Cosp, 0)
also
H = |#y x| = |(=yfiCosp,  —yfiSing, y)| =(=yfiCosp)? + (=yfiSinp)? + y?
H e - _ ay2 _ y3
= H = x1| == y-a) tye= y-a)
Also unit normal to the surfaceis 7 = % =n= %(—yflCoscp, — yfiSing, y)
== —\/—y == — —_ a2 — _\/EyZ
L=nr4= o) M=nr7,=0 N—n.rzz——H =)
, _L_  —a _N_ Va
Then from the Euler’s theorem K, = E= ios and K, = Ry o

Thus one principal curvature is double the other .i.e K, = 2K,
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EXAMPLE: Find the equation for the principal radii, the lines of curvature and the first and
second curvature of the surface x = uCos0, y =uSinf, z = f(6)

SOLUTION: consider a parabola in yz — plane with its directrix along z — axis then surface of
revolution will be 7 = (uCosH, uSind, f(H))

=7 = (Cos@, Sinf, f; =g_£=0)=>172 = [—uSinH, uCosl, f, =‘;—éc
72 2 2 2 2 2 o=
=>E=T1 =1=>G=r2 =u _|_f2 :F—T1-7'2—0

For# = (uCos®, uSind, f(0)) =#,=(0, 0, 0)
= 7y, = (—uCosf, —uSinb, f,,)= 7, =(-Sind, Cosh, 0)

alsoH = |, X 7,| = /fzz + u?

. SN T XT
Also unit normal to the surfaceis 1 = —=

=n= %(fzSinH, — f,Cos06, u)

2

L=ty =0 M=ff,=-2 N=ff,="2al0T?=LN-M?=-L1

Now equation of principal curvature is K?H? — K(EN — 2FM + GL) + T?> = 0

H_j_l[@]_&j=0:f22+u2_l ufz2 _fLZ=O
p2 plH H

2
p p f22+u2

2
=>(f22+u2)—,0 ufps | 2 p2=0=>f22p2+u2—uf22 ’f22+u2p—(f22+u2)2=0

2
,f22+u2 fZ +u?

__Ufap Ufaz _
Then]— I’E —mAnd K=-
2

fo?
(f22+u2)2

Then lines of curvature are given by

(d9)? —dudd  (du)?
(d6)? —dudd (du)® 0 f2 ufaz

L M N |=0= _— m =0
E F G 1 0 u? + f,2

= —f,(f,> +u*)(d0)? + f,dudb + f,(du)? = 0 is the equation of lines for curvature.

QUESTION: Show that the line of curvature of the paraboloid xy = az lie on the surface

Sinh~1 E + Sinh‘lg = constant

SOLUTION: given paraboloid xy = cz = 7 = (x, vy, Q)

a

s3=2=(1, 0%=r=="=[o 1, =
17 ox ! " a 2 oy ! ! a
=22 y? _ x? _xy = > =y, —x, al _y*  x? 1
=E=n —1+;=>G—1+§=>F—;,H—|r1><r2|— =G t5t
. . o  TXt N 7y X7 R N
Also unit normal to the surfaceis 71 = *—2 =11 = —2= |2 k|
|71 X7, - .k y
:Tle'Z: a
X
- =X, a —
=>ﬁ’=[ Y ] 01>
aH
- 627_') - OZF = aZf 1
= o7 0, 0) =7, = 0, 0) =7, = —(0 0 —)
7"11 9x2 (01 ) ) 22 6y2 ( ) ) ) 12 9xdy ) ) a
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So the second order coefficientsare L =n.7;, =0 M =n.7j, =— N =n.7), =

-1
a2H?

And T2 =LN — M? =

Then lines of curvature are given by

(dy)? —dydx (dx)?

dy)? —dydx (dx)?
(dy) ydx (dx) 0 o |

L M N |=0= aH =0
E F G y? xy x2
1+ pry 2 1+ P
1 a?+x? 2 1 a?+y? 2 _ (dy)? (dx)?  _
= aH a2 (dy)” + aH a? (dx)*=0= Va2 +x2 + JaZ+yz 0

= Sinh™?! g + Sinh_lg = constant

QUESTION: Calculate fundamental magnitude of first and second order for the surfaces

x =uCosp, y =uSing, z = f(u)+ cv where uadn ¢ are parameters.

ANSWER: 7= (x, y, z)= (uCosp, uSing, f(u)+cv)

=7 = 2—z = [Cosp, Sing, fil=T1 = S—Z = [-uSing, uCosp, c]

Now the fundamental coefficients of first orderare 7,° = E,, 7" = G and F = #7,

- 2 2 > 2
ﬁE=T1 =1+f1 $G=T2 =u2+C2:F=F1.F2=f1C

Also H> = EG — F? = 1(u? + ¢?) — 0 = (cSinv — fiuCosv )i — (cCosv + fyuSinv)j

. A 74 XT 71 X7
Also unit normal to the surfaceis 1 = =—2 =71 = 12
[Py X7, | H
_ ' t j k
7= [eSinv—fiuCosv,— cCosv—fiuSinv, u] =SPH X, = Cos'(p Sing fi
H —uSing uCosgp ¢

Now the fundamental coefficients of second order are 71, 752, 712

Fort=(x, y, z)= Cosp, uSing, f(u)+cv)

S 927 . 927 .

= =55=0, 0, fiy) = Ty = 5 = (-uCosp,  —uSing, 0)
- 927 .

=Ty =5 — = (—Sing, Cose, 0)

So the second order coefficientsare L = 1.7y, = %

[cSinv—fiuCosv,— cCosv—fiuSinv, u

=2 _ ] —Cy = —£
M=n.7,= - .(—=Sing, Cosp, 0) = -
o _ _ , 2
N =7, _>22 _ [cSinv—fiuCosv, ;Cosv fruSinv, u] . (—uCos<p, . uSin(p, 0) _ qu1

And T2 = LN — M2 = YA _ (_3)2 _whfa_c
H H H H H

Now equation of principal curvature is K2H? — K(EN — 2FM + GL) + T?> =0
and the curvature are given by

u?f 3 +(u+2c2) fi+ufir (u?+c?)

J = Ko + K, = — (EN — 2FM + GL) = -

T H

T? udfifi1—c?

And K = K. Ky = — = “2
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QUESTION: Find the principal curvature and the line of curvature on the surface generated by
the tangent to the twisted curve.

SOLUTION: the position vector of the current point on the surface is R=#%+ut

B aﬁ rd = aﬁ - - - N
=R, =—=t' >R, =—=7"4+ut' =t +ukn
1 ou 2 as

ﬁEzﬁl.I_él:l:G:ﬁz.ﬁZ:1+u2K2:F=§1.§2=0,H=|§1X§2|=UK

. . — }_é Xﬁ — UKE -
Also unit normal to the surfaceis n = % === b
u
>3 9%R > a%R 21 = 1= 27 "no 7
= Ri1=55=0 =Ry =5 =t +tukn'+ukK'n=—uk t+ (K +uK)n+uKtb
=g 62ﬁ 27 —
=R =t =K
12 oduds n

L=A.R,;=0 M=A.R,=0 N=#nR,,=uKt And T2=LN—-M?=0

Then lines of curvature are given by

(du)?> —duds (ds)? (du)?> —duds  (ds)?
L M N |=0= 0 0 uKt =0
E F G 1 0 1+ u?K?

= uKtduds + uKt(ds)? =0 = ds(du +ds) =0 = ds =0or (du+ds) =0
= s = constant or s+ u = constant

Now equation of principal curvature is K2H? — K(EN —2FM + GL) + T?> =0
= K*u?K?—K@uKkt—0-0)+0=0=K(ukK—-1)=0 = K,=0,K, = uiKrequired.

ISOMETRY: If S; and S, are surfaces, a smooth mapping f:S; — S, is called locally isometry if
length of the curve on §; and length of the curve on S, are same.

Every local isometry is a local diffeomorphism, called isometry.

THEOREM: A diffeomorphism f:S; — S, is an isometry if for any surface patch g, 0f S; and o, of
’ S, have the same fundamental form. ’

PROOF: For surfaces S; and S, let g; = 0, (u, v) and 6, = 0, (u, v) respectively. And suppose
S1 and S, have the same fundamental form.i.e.

E;du? + G,dv? + 2F,dudv = E,du? + G,dv? + 2F,dudv ... .......(J)
Then we have to prove for isometry I[(7;) = 1(7})

For this let 7, (t) = al(u(t), v(t)) and 74, (t) = az(u(t), v(t)) are two curves on surfaces S;
and S, respectively. Then

17 (Ol = Erdu? + G1dv? + 2F,dudv and ||/ ()| = E,du? + G,dv? + 2F,dudv

Now
L) = [II#'(®Olldt = [ E;du? + Gdv? + 2F,dudvdt = [ \/E,du? + G,dv? + 2F,dudvdt
L(7) = [ ®lldt = [II7' @®)|ldt = 1(#,) = (7)) = I(#,) = S, and S, are isometric.
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CONVERSLY: Suppose that §; and S, are isometric. i.e. [(#) = [(7,) then we have to prove
that both have same fundamental form.

Given I(7) = L(7y) = [II7' ®)lldt = [lI7' O lldt = (IO = 17" Ol
= [JEidu? + G dv? + 2F,dudv = [ \/E,du? + G,dv? + 2F,dudv
= E,;du? + G,dv? + 2F,dudv = E,du? + G,dv? + 2F,dudv

= both surfaces have same fundamental form.
» PRACTICE: Show that following surfaces have isometry;
o(u,v) = (CoshuCosv, CoshuSinv,u) and &(u,v) = (uCosv, uSinv, v)

Hint: find only the 1°' fundamental form of both and if both are of same fundamental forms
then both are isometric.

CONFORMAL MAPPING OF SURFACES: Suppose that two curves 7 and 7 on a surface ‘S’
intersect at point ‘P’ then the angle 8 between curves 7 and 7 at ‘P’ is equal to the angle

T

e i
70 71 ©

between their tangent, is define as Cosf =

OR If §; and S, are surfaces, a diffeomorphism f:S; = S, is said to be conformal if the angle
of intersection, between the intersecting curves 7, and 7; on S; and intersecting curves 7, and
7, on S, are same. (in short f: S; = S, is conformal iff it preserves the angles)

ANGLE IN TERMS OF 1" FUNDAMENTAL FORM OF SURFACES:

E cw »

Car o) <end T e TS

Suppose 7(t) = a(u(t), v(t)) and7(t) = a(ﬁ(t),ﬁ(t)) are two smooth curves on surface ‘S’
then suppose that for some parametric value we have U(u(to), V(to)) =P = a(ﬁ(to), ﬁ(to))
then by using chain rule we have 7' = g, u" + g,v’ and ¥ = g, ' + 0,0’

Then?'. 7' = (ou’ + 0,v" ). (oyc + 0,7) =E@'T' )+ FW'v' +v'a' )+ G(W'v")
Now just replacing 7 and 7 we get
Then#. 7 = E()? + 2F(W'v') + G(W' )% = |||

Then?'. 7 = E@)? + 2F@'v’' ) + G(&' )? = ||7']|?

. A E(u'a" ) +F(u'd' +v'a’)+6(v'vr)
(&) = Costl = 170 171 JE@)Z42F/v)+6 w2 E@)2+2F (@' v’ )+G (D' )2
_ 1 E@'u )+F(u'v' +v'a’)+6(v'vr) )
= 6 = Cos (JE(u’)Z+2F(u'v’)+c(v’)2.J E@)2+2F (@ 7' )+G(@ )2

EXAMPLE: The parametric curves on surface patch o(u, v) can be parameterized by
7(t) = o(uy, t) and 7(t) = o(t, vy) then find the angle between them.

PROOF: Given 7(t) = o(ug,t) and 7(t) = o(t,v,)
and u(t) = uy, v(t) = talsou(t) =t, v(t) = vy, where u, and v, are constants and also
u(@)=0,v({t)=1andu'(t) =1,7'(t) =0

Now USing = 0 = COS—l( E(u ﬁ/)+F(u p 't )+G(v V) ) _ COS—]_ (L)

VEW2+2Fu'v)+6 (2. E@nN2+2F (@’ )+G([@' )2 VGE.
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THEOREM: A diffeomorphism f:S; — S, is said to be conformal iff for any surface patch o; on
S, and &,: foo; on S, both have 1* fundamental form, are proportional.

PROOF: Suppose g; and a,: foo, are two surface patches of surfaces S; and S, respectively.
Now we suppose that their 1° fundamental forms are proportional. i.e.

(Eidu? + G,dv? + 2F,;dudv) = A(E,du? + G,dv? + 2F,dudv ) where A(u, v) is smooth
function. Then we have E; = AE, , G, = AG, , F; = AF, ........... ... ()

Now we have to prove for conformal 8; = 6,

Let 6, be the angle of intersection of the curves 7#; and 7; on S; and 8, be the angle of
intersection of the curves 7, and 7, on S,

E (v’ )+F (w'd +v'a")+6. (v'Dr)
VELW2+2F, (w'v)+G, (w24 Ey(@)2+2F, (@' %' )+G, (0" )?

Since = Cos0, =

AE (' )+FR W' v +v'u')+6,(v'vr)]
l[JEZ WN2+2F, (W v )+ G, (02 B, ()2 +2F, (W' B’ )+Go (B’ )2]

Then by using (i) = Cos6, =

= Cos0; = CosO, = 6; = 6, = f is conformal.
CONVERSLY: Suppose that f is conformal.i.e. 8; = 6, = Cos6; = Cos0,

- Eiwa' )+ FWv +v'a’)+ G, (wv'v)
VE: ()2 4+ 2F,(W'v") + G1(v")2. E;(@)? + 2F,(@'7' ) + G1(¥" )2
) E,(ua' )+ F'v +v'a") + G,(v't")
VE,(W)Z + 2F,(w'v") + G,(v")2.y E,(W)? + 2F,(W'7" ) + G, (v' )2

Suppose for required result 7(t) = o,(a + t, b) and 7(t) = a,(a + tCose, b + tSing)
where a, ¢ are constants, and

U(t)=a+t$u’=1,v(t)=b$v'=0’ﬂ(t)=a+tCos§0:ﬂ'=Cos(’0'
7(t) = b + tSing = 7' = Sing

E,Cos@+F,Sing Y E;Cos@p+F,Sing
JE1+/ E1C0S2@+2F{Sin@Cos@+G,Sin2¢p = [Ey+| E2C0s2@+2F,Sin@Cosp+G,Sin2¢

=

() (E1Cos@+F,Sing)? _ (E;Cos@+F,Sing)?
E;.(E1C0S2@+2F,; SingCos@+G,Sin2@)  Eo.(E2Cos2@+2F,SingCos@+G,Sin2¢)

(E,Cos@ + F,Sing)? = E;*Cos?¢p + F,?Sin%@ + 2E,F,SingpCosg
(E,Cos@ + F,Sing)? = E;*Cos?¢ + F,2Sin?@ + 2E,F,SingCos@ + E,G,Sin?¢ — E;G,Sin%¢p
(E,Cosg + F,Sing)? = E;(E,Cos?p + 2F,SinpCosp — G Sin%p) — (E1G, — F,*)Sin?¢

E1(E,Cos%p + 2F,SinpCosgp — G,Sin?¢) — (E,G, — F,*)Sin¢

i) =
(D) E,.(EiCos?¢ + 2F,SinpCosp + G,Sin?@)
_ E3(E;Cos?@ + 2F,SinpCosp — G,Sin*@) — (E,G, — F,*)Sin%¢
B E,.(E,Cos?@ + 2F,SinpCos¢ + G,Sin%¢)
1 (E1G1—F1%)sin?¢ _a (E2G;—F,%)sin?¢
E1.(E1Cos2@+2F; SingCos@+G,Sin2¢) E».(E;Cos2@+2F,SinpCos@+G,Sin?¢p)

(E1G1—-F1%)Sin% ¢ _ (E2G—Fp?%)sin% ¢
E1.(E1CoS2@+2F; Sin@Cos@p+G,Sin2@)  Ey.(E,CoS2@+2F,SingCos@+G,Sin2@)

Eq(E2Go—F,

2
= (E,Cos?¢ + 2F,SinpCos + G,Sin*¢) = o EG.F 2) (E1Cos?@ + 2F,SinpCosp + G,Sin?¢)
2:\E1b170M
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E1(E2G,—F%)

——==—=-2 then
Ey.(E16,-F?)

Put A =

= (E,Cos%¢@ + 2F,SinpCosg + G,Sin?@) = A(E,Cos?¢@ + 2F,SinpCosg + G,Sin’@)
= (E, — AE;)Cos?@ + 2(F, — AF;)SingCos@ + (G, — AG,)Sin*¢p = 0

This condition holds when (E, — AE;) =0 = E, = AE,,(F, —AF;) = 0= F, = AF; and
(GZ - AGl) = O - Gz = AGl

Hence prove d the 1* fundamental forms are proportional.

THEOREM: Prove that the first fundamental forms of a; and o, are proportional
OR prove that f:0; = 0, is conformal.

PROOF: For 1 fundamental form of o,

Since 0, (u, v) = (u,v,0) = (0,), = (1,0,0) and (a;), = (0,1,0)
E; = (02)- (02)y = 1(0)ulI? = 1,6, = (02)y.(02)y = [1(02)0]1> = 1, F, = (63)4-(62), = 0
Then E,du? + G,dv? + 2F,dudv = du? + dv? is required.

For 1° fundamental form of a,

Since oy (u,v) = ( S Sk Bgp Y )
WP \wzgvz a1’ w2 4v2 41’ u2+v2+1
(uw?+v2+1)2-2u(2u)  2v(2w) 2(2u) ]
e =
(a1). [ (u2+v2+1)2 " (W2+v2+1)2” (uZ+v2+1)2
— (0_) _ [2u?+2v%+2-4u? 4uv 4u ]
Pu™ | @2v2+41)2 ’ (@24v2+1)2’ (u2+v2+1)2
_ 2u(2v) (u?+v2+1)2-2v(2v) 4v ]
and (0'1)17 - [(u2+v2+1)2' (u2+v2+41)2 P (u24v2+1)2
— (0_) _ [ 4uv 2u?42v242-4v2 4v ]
Vv = lw2+v241)27  u2+v2+41)2 (w2 4v2+1)2
_ | 2 _ 4 _ _ 2 _ 4
Now E; = (01)y. (01)y = ()l G1 = (01)y-(01)y = [[(a1)yl

T (w2+v2+1)2 T (u2+v2+1)2

Fi = (01)y.-(01)y =0

Thus E;du? + G,;dv? + 2F,dudv = TR [du? + dv?]
4
Put A = m = /1(11, U) then

Then (E;du? + G,dv? + 2F,dudv) = A(E,du® + G,dv? + 2F,dudv ) hence proved.

The 1° fundamental forms are proportional. = f:0; — 0, is conformal.

QUESTION: Show that every isometry is conformal mapping. Give an example of a conformal
mapping which is not an isometry.

SOLUTION: If f: §; — S, is an isometry between two surfaces S; and S, then their fundamental
forms are equal and hence proportional by A = 1 (1st FF of S; = 1st FF of S, ) so every
isometry is conformal.

The Stereographic projection 7 is an example of conformal mapping but not an isometry
because 4 # 1
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QUESTION: Show that Mercator’s parameterization the surface (sphere)
o(u,v) = (SechuCosv, SechuSinv, Tanhu) is conformal.

SOLUTION: Given (say) o (u, v) = (SechuCosv, SechuSinv, Tanhu)

= (0y),, = (SechuTanhuCosv, SechuT anhuSinv, Sech®u)
and (0,),, = (—SechuSinv,SechuCosv ,0)

Now E; = (O-l)u- (Gl)u = ||(01)u||2 = Sech*u G = (0-1)17- (Gl)v = ||(01)v||2 = SEChzu;
Fi = (01)y.(01)y =0

E;du? + G,dv? + 2F,dudv = Sech?u[du® + dv?] = Sech?u[E,du? + G,dv? + 2F,dudv]
= 1st FF of S; = 1st FF of S,

» QUESTION: Show that Enneper’s surface (sphere)

ud v3 . .
o(u,v) = (u -5+ uv?,v — T+ vu?,u? — vz) is conformaly parameterized.

QUESTION: let f(x) be a smooth function and o(u, v) = (uCosv, uSinv,f(u)) be a surface
obtained by rotating the curve z = f(x) in xz — plane around z — axis, then find all functions f
for which o is conformal.

SOLUTION: Given (say) o, (u, v) = (uCosv, uSinv,f(u))

= (0y)y = (Cosv,Sinv, f’(u)) and (0;), = (—uSinv,uCosv, 0)

Now E; = (01)y- (01)y = (@)l = 1 + [f'(W)]?,G1 = (61)- (01)y = (0, I = w2,
Fy = (0)u-(01)y =0

Eidu? + G,dv? + 2F,dudv = [1 + [f'(W)]?]du? + u?dv? ... ... .. (i) and hence mapping is
conformal to xz — plane o, (u, v) = (u, 0, v) iff whose 1* fundamental form is

E,du? + G,dv? + 2F,dudv = du® + dv?

Now equation (i) holds when 1 + [f'(W)]? = u? = [f'(wW)]? = u? -1
S[ffWl=+VuZ—1=fw) =+ [Vuz —1du= f(u) = + |- om

2

—%Cosh_lu +c

QUESTION: let o be a ruled surface o (u,v) = 7#(u) + vg(u) where 7 is a unit speed curve in R3

and & is a unit vector for all ‘u’ then prove that o is conformal.

SOLUTION: Given that 7 is a unit speed curve i.e. ||7'(u)|| = 1 and & is a unit vector i.e.
||5(u)|| = 1and let o, (w,v) = #(w) + v6(w) = (0y), = 7' (W) + v8' (W) and (y), = 5(w)

Now Ey = (#(w) + v8'(w)).. (7' (w) + v8'@w) = IF @12 + 20(7.8") +v2[|§' )|

= B, = 1+2v(#.8") +v2(8.8"),

61 = (00 (01)y = (8.8) = [l =1,

F, = (7'(u) + vg’(u)).g(u) =785 +v8.6=(7.8)+0=(#.8) =616 ast L7
Hence fundamental form is

Eydu? + Gy dv? + 2F dudv = [1 + 2v(#.8") + v2(8".8")|du? + dv? + 2(7. ) dudv ... (i)
And hence mapping is conformal to 0, (u, v) = (u, 0, v) iff whose 1% fundamental form is

E,du? + G,dv? + 2F,dudv = du® + dv?
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Now equation (i) holds when [1 + 217(?’. 5’) + vz(g’. 5’)] =1and 2(?’. 5) =0
= 217(?’.5') + v2(§'_§’) = 0and (?’.5) =0

= (2v#' + v2§')_§' =0= (2v#' + vzg') #0thend =0

= g(u) = constant i.e.independent of u
also (#'.6) = 0 = integrating w.r.to'u’ we get 7.8 = cosntant

= ¢ is conformal iff § = cosntant and 7 is contained in a planei.e. 7. 5= d(say)

QUESTION: Show that the surface patch o(u,v) = [f(u,v), g(u,v) ,0] where f and g are
smooth functions on uv — plane is conformal if and only if

fu=9vand f, = —g, (CR eq’s) or fu = —gy and f, = gy (anti CR eq’s)

SOLUTION: Given o (u,v) = [f(w,v),g(u,v) ,0] = g, = (f,, 9w, 0) and o, = (f,, g», 0)

Now E; = 0y.0y = lloyll? = £, + 9.2 , Gy = 0.0, = llo,l1? = £, + 9,2,
Fy = 0y.0, = fufy + 9ugv

Hence fundamental form is
Eydu? + Gydv? + 2F dudv = [f,* + g.2]du? + [£,* + g,2]dv? + (fufy + gugy)dudv

Now ¢ is conformal to the uv —plane iff £, + g2 =1 e (D), f,2 + o2 = 1. (i),
Fufo & GuGy = 1 oo (i)

Now ifz = f,, + ig, and w = f, + ig, then g is conformal iff zz = ww ... .... (iv)

Now we have ziw + zw = 0 = z2ww + zZw? = 0 i.e. X ing with zw = z%zZ + zzw? = 0
= Z2+w)|z?=0=z]?#0,(z2+w?) =0 = z = +iw

IfZ=+iW=>fu+igu=i(fv'l'igv):fu'l'igu:ifv_gv:fu=_gvandfv=gu
IfZ=_iW=>fu+igu=_i(ﬁ)+igv):fu+igu=_ifv+gv:fu=gvandfv=_gu

SURFACE AREA: Suppose that : U = R? is a surface patch on a surface S. The image of ¢ is
covered by the two families of parameterized curves obtained setting
u = constant and v = constant respectively. Fixing (uy, vy)€eU

leto = o(u,v) = do = g,Au + 0,Av
If = v = constant then Av = 0 = do = d = o,Au
and = u = constant thenAu=0=do = b = o,Av

now as area of parallelogram = ||5L X B” = ||o,Au X o,Av|| = ||oy, X g,||AuAv

then surface area is defined as “ The A, (R) of part 6(R) of surface patch : U — R3
corresponding to a region R € U is A, (R) = [[|loy, X o, |ldudv
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PREPOSITION: Show that ||g,, X o,|| = VEG — F?

SOLUTION: Suppose d, b, d are vectors in R3 then we use the result
(@xB).(¢xd) = (@8(5.d) - (5.)(ad)

Now ||0u X lelz = (Uu X Gv)- (Gu X Gv) = (Gu -O-u)- (O-U'O-U) - (Uu -Uv)- (Uu -Uv)
loy X o,ll? = EG — (0, .0,)*> = EG — F? = ||o, X o0,|| = VEG — F?

REMARK:

e We can also write surface are definition in the form A, (R) = [[ VEG — F2dudv
e Foraregularsurface EG — F? > 0 (always) everywhere. Since for regular surface
g, X 0, is never zero.

PREPOSITION: Show that the area of surface patch is unchanged by reparameterization.

SOLUTION: let 0: U — R3 be a surface patch and : U — R be a reparameterization of ¢ with
reparameterization map ¢:U — U thus if ¢(i1, 7) = (u,v) we have 6(it, ) = o(u,v) .... (i)
let R € U be a region and let R = ¢(R) € U then we have to show 4,(R) = A5(R)

Let Az (R) = [[11Gz X 65|ldTd® ... ... (ii)

. _ Ju v = Ju v
Since oy = oy 5=+ av£and 0p = Oy -+ a,,gthen

Oy X O —(a a—u+aa—v)x(o* a—u+aa—v)
u v \TUsy Yoy Usp v ap

_ _ ou du ou dv v du dv v
oz X 0y = (0, X au)%£+ (o, X av)%£+ (0, X au)££+ (o, X av)££

_ _ ou v v du ou v v du

og X0z =0+ (O'u X O'v)££+ (Gv X au)££+0 = ££—£%] (O'u X Uv)
u du

_ _ Y o(u,v) _

Oy X Oy = 61; aZ (O-u X O-v) = a(@W,) (Ju X Uv) = ](QD)(O’u X O-U)
ou  ov

o(u,v)
a(u,v)
(i) = Az (R) = [[ll6z X 65lldudv = [[|loy X oy |ldvdv = A;(R) = Az(R) = Az(R)

Replacingu byuand vby v a3 X 03 = (o, X 0,) = (0y X 0,) = 03 X 75 = (0, X 7,)

EXAMPLE: Consider the torous o(u,v) = [(b + aSinv)Cosu, (b + aSinv)Sinu, aCosv]
where 0 < u, v < 2m then find its surface area.

SOLUTION: Given o (u,v) = [(b + aSinv)Cosu, (b + aSinv)Sinu,aCosv]
= o, = [—(b + aSinv)Sinu, (b + aSinv)Cosu, 0]
and g, = [aCosvCosu, aCosvSinu, —aSinv]

Now E = gy,.0y = |loy|l?> = (b + aSinv)? ,=0g,.0, = |lo,lI>? =a?, F=o0,0,=0

For surface are we haveA,(R) = [[ VEG — F?dudv = fozn fozn\/az(b + aSinv)? — 0dudv
Ay (R) = fozn du fozna(b + aSinv)dv = |u|%™.|abv — a?Cosv|3" = 4n2ab

GEODESICS: A curve 7 on a surface ‘S’ is called a geodesic if 7' is zero or perpendicular to the
tangent plane of surface at point 7(t) i.e. parallel to its unit normal for all values of parameter t
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PREPOSITION: Any geodesic has constant speed. i.e. ||| = ¢ = % 7]l = ¢
PROOF: Let 7(t) be a geodesic on surface then we have
% 1712 = % #'.7") = 27" #" .......({) sinceisa geodesic so 7" is perpendicular to the

tangent plane therefore #" L #' (tangent vectorat ‘P’) = 7".7#' =0

. i S22 =1 i S — =1 i | =
© = L1712 = 0 = 2014 1] = 0 = 2071l = 0, L 17 = 0

PREPOSITION: A curve on a surface is geodesic iff its geodesic curvature is zero everywhere.

PROOF: It is sufficient to consider a unit speed curve 7 contained in a surface patcho. Let 71 be
the standard unit normal of o so that K, = 7", (it X 7') ... ... (i)

=11

Since 7' is geodesic then 7 || 7 and obviously 7 L (@ x ') = 7. (M x ) =0 = K, = 0

CONVERSLY: Supposethat K; = 0 = 7".(nx7#) =0=7" L (Ix7)=7" L# or 7" I n

= 7 is geodesic.

PREPOSITION: Any straight line on a surface is geodesic.

PROOF: For a straight line we have #(t) = @ + bt = #'(t) = b = #"(¢t) = 0 = 7 is geodesic.

PROF. MUHAMMAD USMAN HAMID (0323-6032785)




GEODESIC TRIANGLE: A curvilinear triangle ABC bounded by a geodesics.

GAUSS’S THEOREM: The whole second curvature of a geodesic triangle is equal to the excess
of the sum of the triangle over two right angles.

PROOF: Let us choose geodesic polar coordinates with the vertex A as pole. Then the specific

. 92 )
curvatureis K = — %a_ulz) and the area of an element of the surface is Ddudv. Consequently the

2
whole second curvature of the geodesic triangleis Q = [[ KdS = —|f %dudv

C

Integrate first w.r.to ‘u’ from the pole A to the side BC.

Then since at the pole D, is equal to unity we find on integration
O=[(A-D)Ddv=0=[1dv+ [ (-D))dv= Q= [dv+ [ d¥ Where (=D;)dv = d¥
Now fBCdv =mzAand [ d¥ = C — (r — B) then

Q=[dv+[d¥ =A+B+C —n Thisis required whole second curvature of triangle.

GAUSS’S EQUATIONS
EK = (Gh)y — (Tp)y + DDy + Dl — (03)?
FK = (Tuyp)u — v + Tl Ly — Tl
FK = (T)y = (Top)u + LTy — Tp i

GK = (F;Lv u_ (lefv)v + Fi%;rzlfu + F,Z,Fffv - (F&lv)z - ngrﬁv

CODAZZI’'S EQUATIONS

L,—M, = LF&LU + M(lefv - Flilu) - Nrgu

M, — N, = LF#U + M(ng - F#v) - Nrgv
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