MathCity.org

Merging man and maths

Exercise 10.1 (Solutions)

Mathematics 9th (Science) Punjab Textbook Board

These resources are shared under the licence Attribution-NonCommercial-NoDerivatives 4.0 International https://creativecommons.org/licenses/by-nc-nd/4.0/
Under this licence if you remix, transform, or build upon the material, you may not distribute the modified material.

براءُ مهربانى نويُس كانى اور استعمال كرخ وقت اس لائيسنس كا خيال ركهي-
Q. 1 In the given figure, $\overline{A B} \cong \overline{C B}, \angle 1 \cong \angle 2$,

Prove that $\triangle A B D \cong \triangle C B E$.
Solution: Given: $\overline{A B} \cong \overline{C B}$ and $\angle 1 \cong \angle 2$
To prove: $\triangle A B D \cong \triangle C B E$.

Proof:

	Statement
In	Reasons
	$\overline{A B} \cong \overline{C B}$
	$\angle B A D \cong \angle B C E$
	Given
	Given $\angle 1 \cong \angle 2$
	$\triangle A B D \cong \triangle C B E$
	Common

Q. 2 From the point on the bisector of an angle of an angle, perpendiculars are drawn to the arm of the angle. Prove that these perpendiculars are equal in measure

Solution: Given: $A D$ bisects of an angle $\angle B A C$ from point E, draw $\overline{E C} \perp \overline{A M}$ and $\overline{E B} \perp \overline{A L}$.
To prove: $\overline{E B} \cong \overline{E C}$
Proof:

Statement	Reasons	
In	$\Delta A E B \leftrightarrow \triangle A E C$	
	$\overline{A E} \cong \overline{A E}$	Common
	$m \angle A B E=m \angle A C E$	Each right angle is given
	$m \angle B A E=m \angle C A E$	Given $\overline{A D}$ is bisector of angle A
\therefore	$\Delta A B E=\Delta A C E$	S.A.A postulate
So	$\overline{E B} \cong \overline{E C}$	Corresponding sides of congruent
		triangles.

Q. 3 In triangle $A B C$, the bisectors of $\angle B$ and $\angle C$ meet in a point I. Prove that I is equidistant from the three sides of $\triangle A B C$.
Solution: Given:

$$
\text { In } \triangle A B C, \overline{I F} \perp \overline{A B}, \overline{I E} \perp \overline{A C}, \overline{I D} \perp \overline{B C} \text {. }
$$

To prove:

$$
\overline{I D} \cong \overline{I E} \cong \overline{I F} .
$$

D

Proof:

Statement	Reasons
In $\Delta I D B \leftrightarrow \Delta I F B$	
$\overline{B I} \cong \overline{B I}$	Common
$\angle I B D \cong \angle I B F$	Given $B I$ is bisector of $\angle B$
$\angle I D B \cong \angle I F B$	Given each angle is right angle
$\Delta I D B \cong \Delta I F B$	S.A.S Postulates
$\therefore \overline{I D} \cong \overline{I F} \quad \ldots . .(i)$	
Similarly,	
$\Delta I F A \cong \Delta I E A$	Corresponding sides of $\cong \Delta^{\prime} s$
So $\quad \therefore \quad \overline{I F} \cong \overline{I E} \quad \ldots . .(i i)$	
From $(i) \quad a n d \quad(i i)$	
$\overline{I D} \cong \overline{I E} \cong \overline{I F}$	
$\therefore I$ is equidistant from the three	
sides of $\Delta A B C$	

Mathematics 9
by Dr. Karamat H. Dar and Prof. Irfan-ul-Haq.
Published by Carvan Book House, Lahore, Pakistan.
Edition: 2022

