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Abstract

A function is convex if the line segment joining two points on the graph lies above the
graph. These functions have important properties and applications in mathematics.
Specially, they are very important in optimization and minimization problems. Also
these functions are used in statistic and functional analysis. A positive function f
is logarithmic convex if log f is convex. It would seem that log convex functions
unremarkable because they are so simply related to convex functions. But they
have some surprising properties.

In the first chapter we generalize results for logarithmic convexity of Giaccardi’s

difference for classes of functions with the help of divided difference.
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Notations

The notation and concepts used in this monograph are more or less specified. The
reader is assumed to be familiar with the elements of Mathematical Analysis, as well
as General Algebra, Matrix Theory and Topology, and since the standard notation
and concepts were used, it was believed unnecessary to define all of them.

We give some of the Notation used in the Monograph.

7 the set of integer

N the set of positive integer
Q the set of rational numbers
R

the set of real numbers
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Chapter 1

Introduction

1.1 Monotone functions
hghgthgthgthgthgthgthgthgf p € R

10 b
O [ty [ s
In a similar manner, one can define the notion of decreasing and strictly decreasing

function.

Definition 1.1.1. If a function f is either increasing or decreasing on [, then f is

called a monotone function on I.

In practice we often use the following criterion for monotonicity:

Theorem 1.1.2. If f is a differentiable function on I, it is monotone on I if and
only if the sign of f’ remains the same throughout I. In particular, if f'(x) > 0,
except maybe on a set of points of I which does not contain any interval of I, then
and only then f is an strictly increasing function; if f'(x) > 0, then f is increasing;
if f'(x) < 0 on I, then f is a strictly decreasing function and for f'(x) < 0, is

INCTeasing.

oo@ided\/b2 — dac (1.1.1)

SESY (1.1.2)

From equation 1.1.2, we have One can note that if f and g are monotone in same
direction then f o g is increasing and if f and g are monotone in opposite direction

then f o g is decreasing in their respective domains.
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Figure 1.1: Graph of convex function

1.2 Convex functions

The fundamental work of Jensen in the years 1905, 1906 is the starting point of
the systematic study of convex functions. Even before Jensen, the literature shows
results which refer to convex functions. In fact the roots of such functions can be
found in the work of Holder in 1889 and J. Hadamard in 1893, although these roots
were not explicitly specified in their works. The general theory of convex functions
is the origin of powerful tools for the study of problems in analysis. Inequalities
involving convex functions are the most efficient tools in the development of several

branches of mathematics and has been given considerable attention in the literature.



Chapter 2

Inequalities of Hadamard’s Type
for Lipschitzian Mappings.

In this chapter, we give some inequalities of Hadamard’s type for M-Lipschitzian
function. Some application which are connected with log functions, exponential

functions etc., for two positive numbers are also given.

Definition 2.0.1. [2] A function f : I — R defined on a closed interval I = [a, b] is

said to satisfy a Lipschitz condition if for any constant M and for points x,y € [a, b]

|f(z) = fy)l < M |z —y].

2.1 Hadamard’s type inequalities

We will start with the following theorem containing two inequalities of Hadamard’s
type for M-Lipschitzian mapping. We need the following Lemma to prove the

theorem.

Lemma 2.1.1.

! 1
/|2t—1|dt:—. (2.1.1)
0 2
Proof. As
+(2t—1) ift>1
PYRBTIND B CUnb L L
—(2t—1) ift <3
SO

SN2t = 1] dt = [2(—(2t — 1))dt + Ji(2t = 1yt
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Now as
JE(—(2t = 1))dt = L and [}(2t — 1)dt = L
Therefore

et —1dt=1+1= O

1
5.
Theorem 2.1.2. Let f : I € R — R be an M-Lipschitzian mapping on I and
a,b e I with a <b. Then we have the inequalities

\f(a;b) —bia/abfmdx

0PI L [ e

Proof. Let t € [0,1]. Then we have, for all a,b € I,

< —(b—a) (2.1.2)

and

<

%(b— a). (2.1.3)

[tf(a) + (1 =) f(b) — f(ta+ (1 —1)b)]
= [t(f(a) = flta+ (L =1)0)) + (1 = )(f(b) — f(ta+ (1 —1)b))]
<t[f(a) = flta+ (1 =0)0)[ + (1 =) [f(b) = f(ta + (1 = 1)b)| (2.1.4)
<tMla— (ta+ (1 =t)b)| + (1 —t)M |b— (ta+ (1 —t)b)|
=2t(1 —t)M|b—a].
If we choose

t_l
=3

we have

f(a)-gf(b)_f(a;b)‘ggw_a\, (2.1.5)

If we put ta+ (1 —t)b instead of a and (1 —t)a+1tb instead of b in (2.1.5) respectively,

then we have

‘f(taJr(l—t)b)+f((1—t)a+tb) _f(cH—b)‘ _ M2t -

1
. )| s =5 —lb-a. (210

for all ¢ € [0, 1].
If we integrate the inequality (2.1.6) on [0,1], we have

'% [/Olf(m+(1—t)b)dt+/01f((1—t>a+tb)dt] —f(“b)' < Mlb=dl /01]2t—1|dt.

2 2

(2.1.7)

Also we have



/fta+ (1—t)b)dt = /f (1 —t)a + th)d b—a/f (2.1.8)

Now using equation (2.1.8) and from Lemma 2.1.1 in equation (2.1.7), we have

/f )dz — f (‘Hb)‘ M|b4_a‘ (2.1.9)

b
’f (“;b) - bia/a f(:v)da:‘ < W, (2.1.10)

which is required inequality.

From equation (2.1.4), we have

[tf(a) + (L =) f(b) = fta+ (1= 1)b)] < 2t(1 = )M (b — a)
for all ¢ € [0,1] and a,b € I with a < b. Integrating on [0,1], we have

'f(a) /OltdtJrf(b) /01(1—t)dt—/olf(taJr(l—t)b)dt‘ < 2M(b - a) /Olt(l—t)dt

/Oltdtz/ol(l—t)dt:—
/Olf(taJr(l—t)b)dt:bia/abf(x)dx

LOES.LN bia/olf@d’f\ o M—a)

Hence, from

and

we have

which is our required equation.
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