

Exercise 10.4 (Solutions) Mathematics 9th (Science) Punjab Textbook Board

These resources are shared under the licence Attribution-NonCommercial-NoDerivatives 4.0 International <u>https://creativecommons.org/licenses/by-nc-nd/4.0/</u> Under this licence if you remix, transform, or build upon the material, you may not distribute the modified material.

برائے مہربانی نوٹس کاپی اور استعمال کرتے وقت اس لائیسنس کا خیال رکھیں۔

Q.1 In $\triangle PAB$ of figure,		
$\overline{PQ} \perp \overline{AB}$ and $\overline{PA} \cong \overline{PB}$.		
Prove that A	$Q \cong BQ, \ \angle APQ \cong \angle BPQ.$	
Solution:	Given: In $\triangle PAB$,	
	$\overline{PQ} \perp \overline{AB}$ and $\overline{PA} \cong \overline{PB}$.	

To prove: $AQ \cong BQ$, $\angle APQ \cong \angle BPQ$. **Proof:**

Statement	Reasons
In $\triangle APQ \leftrightarrow \triangle BPQ$	
$\overline{PA} \cong \overline{PB}$	Given
$\angle AQP \cong \angle BQP$	Given $\overline{PQ} \perp \overline{AB}$
$\overline{PQ} \cong \overline{PQ}$	Commo
$\therefore \Delta APQ \cong \Delta BPQ$	$H.S \cong H.S$
$S_0 \qquad \overline{AO} \simeq \overline{BO}$	Corresponding sides of congruent
	triangles.
and $\angle APQ \equiv \angle BPQ$	Corresponding angle of
	congruent triangles.

Q.2 In the figure,

 $m \angle C = m \angle D = 90^{\circ}$ and $\overline{BC} \cong \overline{AD}$. Prove that $\overline{AC} \cong \overline{BD}$, and $\angle BAC \cong \angle ABD$.

Solution: Given: $m \angle C = m \angle D = 90^{\circ}$ and $\overline{BC} \cong \overline{AD}$.

To prove: $\overline{AC} \cong \overline{BD}$ and $\angle BAC \cong \angle ABD$.

Proof:

Statement	Reasons
In $\triangle ABD \leftrightarrow \triangle BAC$	
$\overline{AD} \cong \overline{BC}$	Given
$\angle C \cong \angle D$	Each 90°
$\overline{BA} \cong \overline{AB}$	Common
Thus $\triangle ABD \cong \triangle BAC$	$H.S \cong H.S$
So $\overline{AC} \cong \overline{BD}$	Corresponding sides of congruent
and	triangles.
$\angle BAC \cong \angle ABD$	Corresponding angles of
	congruent triangles.

Q.3 In the figure, $m \angle B = m \angle D = 90^{\circ}$

and $\overline{AD} \cong \overline{BC}$. Prove that ABCD is a rectangle.

Solution: Given: In rectangle ABCD,

 $m \angle B = m \angle D = 90^{\circ}$ and $\overline{AD} \cong \overline{BC}$.

To prove: *ABCD* is a rectangle.

Construction: Join A to C.

Proof:

	Statement	Reasons
In	$\Delta ABC \leftrightarrow \Delta \ CDA$	
	$\angle B = \angle D = 90^{\circ}$	Given
	$\overline{AC} \cong \overline{CA}$	Common
	$\overline{BC} \cong \overline{AD}.$	Given
	$\Delta ABC \cong \Delta CDA$	$H.S \cong H.S$
	$\overline{AB} \cong \overline{CD}$	Corresponding sides of congruent triangles.

$\overline{AD} \cong \overline{BC}$	Given
$m \angle DCA = m \angle BAC \dots$ (i)	Corresponding angle of
	congruent triangles.
and	
$m \angle BCA = m \angle DAC \dots$ (ii)	Corresponding angle of
	congruent triangles.
$m \angle DCA + m \angle DAC = 90^{\circ}$	Sum of other two angles of
	right triangle
$m \angle BAC + m \angle DAC = 90^{\circ}$	Using (i)
$m \angle A = m \angle BAD = 90^{\circ}$	
Similarly	
$m \angle C = m \angle BCD = 90^{\circ}$	
Thus	
$m \angle A = m \angle B = m \angle C = m \angle D = 90^{\circ}$	
$\overline{AB} \cong \overline{CD}$ and $\overline{AD} \cong \overline{BC}$	
Hence, ABCD is a rectangle.	

Mathematics 9

by Dr. Karamat H. Dar and Prof. Irfan-ul-Haq. Published by Carvan Book House, Lahore, Pakistan. Edition: 2022